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Preface

There is no shortage of books on Commutative Algebra, but the present book
is different. Most books are monographs, with extensive coverage. There is one
notable exception: Atiyah and Macdonald’s 1969 classic [2]. It is a clear, concise,
and efficient textbook, aimed at beginners, with a good selection of topics. So it
has remained popular. However, its age and flaws do show. So there is need for an
updated and improved version, which the present book aims to be.

Atiyah and Macdonald explain their philosophy in their introduction. They say
their book “has the modest aim of providing a rapid introduction to the subject.
It is designed to be read by students who have had a first elementary course in
general algebra. On the other hand, it is not intended as a substitute for the
more voluminous tracts on Commutative Algebra. .. The lecture-note origin of this
book accounts for the rather terse style, with little general padding, and for the
condensed account of many proofs.” They “resisted the temptation to expand it in
the hope that the brevity of [the| presentation will make clearer the mathematical
structure of what is by now an elegant and attractive theory.” They endeavor “to
build up to the main theorems in a succession of simple steps and to omit routine
verifications.”

Their successful philosophy is wholeheartedly embraced below (it is a feature,
not a flaw!), and also refined a bit. The present book also “grew out of a course of
lectures.” That course was based primarily on their book, but has been offered a
number of times, and has evolved over the years, influenced by other publications
and the reactions of the students. Their book comprises eleven chapters, split into
forty-two sections. The present book comprises twenty-six sections; each represents
a single lecture, and is self-contained.

Atiyah and Macdonald “provided...exercises at the end of each chapter.” They
“provided hints, and sometimes complete solutions, to the hard” exercises. More-
over, they developed a significant amount of the main content in the exercises. By
contrast, in the present book, the exercises are integrated into the development,
and complete solutions are given at the end of the book.

There are well over two hundred exercises below. Included are nearly all the
exercises in Atiyah and Macdonald’s book. Included also are many exercises that
come from other publications and many that originate here. Here the exercises
are tailored to provide a means for students to check, solidify, and expand their
understanding of the material. The exercises are intentionally not difficult, tricky,
or involved. Rarely do they introduce new techniques, although some introduce
new concepts and many statements are used later.

Students are encouraged to try to solve each and every exercise, and to do so
before looking up its solution. If they become stuck, then they should review the
relevant material; if they remain stuck, then they should study the given solution,
possibly discussing it with others, but always making sure they can eventually solve
the whole exercise completely on their own. In any event, students should read the
given solution, even if they think they already know it, just to make sure; also,
some exercises provide enlightening alternative solutions. Finally, instructors are
encouraged to examine their students, possibly orally at a blackboard, on a small

iii

iv Preface

randomly chosen subset of exercises that have been assigned for the students to
write up in their own words over the course of the term.

Atiyah and Macdonald explain that “a proper treatment of Homological Algebra
is impossible within the confines of a small book; on the other hand, it is hardly
sensible to ignore it completely.” So they “use elementary homological methods —
exact sequence, diagrams, etc.—but...stop short of any results requiring a deep
study of homology.” Again, their philosophy is embraced and refined in the present
book. Notably, below, elementary methods are used, not Tor’s as they do, to prove
the Ideal Criterion for flatness, and to relate flat modules and free modules over
local rings. Also, projective modules are treated below, but not in their book.

In the present book, Category Theory is a basic tool; in Atiyah and Macdonald’s,
it seems like a foreign language. Thus they discuss the universal (mapping) property
(UMP) of localization of a ring, but provide an ad hoc characterization. They also
prove the UMP of tensor product of modules, but do not use the term this time.
Below, the UMP is fundamental: there are many canonical constructions; each has a
UMP, which serves to characterize the construction up to unique isomorphism owing
to one general observation of Category Theory. For example, the Left Exactness of
Hom is viewed simply as expressing in other words that the kernel and the cokernel
of a map are characterized by their UMPs; by contrast, Atiyah and Macdonald
prove the Left Exactness via a tedious elementary argument.

Atiyah and Macdonald prove the Adjoint-Associativity Formula. They note it
says that Tensor Product is the left adjoint of Hom. From it and the Left Exactness
of Hom, they deduce the Right Exactness of Tensor Product. They note that this
derivation shows that any “left adjoint is right exact.” More generally, as explained
below, this derivation shows that any left adjoint preserves arbitrary direct limits,
ones indexed by any small category. Atiyah and Macdonald consider only direct
limits indexed by a directed set, and sketch an ad hoc argument showing that tensor
product preserves direct limit. Also, arbitrary direct sums are direct limits indexed
by a discrete category (it is not a directed set); hence, the general result yields that
Tensor Product and other left adjoints preserve arbitrary Direct Sum.

Below, left adjoints are proved unique up to unique isomorphism. Therefore,
the functor of localization of a module is canonically isomorphic to the functor of
tensor product with the localized base ring, as both are left adjoints of the same
functor, Restriction of Scalars from the localized ring to the base ring. There is an
alternative argument. Since Localization is a left adjoint, it preserves Direct Sum
and Cokernel; whence, it is isomorphic to that tensor-product functor by Watts
Theorem, which characterizes all tensor-product functors as those linear functors
that preserve Direct Sum and Cokernel. Atiyah and Macdonald’s treatment is ad
hoc. However, they do use the proof of Watts Theorem directly to show that,
under the appropriate conditions, Completion of a module is Tensor Product with
the completed base ring.

Below, Direct Limit is also considered as a functor, defined on the appropriate
category of functors. As such, Direct Limit is a left adjoint. Hence, direct limits
preserve other direct limits. Here the theory briefly reaches a higher level of ab-
straction. This discussion is completely elementary, but by far the most abstract
part of the book. The extra abstraction can be difficult, especially for beginners.

Below, filtered direct limits are treated too. They are closer to the kind of limits
treated by Atiyah and Macdonald. In particular, filtered direct limits preserve
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exactness and flatness. Further, they appear in the following lovely form of Lazard’s
Theorem: in a canonical way, every module is the direct limit of free modules of
finite rank; moreover, the module is flat if and only if that direct limit is filtered.

Atiyah and Macdonald handle primary decomposition in a somewhat personal
and dated fashion. First, they study primary decompositions of ideals in rings.
Then, in the exercises, they indicate how to translate the theory to modules. The
decompositions need not exist, as the rings and modules need not be Noetherian.
Associated primes play a secondary role: they are defined as the radicals of the
primary components, and then characterized as the primes that are the radicals of
annihilators of elements. Finally, they prove that, when the rings and modules are
Noetherian, decompositions exist and the associated primes are annihilators. To
prove existence, they study irreducible modules. Nowadays, associated primes are
normally defined as prime annihilators of elements, and studied on their own at
first; sometimes, as below, irreducible modules are not considered.

There are several other significant differences between Atiyah and Macdonald’s
treatment and the one below. First, the Noether Normalization Lemma is proved
below in a stronger form for nested sequences of ideals; consequently, for algebras
that are finitely generated over a field, dimension theory can be developed directly
without treating Noetherian local rings first. Second, in a number of results below,
the modules are assumed to be finitely presented, rather than finitely generated over
a Noetherian ring. Third, there is a rudimentary treatment of regular sequences
below and a proof of Serre’s Criterion for Normality. Fourth, below, the Adjoint-
Associativity Formula is proved over a pair of base rings; hence, it yields both a
left and a right adjoint to the functor restriction of scalars.

The present book is a beta edition. Please do the community a service by sending
the authors lists of comments, corrections, and typos. Thanks!

1. Rings and Ideals

We begin by reviewing basic notions and conventions to set the stage. Through-
out this book, we emphasize universal mapping properties (UMPs); they are used
to characterize notions and to make constructions. So, although polynomial rings
and residue rings should already be familiar in other ways, we present their UMPs
immediately, and use them extensively. We close this section with a brief treatment
of idempotents and the Chinese Remainder Theorem.

(1.1) (Rings). — Recall that a ring R is an abelian group, written additively,
with an associative multiplication that is distributive over the addition.
Throughout this book, every ring has a multiplicative identity, denoted by 1.
Further, every ring is commutative (that is, xy = yz in it), with an occasional
exception, which is always marked (normally, it’s a ring of matrices).
As usual, the additive identity is denoted by 0. Note that, for any z in R,

z-0=0;

indeed, z-0 =2(04+0) =z -0+ -0, and z - 0 can be canceled by adding —(z - 0).
We allow 1 =0. If1=0, then R=0;indeed, x =x-1=x-0=0 for any z.
A unit is an element v with a reciprocal 1/u such that u-1/u = 1. Alternatively,

1/u is denoted u~! and is called the multiplicative inverse of u. The units form

a multiplicative group, denoted R*.

For example, the ordinary integers form a ring 7Z, and its units are 1 and —1.

A ring homomorphism, or simply a ring map, ¢: R — R’ is a map preserving
sums, products, and 1. Clearly, (R*) C R'*. We call ¢ an isomorphism if it is
bijective, and then we write ¢ : R = R’. We call ¢ an endomorphism if R’ = R.
We call ¢ an automorphism if it is bijective and if R’ = R.

If there is an unspecified isomorphism between rings R and R’, then we write
R = R’ when it is canonical; that is, it does not depend on any artificial choices,
so that for all practical purposes, R and R’ are the same. (Recognizing that an
isomorphism is canonical provides insight and obviates verifications.) Otherwise,
we write R ~ R'.

A subset R” C R is a subring if R” is a ring and the inclusion R” < R a ring
map. For example, given a ring map ¢: R — R/, its image Im(p) := p(R) is a
subring of R'.

An R-algebra is a ring R’ that comes equipped with a ring map ¢: R — R/,
called the structure map. An R-algebra homomorphism, or R-algebra map,
R’ — R is a ring map between R-algebras compatible with their structure maps.

(1.2) (Boolean rings). — The simplest nonzero ring has two elements, 0 and 1. It
is unique, and denoted F,.

Given any ring R and any set X, let RX denote the set of functions f: X — R.
Then RX is, clearly, a ring under valuewise addition and multiplication.

