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Paul Pollack and Enrique Treviño

Abstract. Let q1 = 2. Supposing that we have defined q

j

for all 1  j  k, let q

k+1 be a prime
factor of 1 +Q

k

j=1 q

j

. As was shown by Euclid over two thousand years ago, q1, q2, q3, . . .

is then an infinite sequence of distinct primes. The sequence {q
i

} is not unique, since there is
flexibility in the choice of the prime q

k+1 dividing 1 +Q
k

j=1 q

j

. Mullin suggested studying
the two sequences formed by (1) always taking q

k+1 as small as possible, and (2) always
taking q

k+1 as large as possible. For each of these sequences, he asked whether every prime
eventually appears. Recently, Booker showed that the second sequence omits infinitely many
primes. We give a completely elementary proof of Booker’s result, suitable for presentation in
a first course in number theory.

1. INTRODUCTION. The following is one version of Euclid’s proof that there are
infinitely many primes. Start with q1 = 2. Supposing that q

j

has been defined for
1  j  k, continue the sequence by choosing a prime q

k+1, for which

q

k+1 | 1 +
kY

j=1

q

j

. (1)

Then ‘at the end of the day’, the list q1, q2, q3, . . . is an infinite sequence of distinct
prime numbers.

Of course, the sequence {q
i

} obtained in this way is not unique, since the relation
(1) is often satisfied by several choices of the prime q

k+1. Mullin [4] suggested two
natural ways of dispensing with the ambiguity. First, we could agree that at each step,
we always choose the smallest prime q

k+1 satisfying (1); this leads to the sequence
(numbered A000945 in the Online Encyclopedia of Integer Sequences, or OEIS [6])

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, . . . . (2)

Alternatively, we might always choose the largest possible q

k+1, resulting in the se-
quence (A000946 in the OEIS)

2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129, . . . . (3)

We call (2) and (3) the first and second Euclid–Mullin sequences, respectively. For
each of (2) and (3), Mullin raised the question of whether every prime eventually ap-
pears. Shanks [5] conjectured on probabilistic grounds (bolstered by computations
of Wagstaff; cf. [7]) that every prime is eventually reached by (2), but essentially
nothing about the first Euclid–Mullin sequence has been rigorously established. The
second Euclid–Mullin sequence was investigated by Cox and van der Poorten [2].
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They showed that all of 5, 11, 13, 17, 19, 23, 29, 31, 37, 41, and 47 are missing and
conjectured that in fact infinitely many primes fail to appear in (3). The Cox–van der
Poorten conjecture was very recently confirmed by Booker [1].

Theorem (Booker). The second Euclid–Mullin sequence omits infinitely many primes.

There are two key ingredients in Booker’s proof. The first is quadratic reciprocity
for the Jacobi symbol, which is a staple of many first courses in number theory. In
addition to this elementary theorem, Booker also makes use of some fairly intricate
results in analytic number theory, specifically work of Burgess from the 1960s on
upper bounds for short character sums.

A simple statement calls out for a simple proof! In this note, we present a variant
of Booker’s proof, where all of the analytic number theory is replaced by very simple-
to-prove statements about the distribution of squares and nonsquares modulo a prime.
There is a cost for this, certainly; our quantitative bounds are weaker than what fol-
lows from Burgess’s estimates. However, we believe that given how simple Booker’s
theorem is to state, there is some value in writing out a proof that is accessible to as
wide an audience as possible.

Notation. Throughout the paper, we reserve the letter p for a prime variable. We use�
a

m

�
for the usual Legendre–Jacobi symbol.

2. PRELIMINARIES ON THE DISTRIBUTION OF SQUARES AND NON-
SQUARES MODULO A PRIME. Recall that an integer a not divisible by p is
called a quadratic residue modulo p if the congruence x

2 ⌘ a (mod p) is solvable
and a quadratic nonresidue otherwise. We let `(⇤, p) denote the length of the longest
run a + 1, a + 2, . . . , a + ` of consecutive quadratic residues mod p, and we let
`(⇥, p) denote the longest run of consecutive quadratic nonresidues. If we wish inte-
gers congruent to 0 modulo p to be allowed in the run, we will write `0 in place of ` in
both cases.

