
A Top-Down Approach to Achieving�
Performance Predictability in

Database Systems
Jiamin Huang, Barzan Mozafari, Grant Schoenebeck and Thomas F. Wenisch

University of Michigan

0E+00

3E+08

5E+08

8E+08

1E+09

Mean Latency Standard Deviation 99th Percentile

Ti
m

e
(n

an
os

ec
on

d)

10x

2x

MySQL running TPC-C benchmark at a fixed rate

Performance Predictability in Today’s DBMS

By focusing too much on raw performance
we have neglected predictability

Why Does Predictability Matter?
•  Latency-sensitive applications

•  Provisioning

•  SLA guarantees

•  Tuning

•  Interactive applications

•  User-experience

Example: Provisioning & SLAs

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

10 30 50 70 90 110 130 150 170 190 210

La
te

nc
y

(m
s)

Number of cores

Mean Latency 99th Percentile

Latency: 0.016
TPS: 62.5k

Example: Provisioning & SLAs

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

10 30 50 70 90 110 130 150 170 190 210

La
te

nc
y

(m
s)

Number of cores

Mean Latency 99th Percentile

Latency: 0.075ms
TPS:13k

Latency: 0.016
TPS: 62.5k Latency: 0.016

TPS: 62.5k

What is Performance Predictability?
•  Performance Variance:

1.  Inherent (External): varying amounts of work,
network problems, …

2.  Avoidable (Internal): due to internal artifacts of
the DBMS (algorithms, data structures, …)

Two Approaches to Achieve Predictability
•  Bottom-up: build a new DBMS from scratch

•  Once an academic prototype, always an academic prototype

•  Sacrifice performance for predictability

•  Top-down: identify root causes of unpredictability and mitigate
them

•  Goal: do not compromise performance

•  Benefit: adoption is “no-brainer”

•  Challenge: today’s DBMSs are extremely complex

Key Questions
1.  How to identify sources of variance?

2.  What makes today’s DBMSs
unpredictable?

3.  How to achieve perf. predictability?

4.  How effective are our techniques?

Key Questions
1.  How to identify sources of variance?

2.  What makes today’s DBMSs
unpredictable?

3.  How to achieve perf. predictability?

4.  How effective are our techniques?

Identifying Root Causes of Performance Variance

•  Profiling tools: critical for diagnosing perf. problems in
modern software

•  Existing profilers focus on average performance

•  DTrace, gprof, perf, etc.

•  Breakdown of avg. performance of DBs done before
•  “OLTP through the looking glass, and what we found there” [SIGMOD’08]

•  Need a new profiler capable of breaking down perf.
variance → TProfiler

TProfiler
•  Goal: Pinpoint root causes of performance variance in large

and complex codebases of today’s DBMS

770K lines of code

1.5M lines of code

1.9M lines of code

Q: How to find the
root causes of

performance variance
efficiently and accurately?

Our Solution: Variance Trees

process_query

execute_queryparse_query send_result

Call Graph

T(process_query)

T(execute_query)T(parse_query) T(send_result)

≡ Overall Latency

T(f): Execution time of function f

Latency Break Down

+ +

Our Solution: Variance Trees
•  If , then:

Our Solution: Variance Trees

T(process_query)

T(execute_query)T(parse_query) T(send_result)

Var(process_query)

Var(execute_query)Var(parse_query) Var(send_result)

Cov(parse_query,
execute_query)

Cov(parse_query,
send_result)

Cov(execute_query,
send_result)

Latency Break Down

Variance Break Down

Variance Tree

≡ Overall Latency Variance

Efficiency
•  Observation: most nodes are actually insignificant

•  Do not build a complete variance tree!

•  Build variance tree iteratively and selectively

1.  Tree expansion: break down variance of selected functions
(process_query at the beginning)

2.  Node selection: select significant* nodes from the tree

3.  User inspection: users inspect selected functions, and
decide whether to further investigate

* See paper for details

Key Questions
1.  How to identify sources of variance?

2.  What makes today’s DBMSs
unpredictable?

3.  How to achieve perf. predictability?

4.  How effective are our techniques?

Case Studies
•  Used TProfiler to analyze 3 popular (both

traditional and modern) DBMSs

Setup
•  Application: MySQL 5.6.23

•  Hardware: Intel Xeon E5 2.1GHz

•  Workload: TPC-C

•  128 Warehouses, 30GB Buffer Pool

Root Causes of Performance
Unpredictability in MySQL

•  With 37 iterations, 6 mins manual inspection time each,
out of 30K functions

Function Name Contribution to
Overall Latency

Variance

os_event_wait[A] 37.5%

os_event_wait[B] 21.7%

buf_pool_mutex_enter 32.92%

Transactions waiting for locks on
data objects
Same function, different call sites

 Waiting for lock on the
→ buffer pool before updating
 the list of buffer pages

Key Questions
1.  How to identify sources of variance?