For example, take R := Fy. Given f: X — R, put S := f~1{1}. Then f(z) =1
ifx €S, and f(z) =0if z ¢ S; in other words, f is the characteristic function
Xs- Thus the characteristic functions form a ring, namely, F¥.

Given T C X, clearly xs - xT = xsnr- Further, xs + x7 = xsar, where SAT is
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2 1. Rings and Ideals

the symmetric difference:
SAT :=(SuUT)—(SNT)=(S-T)u (T -295),

where S — T denotes, as usual, the set of elements of S not in T'. Thus the subsets
of X form a ring: sum is symmetric difference, and product is intersection. This
ring is canonically isomorphic to Fa.

A ring B is said to be Boolean if f2 = f for all f € B. Clearly, F¥ is Boolean.

Suppose X is a topological space, and give F5 the discrete topology; that is,
every subset is both open and closed. Consider the continuous functions f: X — Fo.
Clearly, they are just the xs where S is both open and closed. Clearly, they form
a Boolean subring of F§. Conversely, Stone’s Theorem (13.7) asserts that every
Boolean ring is canonically isomorphic to the ring of continuous functions from a
compact Hausdorff topological space to Fy, or equivalently, to the ring of open and
closed subsets of that space.

(1.3) (Polynomial rings). — Let R be a ring, P := R[X;,...,X,] the polynomial
ring in n variables (see [1, pp.352-3] or [4, p.268]). Recall that P has this Uni-
versal Mapping Property (UMP): given a ring map ¢: R — R’ and given an
element x; of R’ for each i, there is a unique ring map w: P — R’ with 7|R = ¢
and m(X;) = x;. In fact, since 7 is a ring map, necessarily 7 is given by the formula:

w (S i X X0) = Yl ) .

In other words, P is the universal example of an R-algebra equipped with a list
of n elements: P is one example, and it maps uniquely to any other [1, (3.4), p. 353].

Similarly, let P’ := R[{Xx}xea] be the polynomial ring in an arbitrary set of
variables: its elements are the polynomials in any finitely many of the X; sum and
product are defined as in P. Thus P’ contains as a subring the polynomial ring
in any finitely many Xy, and P’ is the union of these subrings. Clearly, P’ has
essentially the same UMP as P: given ¢: R — R’ and given xx € R’ for each ),
there is a unique w: P' — R’ with 7|R = ¢ and 7(X)) = zy.

(1.4) (Ideals). — Let R be a ring. Recall that a subset a is called an ideal if

(1) 0 € a (or a is nonempty),
(2) whenever a,b € a, also a + b € a, and
(3) whenever z € R and a € a, also za € a.

Given elements ay € R for A € A, by the ideal (a))xea they generate, we mean
the smallest ideal containing them all. If A = ), then this ideal consists just of 0.

Any ideal containing all the ay contains any (finite) linear combination } xyax
with zx € R and almost all 0. Form the set a of all such linear combinations; clearly,
a is an ideal containing all a). Thus a is the ideal generated by the a.

Given a single element a, we say that the ideal (a) is principal. By the preceding
observation, (a) is equal to the set of all multiples za with x € R.

Similarly, given ideals ay of R, by the ideal they generate, we mean the smallest
ideal Y ay that contains them all. Clearly, Y ay is equal to the set of all finite
linear combinations > zyay with z)x € R and ay € ay.
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Given two ideals a and b, consider these three nested sets:

a+b:={a+b|lacaandbcb}
anb:={a|a€aandac b}
ab .= {2@1172‘(11 € a and biG b}

They are clearly ideals. They are known as the sum, intersection, and product
of a and b. Further, for any ideal ¢, the distributive law holds: a(b + ¢) = ab + ac.

Let a be an ideal. Then a = R if and only if 1 € a. Indeed, if 1 € a, then
z=ux-1¢€ afor every x € R. It follows that a = R if and only if a contains a
unit. Further, if (z) = R, then z is a unit, since then there is an element y such
that zy = 1. If a # R, then a is said to be proper.

Let ¢: R — R’ be a ring map. Let aR’ denote the ideal of R’ generated by ¢(a);
we call aR’ the extension of a. Let a’ be an ideal of R’. Clearly, the preimage
¢~ Y(a’) is an ideal of R; we call ¢~!(a’) the contraction of a’.

(1.5) (Residue rings). — Let ¢: R — R’ be a ring map. Recall its kernel Ker(y)
is defined to be the ideal ¢ ~1(0) of R. Recall Ker(¢) = 0 if and only if ¢ is injective.
Conversely, let a be an ideal of R. Form the set of cosets of a:

R/a:={z+a|z € R}

Recall that R/a inherits a ring structure, and is called the residue ring (or
quotient ring or factor ring) of R modulo a. Form the quotient map

k:R— R/a by kr:=2z-+a

The element xkx € R/a is called the residue of z. Clearly, s is surjective,  is a
ring map, and « has kernel a. Thus every ideal is a kernel!

Note that Ker(yp) D a if and only if ¢a = 0.

Recall that, if Ker(¢) D a, then there is a ring map v: R/a — R’ with ¥k = ¢;
that is, the following diagram is commutative:

R —— R/a
Gl
R/

Conversely, if ¥ exists, then Ker(¢) D a, or pa =0, or aR’ = 0, since xa = 0.
Further, if ¥ exists, then 1 is unique as k is surjective.
Finally, as k is surjective, if ¢ ezists, then 1 is surjective if and only if ¢ is so.
In addition, then 1 is injective if and only if a = Ker(p). Hence then 1 is an
isomorphism if and only if ¢ is surjective and a = Ker(y). In particular, always

R/ Ker(p) == Im(p). (1.5.1)

In practice, it is usually more convenient to view R/a not as a set of cosets,
but simply as another ring R’ that comes equipped with a surjective ring map
¢: R — R’ whose kernel is the given ideal a.

Finally, R/a has, as we saw, this UMP: x(a) = 0 and, given ¢: R — R’ such that
p(a) = 0, there is a unique ring map ¥: R/a — R’ such that ¥x = ¢. In other
words, R/a is the universal example of an R-algebra R’ such that aR’ = 0.

The UMP applies, first of all, to the underlying sets, providing a unique map ¥
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4 1. Rings and Ideals

of sets. Now, ¢ and « are ring maps, and ¥k = ; so
¥ (k(a) + k(b)) = vr(a+b) = vr(a) + Pr(b),
¢(K(a)f$(b)) = r(ab) = Yr(a) - Yr(b), and P(1) =9r(l) =1.

But k is surjective; so k(a), k(b) € R/a are arbitrary. Thus 1 is a ring map.

The UMP serves to determine R/a up to unique isomorphism.

Indeed, say R’, equipped with ¢: R — R’, has the UMP too. Then ¢(a) = 0; so
there is a unique ¢: R/a — R’ with ¥k = ¢. And s(a) = 0; so there is a unique
¥’ R' — R/a with ¥/¢ = k. Then, as shown, (¢'¢)x = K, but 1 0 K = k where 1

R/a

P
R — R’ 1

\\w’

R/a

is the identity map of R/a; hence, 1’y = 1 by uniqueness. Similarly, 19’ = 1 where
1 now stands for the identity map of R’. Thus 1 and v’ are inverse isomorphisms.

The preceding proof is completely formal, and so works widely. There are many
more constructions to come, and each one has an associated UMP, which therefore
serves to determine the construction up to unique isomorphism.

EXERCISE (1.6). — Let R be a ring, a an ideal, and P := R[X;,...,X,] the
polynomial ring. Construct an isomorphism ¢ from P/aP onto (R/a)[X1,...,X,].

PROPOSITION (1.7). — Let R be a ring, P := R[X] the polynomial ring in one
variable, a € R, and 7: P — R the R-algebra map defined by w(X) := a. Then
Ker(r) = (X —a), and R[X]/(X —a) = R.

PROOF: Given F(X) € P, the Division Algorithm yields F(X) = G(X)(X —a)+b
with G(X) € P and b € R. Then n(F(X)) = b. Hence Ker(m) = (X — a). Finally,
(1.5.1) yields R[X]/(X —a) = R. O

(1.8) (Nested ideals). — Let R be aring, a an ideal, and k: R — R/a the quotient

map. Given an ideal b D a, form the corresponding set of cosets of a:
b/a:={b+a|beb}=r(b).

Clearly, b/a is an ideal of R/a. Also b/a = b(R/a).

Clearly, the operations b — b/a and b’ — x~1(b") are inverse to each other, and
establish a bijective correspondence between the set of ideals b of R containing a and
the set of all ideals b of R/a. Moreover, this correspondence preserves inclusions.

Given an ideal b D a, form the composition of the quotient maps

¢: R— R/a— (R/a)/(b/a).
Clearly, ¢ is surjective, and Ker(¢) = b. Hence, owing to (1.5), ¢ factors through
the canonical isomorphism % in this commutative diagram:

R ——— R/b

L
R/a — (R/a)/(b/a)
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EXERCISE (1.9). Let R be ring, and P := R[X},...,X,] the polynomial ring.
Let m < n and aq,...,a;, € R. Set p := (X1 —a1,...,X;m — am). Prove that
P/p = R[Xmi1,. .., X0

(1.10) (Idempotents). — Let R be a ring. Let e € R be an idempotent; that is,
e? = e. Then Re is a ring with e as 1, because (ze)e = xe. But Re is not a subring
of R unless ¢ = 1, although Re is an ideal. Set ¢/ := 1 — ¢. Then ¢’ is idempotent,
and e- e’ = 0. We call e and ¢/ complementary and orthogonal idempotents

EXAMPLE (1.11). — Let R:= R’ x R” be a product of two rings: its operations
are performed componentwise. The additive identity is (0,0); the multiplicative
identity is (1,1). Set e := (1,0) and ¢’ := (0,1). Then e and ¢’ are complementary
idempotents. The next proposition shows this example is the only one possible.

PROPOSITION (1.12). — Let R be a ring with complementary idempotents e and
e'. Set R' := Re and R" := Re’, and form the map ¢: R — R’ x R" defined by
o(x) := (ze,xe’). Then ¢ is a ring isomorphism.

