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Functional verification of modern digital designs is a crucial, time-consuming task impacting not
only the correctness of the final product, but also its time to market. At the heart of most of today’s
verification efforts is logic simulation, used heavily to verify the functional correctness of a design
for a broad range of abstraction levels. In mainstream industry verification methodologies, typical
setups coordinate the validation effort of a complex digital system by distributing logic simulation
tasks among vast server farms for months at a time. Yet, the performance of logic simulation is
not sufficient to satisfy the demand, leading to incomplete validation processes, escaped functional
bugs, and continuous pressure on the EDA industry to develop faster simulation solutions.

In this work we propose GCS, a solution to boost the performance of logic simulation, gate-
level simulation in particular, by more than a factor of 10 using recent hardware advances in
graphic processing unit (GPU) technology. Noting the vast available parallelism in the hardware
of modern GPUs, and the inherently parallel structures of gate-level netlists, we propose novel
algorithms for the efficient mapping of complex designs to parallel hardware.

Our novel simulation architecture maximizes the utilization of concurrent hardware resources
while minimizing expensive communication overhead. The experimental results show that our
GPU-based simulator is capable of handling the validation of industrial-size designs while deliv-
ering more than an order-of-magnitude performance improvements on average, over the fastest
multi-threaded simulators commercially available.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Simulation; C.1.2 [Processor Archi-

tectures]: Multiple Data Stream Architectures (Multiprocessors)—~Parallel Processors

General Terms: Verification, Performance

Additional Key Words and Phrases: Gate-level simulation, High-performance simulation, General
Purpose Graphics Processing Unit (GP-GPU), GPU Computing, Parallel CAD

1. INTRODUCTION

Logic simulation is a central aspect of the modern integrated circuit development process.
It is the primary tool used to validate a wide range of design aspects, foremost among
these being the correctness of the system’s functionality, both in its behavioral description,
as well as in its structural (gate-level) one. Most industry design flows invest the largest
fraction of their time and resources precisely on this task [Edenfeld et al. 2004], in an at-
tempt to provide the best possible guarantee that the system satisfies its original functional
specification. Large server farms, comprising thousands of machines, execute billions of
cycles of simulation for months at a time. Within this effort, the simulation of gate-level
netlists is an especially onerous task, as it involves large netlists at a fairly low-level de-
scription, comprising many components to be simulated. However, despite the vast effort
of time and resources, functional validation remains an incomplete task, with large portions
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of the design going unverified. Indeed, while common case scenarios are often checked in
this process, buggy and rare corner cases frequently slip through validation, and are conse-
quently latent in the final product, potentially causing malfunctions in the field. For these
reasons, exacerbated by the constantly increasing complexity of digital systems, there is a
strong need for increased performance in logic simulation, especially in time-consuming
gate-level simulation, to improve the productivity and cost of digital developments.

Logic simulation entails evaluating the response of a design over time when subjected to
a set of input stimuli, typically selected by the designer to be representative of practical use
situations. For most synchronous designs the response is computed once for each cycle of
simulated execution. Modern logic simulators read in a design description, then “compile”
it to produce machine code emulating the same functionality as the design’s primitives,
and finally optimize it to minimize the amount of computation required to provide the
responses that the user wishes to observe. The input stimuli are commonly provided in
the form of a testbench, that is, a program describing implicitly or explicitly the set of
input values for each clock cycle of simulation. The testbench may be direct, where input
values are selected by a verification engineer, or pseudo-random, that is, inputs are set by
a generator abiding pre-set constraints and statistical distributions.

Simulators can be grouped into two families based on their internal architecture: obliv-
ious simulators compute all gates in the system during every simulation cycle and entail a
simpler software design. Oblivious simulators have the advantage of low control overhead,
but can spend significant computation time unnecessarily evaluating gates over and over
whose output values do not change from cycle to cycle. Event-driven simulators limit the
amount of computation by selectively simulating in each cycle only those gates who inputs
have changed since the previous cycle, and whose output may thus change in response to
the switching stimulus. While the sequencing of gate evaluation in oblivious simulation
can be statically determined at compile-time, event-driven simulators require a dynamic
runtime scheduler, hence entail a more complex software structure. However, this latter
approach is vastly more common in commercial tools because the scheduler performance
overhead is largely offset by the fact that for many designs only 1 to 10% of the gates
switch at each cycle, thus requiring significantly less computation.

In investigating the potential for large performance improvements in logic simulators,
we noted that logic netlists present a high degree of structural parallelism that could be
exploited by simulating individual gates concurrently. An ideal platform leveraging such
concurrency is the modern graphics processing unit (GPU), as it includes many simple and
identical computational units capable of operating concurrently by executing same instruc-
tion sequence on different data. GPU computing is a recent extension of traditional graph-
ics processing, providing a general purpose programming interface for GPU devices, and
making the vast parallel computational resources available for applications beyond the pro-
cessing of graphic primitives. Platforms for GPU computing include AMD’s FireStream
[AMD 2008] and NVIDIA’s CUDA [NVIDIA 2007]. In addition, vendor-independent par-
allel computing standards such as OpenCL [Khronos Group ] have also been developed.

In this work, we provide a solution to gate-level simulation which strives to leverage
the concurrency of GPUs to vastly boost the performance of gate-level simulation, and
we deliver an efficient, architecture-aware algorithm for mapping large designs to GPU
hardware.
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1.1 Contributions

Our novel logic simulation solution executes on a GPU platform and it is called GCS, GPU-
based Concurrent Simulator (GCS). We leverage GPUs’ massive parallelism to achieve
large performance improvements compared to the fastest modern commercial simulators.
One of our design goals is to grasp the advantages of event-driven simulators so that only
a small fraction of the netlist’s gates are simulated at each cycle. However, it is critical that
our solution incurs only minimal overhead for run-time event scheduling: event schedul-
ing is an intrinsically sequential process, while we want to maintain a massively parallel
computation environment for the majority of the time. As a result, GCS is a unique hybrid
simulator where the design is partitioned into clusters of gates (called macro-gates): clus-
ters are then simulated in an oblivious fashion, while the scheduling of individual clusters
is organized in an event-driven fashion. In addition, all algorithms involved in the sim-
ulation are optimized for an underlying GPU architecture, characterized in particular by
limited shared memory space and by the inclusion of additional components designed to
optimize the execution of graphic primitives (for instance, texture memory). Specifically,
our contributions to deliver this novel solution include:

(1) ahybrid event-driven/oblivious scheduling algorithm optimized for GPU computing;

(2) a netlist partitioning and macro-gate sizing solution targeting maximal concurrency
within the constraints of the GPU’s hardware resources;

(3) a balancing algorithm to optimize resource utilization during the simulation of indi-
vidual macro-gates;

(4) testbench solutions minimizing the performance cost of testbench evaluation on the
GPU platform.

We provide a wide range of experimental evaluations highlighting different aspects and
design trade-offs of our solution. In addition, our experiments show that our GPU-based
simulator achieves an order-of-magnitude performance gain over state-of-the-art commer-
cial logic simulators while tackling industrial-size designs, such as the OpenSPARC T1
multiprocessor [OpenSPARC ].

