Lattices:
...to Cryptography

Chris Peikert

Georgia Institute of Technology

Visions of Cryptography
10 December 2013

Agenda

® The twoe one main lattice-based OWF

® Two simple tricks that yield all* of lattice cryptography

® Lots of applications

)

12

A Hard Problem: Short Integer Solution

> Goal: given uniform A € Zg*™, find short nonzero z € Z™ such that:

A_ e VA :OGZZL

m

(When m > nlog g, short solutions are guaranteed to exist.)

A Hard Problem: Short Integer Solution

> Goal: given uniform A € Zg*™, find short nonzero z € Z™ such that:

A_ e VA :OGZZL

m

(When m > nlog g, short solutions are guaranteed to exist.)

(0, 9)

» Just SVP on random ‘g-ary’ lattice

LYA)={z€Z™: Az=0}. g

LT
G
T~

A Hard Problem: Short Integer Solution

> Goal: given uniform A € Zg*™, find short nonzero z € Z™ such that:

A_ e VA :OGZZL

m

(When m > nlog g, short solutions are guaranteed to exist.)

(0, 9)

» Just SVP on random ‘g-ary’ lattice

LYA)={zeZ™: Az =0} gy
L [\ (4,0)
» x +— Ax reduces x modulo £+(A). DG /]

A Hard Problem: Short Integer Solution

> Goal: given uniform A € Zg*™, find short nonzero z € Z™ such that:

A_ e VA :OGZZL

m

(When m > nlog g, short solutions are guaranteed to exist.)

Worst-Case/Average-Case Connection [Ajtai'96,. .. ,MR'04,GPV'08,MP’13]

Finding solution z with ||z|| < f < ¢
(for uniformly random A)

4
solving GapSVPg s and SIVP = on any n-dim lattice.

A Hard Problem: Short Integer Solution

> Goal: given uniform A € Zg*™, find short nonzero z € Z™ such that:

A_ e VA :OGZZL

m

(When m > nlog g, short solutions are guaranteed to exist.)

One-Way & Collision-Resistant Hash Function

» Set m > nlgq. Define fa :{0,1}" — Z7 as

fa(x) = Ax.

A Hard Problem: Short Integer Solution

> Goal: given uniform A € Zg*™, find short nonzero z € Z™ such that:

A_ e VA :OGZZL

m

(When m > nlog g, short solutions are guaranteed to exist.)

One-Way & Collision-Resistant Hash Function

» Set m > nlgq. Define fa :{0,1}" — Z7 as

fa(x) = Ax.

» Collision x,x" € {0,1}"™ where Ax = Ax ...

...yields solution z = x — x’ € {0, £1}"™, of norm ||z|| < v/m.

3/12

Another (?) Hard (?) Problem: Learning With Errors
> Wiog, A = [A | L] € Z0*™),

For m > nlog g, function x — Ax is regular (= many preimages).

/12

Another (?) Hard (?) Problem: Learning With Errors
> Wiog, A = [A | L] € Z0*™),

For m > nlog g, function x — Ax is regular (= many preimages).

> What about m < nlogq? E.g., m =n? m = 1007
Map x — Ax = Ax; + X2 is highly injective (whp).

12

Another (?) Hard (?) Problem: Learning With Errors
> Wiog, A = [A | L] € Z0*™),

For m > nlog g, function x — Ax is regular (= many preimages).

> What about m < nlogq? E.g., m =n? m = 1007
Map x — Ax = Ax; + X2 is highly injective (whp).

Is it one-way? Pseudorandom?

12

Another (?) Hard (?) Problem: Learning With Errors
> Wiog, A = [A | L] € Z0*™),
For m > nlog g, function x — Ax is regular (= many preimages).
> What about m < nlogq? E.g., m =n? m = 1007
Map x — Ax = Ax; + X2 is highly injective (whp).

Is it one-way? Pseudorandom?

P Lattice interpretation: BDD on

L(A) = {v = Ax; mod ¢}.

