
Reducibility and Completeness

In Private Computations�

Joe Kiliany Eyal Kushilevitzz Silvio Micalix Rafail Ostrovsky{

Abstract

We de�ne the notions of reducibility and completeness in (two party and multi-party) private com-
putations. Let g be an n-argument function. We say that a function f is reducible to a function g if n
honest-but-curious players can compute the function f n-privately, given a black-box for g (for which
they secretly give inputs and get the result of operating g on these inputs). We say that g is complete

(for private computations) if every function f is reducible to g.
In this paper, we characterize the complete boolean functions: we show that a boolean function g is

complete if and only if g itself cannot be computed n-privately (when there is no black-box available).
Namely, for boolean functions, the notions of completeness and n-privacy are complementary . This
characterization gives a huge collection of complete functions (any non-private boolean function!) com-
pared to very few examples given (implicitly) in previous work. On the other hand, for non-boolean
functions, we show that these two notions are not complementary.

1 Introduction

We consider (two party and multi-party) private computations. Quite informally, given an arbitrary n-

argument function f , a t-private protocol should allow n players, each possessing an individual secret input,

to satisfy simultaneously the following two constraints: (1) (Correctness): all players learn the value of

f and (2) (Privacy): no set of at most t (faulty) players learns more about the initial inputs of other

players than is implicitly revealed by f 's output. This problem, also known as secure computation, have

been examined in the literature with two substantially di�erent types of faulty players { malicious (i.e.

Byzantine) players and honest-but-curious players. Below we discuss some known results with respect to

each of these two types of players.

Secure computation for malicious players. Malicious players may deviate from the prescribed

protocol in an arbitrary manner, in order to violate the correctness and privacy constraints. The �rst

�This paper is based on (but not completely covers) two conference papers; a 1991 paper by Kilian [K-91] and a 1994 paper

by Kushilevitz, Micali, and Ostrovsky [KMO-94].
y NEC Research Institute, New Jersey. E-mail: joe@research.nj.nec.com .
z Department of Computer Science, Technion. Research supported by the E. and J. Bishop Research Fund and by

the Fund for the Promotion of Research at the Technion. Part of this research was done while the author was at Aiken

Computation Lab., Harvard University, Supported by research contracts ONR-N0001491-J-1981 and NSF-CCR-90-07677.
E-mail: eyalk@cs.technion.ac.il .

x Laboratory for Computer Science, MIT. Supported by NSF Grant CCR-9121466.
{ Bell Communication Research, MCC-1C365B 445 South Street Morristown, New Jersey 07960-6438. E-mail:

rafail@bellcore.com.

honest-but-curious players malicious players

computational model [Yao-82, GMW-87]

(assuming trapdoor permutations t � n t < n
2

exist)

private-channels model

[BGW-88, CCD-88] t < n
2

t < n
3

Figure 1: The number of faulty players, t, tolerable in each of the basic secure computation models (with

n players)

general protocols for secure computation were given in [Yao-82, Yao-86] for the two-party case, and by

[GMW-87] for the multi-party case. Other solutions were given in, e.g., [GHY-87, GV-87, BGW-88,

CCD-88, BB-89, RB-89, CKOR-97] based on various assumptions (either intractability assumptions or

physical assumptions such as the existence of private (untappable) communication channels between each

pair of players). These solutions give t-privacy for t < n
2
or t < n

3
depending on the assumption made.

(See Figure 1 for a summary of the main results.)

Secure computation for honest-but-curious players. Honest-but-curious players must always

follow the protocol precisely but are allowed to \gossip" afterwards. Namely, some of the players may

put together the information in their possession at the end of the execution in order to infer additional

information about the original individual inputs. It should be realized that in this honest-but-curious model

enforcing the correctness constraint is easy, but enforcing the privacy constraint is hard. The honest-but-

curious scenario is not only interesting on its own (e.g., for modeling security against outside listeners or

against passive adversary that wants to remain undetected); its importance also stems from \compiler-

type" theorems, such as the one proved by [GMW-87]1 (with further extensions in many subsequent papers,

for example, [BGW-88, CCD-88, RB-89]). This type of theorems provide algorithms for transforming any

t-private protocol with respect to honest-but-curious players into a t0-private protocol with respect to

malicious players (t0 � t). Surprisingly, much of the research e�orts were devoted to the more complicated

case of malicious players, while the case of honest players is far from being well understood. In this paper

we examine the latter setting.

Information theoretic privacy.
2 The information theoretic model was �rst examined by [BGW-88,

CCD-88]. In particular, they prove that every function is dn=2e-private (in the setting of honest-but-

curious players; see Figure 1). The information theoretic model was then the subject of considerable work

(e.g., [CKu-89, BB-89, CGK-90, CGK-92, CFGN-96, KOR-96, HM-97, BW-98]). Particularly, [CKu-89]

characterized the boolean functions for which n-private protocols exist: an n-argument boolean function

f is n-private if and only if it can be represented as f(x1; x2; : : : ; xn) = f1(x1) � f2(x2) � : : :� fn(xn)

where each fi is boolean. Namely, f is n-private if and only if it is the exclusive-or of n local functions.

An immediate corollary of this is that most boolean functions are not n-private (even with respect to

honest-but-curious players).

Our contribution. We formally de�ne the notion of reducibility among multi-party protocol problems.

We say that f is reducible to g, if there is a protocol that allows the n players to compute the value of f

1The reader is referred to [G-98] for a fully detailed treatment of the [Yao-82, GMW-87] results.
2in oppose to computational-privacy

1

n-privately, in the information theoretic sense, just by repeatedly using a black-box (or a trusted party) for

computing g. That is, in any round of the protocol, the players secretly supply arguments to the black-box

and then the black-box publicly announces the result of operating g on these arguments. We stress that

the only means of communication among the players is by interacting with the black-box (i.e., evaluating

g). For example, it is clear that every function is reducible to itself (all players secretly give their private

inputs x1; : : : ; xn to the black-box and it announces the result). Naturally, we can also de�ne the notion of

completeness. A function g is complete if every function f is reducible to g. The importance of this notion

relies on the following observation:

If g is complete, and g can be computed t-privately in some \reasonable" setting3 (such as

the settings of [GMW-87, BGW-88] etc.), then any function f can be computed t-privately in

the same setting. Moreover, from our construction a stronger result follows: if in addition the

implementation of g is e�cient then so is the implementation of f (see below).

The above observation holds since our de�nition of reduction requires the highest level of privacy (n), the

strongest notion of privacy (information theoretic), a simple use of g (black box), and it avoids making any

(physical or computational) assumptions. Hence the straightforward simulation, in which each invocation

of the black-box for g is replaced by an invocation of a \t-private" protocol for g, works in any \reasonable"

setting (i.e. any setting which is not too weak to prevent simulation) and yields a \t-private" protocol

for f . Previously, there was no easy way to translate protocols from one model (such as the models of

[Yao-82, GMW-87, BGW-88, CCD-88, RB-89, FKN-94]) to other models.

It can be seen that if g is complete then g itself cannot be n-private. The inverse is the less obvious

part: since the de�nition of completeness requires that the same function g will be used for computing all

functions f , and since the de�nition of reductions seems very restrictive, it may be somewhat surprising

that complete functions exist at all. Some examples of complete functions implicitly appear in the literature

(without discussing the notions of reducibility and completeness). First such results were shown in [Yao-82,

GMW-87, K-88].