2. RELATED WORK

For several decades the majority of industry verification effort has revolved around logic
simulators. Initial work from the 1980s addressed several key algorithmic aspects that
are still utilized by modern solutions, including netlist compilation, management of event-
driven simulators, propagation delays, efc.[Barzilai et al. 1987; Bryant et al. 1987; Lewis
1991]. The exploration of parallel algorithms for simulation started at approximately the
same time [Baker et al. 1996; Meister 1993; Soulé and Blank 1988], targeting both shared
memory multiprocessors [Kim and Chung 1994] and distributed memory systems [Man-
jikian and Loucks 1993; Matsumoto and Taki 1992]. In these solutions, individual ex-
ecution threads operate on distinct netlist clusters and communicate in an event-driven
fashion, with a thread being activated if switching activity is observed at the inputs of its
netlist cluster. In particular, Baker et al. [1996] provides a comparative analysis of early
attempts to parallelize event-driven simulation by partitioning the processing of individual
events across multiple machines with fine granularity. This fine granularity would gener-
ate a high communication overhead and, depending on the solution, the issue of deadlock
avoidance could require specialized event handling. Both conservative [Chandy and Misra
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1981; Fujimoto 1990; Misra 1986] and speculative techniques, such as time warp [Bauer
and Sporrer 1993; Berry and Lomow 1986], were proposed to handle synchronization in
these discrete event algorithms. Today, several commercial simulators building on these
concepts are available: they execute on a single CPU and adopt aggressive compiled-code
optimization techniques to boost their performance.

Emulation systems and specialized hardware solutions for high performance simulation,
have also been explored to boost simulation performance. These systems typically con-
sist of several identical hardware units connected together, with units optimized for the
simulation of small logic blocks. To emulate a circuit netlist, a “compiler” partitions the
netlist into blocks and then loads each block into separate units [Babb et al. 1997; Denneau
1982; Kim et al. 2004]. Modern emulators can deliver 3—4 orders of magnitude speedup
over simulation software and can handle very large designs. However, their cost is pro-
hibitive and the process of successfully mapping a netlist to an emulator can take up to a
few months.

The effort of parallelizing simulation algorithms has only recently targeted data-streaming
architectures (single instruction multiple thread), as the solution proposed by Perinkulam
and Kundu [2007]; however, the communication overhead of this system had a high im-
pact on its overall performance. Another recent solution in this space, by Gulati and Khatri
[2008], introduces parallel fault simulation on a CUDA GPU target. It extracts parallelism
by simulating distinct fault patterns on distinct processing units, with no partitioning within
individual simulations or within the design. In contrast, we target fast simulation of com-
plex designs, requiring specialized algorithms to partition the design and target parallel
processing elements while leveraging memory locality. We have performed preliminary
studies in this direction using oblivious [Chatterjee et al. 2009b] and event-driven [Chat-
terjee et al. 2009a] simulation architectures. Moreover, in our work we focus on optimizing
the performance of individual simulation runs, in contrast with Gulati and Khatri [2008],
which optimizes over all fault simulations. A key aspect of all parallel simulation solu-
tions lies in the choice of a netlist partitioning algorithm, because of its heavy impact on
communication overhead. Previous solutions include random [Frank 1986], activity-based
partitioning [Matsumoto and Taki 1992], balanced workload [Karthik and Abraham 1992],
and cone partitioning [Smith et al. 1987], where logic clusters are created by grouping
the cones of influence of circuit outputs with the goal of minimizing the number of gates
overlapping among multiple clusters. Our solution relies on a variant of cone partitioning
tailored to the constraints of our target architecture.

Finally, in recent years, acceleration of various computationally intensive processes us-
ing general purpose graphics processing units (GPUs) has been suggested in several other
domains of EDA, such as power grid analysis [Shi et al. 2009], fast circuit optimization
[Liu and Hu 2009], statistical timing analysis [Gulati and Khatri 2009], circuit-level sim-
ulation [Gulati et al. 2009]. Utilizing GPU computing to accelerate a few core algorithms
that are shared across many EDA applications has also been proposed [Deng et al. 2009].

3. CUDA OVERVIEW

General purpose computing on graphics processing units enables parallel processing on
commodity hardware. NVIDIA’s Compute Unified Device Architecture (CUDA) is a hard-
ware architecture and complementary software interface empowering GPUs to do general
purpose computing. In the CUDA execution model, the GPU is a co-processor capable
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Fig. 1. NVIDIA CUDA architecture. The GPU contains an array of multi-processors, each containing individual
stream processors. Within a multiprocessor, the stream processors have access to a small, fast shared local
memory. Multiprocessors can also access higher latency device memory. Finally, the GPU device communicates
with the host CPU via DMA.

of executing many threads in parallel. A data parallel computation process, known as a
kernel, can be offloaded to the GPU for execution. This model of execution is known as
single instruction multiple thread (SIMT), where thousands of threads execute the same
code, each operating on different portions of data. Threads identify their spatial location
within the data by thread ID and thread block ID.

The CUDA architecture [NVIDIA 2007] (Figure 1) consists of a number of multiproces-
sors (14-30 in the G80 generation) contained in a single GPU chip. Each multiprocessor is
comprised of multiple stream processors (8 in G80 generation, 32 in current GF100 gener-
ation) and can execute a large number of concurrent threads (up to 512 in G80 generation,
1024 in current generation) all running the same code. The block of threads contained
in one multiprocessor has access to a small amount of shared memory (16 KB in G80
generation, up to 48 KB in current generation) at an access latency of 1 clock cycle. All
multiprocessors also have access to a global memory called device memory, which can be
256 MB to 1 GB in current CUDA enabled GPU’s and has higher access latency (300-
400 cycles). While the access latency to global memory is high, it is possible to amortize
the cost by coalescing accesses from multiple threads. Finally, communication with the
host CPU’s main memory is achieved by means of direct memory access (DMA) transfers,
which are most efficiently executed in large blocks.

Threads belonging to a single thread block can synchronize among themselves using fast
barrier synchronization, and also co-operatively access shared memory. Synchronization
among different thread blocks, however, is cumbersome and has a high overhead. Due to
this architecture, providing memory locality within individual thread blocks is critical for
performance.

4. SIMULATOR OVERVIEW

Noting the extensive concurrency available in data-parallel GPUs, our primary design goal
is to match these resources with the parallelism present in gate-level netlists. In a levelized
gate-level netlist, where each level depends only on those computed at previous levels, all
gates in a same level can be simulated in parallel. Moreover, in the best scenario, only those
gates whose inputs have changed since the previous simulation cycle would be computed.
Scheduling only the correct gates for computation requires a central event queue to manage
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Fig. 2. Hybrid event-driven simulator. The GCS architecture is event-driven at the granularity of macro-gates,
while the macro-gates themselves are simulated in oblivious fashion. As an example, during a simulation cycle,
only the darker macro-gates could be activated, each of them simulated one after the other by a single thread
block in an oblivious fashion.

the list of ready gates after the completion of each netlist level. However, note that central
event queues incur a significant performance overhead in a parallel processing model, due
to the overhead of synchronization. In the CUDA GPU model, local synchronizations
(within a thread block) are efficient, while synchronizing among distinct thread blocks is
costly. However the total number of logic gates that is activated in each clock cycle in a
typical design may greatly exceed the maximum number of allowed threads in a thread
block (512 in the GPU hardware we used). Thus local synchronization is not sufficient to
handle all events in the netlist. Moreover, best thread block performance is achieved when
the memory accesses from the thread block have a regular structure. This situation can not
be achieved if individual threads were to update a global event-queue, as it would be the
case if simulation within the thread blocks were event-driven. Thus, oblivious simulation
is best suited for within thread block execution. These observations suggest an optimal
solution based on a hybrid execution model, where execution within a same thread block
is uniform (thus oblivious) but it can be heterogeneous across thread blocks, making an
event-driven flow effective.

