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Abstract—Ambiguity or uncertainty is a pervasive element of
many real world decision making processes. Variation in decisions
is a norm in this situation when the same problem is posed
to different subjects. Psychological and metaphysical research
had proven that decision making by human is subjective. It is
influenced by many factors such as experience, age, background,
etc. Scene understanding is one of the computer vision problems
that fall into this category. Conventional methods relax this
problem by assuming scene images are mutually exclusive; and
therefore, focus on developing different approaches to perform
the binary classification tasks. In this paper, we show that
scene images are non-mutually exclusive, and propose the Fuzzy
Qualitative Rank Classifier (FQRC) to tackle the aforementioned
problems. The proposed FQRC provides a ranking interpretation
instead of binary decision. Evaluations in term of qualitative and
quantitative using large numbers and challenging public scene
datasets have shown the effectiveness of our proposed method in
modeling the non-mutually exclusive scene images.

Index Terms—Scene understanding, fuzzy qualitative reason-
ing, multi-label classification, computer vision, pattern recogni-
tion

I. INTRODUCTION

One of the biggest challenges in real world decision making
process is to cope with uncertainty, complexity, volatility and
ambiguity. How do we deal with this growing confusion in
our world? In scene understanding, an important and yet
difficult image understanding problem due to their variability,
ambiguity, wide range of illumination and scale conditions
falls into this category. The conventional goal of the works
is to assign an unknown scene image to one of the several
possible classes. For example, Fig. 1(a) is a Coast class scene
while Fig. 1(c) is a Mountain class scene.

Intentionally, most state-of-the-art approaches in scene un-
derstanding domain [1]–[4] are exemplar-based and assume
that scene images are mutually exclusive, P (A ∩ B) = 0.
This simplifies the complex problem of scene understanding
(uncertainty, complexity, volatility, and ambiguity) to a simple
binary classification task. Such approaches learn patterns from
a training set and subsequently, search for the images similar
to it. As a result of this, classification errors often occur when
the scene classes overlap in the selected feature space. For
example, it is unclear that in Fig. 1(b) is a Coast class scene
or a Mountain class scene.
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(a) Coast (b) ? (c) Mountain

Fig. 1. Example of ambiguous scene between Coast and Mountain.

Inspired by the fuzzy set theory proposed by Lotfi Zadeh
[5], we argue that scene images are non-mutually exclusive
where different people are likely to respond inconsistently.
Here, we define inconsistent as the scenario where there is
no definite answer (in computational term, a binary or linear
answer) to a problem. This notion became popular among
researchers and technologists due to wide spectrum of appli-
cations [6], [7]. In scene understanding, however, only a few
numbers of the research works are aware of and had tackled
this problem. The notable ones are [8]–[10], where a multi-
label scene classification framework is proposed. However,
these approaches are not practical due to: firstly, the work
requires human intervention to manually annotate the multi-
label training data. This is a tedious job that leads to a large
number of classes with the sparse number of sample [11].
Secondly, the annotated image’s classes are potentially bias as
different people tend to respond inconsistently [12] and finally,
it does not able to handle multi-dimension data.

In this paper, our aim is to study a novel approach to remedy
the aforementioned problems. We propose the Fuzzy Qual-
itative Rank-Classifier (FQRC) to relax the assumption that
scene images are mutually exclusive. Therefore, a scene can be
somewhat arbitrary and possibly sub-optimal. We compare the
results from FQRC with an online survey to show that there is
an influence of human factors (background, experience, age,
etc.) in decision making and hence conclude that assuming
scene images are mutually exclusive is impractical. Qualitative
and quantitative comparisons to the state-of-the-art solutions
have shown the strength and effectiveness of our proposed
method.

In summary, our main contribution is to show that scene
images are non-mutually exclusive. This is supported by an
online survey that participated by more than 150 candidates
from different ethnics and age using the OSR dataset [1]. The
reason is to raise the awareness of computer vision community
regarding this very important, but largely neglected issue.
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With this in mind, we propose the FQRC to model scene
images in a non-mutually exclusive manner, where we develop
an inference that outputs ranking result. In advance, FQRC
provides a resolution toward conventional solutions which
either perform binary classification [1]–[4] or require human
intervention [9], [10].

The rest of the paper is organized as follows. Section II
covers the related works in scene understanding. Section III
presents our proposed framework which consists of two stages,
the learning and inference stages. The intuition and stability
analysis of our proposed approach are discussed in Section
IV. Section V demonstrates the ranking interpretation. Section
VI shows the experiment results, and finally, we conclude in
Section VII.

II. RELATED WORK

Scene understanding has been one of the mainstream tasks
in computer vision. It differs from the conventional object
detection or classification tasks, to the extent that a scene is
composed of several entities that are often organized in an
unpredictable layout [13]. Surprisingly from our findings, there
is very minimal or almost none that had tackled this problem
using the fuzzy approach. The early efforts in this area were
dominated by computer vision researchers who focus on using
machine learning techniques. These prior works denoted the
scene understanding problem were to assign one of the several
possible classes to a scene image of unknown class.

Oliva and Torralba [1] proposed a set of perceptual dimen-
sions (naturalness, openness, roughness, expansion, rugged-
ness) that represents the dominant spatial structure of a scene
- the spatial envelope as scene representation. Then, a support
vector machine (SVM) classifier with Gaussian kernel is
employed to classify the scene classes. Fei-Fei and Perona [2]
proposed the Bayesian hierarchical model extended from latent
dirichlet allocation (LDA) to learn natural scene categories. In
their learning model, they represent the image of a scene by
a collection of local regions, denoted as codewords obtained
by unsupervised learning, finally they choose the best model
as their classification result. Bosch et al. [3] inspired from
the previous work and proposed probabilistic latent semantic
analysis (pLSA) incorporate with KNN for scene classifi-
cation. Vogel and Schiele [4] used the occurring frequency
of different concepts (water, rock, etc.) in an image as the
intermediate features for scene image classification. The two-
stage system makes use of an intermediary semantic level of
block classification (concept level) to do retrieval based on the
occurrence of such concepts in an image.

However, in scene classification task, it is very likely that
a scene image can belongs to multiple classes. As a result
of this, all the aforementioned solutions that assumed scene
classes are mutually exclusive are not practical and often
lead to classification errors. We believe that scene images are
somewhat arbitrary and possibly sub-optimal as depicted in
Fig. 1. To the best of our knowledge, there are numerous
multi-label classification research [11], [14]; however, only
a few were focused in the domain of scene understanding.
Boutell et al. [9] proposed an approach using SVM with

cross-training to build the classifier for every base class. Then
maximum a posteriori (MAP) principle is applied with the aid
of prior probability calculation and gamma fit operation toward
the single and multi-label training data. This is to obtain the
desired threshold to determine whether a testing sample is fall
into single label event or multiple label events.

Inspired by [9], Zhang and Zhou [10] introduced multi-label
lazy learning K-nearest neighbor (ML-KNN) as their classifi-
cation algorithm. This is to resolve the inefficiency of using
multiple independent binary classifier for each class by using
SVM. Statistical information from the training set and MAP
principle is utilized to determine the best label for the test
instance. Unfortunately, both these methods required manual
human annotation of multi-label class training data to compute
the prior probability based on frequency counting of training
set. This is an impractical solution since a human decision is
bias and inconsistent. It also leads to large number of classes
with sparse sample [11]. Besides that, human reasoning does
not annotate an image as multi-class. For instance, referring
to Fig. 1(b), it is very rare for one to say that “this is a Coast
+ Mountain class scene image”. In general, one would rather
comment “this is a Coast” or “this is a Mountain” scene.

