
DQBarge: Improving data-quality tradeoffs in large-scale Internet services

Michael Chow∗, Kaushik Veeraraghavan†, Michael Cafarella∗, and Jason Flinn∗,
University of Michigan∗ Facebook, Inc.†

Abstract
Modern Internet services often involve hundreds of dis-
tinct software components cooperating to handle a single
user request. Each component must balance the compet-
ing goals of minimizing service response time and max-
imizing the quality of the service provided. This leads
to low-level components making data-quality tradeoffs,
which we define to be explicit decisions to return lower-
fidelity data in order to improve response time or mini-
mize resource usage.

We first perform a comprehensive study of low-level
data-quality tradeoffs at Facebook. We find that such
tradeoffs are widespread. We also find that existing
data-quality tradeoffs are often suboptimal because the
low-level components making the tradeoffs lack global
knowledge that could enable better decisions. Finally, we
find that most tradeoffs are reactive, rather than proac-
tive, and so waste resources and fail to mitigate system
overload.

Next, we develop DQBarge, a system that enables
better data-quality tradeoffs by propagating critical in-
formation along the causal path of request processing.
This information includes data provenance, load metrics,
and critical path predictions. DQBarge generates perfor-
mance and quality models that help low-level compo-
nents make better, more proactive, tradeoffs. Our eval-
uation shows that DQBarge helps Internet services miti-
gate load spikes, improve utilization of spare resources,
and implement dynamic capacity planning.

1 Introduction
A data-quality tradeoff is an explicit decision by a

software component to return lower-fidelity data in order
to improve response time or minimize resource usage.
Data-quality tradeoffs are often found in Internet services
due to the need to balance the competing goals of min-
imizing the service response time perceived by the end
user and maximizing the quality of the service provided.
Tradeoffs in large-scale services are pervasive since hun-
dreds or thousands of distinct software components may
be invoked to service a single request and each compo-
nent may make individual data-quality tradeoffs.

Data-quality tradeoffs in low-level software compo-
nents often arise from defensive programming. A pro-
grammer or team responsible for a specific component

wishes to bound the response time of their component
even when the resource usage or latency of a sub-service
is unpredictable. For instance, a common practice is to
time out when a sub-service is slow to respond and sup-
ply a default value in lieu of the requested data.

To quantify the prevalence of data-quality tradeoffs,
we undertake a systematic study of software components
at Facebook. We find that over 90% of components
perform data-quality tradeoffs instead of failing. Some
tradeoffs we observe are using default values, calculating
aggregates from a subset of input values, and retrieving
alternate values from a stale or lower-quality data source.
Further, we observe that the vast majority of data-quality
tradeoffs are reactive rather than proactive, e.g., compo-
nents typically set timeouts and make data-quality trade-
offs when timers expires rather than predict which ac-
tions can be performed within a desired time bound.

These existing data-quality tradeoffs are suboptimal
for three reasons. First, they consider only local knowl-
edge available to the low-level software component be-
cause of the difficulty in accessing higher-level knowl-
edge such as the provenance of data, system load, and
whether the component is on the critical request path.
Second, the tradeoffs are usually reactive (e.g., happen-
ing only after a timeout) rather than proactive (e.g., is-
suing only the amount of sub-service requests that can
be expected to complete within a time bound); reactive
tradeoffs waste resources and exacerbate system over-
load. Finally, there is no mechanism to trace the set of
data-quality tradeoffs made during a request, and this
makes understanding the quality and performance impact
of such tradeoffs on actual requests difficult.

DQBarge addresses these problems by propagating
critical information along the causal path of request pro-
cessing. The propagated data includes load metrics, as
well as the expected critical path and slack for individ-
ual software components. It also includes provenance
for request data such as the data sources queried and the
software components that have transformed the data. Fi-
nally, it includes the specific data-quality tradeoffs that
have been made for each request; e.g., which data values
were left out of aggregations.

In an offline stage, DQBarge uses this data to generate
performance and quality models for low-level tradeoffs
in the service pipeline. Later, while handling production



traffic, it consults the models to proactively determine
which tradeoffs to make.

DQBarge generates performance and quality models
by sampling a small percentage of the total requests pro-
cessed by the service and redundantly executing them
to compare the performance and quality when different
tradeoffs are employed. Redundant execution minimizes
interference with production traffic; duplicated requests
run offline on execution pipelines dedicated to model
generation. Performance models capture how throughput
and latency are affected by specific data-quality tradeoffs
as a factor of overall system load and provenance. Qual-
ity models capture how the fidelity of the final response
is affected by specific tradeoffs as a function of input data
provenance.

These models enable better tradeoffs during the pro-
cessing of subsequent production requests. For each pro-
duction request, DQBarge passes extra data along the
causal path of request processing. It predicts the crit-
ical path for each request and which software compo-
nents will have substantial slack in processing time. It
also measures current system load. This global and
request-specific state is attached to the request at ingress.
As the request propagates through software components,
DQBarge annotates data objects with provenance. This
information and the generated models are propagated to
the low-level components, enabling them to make better
tradeoffs.

We investigate three scenarios in which better data-
quality tradeoffs can help. First, during unanticipated
load spikes, making better data quality tradeoffs can
maintain end-to-end latency goals while minimizing the
loss in fidelity perceived by users. Second, when load
levels permit, components with slack in their completion
time can improve the fidelity of the response without im-
pacting end-to-end latency. Finally, understanding the
potential effects of low-level data-quality tradeoffs can
inform dynamic capacity planning and maximize utility
as a function of the resources required to produce output.

One way to frame this work is that data-quality
tradeoffs are a specific type of quality-of-service trade-
off [7, 25, 29], akin to recent work in approximate com-
puting [4, 8, 19, 18, 28, 30]. The distinguishing fea-
ture of data-quality tradeoffs is that they are embedded
in low-level software components within complex Inter-
net pipelines. This leads to a lack of global knowledge
and makes it difficult for individual components to de-
termine how making specific tradeoffs will impact over-
all service latency and quality. DQBarge addresses this
issue by incorporating principles from the literature on
causal tracing [5, 9, 10, 13, 23, 26, 27, 31] to propagate
needed knowledge along the path of request processing,
enabling better tradeoffs by providing the ability to as-
sess the impact of tradeoffs.

Thus, this work makes the following contributions.
First, we provide the first comprehensive study of low-
level data-quality tradeoffs in a large-scale Internet ser-
vice. Second, we observe that causal propagation of re-
quest statistics and provenance enables better and more
proactive data-quality tradeoffs. Finally, we demonstrate
the feasibility of this approach by designing, implement-
ing, and evaluating DQBarge, an end-to-end approach
for tracing, modeling, and actuating data-quality trade-
offs in Internet service pipelines.

We have added a complete, end-to-end implementa-
tion of DQBarge to Sirius [15], an open-source, personal
digital assistant service. We have also implemented and
evaluated the main components of the DQBarge archi-
tecture at Facebook and validated them with production
data. Our results show that DQBarge can meet latency
goals during load spikes, utilize spare resources without
impacting end-to-end latency, and maximize utility by
dynamically adjusting capacity for a service.

2 Study of data-quality tradeoffs

In this section, we quantify the prevalence and type
of data-quality tradeoffs in production software at Face-
book. We perform a comprehensive study of Facebook
client services that use an internal key-value store called
Laser. Laser enables online accessing of the results of a
batch offline computation such as a Hive [33] query.

We chose to study clients of Laser for several rea-
sons. First, Laser had 463 client services, giving us a
broad base of software to examine. We systematically in-
clude all 463 services in our study to gain a representative
picture of how often data-quality tradeoffs are employed
at Facebook. Second, many details about timeouts and
tradeoffs are specified in client-specific RPC configura-
tion files for this store. We processed these files auto-
matically, which reduced the amount of manual code in-
spection required for the study. Finally, we believe a key-
value store is representative of the low-level components
employed by most large-scale Internet companies.

Table 1 shows the results of our study for the 50 client
services that invoke Laser most frequently, and Table 2
shows results for all 463 client services. We categorize
how clients make data-quality decisions along two di-
mensions: proactivity and resultant action. Each entry
shows the number of clients that make at least one data
quality decision with a specific proactivity/action combi-
nation. For most clients, all decisions fall into a single
category. A few clients use different strategies at differ-
ent points in their code. We list these clients in multiple
categories, so the total number of values in each table is
slightly more than the number of client services.