PROOF: Define a map ¢': R — R’ by ¢'(z) := ze. Then ¢’ is a ring map since
rye = zye? = (ve)(ye). Hence ¢ is a ring map. Further, ¢ is surjective, since
(ze,x’e’) = p(ze + x'€¢’). Also ¢ is injective, since if ze = 0 and ze’ = 0, then
x = ze+ xe’ =0. Thus @ is an isomorphism. 0
EXERCISE (1.13) (Chinese Remainder Theorem). — Let R be a ring,.

(1) Let a and b be comaximal ideals; that is, a + b = R. Prove

(a) ab=anb and (b) R/ab=(R/a) x (R/b).
(2) Let a be comaximal to both b and b’. Prove a is also comaximal to bb’.
(3) Let a, b be comaximal, and m,n > 1. Prove a” and b" are comaximal.
(4) Let ay,...,a, be pairwise comaximal. Prove
(a) a1 and ag - - - a, are comaximal;
(b) agN---Nay =ag---ay;
(c) R/(ar---an) = [[(R/a;).
EXERCISE (1.14). — First, given a prime number p and a k > 1, find the idempo-
tents in Z/{p*). Second, find the idempotents in Z/(12). Third, find the number
of idempotents in Z/(n) where n = Hfil p;* with p; distinct prime numbers.

EXERCISE (1.15). — Let R := R’ x R” be a product of rings, a C R an ideal.
Show a = o’ x o’ with @ C R’ and a” C R” ideals. Show R/a = (R'/a’) x (R"/a").
EXERCISE (1.16). — Let R be a ring, and e, ¢’ idempotents. (See (10.6) also.)

(1) Set a := (¢). Show a is idempotent; that is, a? = a.

(2) Let a be a principal idempotent ideal. Show a = (f) with f idempotent.

(3) Assume (e€) = (¢’). Show e =¢'.

(4) Set e’ := e+ e —ee’. Show (e, ¢/) = (¢”) and e” is idempotent.

(5) Let ey, ..., e, be idempotents. Show {ey,...,e.) = (f) with f idempotent.

(6) Assume R is Boolean. Show every finitely generated ideal is principal.
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6 2. Prime Ideals

2. Prime Ideals

Prime ideals are the key to the structure of commutative rings. So we review the
basic theory. Specifically, we define prime ideals, and show their residue rings are
domains. We show maximal ideals are prime, and discuss examples. Then we use
Zorn’s Lemma to prove the existence of maximal ideals in every nonzero ring.

DEFINITION (2.1). — Let R be a ring. An element z is called a zerodivisor if
there is a nonzero y with xy = 0; otherwise, x is called a nonzerodivisor. Denote
the set of zerodivisors by z.div(R).

A subset S is called multiplicative if 1 € S and if x,y € S implies zy € S.

An ideal p is called prime if its complement R — p is multiplicative, or equiva-
lently, if 1 ¢ p and if zy € p implies z € p or y € p.

EXERCISE (2.2). — Let a and b be ideals, and p a prime ideal. Prove that these
conditions are equivalent: (1) a C por b C p; and (2) anb C p; and (3) ab C p.

(2.8) (Fields, Domains). — A ring is called a field if 1 # 0 and if every nonzero
element is a unit. Standard examples include the rational numbers Q, the real
numbers R, and the complex numbers C.

A ring is called an integral domain, or simply a domain, if (0) is prime, or
equivalently, if R is nonzero and has no nonzero zerodivisors.

Every domain R is a subring of its fraction field Frac(R), which consists of the
fractions z/y with z,y € R and y # 0. Conversely, any subring R of a field K,
including K itself, is a domain; indeed, any nonzero x € R cannot be a zerodivisor,
because, if xy = 0, then (1/z)(zy) = 0, so y = 0. Further, Frac(R) has this UMP:
the inclusion of R into any field L extends uniquely to an inclusion of Frac(R) into
L. For example, the ring of integers Z is a domain, and Frac(Z) =Q Cc R c C.

Let R be a domain, and R[X] the polynomial ring in one variable. Then R[X]
is a domain too; in fact, given any two nonzero polynomials f and g, not only is
their product fg nonzero, but its leading coefficient is the product of the leading
coeflicients of f and g.

By induction, the polynomial ring in n variables R[ X1, ..., X,] is a domain, since

RIX1,..., X, = R[X1,..., X0 1][X.].

Hence the polynomial ring in an arbitrary set of variables R[{X )} ea] is a domain,
since any two elements lie in a polynomial subring in finitely many of the X.

A similar argument proves that R* is full group of units in the polynomial ring.
This statement can fail if R is not a domain. For example, if > = 0 in R, then
(I14+aX)(1—-aX)=1in R[X].

The fraction field Frac(R[{Xx}xca]) is called the field of rational functions,
and is also denoted by K ({Xx}xea) where K := Frac(R).

EXERCISE (2.4). — Given a prime number p and an integer n > 2, prove that the
residue ring Z/(p™) does not contain a domain.

EXERCISE (2.5). — Let R:= R’ x R” be a product of two rings. Show that R is
a domain if and only if either R’ or R” is a domain and the other is 0.
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(2.6) (Unique factorization). — Let R be a domain, p a nonzero nonunit. We call
p prime if, whenever p | zy (that is, there exists z € R such that pz = zy), either
p|xorp|y. Clearly, p is prime if and only if the ideal (p) is prime.

We call p irreducible if, whenever p = yz, either y or z is a unit. We call R a
Unique Factorization Domain (UFD) if every nonzero element is a product of
irreducible elements in a unique way up to order and units.

In general, prime elements are irreducible; in a UFD, irreducible elements are
prime. Standard examples of UFDs include any field, the integers Z, and a poly-
nomial ring in n variables over a UFD; see [1, p. 398, p.401], [4, Cor. 18.23, p. 297].

LEMMA (2.7). — Let ¢: R — R’ be a ring map, and T C R’ a subset. If T is
multiplicative, then o™ T is multiplicative; the converse holds if o is surjective.

PRrROOF: Both assertions are easy to check. O

PROPOSITION (2.8). — Let p: R — R’ be a ring map, and q C R’ an ideal. If q
is prime, then ©~1q is prime; the converse holds if  is surjective.

PROOF: By (2.7), R—p is multiplicative if and only if R’ —q is. So the assertion
results from Definitions (2.1). O

PROPOSITION (2.9). — Let R be a ring, p an ideal. Then p is prime if and only
if R/p is a domain.

PROOF: By (2.8), p is prime if and only if (0) C R/p is. So the assertion results
from the definition of domain in (2.3). d

EXERCISE (2.10). — Let R be a ring, p a prime ideal, R[X] the polynomial ring.
Show that pR[X] and pR[X] + (X) are prime ideals of R[X].

EXERCISE (2.11). — Let R be a domain, and R[Xq,...,X,] the polynomial ring
in n variables. Let m < n, and set p := (X1,..., X,,). Prove p is a prime ideal.

EXERCISE (2.12). — Let R := R’ x R” be a product of rings. Show every prime
ideal of R has the form p’ x R” with p’ C R’ prime or R’ x p”’ with p” C R” prime.

DEFINITION (2.13). — Let R be a ring. An ideal m is said to be maximal if m is
proper and if there is no proper ideal a with m g a.

EXAMPLE (2.14). — Let R be a domain. In the polynomial ring R[X,Y] in two
variables, (X) is prime by (2.11). However, (X) is not maximal since (X) G (X,Y).

PROPOSITION (2.15). — A ring R is a field if and only if (0) is a maximal ideal.

PROOF: Suppose R is a field. Let a be a nonzero ideal, and a a nonzero element
of a. Since R is a field, a € R*. So (1.4) yields a = R.

Conversely, suppose (0) is maximal. Take x # 0. Then (x) # (0). So (x) = R.
So z is a unit by (1.4). Thus R is a field. O

EXERCISE (2.16). — Let k be a field, R a nonzero ring, ¢: k — R a ring map.
Prove ¢ is injective.

PROPOSITION (2.17). — Let R be a ring, m an ideal. Then m is mazimal if and
only if R/m is a field.

PRrROOF: Clearly, m is maximal in R if and only if (0) is maximal in R/m by
(1.8). Hence the assertion results from (2.15). O
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EXERCISE (2.18). — Let B be a Boolean ring. Show that every prime p is maximal,
and B/p =TFs.

EXAMPLE (2.19). — Let k be a field, a1,...,a, € k, and P := k[X1,...,X,] the
polynomial ring in n variables. Set m := (X; —ay,...,X;, — a,). Then P/m =k
by (1.9); so m is maximal by (2.17).

EXERCISE (2.20). — Prove the following statements or give a counterexample.

(1) The complement of a multiplicative subset is a prime ideal.

(2) Given two prime ideals, their intersection is prime.

(3) Given two prime ideals, their sum is prime.

(4) Given a ring map ¢: R — R’, the operation ¢~
R’ to maximal ideals of R.

(5) In (1.8), k! takes maximal ideals of R/a to maximal ideals of R.

L carries maximal ideals of

EXERCISE (2.21). — Let k be a field, P := k[Xq,...,X,] the polynomial ring,
f € P nonzero. Let d be the highest power of any variable appearing in f.

(1) Let S C k have at least dn + 1 elements. Proceeding by induction on n, find
a,...,an, € S with f(a1,...,a,) #0.

(2) Using the algebraic closure K of k, find a maximal ideal m of P with f ¢ m.

COROLLARY (2.22). — In a ring, every maximal ideal is prime.
PRrROOF: A field is a domain by (2.3). So (2.9) and (2.17) yield the result. O

(2.23) (PIDs). — A domain R is called a Principal Ideal Domain (PID) if
every ideal is principal. Examples include the polynomial ring k[X] in one variable
over a field &, and the ring Z of integers. Every PID is a UFD by [1, (2.12), p. 396],
[4, Thm. 18.11, p. 291].