In this work we prove the existence of complete functions for n-private computations. Moreover, while

previous research concentrated on �nding a single complete function, our main theorem characterizes all

the boolean functions which are complete:

Main Theorem: For all n � 2, an n-argument boolean function g is complete if and only if g is not n-private.

Our result thus shows a very strong dichotomy: every boolean function g is either \simple enough" so

that it can be computed n-privately (in the information theoretic model), or it is \su�ciently expressive" so

that a black-box for it enables computing any function (not only boolean) n-privately (i.e., g is complete).

We stress that there is no restriction on g, beside being non-n-private boolean function, and that no

relation between the function g and the function f that we wish to compute is assumed. Note that using

the characterization of [CKu-89] it is easy to determine whether a given boolean function g is complete.

That is, a boolean function g is complete if and only if it cannot be represented as g(x1; x2; : : : ; xn) =

g1(x1)� g2(x2)� : : :� gn(xn) where each gi is boolean.

Some features of our result. To prove the completeness of a function g as above, we present an

appropriate construction with the following additional properties:

� We consider the most interesting scenario, where both the reduced function, f , and the function g are

n-argument functions (where n is the number of players). This enables us to organize the reduction in

rounds, where in each round each player submits a value of a single argument to g (and the value of

3A setting consists of de�ning the type of communication, type of privacy, assumptions made etc.

2

each argument is supplied by exactly one player).4 Thus, no player is \excluded" at any round from

the evaluation of g. Our results however remain true even if the number of arguments of g is di�erent

from the number of arguments of f .

� Our construction evaluates the n-argument function g only on a constant number of n-tuples (hence,

a partial implementation of g may be su�cient).

� When we talk about privacy, we put no computational restrictions on the power of the players; hence

we get information-theoretic privacy. However, when we talk about protocols, we measure their

e�ciency in terms of the computational complexity of f (i.e., the size of a circuit that computes f);

and in terms of a parameter k (our protocol allows error probability of 2�
(k)). The protocol we

introduce is e�cient (polynomial) in all these measures.5 We stress, though, that the n-tuples with

which we use the function g are chosen non-uniformly (namely, they are encoded in the protocol) for

the particular choices of g and n (the size of the network). These n-tuples do not depend though

neither on the size of the inputs to the protocol nor on the function f .

Our main theorem gives a full characterization of the boolean functions g which are complete (those

that are not n-private). When non-boolean functions are considered, it turns out that the above simple

characterization is no longer true. That is, we show that there are (non-boolean) functions which are not

n-private, yet are not complete.

Overview of the proof. Our proof goes along the following lines:

1. We de�ne the notion of embedded-OR for two-argument functions and appropriately generalize this

notion to the case of n-argument functions. We then show that if an n-argument function is not

private then it contains an embedded-OR. For the case n = 2 this follows immediately from the

characterization of [CKu-89]; the case n > 2 requires some additional technical work.

2. We show how an embedded-OR can be used to implement anOblivious Transfer (OT) channel/primitive.6

(It should be emphasized that an OT channel in a multi-party setting has the additional requirement

that listeners do not get any information; we prove however that this property is already implied by

the basic properties of two-party OT). Finally, it follows from the work of [GHY-87, GV-87, K-88,

BG-89, GL-90] that n-private computation of any function f can be implemented given OT channels.

All together, our main theorem follows.

Organization of the paper. In Section 2 we specify our model and provide some necessary de�nitions.

In Section 3 we prove our main lemma that shows the existence of an embedded-OR in every non n-

private, boolean function; In Section 4 we use the main lemma (i.e., the existence of an embedded-OR)

to implement OT channels between players; In Section 5 we use the construction of OT channels to prove

our main theorem. Finally, Section 6 contains a discussion of the results and some open problems. For

completeness, we include in the appendix a known protocol for private computations using OT channels

(including its formal proof).

4Which player submits which argument is a permutation speci�ed by the reduction.
5Evaluating g on any assignment is assumed to take a unit time. All other operations (communication, computation steps,

etc.) are measured in the regular way.
6Oblivious transfer is a protocol for two players: a sender that holds two bit b0 and b1 and a receiver that holds a selection

bit s. At the end of the protocol the receiver gets the bit bs but has no information about the value of the other bit, while

the sender has no information about s.

3

2 Model and De�nitions

Let f be an n-argument function de�ned over a �nite domain D. Consider a collection of n � 2 synchronous,

computationally unbounded players P1; : : : ; Pn that communicate using a black-box for g, as described

below. At the beginning of an execution, each player Pi has an input xi 2 D. In addition, each player

can
ip unbiased and independent random coins. We denote by ri the string of random bits
ipped by Pi

(sometimes we refer to the string ri as the random input of Pi). The players wish to compute the value

of a function f(x1; x2; : : : ; xn). To this end, they use a prescribed protocol F . In the i-th round of the

protocol, every processor Pj secretly sends a message mi
j to the black-box g.7 The protocol F speci�es

which argument to the black-box is provided by which player. The black-box then publicly announces the

result of evaluating the function g on the input messages.

Formally, with each round i the protocol associates a permutation �i. The value computed by the

black-box at round i, denoted si, is si = g(mi
�i(1)

; mi
�i(2)

; : : : ; mi
�i(n)

). Each message mi
j , sent by Pj to the

black-box in the i-th round, is determined by its input (xj), its random input (rj), and the output of the

black-box in previous rounds (s1; : : : ; si�1). We say that the protocol F computes the function f if the

last value (or the last sequence of values in the case of non-boolean f) announced by the black-box equals

the value of f(x1; x2; : : : ; xn) with probability � 1� 2�
(k), where k is a (con�dence) parameter and the

probability is over the choice of r1; : : : ; rn.

Let F be an n-party protocol, as described above. The communication S(~x;~r) is the concatenation

of all messages announced by the black-box, while executing F on inputs x1; : : : ; xn and random inputs

r1; : : : ; rn. We often consider the communication S while �xing ~x and some of the ri's; in this case, the

communication should be thought of as a random-variable where each of the ri's that were not �xed is

chosen according to the corresponding probability distribution. For example, if T is a set of players then

S(~x; frigi2T) is a random variable describing the communication when each player Pi holds input xi, each

player in T holds random input ri, and the random inputs for all players in T are chosen randomly. The

de�nition of privacy considers the distribution of such random variables.

De�nition 1 Let F be an n-party protocol which computes a function f , and let T � f1; 2; : : : ; ng be a

set of players (coalition). We say that coalition T does not learn any additional information from the

execution of F if the following holds: For every two input vectors ~x and ~y that agree on their T entries

(i.e. 8i 2 T : xi = yi) and for which f(~x) = f(~y), for every choice of random inputs for the coalition's

parties, frigi2T , and for every communication S

Prfrig
i2T

(S(~x; frigi2T) = S) = Prfrig
i2T

(S(~y; frigi2T) = S) :

Informally, this de�nition implies that for all inputs which \look the same" from the coalition`s point

of view (and for which, in particular, f has the same value), the communication also \look the same" (it

is identically distributed). Therefore, by executing F , the coalition T cannot infer any information on the

inputs of T , other than what follows from the inputs of T and the value of the function.

