Lattices: . . . to Cryptography

Chris Peikert Georgia Institute of Technology

Visions of Cryptography 10 December 2013

Agenda

1 The two one main lattice-based OWF

2 Two simple tricks that yield all* of lattice cryptography

3 Lots of applications

▶ Goal: given uniform $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$ such that:

$$\underbrace{\left(egin{array}{cccc} & \mathbf{A} & \cdots \ & \end{array}
ight)}_{m} \left(\mathbf{z}
ight) = \mathbf{0} \in \mathbb{Z}_q^n$$

(When $m \ge n \log q$, short solutions are guaranteed to exist.)

▶ Goal: given uniform $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$ such that:

$$\underbrace{\left(\cdots \quad \mathbf{A} \quad \cdots \right)}_{m} \left(\mathbf{z} \right) = \mathbf{0} \in \mathbb{Z}_q^n$$

(When $m \ge n \log q$, short solutions are guaranteed to exist.)

▶ Just SVP on random 'q-ary' lattice

$$\mathcal{L}^{\perp}(\mathbf{A}) = \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} = \mathbf{0} \}.$$

▶ Goal: given uniform $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$ such that:

$$\underbrace{\left(\cdots \quad \mathbf{A} \quad \cdots \right)}_{m} \left(\mathbf{z} \right) = \mathbf{0} \in \mathbb{Z}_q^n$$

(When $m \ge n \log q$, short solutions are guaranteed to exist.)

▶ Just SVP on random 'q-ary' lattice

$$\mathcal{L}^{\perp}(\mathbf{A}) = \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} = \mathbf{0} \}.$$

 $ightharpoonup \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ reduces \mathbf{x} modulo $\mathcal{L}^{\perp}(\mathbf{A})$.

▶ Goal: given uniform $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$ such that:

$$\left(\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \end{array} \right) = \mathbf{0} \in \mathbb{Z}_q^n$$

(When $m \ge n \log q$, short solutions are guaranteed to exist.)

Worst-Case/Average-Case Connection [Ajtai'96,...,MR'04,GPV'08,MP'13]

Finding solution \mathbf{z} with $\|\mathbf{z}\| \leq \beta \ll q$ (for uniformly random \mathbf{A})

solving GapSVP $_{\beta\sqrt{n}}$ and SIVP $_{\beta\sqrt{n}}$ on any n-dim lattice.

▶ Goal: given uniform $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$ such that:

$$\underbrace{\left(\cdots \quad \mathbf{A} \quad \cdots \right)}_{m} \left(\mathbf{z} \right) = \mathbf{0} \in \mathbb{Z}_q^n$$

(When $m \ge n \log q$, short solutions are guaranteed to exist.)

One-Way & Collision-Resistant Hash Function

▶ Set $m > n \lg q$. Define $f_{\mathbf{A}} : \{0,1\}^m \to \mathbb{Z}_q^n$ as

$$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}.$$

▶ Goal: given uniform $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find short nonzero $\mathbf{z} \in \mathbb{Z}^m$ such that:

$$\underbrace{\left(\cdots \quad \mathbf{A} \quad \cdots \right)}_{m} \left(\mathbf{z} \right) = \mathbf{0} \in \mathbb{Z}_q^n$$

(When $m \ge n \log q$, short solutions are guaranteed to exist.)

One-Way & Collision-Resistant Hash Function

▶ Set $m > n \lg q$. Define $f_{\mathbf{A}} : \{0,1\}^m \to \mathbb{Z}_q^n$ as

$$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}.$$

► Collision $\mathbf{x}, \mathbf{x}' \in \{0, 1\}^m$ where $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}' \dots$

... yields solution
$$\mathbf{z} = \mathbf{x} - \mathbf{x}' \in \{0, \pm 1\}^m$$
, of norm $\|\mathbf{z}\| \leq \sqrt{m}$.

 $lackbox{Wlog, } \mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{I}_n] \in \mathbb{Z}_q^{n \times (m+n)}.$

For $m \ge n \log q$, function $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is regular (\Rightarrow many preimages).