Matching data locality in the netlist with that of the GPU is also a critical design goal.
In a netlist, gates outputs are often inputs to several other gates in subsequent netlist levels.
With this data flow, memory locality can be leveraged by storing locally the most accessed
values, that is, the intermediate output values generated during simulation. Based on these
observations we derive a hybrid simulator design for GCS that uses event-driven simulation
at a coarse granularity and oblivious simulation within each coarse grain group, with data
locality being exploited during the oblivious simulation of each group.

4.1 Hybrid event-driven simulator

GCS is a hybrid event-driven simulator, balancing the advantages of dynamic gate schedul-
ing with the GPU architecture requirements, which necessitates identical control flows.
Our design is inspired by two common approaches to gate-level simulation of digital de-
signs. The first approach, oblivious simulation, simulates every logic gate in the design at
every simulation cycle. While this has the advantage of uniform control flow, it can result
in the superfluous computation of gates whose inputs did not change. By contrast, event-
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Fig. 3. Simulator organization. A compilation step produces macro-gates, which are optimized and offloaded
to the GPU for simulation.

driven simulation computes a subset of the gates at each cycle, computing only those gates
whose input values have changed. This requires dynamic control flow, incurring a schedul-
ing overhead. Usually this overhead is worthwhile in sequential solutions, as only a small
fraction of gates are active in any given cycle, hence event-driven simulators achieve better
performance for most designs, and they are the basis for most commercial simulators.

With a goal of optimum performance for gate-level simulation, our design decisions
were driven by the constraints of the GPU platform. Thus, the design is partitioned into
several clusters of logic gates, and each cluster is called a macro-gate. Simulation of each
macro-gate is carried out in oblivious fashion, while macro-gates are scheduled for simu-
lation only if some of their inputs have changed since the previous simulation cycle. Thus
the simulation is event-driven at the granularity of macro-gates: this process is shown in
Figure 2, where we show a possible grouping of a netlist’s logic gates into macro-gates,
and we highlight a possible simulation sequence activating only three macro-gates because
no inputs have changed for all others.

4.2 Simulator organization

For performance reasons, our GCS simulator is organized as a compiled code simulator,
first performing a compilation process to convert the netlist into internal data structures
to be mapped to the CUDA memory hierarchy, and then transfering the compiled data
structures to the GPU platform for the simulation proper. During the simulation phase, the
CUDA-mapped design is simulated based on the input stimuli provided by the validation
testbench. Note that it is possible and recommended to reuse the same compiled design
several times to simulate with many different testbenches. The GCS compiler proceeds
in two phases (see Figure 3): the first phase is system level compilation, where a gate-
level netlist is considered as input. Segmentation is applied to the netlist to partition it
into a set of levelized macro-gates: each macro-gate includes several gates within the
netlist connected by input/output relations. Companion data structures are also created
for each macro-gate to facilitate event-driven simulation. The second phase is macro-gate
balancing: during this phase each macro-gate is reshaped for optimal latency of execution
on the GPU platform. There are several possible variations in the process of segmentation
with regard to sizing the macro-gates, as will be discussed in Section 5.3.

During simulation proper, a data parallel GPU program, known as a “kernel” (see Sec-
tion 3) operates on the data structures generated by the GCS compiler, which have been
transferred to the GPU. In addition, this phase requires a set of input stimuli for the design
under validation. Typically, the stimuli are generated by a testbench program that reads
the netlist outputs generated at the end of each simulated clock cycle and, based on those
values, generates inputs for the next clock cycle. We investigated several solutions for
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testbench design that are viable for a GPU computing framework and we discuss them in
Section 6.3. We found that one of the most effective techniques consists of writing the
testbench as a GPU kernel (program) executing at the completion of each simulation cycle
by evaluating the netlist outputs from the previous cycle and producing the input stimuli
for the following cycle directly in device memory. Note that one important goal is to have
all the simulation data structures, testbench data and GPU kernels reside in GPU memory,
S0 as to avoid time consuming data transfers to and from the host processor.

5. COMPILATION

GCS operates as a compiled code simulator, processing a gate-level netlist as input and
generating machine code that can be executed on a GPU. First, system level compilation
segments the netlist into macro-gates. The second phase, macro-gate balancing, reshapes
the macro-gates to more regular structures for achieving best utilization of GPU thread
resources.

5.1 System level compilation

The goal of system level compilation is to segment the netlist into macro-gates, groups
of gates that will be simulated in an oblivious fashion by a single thread block. Differ-
ent macro-gates are scheduled in an event-driven fashion in our hybrid simulator. Three
pre-processing steps are required before macro-gates can be extracted: synthesis, combi-
national logic extraction and levelization. Following these steps, macro-gate segmentation
can be performed, producing a set of macro-gates.

5.1.1 Synthesis. Synthesis, the first step of system level compilation, produces a gate-
level netlist as output, that is, a synthesized version of the design under verification. To
generate a gate-level netlist, a digital design is synthesized to a flattened netlist using a
target technology library. In our experimental evaluation, a range of behavioral circuit
descriptions were synthesized using Synopsys Design Compiler targeting a subset of the
GTECH library. The choice of GTECH was due to its generality and simplicity of use in
an experimental environment; however, other libraries may be used as well, since gates are
replaced by functional primitives by the simulator. Note that, if a synthesized version of
the design is already available, this step is unnecessary.

The subset of the GTECH library used in synthesis excludes non-clocked latches (but
includes flip-flops), making cycle-by-cycle simulation possible. Sub-cycle delays involved
in the simulation of non-clocked latches would require further detailed modeling. Note that
multiple clock designs can still be handled by using a logical clock that generates all other
clock signals, and operates at a period of the greatest common divisor of all original clock
signals. When the netlist is read into the compiler, an internal functional primitive of each
gate based on GTECH is created. This functional primitive is represented by a 4-valued
(0, 1, X, Z) truth table. Since each execution thread must execute the same instruction
sequence for best performance, all gates must use an uniform format to indicate their input
nets and functionality. Moreover, this representation is most efficiently packed at the bit
level, so as to not waste precious memory bandwidth, since this information is accessed
every time a gate is simulated.

5.1.2  Combinational logic extraction. Once the design is synthesized and read into
internal functional primitives, the combinational portion is extracted. Since the design is
simulated cycle by cycle, the contents of registers that retain state across clock cycles can
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Fig. 4. Macro-gate segmentation. The levelized netlist is partitioned into layers, each encompassing a fixed
number of gate levels (gap). Macro-gates are then carved out by extracting the transitive fanin from a set of nets
(lid) at the output of a layer, back to the layer’s input. If an overlap occurs, the gates involved are replicated to all
associated macro-gates.

be modeled as memory locations. These storage elements are written with the values at
register inputs, and read in the next simulation cycle as register outputs. Thus, the entire
circuit can be viewed as a combinational network from the simulator’s point of view. In
the absence of combinational loops, this network is a directed acyclic graph (DAG), whose
vertices correspond to logic gates and edges correspond to connecting wires. This DAG has
multiple outputs (a collection of trees, hence a forest), which may be outputs of registers
or netlist primary outputs. Also, multiple inputs are present: either primary inputs or from
register outputs.