De�nition 2 A protocol F for computing f , using a black-box g, is t-private if any coalition T of at most

t players does not learn any additional information from the execution of the protocol. A function f is

t-private (with respect to the black-box g) if there exists a t-private protocol that uses the black-box g and

computes f .

De�nition 3 Let g be an n-argument function. We say that the black-box g (alternatively, the function

g) is complete if every function f is n-private with respect to the black-box g.

7 Notice that we do not assume private point-to-point communication among players. On the other hand, we do allow

private communication between players and the black-box for computing g.

4

Oblivious Transfer is a protocol for two players S, the sender , and R, the receiver. It was �rst de�ned
by Rabin [R-81] and since then was studied in many works (e.g., [W-83, FMR-85, K-88, IL-89, OVY-91]).

The variant of OT protocol that we use here, which is often referred to as
�
2

1

�
-OT, was originally de�ned in

[EGL-85]. It was shown equivalent to other notions of OT (see, for example [R-81, EGL-85, BCR-86, B-86,

C-87, K-88, CK-88]). The formalization of OT that we give is in terms of the probability distribution of

the communication transcripts between the two players:

De�nition 4 Oblivious Transfer (OT): Let k be a (con�dence) parameter. The sender S initially has two

bits b0 and b1 and the receiver R has a selection bit c. After the protocol completion the following holds:

Correctness: ReceiverR gets the value of bc with probability greater than 1�2�
(k), where the probability
is taken over the coin-tosses of S and R. More formally, let rS , rR 2 f0; 1gpoly(k) be the random tapes of

S and R respectively, and denote the communication string by comm(fb0; b1; cg; frS; rRg) 2 f0; 1gpoly(k).
(Again, when one (or both) of rS ; rR is unspeci�ed then comm becomes a random variable.) Then, for

all k and for all c; b0; b1 2 f0; 1g the following holds:

PrrS ;rR (R(c; rR; comm(fb0; b1; cg; frS; rRg)) = bc) � 1�
1

2
(k)
:

(R(c; rR; comm) denotes the output of receiver R when it has a selection bit c, random input rR and

the communication in the protocol is comm.)

Sender's Privacy: Receiver R does not get any information about b1�c. (In other words, R has the

\same view" in the case where b1�c = 0 and in the case where b1�c = 1). Formally, for all k, for all

c; bc 2 f0; 1g, for all rR and for all communication comm:

PrrS (comm(fbc; b1�c = 0; cg; rR) = comm) = PrrS (comm(fbc; b1�c = 1; cg; rR) = comm) :

Receiver's Privacy: Sender S does not get any information about c. (In other words, S has the \same

view" in the case where c = 0 and in the case where c = 1). Formally, for all k, for all b0; b1 2 f0; 1g,
for all rS and for all communication comm:

PrrR (comm(fb0; b1; c = 0g; rS) = comm) = PrrR (comm(fb0; b1; c = 1g; rS) = comm) :

REMARK: We emphasize that both S and R are honest (but curious) and assumed to follow the

protocol. When OT is de�ned with respect to cheating players, it is usually allowed that with probability

2�
(k) information will leak. This however is not needed for honest players.

3 A New Characterization of n-private Boolean Functions

In this section we prove our main lemma which establishes a new combinatorial characterization of the

family of n-private boolean functions. First, we de�ne what it means for a two-argument boolean function

to have an \embedded-OR" and use [CKu-89] to claim that any two-argument boolean function which is

not 1-private contains an embedded-OR. We then generalize the de�nition and the claim to multi-argument

functions in the appropriate way.

De�nition 5 We say that a two-argument function h contains an embedded-OR if there exist inputs

x0; x1; y0; y1 (x0 6= x1, y0 6= y1) and an output value � such that h(x1; y1) = h(x1; y0) = h(x0; y1) = � but

h(x0; y0) 6= �.

5

De�nition 6 We say that an n-argument (n � 3) function f contains an embedded-OR if there exist

indices 1 � i < j � n, and values ak for all k =2 fi; jg, such that the two-argument function

h(y; z)
4
= f(a1; : : : ; ai�1; y; ai+1; : : : ; aj�1; z; aj+1; : : : ; an)

contains an embedded-OR.

The following facts are proven in [CKu-89] (or follow trivially from it):

1. An n-argument boolean function is dn=2e-private if and only if it can be written as f(x1; : : : ; xn) =

f1(x1)� : : :� fn(xn), where each fi is boolean.

2. A two-argument boolean function f is not 1-private if and only if it contains an embedded-OR.

3. If an n-argument boolean function is dn=2e-private then it is n-private.

4. An n-argument boolean function f is dn=2e-private if and only if in every partition of the indices

f1; : : : ; ng into two sets S; �S, each of size at most dn=2e, the two-argument boolean function fS
de�ned by

fS(fxigi2S ; fxigi2�S)
4
= f(x1; : : : ; xn) ;

is 1-private.

Our main lemma extends Fact 2 above to the case of multi-argument functions.

Lemma 1 (Main Lemma:) Let g(x1 : : : ; xn) be any boolean, n-argument function. The function g is

not dn=2e-private if and only if it contains an embedded-OR.

Proof: Clearly, if g contains an embedded-OR then there is a partition of the indices, as in Fact 4, such

that the corresponding two-argument function gS contains an embedded-OR (e.g., if i; j are the indices

guaranteed by De�nition 6 then include the index i in S, the index j in �S, and partition the other n � 2

indices arbitrarily into two halves between S and �S). Hence, gS is not 1-private and so, by Fact 4, g is not

dn=2e-private.
For the other direction, since g is not dn=2e-private then, again by Fact 4, there is a partition S; �S of

the indices f1; : : : ; ng such that gS is not 1-private. For simplicity of notations, we assume that n is even

and that S = f1; : : : ; n=2g. By Fact 2, the two-argument function gS contains an embedded-OR. Hence,

by De�nition 5, there exist inputs u; v; w; z and a value � 2 f0; 1g which form the following structure:

gS(�; �) w = wn

2
+1; : : : ; wn z = zn

2
+1; : : : ; zn

u = u1; : : : ; un

2
� �

v = v1; : : : ; vn

2
� ��

where u 6= v and w 6= z. To complete the proof, we will show below that it is possible to choose these

four inputs so that ui 6= vi for exactly one coordinate i and wj 6= zj for exactly one coordinate j (this will

show that g satis�es the condition of De�nition 6). To this end, we will �rst show how based on the inputs

above we can �nd u0 and v0 which are di�erent in exactly one coordinate. Then, based on the new u0; v0

and a similar argument, we can �nd w0; z0 which are di�erent in exactly one coordinate. All this process is

done in a way that maintains the OR-like structure, and therefore, by using the above values of i; j, �xing

all the other arguments in S to u0k = v0k and all the other arguments in �S to w0
k = z0k, we get that g itself

contains an embedded-OR.

6

Let L � f1; : : : ; n
2
g be the set of indices on which u and v disagree (i.e., indices k such that uk 6= vk).

De�ne the following sets of vectors: Tm is the set of all vectors that can be obtained from the vector u by

replacing the value uk in exactly m coordinates from L (in which vk 6= uk) by the value vk. In particular,

T0 = fug and TjLj = fvg. In addition, we de�ne the following two sets of vectors:

X1

4
= fx = (x1; :::; xn=2) j gS(x; w) = gS(x; z)g

and

X2
4
= fx = (x1; :::; xn=2) j gS(x; w) 6= gS(x; z)g;

where w and z are the speci�c vectors we choose above. In particular, we have u 2 X1 and v 2 X2.