Failure Data-quality tradeoff
Default Omit Alternate

Reactive 5 (10%) 14 (28%) 30 (60%) 1 (2%)

Proactive 0 (0%) 0 (0%) 2 (4%) 1 (2%)

Table 1: Data-quality decisions of the top 50 Laser clients.
Each box shows the number of clients that make decisions ac-
cording to the specified combination of reactive/proactive de-
termination and resultant action. The total number of values is
greater than 50 since a few clients use more than one strategy.

2.1 Proactivity

We consider a tradeoff to be reactive if the client ser-
vice always initiates the request and then uses a timeout
or return code to determine if the request is taking too
long or consuming too many resources. For instance, we
observed many latency-sensitive clients that set a strict
timeout for how long to wait for a response. If Laser
takes longer than the timeout, such clients make a data-
quality tradeoff or return a failure.

A proactive check predicts whether the expected la-
tency or resource cost of processing the request will ex-
ceed a threshold. If so, a data-quality tradeoff is made
immediately without issuing the request. For example,
we observed a client that determines whether or not a
query will require cross-data-center communication be-
cause such communication would cause it to exceed its
latency bound. If there are no hosts that can service the
query in its data center, it makes a data-quality tradeoff.

2.2 Resultant actions

We also examine the actions taken in response to la-
tency or resource usage exceeding a threshold. Failure
shows the number of clients that require a response from
Laser. If the store responds with an error or timeout, the
client fails. Such instances mean a programmer has cho-
sen to not make a data-quality tradeoff.

The remaining categories represent different types of
data-quality tradeoffs. Default shows the number of
clients that return a pre-defined default answer when a
tradeoff is made. For instance, we observed a client ser-
vice that ranks chat threads according to their activity
level. The set of most active chat groups are retrieved
from Laser and boosted to the top of a chat bar. If re-
trieving this set fails or times out, chat groups and con-
tacts are listed alphabetically.

The Omit category is common in clients that aggre-
gate hundreds of values from different sources; e.g., to
generate a model. If an error or timeout occurs retrieving
values from one of these sources, those values are left
out and the aggregation is performed over the values that
were retrieved successfully.

One example we observed is a recommendation en-
gine that aggregates candidates and features from sev-
eral data sources. It is resilient to missing candidates

Failure Data-quality tradeoff
Default Omit Alternate

Reactive 40 (9%) 250 (54%) 174 (38%) 4 (1%)

Proactive 0 (0%) 3 (1%) 7 (2%) 1 (0%)

Table 2: Data-quality decisions made by all Laser clients.
Each box shows the number of clients that make tradeoffs ac-
cording to the specified combination of reactive/proactive de-
termination and resultant action. The total number of values is
greater than 463 since a few clients use more than one strategy.

and features. Although missing candidates are excluded
from the final recommendation and missing features neg-
atively affect candidate scores in calculating the recom-
mendation, the exclusion of a portion of these values al-
lows a usable but slightly lower-fidelity recommendation
to be returned in a timely manner in the event of failure
or unexpected system load.

The Alternate category denotes clients that make a
tradeoff by retrieving an alternate, reduced quality, value
from a different data source. For example, we observed a
client that requests a pre-computed list of top videos for
a given user. If a timeout or failure occurs retrieving this
list, the client retrieves a more generic set of videos for
that user. As a further example, we observed a client that
chooses among a pre-ranked list of optimal data sources.
On error or timeout, the client retrieves the data from the
next best data source. This process continues until a re-
sponse is received.

Before performing our study, we hypothesized that
client services might try to retrieve data of equal fidelity
from an alternate data store in response to a failure. How-
ever, we did not observe any instance of this behavior in
our study (all alternate sources had lower-fidelity data).

2.3 Discussion of results
Tables 1 and 2 show that data quality tradeoffs are per-

vasive in the client services we study. 90% of the top 50
Laser clients and 91% of all 463 clients perform a data-
quality tradeoff in response to a failure or timeout; the re-
maining 9-10% of clients consider the failure to retrieve
data in a timely manner to be a fatal error. Thus, in the
Facebook environment, making data-quality tradeoffs is
normal behavior, and failures are the exception.

For the top 50 clients, the most common action when
faced with a failure or timeout is to omit the requested
value from the calculation of an aggregate (60%). The
next most common action (28%) is to use a default value
in lieu of the requested data. These trends are reversed
when considering all clients. Only 36% of all 463 clients
omit the requested values from an aggregation, whereas
52% use a default value.

We were surprised that only a few clients react to fail-
ure or timeout by attempting to retrieve the requested
data from an alternate source (4% of the top 50 clients
and 1% of all clients). This may be due to tight time or



resource constraints; e.g., if the original query takes too
long, there may be no time left to initiate another query.

Only 6% of the top 50 clients and 2% of all clients
are proactive. The lack of proactivity represents a signif-
icant lost opportunity for optimization because requests
that timeout or fail consume resources but produce no
benefit. This effect can be especially prominent when
requests are failing due to excessive load; a proactive
strategy would decrease the overall stress on the system.
When a proactive check fails, the service performing that
check always makes a data-quality tradeoff (as opposed
to terminating its processing with a failure); it would be
very pessimistic for a client to return a failure without at
least attempting to fetch the needed data.

In our inspection of source code, we observed that
low-level data-quality decisions are almost always en-
capsulated within clients and not reported to higher-level
components or attached to the response data. Thus, there
is no easy way for operators to check how the quality of
the response being sent to the user has been impacted by
low-level quality tradeoffs during request processing.

3 Design and implementation
Motivated by our study results, we designed DQBarge

to help developers understand the impact of data-quality
tradeoffs and make better, more proactive tradeoffs to im-
prove quality and performance. Our hypothesis is that
propagating additional information along the causal path
of request processing will provide the additional context
necessary to reach these goals.

DQBarge has two stages of operation. During the of-
fline stage, it samples a small percentage of production
requests, and it runs a copy of each sampled request on
a duplicate execution pipeline. It perturbs these requests
by making specific data quality tradeoffs and measuring
the request latency and result quality. DQBarge gener-
ates performance and quality models by systematically
sweeping through the space of varying request load and
data provenance dimensions specified by the developer
and using multidimension linear regression over the data
to predict performance and quality as a factor of load and
provenance. Note that because requests are duplicated,
end users are not affected by the perturbations required to
gather model data. Further, DQBarge minimizes interfer-
ence with production traffic by using dedicated resources
for running duplicate requests as much as possible.

During the online stage, DQBarge uses the quality
and performance models to decide when to make data-
quality tradeoffs for production traffic in order to realize
a configured goal such as maximizing quality subject to
a specified latency constraint. It gathers the inputs to the
models (load levels, critical path predictions, and prove-
nance of data) and propagates them along the critical
path of request execution by embedding the data in RPC

objects associated with the request. At each potential
tradeoff site, the low-level component calls DQBarge.
DQBarge performs a model lookup to determine whether
to make a data-quality tradeoff, and, if so, the specific
tradeoff to make (e.g., which values to leave out of an ag-
gregation). The software service then makes these trade-
offs proactively. DQBarge can optionally log the deci-
sions that are made so that developers can understand
how they are affecting production results.

The separation of work into online and offline stages
is designed to minimize overhead for production traffic.
These stages can run simultaneously; DQBarge can gen-
erate a new model offline by duplicating requests while
simultaneously using an older model to determine what
tradeoffs to make for production traffic. The downside
of this design is that DQBarge will not react immediately
to environmental changes outside the model parameters
such as a code update that modifies resource usage. In-
stead, such changes will be reflected only after a new
model is generated. We therefore envision that models
are regenerated regularly (e.g., every day) or after sig-
nificant environmental changes occur (e.g., after a major
push of new code).