In what constitutes the closer work to ours in the fuzzy
domain, Lim and Chan [8] proposed a fuzzy qualitative
framework and Cho and Chang [15] employed a simple
fuzzy logic with two monocular images to understand the
scene images. However, their work suffered from 1) finding
the appropriate resolution to build their 4-tuple membership
function. Currently, the model parameters are chosen manually
based on prior information and in a trial-and-error manner.
This is a very tedious and time consuming approach; 2) only
able to accommodate two feature vectors as input data; 3) the
ranking is undefined and finally 4) tested on a very limited
and easy dataset (a dataset that contains only 2 scene images).

In this paper, we extend the work of [8] by learning the 4-
tuple membership function from the training data. In order to
achieve this, we used the histogram representation. It relaxes
the difficulty of obtaining multi-label training data as to [9],
[10] where the training steps require human intervention in
manually annotate the multi-label training data. This is a
daunting task as human decisions are subjective and huge
amount of participants are needed. Besides that, a ranking
method to describe the relationship of image to each scene
class is introduced. In scene understanding, in particular where
we model the scene images as non-mutually exclusive, the idea
of inference engine with ranking interpretation is somehow
new and unexplored.

III. FUZZY QUALITATIVE RANK CLASSIFIER

A. Basic Notation

The general framework of the proposed FQRC consists of
four stages: 1) Pre-processing; 2) Learning model; 3) Inference
and 4) Ranking interpretation as illustrated in Fig. 2. Let
I = {I1, I2, . . . , IN} denotes the N scene images. During
the pre-processing stage, any existing feature representation
such as texture component, color spectrum and interest point
can be employed as an input to our learning model. In
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Fig. 2. Overall framework of the proposed Fuzzy Qualitative Rank Classifier
which consists of Pre-processing, Learning Model, Inference, and Ranking
Interpretation.

this paper, we have employed the attributes [16] as our
image features. Let T denotes a feature extraction function,
T : I → xk, where xk is a set of feature values belong to
the k-th class, k ∈ {1, 2, . . . ,K}, of input space X , K is
the number of classes label. Input data, xk ∈ X , is defined
as xk = {x1, x2, . . . , xJ}k, where xj is a feature value,
j ∈ {1, 2, . . . , J}, and J is the number of features. We denote
sample (x, y) as z ∈ Z of sample space Z .

B. Motivation

In general, the task of a classifier (we denote it as a function
f ) is to find a way, which, based on the observations, assigns
a sample to a specified class label, y ∈ (Y ⊆ {1, 2, . . . ,K}),
where Y is the output space. The task is to estimate a function
(f ∈ F) : x→ y, where F is the function space. A function
f is i.i.d., generated using the input-output pairs according to
an unknown distribution P (x, y) so that f can classify unseen
samples (x, y),

(x1, y1), . . . , (xN , yN ) ∈ (X × Y)N (1)

The best function f , which one can obtain is the one that
minimizes the bound of error represented by a risk function
(2). However, one must note that, we could not directly
compute the risk R(f) since the probability of P (x, y) is
unknown.

R(f) =

∫
loss(f(x), y)P (x, y) (2)

In scene understanding, (2) is much difficult to achieve
since scene images are non-mutually exclusive due to the
inconsistent of human decision, where different people tend to
provide different answers. Theoretically, the importance of the
non-mutually exclusive data can be derived from the inequality
Chernoff bound [17]:

P

{∣∣∣∣∣ 1

N

N∑
i=1

xi − E[x]

∣∣∣∣∣ ≥ ε
}
≤ 2 exp(−2Nε2) (3)

This theorem states that the probability of sample mean differ
by more than ε from the expected mean is bounded by the
exponential that depends on the number of samples N . Note
that if we have more data, the probability of deviation error
will converge to zero. However, this is not true because of
uniform convergence of function space F [18]. Using the risk
function (2) we can represent the inequality (3) as follows,

P {|Remp(f)−R(f)| ≥ ε} ≤ 2 exp(−2Nε2) (4)

where Remp(f) and R(f) are the empirical and actual risk,
respectively. Inequality (4) shows that for a certain function
f it is highly probable that the empirical error provides good
estimates of the actual risk. Luxburg and Scholkopf [18] stated
that the empirical risk Remp(f) can be inaccurate when N →
∞ since Chernoff bound only holds for a fixed function f
which does not depend on the training data. But in contrary, f
does depend on training data. Therefore, they came up with the
uniform convergence and obtained the following inequality:

P

{
sup
f∈F
|Remp(f)−R(f)| ≥ ε

}
≤ 2 exp(−2Nε2) (5)

Suppose we have finitely g functions, F = {f1, f2, . . . , fg}
and Ci = |Remp(fi)−R(fi)| ≥ ε, then using the union bound
we can represent (5) as:

P

{
sup
f∈F
|Remp(f)−R(f)| ≥ ε

}
= P (C1 ∨ C2 ∨ · · · ∨ Cg)

=

g∑
i=1

P (Ci)−
{
D2 +D3 + · · ·+Dg

}
≤ 2g exp(−2Nε2)︸ ︷︷ ︸

1st term

− bound(D2 +D3 + · · ·+Dg)︸ ︷︷ ︸
2nd term

(6)

where Di is the sum of the probabilities of every combination
of i event, e.g, Dg = P (C1 ∧ C2 ∧ · · · ∧ Cg). This leads to a
bound which states that the probability that empirical risk is
close to the actual risk is upper bounded by two terms. The first
term is the error bound because of the mutually exclusive data
and the second term is due to the non-mutually exclusive data.
Most of the conventional classification methods, however, only
utilize the mutually exclusive part. In contrast, our proposed
method - the FQRC models both the mutually and non-
mutually exclusive parts.

C. Learning the FQRC

In our learning model, we learn the non-mutually exclusive
scene data with parametric approximation of the member-
ship function where the membership distribution of a normal
convex fuzzy number is approximated by the 4-tuple. This
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Fig. 3. Parametric representation of a histogram, x is the feature value, n de-
notes the occurrence of training data from its respective bin n1, n2, . . . , nB .
a and b represent the lower and upper bound of µ̄, while a − α and b + β
represent the minimum and maximum of x value. The dominant region
(mutually exclusive) is the area of [a, b]. The intersection area (non-mutually
exclusive) is the areas of [a− α, a] and [b, b+ β].

fuzzy representation of qualitative values is more general than
ordinary (crisp) interval representations, since it can repre-
sents not only the information stated by a well-determined
real interval but also the knowledge embedded in the soft
boundaries of the interval [19]. Thus, the fuzzy representation
removes, or largely weakens (if not completely resolving),
the boundary interpretation problem, achieved through the
description of a gradual rather than an abrupt change in the
degree of membership of which a physical quantity is mapped
onto a particular qualitative value. It is, therefore, closer to
the common sense intuition of the non-mutually exclusive
problem.

According to [19]–[25], such representation of the 4-tuple
fuzzy number is a better qualitative representation as the repre-
sentation has high resolution and good compositionality. The
dominant region of 4-tuple indicates the mutually exclusive
part, while the intersection between 4-tuple indicates the non-
mutually exclusive, as shown in Fig. 3. The 4-tuple fuzzy
number is represented as m = {a, b, α, β} with the condition
a < b and ab > 0. There will be J × K matrix containing
4-tuple for each feature number and class, as in (7). Those
4-tuples are represented in the form as mjk = {a, b, α, β}jk.