We now claim that there must exist u0; v0 as required. Namely, the vector u0 is in X1, the vector v
0 is in

X2 and u0; v0 di�er in exactly one coordinate. Suppose, towards a contradiction, that this is not true (i.e.,

no such u0; v0 exist). We will show that this implies that Tm � X1, for all 0 � m � jLj, contradicting the

fact that v which is in TjLj belongs to X2. The proof is by induction. It is true for m = 0 as T0 contains

only u which is in X1. Suppose the induction hypothesis holds for m. That is, Tm � X1. For each vector

x in Tm+1, there is a vector in Tm which di�ers from x in exactly one coordinate. Since we assumed that

u0; v0 as above do not exist, this immediately implies that x is also in X1 hence Tm+1 � X1, as needed.

Therefore, we reached a contradiction which implies the existence of u0; v0 as required. That is, we found

u0; v0 that di�er in a single index i (i.e., u0i 6= v0i) and such that u0; v0; w; z still form an OR-like structure:

gS(�; �) w = wn

2
+1; : : : ; wn z = zn

2
+1; : : : ; zn

u0 = u01; : : : ; u
0
i�1; u

0
i; u

0
i+1; : : : ; u

0
n

2
� �

v0 = u01; : : : ; u
0
i�1; v

0
i; u

0
i+1; : : : ; u

0
n

2
� ��

A similar argument shows the existence of w0; z0 that di�er in a single index j and such that the vectors

u0; v0; w0 and z0 form an OR-like structure:

gS(�; �) w0 = w0

n

2
+1

; : : : ; w0

j�1; w
0

j; w
0

j+1; : : : ; w
0

n z = w0

n

2
+1

; : : : ; w0

j�1; z
0

j; w
0

j+1; : : : ; w
0

n

u0 = u01; : : : ; u
0

i�1; u
0

i; u
0

i+1; : : : ; u
0

n

2

� �

v0 = u01; : : : ; u
0

i�1; v
0

i; u
0

i+1; : : : ; u
0

n

2

� ��

This shows that g contains an embedded-OR (with indices i; j as required by De�nition 6). 2

4 Constructing Embedded Oblivious Transfer

The �rst, very simple, observation is that given a black-box for a function g that contains an embedded-

OR, we can actually compute the OR of two bits. That is, suppose that the n players wish to compute

OR(bk; b`) where bk is a bit held by player Pk and b` is a bit held by player P`. Let i; j; x0; x1; y0; y1 be

the indices and inputs as guaranteed by De�nitions 5 and 6. Then, player Pk will provide the black box

with the i-th argument which is xbk (i.e., if bk = 0 then the argument provided by Pk is x0 and if bk = 1

then the argument is x1) and player P` will provide the black box with the j-th argument which is xb` .

The other n � 2 players will provide the n � 2 �xed values a1; : : : ; ai�1; ai+1; : : : ; aj�1; aj+1; : : : ; an in an

arbitrary order. The black-box will answer with the value

g(a1; : : : ; ai�1; xbk ; ai+1; : : : ; aj�1; xb`; aj+1; : : : ; an)

7

which is � if OR(bk; b`) = 1 and is di�erent than � if OR(bk; b`) = 0. Hence, we showed how to compute

OR(bk; b`).

Our main goal in this section is to show how, based on a black-box that can compute OR we can

implement an Oblivious Transfer (OT) protocol. We start with the two-party case (n = 2) and then

proceed to the general case which builds upon the two-party case.

4.1 The Two-Party Case

In this section we show how to implement a two-party OT protocol. We start by implementing a variant

of OT, called random OT (or ROT for short), which is di�erent than the standard OT (i.e.,
�
2

1

�
-OT). In a

ROT protocol the sender S has a bit s to be sent. At the end of the protocol, the receiver R gets a bit

s0 such that with probability 1=2 the bit s0 equals s and with probability 1=2 the bit s0 is random. The

receiver knows which of the two cases happened and the sender has no idea which is the case. We start

with a formal de�nition of the ROT primitive:

De�nition 7 Random Oblivious Transfer (ROT): Let k be a (con�dence) parameter. The sender S ini-

tially has a single input bit s (and the receiver has no input). After the protocol completion the following

holds:

Correctness: With probability greater than 1� 2�
(k), receiver R outputs a pair of bits (I; s0), where I

is referred to as the indicator (otherwise R outputs fail). (As usual, the probability is taken over

the coin-tosses of S and R, i.e., rS, rR 2 f0; 1gpoly(k).) Moreover, if the output of R satis�es

R(rR; comm(s; rS; rR)) = (1; s0) (i.e., I = 1) then s0 = s, while if R(rR; comm(s; rS ; rR)) = (0; s0)

(i.e., I = 0) then s0 is random; that is,

PrrS ;rR
�
s0 = 1jR(rR; comm(s; rS; rR)) = (0; s0)

�
=

1

2
:

Sender's Privacy: The probability that R outputs a pair (I; s0) such that I = 1 is exactly 1=2. That is,

PrrS ;rR
�
R(rR; comm(s; rS; rR)) = (1; s0)

�
= PrrS;rR

�
R(rR; comm(s; rS; rR)) = (0; s0)

�
=

1

2
:

Receiver's Privacy: Sender S does not get any information about I. (In other words, S has the \same

view" in the case where I = 0 and in the case where I = 1). Formally, for all k, for all s 2 f0; 1g, for
all rS and for all communication comm:

PrrR (comm(s; rS; rR) = comm j I = 0) = PrrR (comm(s; rS ; rR) = comm j I = 1) :

Transformations of ROT protocols to
�
2

1

�
-OT protocols are well-known [C-87].8 Our ROT protocol is

implemented as follows:

8Assume that the sender, S, has two bits b0; b1 and the receiver, R, has a selection bit c. The players S and R repeat the
following for at most m = �(k) times: at each time S tries to send to R a pair of random bits (s1; s2) using two invocations

of ROT. If in both trials the receiver gets the actual bit or in both trials he gets a random bit then they try for another time.

If the receiver got exactly one of s1 and s2 he sends the sender a permutation of the indices � (i.e., either (1; 2) or (2; 1)) such
that s�(c) is known to him. The sender replies with b1 � s�(1); b2 � s�(2). The receiver can now retrieve the bit bc and knows

nothing about the other bit. The sender, by observing � learns nothing about c (since he does not know from the invocation

of the ROT protocols in which invocation the receiver got the actual bit and in which he got a random bit). Thus, we get a�
2

1

�
-OT protocol based on the ROT protocol.

8

a. The sender, S, and the receiver, R, repeat the following until c1 = c2 = 1 (and at most m = �(k)

times):

S chooses a pair (a1; a2) out of the two pairs f(1; 0); (0; 1)g, each with probability 1=2.

R chooses a pair (b1; b2) out of the three pairs f(1; 0); (0; 1); (1; 1)g, each with probability 1=3.