Let R be a PID, and p € R irreducible. Then (p) is maximal; indeed, if (p) & (z),
then p = zy for some nonunit y, and so x must be a unit since p is irreducible. So

(2.17) implies that R/(p) is a field.

EXERCISE (2.24). — Prove that, in a PID, elements z and y are relatively prime
(share no prime factor) if and only if the ideals (z) and (y) are comaximal.

EXAMPLE (2.25). — Let R be a PID, and p € R a prime. Set k := R/(p). Let
P := R[X] be the polynomial ring in one variable. Take g € P, let ¢’ be its image in
k[X], and assume ¢’ is irreducible. Set m := (p, g). Then m is maximal by (2.17);
indeed, P/m == k[X]/{g") by (1.5), and k[X]/{g') is a field by (2.23).

THEOREM (2.26). — Let R be a PID. Let P := R[X] be the polynomial ring in
one variable, and p a prime ideal of P.

(1) Then p =(0), or p = (f) with f prime, or p is mazimal.

(2) Assume p is mazimal. Then either p = (f) with f prime, or p = (p,g) with
p € R prime and g € P with image g’ € (R/(p))[X] prime.

PROOF: Assume p # (0). Take a nonzero fi € p. Since p is prime, p contains
a prime factor f] of fi. Replace f1 by fi. Assume p # (f1). Then there is an
prime fo € p — (f1). Set K := Frac(R). Gauss’s Lemma [1, p.401], [4, Thm.
18.15, p.295] implies that f; and f2 are also prime in K[X]. So f; and fo are
relatively prime in K[X]. So (2.23) and (2.24) yield g1,92 € P and ¢ € R with
(n/e)fr1+ (g2/c)fa=1. Soc=g1f1 + g2fo € RNp. Hence RNp # 0. But RN p
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is prime, and R is a PID; so RN p = (p) where p is prime by (2.6).

Set k := R/(p). Then k is a field by (2.23). Set q := p/(p) C k[X]. Then
k[X]/q = P/p by (1.6) and (1.8). But P/p is a domain as p is prime. Hence
q = (¢’) where ¢’ is prime in k[X] by (2.6). Then q is maximal by (2.23). So p is
maximal by (1.7). Take g € p with image ¢’. Then p = (p,g) as p/(p) = (¢’). O

EXERCISE (2.27). — Preserve the setup of (2.26). Let f := apX" +---+a, be a
polynomial of positive degree n. Assume that R has infinitely many prime elements
p, or simply that there is a p such that p { ag. Show that (f) is not maximal.

THEOREM (2.28). — Every proper ideal a is contained in some mazimal ideal.

PROOF: Set 8 := {ideals b | b D aand b # 1}. Then a € 8, and § is partially
ordered by inclusion. Given a totally ordered subset {bx} of 8, set b :=J by. Then
b is clearly an ideal, and 1 ¢ b; so b is an upper bound of {b)} in 8. Hence by
Zorn’s Lemma [7, pp. 25,26], [6, p. 880, p.884], 8 has a maximal element, and it is
the desired maximal ideal. d

COROLLARY (2.29). — Let R be a ring, € R. Then z is a unit if and only if x
belongs to no maximal ideal.

PRrROOF: By (1.4), x is a unit if and only if (x) is not proper. So (2.28) yields
the assertion. O
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3. Radicals

Two radicals of a ring are commonly used in Commutative Algebra: the Jacobson
radical, which is the intersection of all maximal ideals, and the nilradical, which is
the set of all nilpotent elements. Closely related to the nilradical is the radical of
a subset. We define these three radicals, and discuss examples. In particular, we
study local rings; a local ring has only one maximal ideal, which is then its Jacobson
radical. We prove two important general results: Prime Avoidance, which states
that, if an ideal lies in a finite union of primes, then it lies in one of them, and
the Scheinnullstellensatz, which states that the nilradical of an ideal is equal to the
intersection of all the prime ideals containing it.

DEFINITION (3.1). — Let R be a ring. Its (Jacobson) radical rad(R) is defined
to be the intersection of all its maximal ideals.

PROPOSITION (3.2). — Let R be a ring, x € R. Then z € rad(R) if and only if
1 — zy is a unit for all y € R.

PROOF: Assume z € rad(R). Let m be a maximal ideal. Suppose 1 —zy € m.
Since x € m too, also 1 € m, a contradiction. So 1 — zy is a unit by (2.29).

Conversely, assume = ¢ rad(R). Then there is a maximal ideal m with z ¢ m.
So (z) + m = R. Hence there exist y € R and m € m such that zy + m = 1. Then
1—2y=m€m. Sol— zyis not a unit by (2.29), or directly by (1.4). a

DEFINITION (3.3). — A ring A is called local if it has exactly one maximal ideal,
and semilocal if it has at least one and at most finitely many.

LEMMA (3.4) (Nonunit Criterion). — Let A be a ring, n the set of nonunits. Then
A is local if and only if n is an ideal; if so, then n is the maximal ideal.

PROOF: Every proper ideal a lies in n as a contains no unit. So, if n is an ideal,
then it is a maximal ideal, and the only one. Thus A is local.

Conversely, assume A is local with maximal ideal m. Then A —n = A —m by
(2.29). So n =m. Thus n is an ideal. O

ExXAMPLE (3.5). — The product ring R’ x R” is not local by (3.4) if both R’ and
R" are nonzero. Indeed, (1,0) and (0,1) are nonunits, but their sum is a unit.

EXERCISE (3.6). — Let A be a ring, m a maximal ideal such that 1 + m is a unit
for every m € m. Prove A is local. Is this assertion still true if m is not maximal?

EXAMPLE (3.7). — Let R be a ring. A formal power series in the n variables
X1, ..., X, is a formal infinite sum of the form ) a(i)Xfl - Xin where ay € Rand
where (i) = (i1,. .., i) with each ¢; > 0. Addition and multiplication are performed
as for polynomials; with these operations, these series form a ring R[[X1,..., X,]].

Set P:= R[[X1,...,X,]] and a:= (X1,...,X,). Then Y ayX{' -+ Xi» — a()
is a canonical surjective ring map P — R with kernel a; hence, P/a = R.

Given an ideal m C R, set n := a + mP. Then (1.8) yields P/n = R/m.

Suppose R is a local ring with maximal ideal m. Then any power series f ¢ n is
of the form f = a(1 —g) witha € R* and g € a. Set h :=a ' (14+g+g>+---);
this sum makes sense as the component of degree d involves only the first d + 1
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summands. Clearly f-h = 1. Hence the nonunits constitute n. Thus P is local
with maximal ideal n by (3.4).

EXAMPLE (3.8). — Let k be a ring, and A := k[[X]] the formal power series ring
in one variable. A Laurent series is a formal sum of the form Z;’i_m a; X" with
a; € k and m € Z. The Laurent series form a ring k{{ X }}. Set K := k{{X}}.

Set f:=32 , a; X' Ifa_, € kX, then f € K*; indeed, f = a_nX ™ (1—g)
where g€ A, and f-a”2 X™(1+g+g>+---) =1

Assume k is a field. If f # 0, then f = X ~™u where u € A*. Let a C A be a
nonzero ideal. Suppose f € a. Then X ™™ € a. Let n be the smallest integer such
that X™ € a. Then —m > n. Set b:= X ™ "u. Then b € A and f = bX". Hence
a=(X"). Thus A is a PID.

Further, K is a field. In fact, K = Frac(A) as any nonzero f € K is of the form
f=u/X™ where u, X™ € A.

Let A[Y] be the polynomial ring in one variable, and ¢: A < K the inclusion.
Define ¢: A[Y] = K by p|A = ¢ and ¢(Y) := X! Then ¢ is surjective. Set
m := Ker(p). Then m is maximal by (2.17) and (1.5). So by (2.26), m has the
form (f) with f irreducible, or the form (p, g) with p € A irreducible and g € A[Y].
But mN A = 0 as ¢ is injective. So m = (f). But XY — 1 belongs to m, and is
clearly irreducible; hence, XY — 1 = fu with v a unit. Thus (XY — 1) is maximal.

In addition, (X,Y) is maximal. Indeed, A[Y]/(Y) = A by (1.7), and so (3.7)
yields A[Y]/(X,Y) = A/(X) = k. However, (X,Y) is not principal, as no nonunit
of A[Y] divides both X and Y. Thus A[Y] has both principal and nonprincipal
mazimal ideals, the two types allowed by (2.26).

PROPOSITION (3.9). — Let R be a ring, S a multiplicative subset, and a an ideal
withanS =0. Set 8§ := {ideals b | b D aand bNS =0}. Then 8 has a mazimal
element p, and every such p is prime.

PrOOF: CLearly, a € 8, and § is partially ordered by inclusion. Given a totally
ordered subset {by} of 8, set b :=|Jbyx. Then b is an upper bound for {b,} in 8.
So by Zorn’s Lemma, 8 has a maximal element p. Let’s show p is prime.

Take z,y € R—p. Then p + (z) and p + (y) are strictly larger than p. So there
are p,q € p and a,b € R with p+ax € S and ¢+ by € S. Since S is multiplicative,
pq+ pby + gax + abxy € S. But pq+ pby + gax € p, so xy ¢ p. Thus p is prime. O

EXERCISE (3.10). — Let ¢: R — R’ be a ring map, p an ideal of R. Prove
(1) there is an ideal q of R’ with ¢~!(q) = p if and only if 1 (pR') = p;
(2) if p is prime with ¢! (pR’) = p, then there’s a prime q of R’ with p=*(q) = p.

EXERCISE (3.11). — Use Zorn’s lemma to prove that any prime ideal p contains
a prime ideal q that is minimal containing any given subset s C p.

(3.12) (Saturated multiplicative subsets). — Let R be aring, and S a multiplicative
subset. We say S is saturated if, given z,y € R with zy € S, necessarily z,y € S.

For example, it’s easy to see the following. The group of units R* is a saturated
multiplicative subset. Further, let ¢: R — R’ be a ring map, T' C R’ a subset. If T
is saturated multiplicative, then so is ¢ ~'T". The converse holds if ¢ is surjective.