5.1.3 Levelization. The combinational network graph is now levelized: a topological
sorting is performed on the DAG, so that the fan-in of all gates in each level is computed
in previous levels. With this organization, it is possible to simulate the entire netlist one
level at a time, from inputs to outputs, with no backward dependency. In our prototype
implementation, we used an ALAP (as-late-as-possible) policy during levelization, though
other solutions are also possible.

5.1.4  Macro-gate segmentation. Macro-gate segmentation partitions the levelized com-
binational network graph into blocks of logic with multiple inputs and outputs, referred to
as macro-gates. In addition to the segmentation itself, sensitivity lists are generated, noting
the relation of macro-gates to each other to inform event-driven simulation.

Three important factors govern the macro-gate formation process: (i) since the objec-
tive of forming macro-gates is to perform event-driven simulation at a coarse granularity
(compared to individual gates), the time required to simulate a certain macro-gate should
be substantially larger than the overhead to decide which macro-gate to activate. (ii) GPU
multiprocessors can only communicate through slower device memory: thus for best per-
formance, there should not be any communication among the thread blocks simulating
different macro-gates, a goal that can be achieved if the tasks that execute on distinct
multiprocessors are independent of each other. This can be assured only if concurrently
simulated macro-gates are independent, as can be attained by replicating small portions of
shared logic. (iii) Finally, we want to avoid cyclic dependencies between macro-gates so
that no macro-gate is repeatedly simulated during one clock cycle, implying that the netlist
must be levelized at the granularity of macro-gates as well.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 20YY.



10

segmentation (netlist, gap, 1lid) {
levelized_netlist = ALAP_levelize(netlist);
layers = gap_partition(levelized_netlist);
for (layer in layers) {
macro-gates = 1lid_partition(layer);
macro-gates_pool = append(macro-gates);
compute_monitored_nets (layer);

}

return macro-gates_pool; }

Fig. 5. Macro-gate segmentation algorithm. First, the netlist is levelized, and the resulting levels are grouped
into layers. Each layer is then divided into macro-gates and added to the pool of gates to be simulated. The nets
to be monitored for activity are also tagged at this stage.

To address the above list of constraints, we segment the netlist by partitioning it into
layers: each layer encompasses a fixed number of the netlist’s levels. Macro-gates are
then defined by selecting a set of nets at the top boundary of a layer, and including its
cone of influence back to the input nets of the layer. The number of levels within each
layer is called the gap and corresponds to the height (in gates) of the macro-gate. In this
procedure, it is possible that a logic gate may be assigned to two or more macro-gates, and
then replicated to avoid data sharing (second requirement).

There are several possible policies for selecting the nets whose cones of influence should
be clustered in a single macro-gate. To minimize replication, our baseline policy attempts
to cluster together nets with the greater number of gates in common. Additionally, the
number of output nets used to generate each macro-gate is a variable parameter (called /id)
whose value is selected so that the number of logic gates in all macro-gates is approxi-
mately the same. Figure 4 shows a schematic of the segmentation technique, while Figure
5 presents the pseudo-code of the algorithm. The set of nets that crosses the boundary be-
tween each pair of layers is monitored during simulation to determine which macro-gates
should be activated.

Section 5.3 discusses how to select a suitable value for gap and lid so as to achieve a
high-level of parallelism during simulation as well as maintaining the event-driven struc-
ture of simulation. In Section 5.3.1 we use a profiling technique to determine suitable
values of gap and lid and also an alternative clustering policy, targeting better simulation
performance. We further extend these ideas to enable flexible values of gap and lid across
the segmentation process and analyze the resulting trade-offs.

5.2 Macro-gate balancing

After macro-gate segmentation has been performed, each macro-gate can be treated in-
dependently as a block of logic gates having a set of inputs and a set of outputs. In the
simulation phase, a macro-gate is simulated only if the value at one of its inputs change,
in which case simulation of all gates within the macro-gate is carried out in an oblivious
manner by the parallel threads in a single thread block. The step of macro-gate balancing
reshapes each macro-gate to enable the best use of execution resources.

Within a thread block, a number of threads concurrently simulate all the gates in a level,
then move on to the next level, and so on until an entire macro-gate has been simulated.
The number of gate levels in a macro-gate, i.e., the gap, is inversely proportional to the
macro-gate simulation performance. Since all threads must execute through each level, if
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Fig. 6. Macro-gate balancing. The balancing algorithm restructures each macro-gate to minimize the number
of execution threads required. The result is a more efficient utilization of thread block resources.
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there is a level where gates are fewer than threads, then some threads will be idle. This
situation occurs naturally because often macro-gates present a large base (many gates) and
a narrower tip in a trapezoidal shape. This shape results from our segmentation algorithm
which includes the fan-in cone of a few wires from a layer boundary. As a result a large
number of active threads are required at the lower levels, and just a few at the top levels.

Thus, to maximize concurrency, we strive to reduce the number of threads required at
the lower levels with a balancing step, outlined in the schematic of Figure 6. This is the last
step of the compilation phase: it exploits the slack available in the levelization within each
macro-gate, reshaping macro-gates to have approximately the same number of logic gates
in each level by using the algorithm of Figure 7, thus leading to a more rectangular shape.
The height of the rectangle corresponds to the number of levels in the longest executing
thread. We introduced the balancing step specifically to address the ‘long tail’ effect within
the thread blocks resulting from the shape of macro-gates: it promotes some gates from
lower levels to upper ones to fill idle thread slots such that utilization is increased. Width
of the thread block may be set to be less than the maximum number of gates in a macro-
gate level. Note how the balancing step introduces an inherent trade-off between latency
of execution of an individual macro-gate and the utilization of threads in a thread block.

In our experimental evaluation Each thread block is 128 threads wide, a design parameter
that was the result of a number of considerations: (i) the width of a thread block has to be a
multiple of the warp-size (32 as per CUDA specification) (ii) obeying all other best practice
utilization criteria for thread occupancy, maximal width allowed was 256, but was leading
to low utilization at higher macro-gate levels and (iii) values lower than 128 resulted in
very high gaps after balancing, and consequently high macro-gate latencies.

5.3 Macro-gate segmentation heuristics

The quality of macro-gate partitioning is key to simulation performance. Ideally, event-
driven simulation is most efficient when only a small fraction of macro-gates are active
in each simulation cycle; thus specific gates included in each macro-gate are relevant to
this aspect. Macro-gates are governed by two parameters: gap and lid, which control
the granularity at which event-driven mechanism operates. In this section, we will first
describe a method to select ideal values for gap and lid, the two key parameters controlling
the granularity of event-driven simulation, and then we will explore an alternative method
to perform clustering during macro-gate formation. Finally, we will consider the scenario
where gap and lid are not fixed across the entire segmentation process, but instead may
vary from one macro-gate to another.
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balance_macro-gate() {
for each (level in height)
for each (column in width)
balanced_macro-gate[level][column] = select_gate();
}
}

return balanced_macro-gate;

}

select_gate() {
sort gates in macro-gate by increasing level;
for each (gate in macro-gate) {
if(not assigned_to_balanced_macro-gate(gate))
return gate;

}
}

Fig. 7. Macro-gate balancing algorithm. Macro-gates are considered one at a time and reshaped to fit into a
thread block with a maximum of 128 threads, while striving to minimize the number of logic levels. The algorithm
proceeds in a bottom-up fashion, filling each macro-gate level with gates while satisfying the maximum width
restriction.