Section 3.1 describes how DQBarge gathers and prop-
agates data about request processing, including system
load, critical path and slack predictions, data provenance,
and a history of the tradeoffs made during request pro-
cessing. This data gathering and propagation is used by
both the online and offline stages. Section 3.2 relates
how DQBarge duplicates the execution of a small sample
of requests for the offline stage and builds models of per-
formance and quality for potential data-quality tradeoffs.
As described in Section 3.3, DQBarge uses these models
during the online stage to make better tradeoffs for sub-
sequent requests: it makes proactive tradeoffs to reduce
resource wastage, and it uses provenance to choose trade-
offs that lead to better quality at a reduced performance
cost. Finally, Section 3.4 describes how DQBarge logs
all tradeoffs made during request processing so that op-
erators can review how system performance and request
quality have been impacted.

3.1 Data gathering and propagation

DQBarge provides a library for developers to specify
the information that should be propagated along the crit-
ical path. The library is implemented in 3268 lines of
C++ code, plus Java bindings for services implemented
in that language. Developers use the library interface
to annotate objects during request processing and query
those annotations at later stages of the pipeline. Table 3
shows selected functions from the DQBarge library API
to which we will refer in the following discussion.

The DQBarge library has a RPC-package-specific
back-end that modifies and queries existing RPC objects



DQBarge API
putMetric(scope, key, type, value)

getMetric(key) → (type, value)

addProvenance(data object, key, type, value)

removeProvenance(data object, key)

getProvenance(data object) → list <key, type, value>
makeAggregationTradeoff(performance model, quality model, list<key>, list<object>) → list<object>

Table 3: Selected functions from the DQBarge API

Load
Metrics

Critical 
Path

Request ResponseTradeoff

Quality model

Performance model

Provenance

Data object

Critical path
Load metrics

MetersRequest object

Provenance

Data object

Critical path
Load metrics

Request object

Tradeoff

Figure 1: DQBarge overview.

to propagate the information. It modifies RPC objects
by adding additional fields that contain data to be prop-
agated along the causal path. It supports three object
scopes: request-level, component-level, and data-level.

Request-level data are passed through all components
involved in processing the request, following the causal
path of request execution; such data includes system-
wide load metrics, slack predictions, and a list of actual
data-quality tradeoffs made during execution of the par-
ticular request. Services call putMetric to add this data
to the request, specifying request as the scope and a
typed key-value pair to track. Later, they may retrieve
the data by calling getMetric with the specified key.
The services in our case studies both have a global object
containing a unique request identifier; DQBarge appends
request-level information to this object. This technique
for passing and propagating information is widely used
in other tracing systems that follow the causal path of
execution [13, 23].

Component-level objects persist from the beginning
to end of processing for a specific software component
within the request pipeline. Such objects are passed
to all sub-components that are called during the execu-
tion of the higher-level component. DQBarge appends
component-specific data to these objects, so such data
will be automatically deallocated when execution passes
beyond the specified component. Component-specific
load metrics are one example of such data. To add this
data, services call putMetric and specify a component-
level RPC object as the scope.

Data-level objects are the specific data items be-
ing propagated as a result of request execution.

addProvenance associates a typed key-value pair with
a specific data object, since the provenance is meaningful
only as long as the data object exists. A data object may
have multiple provenance values.

Our library provide a useful interface for manip-
ulating RPC objects, but developers must still make
domain-specific decisions, e.g., what metrics and prove-
nance values to add, what objects to associate with those
values, and what rules to use to model the propaga-
tion of provenance. For instance, to reflect the flow
of provenance in a component, developers should call
getProvenance to retrieve the provenance of the in-
puts and addProvenance and removeProvenance to
show causal propagation to outputs. Figure 1 shows an
overview of how this data propagates through the system.

Load metrics may be relevant to the entire request
or only to certain components. Each load metric is a
typed key-value pair (e.g., a floating point value asso-
ciated with the key “requests/second”). Currently sup-
ported load metrics are throughput, CPU load, and mem-
ory usage.

Critical path and slack predictions are specified as di-
rected acyclic graphs. Each software component in the
graph has a weight that corresponds to its predicted slack
(the amount of additional time it could take to process a
request without affecting the end-to-end latency of the
request). Components on the critical path of request ex-
ecution have zero slack. DQBarge relies on an external
component, the Mystery Machine, to make critical path
and slack predictions; [11] describes the details of that
system. Currently, slack predictions are made at request
ingress; such predictions may cover the entire request or



only specific components of the request. The graphs for
our two case studies in Section 4 are relatively small, so
we transmit this data by value along the request process-
ing path (using PutMetric and a graph type). If we were
to deploy DQBarge along the entire Facebook request
processing path, then the graphs would be much larger,
and we would likely need to transmit them by reference
or only send relevant subgraphs to components.

DQBarge associates provenance with the data objects
it describes. Provenance can be a data source or the al-
gorithm employed to generate a particular object. Prove-
nance is represented as an unordered collection of typed
key-value pairs. DQBarge supports both discrete and
continuous types. DQBarge extracts a schema for the
quality model from the data objects passed to tradeoff
functions such as makeAggregationTradeoff by it-
erating through all provenance entries attached to each
object to read the provenance keys and their associated
types. Components are treated as black boxes, so devel-
opers must specify how provenance is propagated when a
component modifies existing data objects or creates new
ones.

Finally, DQBarge stores the tradeoffs that were made
during request processing in a request-level object. As
described in Section 3.4, this information may be logged
and used for reporting the effect of tradeoffs on quality
and performance.

3.2 Model generation

For each potential tradeoff, DQBarge creates a perfor-
mance model and a quality model that capture how the
tradeoff affects request execution. Performance models
predict how throughput and latency are affected by spe-
cific data-quality tradeoffs as a factor of overall system
load and the provenance of input data. Quality models
capture how the fidelity of the final response is affected
by specific tradeoffs as a function of provenance.

DQBarge uses request duplication to generate models
from production traffic without adversely affecting the
user experience. At the RPC layer, it randomly samples
incoming requests from production traffic, and it routes
a copy of the selected requests to one or more request
duplication pipelines. Such pipelines execute isolated,
redundant copies of the request for which DQBarge can
make different data-quality tradeoffs. These pipelines do
not return results to the end user and they are prevented
from making modifications to persistent stores in the pro-
duction environment; in all other respects, request execu-
tion is identical to production systems. Many production
systems, including those at Facebook, already have sim-
ilar functionality for testing purposes, so adding support
for model generation required minimal code changes.

DQBarge controls the rate at which requests en-
ter the duplication pipeline by changing the sampling

frequency. At each potential tradeoff site, services
query DQBarge to determine which tradeoffs to make;
DQBarge uses these hooks to systematically explore dif-
ferent tradeoff combinations and generate models. For
instance, makeAggregationTradeoff specifies a point
where values can be omitted from an aggregation; this
function returns a list of values to omit (an empty list
means no tradeoff). DQBarge has similar functions for
each type of tradeoff identified in Section 2.

To generate a performance model, DQBarge uses load
testing [20, 24]. Each data-quality tradeoff offers multi-
ple fidelities. A default value may be used or not. Dif-
ferent types or percentages of values can be left out of an
aggregation. Multiple alternate data stores may be used.
For each fidelity, DQBarge starts with a low request rate
and increases the request rate until the latency exceeds a
threshold. Thus, the resulting model shows request pro-
cessing latency as a function of request rate and tradeoffs
made (i.e., the fidelity of the tradeoff selected). DQBarge
also records the provenance of the input data for making
the tradeoff; the distribution of provenance is represen-
tative of production traffic since the requests in the du-
plication pipeline are a random sampling of that traffic.
DQBarge determines whether the resulting latency distri-
bution varies as a result of the input provenance; if so, it
generates separate models for each provenance category.
However, in the systems we study in Section 4, prove-
nance does not have a statistically significant effect on
performance (though it does significantly affect quality).

Quality models capture how the fidelity of the final
response is affected by data-quality tradeoffs during re-
quest processing. To generate a quality model, DQBarge
sends each request to two duplication pipelines. The
first pipeline makes no tradeoffs, and so produces a full-
fidelity response. The second pipeline makes a speci-
fied tradeoff, and so produces a potentially lower-fidelity
response. DQBarge measures the quality impact of the
tradeoff by comparing the two responses and applying
a service-specific quality ranking specified by the devel-
oper. For example, if the output of the request is a ranked
list of Web pages, then a service-specific quality metric
might be the distance between where pages appear in the
two rankings.