M =


m11 m12 · · · m1K

m21 m22 · · · m2K

...
...

. . .
...

mJ1 mJ2 · · · mJK

 (7)

The representation in (7) is to conserve the appropriate
membership function, m, of each respective feature (row) for
each scene class (column). This is opposed to [9], [10] which
require human intervention in manually annotate the training
data as prior information.

In order to learn the 4-tuple fuzzy number, we have chosen
to use the histogram representation. As illustrated in Fig. 3, it
consists of tabular frequencies, shown as adjacent rectangles,
erected over discrete intervals (bins), with an area equal to
the frequency of the observations in the interval. The height
of a rectangle is also equal to the frequency density over the

interval, i.e., the frequency divided by the width of the interval.
The total area of the histogram is equal to the number of data.

More specifically, a histogram is a function that counts the
number of observations, n, that fall into each of the disjoint
categories (known as bins), whereas the graph of a histogram
is merely one way to represent a histogram. Thus, if we let
N be the total number of observations and B be the number

of bins, then N =
B∑
i=1

ni. In the proposed method, for every

feature and class label, xjk = {xjki }Ni=1, we create a histogram
in order to obtain the mjk.

We utilize the histogram in representing the occurrence of
the training data to the corresponding feature values with an
empirical bin width. There is no ”best” number of bins, and
different bin sizes can reveal different features of the data.
Some theoreticians have attempted to determine an optimal
number of bins [26]–[28], but these methods generally make
strong assumptions about the shape of distribution. Depending
on the actual data distribution and the goals of analysis,
different bin number may be appropriate. So an experiment
is usually needed for this purpose. Similarly, we utilize (8) to
find the bin width, v. ⌈

v =
∧x− ∨x

B

⌉
(8)

where d • e indicates the ceiling function and B = 50 is the
total number of bins chosen empirically in our framework. We
calculate the occurrence of the training data in each bin and
yield a feature vector of N = {n1, n2, · · · , nB}. From here,
we locate the dominant region, µ̄.

µ̄ =

∑B
i=1 ni
b

(9)

where b denoted the total number of bin which satisfy n > 0.
The dominant region (mutually exclusive) is defined as the

region where the distribution of training data is higher than
µ̄. We mark this region with membership value equals to 1.
By referring to Fig. 3, the parameters of a and b of m can
be determined as the lower and upper bound of the area that
possess membership value equals to 1. The intersection region
(non-mutually exclusive) a−α and b+β can be determined as
the lower and upper bound of the area that possess membership
value equals to 0 respectively. Algorithm 1 summarizes the
learning process with a set of training image with K classes.

D. Inference

Our goal here is to relax the mutually-exclusive assumption
on the scene data and classify an unknown scene class into
their possibility scene classes and therefore, one scene image
can belongs to multiple scene classes. This is unlike the
conventional fuzzy inference engine that the de-fuzzification
step eventually derives a crisp decision.

Given a testing scene image and its respective feature values
x, the membership value µ of feature j belong to class k can
be approximated by (10).
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Algorithm 1 LEARNING FRAMEWORK

Require: A training dataset
Step 1: Grouping images Group every image to its respec-
tive class label, I→ {Ik}Kk=1.
Step 2: Acquiring the feature values for all Ik, perform
preprocessing to obtain xk where J attributes are acquired.
Then compute xjk = {xjki }Ni=1.
Step 3: Learning Model
for all j such that 1 ≤ j ≤ J do

for all k such that 1 ≤ k ≤ K do
Build a histogram of xjk
Compute µ̄ with (9)
Obtain mjk = {a, b, α, β}jk based on µ̄

end for
end for
return M

µjk(xj) =


0, xj < a− α

α−1 (xj − a+ α), a− α 6 xj < a
1, a 6 xj 6 b

β−1 (b+ β − xj), b < xj 6 b+ β
0, xj > b+ β

(10)

where the parameter a, b, α, and β are retrieved from mjk of
the learnt FQRC model. We then calculate the product, Pk of
membership values of all the attributes for each class, k using
(11). Finally, we normalize the Pk and denote as rk (12),

Pk =
J∏
j=1

µjk(xj) (11)

rk =
Pk∑
P

=

∏J
j=1 µjk(xj)

Z
(12)

where Z is the normalizer. The intuition to use the product
of membership values of all the attributes for each scene
class, Pk is to calculate the confident value of each class.
This is the core to relate the inference mechanism closer to
the principle of human reasoning and relax that scene images
are mutually exclusive. If the attribute of a testing data is
dominantly belonged to a certain class, k (which means the
membership value of that particular attribute, µjk = 1), and
the same for other attributes, at the end of the Pk calculation,
testing data belongs to that particular class will be very definite
because the product between values 1 is still equal to 1. On the
other hand, if the uncertainties for the attributes (membership
value of the attribute µjk < 1) are cumulated, the confident
value decreases. In mathematical view, the products between
values of less than 1 will eventually produce smaller value.

1) Summary: Fig. 4 and 9(g) show an example walk-
through with a testing image, s and a learnt FQRC model.
Let us denote the attributes of the testing image (Fig. 9(g)) as
x1 = −0.1545 and x2 = −1.7597, respectively. For simplicity,
we used only 2 attributes in this example but not limited to.
By employing the learnt FQRC model (Fig. 4), we compute
Pk as to (11) and rk as (12).

To the end, we obtain r1 = 0.5561, r2 = 0.0264,
r3 = 0.0000 and r4 = 0.4175, respectively. Each of these
values represent that the scene s has the confident value r1
belongs to “Insidecity”, r2 belongs to Coast, r3 belongs to
“Opencountry”, and r4 belongs to Forest where

∑
r = 1.

From human perspective, this result is reasonable as in the
picture, there are characteristics of “Incidecity” and “Forest”.
For examples, there are buildings, vehicles, as well as trees.
Therefore, in the inference process, we observed high degree
of memberships of the attributes from both classes and thus
infer a high value for r1 and r4. While, on the other hand, it
possesses almost zero for r2 and zero for r3 because of low
or zero value determined from the respective attributes.
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(a) Class 1, µ = 1.0000

−4 −3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Class 1, µ = 1.0000
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(c) Class 2, µ = 0.3046
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(d) Class 2, µ = 0.1558
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(e) Class 3, µ = 0.5406
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(f) Class 3, µ = 0.0000
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(g) Class 4, µ = 0.7508
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(h) Class 4, µ = 1.0000

Fig. 4. The degree of membership, µ, of the attributes (‘Natural’ on the left,
‘Open’ on the right) for the respective classes.

As discussed, most state-of-the-art approaches assumed
that scene images are mutually-exclusive. Therefore, different
strategies to a built a sophisticated binary classifier (inference
engine) were proposed in those state-of-the-art approaches. As
opposed to these solutions, our work argued that scene im-
ages are non-mutually exclusive. Hence, our inference engine
contributes in such a way that where ranking interpretation
replaces the binary decision. Nevertheless, we provide compre-
hensive study and stability analysis of our proposed framework
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in the following section.

IV. FUZZY MEMBERSHIP FUNCTION AND STABILITY
ANALYSIS

Before we proceed to the final stage of the FQRC, we
provide the intuition of using the 4-tuple membership function
in our proposed framework to solve the non-mutually exclusive
problem. In addition, the stability analysis of our overall
framework is discussed.