50 simulation

time (s)

10
200

lid (gates) 3 gap (levels)

Fig. 8. Ideal gap and lid estimation for the LDPC testbench design. The figure shows the runtime for a micro-
testbench simulation using a range of gap and lid values. The ideal gap and lid values, achieving minimum
simulation time within the range considered, is highlighted by the dark circle.

The goal of gap and lid selection is to create macro-gates with low activation rates. Gap
and lid values are selected during the compilation phase by evaluating a range of candi-
date (gap, lid) value pairs; for each candidate pair, we collect several metrics: number of
macro-gates that would be generated, number of monitored nets, size of macro-gates (due
to limited amount of shared memory per thread block) and activation rates. Activation rates
are obtained by a simulation mock-up on a micro testbench. After this analysis, we select
the locally optimal values and perform detailed segmentation. Figure 8 shows an example
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Fig. 9. Profile-based clustering compared to baseline algorithm. The baseline clustering algorithm (a) groups
cones of logic by degree of logic sharing, while profiling (b) is based on the activation frequency of logic cones.
In the picture a cone’s shading is proportional to its activation frequency. Clustering based on activity profile
results in the consolidation of frequently activated logic cones.

of this study, reporting simulation times for the LDPC benchmark design. In the example,
best performance is achieved for (gap, lid) = (5, 100).

The range of gap values considered is derived from the number of monitored nets gen-
erated: we only consider gap values for which no more than 50% of the total nets are
monitored. In practice, small gap values tend to generate many monitored nets, while large
gap values trigger high activation rates. For lid values, we bound the analysis by estimat-
ing how many macro-gates will be created at each layer, with a goal of running all those
macro-gates concurrently in the worst case. The GPU used for our evaluation included 14
multiprocessors, while the CUDA scheduler allows at most 3 thread blocks in concurrent
execution on a same multiprocessor. Thus, we only considered lid values that generate no
more than 14 x 3 = 42 macro-gates per layer unless any other constraints are violated. Fi-
nally, note that the analysis described above must only be performed once per compilation.

5.3.1 Macro-gate clustering based on profiling. The policy selecting which logic cones
to include in each macro-gate has a great impact on the activation rates and, consequently,
on the simulator performance. Indeed, any macro-gate containing a frequently activated
logic gate will result in the entire macro-gate being simulated, degrading overall perfor-
mance. Thus, we strive to consolidate those logic cones with frequently activated gates
into a same macro-gate by means of profiling. In this approach, representative simulations
are performed to determine which gates are most frequently activated. Figure 9 shows
an example of clustering based on activity profile, where cones are shaded proportional
to their activation frequencies (darker shades correspond to more frequent activation). If
cones were clustered by degree of logic sharing, two higher activity cones are clustered
with lower activity cones, resulting in both macro-gates having high activation frequency.
However, if they are clustered based on activation frequency, then both high activity cones
will be placed in the same macro-gate. The result is one frequently activated macro-gate
and one rarely activated, leading to better performance. A higher degree of gate replication
may result from that policy, as qualitatively shown in the figure. This additional replication
is amortized by the significant reduction in the total number of macro-gate simulations that
must be performed.

To estimate activity profiles we use profiling, first by simulating a micro-testbench
(10,000 cycles long) using the default clustering policy. During this simulation process,
we aggregate additional data corresponding to activation rates of each logic cone in each
layer. The activation frequency of a cone corresponds to the activation frequency of the set
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of its input wires, since that cone will need to be simulated if any of its input nets under-
goes a value change. Moreover, note that the input nets that form the base of the cone are
part of the monitored nets. Hence, we can compute the activation frequency of all cones
by recording the activation frequency of all monitored nets. Once these are computed, the
segmentation process is performed again, but this time cones are included in macro-gates
based on activation frequency, rather than by logic sharing. We evaluate the impact of this
alternate clustering method in Section 7.4. Finally, we note that this analysis needs to be
performed only once during compilation.

5.3.2 Flexible gap and lid. Gap and lid values need not be fixed throughout the en-
tire segmentation process. Indeed, it is typical that within each cone the lowest levels
have the most switching activity, while fewer and fewer gates switch on the higher lev-
els. Based on this observation, we define the annihilation ratio of a cone of logic as
1— ZZ;;Z‘;Z;’Z ’f(:igﬁﬁzgfﬁ;ﬁ ;‘3 That is, the ratio of cycles between, when the output
of the cone does not switch while its inputs are activated. Consequently, we could devise a
segmentation process which first sets an annihilation ratio, and then groups together cones
that produce that ratio in some number of levels. With this segmentation each macro-gate
could have a distinct gap value. We estimate adequate annihilation ratios by first per-
forming a segmentation with a fixed gap value of one, leading to all intermediate wires
to become monitored nets. A micro-testbench (10,000 cycles long) is then simulated on
this segmented version and the activation frequencies of all monitored nets are recorded.
The annihilation ratio of any cone of arbitrary gap can then be computed from these val-
ues. From this information, we can then apply the segmentation scheme just described and
generate macro-gates with distinct gap values.

One additional challenge brought forward by this approach is a potentially irregular
pattern of monitored nets in the final segmented circuit. Specifically, almost every level
may have a few monitored nets, leading to a situation where switching activity of monitored
nets has to be checked every few macro-gate simulations, thus impacting performance. We
overcome this issue by forcing a constant gap throughout each layer, and allowing different
gap on different layers. In this scenario, the gap value is set to be the number of levels that
create an acceptable value of annihilation ratio or higher, for all cones in that layer. In
our experiments, we found 0.25 to be an acceptable value for the annihilation ratio. The
performance benefits from this technique are described in Section 7.4.

6. SIMULATION PHASE

Once the compilation process is completed, simulation can be carried out directly on the
GPU co-processor. Macro-gates are simulated in an event driven fashion, alternating be-
tween execution of all active macro-gates in a layer and observation of the value changes in
the monitored nets of the next layer. The gates within a macro-gate are simulated by single
thread blocks in an oblivious fashion. There are two kinds of parallelism exploited in this
approach: first, independent macro-gates are simulated by distinct thread blocks possibly
executing concurrently on different multi-processors; and second logic gates at the same
level within a macro-gate are simulated in parallel by different threads.

6.1 Event-driven simulation of macro-gates

Each macro-gate corresponds to one thread block, and each multiprocessor executes mul-
tiple thread blocks. We found experimentally that allocating 3 thread blocks for each mul-
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layer 2

monitored nets
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Fig. 10. Event-driven simulation proceeds layer by layer at the macro-gate granularity. Within each layer,
activated macro-gates are simulated and monitored nets are analyzed to determine which subset of the next layer’s

macro-gates should be activated. Activated macro-gates are transferred by the CUDA scheduler to an available
multiprocessor for simulation.

scheduler (layer, monitored_nets) {
switching_monitored_nets = monitored_nets.previous

XOR monitored_nets.current;
for each (macro_gate in layer){
macro-gate.to_schedule = macro-gate.sensitivity_list
AND switching_monitored_nets;
if(macro—gate.to_schedule!=O){
active_list.append(macro_gate);
}

}

return active_list;

}

Fig. 11. Event-driven simulation scheduler. The scheduling algorithm considers all macro-gates in the next
layer of simulation, intersecting their sensitivity list with the monitored nets that have switched during the current
simulation cycle. Macro-gates with a non-empty intersection are scheduled for simulation in the next layer.

tiprocessor provides best performance in hiding memory access latency. Indeed, while
warps from one thread block is suspended waiting for data from device memory, one of
the others can execute.

