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ABSTRACT
Wearable sensing systems are becoming widely used for a
variety of applications, including sports, entertainment, and
military. These systems have recently enabled a variety of
medical monitoring and diagnostic applications in Wireless
Health. The need for multiple sensors and constant monitor-
ing lead these systems to be power hungry and expensive, with
short operating lifetimes. In this paper, we introduce a novel
methodology that takes advantage of the influence of human
behavior on signal properties and reduces those three metrics
from the data size point of view. This, in turn, directly influ-
ences the wireless communication and local processing power
consumption. We exploit intrinsic space and temporal corre-
lations between sensor data while considering both user and
system behavior. Our goal is to select a small subset of sen-
sors to accurately capture and/or predict all possible signals
of a fully instrumented wearable sensing system. Our ap-
proach leverages novel modeling, partitioning, and behavioral
optimization, which consists of signal characterization, seg-
mentation and time shifting, mutual signal prediction, and
subset sensor selection. We demonstrate the effectiveness of
the technique on an insole instrumented with 99 pressure sen-
sors placed in each shoe, which cover the bottom of the entire
foot, resulting in energy reduction of 56% to 96% for error
rates of 5% to 17.5%.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
[Real-time and embedded systems]; B.8.2 [Performance and
Reliability]: Performance Analysis and Design Aids; J.3 [Life
and Medical Sciences]: Medical information systems

General Terms
Design, Algorithm, Performance

Keywords
Wearable Medical Systems, Energy Optimization, Sensor Se-
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lection, Behavioral Sensing.

1. INTRODUCTION
Embedded networked systems and wide area cellular wire-

less systems are becoming ubiquitous in applications ranging
from environmental monitoring to urban sensing. Meanwhile,
sensor networks have emerged as an important class of dis-
tributed embedded systems capable of solving a variety of
challenging monitoring and control problems in a number of
application domains, ranging from government and military
applications to seismic, habitat, and wildlife continuous ob-
servations. These technologies have recently been adopted to
support the emerging work in medical devices equipped with
sensors, known collectively as Wireless Health [1] [2] [3] [4].
Wireless Health merges data, knowledge, and wireless com-
munication technologies to provide health care and medical
services such as prevention, diagnosis, and rehabilitation out-
side of the traditional medical enterprise.

Such sensor systems have high potential to significantly im-
prove the quality of life for large segments of the population
and enable conceptually new types of applications. However,
it is important to note that a path to industrial realization
has been more elusive than initially was expected due to a va-
riety of issues, including system and operational complexity,
cost and energy sensitivity, semantic complexity, and the need
for often revolutionary changes in consumer behavior. Ever-
increasing opportunities in health care have thus motivated
researchers in Computer Science and Electrical Engineering
to develop technologies that can be adopted in the medical
and physiological fields and to serve the recently growing de-
mand of low cost and widely accessible health care services.

In this paper, we show how signal processing techniques
(time-shifting and segmentation), in addition to a new com-
binatorial optimization paradigm (pseudo-exhaustive combi-
natorial search), can be used to design an energy optimized
embedded sensing system to reduce energy consumption by
more than an order of magnitude. While some of these tech-
niques best perform on embedded sensing systems that share
local communication, a majority of them can be applied on
essentially any sensing systems. Our goal is to demonstrate
that often expensive wearable sensing systems used in medical
studies can be made more attractive to daily usage through
a system of coordinated design and operational techniques
that facilitate mass production, customization to specific cus-
tomers, and low power operation.

Specifically, our optimization goal is to simultaneously min-
imize the cost (i.e. the number of sensors) and energy con-
sumption (i.e. the weighted sum of collected and communi-
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cated samples) while preserving a specified accuracy of col-
lected data, or vice versa. To do so, we exploit intrinsic space
and temporal correlations between sensor data while consid-
ering both user and system behavior. Our proposed method-
ology takes advantage of signal semantics and predictability
among sensors to reduce the number of sensors and amount
of data acquisition, and has the following technical novelties:

Signal time-shifting: In many sensing systems, relative time
shifting greatly improves predictability. This phenomenon is
strongly expressed in medical sensing systems. Another im-
portant observation is that cross-correlation functions are al-
most always unimodular. Therefore, binary search can be
used for very fast calculation of the best shifts. In addition,
note that the complexity of the sensor selection problem does
not increase since we can always shift the selected signals by
any required amount.

