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Abstract The ubiquity of communication devices such as smartphones has led to the emer-
gence of context-aware services that are able to respond to specific user activities or con-
texts. These services allow communication providers to develop new, added-value services
for a wide range of applications such as social networking, elderly care, and near-emergency
early warning systems. At the core of these services is the ability to detect specific physical
settings or the context a user is in, using either internal or external sensors. For example,
using built-in accelerometers it is possible to determine if a user is walking or running at
a specific time of day. By correlating this knowledge with GPS data it is possible to pro-
vide specific information services to users with similar daily routines. This article presents
a survey of the techniques for extracting this activity information from raw accelerometer
data. The techniques that can be implemented in mobile devices range from classical signal
processing techniques such as FFT to contemporary string-based methods. We present ex-
perimental results to compare and evaluate the accuracy of the various techniques using real
data sets collected from daily activities.

Keywords Activity detection · Context-aware applications · Mobile computing · Sensor
data

1 Introduction

Mobile communication devices as the ubiquitous cellular phones, and more recently smart-
phones, have exploded in number and computing capabilities in recent years. Rather than
supporting only voice communications, contemporary devices have sophisticated internal
hardware architectures and possibly also an extended range of functions such a GPS loca-
tion, e-mail, organizer and synchronization with external, often centralized services. Ad-
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vanced units can even be equipped with a wide range of internal sensors including three-
dimensional accelerometers as well as the ability to interface with external web-based sensor
services such as traffic information.

Using sensor data, mobile devices can provide users with an wide range of added-value
services. For example, by analyzing accelerometer data a device can understand that the
user is performing some physical activity such as walking or running. This knowledge can
be gathered over a period of time, say a week or even a month, to recognize trends or daily
habits. Knowing that at a specific time of day a user might be jogging at a specific location, it
is possible to send a message advertising a refreshment booth or advertising a specific brand
of running shoes.1 Potential services are not limited to individual end-users. By correlating
daily activity patterns, communication providers can also offer services to communities of
users with similar weekly habits, thus promoting and enhancing the use of the underlying
communication infrastructure.

The services are not restricted to leisure-oriented activities. Understanding the physical
situation of a user can also be used for early-warning healthcare related applications. Rec-
ognizing that an elderly person has fallen at his/her home and has not moved in the last
30 seconds indicates a potential emergency situation for which a relative or a local emer-
gency unit should be alerted. In civil protection scenarios, knowing the location and the
state of readiness of the elements of an emergency response team could dramatically reduce
dispatching time and thus the response lag.

A key enabler for these context-aware services that providers can now offer lies the abil-
ity of mobile devices to acquire, manage, process, and obtain useful information from raw
sensor data. From these data, devices must be able to accurately discover the characteristics
or features of the signal coming from a given sensor. Sensors do generate a high-volume
of raw data possibly contaminated with environment noise that needs to be filtered out. In
addition, the device must generate a very low number of incorrectly recognized features to
improve the accuracy of subsequent information processing stages where features are ana-
lyzed and organized into user context patterns.

The inclusion of sensors for context discovery in mobile devices is commonly organized
as part of a software stack with a general architecture similar to the one depicted in Figure 1.
At the lowest levels of the stack we have preprocessing phases where the device attempts to
extract a set of basic features from the sensor signal. These features include specific short-
term contexts or states such absence of light, quick movement or more sophisticated contexts
such as running. It is based on these states that the next layer – the base-level classifier – will
determine higher-level user contexts such as activities like jogging or exercising. Finally, a
layer of application code and scripting will use the context history to infer daily or weekly
activities or routines.

In contrast with other sensors, which provide an instant value that can be used directly
for context inference, the signal coming from an accelerometer may require the use of a
fairly complex preprocessing stage in order to characterize the physical activity of the user
within a certain time frame. Given the significance of this problem, a large number of tech-
niques have been developed to address it. In this article we survey the most representative do-
main approaches and techniques, including spectral analysis techniques such as Fast Fourier
Transforms (FFT), statistics-based metrics, and even string matching approaches. These ap-

1 For example, the Nike+ project (http://nikerunning.nike.com/nikeplus/) collects data captured by an ac-
celerometer located on the user’s running shoes. The user can then upload the data to a personal computer
and use an application that analyzes the running habits and physical effort to recommend training regimes.
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Fig. 1 Layered architecture for context inference applications.

proaches vary widely in their context-recognition accuracy and often require specific input
representations.

In Section 2 we survey a wide range of techniques used to recognize user activities;
these techniques are organized into several broad domain approaches. Then in Section 3 we
present the results on the application of these techniques to a set of experimental data to
compare their benefits and computational cost. We conclude the article in section 4.

2 Preprocessing Techniques: Domains and Approaches

The need to extract key signal features that enable advanced processing algorithms to dis-
cover useful context information has led to the development of a wide range of algorithmic
approaches. These approaches rely on converting or transforming the input signals to and
from different domains of representation. In each domain there are specific methods to ab-
stract raw signal data and to provide, in addition to an early classification, some form of
data compression that makes it possible in many cases to apply higher-level algorithms for
context recognition.

As depicted in Figure 2 it is possible to classify the available sensor signal processing
techniques is three broad domains, namely: the time domain, the frequency domain and
what we call discrete representation domains. The following subsections describe the most
representative techniques in each of these domains in order to compare their implementation
complexity and accuracy in extracting signal features and identifying user activities.

2.1 Time Domain: Mathematical and Statistical Techniques

Simple mathematical and statistical metrics can be used to extract basic signal information
from raw sensor data. In addition, these metrics are often used as preprocessing steps for
metrics in other domains as a way to select key signal characteristics or features. These
techniques are often used in practical activity recognition algorithms.
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Fig. 2 Classification of techniques applied to sensor signals for feature extraction.

2.1.1 Statistical Metrics: Mean, Variance and Standard Deviation

The mean over a window of data samples is a meaningful metric for almost every kind of
sensor. This metric can be calculated with small computational cost [48] and be done on the
fly with minimal memory requirements. The mean is usually applied in order to preprocess
raw data by removing random spikes and noise (both mechanical and electrical) from sensor
signals, smoothing the overall dataset.

There have been various early uses of the mean metric in activity recognition. Several
researchers have used the mean to either directly or indirectly identify user posture (sitting,
standing or lying) [11, 19, 22, 23] and also to discriminate the type of activity as either
dynamic or static [60]. Others have used the mean as input to classifiers like Neural Net-
works [51, 59], Naive Bayes [27], Kohonen Self-Organizing Maps [29], Decision Trees [5],
and even Fuzzy Inference [20]. Other applications of the mean value include, for example,
axial calibration by finding the average value for all the different orientations [7] and the
recognition of complex human gesture using Hidden Markov Models [8].