EXERCISE (3.13). — Let R be a ring, S a subset. Show that S is saturated
multiplicative if and only if R — S is a union of primes.
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EXERCISE (3.14). — Let R be a ring, and S a multiplicative subset. Define its
saturation to be the subset

S:={xz¢c R|thereisy € R with zy € S }.

(1) Show (a) that S O S, and (b) that S is saturated multiplicative, and (c) that
any saturated multiplicative subset T’ containing S also contains S.

(2) Show that R — S is the union U of all the primes p with pN S = (.

(3) Let a be an ideal; assume S = 1+ a; set W := {J ey (q) P- Show R-S=W.

LEMMA (3.15) (Prime Avoidance). — Let R be a ring, a a subset of R that is
stable under addition and multiplication, and p1,...,p, tdeals such that ps,...,pn
are prime. If a ¢ p; for all j, then there is an x € a such that x ¢ p; for all j; or
equivalently, if a C |J;_, pi, then a C p; for some i.

PROOF: Proceed by induction on n. If n = 1, the assertion is trivial. Assume
that n > 2 and by induction that, for every ¢, there is an z; € a such that z; ¢ p;
for all j # i. We may assume z; € p; for every i, else we're done. If n = 2, then
clearly @1 + x2 ¢ pj for j =1,2. If n > 3, then (z1---zp—1) + z, ¢ p; for all j as,
if j = n, then z, € p,, and p,, is prime, and if j < n, then z, ¢ p; and z; € p;. O

EXERCISE (3.16). — Let k be an infinite field.
(1) Let V be a vector space, Wi, ..., W, proper subspaces. Show |JW; # V.
(2) In (1), let W C |JW; be a subspace. Show W C W; for some i.
(3) Let R a k-algebra, a,ay,...,a, ideals. If a C |Ja;, show a C a; for some 3.

EXERCISE (38.17). — Let k be a field, R := k[X,Y] the polynomial ring in two

variables, m := (X, Y’). Show m is a union of smaller primes.

(3.18) (Nilradical). — Let R be a ring, a a subset. Then the radical of a is the

set \/a defined by the formula /a:= {z € R | 2" € a for some n = n(z) > 1}.
Notice \/v/a = /a. Also, if a is an intersection of prime ideals, then v/a = a.
We call 1/(0) the nilradical, and sometimes denote it by nil(R). We call an

element x € R nilpotent if = belongs to \/W, that is, if ™ = 0 for some n > 1.
We call R reduced if nil(R) = (0), that is, if R has no nonzero nilpotents.

EXERCISE (3.19). — Find the nilpotents in Z/(n). In particular, take n = 12.
EXERCISE (3.20). — Let ¢: R — R’ be a ring map, b C R’ a subset. Prove
o Wb = /o Th.

EXERCISE (3.21). — Let R be a ring, a C 1/(0) an ideal, and P := R[Y] the
polynomial ring in one variable. Let v € R be a unit, and « € R a nilpotent.
(1) Prove (a) that u 4 x is a unit in R and (b) that « + 2Y is a unit in P.
(2) Suppose w € R maps to a unit of R/a. Prove that w is a unit in R.

THEOREM (3.22) (Scheinnullstellensatz). — Let R be a ring, a an ideal. Then

\/a = ﬂp)ap

where p runs through all the prime ideals containing a. (By convention, the empty
intersection is equal to R.)
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PrOOF: Take x ¢ v/a. Set S := {1,2,2%,...}. Then S is multiplicative, and
anS = 0. By (3.9), thereis a p D a, but z ¢ p. So x ¢ (\,5,p. Thus

Va2 MNysa b

Conversely, take « € y/a. Say 2" € a C p. Then z € p. Thus Va={,,p. O
EXERCISE (3.23). — Let B be a Boolean ring. Show that rad(B) = nil(B) = (0).
PROPOSITION (3.24). — Let R be a ring, a an ideal. Then \/a is an ideal.

PrOOF: Take x,y € v/a; say 2 € a and y™ € a. Then
(l’ + y)'nﬁ»mfl = Zi#i:m«knfl (n+771)xiyj'

This sum belongs to a as, in each summand, either z° or 3’ does, since, if i <n—1
and j <m—1, theni+j <m+n—2. Thus z+y € Va. So clearly v/a is an ideal.

Alternatively, given any collection of ideals ay, note that (ay is also an ideal.
So v/a is an ideal owing to (3.22). O
EXERCISE (3.25). — Let R be a ring, and a an ideal. Assume /a is finitely
generated. Show (\/a)" C a for all large n.

EXERCISE (3.26). — Let R be a ring, q an ideal, p a finitely generated prime.
Prove that p = ,/q if and only if there is n > 1 such that p D q D p".

PROPOSITION (3.27). — Let R be a ring. Assume R is reduced with only one
manimal prime q. Then R is a domain.

PROOF: Since R is reduced, (0) = 4/(0) by (3.18). Hence (0) is equal to the
intersection of all the prime ideals p by (3.22). By (3.11), every p contains ¢. So
(0) = q. Thus R is a domain. O

EXERCISE (3.28). — Let R be a ring. Assume R is reduced and has finitely many
minimal prime ideals p1,...,p,. Prove ¢: R — [[(R/p;) is injective, and for each
i, there is some (21, ..., 2,) € Im(p) with z; # 0 but z; = 0 for j # i.
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4. Modules

In Commutative Algebra, it has proven advantageous to expand the study of rings
to include modules. Thus we obtain a richer theory, which is more flexible and more
useful. We begin the expansion here by discussing residue modules, kernels, and
images. In particular, we identify the universal property of the residue module,
and use it to construct the Noether isomorphisms. We also construct free modules,
direct sums, and direct products, and we describe their universal properties.

(4.1) (Modules). — Let R be a ring. Recall that an R-module M is an abelian
group, written additively, with a scalar multiplication, R x M — M, written
(z,m) — axm, which is

(1) distributive, z(m +n) = zm + zn and (z + y)m = zm + zn,

(2) associative, z(ym) = (zy)m, and

(3) unitary, 1-m =m.
For example, if R is a field, then an R-module is a vector space. Moreover, a
Z-module is just an abelian group; multiplication is repeated addition.

Asin (1.1), for any z € R and m € M, we have -0 =0and 0-m = 0.

A submodule N of M is a subgroup that is closed under multiplication; that
is, zn € N for all z € R and n € N. For example, the ring R is itself an R-module,
and the submodules are just the ideals. Given an ideal a, let a/N denote the smallest
submodule containing all products an with ¢ € a and n € N. Similar to (1.4),
clearly alN is equal to the set of finite sums Y a;n; with a; € a and n; € N.

Given m € M, we call the set of x € R with xm = 0 the annihilator of m,
and denote it Ann(m). We call the set of z € R with am = 0 for all m € M
the annihilator of M, and denote it Ann(M). Clearly, Ann(m) and Ann(M) are
ideals.

(4.2) (Homomorphisms). — Let R be a ring, M and N modules. Recall that a
homomorphism, or module map is a map a: M — N that is R-linear:

alzm + yn) = z(am) + y(an).
Associated to a homomorphism «: M — N are its kernel and its image
Ker(a) :=a '(0) c M and Im(a):=a(M)C N.

They are defined as subsets, but are obviously submodules.

A homomorphism « is called an isomorphism if it is bijective. If so, then we
write a: M == N. Then the set-theoretic inverse a=': N — M is a homomor-
phism too. So « is an isomorphism if and only if there is a set map : N — M
such that Ba = 1y and a8 = 1y, and then f = a~ 1. If there is an unspecified
isomorphism between M and N, then we write M = N when it is canonical (that
is, it does not depend on any artificial choices), and we write M ~ N otherwise.

The set of homomorphisms « is denoted by Hompg (M, N) or simply Hom(M, N).
It is an R-module with addition and scalar multiplication defined by

(a4 B)m :=am+pm and (za)m :=z(am) = a(zm).
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Homomorphisms a: L — M and #: N — P induce, via composition, a map
Hom(w, 8): Hom(M, N) — Hom(L, P),

which is obviously a homomorphism. When « is the identity map 1), we write
Hom(M, ) for Hom(1s, 3); similarly, we write Hom(c, N) for Hom(a, 1n).

EXERCISE (4.3). — Let R be a ring, M a module. Consider the set map
0: Hom(R,M) — M defined by 6(p) := p(1).
Show that 6 is an isomorphism, and describe its inverse.

(4.4) (Endomorphisms). — Let R be a ring, M a module. An endomorphism of
M is a homomorphism «: M — M. The module of endomorphisms Hom(M, M)
is also denoted Endg(M).It is a ring, usually noncommutative, with multiplication
given by composition. Further, Endr (M) is a subring of Endz(M).

Given = € R, let pu,: M — M denote the map of multiplication by z, defined
by py(m) := xm. It is an endomorphism. Further, z — pu, is a ring map

pr: R — Endg(M) C Endz(M).

(Thus we may view pp as representing R as a ring of operators on the abelian
group M.) Note that Ker(ur) = Ann(M).
Conversely, given an abelian group N and a ring map

v: R — Endz(N),

we obtain a module structure on N by setting zn := (vz)(n). Then ug = v.
We call M faithful if yp: R — Endgr(M) is injective, or Ann(M) = 0. For
example, R is a faithful R-module, as x -1 = 0 implies x = 0.

(4.5) (Algebras). — Fix two rings R and R'.

Suppose R’ is an R-algebra with structure map ¢. Let M’ be an R’-module.
Then M’ is also an R-module by restriction of scalars: zm := ¢(z)m. In other
words, the R-module structure on M’ corresponds to the composition

R % R X% Endy (M).
In particular, R’ it is an R-module; further, for all z € R and y, 2 € R/,

(zy)z = z(yz).
Indeed, R’ is an R’-module, so an R-module by restriction of scalars; further,
(zy)z = x(yz) since (p(x)y)z = p(z)(yz) by associativity in R’.