Signal segmentation for mutual sensor prediction: Signals in
many types of embedded sensing systems have natural phases.
For example: temperature and humidity are often highly im-
pacted by sun activity, which is composed of morning, af-
ternoon, and night phases; a heart beat has systolic and dias-
tolic phases; and shoe pressure sensors are subject to airborne,
landing, and take-off phases. Once the signals are aligned us-
ing signal time-shifting, the prediction of signals in each phase
is much more accurate after segmentation, because data in one
segment will otherwise often act as noise for data in another.

Subset node selection: It is easy to see that the selection of
subsets of sensors from which the values of all other sensors
can be computed within a given error is a NP-complete prob-
lem by observing that it can be mapped to the dominating set
problem, which we solve using a novel type of constructive al-
gorithm that facilitates an easy trade-off between the quality
of the solution and the run time. Combinatorial iterative com-
ponent assembly (CICA) iteratively builds a number of partial
solutions that are likely to be part of the final solution. It can
be easily shown that an arbitrarily close approximation can be
achieved at the expense of run time. Much more importantly,
CICA has very strong practical performance.

We discuss the related work in the next section, then present
the low power wearable sensing system that has been the main
motivation behind this study in Section 3. In Section 4, we
present the signal properties of this system, which are influ-
enced by user behavior and of which we take advantage for
optimization. In Section 5, we mathematically formulate the
relationships between pairs of sensors, derive the predictor-
to-base sensor model, and define the predictor selection ob-
jectives. Finally, Section 7 presents experimental results and
our achieved performance.

2. RELATED WORK
In this section, we briefly survey the most directly related

work in (low power) sensor networks, medical and wearable
sensing systems, energy optimization in body sensor networks,
and sensor reading prediction.

Convergence of sensing, communication, computation, and
storage technologies created the notion, testbeds, theory, and
conceptual foundation for sensor networks. The research and
development interest resulted in an exponentially growing num-
ber of sensor network publications. There are several concep-
tual and comprehensive sensor network surveys [5] [6]. From
the very beginning, it was realized that energy is one the
strictest constraints in many classes of sensor networks [7] [8].

With growing interest in designing sensor-based medical de-

vices, wearable embedded sensor systems attracted an inten-
sive and fast growing research and industrial interest [1] [9] [10]
[11] [12] [13]. The emphasis has been on feasibility, processing,
and interpretation of medical signals. However, energy opti-
mization is especially important in the medical domain, where
low cost and ease of every day use is crucial. Thus, it has been
targeted by a range of researchers from communication and
signal processing to hardware design and software engineering
in body area networks [14] [15] [16] [17] [18]. There are surpris-
ingly few reports related to cost and energy minimization for
medical sensing systems. To the best of our knowledge, there
are no reported techniques for simultaneous minimization of
used sensors and the energy budget in wearable systems.

Exploration of the correlation of sensor readings is prob-
ably the most addressed task in embedded sensing. There
are a large number of techniques ranging from a priori as-
sumed dependency (e.g. Gaussian and random Markov fields)
and similarity to movie streams [19] to non-parametric studies
that exploit properties of signals such as monotonicity [20].

3. PRELIMINARIES
We will demonstrate our proposed methods for an instance

of expensive systems used in medical studies for daily and
ubiquitous usage. The target system is a lightweight smart
shoe capable of sensing plantar pressure, movement, direc-
tion, and rotation. This system can be very attractive for
a range of applications, such as instability and gait analysis
outside of a laboratory environment, outdoor gaming, sports,
workplace safety, and environmental data collection. In al-
most all of these specified applications, long term and contin-
uous operation is required, while in an outdoor environment
charging the batteries of the system is not a convenient or
even possible task. High sampling rate, continuous data col-
lection, and large-volume data transmission has introduced
tremendous challenges to operating such a mobile platform.
Considering the aforementioned issues, it is essential to de-
velop a new method for instrumenting the shoe with sensors
in a way that would reduce the total system’s energy con-
sumption. In Section 3.1, we explore the architecture of the
designed lightweight system.