Another important statistical metric is the variance (σ2) defined as the average of the
squared differences from the mean. The standard deviation (σ ) is the square root of the
variance and represents both the variability of a data set and a probability distribution. The
standard deviation can give an indication of the stability of a signal. The measure is less
useful if it is known that the signal can include spurious values, as even a single value can
distort the result.

These two statistical metrics are often used as a signal feature in many activity recogni-
tion approaches where they have been used as an input to a classifier or to threshold-based
algorithms [12, 15, 30].

In other approaches [22, 23] the variance and standard deviation were used to infer user
movement or have been used as the base metric for classifiers like the Naive Bayes [27],
Dynamic Bayesian Networks [61], Neural Networks [59] and by [41] to identify the mode
of transport. The variance has also been used in [58] in a combination with other metrics
such as mean and maximum.
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2.1.2 Envelope Metrics: Median, Maximum, Minimum and Range

The median is the number that separates the higher half of data samples from the lower
half. The value provided by the median is typically used to replace missing values from a
sequence of discrete values (see e.g. [63]).

Despite their simplicity these envelope metrics still offer some value in activity recogni-
tion (e.g. [2]) or as an input to Neural Networks for identifying different inclination angles
while walking, as well as in to distinguish between types of postures with threshold-based
techniques [3].

The range (the difference between maximum and minimum sample values) was used in
[11] together with other indicators to discriminate between walking and running. Applica-
tion of the maximum and minimum values in accelerometer-based systems was explored to
detect steps with the Twiddler keyboard [4], to detect gestures as mnemonical body short-
cuts [13], and in activity recognition as an input to a Neural Network classifier [59].

2.1.3 Root Mean Square (RMS) Metric

The root mean square (RMS) of a signal xi that represents a sequence of n discrete values
{x1,x2, ...,xn} is obtained using equation (1) and can be associated with meaningful context
information.

xRMS =

√
x2

1 + x2
2 + ...+ x2

n

n
(1)

The RMS has been used to classify wavelet results by distinguishing walking patterns [53]
and is present in works of activity recognition like [42] as an input to a classifier such as
a Neural Network. It was also used as input to a multi-layer neural network in [8] for the
recognition of a set of gestures and integration with video records.

2.1.4 Position and Velocity using Numeric Integration

The integration metric measures the signal area under the data curve and is commonly ap-
plied to accelerometer signals to obtain estimates of speed and distance [40].

Several approaches have explored this integration technique. In gesture recognition (e.g.
[13]) researchers have used a double integration technique to compute the distance covered
by a gesture. Others have used this technique to determined velocity values and thus identify
gestures using Nintendo Wiimote and a Neural Network classifier [63].

Using the integral of the RMS signal and a simple threshold technique, researchers have
been able to distinguish between higher and lower states of activity intensity [15]. In other
approaches Lee et al. [30] used integration to compute the angular velocity of data supplied
by a gyroscope.

2.1.5 Signal Correlation and Correlation-Coefficient

Signal correlation is used to measure the strength and direction of a linear relationship be-
tween two signals. In activity recognition, correlation is especially useful in differentiating
between activities that involve translation in a single dimension [43].

In order to calculate the degree of correlation it is necessary to calculate the correlation
coefficients between the signals for the various axes. These coefficients can be obtained by
several statistical and geometrical formulas, depending on whether the situation involves
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simple statistical values or mathematical vectors. The most commonly used is Pearson’s
product-moment coefficient (ρx,y) [45] also known as the sample correlation coefficient,
calculated as the ratio of the covariance of the signals along the x-axis and y-axis to the
product of their standard deviations:

ρx,y =
cov(x,y)

σxσy
(2)

The sample correlation coefficient was applied in [43] in order to determine which are
the best classifiers (or combination of them) for recognizing activities, and which among
several features/attributes are the most important. Other researchers (e.g. [57]) also used this
coefficient with accelerometer data to correlate the various axes in order to detect, with the
aid of a decision tree, the surface under a robot as it walks.

Another way to calculate the correlation coefficient is by geometric interpretation. For
normalized or centered data sets, with a mean of zero, the correlation coefficient can also
be obtained as the cosine of the angle between two vectors of samples. To determine the
correlation coefficient using the angle, the product of vectors representing each axis of the
sensor has been used. In [28] the authors applied the normalized cross product between each
axis of an accelerometer, together with mean, energy, and entropy, to identify a set of daily
activities. Other researchers [5, 16, 18] used the dot product divided by the window length
as the correlation feature, computed between two different acceleration axes of a hoarder
board.

2.1.6 Cross-Correlation

The cross-correlation is a measure of the similarity between two waveforms and is com-
monly used to search for a known pattern in a long signal. The cross-correlation coefficients
are calculated by computing a dot product between the signals, normalized over the win-
dow size of n samples as denoted by equation (3). The various coefficients are obtained by
computing the correlation for the ”time shifted” versions of one signal with respect to the
other.

CrossCorrelation(x,y) =
n−1
max
d=1

(
1
n

n

∑
i=1

xi · yi−d

)
(3)

The typical implementation of this metric computes the cross-correlation coefficients for
the pairs of signals corresponding to the three axes in a pairwise fashion (i.e. (x,y), (x,z) and
(y,z)). It then selects the pair of signals that exhibits the largest coefficients to distinguish
between dynamic activities, as described in [60].

2.2 Other Time-Domain Metrics

There are several other time-domain characteristics that can be obtained directly from raw
accelerometer data, and that are popular since they require less computing power than signal
characteristics calculated in other domains.
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2.2.1 Sample Differences

Computing the difference (delta value) between signals in a pairwise arrangement of sam-
ples allows a basic comparison between the intensity of user activity. In general, every ac-
tivity will be noticeable in one or more of the accelerometer axis, so different activities can
in principle be distinguished by comparing the signal strength in all three axis.

This approach has been used in [55] to make a crude detection between classes of activ-
ities by inspecting of the maximum values (or peaks) of the differences between all axes to
determine the type of movement.

2.2.2 Zero-Crossings

Zero-crossing can be defined as the points where a signal passes through a specific value
corresponding to half of the signal range. The delimiter value can be either the mean value
of the sensor range or an extracted mean value. The number of times the signal crosses the
reference value is the number of zero-crossings.

This metric has been used to make early recognition of stepping movements [30] and for
the detection of the appropriate timing for the application of other techniques (e.g. [11]) to
distinguish walking from running. Zero-crossings rate is the rate of zero-crossings along
a signal and is commonly applied to audio signals to identify the surrounding environ-
ment [10] or the type of sound such as music, speech, and noise [49]. Also, in gesture
recognition the zero-crossings have been used together with other features and with Hidden
Markov Models to detect complex human gestures [8].