- ▶ Wlog, $\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{I}_n] \in \mathbb{Z}_q^{n \times (m+n)}$. For $m \ge n \log q$, function $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is regular (\Rightarrow many preimages).
- ▶ What about $m \ll n \log q$? E.g., m = n? m = 100? Map $\mathbf{x} \mapsto \mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}_1 + \mathbf{x}_2$ is highly injective (whp).

- ▶ Wlog, $\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{I}_n] \in \mathbb{Z}_q^{n \times (m+n)}$. For $m \ge n \log q$, function $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is regular (\Rightarrow many preimages).
- What about $m \ll n \log q$? E.g., m = n? m = 100? Map $\mathbf{x} \mapsto \mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}_1 + \mathbf{x}_2$ is highly injective (whp). Is it one-way? Pseudorandom?

- ▶ Wlog, $\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{I}_n] \in \mathbb{Z}_q^{n \times (m+n)}$. For $m \ge n \log q$, function $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is regular (\Rightarrow many preimages).
- What about $m \ll n \log q$? E.g., m = n? m = 100? Map $\mathbf{x} \mapsto \mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}_1 + \mathbf{x}_2$ is highly injective (whp). Is it one-way? Pseudorandom?
- ► Lattice interpretation: BDD on

$$\mathcal{L}(\bar{\mathbf{A}}) = \{ \mathbf{v} \equiv \bar{\mathbf{A}} \mathbf{x}_1 \bmod q \}.$$

ightharpoonup Search \Leftrightarrow decision: $\mathbf{A}\mathbf{x}$ is pseudorandom.

- ▶ Wlog, $\mathbf{A} = [\bar{\mathbf{A}} \mid \mathbf{I}_n] \in \mathbb{Z}_q^{n \times (m+n)}$. For $m \ge n \log q$, function $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ is regular (\Rightarrow many preimages).
- What about $m \ll n \log q$? E.g., m = n? m = 100? Map $\mathbf{x} \mapsto \mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}_1 + \mathbf{x}_2$ is highly injective (whp). Is it one-way? Pseudorandom?
- ► Lattice interpretation: BDD on

$$\mathcal{L}(\bar{\mathbf{A}}) = \{ \mathbf{v} \equiv \bar{\mathbf{A}} \mathbf{x}_1 \bmod q \}.$$

- ▶ Search \Leftrightarrow decision: $\mathbf{A}\mathbf{x}$ is pseudorandom.
- As hard as worst case problems on m-dim lattices [Regev'05,P'09].

► Generate (pseudo)random A' with a short solution:

- Generate (pseudo)random A' with a short solution:
 - **1** Choose $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and short \mathbf{x} .

- Generate (pseudo)random A' with a short solution:
 - **1** Choose $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and short \mathbf{x} .
 - 2 Let $\mathbf{u} = -[\mathbf{A} \mid \mathbf{I}_n] \cdot \mathbf{x}$ and $\mathbf{A}' = [\mathbf{u} \mid \mathbf{A}]$.

Then
$$[\mathbf{A}' \mid \mathbf{I}_n] \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} = \mathbf{u} + [\mathbf{A} \mid \mathbf{I}_n] \cdot \mathbf{x} = \mathbf{0}.$$

- ightharpoonup Generate (pseudo)random A' with a short solution:
 - $\textbf{1} \ \, \mathsf{Choose} \ \, \mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m} \ \, \mathsf{and} \ \, \mathsf{short} \ \, \mathbf{x}.$
 - 2 Let $\mathbf{u} = -[\mathbf{A} \mid \mathbf{I}_n] \cdot \mathbf{x}$ and $\mathbf{A}' = [\mathbf{u} \mid \mathbf{A}]$.

Then
$$[\mathbf{A}' \mid \mathbf{I}_n] \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} = \mathbf{u} + [\mathbf{A} \mid \mathbf{I}_n] \cdot \mathbf{x} = \mathbf{0}.$$

▶ For many solutions, let $\mathbf{U} = -[\mathbf{A} \mid \mathbf{I}_n] \cdot \mathbf{X}$ and $\mathbf{A}' = [\mathbf{U} \mid \mathbf{A}]$. Then $[\mathbf{A}' \mid \mathbf{I}_n] \cdot \begin{bmatrix} \mathbf{I}_k \\ \mathbf{X} \end{bmatrix} = \mathbf{0}$.