D
N/

» Search < decision: Ax is pseudorandom.

Another (?) Hard (?) Problem: Learning With Errors
> Wiog, A = [A | L] € Z0*™),
For m > nlog g, function x — Ax is regular (= many preimages).
> What about m < nlogq? E.g., m =n? m = 1007
Map x — Ax = Ax; + X2 is highly injective (whp).

Is it one-way? Pseudorandom?

P Lattice interpretation: BDD on

L(A) = {v = Ax; mod ¢}.

D
N/

» Search < decision: Ax is pseudorandom.

P> As hard as worst case problems on
m-dim lattices [Regev'05,P'09].

The two amazingly simple tricks behind all of lattice cryptography...

Trick #1: Generate Random Instance with Solution(s)

» Generate (pseudo)random A’ with a short solution:

/12

Trick #1: Generate Random Instance with Solution(s)

» Generate (pseudo)random A’ with a short solution:
@ Choose A « Zj}xm and short x.

/12

Trick #1: Generate Random Instance with Solution(s)

» Generate (pseudo)random A’ with a short solution:
@ Choose A « Zj}xm and short x.

@ Letu=—-[A|I,]-xand A’ =[u]A].

1
X

Then [A/|1n]H—u+[A|1n].x—o.

12

Trick #1: Generate Random Instance with Solution(s)

» Generate (pseudo)random A’ with a short solution:
@ Choose A « Zj}xm and short x.

@ Letu=—-[A|I,]-xand A’ =[u]A].

Then [A’ | T, H —u4[A[L]-x=0.
» For many solutions, let U= —[A |I,]-X and A’ = [U | A].
Then [A'|L,]- [%] =0.

12

Trick #1: Generate Random Instance with Solution(s)

» Generate (pseudo)random A’ with a short solution:
@ Choose A « Zj}xm and short x.

@ Letu=—-[A|I,]-xand A’ =[u]A].

Then [A’ | T, H —u4[A[L]-x=0.
» For many solutions, let U= —[A |I,]-X and A’ = [U | A].
Then [A'|L,]- [%] =0.

» Of course, we can also multiply on the left:

Let ut:xt[f’:t] and A’ = [1};]

12

Key Agreement/Encryption

PG g
S r

/12

Key Agreement/Encryption

12

Key Agreement/Encryption

ke =s!-u+err ky =vi-r; +err

~ st Ar ~ s{Ar

12

Key Agreement/Encryption

ke =s!-u+err

~ StlAI'l

ky =vi-r; +err

~ SYi AI‘1

12

Key Agreement/Encryption

ﬁ A e zZpxm
S

ko =s!-u+err

12

Key Agreement/Encryption

/12

Trick #2: Inverting an Easy Function

» A special parity-check matrix: let gt =[124 ... 281 > 4] and

- gt .
G= € ZP k.

~

Trick #2: Inverting an Easy Function

» A special parity-check matrix: let gt =[124 ... 281 > 4] and

- gt .
G= € ZP k.

» Invert SIS: given u € Z!", can compute x € {0, 1}"k s.t. Gx = u.

12

Trick #2: Inverting an Easy Function

» A special parity-check matrix: let gt =[124 ... 281 > 4] and

- gt .
G= € ZP k.

» Invert SIS: given u € Z!", can compute x € {0, 1}"k s.t. Gx = u.

More generally, can sample a Gaussian x <+ G~1(u).

12

Trick #2: Inverting an Easy Function

» A special parity-check matrix: let gt =[124 ... 281 > 4] and

- gt .
G= € ZP k.

» Invert SIS: given u € Z!", can compute x € {0, 1}"k s.t. Gx = u.
More generally, can sample a Gaussian x <+ G~1(u).
Can generate (x,u) in two equivalent ways:
G G

R _ n
Gauss — x u = X u < Zy

Trick #2: Inverting an Easy Function

» A special parity-check matrix: let gt =[124 ... 281 > 4] and

- gt .
G= € ZP k.