A. Fuzzy membership function

In this section, we discuss the intuitive idea of using 4-tuple
fuzzy membership function in our framework. If we define our
loss function as,

`(fi(x), y) =

0 if y = max
k∈{1,...,K}

ri(x)

1 otherwise
(13)

where ri(x) = {ri1, . . . , riK |rik ∈ [0, 1]} is the output of the
inference of function i, the scalar output rik is defined in (12)
and

∑K
k=1 r

i
k = 1. Suppose we have finitely g functions, then,

our objective is to find a function f∗(x) that minimize the loss
function,

f∗(x) = arg min
y∈{1,...,K}

g∑
i=1

`(fi(x), y) (14)

In order to get the interpretation of (14) we will use the
concept of maximum entropy. In information theory, the prin-
ciple of maximum entropy is to minimize the amount of prior
information built into the distribution. More specifically, the
structure of maximum entropy problem is to find a probability
assignment (or membership function µjk ∈ [0, 1]) which avoid
bias agreeing with any given information. In this case, while
looking at (14), the membership function µjk captures such
prior information. Inspired by Miyamoto and Umayahara [29],
we utilize the maximum entropy to get the interpretation of 4-
tuple. For simplicity we omit i, and the objective of maximum
entropy,

max−
∑
j

∑
k

µjk logµjk (15)

Subject to the constraint
∑
k

∏
j µjk

Z = 1 and f∗(x) = c,
where c is a constant. Then using Lagrange multipliers,

J =−
∑
j

∑
k

µjk logµjk + λ1

(
1−

∑
k

∏
j µjk

Z

)
+ λ2(c− f∗(x))

(16)

For simplicity, we treat µjk as a fixed length vector since
we assume x is discrete, then we have,

∂J
∂µjk

= −1− logµjk −
λ1
Z
− λ2

∂f∗(x)

∂µjk
(17)

Setting ∂J
∂µjk

= 0 and get µjk yields,

µjk = exp

(
−
(

1 +
λ1
Z

+ λ2
∂f∗(x)

∂µjk

))
(18)

Actually this result is similar when we minimize or maximize
the objective function of,

min/max−
∑
j

∑
k

µjk logµjk − λ2f∗(x) (19)

With subject to the constraint
∑
k

∏
j µjk

Z = 1. After taking
min-max sign change and make the constant λ = 1/λ2 for
brevity, we get the following objective,

min f∗(x)− λ
∑
j

∑
k

µjk logµjk

subject to
∑
k

∏
j µjk

Z
= 1

(20)

If we compare (20) with the formula of a classifier with
regularization, f + λR, the 4-tuple membership function
implicitly models the regularization. In details, the 4-tuple
membership function with µjk = 1 (mutually exclusive
part) models the classifier while the transition of membership
function [0, 1] (non-mutually exclusive part) implicitly models
the regularization.

B. Stability Analysis

In this section, we discuss the robustness of the proposed
framework in terms of stability analysis. In particular, the
concept of stability brought by Bousquet and Elisseeff [30] is
employed as it gives guarantee of a “good” learning machine
by deriving generalization error bounds. As a matter of fact,
the error bounds are derived from the stability. More specifi-
cally, the stability measures how much the output will change
for small changes in the training data. One said an algorithm
that is stable, whose output will not depend on a single sample,
tends to have generalization error that is close to the empirical
error bounded by a constant. We define stability as follows,

Definition 4.1 (Stability): Let (xi, yi) = zi(∈ Z) be a
sample from a set of samples Z and (Z\zi) ∪ z′i be a set
of samples after replacing a sample zi with a new sample z′i
which is independent from Z . A function f : ZN → RN has
stability with respect to the loss function ` by a constant β,
such that

∀Z ∈ (X × Y)N ,∀i ∈ {1, . . . , N} :

EZ |`(fZ , ·)− `(f(Z\zi)∪z′i , ·)| ≤ β
(21)

We call f stable. Similarly, for large classes of functions if
for all f ∈ F satisfy condition (21), then F is stable as well.
The constant β should be on the order of O( 1

N ) [30].
If we define the empirical risk as Remp =

1
N

∑
zi∈Z `(f(x), y), for simplicity we will denote

R = 1
N

∑
zi∈Z `zi , and let RZ∪z′ be the empirical risk

after adding a sample z′.
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RZ∪z′ =
1

N + 1

∑
zi∈(Z∪z′)

`zi

=
1

N + 1

(∑
zi∈Z

`zi + `z′

)
=

N

N + 1

(
R+

1

N
`z′

)
(22)

Similarly, we get the risk after removing a sample z′′, that is
RZ\z′′ ,

RZ\z′′ =
N

N − 1

(
R+

1

N
`z′′

)
(23)

Then the risk after we replace a sample, R(Z\z′′)∪z′ , can be
denoted as follows,

R(Z\z′′)∪z′ =
N − 1

N + 1− 1

[
RZ\z′′ +

1

N − 1
`z′

]
=
N − 1

N

[
N

N − 1

(
R− 1

N
`z′′

)
+

1

N − 1
`z′

]
= R− 1

N
`z′′ +

1

N
`z′

(24)
Using the triangle inequality and by noting (13) that `z′ , `z′′ ≤
1,

|R(Z\z′′)∪z′ −R| ≤ βb ≤
2

N
(25)

where βb is the stability of the underlying binary classifier.
In order to get the stability of our method, the loss function
(13) must be σ-admissible for any σ (it is also need to be
convex) [29]–[31]. Let’s define the total loss as `tot(x, y) =∑g
i=1 `(fi(x, y)), then our new loss function (parameterized

over γ > 0) can be defined as,

`γ(f(x), y) =
0 if `tot(x, y) < ∧k 6=y`tot(x, k)
`tot(x,y)−∧k 6=y`tot(x,k)

γ
if 0 6 `tot(x, y)− ∧k 6=y`tot(x, k) 6 γ

1 if `tot(x, y)− ∧k 6=y`tot(x, k) > γ
(26)

where k, y ∈ {1, . . . ,K} are class labels and ∧ = min. It is
clear that for any γ > 0 then `γ(f(x), y) ≥ `(f(x, y)) and it
is σ-admissible (in fact, 1/γ-Lipschitz with respect to its first
argument). In addition, [30] has shown that for an algorithm
with regularization, f + λR, it contributes to the bounded
constant by 1

λβb. Combining σ−admissible and regularization,
1
λβb, (25) becomes,

|R(Z\z′′)∪z′ −R| ≤
2

γλN
(27)

Indeed, this result satisfies the definition of stability as stated
in Definition 4.1. More specifically, when we replace a single
sample, the loss function `γ will change by at most 2

γλN ,
meaning that `tot(x, y) might increase while minr 6=y `tot(x, r)
might decrease by βb. Thus, a naive bound on the stability of
the multiclass system is 2K

γλN [31].
In order to get the generalization error bound, we use the

Bousquet and Elisseeff [30] theorem.

Theorem 4.1 (Bousquet and Elisseeff [30]): A β-stable
function f satisfying 0 ≤ `(fS , z) ≤ M for all training sets
S and for all z ∈ Z . For all ε > 0 and all N ≥ 0,

P{R−Remp > ε+ 2β} ≤ exp

(
− 2Nε2

(4Nβ +M)2

)
(28)

It gives the following bounds with probability at least 1− δ,

R ≤ Remp + 2β + (4Nβ +M)

√
ln 1/δ

2N
(29)

By substituting β = 2K
γλN and note that the loss function

has maximum value M = 1, we get the following bound on
multiclass classification for our proposed method,

R ≤ Remp +
4K

γλN
+ (

8K

γλ
+ 1)

√
ln 1/δ

2N
(30)

We summarize here, our proposed method has shown to
possess stability since the error is bounded by a constant
β = 2K

γλN . Moreover, our framework implicitly models reg-
ularization thereby it improves the stability (indicated by β

λ )
and provides generalization error bound.