S and R compute (using the black-box) c1 = OR(a1; b1) and c2 = OR(a2; b2).

b. If c1 = c2 = 1 then S sends w = s � a1 to R. The receiver R outputs I = 0 if (b1; b2) = (1; 1) and

outputs I = 1 otherwise; in addition, R outputs s0 = w � b2.

c. If in all m times no choices (a1; a2) and (b1; b2) are such that c1 = c2 = 1 the protocol halts and R
outputs fail.

To analyze the protocol we observe the following properties of it:

1. If (b1; b2) = (a1; a2) then one of c1; c2 is 0. This happens in two of the six choices of (a1; a2) and

(b1; b2), i.e., with probability 1=3. In each of the other four choices we get c1 = c2 = 1. Therefore,

the probability of failure in m = �(k) trials is exponentially small.

2. Conditioned on the case c1 = c2 = 1, we have (b1; b2) = (a2; a1) with probability 1=2 (two out of the

four remaining cases) and (b1; b2) = (1; 1) with probability 1=2.

3. In case that (b1; b2) = (a2; a1), we have in particular b2 = a1 and so s0 = w � b2 = (s� a1)� b2 = s.

In this case R outputs I = 1, as needed.

In case that (b1; b2) = (1; 1), each of the two choices of (a1; a2) is equally likely and therefore a1 and

hence also w and s0 are random (i.e., each has the value 0 with probability 1=2 and the value 1 with

probability 1=2). In this case R outputs I = 0, as needed.

4. As argued in 3, if the protocol does not fail then R knows the \correct" value of I (since he knows

the values of b1; b2; c1 and c2). The sender, on the other hand, based on (a1; a2) cannot know which

of the two equally-probable events, (b1; b2) = (a2; a1) or (b1; b2) = (1; 1), happened and therefore he

sees the same view whether we are in the case I = 1 or in the case I = 0.

Properties 1 and 3 above imply the correctness of the ROT protocol while properties 2 and 4 imply the

sender's privacy and receiver's privacy (respectively). Hence, combining the above construction (including

the transformation of the ROT protocol to a
�2
1

�
-OT protocol) with Lemma 1, we get:

Lemma 2 An OT-channel between two players is realizable given a black-box g, for any non-2-private

function g.

4.2 The Multi-Party Case (n > 2)

We have shown in our main lemma (Lemma 1) that any non n-private function g contains an embedded-

OR. Thus, as explained above, we can use the black-box for g to compute the OR of two bits held by

two players Pk and P` (where the other n � 2 players assist by specifying the �xed arguments given by

our main lemma). Then, based on the ability to compute OR, we showed in Section 4.1 above how any

two players can implement an OT channel between them in a way that satis�es the properties of OT (in

particular, the privacy of the sender and the receiver with respect to each other). However, there is a

subtle di�culty in implementing a private OT-channel in a multi-player system which we must address:

beside the usual properties of an OT channel (as speci�ed by De�nition 4), we should guarantee that the

information transmitted between the two owners of the channel will not be revealed to potential listeners

9

(i.e., the other n � 2 players). If the OT channel is implemented \physically" then clearly no information

is revealed to the listeners. However, since we implement OT using a black-box to some function g, which

publicly announces each of its outcomes, we must also prove that this reveals no information to the listeners.

That is, the communication comm should be distributed in the same way, for all values of b1; b2 and c.

The following lemma shows that the security of the OT protocol with respect to listeners is, in fact,

already guaranteed by the basic properties of the OT protocol; namely, the security of the protocol with

respect to both the receiver and the sender.

Lemma 3 Consider any (two-player) OT protocol. For every possible communication comm, the proba-

bility PrrS ;rR (comm(fb0; b1; cg; frS; rRg) = comm) is the same for all values b0 and b1 for the sender and

c for the receiver. (In other words, a listener sees the same probability distribution of communications no

matter what are the inputs held by the sender and the receiver in the OT protocol.)

Proof: Consider the following 8 probabilities corresponding to all possible values of b0; b1 and c:

1. PrrS ;rR (comm(fb0 = 0; b1 = 0; c = 0g; frS; rRg) = comm)

2. PrrS ;rR (comm(fb0 = 0; b1 = 0; c = 1g; frS; rRg) = comm)

3. PrrS ;rR (comm(fb0 = 0; b1 = 1; c = 0g; frS; rRg) = comm)

4. PrrS ;rR (comm(fb0 = 0; b1 = 1; c = 1g; frS; rRg) = comm)

5. PrrS ;rR (comm(fb0 = 1; b1 = 0; c = 0g; frS; rRg) = comm)

6. PrrS ;rR (comm(fb0 = 1; b1 = 0; c = 1g; frS; rRg) = comm)

7. PrrS ;rR (comm(fb0 = 1; b1 = 1; c = 0g; frS; rRg) = comm)

8. PrrS ;rR (comm(fb0 = 1; b1 = 1; c = 1g; frS; rRg) = comm)

The receiver's privacy property implies that the terms (1) and (2) are equal, (3) and (4) are equal, (5) and

(6) are equal, and (7) and (8) are equal. The sender's privacy property implies that the terms (1) and (3)

are equal, (5) and (7) are equal, (2) and (6) are equal, and (4) and (8) are equal. All together, we get that

all 8 probabilities are equal, as desired. 2

5 A Completeness Theorem for Multi-Party Boolean Black-Box Re-

ductions

In this section we state the main theorem and provide its proof. It is based on a protocol that can tolerate

n � 1 honest-but-curious players, assuming the existence of an OT-channel between each pair of players.

Such protocols appear in [GHY-87, GV-87, K-88, BG-89, GL-90] (these works deal also with malicious

players). That is, by these works we get the following lemma (for self-containment, both a protocol and

its proof of security appear in the appendix):

Lemma 4 Given OT channels between each pair of players, any n-argument function f can be computed

n-privately (in time polynomial in the size of a boolean circuit for f).

We are now ready to state our main theorem:

10

Theorem 1 (MAIN:) Let n � 2 and let g be an n-argument boolean function. The function g is complete

if and only if it is not n-private.

Proof:

(=)) First, we show that any complete g cannot be n-private. Towards the contradiction let us assume

that there exists such a function g which is n-private and complete. This implies that all functions are

n-private (as instead of using the black-box g the players can evaluate g by using the n-private protocol for

g). This however contradicts the results of [BGW-88, CKu-89] that show the existence of functions which

are not n-private.

((=) Next (and this is where the bulk of the work is) we show how to compute any function n-privately,

given a black-box for any g which is not n-private. Recall that there exists a protocol that can tolerate

n� 1 honest-but-curious players, assuming the existence of OT-channels (Lemma 4). Also, we have shown

how a black-box, computing any non-private function, can be used to simulate OT channels (Lemma 2

and 3). Combining all together we get the result. 2

The theorem implies that \most" boolean functions are complete. That is, any boolean function which is

not of the XOR-form of [CKu-89] is complete.

6 Conclusions and Further Extensions

6.1 Non-boolean Functions

We have shown that any non-n-private boolean function g is complete. Namely, a black-box for such a

function g can be used for computing any function f n-privately. Finally, let us brie
y turn our attention

to non-boolean functions. First, we emphasize that if a function g contains an embedded-OR then it is

still complete even if it is non-boolean (all the arguments go through as they are; in particular note that

De�nitions 5 and 6 of embedded-OR apply for the non-boolean case as well). For the non-boolean case,

we can state the following proposition:

Proposition 2 For every n � 2 there exists a (non-boolean) n-argument function g which is not n-private,

yet such that g is not complete.