- ► Generate (pseudo)random A' with a short solution:
 - $\textbf{1} \ \, \mathsf{Choose} \ \, \mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m} \ \, \mathsf{and} \ \, \mathsf{short} \ \, \mathbf{x}.$
 - 2 Let $\mathbf{u} = -[\mathbf{A} \mid \mathbf{I}_n] \cdot \mathbf{x}$ and $\mathbf{A}' = [\mathbf{u} \mid \mathbf{A}]$.

Then
$$[\mathbf{A}' \mid \mathbf{I}_n] \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} = \mathbf{u} + [\mathbf{A} \mid \mathbf{I}_n] \cdot \mathbf{x} = \mathbf{0}.$$

- ▶ For many solutions, let $\mathbf{U} = -[\mathbf{A} \mid \mathbf{I}_n] \cdot \mathbf{X}$ and $\mathbf{A}' = [\mathbf{U} \mid \mathbf{A}]$. Then $[\mathbf{A}' \mid \mathbf{I}_n] \cdot \begin{bmatrix} \mathbf{I}_k \\ \mathbf{X} \end{bmatrix} = \mathbf{0}$.
- ▶ Of course, we can also multiply on the left:

Let
$$\mathbf{u}^t = \mathbf{x}^t \begin{bmatrix} \mathbf{A} \\ \mathbf{I}_m \end{bmatrix}$$
 and $\mathbf{A}' = \begin{bmatrix} \mathbf{u}^t \\ \mathbf{A} \end{bmatrix}$.

lacktriangle A special parity-check matrix: let $\mathbf{g}^t = [1 \ 2 \ 4 \ \cdots \ 2^{k-1} \geq rac{q}{2}]$ and

▶ A special parity-check matrix: let $\mathbf{g}^t = [1 \ 2 \ 4 \ \cdots \ 2^{k-1} \geq \frac{q}{2}]$ and

▶ Invert SIS: given $\mathbf{u} \in \mathbb{Z}_q^n$, can compute $\mathbf{x} \in \{0,1\}^{nk}$ s.t. $G\mathbf{x} = \mathbf{u}$.

▶ A special parity-check matrix: let $\mathbf{g}^t = [1 \ 2 \ 4 \ \cdots \ 2^{k-1} \geq rac{q}{2}]$ and

▶ Invert SIS: given $\mathbf{u} \in \mathbb{Z}_q^n$, can compute $\mathbf{x} \in \{0,1\}^{nk}$ s.t. $\mathbf{G}\mathbf{x} = \mathbf{u}$. More generally, can sample a Gaussian $\mathbf{x} \leftarrow \mathbf{G}^{-1}(\mathbf{u})$.

lacktriangle A special parity-check matrix: let $\mathbf{g}^t = [1 \ 2 \ 4 \ \cdots \ 2^{k-1} \geq rac{q}{2}]$ and

▶ Invert SIS: given $\mathbf{u} \in \mathbb{Z}_q^n$, can compute $\mathbf{x} \in \{0,1\}^{nk}$ s.t. $\mathbf{G}\mathbf{x} = \mathbf{u}$. More generally, can sample a Gaussian $\mathbf{x} \leftarrow \mathbf{G}^{-1}(\mathbf{u})$.