2k71

» Invert LWE: given v = xt[(l;] ~[zy 221 -+ x1 ---], find x.

12

Trick #2: Inverting an Easy Function

> A special parity-check matrix: let gt =[124 ... 2F
.. gt .
¢
.. g .
G =
.. gt .
» Invert LWE: given v = xt[(l;] ~ 1y 221 - 2F71

I

1> 4] and

nxnk
€ Z k.

--+], find x.

Say ¢ = 2*. Can recover bits of z; with errors, then 5, etc.

12

Trick #2: Inverting an Easy Function

» A special parity-check matrix: let gt =[124 ... 281 > 4] and

B gt .
G= € ZP k.

» Invert LWE: given v = xt[(l;] ~ [y 221 --- 28ty oo, find x.

Say ¢ = 2*. Can recover bits of z; with errors, then 5, etc.

(Something similar works for any g.)

12

Put G in Public Key = TDF, Signatures, IBE [cPvi0smP12]
> Let A’ =[A |G — AR], so A’/[B] = G. Trapdoor = R.

/12

Put G in Public Key = TDF, Signatures, IBE [cPvi0smP12]
> Let A’ =[A |G — AR], so A’/[B] = G. Trapdoor = R.

P Invert LWE: given vt = st[ﬁ'], recover s from

vt[ff] = St[g} ~siG.

12

Put G in Public Key = TDF, Signatures, IBE [cPvi0smP12]
> Let A’ =[A |G — AR], so A’/[B] = G. Trapdoor = R.

P Invert LWE: given vt = st[ﬁ'], recover s from
tR] = gt ﬁ} ~slG
VI[R] =K] ~siG.

> Invert SIS: given target u, output x = [PI‘] -G71(u). Then

Ax=G -G lu)=u

Put G in Public Key = TDF, Signatures, IBE [cPvi0smP12]

> Let A’ =[A |G — AR], so A’/[B] = G. Trapdoor = R.
P Invert LWE: given vt = st[ﬁ'], recover s from
tIR] _ of G} ~ o
v [I] S [1} s1G.
> Invert SIS: given target u, output x = [PI‘] -G71(u). Then
Ax=G -G lu)=u

Problem: x is ‘skewed,’ leaks trapdoor R!

12

Put G in Public Key = TDF, Signatures, IBE [cPvi0smP12]
> Let A’ =[A |G — AR], so A’/[B] = G. Trapdoor = R.

P Invert LWE: given vt = st[ﬁ'], recover s from
tIR] _ of G} ~st @
VI[R] =K] ~siG.

> Invert SIS: given target u, output x = [PI‘] -G71(u). Then
Ax=G -G lu)=u

Problem: x is ‘skewed,’ leaks trapdoor R!

Solution: output x = p + [1}] -G71(u— A’p) for ‘perturbation’ p.

Put G in Public Key = TDF, Signatures, IBE [cPvi0smP12]
> Let A’ =[A |G — AR], so A’/[B] = G. Trapdoor = R.

P Invert LWE: given vt = st[ﬁ'], recover s from
tIR] _ of G} ~st @
VI[R] =K] ~siG.

> Invert SIS: given target u, output x = [PI‘] -G71(u). Then
Ax=G -G lu)=u

Problem: x is ‘skewed,’ leaks trapdoor R!
Solution: output x = p + [1}] -G71(u— A’p) for ‘perturbation’ p.
A/ A/—l

R
Gauss — x u

/_\
bl u(—ZZ

12

Put G in Evaluation Key = FHE [Bvi11]

> Secret key s € Z", ciphertext c € Z} is s.t. s' - c = %1 - I

10/12

Put G in Evaluation Key = FHE [Bvi11]

> Secret key s € Z", ciphertext ¢ € Zy is s.t. st c~ %1 M-

» Homomorphic mult:

(s®s)' - (2c1 ®c2) & L - pypo.
Cx

Problem: cy has dimension n?!