Conversely, suppose R’ is an R-module such that (zy)z = z(yz). Then R’ has an
R-algebra structure that is compatible with the given R-module structure. Indeed,
define ¢: R — R’ by p(z) :=x-1. Then p(x)z = xz as (- 1)z = z(1 - 2). So the
composition pp¢: R — R’ — Endz(R’) is equal to pg. Hence ¢ is a ring map,
because pg is one and pg is injective by (4.4). Thus R’ is an R-algebra, and
restriction of scalars recovers its given R-module structure.

Suppose that R' = R/a for some ideal a. Then an R-module M has a compatible
R’-module structure if and only if aM = 0; if so, then the R’-structure is unique.
Indeed, the ring map pr: R — Endz (M) factors through R’ if and only if ug(a) =0
by (1.5), so if and only if aM = 0; as Endz (M) may be noncommutative, we must
apply (1.5) to pr(R), which is commutative.

Again suppose R’ is an arbitrary R-algebra with structure map ¢. A subalgebra
R"” of R’ is a subring such that ¢ maps into R”. The subalgebra generated by
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16 4. Modules

Z1,...,Ty € R’ is the smallest R-subalgebra that contains them. We denote it by

R[z1,...,x,]. It clearly contains all polynomial combinations f(z1,...,z,) with
coefficients in R. In fact, the set R” of these polynomial combinations is itself
clearly an R-subalgebra; hence, R" = R[z1,...,xy).

We say R’ is a finitely generated R-algebra or is algebra finite over R if
there exist z1,...,2, € R’ such that R’ = R[z1,...,z,].

(4.6) (Residue modules). — Let R be aring, M a module, M’ C M a submodule.
Form the set of cosets

M/M' = {m+M'|me M}.

Recall that M /M’ inherits a module structure, and is called the residue module
or quotient of M modulo M’. Form the quotient map

k: M — M/M'" by k(m)=m+ M.

Clearly « is surjective, r is linear, and x has kernel M’.
Let a: M — N be linear. Note that Ker(a) D M’ if and only if a(M') = 0.
Recall that, if Ker(a) D M, then there exists a homomorphism B: M/M' — N
such that Sk = a; that is, the following diagram is commutative:

M —= M/M’
X‘ﬂl
N

Conversely, if 8 exists, then Ker(a) D M’, or a(M') =0, as k(M') = 0.

Further, if 8 exists, then 8 is unique as k is surjective.

Finally, since k is surjective, if 3 exists, then [ is surjective if and only if « is
so. In addition, then [ is injective if and only if M' = Ker(a). Hence 8 is an
isomorphism if and only if o is surjective and M’ = Ker(«). In particular, always

M/ Ker(a) == Im(a). (4.6.1)

In practice, it is usually more convenient to view M /M’ not as a set of cosets, but
simply another module M"” that comes equipped with a surjective homomorphism
a: M — M"” whose kernel is the given submodule M.

Finally, as we have seen, M /M’ has the following UMP: x(M') = 0, and given
a: M — N such that «(M') = 0, there is a unique homomorphism 3: M/M' — N
such that Bk = a. Formally, the UMP determines M /M’ up to unique isomorphism.

(4.7) (Cyclic modules). — Let R be a ring. A module M is said to be cyclic if
there exists m € M such that M = Rm. If so, form a: R — M by z +— xm; then
« induces an isomorphism R/ Ann(m) == M as Ker(a) = Ann(m); see (4.6.1).
Note that Ann(m) = Ann(M). Conversely, given any ideal a, the R-module R/a is
cyclic, generated by the coset of 1, and Ann(R/a) = a.

(4.8) (Noether Isomorphisms). — Let R be a ring, N a module, and L and M
submodules.
First, assume L C M C N. Form the following composition of quotient maps:

a: N — N/L— (N/L)/(M/L).
Clearly « is surjective, and Ker(a) = M. Hence owing to (4.6), « factors through
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the isomorphism (3 in this commutative diagram:
N — N/M

| 8= (4.8.1)
N/L — (N/L)/(]M/L)
Second, let L + M denote the set of all sums ¢ + m with ¢ € L and m € M.
Clearly L + M is a submodule of N. It is called the sum of L and M.
Form the composition o’ of the inclusion map L — L + M and the quotient map
L+ M — (L+M)/M. Clearly ¢ is surjective and Ker(a’) = LN M. Hence owing
to (4.6), o factors through the isomorphism (' in this commutative diagram:

L —— L/(LNM)

J B’lz (4.8.2)
L+M — (L+M)/M

The isomorphisms of (4.6.1) and (4.8.1) and (4.8.2) are called Noether’s
First, Second, and Third Isomorphisms.

(4.9) (Cokernels, coimages). — Let R be a ring, a: M — N a linear map. Asso-
ciated to « are its cokernel and its coimage,

Coker(a) := N/Im(a) and Coim(a) := M/ Ker(a);

they are quotient modules, and their quotient maps are both denoted by x.
Note (4.6) yields the UMP of the cokernel: ka = 0, and given a map 3: N — P
with Ba = 0, there is a unique map ~v: Coker(a) — P with vk = f as shown below

M —%— N -5 Coker(a)
\5l /
vy
P
Further, (4.6.1) becomes Coim(a) = Im(a).

(4.10) (Free modules). — Let R be a ring, A a set, M a module. Given elements
my € M for A\ € A, by the submodule they generate, we mean the smallest
submodule that contains them all. Clearly, any submodule that contains them
all contains any (finite) linear combination Y zxmy with xy € R. On the other
hand, consider the set N of all such linear combinations; clearly, N is a submodule
containing the my. Thus NN is the submodule generated by the my.

The my are said to be free or linearly independent if, whenever Y z xmy = 0,
also zx = 0 for all A\. Finally, the m) are said to form a free basis of M if they
are free and generate M if so, then we say M is free on the my.

We say M is finitely generated if it has a finite set of generators.

We say M is free if it has a free basis. If so, then by (10.5) below, any two free
bases have the same number £ of elements, and we say M is free of rank /.

For example, form the set of restricted vectors

RO .= {() | 2x € R with z) = 0 for almost all A}.

It is a module under componentwise addition and scalar multiplication. It has a
standard basis, which consists of the vectors e, whose Ath component is the value
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18 4. Modules

of the Kronecker delta function; that is,

1, if A=y

0, if X\ # p.

Clearly the standard basis is free. If A has a finite number ¢ of elements, then R®A
is often written R’ and called the direct sum of ¢ copies of R.

The free module R®* has the following UMP: given a module M and elements
myx € M for A € A, there is a unique homomorphism

a: R®N o M with a(ey) = my for each A € A;

namely, a((m)\)) = a(z a:)\eA) =Y xamy. Note the following obvious statements:

e = (0un) where 4,y = {

(1) « is surjective if and only if the my generate M.

(2) « is injective if and only if the my are linearly independent.

(3) « is an isomorphism if and only if the my form a free basis.
Thus M is free of rank £ if and only if M ~ RE.

EXAMPLE (4.11). — Take R :=7Z and M := Q. Then any two z,y in M are not
free; indeed, if z = a/b and y = —¢/d, then bex + ady = 0. So M is not free. Also
M is not finitely generated. Indeed, given any mi/ni,...,m,/n,. € M, let d be
a common multiple of ny,...,n,. Then (1/d)Z contains every linear combination
z1(ma/n1) + -+ xe(me/ne), but (1/d)Z # M.

EXERCISE (4.12). — Let R be a domain, and z € R nonzero. Let M be the

submodule of Frac(R) generated by 1, 2!, x72,.... Suppose that M is finitely

generated. Prove that 27! € R, and conclude that M = R.

(4.13) (Direct Products, Direct Sums). — Let R be a ring, A a set, M) a module
for A € A. The direct product of the M) is the set of arbitrary vectors:
HM,\ = {(’ITL)\) | my € ]\/f,\}.

Clearly, [ [ My is a module under componentwise addition and scalar multiplication.
The direct sum of the M) is the subset of restricted vectors:

@ M)y = {(my) | my =0 for almost all A} C [ M.
Clearly, @ M, is a submodule of [[ M. Clearly, @ My = [[ M, if A is finite. If
A={X,..., \}, then @ M, is also denoted by My, & --- ® M,,.
The direct product comes equipped with projections
7w [ Mx — M, given by 7T,€((m,\)) = M.

It is easy to see that [[ M has this UMP: given homomorphisms cu: N — M,,
there is a unique homomorphism a: N — [[ My satisfying mea = «; for all k € A;
namely, a(n) = (ax(n)). Often, a is denoted (av). In other words, the 7y induce
a bijection of sets,

Hom(N, [[ M) = [T Hom(N, M,). (4.13.1)

Clearly, this bijection is an isomorphism of modules.
Similarly, the direct sum comes equipped with injections

m, if A\ = k;
0, if A#k.
It is easy to see that it has this UMP: given homomorphisms B..: M, — N, there is

te: My — @ My given by 1x(m) := (my) where my = {
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a unique homomorphism B: @ My — N satisfying B, = B, for all k € A; namely,
[)’((m)\)) =3 Ba(my). Often, 3 is denoted > By; often, (8x). In other words, the
L, induce this bijection of sets:

Hom (€ My, N) == [[Hom(My, N). (4.13.2)

Clearly, this bijection is an isomorphism of modules.
For example, if My = R for all ), then @ My = R®" by construction. Further,
if Ny := N for all A, then Hom(R®*, N) = [[ N) by (4.13.2) and (4.3).

EXERCISE (4.14). — Let A be an infinite set, Ry a ring for A € A. Endow [[ R»
and @ Ry with componentwise addition and multiplication. Show that [] Ry has
a multiplicative identity (so is a ring), but that @ R, does not (so is not a ring).

EXERCISE (4.15). — Let L, M, and N be modules. Consider a diagram
a B
L=MzN
P o
where «, 3, p, and o are homomorphisms. Prove that
M=L&N and a=ty, B=7N, 0=1IN, p=TL
if and only if the following relations hold:
Ba=0, fo=1, po =0, pa=1, and ap+ o8 = 1.