DQBarge next learns a model of how provenance af-
fects request quality. As described in the previous sec-
tion, input data objects to the component making the
tradeoff are annotated with provenance in the form of
typed key-value pairs. These pairs are the features in the
quality model. DQBarge generates observations by mak-
ing tradeoffs for objects with different provenance; e.g.,
systematically using default values for different types of
objects. DQBarge uses multidimension linear regression
to model the importance of each provenance feature in
the quality of the request result. For example, if a data-



quality tradeoff omits values from an aggregation, then
omitting values from one data source may have less im-
pact than omitting values from a different source.

Provenance can substantially reduce the number of
observations needed to generate a quality model. Re-
call that all RPC data objects are annotated with prove-
nance; thus, the objects in the final request result have
provenance data. In many cases, the provenance rela-
tionship is direct; an output object depends only on a
specific input provenance. In such cases, we can infer
that the effect of a data-quality tradeoff would be to omit
the specified output object, replace it with a default value,
etc. Thus, given a specific output annotated with prove-
nance, we can infer what the quality would be if further
tradeoffs were made (e.g., a specific set of provenance
features were used to omit objects from an aggregation).
In such cases, the processing of one request can generate
many data points for the quality model. If the provenance
relationship is not direct, DQBarge generates these data
points by sampling more requests and making different
tradeoffs.

3.3 Using the models

DQBarge uses its performance and quality mod-
els to make better, more proactive data-quality trade-
offs. System operators specify a high-level goal such
as maximizing quality given a latency cap on re-
quest processing. Components call functions such as
makeAggregationTradeoff at each potential tradeoff
point during request processing; DQBarge returns a de-
cision as to whether a tradeoff should be made and, if ap-
propriate, what fidelity should be employed (e.g., which
data source to use or which values to leave out of an ag-
gregation). Services provide a reference to the perfor-
mance and quality models, as well as a list of load met-
rics (identified by key) and identifiers for objects with
provenance. The service then implements the tradeoff
decision proactively; i.e., it makes the tradeoff immedi-
ately. This design does not preclude reactive tradeoffs.
An unexpectedly delayed response may still lead to a
timeout and result in a data-quality tradeoff.

DQBarge currently supports three high-level goals:
maximizing quality subject to a latency constraint, max-
imizing quality using slack execution time available dur-
ing request processing, and maximizing utility as a func-
tion of quality and performance. These goals are use-
ful for mitigating load spikes, efficiently using spare re-
sources, and implementing dynamic capacity planning,
respectively. We next describe these three goals.

3.3.1 Load Spikes
Services are provisioned to handle peak request loads.

However, changes in usage or traffic are unpredictable;
e.g., the launch of a new feature may introduce additional
traffic. Thus, systems are designed to handle unexpected

load spikes; the reactive data-quality tradeoffs we saw in
Section 2 are one such mechanism. DQBarge improves
on existing practice by letting an operator specify a maxi-
mum latency for a request or a component of request pro-
cessing. It maximizes quality subject to this constraint by
making data-quality tradeoffs.

At each tradeoff site, there may be many potential
tradeoffs that can be made (e.g., sets of values with
different provenance may be left out of an aggrega-
tion or distinct alternate data stores may be queried).
DQBarge orders possible tradeoffs by “bang for the
buck” and greedily selects tradeoffs until the latency goal
is reached. It ranks each potential tradeoff by the ratio
of the projected improvement in latency (given by the
performance model) to the decrease in request fidelity
(given by the quality model). The independent param-
eters of the models are the current system load and the
provenance of the input data. DQBarge selects tradeoffs
in descending order of this ratio until the performance
model predicts that the latency limit will be met.
3.3.2 Utilizing spare resources

DQBarge obtains a prediction of which components
are on the critical path and which components have slack
available from the Mystery Machine [11]. If a compo-
nent has slack, DQBarge can make tradeoffs that improve
quality without negatively impacting the end-to-end re-
quest latency observed by the user. Similar to the previ-
ous scenario, DQBarge calculates the ratio of quality im-
provement to latency decrease for each potential tradeoff
(the difference is that this goal involves improving qual-
ity rather than performance). It greedily selects tradeoffs
according to this order until the additional latency would
exceed the projected slack time.
3.3.3 Dynamic capacity planning

DQBarge allows operators to specify the utility (e.g.,
the dollar value) of reducing latency and improving qual-
ity. It then selects the tradeoffs that improve utility until
no more such tradeoffs are available. DQBarge also al-
lows operators to specify the impact of adding or remov-
ing resources (e.g., compute nodes) as a utility function
parameter. DQBarge compares the value of the maxi-
mum utility function with more and less resources and
generates a callback if adding or removing resources
would improve the current utility. Such callbacks allow
dynamic re-provisioning. Since DQBarge uses multidi-
mension linear regression, it will not model significantly
non-linear relationships in quality or performance; more
sophisticated learning methods could be used in such
cases.

3.4 Logging data-quality decisions
DQBarge optionally logs all data-quality decisions

and includes them in the provenance of the request data
objects. The information logged includes the software



component, the point in the execution where a tradeoff
decision was made, and the specific decision that was
made (e.g., which values were left out of an aggrega-
tion). To reduce the amount of data that is logged, only
instances where a tradeoff was made are recorded. Time-
outs and error return codes are also logged if they re-
sult in a reactive data-quality tradeoff. This informa-
tion helps system administrators and developers under-
stand how low-level data-quality tradeoffs are affecting
the performance and quality of production request pro-
cessing.

3.5 Discussion

DQBarge does not guarantee an optimal solution
since it employs greedy algorithms to search through po-
tential tradeoffs. However, an optimal solution is likely
unnecessary given the inevitable noise that arises from
predicting traffic and from errors in modeling. For the
last use case, DQBarge assumes that developers can
quantify the impact of changes to service response times,
quality, and the utilization of additional resources in or-
der to set appropriate goals. DQBarge also assumes that
tradeoffs are independent, since calculating models over
joint distributions would be difficult. Finally, because
DQBarge compares quality across different executions
of the same request with different tradeoffs, it assumes
that request processing is mostly deterministic.

Using DQBarge requires a reasonably-detailed under-
standing of the service being modified. Developers must
identify points in the code where data-quality tradeoffs
should be made. They must specify what performance
and quality metrics are important to their service. Fi-
nally, they must select which provenance values to track
and specify how these values are propagated through
black-box components. For both of the case studies in
Section 4, a single developer who was initially unfa-
miliar with the service being modified was able to add
all needed modifications, and these modifications com-
prised less than 450 lines of code in each case.

DQBarge works best for large-scale services. Al-
though it generates models offline to reduce interference
with production traffic, model generation does consume
extra resources through duplication of request process-
ing. For large Internet services like Facebook, the ex-
tra resource usage is a tiny percentage of that consumed
by production traffic. However, for a small service that
sees only a few requests per minute, the extra resources
needed to generate the model may not be justified by the
improvement in production traffic processing.

4 Case studies

We have implemented the main components of
DQBarge in a portion of the Facebook request processing
pipeline, and we have evaluated the results using Face-

book production traffic. Our current Facebook imple-
mentation allows us to track provenance, generate per-
formance and quality models and measure the efficacy
of the data-quality tradeoffs available through these mod-
els. This implementation thus allows us to understand the
feasibility and potential benefit of applying these ideas to
current production code.

We have also implemented the complete DQBarge
system in Sirius [15], an open-source personal digital as-
sistant akin to Siri. Our Sirius implementation enables
end-to-end evaluation of DQBarge, such as observing
how data-quality tradeoffs can be used to react to traffic
spikes and the availability of slack in the request pipeline.

4.1 Facebook

Our implementation of DQBarge at Facebook focuses
on a page ranking service, which we will call Ranker in
this paper. When a user loads the Facebook home page,
Ranker uses various parameters of the request, such as
the identity of the requester, to generate a ranked list of
page recommendations. Ranker first generates candidate
recommendations. It has a flexible architecture that al-
lows the creation and use of multiple candidate genera-
tors; each generator is a specific algorithm for identify-
ing possible recommendations. At the time of our study,
there were over 30 generators that collectively produced
hundreds of possible recommendations for each request.

Ranker retrieves feature vectors for each candidate
from Laser, the key-value store we studied in Section 2.
Ranker is a service that makes reactive data-quality
tradeoffs. If an error or timeout occurs when retrieving
features, Ranker omits the candidate(s) associated with
those features from the aggregation of candidates and
features considered by the rest of the Ranker pipeline.