10/12

Put G in Evaluation Key = FHE [Bvi11]

q+1

> Secret key s € Z", ciphertext c € Z is s.t. s' - c = 1= - .

» Homomorphic mult:
(s®s)" - (2c1 ® €a) & L= - puapuo.
~—
Cx
Problem: cy has dimension n?!
> “Compress” cx by “recrypting:”

@ Rewrite decryption expression as (s ® s)!G - G~!(cy).

10/12

Put G in Evaluation Key = FHE [Bvi11]

q+1

> Secret key s € Z", ciphertext c € Z is s.t. s' - c = 1= - .

» Homomorphic mult:
(s®s)" - (2c1 ® €a) & L= - puapuo.
—_——
Cx

Problem: cy has dimension n?!

> “Compress” cx by “recrypting:”
@ Rewrite decryption expression as (s ® s)!G - G71(cy).
® Hide (s ®s)!G in an evaluation key K (having n rows):

s' K=~ (s®s)'G.

10/12

Put G in Evaluation Key = FHE [Bvi11]

q+1

> Secret key s € Z", ciphertext c € Z is s.t. s' - c = 1= - .

» Homomorphic mult:
(s®s) - (2c1 ®c2) & T2 - pypo.
~—
Cx

Problem: cy has dimension n?!

> “Compress” cx by “recrypting:”
@ Rewrite decryption expression as (s ® s)!G - G71(cy).
® Hide (s ®s)!G in an evaluation key K (having n rows):
s' K=~ (s®s)'G.
©® Then

1
st K-G lcy) = (s®8)'G -G ey) ~ pips - &
—_—— 2

10/12

Put G in Ciphertext = FHE [esw'13]

> Secret key s € Z", public key A satisfies s’A ~ 0.

11/12

Put G in Ciphertext = FHE [esw'13]

> Secret key s € Z", public key A satisfies s’A ~ 0.
» Encrypt p € {0,1} as C = AR + uG. Decryption relation is

s'C~pu-s'G.

11/12

Put G in Ciphertext = FHE [esw'13]

> Secret key s € Z", public key A satisfies s’A ~ 0.
» Encrypt p € {0,1} as C = AR + uG. Decryption relation is
s'C~pu-s'G.

» Homomorphic mult: C, = C; - G~1(Cy).

11/12

Put G in Ciphertext = FHE [esw'13]

> Secret key s € Z", public key A satisfies s’A ~ 0.

» Encrypt p € {0,1} as C = AR + uG. Decryption relation is
s'C~pu-s'G.

» Homomorphic mult: C, = C; - G~1(Cy).

s!C, =s'Cy - G7H(Cy)
~ 1 -s'G - G7HCy)
~ pipg - s'G

11/12

Put G in Ciphertext = FHE [esw'13]

> Secret key s € Z", public key A satisfies s’A ~ 0.
» Encrypt p € {0,1} as C = AR + uG. Decryption relation is
s'C~pu-s'G.
» Homomorphic mult: C, = C; - G~1(Cy).
s!C, =s'Cy - G7H(Cy)

~ 1 -s'G - G7HCy)
~ pipg - s'G

Error in Cy is €} - G™1(C2) + p1 - €b.

Asymmetry allows homom mult with additive noise growth. [BV'13]

11/12

Concluding Thoughts
» Many more applications:

PRFs [BPR'12,BLMR'13], ABE [GVW'13,GGHSW'13], Obf & FE
[GGHRSW'13], ...

12 /12

Concluding Thoughts

» Many more applications:

PRFs [BPR'12,BLMR'13], ABE [GVW'13,GGHSW'13], Obf & FE
[GGHRSW'13], ...

» Amazing amount of magic from such a small bag of tricks!
A true case of making strength out of ‘weakness.’

Concluding Thoughts

» Many more applications:

PRFs [BPR'12,BLMR'13], ABE [GVW'13,GGHSW'13], Obf & FE
[GGHRSW'13], ...

» Amazing amount of magic from such a small bag of tricks!
A true case of making strength out of ‘weakness.’

Thanks!