Can generate (x, \mathbf{u}) in two equivalent ways:

lacktriangle A special parity-check matrix: let $\mathbf{g}^t = [1 \ 2 \ 4 \ \cdots \ 2^{k-1} \geq rac{q}{2}]$ and

▶ Invert LWE: given $\mathbf{v} = \mathbf{x}^t \begin{bmatrix} \mathbf{G} \\ \mathbf{I} \end{bmatrix} \approx [x_1 \ 2x_1 \ \cdots \ 2^{k-1}x_1 \ \cdots]$, find \mathbf{x} .

lacktriangle A special parity-check matrix: let $\mathbf{g}^t = [1 \ 2 \ 4 \ \cdots \ 2^{k-1} \geq rac{q}{2}]$ and

▶ Invert LWE: given $\mathbf{v} = \mathbf{x}^t \begin{bmatrix} \mathbf{G} \\ \mathbf{I} \end{bmatrix} \approx [x_1 \ 2x_1 \ \cdots \ 2^{k-1}x_1 \ \cdots]$, find \mathbf{x} . Say $q = 2^k$. Can recover bits of x_1 with errors, then x_2 , etc.

lacktriangle A special parity-check matrix: let $\mathbf{g}^t = [1 \ 2 \ 4 \ \cdots \ 2^{k-1} \geq rac{q}{2}]$ and

▶ Invert LWE: given $\mathbf{v} = \mathbf{x}^t \begin{bmatrix} \mathbf{G} \\ \mathbf{I} \end{bmatrix} \approx [x_1 \ 2x_1 \ \cdots \ 2^{k-1}x_1 \ \cdots]$, find \mathbf{x} . Say $q = 2^k$. Can recover bits of x_1 with errors, then x_2 , etc. (Something similar works for any q.)

▶ Let $A' = [A \mid G - AR]$, so $A' \begin{bmatrix} R \\ I \end{bmatrix} = G$. Trapdoor = R.

- ▶ Let $A' = [A \mid G AR]$, so $A' \begin{bmatrix} R \\ I \end{bmatrix} = G$. Trapdoor = R.
- ▶ Invert LWE: given $\mathbf{v}^t = \mathbf{s}^t \begin{bmatrix} \mathbf{A}' \\ \mathbf{I} \end{bmatrix}$, recover \mathbf{s} from

$$\mathbf{v}^tig[egin{array}{c} \mathbf{R} \ \mathbf{I} \end{array}ig] = \mathbf{s}^tig[egin{array}{c} \mathbf{G} \ \mathbf{R} \ \mathbf{I} \end{array}ig] pprox \mathbf{s}_1^t\mathbf{G}.$$

- ▶ Let $A' = [A \mid G AR]$, so $A' \begin{bmatrix} R \\ I \end{bmatrix} = G$. Trapdoor = R.
- ▶ Invert LWE: given $\mathbf{v}^t = \mathbf{s}^t \begin{bmatrix} \mathbf{A}' \\ \mathbf{I} \end{bmatrix}$, recover \mathbf{s} from

$$\mathbf{v}^t \big[\begin{smallmatrix} \mathbf{R} \\ \mathbf{I} \end{smallmatrix} \big] = \mathbf{s}^t \Big[\begin{smallmatrix} \mathbf{G} \\ \mathbf{R} \\ \mathbf{I} \end{smallmatrix} \big] \approx \mathbf{s}_1^t \mathbf{G}.$$

▶ Invert SIS: given target \mathbf{u} , output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{G}^{-1}(\mathbf{u})$. Then

$$\mathbf{A}'\mathbf{x} = \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{u}) = \mathbf{u}.$$

- ▶ Let $A' = [A \mid G AR]$, so $A' \begin{bmatrix} R \\ I \end{bmatrix} = G$. Trapdoor = R.
- ▶ Invert LWE: given $\mathbf{v}^t = \mathbf{s}^t \begin{bmatrix} \mathbf{A}' \\ \mathbf{I} \end{bmatrix}$, recover \mathbf{s} from

$$\mathbf{v}^t \big[\begin{smallmatrix} \mathbf{R} \\ \mathbf{I} \end{smallmatrix} \big] = \mathbf{s}^t \Big[\begin{smallmatrix} \mathbf{G} \\ \mathbf{R} \\ \mathbf{I} \end{smallmatrix} \big] \approx \mathbf{s}_1^t \mathbf{G}.$$

▶ Invert SIS: given target \mathbf{u} , output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{G}^{-1}(\mathbf{u})$. Then

$$\mathbf{A}'\mathbf{x} = \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{u}) = \mathbf{u}.$$