2.2.3 Angle and Angular Velocity

The use of angular position and velocity together with the use of other sensor data and
integration techniques allows a basic determination of the user orientation. The angle be-
tween the accelerometer axis and the gravity pull can be determined from the mean of the
accelerometer signal in all three axis [21, 60].

This metric has been used as described in [30] to identify cyclic behavior using a simple
fuzzy-logic reasoning method. Angle variation has been used in fall detection [7, 9] to check
sudden variation and final orientation of the user. To detect the location of a device equipped
with an accelerometer from a predetermined set of locations, it is possible to use the angle
with gravity and its variation along time [23].

2.2.4 Signal Magnitude Area

In [6] the authors describe an approach that uses the sum of the area encompassed by the
magnitude of each of the three-axis accelerometer signals to compute the energy expendi-
ture in daily activities. This activity predictor is referred to as the Signal Magnitude Area
(SMA) [37] as depicted in equation 4 where x(t), y(t) and z(t) are the acceleration signals
from each axis with respect to time t.

SMA =
1
t

(∫ t

0
|x(t)|dt +

∫ t

0
|y(t)|dt +

∫ t

0
|z(t)|dt

)
(4)

The SMA metric can be used to distinguish between a resting state and user activity
[38] in a classification framework for the recognition of basic daily movements. It is also
possible to use SMA as the basis for identifying periods of user activity [21].
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2.2.5 Signal Vector Magnitude

Signal Vector Magnitude (SVM) [21] and Differential Signal Vector Magnitude (DSVM) [19]
metrics are similar to the norm as defined below:

SV M =
1
n

n

∑
i=1

√
x2

i + y2
i + z2

i DSV M =
1
t

(∫ t

0

(|∑SV M′|)dt
)

(5)

The SVM metric was used by [21] to identify possible falls and to monitor and classify
behavior patterns in cattle using an accelerometer attached to the hind legs [44]. DSVM was
developed to facilitate the classification of dynamic daily activities, including falls, using a
single metric and several thresholds operations.

2.3 Frequency Domain

Frequency-domain techniques have been extensively used to capture the repetitive nature of
a sensor signal. This repetition often correlates to the periodic nature of a specific activity
such as walking or running. A commonly used signal transformation technique is the Fourier
transform which allows one to represent in the frequency domain (or spectrum) important
characteristics of a time-based signal such as its average (or DC component) and dominant
frequency components. In this spectral representation the main periods or repetition inter-
vals of the signal are represented by non-zero values or coefficients at the corresponding
frequency axis value. For instance, a time signal with periodic patterns centered around the
0.5-second repetition interval will exhibit a noticeable Fourier coefficient centered around
the 2 Hz frequency axis. This frequency analysis is commonly computed for a time-signal of
a specific length or window using the discrete Fourier transform with algorithms such as the
Fast Fourier Transform (FFT) and the Fast Time Frequency Transform (FTFT) [36]. In ad-
dition to the FFT and its spectral representation, other frequency-based representation have
been used. For example, the Wavelet Haar transforms [34] represent a time-domain signal as
a decomposition of a set of weighted orthonormal vector basis or coefficients. These trans-
forms, although less common, provide computational advantages over the more established
FFT computation.

The following subsections highlight the common uses of frequency-domain analysis for
the recognition of user activity from accelerometer data.

2.3.1 DC Component

The DC component is the first coefficient in the spectral representation of a signal and its
value is often much larger than the remaining spectral coefficients. As described above, the
mean is used as signal characteristic in several activity recognition approaches along with
correlation, energy and entropy [5, 16, 18, 28].

2.3.2 Spectral Energy

The energy of the signal can be computed as the squared sum of its spectral coefficients
normalized by the length of the sample window. The energy metric has been used [41] to
identify the mode of transport of a user with a single accelerometer, respectively walking,
cycling, running and driving. In other contexts researchers used a microphone sensor to
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obtain an audio context and thus identify when a user would be on the street, engaged in a
conversation, or indoors in a loud (e.g. restaurant) or in a quiet place (e.g. lecture) [27].

2.3.3 Information Entropy

The entropy metric can be computed using the normalized information entropy of the dis-
crete FFT coefficient magnitudes excluding the DC component [16]. Entropy helps to differ-
entiate between signals that have similar energy values but correspond to different activity
patterns. Together with the mean, energy, and correlation, entropy has been used in several
activity recognition approaches. For example, Bao et al. [5] have used frequency-domain
entropy to distinguish between activities with similar energy levels, as is the case of cycling
and jogging.

2.3.4 Spectral Analysis of Key Coefficients

Several authors have used the summation of a set of spectral coefficients as a key metric for
the recognition of specific activities. For example, the coefficients from 0.5 Hz to 3 Hz can
be used as the key discriminating coefficients for the running and walking activities [47, 62].

In [37] the author developed an algorithm to determine the average step rate from the
signal spectrum. The algorithm looks for a frequency peak within the 0.7 to 3Hz range.
The magnitude of the largest signal peak is compared against the baseline noise value. If
the signal-to-noise ratio (SNR) is greater than a fixed threshold value then the frequency at
which this peak occurs is identified as the step rate. Other authors have used the frequency
value corresponding to the maximal spectral coefficient to determine if a person is either
walking or running, and if running at what pace [22, 23, 24].

2.3.5 Wavelet Analysis

The Wavelet transform can be used to examine the time-frequency characteristics of a signal
as it can be computed more efficiently than the Fourier transform [35]. For the spectral rep-
resentation, the Wavelet transform makes use of a set of orthonormal basis typically chosen
from a family of possible base generating functions. Among the many possible transforms
we have opted for the simpler Haar transforms (see e.g. [34]), and in this family of trans-
forms we used the transform of order 2, i.e., H2. This particular transform only requires
additions and subtractions for the computation of the spectral coefficients and can be per-
formed in place, thus not requiring any additional storage. Once the spectral coefficients are
computed a simple approach is to add all the coefficients thus generating a single metric
value.

Because the wavelet transform can capture sudden changes in signals like the ones mea-
sured by an accelerometer, it is often chosen by several activity recognition approaches.
However, the direct use of wavelets in the detection of user physical activities raises several
issues as there exist many wavelet transforms and of various kinds. In addition the resulting
representation (the wavelet coefficients) do not capture any quantity with physical meaning.
As a result, wavelets are commonly used in conjunction with other higher-level techniques
(e.g. [1]).

In [52, 53, 54] the authors use the discrete wavelet transform to classify the acceleration
signal for horizontal level and stairway walking. Other authors [1] have used the Daubechies
wavelets over the preprocessed signals with the SVM transformation. They then feed the
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data to a Hidden Markov Model to detect human activity with special attention to falls of
elderly people.