Proof: The proof for 2-argument g is as follows: there are non-private two-argument functions which do

not contain an embedded OR. Examples of such functions were shown in [Ku-89] (see Figure 2). We now

show that with no embedded-OR one cannot compute the OR function. Assume, towards a contradiction,

that there is some two-argument function f which does not have an embedded-OR, yet it could be used to

compute the OR function. Since f can be used to compute the OR function, we can use it to implement

OT (Lemma 2). Hence, there exists an implementation of OT based on some f which does not have an

embedded-OR. However, [K-91] has shown that for two-argument functions, only the ones that contain an

embedded-OR, can be used to implement OT, deriving a contradiction.

For n-argument functions, notice that if we de�ne a function g (on n arguments) to depend only on its

�rst two arguments, we are back to the 2-argument case, as the resulting function is not n-private. 2

To conclude, we have shown that for boolean case, the notions of completeness and privacy are exactly

complementary , while for the non-boolean case they are not .

11

y1 y2 y3
x1 0 0 1

x2 2 4 1

x3 2 3 3

Figure 2: A non-private function which does not contain an embedded-OR

6.2 Additional Remarks

In this section, we brie
y discuss some possible extensions and easy generalizations of our results.

The �rst issue that we address is the need for the protocol to specify the permutation �i that is used in

each round i (for mapping the players to the arguments for the black-box g). Note that in our construction,

we use the black-box only for computing the OR function on two arguments. For this, we need to map

some two players Pk and P`, holding these two arguments, to the special coordinates i; j, guaranteed by

the de�nition of embedded-OR. Therefore, without loss of generality, the sequence of permutations can

be made oblivious (i.e., independent of the function f computed) at a price of O(n2) multiplicative factor

to the rounds (and time). Moreover, at a price of O(n4) the sequence of permutations can even be made

independent of the non-n-private function g. Finally, note that if g is a symmetric function (which is often

the \interesting" case), then there is no need to permute the inputs to g.

Next, we recall the assumption that the number of arguments of g is the same as the number of

arguments of f (i.e., n). Again, it follows from our constructions that this is not essential to any of our

results: all that is needed is the ability for the two players Pk ; P`, that wish to compute the OR function

in a certain step, to do so by providing the two distinguished arguments i; j for g and all the other (�xed)

arguments can be provided by arbitrary players (e.g., all of them by P1).

In our de�nitions we require perfect privacy. That is, we require that the two distributions in De�nition 1

are identical. One can relax this de�nition of privacy to require only statistical indistinguishability of

distributions or only computational indistinguishability of distributions. For these de�nitions we refer the

reader to the papers mentioned in the introduction. Note that if f can be computed \privately", under any

of these notions, using a black-box for g and if g can be computed t-privately, under any of these notions,

then also the function f can be computed t-privately, under the appropriate notion of privacy (i.e., the

weaker among the two).

Finally, we note that the negative result of [CKu-89] allows a probability of error; hence, even a weaker

notion of reduction that allows for errors in computing f does not change the family of complete functions.

This impossibility result (i.e., �rst direction of the main theorem) still holds even if we allow the players

to communicate not only using the black-box but also using other types of communication such as point-

to-point communication channels.

6.3 Open Questions

The above results can be easily extended to show that any boolean g which is complete can also be used for a

private computation of any multi-output function f (i.e., a function whose output is an n-tuple (y1; : : : ; yn),

where yi is the output that should be given to Pi). This is so, because Lemma 4 still holds. On the other

hand, it is an interesting question to characterize the multi-output functions g that are complete (even in

the boolean case where each output of g is in f0; 1g).
It is not clear how to extend the model and the results to the case of malicious players in its full

generality. Notice, however, that under the appropriate de�nition of the model, if we are given as a black-

12

box the two-argument OR function we can still implement private channels (see [KMO-94] for details),

and hence by [BGW-88, CCD-88] can implement any f , n=3-privately with respect to malicious players.

Suppose that we relax the notion of privacy to computational-privacy (as in [Yao-82, GMW-87]).

In such a case, any computationally n-private implementation of an (information-theoretically) non-n-

private (equivalently, complete) boolean function g implies the existence of a one-way function. This is

so, since we have shown that such an implementation of g implies an implementation of OT, which in

turn implies the existence of a one-way function by [IL-89]. However, the best known implementation of

such protocols, for a function g as above, requires trapdoor one-way permutations [GMW-87]. It is an

important question whether there exists an implementation based on a one-way function (or permutation)

for functions without trap-door. This question has only some partial answers. In particular, when one of

the players has super-polynomial power, this is possible [OVY-91]. However, if we focus on polynomial-

time players and protocols, then the result of our paper together with the work of [IR-89] implies that for

all complete functions, if we use only black-box reductions, this is as di�cult as separating P from NP .
Thus, using black-box reductions, complete functions seem to be hard to implement (with computational

privacy) without a trapdoor property. Notice, however, that for non-boolean functions we have shown that

there are functions which are not n-private and not complete. It is not known even if these functions can

be implemented without using trapdoor, although the results of [IR-89] do not apply to this case.

Acknowledgments: We wish to thank Oded Goldreich for helpful discussions and very useful com-

ments. We thank Mihir Bellare for pointing out to us in 1991 that the works of Chor, Kushilevitz and

Kilian are complementary and thus imply a special case of our general result. Finally, we thank Amos

Beimel for helpful comments.

References

[BB-89] J. Bar-Ilan, and D. Beaver, Non-Cryptographic Fault-Tolerant Computing in a Constant Number

of Rounds, Proc. of 8th PODC, 1989, pp. 201-209.

[BGW-88] M. Ben-or, S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-Cryptographic

Fault-Tolerant Distributed Computation, Proc. of 20th STOC, 1988, pp. 1-10.

[B-86] M. Blum, Applications of Oblivious Transfer, Unpublished manuscript.

[BCC-88] G. Brassard, D. Chaum and C. Cr�epeau, Minimum Disclosure Proofs of Knowledge, JCSS, v.

37, pp 156-189.

[BCR-86] G. Brassard, C. Cr�epeau and J.-M. Robert, Information Theoretic Reductions among Disclosure

Problems, IEEE Symp. on Foundations of Computer Science, 1986 pp. 168-173.

[BG-89] D. Beaver, and S. Goldwasser, Multiparty Computation with Faulty Majority, FOCS 1989.

[BW-98] D. Beaver, and A. Wool, Quorum-based Secure Multi-Party Computation, EuroCrypt 1998.

[CFGN-96] R. Canetti, U. Feige, O. Goldreich, and M. Naor, Adaptively Secure Multi-Party Computation,

Proc. of 28th STOC, 1996, pp. 639{648.

[CKOR-97] R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros�en, Randomness vs. Fault-Tolerance,

Proc. of 16th PODC, 1997, pp. 35-44.

13

[CCD-88] D. Chaum, C. Crepeau, and I. Damgard, Multiparty Unconditionally Secure Protocols, Proc. of

20th STOC, 1988, pp. 11-19.

[CKu-89] B. Chor, E. Kushilevitz A Zero-One Law for Boolean Privacy, STOC 21 (1989) 62-72. Journal

version in SIAM J. Disc. Math. 4 (1991) 36-47.