In general mobile or lightweight embedded sensing systems,
wireless communication is provably one the most power hun-
gry units in the system. In the system under study in this pa-
per, we have used MicroLEAP as our main sensor node, which
is responsible for sensing and transmitting the collected data
from the sensors. Table 1 summarizes the power and energy
consumption of the radio and the processor on MicroLEAP
[27].

Table 1: MicroLEAP energy consumption.
Power Data Rate Energy/Bit
(mW) (kbps) (nJ/bit)

Processor 2.7 NA NA
Radio 57.5 250 230

Therefore, one can easily conclude that in a network of N
sensors, eliminating the sampling of a subset of the sensor data
can drastically reduce the required energy consumption. Keep
in mind that our goal is not to disregard the data from those
sensors but provide a means to retrieve the information later
on. In other words (as described in detail in Section 5), in this
research one of our goals is to sample only a small subset of
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Figure 1: Right: medical shoe instrumented with
pressure sensors. Left: pressure sensor location map
under the foot for Pedar’s insole. Sensor placement
and location are derived from studying Pedar’s insole,
which has 99 sensors

sensors, and later, in the base station, predict accurately the
data values of the whole sensor network.

3.1 System Set Up and Instrumentation
The designed smart shoe is instrumented with pressure sens-

ing material and an embedded data acquisition unit with pro-
cessing and radio transmission capability. For the pressure
sensing material, we either use passive resistive sensors pro-
duced by Tekscan [28] or the piezoresistive fabric produced by
Eeonyx [29]. When using passive resistive sensors, sensors are
placed under the insole and are connected to the data acqui-
sition unit. In the case of the piezoresistive fabric, the fabric
will be cut such that it covers the entire surface under the
foot, and two conductive layers will be placed on both sides
of the fabric. The sensing areas are the parts of the fabric
covered by conductive material on both sides. In order to
record the pressure values, the sensing area will be connected
to the data acquisition board. The processing unit samples
data from pressure sensors at 60 Hz. In addition to pressure
sensors, the medical shoe also has gyroscopes and accelerome-
ters, which are used for activity recognition, motion tracking,
and gaming applications.

Sensor placement, especially for resource-constrained sys-
tems, requires sufficient understanding of the environment
where the sensors are being deployed so that (1) decisive and
important areas are covered and (2) resource usage is done in-
telligently, meaning one does not deploy more resources than
necessary. Therefore, we require a deeper understanding of
the pressure distribution and behavior beneath the foot so
that we can meet all the required objectives and system con-
straints for sensor placement. These objectives can include
energy requirements, sampling accuracy, coverage, etc.

To better understand the signals resulting from the exertion
of pressure by both feet, we use a plantar pressure mapping
system that covers the entire surface under the foot. The
advantage of using such a system is that it gives us a clear
picture of the complete pressure distribution under the foot.
Pedar [30] is an accurate and reliable pressure distribution
measuring system for monitoring local loads between the foot
and the shoe. It is comprised of insoles equipped with a grid
of 99 pressure sensors, which cover the entire area under the
foot, and a data acquisition unit capable of data sampling and
transmission to a PC over a wireless (bluetooth) connection.
Even though systems such as Pedar can provide complete in-
formation about the plantar pressure, high data sampling and
transmission rates make systems such as Pedar unpopular for
low power applications, due to the short lifetime of the system.

Figure 2: Three steps with three extracted states
each: (A) airborne, (B) take-off, and (C) landing.

4. SIGNAL PROPERTIES
We study plantar pressure signal properties corresponding

to human ambulation in order to identify physiological and
behavioral trends. The extracted patterns and signal seman-
tics, along with behavioral properties, are used in this study
to model the relationship among plantar pressure signals.

A plantar pressure signal can be segmented based on its be-
havior, which is imposed by human gait characteristics. We
divide each step into three segments: (1) airborne; (2) land-
ing; and (3) take-off. Figure 2 demonstrates the extracted
segments in the plantar pressure signal. The airborne state
is defined as the time during which a particular foot is not
touching the ground. The landing state is defined as the time
from when the signal starts increasing its amplitude from the
base offset value (calibrated zero pressure) until exactly before
it starts decreasing its value; the landing state for each part
of the foot, then, is the time during which the body’s weight
is applied to that particular sensor. Finally, the take-offs tate
is the time interval during which the signal’s amplitude de-
creases from its peak to the base offset value.