2.4 Symbolic Strings Domain

There has been a recent interest in transforming accelerometer and other sensor signals into
strings of discrete symbols. A key aspect in this transformation has been the discretization
process and while there is a potential for information loss, a limited symbol alphabet can
lead to a substantial compression in the representation of a signal. Typically, the sequence
of n input samples (possibly already normalized as in the case of a 3-axis accelerometer
signal) are split into windows of w consecutive samples. An average value is computed for
each of these windows followed by a discretization over a fixed size alphabet a.

A simple discretization process uses a domain-value function that defines the interval
of values that correspond to a given symbol. A recently developed techniques called sym-
bolic aggregate approximation (SAX) uses a piecewise aggregate approximation (PAA) [31]
which relies on a gaussian equiprobable distribution function to map range values into string
symbols.

Once signals have been mapped to strings, exact or approximate matching and edit dis-
tances are key techniques used to evaluate string similarity and thus either find known pat-
terns or classify the user activity.

2.4.1 Euclidian-related Distances

For two strings S and T of length n we define the Euclidian distance as

EuclidianDist(S,T ) =

√
n

∑
i=1

(|si − ti|)2 (6)

where the distance between symbols is defined by the corresponding numeric distance be-
tween the signal values that correspond to each symbol in the string representation.

A related metric often used for time-series classification that is a lower bound on the
Euclidian distance is the minimum distance (MinDist) metric [31] defined as:

MinDist(S,T ) =
√

n
w
·
√

n

∑
i=1

dist(si − ti)2 (7)

where n is the length of the two strings, and the symbols in both strings have been quantized
using a Gaussian distribution. The dist function is a symmetric distance matrix based on the
cut-off points of the same Gaussian. The fraction

√ n
w is a normalization of the compression

ratio achieved by the SAX transformation.
These distance metrics, albeit simple, allow for the quick discrimination of signals and

thus for fast evaluation of similarity between strings.

2.4.2 Levenshtein Edit Distance

Having a representation based on strings of symbols allows the use of a plethora of string-
approximation algorithms in order to determine which of a set of representative samples is
”closest” to a given input sample.
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One of such metrics is the Levenshtein edit distance. For two strings S and T this metric
determines the minimum number of symbol insertions, deletion and substitutions needed to
transform one string into the other. A common implementation uses dynamic programming
techniques with the recurrent expression [14]:

d(i, j) = min{d(i−1, j)+ insert,d(i, j−1)+ insert,d(i−1, j−1)+ subs(i, j)} (8)

where m and n are the length of the two strings and d is a m× n table whose first row and
column are initialized with the costs of creating each of the input strings, i.e. by inserting
all their symbols. The minimal cost of converting S into T is determined by the value of the
table position d(n,m).

In [56] the authors used this distance metric to identify a number of gestures with re-
ported 83% accuracy using a particular training methodology. According to the trajectory of
the movement, one of seven symbols is attributed to the signal acquired from a distributed
set of inertial sensor modules mounted on the lower arms, the upper arms and the torso of
the body. During training, some template samples of the gestures were collected and through
a string-matching method based on the computation of weighted edit distances, each gesture
is identified.

2.4.3 Dynamic Time Warping (DTW)

Dynamic time warping (DTW) [46] is a metric for measuring similarity between two se-
quences that may vary in length, and can thus correspond to different time basis. DTW is
used in automatic speech recognition based on a temporal alignment of the input signal with
template models. It can capture similarities of strings with distinct sampling period, and thus
speeds, but has a relatively high computational cost. The goal is to find a mapping W , where
in some cases an element of one string can map to a sequence of consecutive elements in
the other string.

The DTW algorithm implementation builds a matrix of mapping costs, along which the
mapping between the two strings is laid out as a path between the two opposite corners. Of
the many possible such paths, DTW finds the mapping W that minimizes:

DTW (S,T ) = min

{
1
K
·
√

K

∑
k=1

wk

}
(9)

where the cost of the path through the cost matrix is found using a dynamic programming
approach as the example of the metric in the previous subsection.

DTW has been applied to find similarity metrics between signals [26] in particular in the
context of gesture recognition, given the potentially more limited number of required sam-
ples [33]. More recently, researchers have also developed the derivative DTW (DDTW) [25]
and used it to detect activities such as walking, going up and down flights of stairs [39].

2.5 Analysis of Suitability of Implementation

The various techniques described in section 2.1 through section 2.4 have different computa-
tional costs and storage requirements making them more or less suitable for implementation
on mobile devices such as smartphones with limited storage or computational resources. We
now discuss these implementation costs first on an quantitative basis using abstract com-
plexity measures, and then qualitatively by using these measures to provide an assessment
of the suitability of the use of each metric in mobile devices.
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Time-domain Computational Complexity
metric add mult div sqrt comparisons
Normalization 3n 3n 0 n 0
Mean n n 1 0 0
Std. Deviation 2n+1 n+1 2 1 0
Median 0 0 0 0 n(n+1)/2
Range 0 0 0 0 2n
Maximum 0 0 0 0 n
Minimum 0 0 0 0 n
RMS n n 1 1 0
Integration 2n 0 0 0 0
Correlation* 4n+4 3n+1 7 3 0
Cross-Correlation* 3n(n−1) 3n(n−2) 3(n−1) 3 3(n−1)
Differences n 0 1 0 5n
Zero-Crossings n 0 1 0 2n
SMA* 3n+6 0 3n−2 0 0
SVM* 3n 6n 1 0 0
DSVM* 4n 6n n+1 0 0

Table 1 Summary of classification of time-domain metrics regarding computational costs, where n is the
number of input samples.

2.5.1 Quantitative Analysis: Complexity of Implementation

Rather than using device- or processor-dependent metrics that could be masked by platform-
specific features or even by the capabilities of the corresponding compilers2, we opted for an
abstract complexity measure that is tied to the number of operations in the computation of
each metric. As such, we divide the costs into several components, where each component
becomes a function of the number of samples n in the input data, possibly separated for each
of the three accelerometer axes. In the computational cost we have included the number of
additions, multiplications and other arithmetic and logic operations. For simplicity, all op-
erations are assumed to use floating-point (32-bit single precision) representations. In some
metrics there is the need for an initial normalization step in order to transform three integer
input vectors (one for each of the three accelerometer axis) into a single floating-point vec-
tor. So that this step does not mask the inherent complexity of each metric, we present the
complexity results for each metric excluding the cost of this preliminary step. Some met-
rics, however, do not require this initialization step and are labelled with an asterisk (*) in
Table 1. For completeness, we have also included the number of comparison operations, as
invariably their implementation will include an arithmetic operation.

In separate tables, such as Table 2, we have included the memory requirements to hold
temporary variables in addition to the space required to hold the input signal data. These ta-
bles also include the number of memory read and write operations to the storage, excluding
operations on scalar variables which tend to be absorbed in register instructions that imple-
ment arithmetic operations. Notice that the vast majority of the metrics have 0 values for
the read and write counts as the computation can be done on-the-fly since the normalization
step is generating the values for each sample.