The CUDA scheduler is responsible for determining which multiprocessor will execute
which thread blocks hence the scheduling of macro-gates; after they have been marked
for simulation, is implicit. Figure 10 illustrates the layered structure of macro-gates and
monitored nets, and shows how only activated macro-gates are scheduled for execution at
each layer. In addition, the pseudo-code for event-driven scheduling is presented in Figure
11.

Two kernels (part of a GPU program) alternately execute on the GPU, driving the sim-
ulation. First, the simulation kernel simulates all active macro-gates in a layer. This is
followed by execution of a scheduling kernel that evaluates the array of monitored nets to
determine which macro-gates should be activated in the next layer. The monitored nets ar-
ray is organized as a bit vector, with each net mapped to a memory location that is tagged
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Fig. 12. Gate simulation within a macro-gate. The logic gates within a macro-gate are simulated in an oblivious
fashion. Each thread is responsible for computing the output of one gate at a time: vertical waved lines connect
the set of logic-gates for which a single thread is responsible at subsequent time intervals. Note that each level is
followed by a synchronization step.

if a macro-gate simulation modifies the net’s value. Correspondingly, each macro-gate
has a sensitivity list where all the input nets triggering its activation are tagged. With
this structure, a simple bit-wise AND operation between the monitored nets array and a
macro-gate’s sensitivity list determines if any input change has occurred and whether the
macro-gate should be activated.

Data placement is organized as follows: primary inputs, outputs, register values and
monitored nets are mapped to device memory, since they must be shared among several
macro-gates (multiprocessors). The netlist structure is also stored in device memory and
accessed during each macro-gate simulation. However, all internal net values of an ac-
tivated macro-gate are stored in shared memory, since they are often shared among all
threads participating in the oblivious simulation of that macro-gate.

6.2 Oblivious simulation within macro-gates

Each macro-gate is simulated by a thread block and each thread within the block simulates
one logic gate, one level at a time. The threads in each thread block synchronize after each
level so that all output values of gates at a given level are written before the next level
gates are simulated. Figure 12 illustrates this process graphically and the pseudo-code is
outlined in Figure 13.

The value of each gate is computed by accessing its corresponding truth table, stored
in shared memory because of its frequent access. Also, intermediate net values (outputs
of internal gates) are stored in shared memory, since they are often accessed by several
gates and are the most frequently accessed values. Macro-gate topology is instead stored in
device memory and each single thread fetches the information for the gate it must compute.
Logic gates information is stored in a matrix: the location corresponds to the position of
the output net in the balanced macro-gate. Net values in shared memory follow a matching
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simulate_macro-gate(){
macro—gate_index=active_list[block_ID];
for each (level) {
launch_gate_simulation(assigned_gate[level][thread_ID]);
sync_gate_simulation();

}
}

Fig. 13. Oblivious simulation routine for individual threads. The routine is executed by each thread within
a thread block. Each thread operates on a different set of gates, and the simulation of an entire macro-gate is
complete after the last synchronization step.

layout, thus creating the scope of very regular execution suited for GPUs.

Each thread fetches the topology information corresponding to a gate, that is locations of
input nets and logic function that this gate should compute. Moreover, since the balanced
macro-gate has a regular structure, all such fetch operations are contiguous and thus can be
coalesced to a minimum number of device memory loads. Input net values are then read
from shared memory, and access to the corresponding truth table determines the output
value to be written to shared memory. At the completion of a macro-gate simulation, the
outputs generated are transferred to device memory for value change detection, used to
determine other macro-gates activations.

6.3 Testbenches

Testbenches are a critical aspect of simulation, since simulation is only useful when the
design is validated with a correct and relevant sequence of stimuli. Hence, for our GCS
simulator to be useful, we need to provide methods for incorporating testbenches. Since
the simulator is cycle-based, the function of the testbench is to read outputs after each sim-
ulation cycle and provide suitable inputs for the next cycle. Testbenches are implemented
as a separate GPU kernel, and their execution alternates with that of the simulation proper
kernels (macro-gate simulation and scheduling). At the end of each cycle, the outputs
produced by the circuit are read from device memory, and suitable inputs are written for
the simulation kernels to read during the next simulation cycle. There are several ways of
implementing a testbench kernel, each can be ideal for different types of designs. Below
we discuss two types: synthesizable testbench kernels and software kernels emulating a
behavioral hardware description.

6.3.1 Synthesizable testbenches. When the testbench can be designed to conform to
synthesizable hardware, high performance testbench kernels are possible. Since they can
themselves be mapped to a netlist, the simulation can be viewed as a co-simulation be-
tween two digital circuits. If the testbench entails additional complex structures such as
assertions, those can often be synthesized to a netlist, too, whose output is an output of the
testbench circuit. In this latter case, assertion output signals must be monitored every cycle
by the host to terminate simulation or record useful information when appropriate.

6.3.2  Software testbenches. In some cases, behavioral testbenches can be expressed as
GPU programs operating on a memory block in device memory to create input values at
every clock cycle. The best example of such testbenches are microprocessor test kernels,
often implementing simple kernels that can be used when simulating a processor design.
These designs are usually simulated by executing a binary program, which is uploaded
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| Design | Testbench # Gates | # Flops |
Alpha no pipeline recursive Fibonacci program 17,546 2,795
Alpha pipeline recursive Fibonacci program 18,222 2,804
LDPC encoder random stimulus 62,515 0
Wide LDPC encoder | random stimulus 125,003 0
JPEG decompressor 1920x1080 image 93,278 20,741
3x3 NoC routers random legal traffic 64,432 13,698
4x4 NoC routers random legal traffic 144,098 23,875
5x5 NoC routers random legal traffic 252,238 37,334
OpenSPARC core OpenSPARC regression suite 262,201 62,001
OpenSPARC 2 cores | OpenSPARC regression suite 610,670 | 124,002
OpenSPARC 4 cores | OpenSPARC regression suite | 1,221,340 | 248,004
Table I. Testbench designs used to evaluate the simulator.

to device memory. The corresponding testbench kernel simply serves memory requests
from the processor. For more complex processor designs, the memory controller can be
mimicked by a kernel which processes the processor’s transactions. A number of other
testbenches can make use of this solution, for example in the case of our experimental
JPEG decompressor design, the testbench was the image to be decompressed. The image
resided in device memory and the testbench kernel supplied bytes from the image to the
simulated circuit. Complex testbenches involving constructs that are arduous to represent
as a kernel in CUDA can still be executed on the host CPU, but an additonal communication
penalty is incurred with every cycle. Debugging support can also be implemented at the
cost of storing internal values in device memory and incurring the related memory latency
penalty.

7. EXPERIMENTAL RESULTS

We evaluated the performance of our simulator on a broad range of designs, from com-
binational circuits, such as LDPC encoders, to a SPARC multiprocessor of over 1 million
logic gates. The experimental designs were collected from OpenCores [OpenCores ] and
the Sun OpenSPARC project [OpenSPARC ]. Moreover, the Alpha processors and NoC
designs have been developed by student teams at the University of Michigan in advanced
digital design courses.