[CGK-90] B. Chor, M. Ger�eb-Graus, and E. Kushilevitz, Private Computations Over the Integers, FOCS

90, pp. 335-344. To appear in SICOMP.

[CGK-92] B. Chor, M. Ger�eb-Graus, and E. Kushilevitz, On the Structure of the Privacy Hierarchy,

Journal of Cryptology, Vol. 7, No. 1, 1994, pp. 53-60.

[C-87] C. Cr�epeau, Equivalence between Two Flavors of Oblivious Transfer , Crypto 87.

[CK-88] C. Cr�epeau, J. Kilian Achieving Oblivious Transfer Using Weakened Security Assumptions ,

Proc. IEEE Symp. on Foundations of Computer Science, 1988.

[EGL-85] S. Even, O. Goldreich and A. Lempel, A Randomized Protocol for Signing Contracts , Comm. of

ACM v. 28, 1985 pp. 637-647.

[FKN-94] U. Feige, J. Kilian, and M. Naor, A minimal model for secure computation, STOC 26 (1994),

554-563.

[FMR-85] M. Fischer, S. Micali, C. Racko� An Oblivious Transfer Protocol Equivalent to Factoring,

Manuscript.

[GHY-87] Z. Galil, S, Haber, and M. Yung, Cryptographic Computation: Secure Fault-Tolerant Protocols

and the Public-Key Model , Crypto, 87.

[G-98] O. Goldreich, Secure Multi-Party Computation, unpublished manuscript, 1998. Available from

ftp://theory.lcs.mit.edu/pub/people/oded/prot.ps

[GMW-87] O. Goldreich, S. Micali and A. Wigderson, How to Play any Mental Game , Proc. ACM Symp.

on Theory of Computing, 1987.

[GV-87] O. Goldreich, and R. Vainish, How to Solve any Protocol Problem { An e�ciency Improvement,

Crypto 87.

[GL-90] S. Goldwasser, and L. Levin, Fair Computation of General Functions in Presence of Immoral

Majority, Crypto 90.

[GMR-85] S. Goldwasser, S. Micali and C. Racko�, The Knowledge Complexity of Interactive Proof-

Systems, Proc. ACM Symp. on Theory of Computing, pp. 291-304 1985.

[HM-97] M. Hirt and U. Maurer, Complete Characterization of Adversaries Tolerable in Secure Multi-

Party Computation, Proc. of 16th PODC, 1997.

[IL-89] R. Impagliazzo and M. Luby, One-way Functions are Essential for Complexity-Based Cryptog-

raphy, Proc. IEEE Symp. on Foundations of Computer Science, 1989.

[IR-89] R. Impagliazzo and S. Rudich, On the Limitations of certain One-Way Permutations, Proc.

ACM Symp. on Theory of Computing, pp 44-61, 1989.

[K-88] J. Kilian, Basing Cryptography on Oblivious Transfer , Proc. ACM Symp. on Theory of Com-

puting, pp 20-31, 1988.

14

[K-91] J. Kilian, Completeness Theorem for Two-party Secure Computation , Proc. ACM Symp. on

Theory of Computing, 1991.

[Ku-89] E. Kushilevitz, Privacy and Communication Complexity, FOCS89, and SIAM Jour. on Disc.

Math., Vol. 5(2), 1992, pp. 273-284.

[KOR-96] E. Kushilevitz, R. Ostrovsky, and A. Ros�en, Characterizing Linear Size Circuits in Terms of

Privacy, Proc. of 28th STOC, pp. 541{550, 1996.

[KOR-98] E. Kushilevitz, R. Ostrovsky, and A. Ros�en, Amortizing Randomness in Private Multiparty

Computations, Proc. of 17th PODC, pp. 81{90, 1998.

[KMO-94] E. Kushilevitz, S. Micali and R. Ostrovsky, Reducibility and Completeness In Multi-Party Pri-

vate Computations, Proc. IEEE Symp. on Foundations of Computer Science, 1994, pp. 478-489.

[KR-94] E. Kushilevitz, and A. Ros�en, A Randomness-Rounds Tradeo� in Private Computation,

CRYPTO94, and SIAM Jour. on Disc. Math., Vol. 11(1), 1998, pp. 61-80.

[OVY-91] R. Ostrovsky, R. Venkatesan, and M. Yung. Fair Games Against an All-Powerful Adversary,

extended abstract in the proceedings of Sequences '91, June 1991, Positano, Italy. See also AMS

DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Vol 13. (Jin-Yi

Cai ed.) pp. 155-169, 1993.

[RB-89] T. Rabin and M. Ben-Or, Veri�able Secret Sharing and Multiparty Protocols with Honest Ma-

jority, STOC 1989, ACM, pp. 73-85.

[R-81] M. Rabin, How to Exchange Secrets by Oblivious Transfer , TR-81 Aiken Computation Labora-

tory, Harvard, 1981.

[W-83] S. Weisner, Conjugate Coding, SIGACT News, Vol. 15, No. 2, pp. 78-88, 1983.

[Yao-82] A.C. Yao, Protocols for Secure Computations, Proc. of 23th FOCS, pp. 160-164, 1982.

[Yao-86] A.C. Yao How to Generate and Exchange Secrets, Proc. of 27th FOCS, pp. 162-167, 1986.

A n-private Protocols Using Embedded-OT Channels

In this appendix, we present an n-private protocol, that uses OT channels, to compute an arbitrary n-

argument function f . Our starting point is the protocol presented in [GHY-87, GV-87, GL-90, BG-89]

which also deals with malicious players. Here we assume that players are honest. This enables us to use a

simpli�ed version of the protocol, and prove Lemma 4.

Proof: The protocol goes as follows: we are given a circuit with addition and multiplication mod 2 gates,

that computes the function f , the players do the following.

1 Sharing the inputs: Each player Pi shares each bit xi;k of its input xi by choosing, uniformly, at

random a vector (a
i;k
1 ; : : : ; ai;kn) such that

Pn
j=1 a

i;k
j = xi;k.

9 Each such a
i;k
j is called a share of the

secret xi;k. The player Pi sends the share a
i;k
j to Pj (over their common private channel10).

9 All arithmetic operations in this protocol are modulo 2.
10Note that given an OT channel a private channel is easy to implement: for S to send a bit b to R he duplicates its bit

twice, R chooses a selection bit arbitrarily and they execute their OT protocol.

15

2 Evaluating the function: The evaluation of the function is done in a bottom-up fashion. Each gate

c = a � b is evaluated using the shares corresponding to the inputs a and b of the gate. The evaluation

ends with each player Pi holding a share ci of the output c, where the vector of shares is uniformly

distributed among the vectors whose sum is c. We distinguish between two cases according to the

operation in the gate:

� c=a+b: Pi computes its share of c by summing its shares of a and b. I.e., ci = ai + bi. (No

interaction is needed.)