 $\underline{\mathsf{Problem}} \colon \mathbf{x} \mathsf{ is 'skewed,' leaks trapdoor } \mathbf{R}!$

Put G in Public Key \Rightarrow TDF, Signatures, IBE [GPV'08,MP'12]

- $\blacktriangleright \ \, \mathsf{Let} \,\, \mathbf{A}' = [\mathbf{A} \mid \mathbf{G} \mathbf{A}\mathbf{R}] \mathsf{, so } \, \mathbf{A}' \big[\begin{smallmatrix} \mathbf{R} \\ \mathbf{I} \end{smallmatrix} \big] = \mathbf{G}. \,\, \mathsf{Trapdoor} = \mathbf{R}.$
- ▶ Invert LWE: given $\mathbf{v}^t = \mathbf{s}^t \begin{bmatrix} \mathbf{A}' \\ \mathbf{I} \end{bmatrix}$, recover \mathbf{s} from

$$\mathbf{v}^t \big[\begin{smallmatrix} \mathbf{R} \\ \mathbf{I} \end{smallmatrix} \big] = \mathbf{s}^t \Big[\begin{smallmatrix} \mathbf{G} \\ \mathbf{R} \\ \mathbf{I} \end{smallmatrix} \big] \approx \mathbf{s}_1^t \mathbf{G}.$$

▶ Invert SIS: given target ${\bf u}$, output ${\bf x} = \left[{f R} \atop {f I} \right] \cdot G^{-1}({\bf u})$. Then

$$\mathbf{A}'\mathbf{x} = \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{u}) = \mathbf{u}.$$

Problem: x is 'skewed,' leaks trapdoor R!

 $\underline{\text{Solution}}\text{: output }\mathbf{x}=\mathbf{p}+\left[\begin{smallmatrix}\mathbf{R}\\\mathbf{I}\end{smallmatrix}\right]\cdot\mathbf{G}^{-1}(\mathbf{u}-\mathbf{A}'\mathbf{p})\text{ for 'perturbation' }\mathbf{p}.$

Put G in Public Key \Rightarrow TDF, Signatures, IBE [GPV'08,MP'12]

- ▶ Let $A' = [A \mid G AR]$, so $A' \begin{bmatrix} R \\ I \end{bmatrix} = G$. Trapdoor = R.
- ▶ Invert LWE: given $\mathbf{v}^t = \mathbf{s}^t \left[\begin{smallmatrix} \mathbf{A}' \\ \mathbf{I} \end{smallmatrix} \right]$, recover \mathbf{s} from

$$\mathbf{v}^t \big[\begin{smallmatrix} \mathbf{R} \\ \mathbf{I} \end{smallmatrix} \big] = \mathbf{s}^t \Big[\begin{smallmatrix} \mathbf{G} \\ \mathbf{R} \\ \mathbf{I} \end{smallmatrix} \big] \approx \mathbf{s}_1^t \mathbf{G}.$$

▶ Invert SIS: given target \mathbf{u} , output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{G}^{-1}(\mathbf{u})$. Then

$$\mathbf{A}'\mathbf{x} = \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{u}) = \mathbf{u}.$$

Problem: x is 'skewed,' leaks trapdoor R!

 $\underline{\text{Solution}}\text{: output }\mathbf{x}=\mathbf{p}+\left[\begin{smallmatrix}\mathbf{R}\\\mathbf{I}\end{smallmatrix}\right]\cdot\mathbf{G}^{-1}(\mathbf{u}-\mathbf{A}'\mathbf{p})\text{ for 'perturbation' }\mathbf{p}.$

$$\mathsf{Gauss} \to \mathbf{x} \qquad \mathbf{u} \qquad \equiv \qquad \mathbf{x} \qquad \mathbf{u} \leftarrow \mathbb{Z}_q^n$$

▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, ciphertext $\mathbf{c} \in \mathbb{Z}_q^n$ is s.t. $\mathbf{s}^t \cdot \mathbf{c} \approx \frac{q+1}{2} \cdot \mu$.