Table I reports the key characteristics of these designs: number of gates, flip-flops and
the type of testbench stimuli that was used during simulation. The first two designs are pro-
cessors implementing a subset of the Alpha instruction set, the first one is non-pipelined,
while the second has a 5-stage pipelined architecture. Both were simulated executing a
binary program that computed Fibonacci series recursively. The LDPC encoder outputs an
encoded version of its input, and was fed with random stimuli. The JPEG decompressor
decodes an input image. The NoC designs consist of 5-channel routers connected in a torus
topology and simulated with a random stimulus generator sending legal packets through
the network. Finally, the OpenSPARC designs use processor cores from the OpenSPARC
T1 multi-core chip(excluding caches) and run a set of assembly regressions provided with
Sun’s open source distribution. Several versions of the processors were used: single-core,
two cores, and four cores. The local cache activity was simulated by using playback of
pre-recorded signal traces from the processor-crossbar and processor-cache interactions.
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Fig. 14. Number of macro-gates and layers. The figure plots the total number of macro-gates for each design
using the baseline segmentation algorithm. The value above each bar indicates the number of layers in the
segmentation. Larger designs result in more macro-gates.

Design gap lid | #layers | # macro-gates | activation rate
Alpha no pipeline 7 | 100 23 56 18.5
Alpha pipeline 7 | 100 26 60 37.8
LDPC encoder 5 | 100 7 140 84.7
wide LDPC encoder 5 | 100 7 281 83.9
JPEG decompressor 5| 150 28 282 40.5
3x3 NoC routers 5 | 100 7 250 29.1
4x4 NoC routers 5| 100 7 451 29.5
5x5 NoC routers 5| 100 7 709 28.9
OpenSPARC core 5| 150 28 756 23.3
OpenSPARC-2 cores 51 150 28 1,489 249
OpenSPARC-4 cores 5| 150 28 2,955 26.0

Table II. Macro-gate segmentation statistics. The table reports the parameters used in macro-gate segmentation
for each design, the resulting number of macro-gates. It also reports the average activation rate of all macro-gates
in the design over the complete GCS simulation.

7.1 Macro-gates

We studied several aspects of the compilation phase, evaluating the effect of our segmenta-
tion algorithm on the generated macro-gates. Figure 14 shows the total number of macro-
gates generated for each design when using the gap and lid values determined by the base-
line method presented in Section 5.1.4. The same results are also used when following
the alternative policy of cone clustering based on activation profiling. On average, each
macro-gate included 400 logic gates. In addition, the number of layers generated for each
design are also reported above the bars in the figure.

The characteristics of the macro-gates that result from segmentation of each design, are
presented in Table II. We report the gap and lid values used to segment the designs, as
determined by the baseline method for choosing gap and lid, as described in Section 5.3.
Additionally, the fourth column indicates the number of layers obtained by segmenting
with the indicated gap. Note that the largest design, OpenSPARC-4 cores, includes many
more macro-gates in each layer that could be simulated concurrently (42 as computed
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Fig. 15. Gate replication during macro-gate segmentation. The graph plots the increase in the number of gates
in the design due to gate replication over all three segmentation algorithms discussed. The least replication is
provided by the baseline algorithm.
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Fig. 16. Geometry after baseline segmentation for the LDPC design. For each layer we report the number of
macro-gates as well as monitored nets in hundreds generated when segmenting the design according to baseline
algorithm.

in Section 5.3), since it has 2,955 macro-gates distributed over only 28 layers. The last
column reports the average activation rate of all macro-gates over the entire simulation of
the design.

As discussed in Section 5.1.4, gate replication is necessary to limit communication
among multiprocessors. As a result the total number of gates after macro-gate segmen-
tation process increases. Figure 15 reports this increase as a percentage over the baseline
number of gates for all three segmentation algorithms presented. The main goal of the
baseline segmentation algorithm is that of minimizing gate replication: correspondingly,
Figure 15 reports the lowest gate increase for this algorithm. The other two policies focus
on minimizing activation rates and present a high rate of gate replication.
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Fig. 17. Percentage of monitored nets. Percentage of all nets that are monitored for each testbench design after
applying baseline segmentation.

7.2 Monitored nets

The number of monitored nets has a high impact on simulator performance because they
must be checked after each layer of simulation, thus, segmentation strives to keep the
fraction of nets to be monitored low. As an example, in Figure 16 we plot the structure of
the LDPC encoder design after segmentation: the number of macro-gates and monitored
nets are shown for each layer. Note that, middle layers have more macro gates. In contrast
lower layers tend to generate the most monitored nets as a side effect of ALAP levelization.

We also analyzed monitored nets as a fraction of total nets in the design. Figure 17 re-
ports our findings over all experimental designs after the segmentation phase. We note that
the simpler designs, the pipelines, presents a markedly smaller percentage of monitored
nets: this is due to the small number of macro-gates in these designs.

7.3 Macro-gate activation

The activation rate of macro-gates is an important metric for event-driven simulation. The
goal of an event-driven simulator is to keep the activation rates at a minimum, so as to
minimize the number of macro-gates simulated at every clock cycle. In order to achieve
this, the segmentation algorithm should generate macro-gates so that the fraction that is
frequently active is small.

In Figure 18, we plot the cumulative distribution of macro-gates with respect to their
activation rates, when applying the baseline segmentation policy. For example, the non-
pipelined processor design (No pipe) shows that 80% of its macro-gates are active for only
20% or less of the total simulation cycles. Most of the other designs follow a similar trend,
with the majority of the macro-gates having an activation rate between 10 and 30%. Thus,
the baseline segmentation algorithm partitions the design effectively for event-driven sim-
ulation. An exception to the common trend is the LDPC design, where most macro-gates
experience a high activation rate (> 80%). In this design, most logic gates are active during
each simulation cycle, thus leading to exceptionally high macro-gate activation rates. The
designs not reported in the Figure present cumulative distributions similar to those of the
OpenSPARC and NoC designs.

Finally, in Figure 19 we evaluate the impact of activation rates on the performance of
our GCS simulator. For each of our experimental designs the scatter plot reports their
average activation rate and speed up over the sequential simulator. Note that overall there
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Fig. 19. GCS relative speedup versus activation rate. The scatter plot shows the relation between these two
parameters for a representative subset of our experimental designs indicating an approximately linear relation.

is approximately a linear relation between these two parameters. At first this trend may
seem counter-intuitive, because we would expect lower performance from designs with
high activation rates. However note that high activation rates impair the performance of
the sequential simulator because may logic gates are concurrently available for execution,
but only one can be simulated at a time. In contrast GCS can schedule many macro-gates
concurrently, gaining further performance speedup over a sequential simulator.

7.4 Impact of macro-gate segmentation heuristics

We now examine the impact of different segmentation algorithms on activation rates. Us-
ing two representative designs, LDPC and JPEG, in Figure 20 we plot the cumulative
distribution of macro-gates with respect to activation rates. The plots show all three algo-
rithms presented: baseline segmentation (Section 5.1.4), activity profiling (Section 5.3.1)
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Fig. 20. Cumulative distribution of macro-gates with respect to activation rates for LDPC and JPEG designs.
The plot shows the trends for all three segmentation heuristics presented: baseline segmentation, activation rate
profiling and flexible gap and lid. The flexible gap and lid heuristic performs the best with the greatest improve-
ment on macro-gates with low activation rates.