Pressure signal characteristics such as morphology, ampli-
tude, and pattern are influenced by an individual’s physiology
and walking behavior. For example, Figure 4 shows pressure
readings from all 99 sensors recorded from Pedar for two test
subjects, two steps each, where one had flat feet and the other
had hollow feet. As the figure suggests, the active pressure
area is greater for the flat-footed person, while the amplitude
difference between the active pressure and passive pressure ar-
eas for the hollow-footed person is much higher. Furthermore,
the pressure patterns and signal morphology are almost the
same in each step for the same test subject though different
between the two. It is important to note that the morphologi-
cal similarity will not be guaranteed if the test subject changes
the type of ambulation (e.g. walking, jumping, or standing),
even though it is consistent within the same type of activity.

Furthermore, the maximum amplitude of a signal is depen-
dent on the relative position of the sensor to the person’s cen-
ter line of pressure progression under the feet; sensors closer
to the center line of pressure will record higher pressure val-
ues compared to those that are located at the border of the
active and passive pressure areas. Sensors that are located
on the center line of pressure or on the lines parallel to it
demonstrate almost identical behavior but at different times.
Therefore, we can divide the sensors in the active pressure area
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Figure 3: Top: base and predictor signals at origi-
nal times. Bottom: base signal time-shifted toward
predictor signal, where resulting signals are almost
identical.

into sets, where data extracted from all sensors in the same
set have similar morphology and almost identical shape when
shifted. This implies that the signal’s behavior is propagating
in the walking direction onto different sensors in the same set.
We take advantage of consistent progression in data modeling
and predictor selection. Figure 3 shows two signals at their
original times and when one is shifted toward the other.

5. PREDICTIONMODELING
In order to predict the behavior of the sensors from each

other, it is essential to use a good prediction model to mini-
mize prediction errors. Due to sensors’ diverse locations and
their behavior under the foot during human motion, it is im-
possible to have a single fitting model to be used as the predic-
tion function across sensor pairs. Therefore in order to avoid
cost and complexity of managing many prediction models, we
take advantage of shifting signals. Due to consistent prop-
agation of applied pressure under the active pressure sensing
area, there exists a shift for a potential base sensor toward the
predictor sensor’s direction, which will align two sensor values
such that they will have an overlap between their landing and
take-off states. Our measurements show that once a base sen-
sor is shifted toward a predictor sensor such that there is an
overlap among their landing and take off states, we will need 3
different mathematical models to present the best prediction
function between any pair of sensors. The first fitting model is
a linear function, while the other two are isotonic. The linear
model is the best predictor when two sensors have complete
overlap between landing and take-off states. The other two
isotonic models, which are composed of piecewise linear and
quadratic models, are the best predictors when take-off and
landing states of the base and predictor sensors are not com-
pletely aligned together, and either or both are aligned with
the other’s airborne state.

Figure 5 demonstrates the fitted linear curve, and the iso-
tonic curves, which illustrate the mathematical relationship
between values from two different sensors, namely the predic-
tor and base sensor.

5.1 Prediction Error
We have considered two objectives for prediction accuracy

while fitting the data using the above specified prediction func-
tions. The first objective was to create the model such that it

minimizes the sum of the squares of the residuals as described
in Equation 1, which is basically the least-squared method
(ls). The second objective was to minimize the sum of the
absolute values of the residuals as described in Equation 2,
otherwise known as the L1-model.

minimize(sqrt
m
∑

t=1

r(t)2) (1)

minimize(
m
∑

t=1

|r(t)|) (2)

We evaluate the whole process of sensor predictor selection
using both of these error definitions.