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, ciphertext $\mathbf{c} \in \mathbb{Z}_q^n$ is s.t. $\mathbf{s}^t \cdot \mathbf{c} \approx \frac{q+1}{2} \cdot \mu$.
- ► Homomorphic mult:

$$(\mathbf{s} \otimes \mathbf{s})^t \cdot \underbrace{(2\mathbf{c}_1 \otimes \mathbf{c}_2)}_{\mathbf{c}_{\times}} \approx \frac{q+1}{2} \cdot \mu_1 \mu_2.$$

Problem: \mathbf{c}_{\times} has dimension n^2 !

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, ciphertext $\mathbf{c} \in \mathbb{Z}_q^n$ is s.t. $\mathbf{s}^t \cdot \mathbf{c} \approx \frac{q+1}{2} \cdot \mu$.
- ► Homomorphic mult:

$$(\mathbf{s} \otimes \mathbf{s})^t \cdot \underbrace{(2\mathbf{c}_1 \otimes \mathbf{c}_2)}_{\mathbf{c}_{\times}} \approx \frac{q+1}{2} \cdot \mu_1 \mu_2.$$

Problem: \mathbf{c}_{\times} has dimension n^2 !

- ightharpoonup "Compress" \mathbf{c}_{\times} by "recrypting:"
 - **1** Rewrite decryption expression as $(\mathbf{s} \otimes \mathbf{s})^t \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{c}_{\times})$.

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, ciphertext $\mathbf{c} \in \mathbb{Z}_q^n$ is s.t. $\mathbf{s}^t \cdot \mathbf{c} \approx \frac{q+1}{2} \cdot \mu$.
- ► Homomorphic mult:

$$(\mathbf{s} \otimes \mathbf{s})^t \cdot \underbrace{(2\mathbf{c}_1 \otimes \mathbf{c}_2)}_{\mathbf{c}_{\times}} \approx \frac{q+1}{2} \cdot \mu_1 \mu_2.$$

Problem: \mathbf{c}_{\times} has dimension $n^2!$

- lacktriangle "Compress" ${f c}_{ imes}$ by "recrypting:"
 - **1** Rewrite decryption expression as $(\mathbf{s} \otimes \mathbf{s})^t \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{c}_{\times})$.
 - **2** Hide $(\mathbf{s} \otimes \mathbf{s})^t \mathbf{G}$ in an evaluation key \mathbf{K} (having n rows):

$$\mathbf{s}^t \cdot \mathbf{K} \approx (\mathbf{s} \otimes \mathbf{s})^t \mathbf{G}.$$

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, ciphertext $\mathbf{c} \in \mathbb{Z}_q^n$ is s.t. $\mathbf{s}^t \cdot \mathbf{c} \approx \frac{q+1}{2} \cdot \mu$.
- ► Homomorphic mult:

$$(\mathbf{s} \otimes \mathbf{s})^t \cdot \underbrace{(2\mathbf{c}_1 \otimes \mathbf{c}_2)}_{\mathbf{c}_{\times}} \approx \frac{q+1}{2} \cdot \mu_1 \mu_2.$$

Problem: \mathbf{c}_{\times} has dimension $n^2!$

- ightharpoonup "Compress" $\mathbf{c}_{ imes}$ by "recrypting:"
 - **1** Rewrite decryption expression as $(\mathbf{s} \otimes \mathbf{s})^t \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{c}_{\times})$.
 - 2 Hide $(\mathbf{s} \otimes \mathbf{s})^t \mathbf{G}$ in an evaluation key \mathbf{K} (having n rows):

$$\mathbf{s}^t \cdot \mathbf{K} \approx (\mathbf{s} \otimes \mathbf{s})^t \mathbf{G}.$$

3 Then

$$\mathbf{s}^t \cdot \underbrace{\mathbf{K} \cdot \mathbf{G}^{-1}(\mathbf{c}_{\times})}_{\mathbf{c}'} \approx (\mathbf{s} \otimes \mathbf{s})^t \mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{c}_{\times}) \approx \mu_1 \mu_2 \cdot \frac{q+1}{2}.$$

▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, public key \mathbf{A} satisfies $\mathbf{s}^t \mathbf{A} \approx \mathbf{0}$.