GPU-based simulator Commercial simulator
Design system level(s) | balancing(s) | total(s) (s)
Alpha no pipeline 13 8 21 7
Alpha pipeline 21 15 36 13
LDPC encoder 78 47 125 63
JPEG decompressor 245 92 337 156
3x3 NoC routers 212 164 376 189
4x4 NoC routers 302 130 432 237
OpenSPARC core 456 187 643 275
OpenSPARC-2 cores 873 259 1,132 504
OpenSPARC-4 cores 1,670 575 2,245 1,278

Table III. Compilation performance. The table compares the time in seconds required for compilation, for both
our GCS simulator (with baseline policy) as well as a commercial sequential simulator.

and flexible gap and lid (Section 5.3.2). Note that the baseline segmentation line is the
same as in Figure 18.

Note that in both plots the activation rate profiling algorithm brings a noticeable advan-
tage leading to a larger fraction of macro-gates with lower activation rates. This is the
result of gathering cones with high activation rates together in a small number of macro-
gates. Lower activation rates lead to fewer macro-gate simulations and fewer device mem-
ory accesses, with a resulting 1-12% performance improvement over the use of baseline
segmentation (as shown in Table I'V).

The flexible gap and lid algorithm present an even more marked improvement, with
an overall performance benefit of up to 15% over the baseline approach (see Table IV).
However this significantly more complex algorithm also brings an increase in compilation
time.

7.5 Design compilation

We now consider the time spent compiling the design for simulation on the GPU-based tar-
get. Table III reports the times for system-level compilation and for the balancing phase.
The table also provides the total compilation time and compares it against that of a commer-
cial logic simulator executing on a general purpose machine. The commercial simulator
that we used for the comparison is considered among the fastest available in the market
today. Note that the compilation time is not a critical aspect in the performance of a sim-
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GCS simulator

baseline activation flexible
segmentation rate gap and lid
simulation | sequential | time |speedup | time | % extra | time | % extra
Design cycles time(sec) | (sec) | (times) | (sec) |speedup| (sec) |speedup

Alpha no pipe 12,889,495 31,678 | 2,567 | 12.34x| 2435| 5.14% | 2,401 | 6.47%
Alpha pipeline | 13,423,608 54,789 | 7,781 7.04x | 7,561 | 2.83% | 7,523 | 3.32%

1,000,000 | 115,671 | 2,578 | 44.87x| 2,421| 6.09% | 2,345 | 9.04%
10,000,000 | >48 hrs {25,973 | 43.49x|24,321| 6.36% |23,451| 9.71%

1,000,000 | 257,891 | 5,832| 44.22x| 5,761 | 1.22% | 5,667 | 2.83%
10,000,000 | >72hrs|25,973| 43.29x| 2,567 | 1.44% | 2,567 | 2.85%
JPEG decomp. 2,983,674 12,146 599 | 20.28x 521 | 13.02% 509 | 15.03%
3x3 NoC routers | 1,967,155 3,532 397 8.90x 386 | 2.77% 374 | 5.79%
4x4 NoC routers | 10,000,001 28,867 | 3,935| 7.34x| 3,842| 2.36% | 3,774| 4.09%
5x5 NoC routers | 10,000,001 48,113 | 6,789 7.09x | 6,654 1.99% | 6,451 | 4.98%
SPARC core x1 | 1,074,702 27,894 | 6,077 4.59x| 5,451|10.30% | 5,321 |12.44%
SPARC core x2 | 1,074,702 40,378 | 8,229 | 491x| 7,456 9.39% | 7,342 |10.78%
SPARC core x4 | 1,074,702 61,678 10,983 5.62x | 10,005| 8.90% | 9,876 |10.08%

LDPC encoder

wide LDPC enc.

Table IV. GCS simulator performance. Performance comparison between our GCS event-driven simulator and a
commercial sequential simulator. Our prototype simulator outperforms the commercial simulator by 13 times on
average when using the baseline segmentation algorithm. Further performance improvements are obtained when
using activation rate profiling and flexible gap and lid segmentation. The speedup reported for these techniques
is relative to using baseline segmentation.

ulator, since this time can be amortized over many simulations and over very long (hours
or days) simulation runs. However, we felt it was relevant to convey information on the
approximate time scale of compilation performance.

7.6 Performance evaluation

Finally, we evaluated the overall performance of our GCS event-driven simulator against
a multi-threaded, commercial, event-driven, sequential simulator. Our graphics copro-
cessor was a CUDA-enabled NVIDIA 8800GT GPU with 14 multiprocessors equipped
with 512MB of device memory. The GPU operated at 600MHz for the processors and at
900MHz for the memory. The current implementation has 83% occupancy and achieves
a bandwidth of 20.4 GB/s when transferring data to device memory. The commercial
simulator executed on a 2.4 GHz Intel Core 2 Quad running Redhat Enterprise Linux 5,
leveraging four parallel simulation threads. The GPU simulator performed compilation on
the same host machine used by the commercial simulator, and was connected to it as well.
For each design, Table IV reports the number of cycles simulated, the runtime in seconds
for both the GPU-based simulator and the commercial simulator (compilation times are
excluded), and the relative speedup for all three types of segmentation heuristics. Note
that our prototype simulator outperforms the commercial simulator by 4 to 44 times when
using baseline segmentation. Performance can be improved by up to 15% in certain cases
by using our more advanced segmentation techniques. Despite the LDPC encoder having a
very high activation rate, we report the best speedup for this design. As mentioned before,
most logic gates in this design are switching in each cycle: this affects our activation rates,
but also hampers the sequential simulator performance. Thus, the speedup obtained is due
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GPU bound | CPU bound Relative
Design (sec) (sec) CPU time (%)
Alpha pipeline 7,564 217 2.87
JPEG decompressor 576 23 3.99
3x3 NoC routers 385 12 3.11
OpenSPARC core 5,665 419 7.40

Table V. Time spent on CPU and GPU execution during simulation for a few representative designs. The time
spent in CPU is due to data transfers and kernel switching.

to the sheer parallelism of our simulator architecture and underlying hardware.

For all designs used in our evaluation the testbenches are implemented as GPU ker-
nels that alternate execution with the simulation kernels. The data sets needed by the
testbenches are also stored in the GPU device memory. Hence, the time spent in CPU
computation during the simulation phase is minimal: it includes the sum of (i) the time
spent in transferring all data sets for simulation and testbench to the device memory, (ii)
copying it back after simulation ends and (iii) the penalty for invoking different kernels
when switching between simulation proper and testbench execution. Quantitative values
corresponding to these times are presented in Table V for a few representative designs.
Overall, the time spent on the CPU accounted for less than 8% of the execution for all
testbenches. For the SPARC testbenches, which are closest to the 8% cap, large memory
transfers were necessary for the long replay traces.

8. CONCLUSIONS

In this work, we have presented GCS, a novel GPU-based logic simulator that leverages the
high degree of parallelism available in general purpose GPUs. By exploring the concur-
rency in the simulation of gate-level netlists and providing a number of optimizations tuned
for the underlying GPU architecture, we could realize a 13 times speedup over commercial-
strength sequential implementations of logic simulation, on average.

The simulator is event-driven at system-level and oblivious within each block of logic,
thus capturing both the concurrency benefits provided by SIMT execution on a GPU, as
well those of event-driven simulation in simulating only a small fraction of a netlist’s gates.
Our simulator carves out macro-gates(that is, blocks of logic) from the structural netlist of
a design and schedules them for simulation on the multiprocessors of the NVIDIA CUDA
architecture, only if and when they are activated by switching events at their inputs.

We show in our experimental results that GCS is capable of delivering a remarkable per-
formance speedup on large, industrial-scale designs of over a million gates, thus pushing
further away the limits of validation for the digital design industry.
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