V. RANKING INTERPRETATION

Ranking system is a very common yet important infor-
mation representation technique in many applications, and
recently it has received more attention on applying it in
inferring the output of the computer vision algorithm [16],
[32]. From the general definition, a ranking is a relationship
between a set of items such that, for any two items, the first is
either “ranked higher than”, “ranked lower than” or “ranked
equal to” the second.

In the previous section, we obtained the normalized product,
rk as our final output. However, these values do not provide us
any meaningful information to understand the scene images.
In order to interpret the results into a more useful manner,
we introduce a ranking framework as shown in Table I
which acts similar to a decoder to decode our results into a
ranking manner. With step by step explanation for our ranking
interpretation,

1) Obtain the maximum r value, ∨rk.
2) Discard the scene class with rk = 0 by marking the

class as ×, which mean definitely not.
3) Compute the difference value, rdiff between ∨rk and rk

(all involved r values) and apply symbolic representation
with the predefined threshold as in Table I.

Note that, the parameter design in our ranking scheme is
depend on the design that fits to the task on hand. In our work,
we apply four levels of ranking interpretation with equally
divided interval value to fit the different levels of ranking with
exception to “Equal to” and “Definitely not”. The four levels
of ranking are “Equal to”, “Higher than”, “Much higher than”,
and “Definitely not”. The value of rdiff = [0 1] which is the
difference between ∨rk with rk is used to determine the level
of particular image compare to the other scene images. Refer
to Table I, we define “Equal to” as the case when rdiff = 0,
“Definitely not” when the value of r for the class involved
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Fig. 5. Examples of the OSR Dataset. The dataset contains 2688 color scene images, 256x256 pixels from a total of 8 outdoor scene classes. These images
are best view in colour.

is equal to 0 (rk = 0), and the left out is “Higher than” and
“Much higher than”. For these two levels, we apply equally
divided interval value of the maximum boundary of rdiff
which is 0.5 to partition each level. However, as mentioned
above, we are not limiting to this setting as it may varies across
the different system designs.

TABLE I
SYMBOLIC REPRESENTATION OF RANKING

Threshold value Symbol Description

0 ≡ Equal To

0 < rdiff 6 0.5 > Higher than

0.5 < rdiff 6 1.0 � Much higher than

rk = 0 × Definitely not

TABLE II
EXAMPLE OF RANKING RESULT

Scene Class rk rdiff Symbol

Class 1 0.5561 Not applicable as this is ∨rk Not applicable

Class 2 0.0264 0.3911 >

Class 3 0.0000 Discarded as r3 = 0 ×

Class 4 0.4175 0.1386 >

Final Result Class 1> Class 4> Class 2, but × Class 3

Scene image has the highest possibility as Class 1,

follow by Class 4 and Class 2 respectively.

But scene image is definitely not belong to Class 3.

By applying such method, we can represent a ranking in a
symbolic representation. Using the same example from Section
III-D1, we obtain the result as in Table II. The confident level
of image s belongs to “Insidecity” is higher than “Forest” and
“Coast”, the confident level of image s belongs to “Forest” is
higher than “Coast”, but image s is definitely not belonged
to “Opencountry”. So at the end of this interpretation method,
we are able to obtain the ranking position of every possible
classes.

VI. EXPERIMENTS

We tested our approach with two public scene image
datasets - the Outdoor Scene Recognition (OSR) dataset [1]
and the Multi-Label Scene (MLS) dataset [9], [10]. The OSR
dataset contains 2688 colour scene images, 256x256 pixels
from a total of 8 outdoor scene classes (‘Tallbuilding, T’, ‘In-
sidecity, I’, ‘Street, S’, ‘Highway, H’, ‘Coast, C’, ‘Opencounty,
O’, ‘Mountain, M’ and ‘Forest, F’). Fig. 5 illustrates example
of the OSR dataset and is publicly available1. In the meantime,
MLS dataset contains a total of 2407 scene images with 15
(6 base + 9 multi-label) classes. According to [9], [10], the
multi-label data in the MLS dataset were manually annotated
by three human observers as part of the pre-requirement during
the training stage.

In the feature extraction stage for the OSR dataset, we
have employed 6 different attributes [16] to represent the
scene images. The 6 attributes are natural, open, perspective,
large objects, diagonal plane and close-depth. Note that, this
work is not constrained to these representations. An alternative
representation such as other feature extraction methods can be
employed as the front-end. Since our focus in this study is the
introduction of a fuzzy qualitative approach to perform scene
classification, any existing feature representation for images
can be employed as the input to our model. In the meantime,
for MLS dataset, we employed the feature vector, R294 as to
[9], [10]. Finally, for learning the model, in OSR dataset, we
practiced the ‘leave-one-out’ method and performed classifica-
tion of each testing image by using the trained model obtained
from the rest of the training data. While for the MLS dataset,
we followed the distribution of training and testing data in the
classification pipeline. All implementations and experiments
were conducted in the MATLAB environment.

Overall, our experiment is divided into five sections (Section
VI-A to VI-E) where each of them is testing on different
perspectives. We set the bin number, B of the histogram as
50 and the threshold for the level of ranking interpretation as
to Table I.

1http://people.csail.mit.edu/torralba/code/spatialenvelope
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A. Scene Images are non-Mutually Exclusive

Psychological and metaphysical [12] proved that there is
an influence of human factors (background, experience, age,
etc.) in decision making. In this experiment, we would like to
show that the research in scene understanding falls within this
category and scene images are indeed non-mutually exclusive.
For this purpose, an online survey was created with a fair num-
ber of scene images, randomly chosen from the OSR dataset.
The online survey was run for a month and participated by
a group of people in the range of 12 to 60 years old from
different backgrounds and countries. Their task is to select
a class that best reflects the given scene accordingly without
prior knowledge of what the ground truth is.

We show some examples of the results from the online
survey in Fig. 6. For a complete result, interested reader is
encouraged to look at this website2. From here, we can clearly
notice that there is a variation of an answer (scene class) for
each scene image. For instance, in Fig. 6(a), although the
favorite selection is ‘Highway’ class, the second choice which
is ‘Insidecity’ class still occupies noticeable distribution as
well. From a qualitative point of view, this observation is valid
as the scene image comprises of a lot of buildings that form
the city view. Similar to Fig. 6(h) where the dominant choice
is ‘Forest’ class while the second choice of “Mountain” class
is still valid.

Nevertheless, we should not overpass the minority choices.
For example, in Fig. 6g, the dominant selection is a ‘Mountain’
class. However, there are minority who selected ‘Coast’,
‘Opencountry’ and ‘Forest’, respectively. Even though these
choices are minority, the selections are still valid as we could
notice similar appearance between those choices. Unfortu-
nately, there are some outliers as depicted in Fig. 6(a) and
6(f) which could be easily eliminated with the α-cut that will
be explained later.

Besides that, one could observe that the best result from the
histogram of Fig. 6(a,b,c,e,f,g,h,i) agrees with the ground truth
except for the case in 6(c) where the best result is different
from the ground truth. In particular, the image seems to be
‘Opencountry’ more than ‘Insidecity’. This is very interesting
results to show that human are bias in identifying a scene
image. As a summary, we had shown that assuming scene
images are mutually exclusive and simplify the classification
problem (uncertainty, complexity, volatility and ambiguity) to
a binary classification task is impractical as it does not reflect
how human reasoning is performed in reality.