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, public key \mathbf{A} satisfies $\mathbf{s}^t \mathbf{A} \approx \mathbf{0}$.
- ▶ Encrypt $\mu \in \{0,1\}$ as $\mathbf{C} = \mathbf{A}\mathbf{R} + \mu\mathbf{G}$. Decryption relation is $\mathbf{s}^t\mathbf{C} \approx \mu \cdot \mathbf{s}^t\mathbf{G}$.

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, public key \mathbf{A} satisfies $\mathbf{s}^t \mathbf{A} \approx \mathbf{0}$.
- ► Encrypt $\mu \in \{0,1\}$ as $\mathbf{C} = \mathbf{A}\mathbf{R} + \mu\mathbf{G}$. Decryption relation is $\mathbf{s}^t\mathbf{C} \approx \mu \cdot \mathbf{s}^t\mathbf{G}$.
- ▶ Homomorphic mult: $\mathbf{C}_{\times} = \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$.

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, public key \mathbf{A} satisfies $\mathbf{s}^t \mathbf{A} \approx \mathbf{0}$.
- ▶ Encrypt $\mu \in \{0,1\}$ as $\mathbf{C} = \mathbf{A}\mathbf{R} + \mu\mathbf{G}$. Decryption relation is

$$\mathbf{s}^t \mathbf{C} \approx \mu \cdot \mathbf{s}^t \mathbf{G}.$$

▶ Homomorphic mult: $\mathbf{C}_{\times} = \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$.

$$\mathbf{s}^{t}\mathbf{C}_{\times} = \mathbf{s}^{t}\mathbf{C}_{1} \cdot \mathbf{G}^{-1}(\mathbf{C}_{2})$$
$$\approx \mu_{1} \cdot \mathbf{s}^{t}\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{C}_{2})$$
$$\approx \mu_{1}\mu_{2} \cdot \mathbf{s}^{t}\mathbf{G}$$

- ▶ Secret key $\mathbf{s} \in \mathbb{Z}^n$, public key \mathbf{A} satisfies $\mathbf{s}^t \mathbf{A} \approx \mathbf{0}$.
- ▶ Encrypt $\mu \in \{0,1\}$ as $\mathbf{C} = \mathbf{A}\mathbf{R} + \mu\mathbf{G}$. Decryption relation is

$$\mathbf{s}^t \mathbf{C} \approx \mu \cdot \mathbf{s}^t \mathbf{G}.$$

► Homomorphic mult: $\mathbf{C}_{\times} = \mathbf{C}_1 \cdot \mathbf{G}^{-1}(\mathbf{C}_2)$.

$$\mathbf{s}^{t}\mathbf{C}_{\times} = \mathbf{s}^{t}\mathbf{C}_{1} \cdot \mathbf{G}^{-1}(\mathbf{C}_{2})$$
$$\approx \mu_{1} \cdot \mathbf{s}^{t}\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{C}_{2})$$
$$\approx \mu_{1}\mu_{2} \cdot \mathbf{s}^{t}\mathbf{G}$$

Error in \mathbf{C}_{\times} is $\mathbf{e}_1^t \cdot \mathbf{G}^{-1}(\mathbf{C}_2) + \mu_1 \cdot \mathbf{e}_2^t$.

Asymmetry allows homom mult with additive noise growth. [BV'13]

Concluding Thoughts

Many more applications:

PRFs [BPR'12,BLMR'13], ABE [GVW'13,GGHSW'13], Obf & FE [GGHRSW'13], ...

Concluding Thoughts

Many more applications:

```
PRFs [BPR'12,BLMR'13], ABE [GVW'13,GGHSW'13], Obf & FE [GGHRSW'13], ...
```

Amazing amount of magic from such a small bag of tricks! A true case of making strength out of 'weakness.'

Concluding Thoughts

Many more applications:

```
PRFs [BPR'12,BLMR'13], ABE [GVW'13,GGHSW'13], Obf & FE [GGHRSW'13], ...
```

Amazing amount of magic from such a small bag of tricks! A true case of making strength out of 'weakness.'

Thanks!