In this section, we show that all of `(⇤, p), `(⇥, p), `0(⇤, p), and `0(⇥, p) are
smaller than 2

p
p. As a prelude, we prove an upper bound on the smallest positive

quadratic nonresidue modulo p, which we denote by n2(p).

Lemma 1. Let p be an odd prime. Then n2(p) < 1
2 + p

p.

Proof. Let n = n2(p). Since p < ndp/ne < p + n, the least nonnegative residue of
ndp/ne modulo p lies in the open interval (0, n). So ndp/ne is a quadratic residue
modulo p. Since n is a quadratic nonresidue, the ratio ndp/ne

n

= dp/ne is also a non-
residue. So by the minimality of n, it must be that 1 + p/n > dp/ne � n. Hence,

✓
n � 1

2

◆2

< n

2 � n + 1  p, and so n <
1
2

+ p
p.

Lemma 2. Let 1  n < p be a quadratic nonresidue modulo p. Then

`(⇤, p)  max{p/n, n � 1}.

Proof. Let ` = `(⇤, p), and choose a 2 Z so that all of a + 1, a + 2, . . . , a + ` are
quadratic residues modulo p. Multiplying by n, we obtain a sequence na + n, na +
2n, . . . , na + `n of quadratic nonresidues modulo p, each of which differs from the
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previous by n. Suppose now that ` > p/n. In this case, every quadratic residue modulo
p can be considered mod p as being walled inside one of the intervals (na + jn, na +
( j + 1)n) with 1  j < dp/ne, or inside (na + dp/nen, na + n + p). Thus, any run
of quadratic residues has length bounded by n � 1. So either `  p/n or `  n � 1,
exactly as claimed in the lemma.

We can now establish an upper bound on the length of any sequence of consecutive
squares modulo p.

Proposition 3. If p is an odd prime, then `0(⇤, p) < 2
p

p.

Proof. We first rule out long runs of squares containing a multiple of p. Suppose
first that �1 is not a square modulo p. Then any such run of squares can be viewed,
modulo p, as a subset of the interval [0, n2(p)), and thus has length at most n2(p). On
the other hand, if �1 is a square modulo p, then such a run can be viewed as a subset
of (�n2(p), n2(p)), and so has length at most 2n2(p) � 1. Consequently,

`0(⇤, p)  max{2n2(p) � 1, `(⇤, p)}.

By Lemma 1, we have 2n2(p) � 1 < 2
p

p. Thus, it suffices to show that `(⇤, p) <

2
p

p. If there is any quadratic nonresidue in the half-open interval ( 1
2

p
p, 2

p
p], then

this bound on `(⇤, p) follows from Lemma 2. So let us suppose otherwise. By Lemma
1, n2(p) < 1

2 + p
p < 2

p
p, and so n2(p)  1

2

p
p. With n := n2(p), each of the in-

tegers k

2
n with 1  k < p is a quadratic nonresidue mod p. If we pick k as large as

possible with

k

2
n  1

2
p

p,

then the lack of nonresidues in ( 1
2

p
p, 2

p
p] implies that

(k + 1)2
n > 2

p
p.

Subtracting the first inequality from the second yields (2k + 1)n > 3
2

p
p � 3k

2
n,

and thus 2k + 1 > 3k

2. But this inequality is false for each k � 1. This proves that
`(⇤, p) < 2

p
p and completes the proof of the proposition.

It is easier to rule out long runs of nonsquares mod p.

Proposition 4. For each odd prime p, we have `0(⇥, p) < 2
p

p.

Proof. Every nonresidue or multiple of p can be considered mod p as being walled
within the interval ( j

2, ( j + 1)2), for some 1  j < bppc, or within the interval
(bppc2, p + 1). The number of integers in an interval of the first kind is 2 j < 2

p
p,

while the number of integers in (bppc2, p + 1) is p � bppc2 < p � (
p

p � 1)2 <
2
p

p.

Remarks. Much of this section is adapted from the charming book of Gelfond and
Linnik [3]. Lemma 1 and its proof appear, with trivial changes, as that text’s Theorem
9.3.1, while the proof of Proposition 4 comes from the discussion at the bottom of
p. 179. The only novelty is our proof of Proposition 3. Gelfond and Linnik state that
result as Theorem 9.3.2, but it seems that their proof is incomplete.
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3. PROOF OF THE MAIN THEOREM. Throughout this section, the second
Euclid–Mullin sequence is denoted q1, q2, q3, . . . . The main theorem is contained in
the following proposition.