Overall, these complexity results show that time-domain metrics are dominated by the
cost of normalization and none of them involve complex arithmetic operations such as
trigonometric or logarithmic functions. Some of the simple metrics exhibit a very small
number of multiplications, in some extreme cases (e.g. Differences) only additions and com-

2 Characteristics such as clock rates, caches, functional units and pipelines could influence the results of
such comparison, as some techniques may be more amenable to specific architectural or compiler features.



13

Time-domain Storage Memory
metric read write
Normalization 3n 3n 0
Mean 0 0 0
Std. Deviation 0 0 0
Median 0 n(n+1)/2 n(n+1)/2
Range 0 0 0
Maximum 0 0 0
Minimum 0 0 0
RMS 0 0 0
Integration 0 0 0
Correlation* 0 3n 2n
Cross-Correlation* 0 3n2 0
Differences 0 0 0
Zero-Crossings 0 n 0
SMA* 3n 3n 0
SVM* 3n 3n 0
DSVM* 3n 3n 0

Table 2 Summary of classification of time-domain metrics regarding storage costs and memory operations,
where n is the number of input samples.

Frequency-domain Computational Complexity
metric add mult div sqrt log comparisons
Normalization 2n 3n 0 n 0 0
Energy 8n 6n 3n+2 n 0 n
Entropy 9n 6n 3n+1 n n n
Coeff. Sum 7n+5 5n 2n+1 n 0 0
Dominant Freq. 7n 5n 2n+1 n 0 n
Wavelet (H2 & coeff. sum) 5n 0 0 0 0 0

Table 3 Summary of classification of frequency-domain metrics regarding computational costs, where n is
the number of input samples.

parisons are required. In general any of these metrics can be a good candidate for implemen-
tation on mobile devices where resources (computing, energy and storage) are at a premium.

As with the computational complexity costs, the storage and memory operations are
dominated by the normalization step. In general, all metrics have memory requirements
comparable to the normalization with the exception of the median metric. The median metric
uses a bubble sort algorithm implementation to find the median value and thus the O(n2)
complexity in terms of comparisons and read/write operations. For long signals with a large
number of input samples, asymptotically more efficient algorithms such as merge sort with
O(n logn) could reduce the number of such operations at the expense of a more complicated
control-flow implementation of the sorting algorithm.

Tables 3 and 4 provide a similar account on the time and space complexity of frequency-
domain techniques. This analysis shows that overall these frequency-domain metrics are
computationally more expensive than the time-domain metrics, not being necessarily dom-
inated by the normalization phase. When computing the FFT of the normalized input sig-
nal, the implementation uses a pre-computed table with sine and cosine values for various
discrete points between positions 0 and n− 1 thus avoiding expensive trigonometric com-
putations. For the entropy metric, however, the use of the logarithmic operator is required.
Regarding the storage requirements as depicted in Table 4, these frequency-domain metrics
also require more space than the time-domain metrics but still only as a linear function with
respect to the number of input samples.

Tables 5 and 6 provide an account on the time and space complexity of string-domain
metrics. For these metrics there is no normalization of the input samples as in the case of the
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Frequency-domain Storage Memory
metric read write
Normalization 3n 3n n
Energy 4n 3n 4n
Entropy 4n 3n 4n
Coeff. Sum n 0 4n
Dominant Freq. n 0 4n
Wavelet (H2 & coeff. sum) 2n 2n 0

Table 4 Summary of classification of frequency-domain metrics regarding storage costs and memory opera-
tions, where n is the number of input samples.

String-domain Computational Complexity
metric add mult div sqrt comparisons
SAX

Normalization 3n n n+2 1 0
Piecewise Approx. (PAA) n 0 n/w 0 0
Gaussian Discretization 0 0 0 0 n/w×a

Minimum Distance n/w 1 0 1 0
Levenshtein 3(n/w)2 0 0 0 0
DTW (n/w)2 0 0 0 0

Table 5 Computational complexity of symbolic string-domain metrics where n is the number of samples, w
the number of consecutive samples aggregated in a symbol, and a the alphabet size.

String-domain metric Storage Memory
read write

SAX
Normalization const. n 0
Piecewise Approx. (PAA) const. n n/w
Gaussian Discretization n/w+a n/w×a/2 n/2

Minimum Distance a2 2(n/w) 0
Levenshtein 2(n/w)+a2 6(n/w)2 (n/w)2

DTW 2(n/w)+a2 8(n/w)2 (n/w)2

Table 6 Summary of classification of symbolic string-domain techniques regarding storage costs and mem-
ory operations, where n is the number of samples, w the number of consecutive samples aggregated in a
symbol, and a the alphabet size.

time-domain and frequency-domain techniques. However, there is a transformation of repre-
sentation from continuous values to discrete symbols. This transformation is accomplished
by the SAX operation which is used for all the string-domain metrics and is therefore not
included in each specific metric.

As can be observed, string-domain metrics exhibit much lower costs for expensive op-
erations such as sqrt or even multiplications when compared to metrics in the time and
frequency domains. For additions, however, and in the case of metrics that rely on dynamic-
programming algorithms (Levenshtein and DTW) the number of operations is quadratic with
respect to the n/w ratio. For long input signals, with large values of n and small sample-to-
symbol compression ratios (w) this value can become quite large. A similar observation
holds for memory read and write operations. As to the requirements of additional storage,
they are overall fairly low. The only potentially large factor of a2 is due to the alphabet size
and thus can be kept in check.

2.5.2 Qualitative Analysis: Suitability for Mobile Devices

Table 7 presents the qualitative results regarding the implementation of each technique on a
mobile device. In this qualitative analysis we label each metric being suitable to be imple-
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Time-domain Ref(s) Comp. Storage Precision Mobile
metric cost req. device
Mean [5, 27, 50, 59] very low very low single/int Yes

Std. Deviation [15, 22, 23, 30, 59] very low very low double/single Yes
Median [2, 3] medium very low single/int Yes
Range [11] very low very low single/int Yes

Maximum [4, 59] very low very low single/int Yes
Minimum [4, 59] very low very low single/int Yes

RMS [8, 42, 53] very low very low double/single Yes
Integration [15, 30, 42] very low very low double/single Yes
Correlation [43, 57] medium low double/single Moderate

Cross-Correlation [5, 16, 18, 28] medium low double/single Moderate
Differences [55] very low very low single/int Yes

Zero-Crossings [8, 11, 30, 49] very low very low single/int Yes
SMA [6, 21, 37, 38] low low single/int Yes
SVM [21, 44] low low double/single Yes

DSVM [19] low low double/single Yes

Table 7 Summary of classification of time-domain techniques regarding computational costs, storage re-
quirements, and precision (double/single/int).

mented on a mobile device (Yes label); not being suitable (No label) and as being moderately
suitable (Moderate label) this last classification corresponding to an implementation that re-
quires either medium or high computing or storage resources.