5.2 Predictor Selection Objectives
Our proposed methodology in this section is aimed at select-

ing a potentially small subset of deployed sensors along with
prediction functions such that by only utilizing that small
set of sensors, all sensing data can either be measured di-
rectly or predicted with an acceptable error bound. Consider
two sensors si and sj and assume the corresponding sensor
values as functions of time are denoted as gi(t) and gj(t).
For every pair of sensors we create a collection of predictors
Φij = {φij1, ...,φ ijm}. φijk represents a predictor function for
sensor sj which is based on shifted values from sensor si by k
samples. In other words, if the predicted value for sensor sj
is denoted by g∗j (t) we have:

g∗j (t) = φijk(gi(t− k)) (3)

For a given predictor there is a prediction error associated
with it. We use a different cost function for prediction error
as described in Section 5.1. For instance, least square based
prediction error can be presented as:

ε(φijk) =

∑T
t=1

(gj(t)− φijk(gi(t− k)))2

gj(t)2
(4)

For a given sensing system, the prediction transform matrix
is defined as below:

Ψl×n =









. . .
φijk

. . .









(5)

where l ≤ n is the number of predictors denoted by P =
{p1, ..., pl} ⊆ S. Now we can formally define the problem.
The sensor predictor selection objective can be formulated as:

minimize(l = |P |) (6)

such that:

∀1 ≤ j ≤ n, ∃i, s.t.Ψij &= ∅ (7)

∀Ψij &= ∅, ε(Ψij) ≤ δ (8)

Constraint 7 guarantees that for any given sensor there is at
least one predictor, whereas constraint 8 enforces that max-
imum prediction error for any given sensor is less than the
target threshold of δ, where δ is an input to the problem de-
fined by the user or is application driven.
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Figure 4: Pressure mapping under the feet for (a) flat feet and (b) hollow feet. The progression of pressure
sensors over the active pressure area is observable in both cases. The locations of sensors under the foot are
based on the pressure sensor map in Figure 1.
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Figure 5: Relationship between predictor vs. base sensor when: (a) the take-off and landing states are overlap-
ping; (b) the landing or take-off state of the base is overlapping with the airborne state of the predictor; and
(c) the landing or take off state of the predictor is overlapping with the airborne state of the base.

6. OPTIMUM PREDICTOR SELECTION
In this section we cover the steps involved in the sensor

selection process.
The first step of the process is to generate the prediction

functions φijk. Each sensor is potentially a predictor. In the
context of prediction, we refer to predictor sensors as pi and
the sensors being predicted as base sensors, si. For a given
predictor sensor pi we generate n × m predictor functions:
{φijk} where 1 ≤ j ≤ n and 1 ≤ k ≤ m. A prediction error
corresponds to each predictor function represented as εijk,
which is computed using Equation 4. Predictor functions are
generated as described in Section 5.1.

The top predictor set of sensor sj is defined as:

Tj = {pi1 , ..., pik}s.t.εpijk ≤ δ (9)

For each sensor that is a top predictor (i.e. ∀pi ∈ ∪Tj), we
create a set of base sensors for which that predictor is among
the top predictors. In other words:

πpi = {sj1 , ..., sjl}, s.t.∀sj ∈ πpi , pi ∈ Tsi (10)

Basically, πpi represents the sensors which can be predicted
by sensor i with prediction error less than δ.

6.1 Combinatorial Iterative Component Assem-
bly

The goal in sensor selection is to find a minimal set of pre-
dictors, Π= {pi}, which can be used to predict all other
sensors. Formally this objective can be stated as minimizing
|Π| such that:

∀sj ,∃pi ∈ Π, s.t.pi ∈ Tj (11)

We call this minimal setΠ ∗. The way we tackle this problem
is to select a minimum number of πpis which cover the whole
set of sensors. This problem is equivalent to the minimum set
cover problem which is known to be NP-Hard. Therefore, we
use a combinatorial iterative component assembly algorithm,
or CICA, to find the min set cover. We compare the perfor-
mance of CICA with a well known approximation algorithm
described in [32]. In the experimental results, we show that
CICA is indeed performing better than the aforementioned
approximation. CICA works in the following way. First it
will sort the set of predictors based on the maximum number
of sensors they can cover. Then it picks the top predictors
from the sorted list and combines each with the initial list to
create a new predictor-to-base sensor map. This process con-
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Algorithm 1 Minimum Set Cover Using Combinatorial Iter-
ative Component Assembly

1: Input: πpi for all sensors in the system and k for top set
selection threshold

2: Output:Π ∗ minimum set of sensors, which can be used
to predict other sensors

3:Γ ← Sort πpis based on number of sensors they can predict
in descending order and pick top K sets