2.  What makes today’s DBMSs
unpredictable?

3.  How to achieve perf. predictability?

4.  How effective are our techniques?

Mitigating Performance Variance
1.  Changing the implementation

•  Parallel Logging

2.  Changing the algorithm
•  VATS, LLU

3.  Changing the tuning parameters
•  Buffer pool size, redo log flush policy, etc.

Mitigating Performance Variance
1.  Changing the implementation

•  Parallel Logging

2.  Changing the algorithm
•  VATS, LLU

3.  Changing the tuning parameters
•  Buffer pool size, redo log flush policy, etc.

Latency Variance Caused by Queuing

Min Queueing Time
Max Queueing Time

Average Queueing Time

L T1 T2 T3 T4 T5

Our Insight: Look at the Big Picture

L1 T1 T2

L2

T1T2L3

T1T2T4

T4

VATS: Variance Aware Transaction
Scheduling Algorithm

L1 T1 T2

L2

T1T2L3

T1T2T4

T4

VATS grants locks according to transactions’ arrival time in
the system, not in the queue (earliest first)

LRU Ordering of Buffer Pages

P1 P2 P3 P4 P5

List of buffer pages

LRU Ordering of Buffer Pages

P1 P2 P3 P4 P5

P4 is accessed

LRU Ordering of Buffer Pages

P1 P2 P3 P4 P5

The whole list is locked

Place where variance occurs

LRU Ordering of Buffer Pages

P4 P1 P2 P3 P5

P4 is moved to the head

LRU Ordering of Buffer Pages

P4 P1 P2 P3 P5

Solution: Use a lazy page update algorithm (LLU)

Lock is released

Variance-aware Tuning
•  buf_pool_mutex_enter – buffer pool size

•  33%

•  66%

•  100%

Key Questions
1.  How to identify sources of variance?

2.  What makes today’s DBMSs
unpredictable?

3.  How to achieve perf. predictability?

4.  How effective are our techniques?

VATS Improvement

0

1

2

3

4

5

6

7

Variance Mean Latency

Im
pr

ov
em

en
t (

x)

•  189 lines of code changed in MySQL

LLU Improvement

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Variance Mean Latency

Im
pr

ov
em

en
t (

x)

•  46 lines of code changed in MySQL

Buffer Pool Size Tuning

0
1
2
3
4
5
6
7
8
9

10

Variance Mean Latency

Im
pr

ov
em

en
t (

33
%

 /
Bu

ffe
r P

oo
l S

ize
)

66% 100%

Real-world Adoption
•  TProfiler open-sourced

•  VATS has been merged into MySQL distributions
(default in MariaDB and staged in Oracle MySQL)

•  2M+ installations in the world

•  Our buffer pool problem independently
discovered and fixed in MySQL 5.8.0

Conclusion
•  Predictability is an increasingly critical dimension of modern

software overlooked in today’s DBMSs

•  TProfiler identifies root causes of perf. variance in a principled
fashion

•  Enable local and surgical changes to complex DBMS codebases

•  Lock waiting is major source of perf. variance in today’s DBMSs

•  Variance-aware scheduling, lazy optimizations, and tuning
strategies dramatically improve predictability w/o sacrificing raw
performance

Backup Slides

Definition of Predictability
•  Many ways to capture perf. predictability

•  Minimize latency variance or tail latencies

•  Bound latency variance or tail latencies

•  Minimize the (stdev / mean) ratio

•  Our focus: identifying source of latency variance

•  Reducing variance without sacrificing mean latency

Node Selection Example

Var(write_logs)

Var(write_to_buffer)

80%· Var(Latency)

10%· Var(Latency)

Larger
contribution

Var(lock_buffer) Var(unlock_buffer)

2%· Var(Latency)60%· Var(Latency)

Node Selection Example

Var(write_logs)

Var(write_to_buffer)

80%· Var(Latency)

10%· Var(Latency)

The lower in the variance tree, the more specific

Var(lock_buffer) Var(unlock_buffer)

2%· Var(Latency)60%· Var(Latency)
↑

More specific

Manual Efforts

Application Semantic
Interval

Annotation

of
TProfiler

Runs

Avg. Manual
Inspection Time

per Run

Modified
Lines

of Code

MySQL 9 lines of code 37 6 minutes 235
Postgres 7 lines of code 16 10 minutes 355
Httpd 4 lines of code 17 12 minutes 45

Related Work: DARC
•  Uses multiple runs to produce latency histograms

•  Can find man contributors of latency in each execution
time range

≠ Main contributors of latency variance in a semantic interval

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

0-1sec 1-10sec 10-20sec

1. Tree Expansion
Var(process_query)

Set the root to the variance of the top
level function for query processing

Root Creation

Var(process_query)

Var(execute_query)Var(parse_query) Cov(parse_query,
execute_query)

…

Break down the root and expand the variance tree

1. Tree Expansion

Var(process_query)

Var(execute_query)Var(parse_query) Cov(parse_query,
execute_query)

…

Select the most “informative” nodes from the tree

informative = large-enough value + deep-enough in the tree

2. Node Selection

Variance
Contribution

Specificity

Var(process_query)

Var(execute_query)Var(parse_query) Cov(parse_query,
execute_query)

…

User Inspection

3. User Inspection

•  Ask for user inspection when:

1.  Cov terms are large

•  Study how to de-correlate the two functions

2.  Var terms are both large and deep

•  If cause is still unclear, repeat the expand-select-inspect process