To aid and distinguish this classification we further label each metric with four cost-
indication levels, namely:

– A metric exhibits a very low computational cost if it requires only a number of operations
that have a linear relation to the number of input samples n and these operations are in
its vast majority arithmetic additions and subtractions.

– A metric exhibits a low computational cost if it requires a number of operations that has
a linear relation to the number of input samples n which will include multiplications and
division. A fixed number of operations can be advanced arithmetic operations such as
square-root or logarithm.

– A medium computational cost will include metrics that are quadratic in terms of the
number of input samples n of simple addition/subtraction or multiplication/division op-
erations. A fixed number of operations can be advanced arithmetic operations such as
square-root or logarithm.

– A high computational cost will include techniques that require a number of operations
larger than an asymptotic quadratic bound, but where the individual operations are sim-
ple arithmetic additions/subtractions or multiplications/division. In this category a linear
number of advanced operations such as sine or log are required.

In addition to this implementation complexity we also indicate the category of precision,
and we include the base data types required in common implementations of these techniques.
While in some cases it is possible to use basic data types with less precision (e.g. use in-
teger values in place of doubles), typically the accuracy of the specific metric can degrade
substantially. For this reason in some cases we include more than one base data type.

Table 8 summarizes the results of the qualitative analysis for the frequency-domain met-
rics. With the exception of metrics based on Wavelet transforms, all others rely on the com-
putation of the signal spectrum. As such they are deemed expensive in terms of computa-
tional cost but still requiring a very modest amount of storage. Given the sophistication of
the computations, the required precision is typically high, either using double or single pre-
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Frequency-domain Ref(s) Comp. Storage Precision Mobile
metric Cost req. device
Energy [5, 16, 18, 27, 28, 41] medium low double/single Moderate
Entropy [5, 16, 18, 28] high low double/single No

Coeff. Sum [62] medium low double/single Moderate
Dominant Freq. [21, 22, 23, 24, 37] medium low double/single Moderate

Wavelet [34] low low double/single Yes
(H2 & coeff. sum)

Table 8 Summary of classification of frequency-domain techniques regarding computational costs, storage
requirements, and precision (double/single/int).

String-domain Ref(s) Comp. Storage Precision Mobile
metric Cost req. device

Minimum Distance [31] low low int Yes
Levenshtein [14] medium medium int Moderate

DTW [46] medium medium int Moderate

Table 9 Summary of classification of symbolic string-domain techniques regarding computational costs,
storage requirements, and precision (double/single/int).

cision arithmetic. Only the metrics based on Wavelets and those using simple arithmetics or
transformations are classified as requiring a low computational effort.3

Table 9 summarizes the results of the qualitative analysis for the symbolic string-domain
metrics. With the exception of the DTW metric, these string-based metrics require a fairly
low computational cost as they do not rely on sophisticated arithmetic and usually require
only integer arithmetic. Regarding storage, however, dynamic-programming metrics such as
the Levenshtein or the DTW may require storage that is quadratic on the length of their input
strings.4 This apparent high-storage requirement is balanced by the fact that symbol-string
representations lend themselves to substantial compression rates. As a result, these metrics
are very suitable for direct implementation on mobile devices.

3 Experimental Evaluation

In this section we discuss and evaluate the suitability of the techniques described in section 2
in recognizing specific user activities based on preprocessing the raw data coming from a
three-axis accelerometer. We begin by a description of the way we collected the input data
and of the way the various techniques have been implemented. Afterwards, we present the
experimental results and discuss the accuracy achieved in recognizing user activity in two
scenarios: one where the goal is to be able to distinguish between three activities (namely
walking, running and jumping) and another scenario where only two activities are consid-
ered (walking and running). We will refer to these as the three-activity and the two-activity
scenarios, respectively.

The three possible activities are depicted in Figure 3(a), 3(b) and 3(c), where the ac-
celerometer device is visible in the right-hand pocket. By attempting to distinguish between
three activities, our experiments differ from other applications of the same methods, where
typically only a binary classification such as active and non-active is attained.

3 In the simplest Wavelet examined, the Haar wavelet of order 2 (H2 = [11;1− 1]) only additions and
subtractions are used and divisions are always by constant, which is optimized in many Floating-Point Units
(FPU) hardware designs.

4 Although clever implementations can reduce this requirement to a linear relationship.
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(a) (b)

(c) (d)

Fig. 3 Data collection illustration for the three activities, namely (a) walking, (b) running and (c) jumping,
with a Wii Remote connected to a laptop for recording (d).

3.1 Evaluation Methodology

For the evaluation of different preprocessing techniques we collected raw sensor data using
a Nintendo R© Wii Remote (generally known as Wiimote) shown in Figure 3(d). The Wii Re-
mote includes a three-axis accelerometer sensor (an ADXL330 chip from Analog Devices)
that delivers up to 100 data samples per second, where each sample contains the values
for the three accelerometer axes. It has built-in bluetooth communication capabilities which
were used to record the data directly to a laptop.

The accelerometer sensor measures acceleration with a minimum full-scale range of 3g
and it senses both the gravity pull and the acceleration resulting from motion, shock, or
vibration. Raw numeric data values for each axis range from 0 (−3g) to 255 (+3g) with the
value 127 corresponding to zero acceleration.

With this acquisition setup we collected raw data for the three activities (walking, run-
ning and jumping) performed by volunteer students. Several minutes were collected for each
activity and then split into separate files of 60 seconds each. As an illustration, Figure 4
shows 60 seconds of jumping, 60 seconds of running and 60 seconds of walking concate-
nated together.

For these simple activities, each 60-second file has only one activity in its “pure” form,
meaning that it is a full minute of either walking, running or jumping. There were a total of
15 files for walking, 9 files for running and 6 files for jumping. These files have been divided
into a training set and a test set, as shown in Table 10. The files in the training set were used
to empirically tune the parameters of each algorithm, while the files in the test set were used
as independent samples to test the actual accuracy of the trained algorithm.
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Fig. 4 Plot of a 60-second file for each activity, each file containing approximately 6000 samples.

Activities Training set Test set Total
files windows files windows files windows

Walking 7 311 8 355 15 666
Running 4 175 5 214 9 389
Jumping 3 135 3 136 6 271

Table 10 Activities used in experimental evaluation.

We report the results of activity recognition for both the two-activity and the three-
activity scenario. Accuracy is computed as the percentage of correctly classified files from
the test set, for all activities. The same measure of accuracy has been computed separately
for the files in the training set in order to provide an idea of the maximum accuracy that could
be possibly achieved. For the training set the accuracy is seldom 100% as each algorithm
needs to distinguish the files of all activities, and the best choice of the algorithm parameters
(as described below) may not allow for a complete discrimination.