4: Υ= { }
5: Index = { }
6: while no set in Γ covers all sensors in the system do
7: for each set γi inΓ do
8: for each πpi from Input do
9: Combine covered sensors in γi and πpi and add the

new set toΥ
10: Add predictor sensor to γi’s corresponding index.
11: end for
12: end for
13:Γ ← Sort sets in Υ based on number of sensors they

cover in descending order and pick top k sets
14: end while
15:Π ∗ ← Index corresponding to largest set inΓ
16: returnΠ ∗

tinues until there is at least one single set which covers all the
sensors. Algorithm 1 summarizes the process.

OnceΠ ∗ is created, we generate the Φ matrix, and the sen-
sor selection process is completed. The way we create the
elements in the Φ matrix is as follows. Rows of the matrix
correspond to the predictors inΠ ∗ and the entries of the ma-
trix are:

Φ[pi, j] = argmin(ε(Ψpijk)), ifpi ∈ Tj (12)

Φ[pi, j] = ∅, otherwise (13)

In other words, in the column corresponding to base sensor
si, we insert the best prediction function from its top predic-
tors. Algorithm 2 summarizes the process.

Algorithm 2 Minimum Predictor Selection

1: Create prediction functions, φijk

2: Find top predictors Tsi for every base sensor si
3: Using Tjs, create the set of base sensors (πpi) best pre-

dicted by every top predictor pi.
4: Find the minimum set cover from πpis and add the corre-

sponding predictors toΠ ∗

5: UseΠ ∗ to create the prediction matrixΦ

6.2 Generalized Sensor Selection
In general, sensor networks are deployed in a particular envi-

ronment to collect specific information from that environment.
Any optimization of configuration methodology will be applied
to that sensor network either prior to deployment or after-
ward. Many of the environment-dependent offline method-
ologies need to be repeated if a new sensor network is to be
deployed in a new place. For the case study in this paper, the
sensing environment is the human body (in particular, the
feet). Therefore, for any new test subject, some training data
should be collected to efficiently select the best predictors and
customize the system accordingly. At the same time, it is only
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Figure 6: The number of predictor sensors converges
for the generalized case.

natural to assume that, across different people, the sensing en-
vironments have some similarities that might render repeat-
ing predictor selection for any new test subject redundant. To
overcome this problem, we also tried to find the globally min-
imum top predictors across all subjects. To achieve this, we
simply modified the process as follows. We defined πpi to be:

πpi = {sj1O1
, ..., sjlOr

} (14)

where Ok represents the kth subject, and r is the total num-
ber of subjects under study. Basically, base sensors are dif-
ferentiated across subjects with the secondary Ok index, but
predictors remain the same. Therefore, the number of base
sensors to be covered by min set cover is increased by a factor
of the number of test subjects. The rest of the process remains
the same.

The main question to address is: how stable are the global
predictors? In other words, if the top predictors are selected
based on training data from k test subjects, how will those
predictors perform for the (k+1)th test subject? Experimen-
tally we show that once the number of test subjects for global
predictors is around 5, the corresponding predictors are in fact
global and reliable for any new subject. Figure 6 shows the
number of predictors for various numbers of test subjects and
error rate bounds. We generated this graph by running, for a
given number of test subjects (say k), the generalized predic-
tor selection of all combinations of k test subjects for whom
we had reported the average predictor size. It is clear from
this graph that the predictor size converges very quickly once
the number of test subjects passes 7. This means that, once
the global predictor set is calculated for a few test subjects,
these predictors can be reliably used for a new subject.

7. EXPERIMENTAL RESULTS
In order to illustrate the effectiveness of the proposed method-

ologies, we used Pedar to collect sensor data across 10 indi-
vidual subjects. We tried to keep the subject set as diverse
as possible in terms of walking behavior and sensor data vari-
ability. The subject set was composed of 7 men and 3 women,
where one man and one woman were flat-footed and 2 men
were overweight. Foot sizes ranged from 7 to 11.