B. Effectiveness of FQRC

This is to show the correctness of our classifier in handling
non-mutually exclusive data and the inconsistency of human
decision making. We denote Yd as the set of result value
for scenery image d from the survey and Wd be the set of
predicted label from the FQRC. The results are compared in
the following aspects:

2http://web.fsktm.um.edu.my/∼cschan/project2.htm

1) Qualitative Observation: We show the corresponding
results from the online survey and our proposed FQRC in
Fig. 7. Here, we can clearly see that the outcomes from both
solutions are almost similar in terms of the ranking and the
voting distributions. For instance, in Fig 7(d), majority choose
”Tallbuilding” (84.2%) and follow by ”Insidecity” (15.4%).
This is nearly close to the reading computed from FQRC
where ”Tallbuilding” is 76% and ”Insidecity” hold 22.7%.

However, one should understand that, this is almost impos-
sible to obtain exactly the same values to the survey result
due to the subjective nature of human decision making. What
surprised us from the observation is the ranking of the distri-
bution are very close to the results from FQRC compared to
the survey. For example, in Fig. 7(d), by considering only the
’hit’ labels for both results (‘Tallbuilding, C’ and ‘Insidecity,
I’), the order of the distribution for FQRC computed result is
T > I which is similar to the survey results, where T > I
although the values are not exactly the same.

From this observation, we can draw a preliminary
conclusion that our proposed approach can emulate human
reasoning in classifying scene images. To further validate
this, quantitative evaluation is done in the following context.

2) Quantitative Evaluation: In order to show that our
proposed method is able to model the inconsistency of human
decision making, we perform a quantitative evaluation using
several evaluation criteria as explained in following contexts.

α-Evaluation. Evaluation of multi-label classification re-
sults is more complicated compared to binary classification
because a result can be fully correct, partly correct, or fully
incorrect. By using the example given by [9], let’s assume
we have classes c1, c2, c3 and c4. Take an example belongs to
classes c1 and c2, we may get one of the results below:
• c1, c2 (fully correct),
• c1 (partly correct),
• c1, c3 (partly correct),
• c1, c3, c4 (partly correct),
• c3, c4, (fully incorrect)
Herein, we wish to measure the degree of correctness of

those possible results with their proposed α-Evaluation. The
score is predicted by the following formula:

score(W b
d ) =

(
1− |βMd + γQd|

|Y bd ∪W b
d |

)α
(31)

where Y bd is the set of ground truth labels for the image sample
d in binary form (Yd > 0) and W b

d is the set of prediction
labels from the FQRC in binary form (Wd > 0). Also, Md =
Y bd −W b

d (missed labels) and Qd = W b
d − Y bd (false positive

labels). α, β and γ are constraint parameters as explained in
[9]. In our evaluation, we select α = 0.5, β = 1 and γ = 1
and we calculate the accuracy rate of D.

accuracyD =
1

|D|
∑
d∈D

score(W b
d ) (32)

where higher accuracy reflects better reliability of the FQRC
because the ‘hit’ label is almost similar to the survey results.
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Fig. 6. Examples of the online survey results. We validate that scene images are indeed non-mutually exclusive (from left to right, the bar on each
histogram represents the distribution of ‘Tallbuilding, T’, ‘Insidecity, I’, ‘Street, S’, ‘Highway, H’, ‘Coast, C’, ‘Opencounty, O’, ‘Mountain, M’ and ‘Forest,
F’ accordingly).

Cosine similarity measure. Here, we would like to inves-
tigate the similarity of the histogram obtained from the survey
and the FQRC, respectively by matching the pattern of the
distributions. Cosine similarity measure has been employed
for this purpose. First, we calculate the cosine distance (33)
of the histogram distributions of each scenery image. Then
we compute the average value of the similarity (34) to get the
overall performance.

distance(Wd) = cosΘ =
Yd ·Wd

‖Yd‖ ‖Wd‖
(33)

The average similarity value for D;

similarityD =
1

|D|
∑
d∈D

(1− distance(Wd)) (34)

where larger value of similarityD indicates higher similarity.

Error rate calculation. In this section, we investigate how
much the computed result from the FQRC is deviated from
the survey results. In order to achieve this, we obtain the error
vector by subtracting both of the histogram distributions (35).
Then we calculate the mean and standard deviation of the error
vector to observe the range of error as shown in Fig. 8.

err(Wd) = |Wd − Yd| (35)

For the overall judgment in error rate, we compute the
average standard deviation of the error values obtained from
the scene images. Smaller value indicates less deviation of our
results from the survey results.

0 5 10 15 20 25 30 35 40
−0.5
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1

Scene
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Fig. 8. Error bar of FQRC results compared to the online survey results for
each scene image.

All the three evaluation criteria are tested by a comparison
between the survey results (with and without α-cut) and the
proposed FQRC. The results are shown in Table III.

TABLE III
QUANTITATIVE EVALUATION OF FQRC COMPARED TO ONLINE SURVEY

RESULTS

Scene α-evaluation similarity error

(accuracy) (Average)

Without α-cut 0.75 0.72 0.13

With α-cut (1%) 0.79 0.72 0.13

From the results in Table III, we could observe reasonable
output from these three evaluation criteria. The accuracy is
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(a) Scene image 1

T I S H C O M F
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scene

P
er

ce
nt

ag
e 

of
 v

ot
in

g

(b) Result of online survey, Yd
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(c) Result of FQRC, Wd

(d) Scene image 2
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(e) Result of online survey, Yd
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(f) Result of FQRC, Wd

(g) Scene image 3
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(h) Result of online survey, Yd
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(i) Result of FQRC, Wd

Fig. 7. Examples of the comparison between the results of online survey and FQRC (‘Tallbuilding, T’, ‘Insidecity, I’, ‘Street, S’, ‘Highway, H’, ‘Coast,
C’, ‘Opencounty, O’, ‘Mountain, M’ and ‘Forest, F’). These results had shown that our proposed approach is very close to the human reasoning in scene
understanding.

above 70%, which indicates that the computational results
using the FQRC is almost mimicking human reasoning in
decision making where the ‘hit’ label is highly matched with
the answer from the survey. The high similarity here shows
that our approach is able to provide an outcome that is
similar to a human decision in terms of voting distribution
and ranking.

Based on the qualitative and quantitative results, we clarify
that scene images are non-mutually exclusive and the state-
of-the-art approach that uses binary classifier to deduce an
unknown image to a specific class is impractical. Besides that,
our proposed FQRC has proven its effectiveness as a remedy
for this situation based on the comparison with the online
survey results.

C. Feasibility of FQRC

In this experiment, we test the feasibility of our proposed
FQRC in terms of multi-label, multi-class, multi-dimension
and ranking. The explanation for each of the abilities is as
below:

TABLE IV
COMPARISON OF THE FQRC WITH THE OTHER CLASSIFIERS IN TERMS OF

SCENE UNDERSTANDING

Classifier Multi-label Multi-class Multi-dimension Ranking

KNN - X - -

SVM - - X -

[33] - X X -

[9] X X X -

FQRC X X X X

• Multi-label - the classification outputs are associated
with a set of labels

• Multi-class - the classifier that supports more than two
classes, K > 2 in a single classification task

• Multi-dimension - the classifier that supports more than
two features, J > 2 in a single classification task

• Ranking - higher interpretation of the classification re-
sults by reordering the inference outcome.