3.1.1 Selection of Threshold Parameters

Given the sampling frequency of the accelerometer (≤ 100 Hz) each 60-second file contains
6000 samples each of which includes data from each of the three axis. The data in each of
these files is further divided into windows of 256 samples, each window with a 50% overlap
with the previous one. The 256-sample window is the basic unit to be classified by a given
technique.

In order to carry out the evaluation experiments, we have implemented the techniques
described in section 2 in MATLAB R© according either to the reference article or to the
mathematical definition of each technique. For most metrics the first step is to compute
the norm ni for each individual sample (xi;yi;zi), i.e. ni =

√
xi2 + yi2 + zi2 and then apply
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Fig. 5 For any given metric, two thresholds thr1 and thr2 can be used to separate the three classes of user
activities.

the chosen metric to the resulting normal signal. A second step consists in finding the two
thresholds parameters – thr1 and thr2 – that separate the activities based on the chosen
metric. With three activities, there is always one threshold (thr1) separating the lower-valued
class from the intermediate one and another threshold (thr2) separating the intermediate
class to the higher-valued one. In the example of Figure 5, thr1 separates walking from
running and thr2 separates running from jumping.

The configuration of these thresholds may differ depending on the results of the chosen
metric, so in the first step it is necessary to pick up one file from each activity and identify
the classes that the two thresholds will separate. Then the second step consists in taking the
whole training set and find the best values of thr1 and thr2, where thr1 < th2. The optimal
values for these parameters are obtained when there is maximum accuracy in classifying
the training set, i.e. when most (if not all) 256-sample windows are correctly identified as
belonging to the activity that is specified in the training set.

In our implementation, we obtained the values of thr1 and thr2 for each metric by sweep-
ing through the value range using a bisection method over the search space, until the accu-
racy can be improved no further. An example of such search on a space grid is shown in
Figure 6. In this case we have a metric that varies between 0.0 and 1.0 and the best result
is achieved when thr1 = 0.4 and thr2 = 0.5, respectively. In this work, however, we did not
explore the impact of window size and of the degree of overlap, as has been studied by other
authors [17].

3.1.2 Accuracy in Activity Recognition

After the threshold parameters thr1 and thr2 have been determined, training is complete and
it is time to apply the chosen metric to the test set in order to evaluate its real accuracy.

Testing for the accuracy of a given metric is straightforward: one has only to pick each
window in the test set, compute its metric value, and compare this value to the trained
thresholds. Since the two thresholds define three classes of activities, we have:
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Fig. 6 Illustration of the selection of best threshold parameters for the correlation metric.

– if the metric value is below thr1, the window is classified in the lower-class;
– if the value is between thr1 and thr2, the window is classified in the middle-class;
– if the metric value is above thr2, the window is classified in the higher-class.

The correspondence between classes and activities has been established previously dur-
ing the training phase. The overall test accuracy is obtained by classifying all windows in
the test set. This accuracy is defined as the percentage of windows that have been correctly
assigned to their true activity.

3.2 Experimental Results

We now present the evaluation results for the preprocessing techniques described in sec-
tion 2. The evaluation is carried out both for the three-activity scenario and for the two-
activity scenario. For the two-activity scenario, the approach is basically the same but with
a single threshold parameter.

3.2.1 Results for Time-Domain Metrics

Table 11 presents the results for the time-domain metrics in the three-activity scenario. The
threshold values thr1 and thr2 that have been derived from the training set are shown, to-
gether with the accuracy obtained both in the training set and in the test set.

Overall, the techniques exhibit a wide range of accuracy results with an average of about
70.4% for the training set and of 60.8% for the test set. Of all these metrics, the differences
metric seems to be by far the most accurate one, followed by the minimum metric. All
other metrics exhibit substantially less accuracy particularly for the test set. The case of the
differences metric is somewhat misleading as the implementation relies on other metrics to
increase its accuracy. Specifically, it makes use of an average over the window to eliminate
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Time-Domain Metric Parameter Values Training Test
thr1 thr2 accuracy accuracy

Mean [5] 228.4 241.1 67.96% 59.14%
Std. Deviation [23] 17.7 28 63.74% 58.54%
Median [2] 226.5 242.2 60.37% 56.02%
Range [11] 63 95.7 64.24% 70.73%
Maximum [59] 264.3 296 71.16% 67.01%
Minimum [59] 200.2 211.5 80.10% 80.39%
RMS [42] 228.1 237 65.76% 46.81%
Integration [42] 58246 60372 66.10% 46.95%
Correlation (x,y) [43] -0.33 -0.78 70.32% 68.05%
Cross-Correlation (x,y) [5] 449 511 70.82% 57.06%
Differences [55] 5.3 8.2 97.30% 80.83%
Zero-Crossings [11] 16.8 36.6 76.50% 74.44%
SMA [21] 401 417 68.63% 40.56%
SVM [21] 228 241 67.45% 60.33%
DSVM [19] 58280 60290 66.27% 46.36%

Table 11 Summary of the results obtained by applying a selected set of the time-domain techniques to col-
lected data for three activities walking, running and jumping.

Time-Domain Metric Parameter Value Training Test
thr1 accuracy accuracy

Mean [5] 233.9 76.94% 52.22%
Std. Deviation [23] 14.7 82.97% 81.95%
Median [2] 231.7 76.72% 53.96%
Range [11] 109.5 70.47% 68.51%
Maximum [59] 264.3 64.22% 71.60%
Minimum [59] 205.8 98.60% 95.95%
RMS [42] 233.7 75.43% 53.41%
Integration [42] 59655 76.94% 53.41%
Correlation (x,y) [43] -0.33 89.87% 77.16%
Cross-Correlation (x,y) [5] 450 81.25% 71.27%
Differences [55] 6 100.00% 99.63%
Zero-Crossings [11] 36.6 75.00% 75.70%
SMA [21] 402 79.09% 53.78%
SVM [21] 228.9 74.14% 70.72%
DSVM [19] 58280 75.00% 72.74%

Table 12 Summary of the results obtained by applying a selected set of the time-domain techniques to col-
lected data for two activities of walking and running.

spikes. The combination of these metrics (differences and mean) achieves an impressive
97.3% accuracy rate. Lastly, we note that metrics such as SMA and DSVM have a somewhat
disappointing performance given the complexity of their implementation. The RMS and the
integration metric also seem to be particularly ineffective in the test set.