For the collected data set, we performed minimum predictor
selection with three different configurations: 1) least-square
method for predictor function generation without any shift
in base-sensor data (ls-noShift); 2) least-square method for
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Figure 7: Number of predictor sensors vs. the average prediction error for the whole sensing network for (a)
the general case and (b) averaged over individual test subjects.
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Figure 8: Ratio of energy savings with respect to no prediction vs. the average prediction error for the whole
sensing network, for (a) the individual case and (b) the general case.

predictor function generation with shift in base sensor value
(ls-wShift); 3) segmentation-based predictor function genera-
tion using least-square method (ls-segmentation); and 4) L1-
method for predictor function generation (L1).

Furthermore, we repeated the above scenarios for the global
case where the process was implemented on the aggregated
data from all individuals (as described in Section 6.2). 30% of
each test subject’s data was used to find the best predictor,
and the remaining 70% was used to evaluate the accuracy of
the prediction functions. We ran the sensor selection process
for a range of maximum prediction errors (δ in Equation 8).
The maximum prediction error rate ranges from 2.5% to 20%.
Afterwards, we simulated the estimated total energy savings
on the sensor node (MicroLEAP) when the minimal predic-
tors were used to sample the data. As seen in the system
architecture, one sensor node is responsible for sampling and
transmission of the data from sensors.

Table 2 summarizes the performance of the proposed com-
binatorial iterative component assembly algorithm to find the
minimum set cover versus the greedy approach. As the ta-
ble suggests, our proposed algorithm (CICA) outperforms the
well known greedy algorithm in both the individual and gen-
eral case. In the individual case, CICA outperforms the greedy
algorithm by an average of 22.3% for error rates between 2.5%
and 12.5%, while for 15% and 17.5% errors, the outcome is al-
most the same for both algorithms. In the general case, CICA

outperforms the greedy algorithm by an average of 23.8% for
error rates greater then 5%, while for 2.5% the outcome of
both algorithms are the same.

Table 2: Minimum selected sensors using CICA vs
Greedy algorithm

Individual General
Error CICA Greedy Error CICA Greedy
2.5 63 78 2.5 94 94
5 41 52 5 65 82
7.5 21 27 7.5 59 75
10 14 18 10 42 58
12.5 11 15 12.5 42 56
15 5 6 15 24 32
17.5 4 4 17.5 21 27

Figure 7(b) illustrates the number of sensors required to
predict the whole sensor network data (out of 99 sensors total)
versus the maximum prediction error for the four different
scenarios described above. These graphs are averaged over the
10 test subjects we had. Figure 8(a) summarizes the average
power savings ratio for different maximum prediction errors.
These graphs illustrate that power saving ranges from 18% to
91%, depending on the approach taken, while the maximum
prediction error rate ranges from 2.5% to 20%.

Finally, we repeated the same set of experiments and simu-
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lations for the general case. Figures 7(a) and 8(b) summarize
the results. As expected, the general case tries to find a global
predictor whose size is usually larger than the predictor set
of an individual, and therefore energy saving ranges from 0%
to 76%. Note that for a maximum prediction error rate of
2.5%, we must practically select all the sensors, resulting in
no energy savings.

8. CONCLUSION
In this paper, we explored data volume management and

its corresponding implications on energy consumption and
system lifetime in embedded and wearable sensing systems
through the introduction of multiple stages of signal analy-
sis and optimization algorithms. The high level contribution
of this paper is to study signal patterns and utilize them to
develop novel prediction algorithms at different levels of in-
formation flow in such systems. These methods aim to make
expensive wearable sensing systems more feasible for everyday
use by minimizing sampling sources while enabling reconstruc-
tion of the data from all sensors. One goal was to use a subset
of sensors to accurately generate the data from all sensors.
This goal was achieved by introducing two novel methods for
signal shifting, which enables better prediction of sensor data,
followed by data segmentation to further enable piecewise pre-
dictions. To solve the above problems, we also developed an
efficient approximation algorithm called combinatorial itera-
tive component assembly (CICA) to select optimum predic-
tors for each scenario. In order to show the effectiveness of
the proposed methodologies, we applied the presented meth-
ods on an embedded wearable sensing system equipped with
100 pressure sensors. Experimental results show that the pro-
posed techniques can yield from 56% to 96% in energy reduc-
tion while maximum sampling error rate ranges from only 5%
to 17.5%.
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