Table IV shows how the FQRC distinguishes itself from the
other classifiers and each of the capabilities has been clarified



1063-6706 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TFUZZ.2014.2298233, IEEE Transactions on Fuzzy Systems

TFS 12

(a) (b) (c) (d) (e) (f) (g)

Fig. 9. Example of images of Insidecity.

with the succeeding experiments in following sections.

1) FQRC with 2 attributes and 4 scene classes (Multi-label
& Multi-class): From the comparison results show in Table
V, it can be observed that one drawback of [8] is it provides
similar results on certain images, which is very absurd as all
the corresponding images are so different from each other and
imply that each of the images has its own value of attributes,
which should be different from other images. Our proposed
approach, in contrast, is able to model this behavior and
provides an output that is closer to human perspective. Apart
from that, the confident values inferred from our approach
are more reasonable compared to [8], for example, in Fig.
9(e), even for subjective judgment, we will consider that
the confident level of this image belonged to ‘Insidecity’ is
higher than the ’Forest’. This improvement is mainly from the
proposed 4-tuple fuzzy membership learning algorithm.

2) FQRC with 6 attributes and 4 scene classes (Multi-
dimension): In this testing, our proposed framework shows
the strength of performing multi-dimensional classification
compare to [8] where we employ 6 attributes instead of 2
to perform the classification tasks. The 6 attributes are the
score values of ‘Nature’, ‘Open’, ‘Perspective’, ‘Size-Large’,
‘Diagonal-Plane’, and ‘Depth-Close’, respectively. Using the
similar testing images as in Fig. 9, the classification results
from the FQRC are shown in Table VI.

TABLE VI
INFERENCE OUTPUT WITH 6 ATTRIBUTES AND 4 CLASSES OF FIG. 9

Scene Insidecity Coast Opencountry Forest

9(a) 1 0 0 0

9(b) 1 0 0 0

9(c) 0.6722 0.1001 0.2277 0

9(d) 0.9179 0 0.0821 0

9(e) 0.5188 0 0 0.4812

9(f) 0.8411 0 0.0013 0.1575

9(g) 0.5936 0 0 0.4064

As we compare the result between Table V and VI, one can
observe that the result using six attributes are more reasonable
than two attributes, especially in Fig. 9(a),9(e),9(f), and 9(g),
respectively. Here in the case of Fig. 9(e), with the used of
six attributes as to two attributes, the result improved in term
of eliminated the noise which is the ‘Coast’ class that should

never been an option for this particular image. However, we
observe that the values of confident of Fig. 9(e) in ‘Insidecity’
and ‘Forest’ have change significantly. But still, they are in the
manner where the confident level of ‘Insidecity’ is more than
‘Forest’ which is matched to the subjective judgment.

Slight changes of these results were incurred as a resul-
tant from the additional of the number of attributes into
the classification framework. In fact, more attributes tend to
increase the uniqueness of one class from another and this
indirectly has increased the discriminative strength of the
classifier. However, it is almost impossible to find the optimum
attributes (or features) that are best to distinguish one class
from another classes especially in the scene understanding task
(non-mutually exclusive case). Furthermore, using excessive
attributes in the algorithm will increase the computational cost.
Therefore, our proposed framework considers a more gener-
ative way that provides a good tradeoff between the multi-
dimensional classification capability and the performance of
the classification task.

3) FQRC in ranking (Ranking ability): The goal of this
experiment is to show the effectiveness of the proposed FQRC
in higher interpretation such as ranking by classifying the
possibility of an unknown image into the eight learned scene
classes with the correct ordering. To provide more information,
we output it with some symbolic representation explained in
Section V rather than classify it as one of the eight learned
scene classes. The reason is we do not assume the scene
classes are mutually exclusive and we understand that scene
classes are arbitrary and possibly sub-optimal.

Table VII shows the sub-sample results using randomly
selected scene images from the ‘Insidecity’ class. The visual
appearances of these images are illustrated in Fig. 9. Herein,
we can notice that (1) The FQRC is able to correctly clas-
sify each image which has the possibility (confident value,
rk) in ‘Insidecity’ class. This is true as the benchmarking
for these sub-sample images is selected from the Class =
‘Insidecity’. Nonetheless, our approach also discovered that
each of these images can have possibility belongs to other
classes. For instance, our approach discovered that Fig. 9(a)
has the possibility as ‘Tallbuilding’ and ‘Street’ class. Table
VIII shows the symbolic representation of the ranking based
on the results in Table VII where q refers to scene image 11(a)
to 11(g) in particular interpretation.

As mentioned in the context, our approach are capable
of generate purely linguistic descriptions where an image is
described relative to other categories. Fig. 10 shows the ex-
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TABLE V
INFERENCE OUTPUT WITH 2 ATTRIBUTES AND 4 CLASSES OF FIG. 9

Scene
FQRC [8]

Insidecity Coast Opencountry Forest Insidecity Coast Opencountry Forest

9(a) 0.9280 0 0 0.0720 1 0 0 0

9(b) 1 0 0 0 1 0 0 0

9(c) 0.5068 0.1587 0.3344 0 0.7273 0.2727 0 0

9(d) 0.6845 0 0.3155 0 0.7273 0.2727 0 0

9(e) 0.5296 0.0483 0 0.4221 0.1250 0 0.1250 0.7500

9(f) 0.5872 0.0146 0.007 0.3911 0.8235 0 0 0.1765

9(g) 0.5561 0.0264 0 0.4175 0.8235 0 0 0.1765

TABLE VII
INFERENCE OUTPUT WITH 6 ATTRIBUTES AND 8 CLASSES OF FIG. 9

Scene Image Tallbuilding Insidecity Street Highway Coast Opencountry Mountain Forest

9(a) 0.4562 0.4562 0.0876 0 0 0 0 0

9(b) 0.7644 0.2356 0 0 0 0 0 0

9(c) 0 0.3339 0.0308 0.4725 0.0497 0.1131 0 0

9(d) 0 0.5880 0.0499 0.3094 0 0.0526 0 0

9(e) 0.0726 0.2631 0.4202 0 0 0 0 0.2440

9(f) 0.1412 0.3456 0.4361 0 0 0.0005 0.0119 0.0647

9(g) 0.0811 0.2826 0.4183 0 0 0 0.0245 0.1935

TABLE VIII
INTERPRETATION OF RANKING OF 6 ATTRIBUTES AND 8 CLASSES.

IMAGES ARE FROM THE FOLLOWING CATEGORIES: TALLBUILDING(T),
INSIDECITY(I), STREET(S), HIGHWAY(H), COAST(C),
OPENCOUNTRY(O), MOUNTAIN(M), AND FOREST(F)

Scene Image Interpretation

9(a) T≡I>S, q×H,C,O,M,F

9(b) T�I, q×S,H,C,O,M,F

9(c) H>I>O>C>S, q×T,M,F

9(d) I>H>O>S, q×T,C,M,F

9(e) S>I>F>T, q×H,C,O,M

9(f) S>I>T>F>M>O, q×H,C

9(g) S>I>F>T>M, q×H,C,O

amples. Echoing our quantitative results, we can qualitatively
observe that the relative descriptions are more precise and
informative than the binary ones.