Table 12 presents the results for the time-domain metrics in the two-activity scenario.
As expected, given the simpler recognition task, the metrics exhibit in general better results
than for the three-activity scenario. The differences and the minimum metrics are again the
most accurate, with the differences metric achieving a perfect fit to the training set. For both
metrics, the accuracy is quite high in the test set. When comparing against the results for the
three-activity scenario, the metrics in general allow for a higher accuracy with an average of
79.7% and 70.1% accuracy rate in the training set and in the test set, respectively.

3.2.2 Results for Frequency-Domain Metrics

Table 13 presents the results for the frequency-domain metrics. Overall, the results for the
three-activity scenario are unsatisfying, as the increased complexity does not translate on an
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Frequency-Domain Metric Parameter Values Training Test
thr1 thr2 accuracy accuracy

Energy [5] 511 987 81.28% 76.97%
Entropy [5] 6.94 6.93 67.45% 65.23%
Coeff. Sum [62] 2420 6070 77.07% 79.90%
(Fi = 0.7Hz, F f = 3Hz)
Dominant Freq. [23] 2.5 Hz 2.8 Hz 52.78% 58.25%
Wavelet ((H2 & coeff. sum) [34] 22950 30730 68.47% 41.60%

Table 13 Summary of the results obtained by applying the frequency-domain metrics to the collected data
the three activities of walking, running and jumping.

Frequency-Domain Metric Parameter Value Training Test
thr1 accuracy accuracy

Energy [5] 589 83.19% 81.79%
Entropy [5] 6.92 85.56% 81.58%
Coeff. Sum [62] 2430 82.54% 79.01%
(Fi = 0.7Hz, F f = 3Hz)
Dominant Freq. [23] 2.6 Hz 66.81% 69.61%
Wavelet (coeff. sum) [34] 22950 75.86% 52.85%

Table 14 Summary of the results obtained by applying the frequency-domain metrics to the collected data
for the two activities of walking and running.

improvement in accuracy. For both the coefficient sum metric and the dominant frequency
metric the accuracy for the test set is actually higher than the accuracy for the training set.
This can be explained by the fact that the metric results on the training set are probably more
dispersed than in the test set. During the training phase, when the thresholds are chosen, it
may not be possible to accommodate some points of the training set; however, the points in
the test set are closer together, which means that they can be classified with fewer errors.

On the other hand, techniques that display similar results in the training set and in the
test set, even if their accuracy is not too high, are more easily adaptable to signal variations
within the same activity. These variations may be due to different users, different kinds of
clothing, or even different ways of walking, running and jumping. So it is important to look
for those techniques that are more consistent across the training set and the test set, besides
looking for the best accuracy.

Frequency-domain techniques seem to provide both fairly good accuracy (except per-
haps for the dominant frequency metric) and also fairly good consistency. The average ac-
curacy for the training set is 69.6% and for the test set is 70.1%, the best accuracy being
achieved by the coeff. sum metric. This provides an overall idea of the typical accuracy that
can be obtained with frequency-domain metrics in a three-activity scenario.

Similar to what had happened in the case of time-domain metrics, the results for the
frequency-domain metrics are better in the two-activity scenario, as shown in Table 14. The
average accuracy now increases to 79.5% for the training set and 78.0% for the test set.
The most noticeable improvement is in the entropy metric, while the others provide smaller
improvements to what had been obtained in the three-activity scenario.

3.2.3 Results for Symbolic String-Domain Metrics

We now present results for the use of some metrics using a string representation of the
raw accelerometer signal. In these experiments we used the SAX representation [31] for
windows with length of 512 samples. We varied the size of the alphabet and the number of
consecutive raw samples that are represent by one string symbol. One file for each activity
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String-Domain Metric Parameter Values Training Test
alphabet window accuracy accuracy

Minimum Distance [32] 3 6 50.00% 32.03%
Levenshtein [14] 9 9 76.80% 52.50%
DTW [46] 8 11 60.30% 50.50%

Table 15 Summary of the results obtained by applying symbolic string-domain metrics to collected data for
the three activities walking running and jumping.

String-Domain Metric Parameter Values Training Test
alphabet window accuracy accuracy

Minimum Distance [32] 6 6 58.47% 67.63%
Levenshtein [14] 3 6 81.36% 80.58%
DTW [46] 7 10 80.51% 84.17%

Table 16 Summary of the results obtained by applying symbolic string-domain metrics to collected data for
the two activities of walking and running.

was selected as the reference sample for that activity. All other samples were then tested
against that representative sample to evaluate the accuracy of the recognition.

The results for the three-activity scenario using this string representation and the set of
metrics depicted in Table 15 are not very encouraging. The overall accuracy rate for the
training set and the test set is 62.4% and 45.1% respectively. Even ignoring the minimum
distance metric that achieves a level of accuracy that is comparable to a random selection
of the activities, only the Levenshtein metric achieves a reasonable result, outperforming the
more sophisticated DTW metric.

In contrast, the results for the recognition of two activities as depicted in Figure 16 are
significantly better with an overall accuracy rate for the training set and the test set of 73.4%
and 77.5% respectively. Not only the Levenshtein and the DTW metrics present much better
accuracy than their use in the three-activity scenario, but the gap between training set and
test set is very small, which is a good indicator of the adaptability of these techniques in
scenarios where only a binary classification is needed.

3.3 Discussion

Overall, the results for the classification of the three physical activities are not outstanding.
Frequency-domain metrics in particular were expected to perform better, given the com-
putational cost of computing the frequency spectrum either using FFT-based methods or
Wavelets. Fortunately, the results are significantly better in a two-activity scenario. Some-
what surprising is the good performance of some of the simpler time-based metrics making
them a method of choice for embedded mobile devices where energy and storage is at pre-
mium. String-based metrics exhibit good accuracy results only in the two-activity scenario.
Given their simpler computational costs these methods also have the potential for better
results if further preprocessing is applied, and they offer the added benefit of a natural com-
pression feature and discrete representation.

4 Conclusion

In this article we have presented a survey of the techniques for recognizing daily physical ac-
tivities such as walking from raw accelerometer data. We described techniques that operate
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on the time domain and on the frequency domain, and also on symbolic data representa-
tions that can be used to discriminate between user activities. We evaluated a representative
set of techniques from these domains on a sample data obtained in a real-world environ-
ment for the activities of walking, running and jumping. The evaluation focused on the
ability of the techniques to successfully distinguish those user activities in a three-activity
and in a two-activity scenario. The results reveal that for the three-activity scenario some
of the frequency-domain techniques are particularly robust and have comparable perfor-
mance to selected time-domain techniques. For the two-activity scenario, however, the best
time-domain techniques outperform the best frequency-domain techniques. Regarding the
symbolic-domain techniques, their performance is only acceptable for the two-activity sce-
nario, making them attractive if their simpler implementation and their potential for data
compression is taken into account, Overall, we hope this assessment will contribute to iden-
tify the preprocessing techniques that are better suited for accelerometer-based and context
inference applications.
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