Ranker uses the features to calculate a score for each
candidate. The algorithm for calculating the score was
opaque to us (it is based on a machine learning model
regenerated daily). It then orders candidate by score and
returns the top N candidates.

DQBarge leverages existing tracing and monitoring
infrastructure at Facebook. It uses a production version
of the Mystery Machine tracing and performance analy-
sis infrastructure [11]. This tool discovers and reports
performance characteristics of the processing of Face-
book requests, including which components are on the
critical path. From this data, we can calculate the slack
available for each component of request processing; prior
results have shown that, given an observation of past re-
quests by the same user, slack for future requests can be
predicted with high accuracy. Existing Facebook sys-
tems monitor load at each component in the pipeline.

DQBarge annotates data passed along the pipeline
with provenance. The data object for each candidate
is annotated with the generator that produced the data.



Similarly, features and other data retrieved for each can-
didate are associated with their data source.

We implemented meters at the end of the Ranker
pipeline that measure the latency and quality of the fi-
nal response. To measure quality, we compare the differ-
ence in ranking of the top N pages returned from the full-
quality response (with no data-quality tradeoffs made)
and the lower-fidelity response (that includes some trade-
offs). For example, if the highest-ranked page in the
lower-fidelity response is the third-ranked page in the
full-quality response, the quality drop is two.

4.2 Sirius

We also applied DQBarge to Sirius [15], an open-
source personal assistant similar to Apple’s Siri or
Google Now. Sirius answers fact-based questions based
on a set of configurable data sources. The default source
is an indexed Wikipedia database; an operator may add
other sources such as online search engines.

Sirius generates several queries from a question; each
query represents a unique method of parsing the ques-
tion. For each query, it generates a list of documents that
are relevant to answering the query. Each document is
passed through a natural language processing pipeline to
derive possible answers. Sirius assigns each answer a
numerical score and returns the top-ranked answer.

Data-quality tradeoffs in Sirius occur when aggre-
gating values from multiple sub-service queries. Our
DQBarge implementation makes these tradeoffs proac-
tively by using quality and performance models to decide
which documents to leave out of the aggregation when
the system is under load.

Initially, Sirius did not have request tracing or load
monitoring infrastructure. We therefore added the ability
to trace requests and predict slack by adding the Mystery
Machine to Sirius. For load, we added counters at each
pipeline stage to measure request rates. Additionally, we
track the CPU load and memory usage of the entire ser-
vice. The performance data, predicted slack, and load
information are all propagated by DQBarge as each re-
quest flows through the Sirius pipeline.

In each stage of the Sirius pipeline, provenance is
propagated along with data objects. For example, when
queries are formed from the original question, the algo-
rithm used to generate the query is associated with the
query object. Sirius provenance also includes the data
used to generate the list of candidate documents.

Since Sirius did not have a request duplication mech-
anism, we added the ability to sample requests and send
the same request through multiple instances of the Sir-
ius pipeline. User requests are read-only with respect to
Sirius data stores, so we did not have to isolate any mod-
ifications to service state from duplicated requests.

0 1000 2000 3000 4000 5000 6000 7000
Requests per minute

0

50

100

150

200

250

300

350

M
e
d
ia

n
 L

a
te

n
cy

 (
m

s)

0%

30%

50%

70%

90%

Figure 2: Ranker performance model This graph shows the
effect of varying the frequency of data-quality tradeoffs on
Ranker request latency. We varied the request rate by sampling
different percentages of live production traffic at Facebook.

5 Evaluation
Our evaluation answers the following questions:
• Do data-quality tradeoffs improve performance?
• How much does provenance improve tradeoffs?
• How much does proactivity improve tradeoffs?
• How well does DQBarge meet end-to-end perfor-

mance and quality goals?

5.1 Experimental setup

For Ranker, we perform our evaluation on Facebook
servers using live Facebook traffic by sampling and du-
plicating Ranker requests. Our entire implementation
uses duplicate pipelines, so as to not affect the results re-
turned to Facebook users. Each pipeline duplicates traf-
fic to a single isolated front-end server that is identical to
those used in production. The duplicate pipelines share
services from production back-end servers, e.g., those
hosting key-value stores, but they are a small percent-
age of the total load seen by such servers. We change
the load within a pipeline by sampling a larger or smaller
number of Ranker requests and redirecting the sampled
requests to a single front-end server for the pipeline.

For Sirius, we evaluated our end-to-end implementa-
tion of DQBarge on 16-core 3.1 GHz Xeon servers with
96 GB of memory. We send Sirius questions sampled
from an archive from previous TREC conferences [32].

5.2 Performance benefits

We first measure the effect of data-quality tradeoffs on
throughput and latency by generating performance mod-
els for Ranker and Sirius; Section 5.3 considers the ef-
fect of these tradeoffs on quality. DQBarge performs a
full parameter sweep through the dimensions of request
rate, tradeoff frequency, and provenance of the data be-
ing considered for each tradeoff, sampling at regular in-
tervals. For brevity, we report a portion of these results.



0 50 100 150 200
Requests per minute

0

1

2

3

4

5

6

7
M

e
d
ia

n
 l
a
te

n
cy

 (
s)

0%

10%

30%

50%

70%

90%

Figure 3: Sirius performance model. This graph shows the
effect of varying the frequency of data-quality tradeoffs on Sir-
ius request latency. Each curve shows a different tradeoff rate.

We show the median response time calculated over the
sampling period at a specified request rate and tradeoff
rate. For Sirius, 900 requests were sent over the sam-
pling period. Median response time is shown because it
is used for the remainder of the evaluation.

5.2.1 Ranker

Figure 2 shows the latency-response curve for Ranker
when DQBarge varies the incoming request rate. Each
curve shows the best fit for samples taken at a different
tradeoff rate, which we define to be the object-level fre-
quency at which data tradeoffs are actually made. When
making tradeoffs, Ranker omits objects from aggrega-
tions; thus, to achieve a target tradeoff rate of x% during
model generation, DQBarge will instruct Ranker to drop
x% of the specific candidates. At a tradeoff rate of 0%,
no candidates are dropped.

These results show that data-quality tradeoffs substan-
tially improve Ranker latency at low loads (less than
2500 requests/minute); e.g., at a 30% tradeoff rate, me-
dian latency decreases by 28% and latency of requests
in the 99th percentile decreases by 30%. Prior work
has shown that server slack at Facebook is predictable
on a per-request basis [11]. Thus, Ranker could make
more tradeoffs to reduce end-to-end response time when
Ranker is on the critical path of request processing, yet
it could still provide full-fidelity responses when it has
slack time for further processing.

Data-quality tradeoffs also improve scalability under
load. Taking 250 ms as a reasonable knee in the latency-
response curve, Ranker can process approximately 2500
requests per minute without making tradeoffs, but it can
handle 4300 requests per minute when the tradeoff rate
is 50% (a 72% increase). This allows Ranker to run at a
lower fidelity during a load spike.

DQBarge found that the provenance of the data values
selected for tradeoffs does not significantly affect perfor-

mance. In other words, while the number of tradeoffs
made has the effect shown in Figure 2, the specific can-
didates that are proactively omitted from an aggregation
do not matter. Thus, we only show the effect of the re-
quest rate and tradeoff rate.
5.2.2 Sirius

Figure 3 shows results for Sirius. Like Ranker, the
provenance of the data items selected for tradeoffs did
not affect performance, so we show latency-response
curves that vary both request rate and tradeoff rate.

The results for Sirius are similar to those for Ranker.
A tradeoff rate of 50% reduces median end-to-end re-
quest latency by 26% and the latency of requests in the
99th percentile by 38%. Under load, a 50% tradeoff rate
increases Sirius throughput by approximately 200%.