EXERCISE (4.16). — Let N be a module, A a nonempty set, M a module for
A € A. Prove that the injections ¢\, : M, — @ M) induce an injection

@ Hom(N, M) — Hom(N, @ M),
and that it is an isomorphism if N is finitely generated.

EXERCISE (4.17). — Let a be an ideal, A a nonempty set, M a module for A € A.
Prove a(@ M) = @ aMy. Prove a([] My) = [TaM, if a is finitely generated.
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5. Exact Sequences

In the study of modules, the exact sequence plays a central role. We relate it to
the kernel and image, the direct sum and direct product. We introduce diagram
chasing, and prove the Snake Lemma, which is a fundamental result in homological
algebra. We define projective modules, and characterize them in four ways. Finally,
we prove Schanuel’s Lemma, which relates two arbitrary presentations of a module.

DEFINITION (5.1). — A (finite or infinite) sequence of module homomorphisms
coe o Moy L M S M o -

is said to be exact at M; if Ker(o;) = Im(a;—1). The sequence is said to be exact

if it is exact at every M;, except an initial source or final target.

EXAMPLE (5.2). — (1) A sequence 0 — L = M is exact if and only if « is
injective. If so, then we often identify L with its image a(L).

Dually —that is, in the analogous situation with all arrows reversed—a se-
quence M 2y N = 0is exact if and only if § is surjective.

(2) A sequence 0 — L % M B, N is exact if and only if L = Ker(3), where ‘=’
means “canonically isomorphic.” Dually, a sequence L < M SN 0 is exact if
and only if N = Coker(a) owing to (1) and (4.6.1).

(5.3) (Short exact sequences). — A sequence 0 — L 2 M By N = 0 s exact if
and only if « is injective and N = Coker(a), or dually, if and only if 8 is surjective
and L = Ker(8). If so, then the sequence is called short exact, and often we
regard L as a submodule of M, and N as the quotient M /L.

For example, the following sequence is clearly short exact:

0L LaoNS N0
Often, we identify L with (L and N with ¢y N.

PROPOSITION (5.4). — For A € A, let M\ — My — MY be a sequence of module
homomorphisms. If every sequence is exact, then so are the two induced sequences

DM -PM—PM and []M{—[IM\—[]M{.
Conversely, if either induced sequence is exact then so is every original one.
PROOF: The assertions are immediate from (5.1) and (4.13). O

EXERCISE (5.5). — Let M’ and M" be modules, N C M’ a submodule. Set
M :=M"® M". Using (5.2)(1) and (5.3) and (5.4), prove M/N = M'/N & M".

EXERCISE (5.6). Let 0 = M' — M — M" — 0 be a short exact sequence.
Prove that, if M’ and M" are finitely generated, then so is M.

LeEMMA (5.7). — Let 0 — M’ % M By M" = 0 be a short ezact sequence, and
N C M a submodule. Set N’ := a~Y(N) and N" := B(N). Then the induced
sequence 0 — N’ — N — N” — 0 is short ezact.

PRrROOF: It is simple and straightforward to verify the asserted exactness. O
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DEFINITION (5.8). — We say that a short exact sequence

0 M S ME M o0 (5.8.1)
splits if there is an isomorphism ¢: M —= M'®M" with pa =t and 8 = 7.
We call a homomorphism p: M — M’ a retraction of « if pa = 1.
Dually, we call a homomorphism o: M"” — M a section of 3 if o = 1.

[e3

PROPOSITION (5.9). — Let 0 - M’ — M By M" 0 be a short evact sequence.
Then the following conditions are equivalent:

(1) The sequence splits.
(2) There exists a retraction p: M — M’ of a.
(3) There exists a section o: M" — M of .

PROOF: Assume (1). Then there exists ¢: M = M’ @& M" such that pa = ¢
and B = mpmp. Set p:=marp and o := @~ lipm. Then clearly (2) and (3) hold.

Assume (2). Set o/ := 1 — ap. Then o'a = a — apa = 0. So there exists
o: M" — M with 68 = ¢’ by (5.2)(2) and the UMP of (4.9). So 15 = ap+ of.
Since fof = [ and f is surjective, fo = 1p». Hence apo = 0. Since « is injective,
po = 0. Thus (4.15) yields (1) and also (3).

Assume (3). Then similarly (1) and (2) hold. O

EXERCISE (5.10). — Let M', M" be modules, and set M := M’ @& M". Let N be
a submodule of M containing M’, and set N := NN M". Prove N =M & N".

EXERCISE (5.11). — Criticize the following misstatement of (5.9): given a short
exact sequence 0 — M’ 5 M LN VN 0, there is an isomorphism M ~ M’ @ M"”
if and only if there is a section o: M"” — M of j.

LEMMA (5.12) (Snake). — Consider this commutative diagram with ezact rows:
MM Mo

i

0— N 2 N & N
It yields the following exact sequence:
Ker(y') 2 Ker(y) 2 Ker(v") 2, Coker(v") LN Coker(y) Y, Coker(v").  (5.12.1)
Moreover, if « is injective, then so is @; dually, if 5 is surjective, then so is ¢'.

PRrOOF: Clearly « yields a unique compatible homomorphism Ker(y") — Ker ()
because va(Ker('y')) = 0. By the UMP discussed in (4.9), o yields a unique
compatible homomorphism ¢’ because M’ goes to 0 in Coker(y). Similarly, 8 and
B’ induce corresponding homomorphisms v and v’. Thus all the homomorphisms
in (5.12.1) are defined except for 9.

To define 9, chase an m” € Ker(v") through the diagram. Since J is surjective,
there is m € M such that 8(m) = m”. By commutativity, v 8(m) = 8v(m). So
B'v(m) = 0. By exactness of the bottom row, there is a unique n’ € N’ such that
a/(n') = y(m). Define d(m”) to be the image of n’ in Coker(y’).

To see O is well defined, choose another m; € M with S(m;) = m”. Let nj € N’
be the unique element with o/(n}) = vy(m1) as above. Since S(m — mq) = 0, there
is an m’ € M’ with a(m’) = m —my. But &/v' = ya. So &'y (m') = o/(n' —n}).
Hence ~/(m') = n' — n} since o is injective. So n’ and n} have the same image in
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Coker(v'). Thus 0 is well defined.

Let’s show that (5.12.1) is exact at Ker(y”). Take m” € Ker(y”). As in the
construction of 9, take m € M such that B(m) = m” and take n’ € N’ such that
o/ (n') = y(m). Suppose m” € Ker(9). Then the image of n’ in Coker(y’) is equal
to 0; so there is m’ € M’ such that 7/(m’) = n/. Clearly ya(m') = o/v'(m'). So
ya(m') = o/ (n') = v(m). Hence m — a(m’) € Ker(y). Since B(m — a(m')) = m”,
clearly m"” = ¢(m — a(m’)); so m"” € Im(v)). Hence Ker(9) C Im(¢).

Conversely, suppose m’ € Im(1)). We may assume m € Ker(7). So y(m) =0 and
o/(n') = 0. Since ' is injective, n’ = 0. Thus (m') = 0, and so Im(¢p) C Ker(9).
Thus Ker(9) is equal to Im()); that is, (5.12.1) is exact at Ker(y").

The other verifications of exactness are similar or easier.

The last two assertions are clearly true. O

EXERCISE (5.13). — Referring to (4.8), give an alternative proof that g is an
isomorphism by applying the Snake Lemma to the diagram

0— M N N/M 0

[ J
)

0 — M/L — N/L 2 (N/L)/(M/L) — 0

EXERCISE (5.14) (Five Lemma). — Counsider this commutative diagram:

My 25 My 225 My =2 My =5 M,

ml 73l wl ml wl
Ny 25 Ny 25N, PNy 2 N
Assume it has exact rows. Via a chase, prove these two statements:
(1) If 43 and 77 are surjective and if vy is injective, then 7 is surjective.
(2) If 3 and v; are injective and if 74 is surjective, then 7, is injective.
EXERCISE (5.15) (Nine Lemma). — Consider this commutative diagram:
0 0 0

|1

0—L —L—L"—0

L1

0—-M —-M— M —0 (5.15.1)

L]

00— N —-N-—=N"—0

|l

0 0 0
Assume all the columns are exact and the middle row is exact. Applying the Snake
Lemma, prove that the first row is exact if and only if the third is.

EXERCISE (5.16). — Consider this commutative diagram with exact rows:

V=N VN Ve
a/l aJ{ a//l
N BN N
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Assume o’ and v are surjective. Given n € N and m” € M" with o/(m”) = +v'(n),
show that there is m € M such that a(m) = n and v(m) = m”.

THEOREM (5.17) (Left exactness of Hom). — (1) Let M' - M — M" — 0 be a
sequence of module homomorphisms. Then it is exact if and only if, for all modules
N, the following induced sequence is exact:

0 — Hom(M", N') — Hom(M, N) — Hom(M’, N). (5.17.1)

(2) Let 0 - N' — N — N" be a sequence of module homomorphisms. Then it
is exact if and only if, for all modules M, the following induced sequence is exact:

0 — Hom(M, N") — Hom(M, N) — Hom(M, N").

PrOOF: By (5.2)(2), the exactness of M’ % M By M” = 0 means simply
that M"” = Coker(a). On the other hand, the exactness of (5.17.1) means that a
¢ € Hom(M, N) maps to 0, or equivalently pa = 0, if and only if there is a unique
v: M" — N such that v8 = ¢. So (5.17.1) is exact if and only if M" has the
UMP of Coker(a), discussed in (4.9); that is, M"” = Coker(«). Thus (1) holds.

The proof of (2) is similar. O

DEFINITION (5.18). — A (free) presentation of a module M is an exact sequence
G—+F—=M-=0

with G and F free. If G and F are free of finite rank, then the presentation is called
finite. If M has a finite presentation, then M is said to be finitely presented.

PROPOSITION (5.19). — Given a module M and a set of generators {m}ea,
there is an exact sequence 0 — K — ROASM — 0 with a(ey) = my, where {ex}
is the standard basis; further, there is a presentation R®® — ROMILN — 0.