D. Comparison to state-of-the-art binary classifiers in single
label classification task

One of the strengths of the FQRC is it provides the
feasibility to perform single-label classification task like other
binary classifiers as well as ranking as shown in the aforemen-
tioned subsection. To verify this, here, we compare the FQRC
against the state-of-the-art binary classifiers such as K-nearest
neighbor (KNN), Directed Acyclic Graph SVM (DAGSVM)
[33], and Fuzzy least squares SVM (LSSVM) [34]. In the

FQRC, we have employed max aggregation, z = max(r) to
obtain the maximum confident value as binary classification
results.

For a fair comparison, we perform the classification task
with 2 attributes and 4 classes for all classifiers as KNN
could not handle the multi-dimensional classification. In the
configuration of each classifier in the comparison, we use
conventional KNN with empirical chosen parameter K = 5.
As for DAGSVM [33] and LSSVM [34], DAGSVM runs with
RBF as kernel and margin parameter, C = 100 using SMO
training while LSSVM is implemented based on linear SVM
with C = 2000 and incorporates with the least square solution.

The F−score (Fig. 12) is calculated to show the accuracy of
the classification task by comparing our FQRC and three other
classifiers. In information retrieval literatures, the F − score
is often used for evaluating this quantity:

F =
2νρ

ν + ρ
. (36)

The recall, ρ and the precision, ν measure the configuration
errors between the ground truth and the classification result.
For a good inference quality, both the recall and precision
should have high values. The ROC graphs show in Fig. 11
is to evaluate the sensitivity of the classifiers while Fig. 12
illustrates the F-score for each classification task. From both
figures, we can notice that our proposed method is comparable
with the KNN, DAGSVM, and LSSVM. Most of the time,
FQRC outperforms other binary classifiers but is slightly
inefficient as compared to DAGSVM.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Example of the ranking interpretation in textual descriptions.
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(b) Coast
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(c) Opencountry
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(d) Forest

Fig. 11. ROC comparison between FQRC and the other binary classifiers.

Fig. 12. Comparison of F-score between the classifiers. Class 1 (Insidecity),
Class 2 (Coast), Class 3 (Opencountry), and Class 4 (Forest).

One of the main reasons is DAGSVM used an efficient
data structure to express the decision node in the graph, and
an improved decision algorithm is used to find the class of
each test sample and thus makes the decision more accurate
compared to other binary classifiers. In short, DAGSVM is a
discriminative classifier that was implemented and trained to
distinguish distinctly amongst the data where there is no cross-
over tolerance in the data distribution. This is in contrary to
the FQRC as a generative classifier to relief the ignorance of
non-mutually exclusive data. In conclusion, DAGSVM should
be better in most of the case compared to FQRC as a binary
classifier. However, here, in this context, the objective is to
show that one of the strengths of FQRC is the capability to
perform a single-label classification task while playing the role
of ranking classifier, which yields comparable results with the
other state-of-the-art binary classifiers.
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E. Comparison to state-of-the-art multi-label scene classifica-
tion approaches

In order to show the effectiveness and efficiency of our pro-
posed method, in this experiment, we compare the FQRC with
the state-of-the-art multi-label scene classification approaches
[9], [10]. This comparison is performed with MLS dataset. The
comparison is done on two aspects: computational complexity
and accuracy.

1) Computational Complexity: First, we show the com-
plexity of our method compare to both approaches with the
results presented in Table IX. In this context, N denotes the
number of classes, M is the number of features, and T is
the number of data. The training complexity of [10] consists
of three parts; prior, conditional probability, and the main
function of training, while [9] requires to train a classifier
for every base class. These greatly increase the computational
cost compare to the FQRC.

TABLE IX
COMPLEXITY OF FQRC COMPARED TO [9] AND [10]

Method
Part

Training Phase Testing Phase

[10] O(N) +O(T ) + (O(3TN) +O(N)) O(2N)

[9] O(NT 3) O(N)

FQRC O(NM) O(NM)

In order to verify the complexity of these methods, the
computational time comparison is done with the results show
in Table X. From the result, we notice that, our method
use the shortest time to train the model which is almost
6x faster than [10] and 227x faster than [9]. However, our
inference takes a longer time compared to both methods.
This is because we retrieve the fuzzy membership values by
considering all the classes of 4-tuples membership functions
that corresponds to all the features. This also means that
with a reduction in terms of the number of features, we can
obtain faster computational speed. The computational time
result for testing is done using all the testing data, so it is still
acceptable if we apply only one data per cycle with an average
of 3 milliseconds of computational time. Nonetheless, [10]
suffered from finding the optimal number of nearest neighbor
involved in the classification step. This had directly affects the
performance of the classification.

TABLE X
COMPUTATIONAL TIME OF FQRC COMPARED TO [9] AND [10] ON MLS

DATASET

Method
Computational time (s)

Training Testing Overall

[10] 0.9363 0.5662 1.5025

[9] 37.8859 0.3725 38.2584

FQRC 0.1666 3.9479 4.1145

2) Accuracy: For fair comparison, instead of employing all
the scene data from the MLS scene dataset, we only selected
the multi-label class scene data. It means we eliminate those

testing data that are categorized as base class in [9] according
to the ground truth and use only the test data in multi-label
class. This explains why the results are different from the
original paper. Again, we should point out that the intention
of this work is focused on the multi-label scene classification.

TABLE XI
α-EVALUATION OF FQRC COMPARED TO [10] AND [9]

Method α-evaluation
α = 0 α = 0.5 α = 1 α = 2

[10] 1 0.54 0.39 0.20
[9] 1 0.69 0.49 0.27

FQRC 1 0.69 0.54 0.37

Based on [9], α is the forgiveness rate because it reflects
how much to forgive the errors made in predicting labels.
Small value of α is more aggressive (tend to forgive error)
while a high value is conservative (penalizing error more
harshly). In relation to the multi-label classification, α = ∞
with a score = 1 occurs only when the prediction is fully
correct (all hit and no missed) or 0 otherwise. On the other
hand, when α = 0, we get the score = 1 except when the
answer is fully incorrect (all missed). From Table XI, we could
observe that the FQRC outperforms the two other methods
with better accuracy in the α-evaluation.

In summary, we have tested the performances of FQRC
compared to [9], [10] using MLS scene dataset and obtained
superior results. The key factors which distinguish our work
from them include: Firstly, we do not require the human
intervention in manually annotate the multi-label class images
to serve as prior information. This is impractical because it
may lead to a large number of classes with sparse sample in
the dataset [11]. For instance, the class name “Field + Fall
foliage + Mountain” has only one image in [9]. Secondly,
human annotation is bias, that is different people from different
background tend to provide different answers for a scene
image. We showed this scenario in our real-world online
survey results as well as psychological and metaphysical
studies [12]. Thirdly, [9], [10] only output binary results in
multi-label classification task while our proposed approach
provides ranking information.

VII. CONCLUSION

In this paper, we raised an important issue that scene
images are non-mutually exclusive. Unfortunately, almost all
the existing works focused on scene image understanding
assumed that images are mutually exclusive. Related works
that do not perform this such as in [9], [10] employed human
expert to re-label the image manually in order to obtain
multi-label class training data for further processing, which is
impractical and bias. Our aim is to raise the awareness in the
community regarding this very important, but largely neglected
issue. In order to achieve this, we conducted an online survey
among people from the different background and subsequently
proposed the ranking classifier (FQRC) which adopting fuzzy
qualitative principle as a resolution. The results from extensive
experiments have shown the effectiveness, feasibility, and
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efficiency of our proposed approach as compared to the other
state-of-the-art approaches. Our future work will focus on
extending the work with the use a fuzzy loss function [35] and
normalized sum of memberships, as well as the investigate the
effects of different membership function as the learning model.
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