5.3 Effect of provenance
We next consider how much provenance improves the

tradeoffs made by DQBarge. We consider a baseline
quality model that does not take into account any prove-
nance; e.g., given a target tradeoff rate, it randomly omits
data values from an aggregation. This is essentially the
policy in existing systems like Ranker and Sirius because
there is no inherent order in requests from lower-level
services to data stores; thus, timeouts affect a random
sampling of the values returned. In contrast, DQBarge
uses its quality model to select which values to omit, with
the objective of choosing those that affect the final output
the least.
5.3.1 Ranker

We first used DQBarge to sample production traffic
at Facebook and construct a quality model for Ranker.
DQBarge determined that, by far, the most important
provenance parameter affecting quality is the generator
used to produce a candidate. For example, one particular
generator produces approximately 17% of the top-ranked
pages but only 1% of the candidates. Another generator
produces only 1% of the top-ranked pages but accounts
for 3% of the candidates.

Figure 4 compares the quality of request results for
DQBarge with a baseline that makes tradeoffs without
using provenance. We sample live Facebook traffic, so
the requests in this experiment are different from those
used to generate the quality model. We vary the tradeoff
rate and measure the quality drop of the top ranked page;
this is the difference between where the page appears in
the request that makes a data-quality tradeoff and where
it would appear if no data-quality tradeoffs were made.
The ideal quality drop is zero. While Sirius returns a sin-
gle result, Ranker may return up to 3 results. We exam-
ined quality drops for the second and third Ranker results
and found that they are similar to that of the top-ranked
result; thus, we only show the top-ranked result for both
services.



>0 >3 >10 >50
Quality drop

0.0

0.2

0.4

0.6

0.8

1.0
Fr
a
ct
io
n
 o
f 
re
q
u
e
st
s

11%
5% 4% 2%

6%
1% 1% 1%

Baseline
Provenance

(a) Tradeoff rate 10%

>0 >3 >10 >50
Quality drop

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f 
re
q
u
e
st
s

43%

25%
17%

9%

33%

11%
3% 2%

Baseline
Provenance

(b) Tradeoff rate 50%

>0 >3 >10 >50
Quality drop

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f 
re
q
u
e
st
s

62%

47%

28%

12%

59%

37%

15%

6%

Baseline
Provenance

(c) Tradeoff rate 80%
Figure 4: Impact of provenance on Ranker quality. We compare response quality using provenance with a baseline that does not
consider provenance. Each graph shows the quality drop of the top ranked page, which is the difference between where it appears
in the Ranker rankings with and without data-quality tradeoffs. A quality drop of 0 is ideal.

>0 >10 >50
Quality Drop

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f 
re
q
u
e
st
s

13%
6% 3% 0%

7%
1% 0% 0%

Baseline

Provenance

(a) Tradeoff rate 10%

>0 >10 >50
Quality Drop

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f 
re
q
u
e
st
s

46%

25%
19%

0%

23%

8% 4%
0%

Baseline

Provenance

(b) Tradeoff rate 50%

>0 >10 >50
Quality Drop

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f 
re
q
u
e
st
s 73%

45%

29%

0%

48%

15%
9%

0%

Baseline

Provenance

(c) Tradeoff rate 80%
Figure 5: Impact of provenance on Sirius quality. We compare response quality using provenance with a baseline that does not
consider provenance. Each graph shows the quality drop of the Sirius answer, which is the difference between where it appears in
the Sirius rankings with and without data-quality tradeoffs. A quality drop of 0 is ideal.

As shown in Figure 4a, at a low tradeoff rate of 10%,
using provenance reduces the percentage of requests that
experience any quality drop at all from 11% to 6%. With
provenance, only 1% of requests experienced a quality
drop of more than three, compared to 5% without prove-
nance. Figure 4b shows a higher tradeoff rate of 50%.
Using provenance decreases the percentage of requests
that experience any quality drop at all from 43% to 33%.
Only 3% of requests experienced a quality drop of 10 or
more, compared to a baseline result of 17%. Figure 4c
compares quality at a high tradeoff rate of 80%. Use of
provenance still provides a modest benefit: 59% of re-
quests experience a quality drop, compared to 62% for
the baseline. Further, with provenance, the quality drop
is 10 or more for only 15% of requests compared with
28% for the baseline.

5.3.2 Sirius

For Sirius, we used k-fold cross validation to sepa-
rate our benchmark set of questions into training and test
data. The training data was used to generate a quality
model based on provenance features, which included the
language parsing algorithm used, the number of occur-
rences of key words derived from the question, the length

of the data source document considered, and a weighted
score relating the query words to the source document.

Figure 5 compares the quality drop for the result re-
turned by Sirius for DQBarge using provenance with a
baseline that does not use provenance. As shown in Fig-
ure 5a, at a tradeoff rate of 10%, provenance decreases
the percentage of requests that see any quality drop at
all from 13% to 7%. Only 1% of requests see a qual-
ity drop of 10 or more using provenance, compared to
6% for the basline. Figure 5b shows that, for a higher
tradeoff rate of 50%, provenance decreases the percent-
age of requests that see any quality drop from 46% to
23%. Further, only 8% of requests see a quality drop of
10 or more using provenance, compared to 25% for the
baseline. Figure 5c shows a tradeoff rate of 80%; prove-
nance decreases the percentage of requests that see any
quality drop from 73% to 48%.

5.4 Effect of proactivity

We next examine how proactivity affects data-quality
tradeoffs. In this experiment, we send requests to Sir-
ius at a high rate of 120 requests per minute. Without
DQBarge, this rate occasionally triggers a 1.5 second
timeout for retrieving documents, causing some docu-



0 5000 10000 15000 20000 25000 30000
Request latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
cd

f

Reactive

Proactive

Figure 6: Performance of reactive tradeoffs. This graph
compares the distribution of request latencies for Sirius when
tradeoffs are made reactively via timeouts and when they are
made proactively via DQBarge.

>0 >10 >50
Quality drop

0.00

0.05

0.10

0.15

0.20

0.25

Fr
a
ct
io
n
 o
f 
re
q
u
e
st
s

20%
18%

15%

0%

19%

6%
4%

0%

Reactive

Proactive

Figure 7: This graph shows that using proactive tradeoffs at a
tradeoff rate of 40% can achieve higher quality tradeoffs than
using reactive tradeoffs with a timeout of 1.5 s in Sirius.

ments to be left out of the aggregation. These trade-
offs are reactive in that they occur only after a timeout
expires. In contrast, with DQBarge, tradeoffs are made
proactively at a rate of 40%, a value selected to meet the
latency goal of not exceeding the mean latency without
DQBarge.

Figure 6 shows request latency as a CDF for both the
reactive and proactive methods of making data-quality
tradeoffs and Figure 7 shows the quality drop for both
methods. The results show that DQBarge proactivity
simultaneously improves both performance and quality
when making tradeoffs. Comparing the two distributions
in Figure 6 shows that DQBarge improves performance
across the board; e.g., the median request latency is 3.4
seconds for proactive tradeoffs and 3.6 seconds for reac-
tive tradeoffs. For quality, DQBarge proactivity slightly
decreases the number of requests that have any quality
drop from 20% to 19%. More significantly, it reduces
the number of requests that have a quality drop of more
than 10 from 18% to 6%.

Under high loads, reactive tradeoffs hurt performance
because they waste resources (e.g., trying to retrieve doc-
uments that are not used in the aggregation). Further,
their impact on quality is greater than with DQBarge be-

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

A
v
e
ra

g
e
 l
a
te

n
cy

 (
se

c)

Sirius w/o DQBarge

Sirius with DQBarge

Figure 8: DQBarge Overhead. This graph compares time to
process 140 Sirius questions with and without DQBarge; error
bars are 95% confidence intervals.

0 50 100 150 200 250 300 350 400
Elasped Time (s)

0

5

10

15

20

25

30

35

M
e
d
ia
n
 L
a
te
n
cy
 (
s)

Without DQBarge

With DQBarge

Figure 9: Response to a load spike. DQBarge makes data-
quality tradeoffs to meet a median latency goal of 6 seconds.

cause timeouts affect a random sampling of the values re-
turned, whereas proactive tradeoffs omit retrieving those
documents that are least likely to impact the reply.

5.5 Overhead

We measured the online overhead of DQBarge by
comparing the mean latency of a set of 140 Sirius re-
quests with and without DQBarge. Figure 8 shows that
DQBarge added a 1.6% latency overhead; the difference
is within the experimental error of the measurements.