� c=ab: Note that a�b = (
Pn

i=1 ai)�(
Pn

j=1 bj) =
P

1�i;j�n ai�bj. Each player Pi can compute (locally)

aibi. However, if player Pi will know ai � bj (for j 6= i) he might be able to compute bj , violating

the privacy requirement. Instead, we let Pi and Pj interact in a two-party protocol, so that at the

end Pi will know vi;j
4
= (ai � bj)� ri;j , and Pj will know ri;j , where ri;j is a random bit (note that

vi;j + ri;j equals ai � bj). This is done by letting Pj choose ri;j at random. Then, Pi receives from

Pj , via their common OT-channel, the ai-th element of the pair of values ((0 �bj)�ri;j; (1 �bj)�ri;j)

(this pair can be easily computed by Pj). Clearly, this element, is exactly (ai �bj)�ri;j, as desired.

As they use the OT-channel, Pj has no idea which value Pi selected. We repeat this two-party

protocol for each pair Pi; Pj . Each player computes ci = ai � bi +
P

j 6=i vi;j +
P

j 6=i rj;i. It can be

veri�ed that c =
Pn

i=1 ci.

3 Revealing f(x1; : : : ; xn): Each player Pi broadcasts its share of the output gate of the circuit. The

sum of these shares is the desired value.

In the lemmas below, we verify (inductively) that during the computation each vector of shares has the

required sum, and that the distribution in any proper subset of the shares is uniform. In addition, the

interaction gives no information about previously computed shares. These properties give the correctness

and privacy of the protocol. 2

Let View(T; fxig ; fRigi2T) denote the view that the set of players (coalition) T has on the communi-

cation, given that each player Pi (1 � i � n) has input xi and that each player Pi in T has random string

Ri. This is a random variable which is determined by the choice of random strings Ri for all players Pi not

in T . We include in this view only messages that goes from players in �T to players in T . (Note that these

messages together with the inputs and random strings of players in T completely de�ne the messages sent

among players in T and also messages sent from players in T to players in �T .)

In the above protocol there is no communication for addition gates. Hence the view consists only of

messages received during the sharing stage, during the evaluation of multiplication gates, and during the

revealing stage. The �rst claim says that in a single evaluation of a multiplication gate no information is

revealed.

Claim 5 Consider the subprotocol evaluating a gate c = ab. For all coalitions T , for all set of shares

(a1; : : : ; an) (b1; : : : ; bn) which are the input for this subprotocol (i.e., fai; big is the input for player Pi),

for all choices of random strings for players in T , fRigi2T , and for all communication comm 2 f0; 1gs,
where s = jT j(n� jT j), we have:

Pr[View(T; fai; big ; fRigi2T) = comm] = 2�s;

where the probability goes over all choices of Ri for i 2 �T .

Proof: The communication that goes from �T to T is as follows: for every i 2 T and j 2 �T the players

Pi; Pj jointly \compute" aibj and ajbi. In computing ajbi the player Pi does not get any message (his role

is to pick a random rj;i and to send a messages over their common OT-channel). In computing aibj the

16

player Pi receives a one bit message (vi;j). Hence, the view of coalition T must be of size s. Moreover, as

ri;j is chosen (by Pj) uniformly at random, then vi;j is also uniformly distributed in f0; 1g (independently
of what ai and bj are). As all ri;j's are independent, the claim follows. 2

The next claim shows that at each stage of the computation the vector of shares is uniformly distributed.

This is particularly important in the revealing stage, when we need to be sure that only the output is

revealed.

Claim 6 Let x1; : : : ; xn be an input to the protocol (i.e., xi is the input for player Pi). Let C be a gate in

the circuit and let c be the value of this gate when the input for the circuit is x1; : : : ; xn. Let ~C be a vector

of shares that represents c in the above protocol. Then,

�
Pn

i=1 Ci = c (correctness); and

� ~C is uniformly distributed among the vectors whose sum is c (privacy). I.e., let c1; : : : ; cn satisfyP
ci = c (there are 2n�1 such vectors) then Pr[~C = (c1; : : : ; cn)j~x] = 1=2n�1.

Proof: The �rst part easily follows from the description of the protocol, by induction. The second part is

also proved by induction. The claim is certainly true after the sharing stage (as this is the way the shares

are chosen). Now suppose we evaluate a gate. If the gate is an addition gate, computing C = A+B, then

Pr[~C = (c1; : : : ; cn)j~x] =
X

a1;:::;an;
P

ai=A

Pr[~A = (a1; : : : ; an)j~x] �Pr[~B = (c1 � a1; : : : ; cn � an)j~x]

= 2n�1
1

2n�1
1

2n�1
=

1

2n�1
:

If the gate computes C = A �B then we can �x ~A = (a1; : : : ; an) and ~B = (b1; : : : ; bn) and now show that

for any such �xed choice still ~C satis�es the requirement. In particular, it su�ces to show (by induction

on i) that the probability that C1 = c1; : : : ; Ci = ci, for i � n � 1 is 1=2i. To do so, we consider the bits

ri;j (j 6= i) and rj;i (j 6= i) and assign random values to each of them (that were not assigned values so

far). As at least one of those random bits (e.g., rn;i) is still \free" this implies that ci will be uniformly

distributed (as rn;i is one of the summands that construct ci). Clearly, when we consider Cn all the random

bits already got values and hence the value of Cn is already determined. 2

We now turn to the proof of privacy of the whole protocol:

Claim 7 For all coalitions T (of size 1 � jT j � n� 1), for all input x1; : : : ; xn, for all choices of random

strings for players in T , fRigi2T , and for all possible communication comm11

Pr[View(T; fxig ; fRigi2T) = comm] = 2�d;

for d = jT j � n �T +m � jT j � (n� jT j) + (n � jT j � 1), where m is the number of multiplication gates in the

circuit for f , and n �T is the number of inputs for the circuit held by players in �T . (Again, the probability

goes over all choices of Ri for i 2 �T .)

Proof: In the sharing stage, each player in T receives a share (a bit) from each input to the circuit held by

player in �T (by de�nition there are n �T such bits). The properties of the secret-sharing guarantee that each

of these bits is 0 with probability 1=2 and they are all independent. The evaluation of addition gates does

not involve any communication. Claim 5 guarantees that in the evaluation of any multiplication gate, no

matter what are the shares that the players start with, the view of the players in T consists of a random

string of length jT j(n � jT j). Also, note that each of these evaluations make use of new (independent)

11 a communication is possible for x1; : : : ; xn if it is consistent with f(x1; : : : ; xn).

17

random bits. Finally if f1; : : : ; fn are the shares representing the outcome of the circuit, then by Claim 6

this vector is uniformly distributed among the vectors whose sum equals f(x1; : : : ; xn). Therefore, the

players in T get in the revealing stage n � jT j bits which form 2n�jT j�1 combinations each with equal

probability. Note that if jT j = n� 1 then in the revealing stage the players in T get only one bit which is

uniquely determined by ~x. However, if jT j < n � 1 then the independence of the communication seen in

the revealing stage and the communication seen in previous stages is guaranteed by the random bits ri;j
for i; j 2 �T . Combining all together we get the desired claim. 2

Corollary 8 For all coalitions T (of size 1 � jT j � n � 1), for all inputs x1; : : : ; xn and y1; : : : ; yn such

that f(x1; : : : ; xn) = f(y1; : : : ; yn) and such that xi = yi for all i 2 T , for all choices of random strings for

players in T , fRigi2T , and for all communication comm

Pr[View(T; fxig ; fRigi2T) = comm] = Pr[View(T; fyig ; fRigi2T) = comm];

where the probability goes over all choices of Ri for i 2 �T .

18