Proposition 5. Let Q1, Q2, . . . , Q

r

be the smallest r primes omitted from the second

Euclid–Mullin sequence, where r � 0. Then there is another omitted prime smaller

than

122

 
rY

i=1

Q

i

!2

. (4)

Remark. Using the results of Burgess, Booker showed that the exponent 2 in (4) can
be replaced with any real number larger than 1

4
p

e�1 = 0.178734 . . . , provided that 122

is also replaced by a possibly larger constant.

Proof. Let X = 122
�Q

r

i=1 Q

i

�2
. Let us suppose for the sake of contradiction that every

prime p  X except Q1, . . . , Q

r

appears in the second Euclid–Mullin sequence. Let
p be the prime in [2, X ] that is last to appear in the sequence {q

i

}, and say p appears
as the nth term q

n

. Then p is the largest prime dividing 1 + q1 · · · q

n�1. Moreover,
since each prime smaller than p that is not a Q

i

is one of q1, . . . , q

n�1, the only other
possible prime factors of 1 + q1 · · · q

n�1 are Q1, . . . , Q

r

. Thus, we must have

1 + q1 · · · q

n�1 = Q

e1
1 Q

e2
2 · · · Q

e

r

r

p

e

for some exponents e1, . . . , e

r

� 0 and e � 1.
We claim it is possible to choose a natural number d  X satisfying both of the

congruences

d ⌘ 1 (mod 4), d ⌘ �1 (mod Q1 · · · Q

r

), (5)

as well as
✓

d

p

◆
=
✓�1

p

◆
. (6)

Suppose for the moment that this has been proved. Since d  X , and d is coprime to
Q1 · · · Q

r

p, every prime dividing d is among the primes q1, . . . , q

n�1. So if we write
d = d0d

2
1 , where d0 is squarefree, then d0 | q1 · · · q

n�1. Hence,

✓
d

1 + q1 · · · q

n�1

◆
=
✓

1 + q1 · · · q

n�1

d

◆

=
✓

1 + q1 · · · q

n�1

d0

◆✓
1 + q1 · · · q

n�1

d

2
1

◆

=
✓

1
d0

◆
·
✓✓

1 + q1 · · · q

n�1

d1

◆◆2

= 1 · 1 = 1.

(The very first equality uses quadratic reciprocity for the Jacobi symbol.) On the other
hand, we have

�
d

Q

i

�
=
��1

Q

i

�
for each i = 1, 2, . . . , r and

�
d

p

�
=
��1

p

�
, so that
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✓
d

1 + q1 · · · q

n�1

◆
=
 

rY

i=1

✓
d

Q

i

◆
e

i

!

·
✓

d

p

◆
e

=
 

rY

i=1

✓�1
Q

i

◆
e

i

!

·
✓�1

p

◆
e

=
✓ �1

1 + q1 · · · q

n�1

◆
= �1,

using in the last step that 1 + q1 · · · q

n�1 = 1 + 2
Q

1<i<n

q

i

⌘ 3 (mod 4). This is a
contradiction.

It remains to establish the existence of a d  X satisfying (5) and (6). The condi-
tions (5) are satisfied by every integer d ⌘ A (mod M), where A := 2Q1 · · · Q

r

� 1
and M := 4Q1 · · · Q

r

. To obtain (6), we look for a small nonnegative integer k with�
Mk+A

p

�
=
��1

p

�
. Equivalently, fixing M

0 satisfying M M

0 ⌘ 1 (mod p), we seek a non-
negative integer k with

✓
k + AM

0

p

◆
=
✓�M

0

p

◆
.

By the results of section 2, we can find such a k  max{`0(⇤, p), `0(⇥, p)} < 2
p

p.
Then the corresponding d satisfies

0 < d = Mk + A < 2M

p
p + M < 3M

p
p  3M

p
X .

Since 3M = 12Q1 · · · Q

r

=
p

X , we find that d < X . This completes the proof.
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