DQBarge incurs additional space overhead in mes-
sage payloads for propagating load metrics, critical path
and slack predictions, and provenance features. For Sir-
ius, DQBarge adds up to 176 bytes per request for data
such as load metrics and slack predictions. Tracking
provenance appends an extra 32 bytes per object; on
average, this added 14% more bytes per provenance-
annotated object.

5.6 End-to-end case studies

We next evaluate DQBarge with three end-to-end case
studies on our Sirius testbed.
5.6.1 Load spikes

In this scenario, we introduce a load spike to see if
DQBarge can maintain end-to-end latency and through-
put goals by making data-quality tradeoffs. We set a
target median response rate of 6 seconds. Normally,
Sirius receives 50 requests/minute, but it experiences
a two-minute load spike of 150 requests/minute in the



>0 >10 >50
Quality Drop

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Fr

a
ct

io
n
 o

f 
re

q
u
e
st

s
38%

15%

9%

0%

22%

8%
5%

0%

Without spare resources

With spare resources

Figure 10: Quality improvement using spare resources.
DQBarge uses slack in request pipeline stages to improve re-
sponse quality.

middle of the experiment. Figure 9 shows that without
DQBarge, the end-to-end latency increases significantly
due to the load spike. The median latency within the load
spike region averages 25.2 seconds across 5 trials.

In comparison, DQBarge keeps median request la-
tency below the 6 second goal throughout the experi-
ment. Across 5 runs, the median end-to-end latency dur-
ing the spike region is 5.4 seconds. In order to meet the
desired latency goal, DQBarge generally selects a trade-
off rate of 50%, resulting in a mean quality drop of 6.7.

5.6.2 Utilizing spare resources
Next, DQBarge tries to use spare capacity and slack in

the request processing pipeline to increase quality with-
out affecting end-to-end latency. Sirius is configured
to use both its default Wikipedia database and the Bing
Search API [6] to answer queries. Each source has a sep-
arate pipeline that executes in parallel before results from
all sources are compared at the end. The Bing pipeline
tends to take longer than the default pipeline, so slack
typically exists in the default pipeline stages.

As described in Section 4.2, DQBarge predicts the
critical path for each request and the slack for pipeline
stages not on the critical path. If DQBarge predicts there
is slack available for a processing pipeline, it reduces the
tradeoff frequency to increase quality until the predicted
added latency would exceed the predicted slack. To give
DQBarge room to increase quality, we set the default
tradeoff rate to 50% for this experiment; note that this
simply represents a specific choice between quality and
latency made by the operator of the system.

Figure 10 shows that DQBarge increases quality for
this experiment by using spare resources; the percent-
age of requests that exprience any quality drop decreases
from 38% to 22% (as compared to a full-fidelity response
with no data-quality tradeoffs). Figure 11 shows a CDF
of request response times; because the extra processing
occurs off the critical path, the end-to-end request latency
is unchanged when DQBarge attempts to employ only
spare resources to increase quality.

0 2000 4000 6000 8000 10000 12000
Request latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Without utilizing spare resources
With utilizing spare resources

Figure 11: Performance impact of using spare resources.
When DQBarge uses slack in request pipeline stages, it does
not impact end-to-end latency.

0 1 2 3 4 5 6 7
Latency

0

20

40

60

80

100

U
ti
lit
y

Latency

0 20 40 60 80 100
Tradeoff Rate

0

50

100

150

200

U
ti

lit
y

Quality

Figure 12: Utility parameters for dynamic capacity plan-
ning. These values are added together to calculate final utility.

5.6.3 Dynamic capacity planning
Finally, we show how DQBarge can be used in dy-

namic capacity planning. We specify a utility function
that provides a dollar value for reducing latency, im-
proving quality, and provisioning additional servers. The
utility of latency and quality are shown in Figure 12.
DQBarge makes data-quality tradeoffs that maximize the
utility function at the incoming request rate.

In this scenario, we examine the benefit of using
DQBarge to decide when to provision additional re-
sources. We compare DQBarge with dynamic capac-
ity planning against DQBarge without dynamic capacity
planning. Figure 13 shows the total utility of the sys-
tem over time. When the request rate increases to 160
requests per minute, DQBarge reports that provisioning
another server would provide a net positive utility. Using
this server increases utility by an average of 58% com-
pared to a system without dynamic capacity planning.

DQBarge is also able to reduce the number of servers
in use. Figure 13 shows that when the request rate sub-
sides, DQBarge reports that taking away a server max-
imizes utility. In other words, the request rate is low
enough that using only one server maximizes utility.

6 Related work
Although there is an extremely rich history of quality-

of-service tradeoffs [7, 25, 29] and approximate comput-
ing [4, 8, 19, 18, 28, 30] in software systems, our work
focuses specifically on using the causal propagation of
request information and data provenance to make better



0 50 100 150 200
Elapsed Time (s)

0

5000

10000

15000

20000

25000

30000

35000
U

ti
lit

y
Without dynamic provisioning

With dynamic provisioning

0 50 100 150 200
Elasped Time (s)

0

50

100

150

200

R
e
q
u
e
st

s 
p
e
r 

m
in

u
te

Figure 13: Benefit of dynamic capacity planning. With dy-
namic capacity planning, DQBarge improves utility by provi-
sioning an additional server. When it is no longer needed, it
removes the additional server.

data-quality tradeoffs in low-level software components.
Our study revealed the need for such an approach: ex-
isting Facebook services make mostly reactive tradeoffs
that are suboptimal due to limited information. Our eval-
uation of DQBarge showed that causal propagation can
substantially improve both request performance and re-
sponse quality.

Many systems have used causal propagation of in-
formation through distributed systems to trace related
events [5, 9, 10, 13, 23, 26, 27, 31]. For example,
Pivot Tracing [23] propagates generic key-value meta-
data, called baggage, along the causal path of request
processing. DQBarge uses a similar approach to prop-
agate specific data such as provenance, critical path pre-
dictions, and load metrics.

DQBarge focuses on data-quality tradeoffs in Inter-
net service pipelines. Approximate Query Processing
systems trade accuracy for performance during analytic
queries over large data sets [1, 2, 3, 17, 22]. These sys-
tems use different methods to sample data and return a
representative answer within a time bound. BlinkDB [2]
uses an error-latency profile to make tradeoffs during
query processing. Similarly, ApproxHadoop [14] uses
input data sampling, task dropping, and user-defined ap-
proximation to sample the number of inputs and bound
errors introduced from approximation. These techniques
are similar to DQBarge’s performance and quality mod-
els, and DQBarge could potentially leverage quality data
from ApproxHadoop in lieu of generating its own model.

LazyBase [12] is a NoSQL database that supports
trading off data freshness for performance in data ana-
lytic queries. It is able to provide faster read queries
to stale-but-consistent versions of the data by omitting
newer updates. It batches and pipelines updates so that
intermediate values of data freshness can be queried.
Similar to how LazyBase uses data freshness to make

a tradeoff, DQBarge uses its quality model to determine
the best tradeoff that minimizes the effect on the quality.

Some Internet services have been adapted to provide
partial responses after a latency deadline [16, 21, 22].
They rely on timeouts to make tradeoffs, whereas the
tradeoffs DQBarge makes are proactive. PowerDial [19]
adds knobs to server applications to trade performance
for energy. These systems do not employ provenance to
make better tradeoffs.

7 Conclusion

In this paper, we showed that data-quality tradeoffs
are prevalent in Internet service pipelines through a sur-
vey of existing software at Facebook. We found that
such tradeoffs are often suboptimal because they are re-
active and because they fail to consider global informa-
tion. DQBarge enables better tradeoffs by propagating
data along the causal path of request processing and gen-
erating models of performance and quality for potential
tradeoffs. Our evaluation shows that this improves re-
sponses to load spikes, utilization of spare resources, and
dynamic capacity planning.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Rebecca Isaacs, for their thoughtful comments. We also
thank Qi Hu and Jason Brewer for their help with the
Facebook infrastructure. This work has been supported
by the National Science Foundation under grant CNS-
1421441. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] Swarup Acharya, Phillip B. Gibbons, Viswanath
Poosala, and Sridhar Ramaswamy. The aqua ap-
proximate query answering system. In Proceedings
of the 1999 ACM SIGMOD International Confer-
ence on Management of Data, 1999.

[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda,
Henry Milner, Samuel Madden, and Ion Stoica.
Blinkdb: Queries with bounded errors and bounded
response times on very large data. In Proceedings
of the 8th ACM European Conference on Computer
Systems, 2013.

[3] Brian Babcock, Surajit Chaudhuri, and Gautam
Das. Dynamic sample selection for approximate
query processing. In Proceedings of the 2003
ACM SIGMOD International Conference on Man-
agement of Data, 2003.



[4] Woongki Baek and Trishul M. Chilimbi. Green:
A framework for supporting energy-conscious pro-
gramming using controlled approximation. In Pro-
ceedings of the ACM SIGPLAN 2010 Conference
on Programming Language Design and Implemen-
tation, 2010.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs,
and Richard Mortier. Using Magpie for request
extraction and workload modelling. In Proceed-
ings of the 6th Symposium on Operating Systems
Design and Implementation, pages 259–272, San
Francisco, CA, December 2004.

[6] https://datamarket.azure.com/dataset/

bing/search.

[7] Josep M. Blanquer, Antoni Batchelli, Klaus
Schauser, and Rich Wolski. Quorum: Flexible
quality of service for internet services. Proceedings
of the 2nd USENIX Symposium on Networked
Systems Design and Implementation, 2005.

[8] Michael Carbin, Deokhwan Kim, Sasa Misailovic,
and Martin C. Rinard. Proving acceptablility prop-
erties of relaxed nondeterministic approximate pro-
grams. In Proceedings of the ACM SIGPLAN 2012
Conference on Programming Language Design and
Implementation.

[9] Anupam Chanda, Alan L. Cox, and Willy
Zwanepoel. Whodunit: Transactional profiling for
multi-tier applications. In Proceedings of the 2nd
ACM European Conference on Computer Systems,
Lisboa, Portugal, March 2007.

[10] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Ar-
mando Fox, and Eric Brewer. Pinpoint: Prob-
lem determination in large, dynamic Internet ser-
vices. In Proceedings of the 32nd Annual IEEE/I-
FIP International Conference on Dependable Sys-
tems and Networks, pages 595–604, Bethesda, MD,
June 2002.

[11] Michael Chow, David Meisner, Jason Flinn, Daniel
Peek, and Thomas F. Wenisch. The Mystery Ma-
chine: End-to-end performance analysis of large-
scale internet services. In Proceedings of the 11th
Symposium on Operating Systems Design and Im-
plementation, October 2014.

[12] James Cipar, Greg Ganger, Kimberly Keeton,
Charles B. Morrey III, Craig A.N. Soules, and Al-
istair Veitch. Lazybase: Trading freshness for per-
formance in a scalable database. In Proceedings
of the 7th ACM European Conference on Computer
Systems.

[13] Rodrigo Fonseca, George Porter, Randy H. Katz,
Scott Shenker, and Ion Stoica. X-trace: A perva-
sive network tracing framework. In Proceedings of
the 4th USENIX Symposium on Networked Systems
Design and Implementation, pages 271–284, Cam-
bridge, MA, April 2007.

[14] Inigo Goiri, Ricardo Bianchini, Santosh Na-
garakatte, and Thu D. Nguyen. Approxhadoop:
Bringing approximations to mapreduce frame-
works. In Proceedings of the 20th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, Istanbul,
Turkey, March 2015.

[15] Johann Hauswald, Michael A. Laurenzano, Yunqi
Zhang, Cheng Li, Austin Rovinski, Arjun Khurana,
Ron Dreslinski, Trevor Mudge, Vinicius Petrucci,
Lingjia Tang, and Jason Mars. Sirius: An open
end-to-end voice and vision personal assistant and
its implications for future warehouse scale comput-
ers. In Proceedings of the 20th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, 2015.

[16] Yuxiong He, Sameh Elnikety, James Larus, and
Chenyu Yan. Zeta: Scheduling interactive ser-
vices with partial execution. In Proceedings of
the Third ACM Symposium on Cloud Computing
(SOCC ’12), 2012.

[17] Joseph M. Hellerstein, Peter J. Haas, and Helen J.
Wang. Online aggregation. In Proceedings of the
1997 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’97, 1997.

[18] Henry Hoffmann. Jouleguard: Energy guarantees
for approximate applications. In Proceedings of the
25th ACM Symposium on Operating Systems Prin-
ciples, 2015.

[19] Henry Hoffmann, Stelios Sidiroglou, Michael
Carbin, Sasa Misailovic, Anant Agarwal, and Mar-
tin Rinard. Dynamic knobs for responsive power-
aware computing. In Proceedings of the 16th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
Newport Beach, California, March 2011.

[20] Raj Jain. The Art of Computer Systems Perfor-
mance Analysis: Techniques for Experimental De-
sign, Measurement, Simulation, and Modeling. Wi-
ley, 1991.

[21] Virajith Jalaparti, Peter Bodik, Srikanth Kandula,
Ishai Menache, Mikhail Rybalkin, and Chenyu
Yan. Speeding up distributed request-response



workflows. In Proceedings of the Symposium on
Communications Architectures and Protocols (SIG-
COMM ’13), 2013.

[22] Gautam Kumar, Ganesh Ananthanarayanan, Sylvia
Ratnasamy, and Ion Stoica. Hold ’em or fold ’em?
aggregation queries under performance variations.
In Proceedings of the 11th ACM European Confer-
ence on Computer Systems, 2016.

[23] Jonathan Mace, Ryan Roelke, and Rodrigo Fon-
seca. Pivot tracing: Dynamic causal monitoring
for distributed systems. In Proceedings of the 25th
ACM Symposium on Operating Systems Principles,
2015.

[24] Justin Meza, Dmitri Perelman, Wonho Kim, So-
nia Margulis, Daniel Peek, Kaushik Veeraraghavan,
and Yee Jiun Song. Kraken: A framework for iden-
tifying and alleviating resource utilization bottle-
necks in large scale web services. In Proceedings
of the 12th Symposium on Operating Systems De-
sign and Implementation, Savannah, GA, Novem-
ber 2016.

[25] Brian D. Noble, M. Satyanarayanan, Dushyanth
Narayanan, J. Eric Tilton, Jason Flinn, and
Kevin R. Walker. Agile application-aware adapta-
tion for mobility. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, pages
276–287, Saint-Malo, France, October 1997.

[26] Lenin Ravindranath, Jitendra Padjye, Sharad
Agrawal, Ratul Mahajan, Ian Obermiller, and
Shahin Shayandeh. AppInsight: Mobile app per-
formance monitoring in the wild. In Proceedings
of the 10th Symposium on Operating Systems De-
sign and Implementation, Hollywood, CA, October
2012.

[27] Lenin Ravindranath, Jitendra Pahye, Ratul Maha-
jan, and Hari Balakrishnan. Timecard: Controlling
user-perceived delays in server-based mobile appli-
cations. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles, Farmington,
PA, October 2013.

[28] Adrian Sampson, Werner Dietl, Emily Fortuna,
Danushen Gnanapragasam, Luis Ceze, and Dan
Grossman. Enerj: Approximate data types for safe
and general low-power consumption. In Proceed-
ings of the ACM SIGPLAN 2011 Conference on
Programming Language Design and Implementa-
tion, 2011.

[29] Kai Shen, Hong Tang, Tao Yang, and Lingkun Chu.
Integrated resource management for cluster-based

internet services. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implemen-
tation, Boston, Massachusetts, December 2002.

[30] Stelios Sidiroglou, Sasa Misailovic, Henry Hoff-
mann, and Martin Ricard. Managing performance
vs accuracy trade-offs with loop perforation. In
Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foun-
dations of Software Engineering, 2011.

[31] Benjamin H. Sigelman, Luiz Andr Barroso, Mike
Burrows, Pat Stephenson, Manoj Plakal, Donald
Beaver, Saul Jaspan, and Chandan Shanbhag. Dap-
per, a large-scale distributed systems tracing infras-
tructure. Technical report, Google, Inc., 2010.

[32] http://trec.nist.gov/.

[33] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain,
Zheng Shao, Prasad Chakka, Suresh Anthony, Hao
Liu, Pete Wyckoff, and Raghotham Murthy. Hive –
a warehousing solution over a map-reduce frame-
work. In 35th International Conference on Very
Large Data Bases (VLDB), Lyon, France, August
2009.