Proor: By (4.10)(1), there is a surjection ac: R®A — M with a(ey) = max. Set
K := Ker(a). Then 0 - K — R®» — M — 0 is exact by (5.3). Take a set of
generators {k, },ex of K, and repeat the process to obtain a surjection R —» K.
Then R®*® — R®A 5 M — 0 is a presentation. O

DEFINITION (5.20). — A module P is called projective if, given any surjective
homomorphism f: M — N, every homomorphism a: P — N lifts to a homomor-
phism ~: P — M; that is, a = Bv.

EXERCISE (5.21). — Show that a free module R®A is projective.

THEOREM (5.22). — The following conditions on a module P are equivalent:

(1) The module P is projective.

(2) Every short exact sequence 0 — K — M — P — 0 splits.
(3) There is a module K such that K & P is free.
4)

(4) Every exact sequence N' — N — N" induces an ezxact sequence
Hom(P, N') — Hom(P, N) — Hom(P, N"). (5.22.1)
(5) Ewvery surjective homomorphism 3: M —» N induces a surjection
Hom(P, 3): Hom(P, M) — Hom(P, N).
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PROOF: Assume (1). In (2), the surjection M —» P and the identity P — P
yield a section P — M. So the sequence splits by (5.9). Thus (2) holds.

Assume (2). By (5.19), there is an exact sequence 0 — K — RN — P — 0.
Then (2) implies K @ P ~ R®A. Thus (3) holds.

Assume (3); say K © P ~ R®A. For each A € A, take a copy N — Ny — N of
the exact sequence N’ — N — N” of (4). Then the induced sequence

[IN{ = TNy — [INVY.
is exact by (5.4). But by the end of (4.13), that sequence is equal to this one:
Hom(R¥*, N') — Hom(R®*, N) — Hom(R®*, N").

But K @ P~ R®), So owing to (4.13.2), the latter sequence is also equal to
Hom (K, N') ® Hom(P, N') — Hom(K, N) ® Hom(P, N) — Hom(K, N"') ® Hom(P, N").
Hence (5.22.1) is exact by (5.4). Thus (4) holds.

Assume (4). Then every exact sequence M By N = 0 induces an exact sequence

Hom(P, M) — Hom(P, N) — 0.

In other words, (5) holds.
Assume (5). By definition, Hom(P, 8)(y) = 8. Therefore, (1) holds. O

LEMMA (5.23) (Schanuel). — Given two short ezact sequences

v ’
1 [e3

0L5PSM—=0 and 0L 5P M0

with P and P’ projective, there is an isomorphism of ezact sequences:

0= LapP 22 pep 29 o

=[5 x|y = 1w

0 Par 2% pop C% A g

PRrROOF: First, let’s construct an intermediate isomorphism of exact sequences:

0 LapP 22 pap 29 o

ET)\ ETH :TlM
(o ')

00— K — PP — M — 0

Take K := Ker(a /). To form 6, recall that P’ is projective and « is surjective. So
there is a map 7: P’ — P such that o/ = am. Take 6 := (§ 7).
Then 0 has (é _7{) as inverse. Further, the right-hand square is commutative:
(@0)=(a0)(§7) =(aan)=(ad).

So 6 induces the desired isomorphism \: K = L & P’.
Symmetrically, form an automorphism 6’ of P® P’, which induces an isomorphism
N: K = P@ L. Finally, take v := 007! and 8:= NA~L. O

EXERCISE (5.24). — Let R be a ring, and 0 - L — R™ — M — 0 an exact
sequence. Prove M is finitely presented if and only if L is finitely generated.

EXERCISE (5.25). — Let R be a ring, X1, Xo,... infinitely many variables. Set
P:= R[X;,X5,...] and M := P/(X;,Xo,...). Is M finitely presented? Explain.
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PROPOSITION (5.26). — Let 0 — L % M Zy N = 0 be a short exact sequence
with L finitely generated and M finitely presented. Then N is finitely presented.

PRrROOF: Let R be the ground ring, u: R™ — M any surjection. Set v := [, set
K :=Kerv, and set A := p|K. Then the following diagram is commutative:

0K —>R" 5 N =0

o 1]
0—L- %ML N0

The Snake Lemma (5.12) yields an isomorphism Ker A == Ker . But Ker p is
finitely generated by (5.24). So Ker A is finitely generated. Also, the Snake Lemma
implies Coker A = 0 as Coker = 0; so 0 — Ker A — K 2, L - 0 is exact. Hence
K is finitely generated by (5.6). Thus N is finitely presented by (5.24). O

EXERCISE (5.27). — Let 0 - L = M B, N = 0 be a short exact sequence with
M finitely generated and N finitely presented. Prove L is finitely generated.

PROPOSITION (5.28). — Let 0 — L = M By N = 0 be a short ezact sequence
with L and N finitely presented. Prove M is finitely presented too.

PROOF: Let R be the ground ring, A: R — L and v: R” — N any surjections.
Define v: RY — M by v := aX. Note R" is projective by (5.21), and define
§: R™ — M by lifting v along 3. Define u: R ® R™ — M by p:= v+ 4. Then the
following diagram is, plainly, commutative, where ¢ := tpe and 7 := 7wgn:

0 =R HRaeR" S R —0
ool

0—L—sM-—L3N 0

Since A and v are surjective, the Snake Lemma (5.12) yields an exact sequence
0 — Ker A - Kerpy — Kerv — 0,

and implies Coker u = 0. Also, Ker A and Ker v are finitely generated by (5.24).
So Ker p is finitely generated by (5.6). Thus M is finitely presented by (5.24). O
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6. Direct Limits

Category theory provides the right abstract setting for certain common concepts,
constructions, and proofs. Here we treat adjoints and direct limits. We elaborate
on two key special cases of direct limits: coproducts (direct sums) and coequalizers
(cokernels). Then we construct arbitrary direct limits of sets and of modules.
Further, we prove direct limits are preserved by left adjoints; whence, direct limits
commute with each other, and in particular, with coproducts and coequalizers.

Although this section is the most abstract of the entire book, all the material
here is elementary, and none of it is very deep. In fact, many statements are just
concise restatements in more expressive language; they can be understood through
a simple translation of terms. Experience shows that it pays to learn this more
abstract language, but that doing so requires determined, yet modest effort.

(6.1) (Categories). — A category C is a collection of elements, called objects.
Each pair of objects A, B is equipped with a set Home (A, B) of elements, called
maps or morphisms. We write a: A — B or A = B to mean o € Home (A4, B).
Further, given objects A, B, C, there is a composition law
Home (A, B) x Home (B, C) — Home(A,C), written (o, 8) — Ba,
and there is a distinguished map 15 € Home (B, B), called the identity such that
(1) composition is associative, or v(fa) = (v5)« for v: C — D, and
(2) 1p is unitary, or 1pa = « and Bl = 8.
We say « is an isomorphism with inverse 5: B — A if af = 1p and fa = 14.
For example, four common categories are those of sets ((Sets)), of rings ((Rings)),
of R-modules ((R-mod)), and of R-algebras ((R-alg)); the corresponding maps are
the set maps, and the ring, R-module, and R-algebra homomorphisms.
Given categories € and €', their product € x € is the category whose objects
are the pairs (A4, A’) with A an object of € and A’ an object of € and whose maps
are the pairs (o, @’) of maps « in € and o/ in €.

(6.2) (Functors). — A map of categories is known as a functor. Namely, given
categories € and €, a (covariant) functor F': ¢ — € is a rule that assigns to
each object A of € an object F'(A) of ¢’ and to each map a: A — B of € a map
F(a): F(A) — F(B) of € preserving composition and identity; that is,

(1) F(Ba) = F(B)F(c) for maps a: A — B and 8: B — C of €, and

(2) F(1a) = 1p(a) for any object A of C.
We also denote a functor F' by F'(e), by A+ F(A), or by A — Fja.

Note that a functor F' preserves isomorphisms. Indeed, if o = 1p and fa =14,
then F(a)F(8) = 1p) and F(B)F(a) = F(1a).

For example, let R be a ring, M a module. Then clearly Hompg(M, e) is a functor
from ((R-mod)) to ((R-mod)). A second example is the forgetful functor from
((R-mod)) to ((Sets)); it sends a module to its underlying set and a homomorphism
to its underlying set map.

A map of functors is known as a natural transformation. Namely, given two func-
tors F, F': € = €/, a natural transformation §: F' — F” is a collection of maps
0(A): F(A) — F'(A), one for each object A of C, such that §(B)F(a) = F'(a)0(A)
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for every map a: A — B of C; that is, the following diagram is commutative:

F(a) 29 p(B)

0(A) 0(B)
F(a) 29 prpy
For example, the identity maps 1p(4) trivially form a natural transformation 1

from any functor F to itself. We call F' and F’ isomorphic if there are natural
transformations 0: FF — F' and ': F/ — F with /0 = 1 and 00’ = 1.

A contravariant functor G from C to € is a rule similar to F, but G reverses the
direction of maps; that is, G(«) carries G(B) to G(A), and G satisfies the analogues

of (1) and (2). For example, fix a module N; then Hom(e, N) is a contravariant
functor from ((R-mod)) to ((R-mod)).

EXERCISE (6.3). — (1) Show that the condition (6.2)(1) is equivalent to the
commutativity of the corresponding diagram:

Home(B,C) — Home: (F(B), F(C))

l |

Home(A,C) — Home: (F(A),F(C’))

(2) Given v: C' — D, show (6.2)(1) yields the commutativity of this diagram:
Home (B, C) — Home: (F(B), F(C))

l |

Home(A, D) — Home (F(A), F(D))

(6.4) (Adjoints). — Let € and €' be categories, F': € — € and F': ¢ — C
functors. We call (F, F’) an adjoint pair, F' the left adjoint of F’, and F’ the
right adjoint of F if, for each object A € € and object A’ € €, there is a natural
bijection

Home/ (F(A), A') ~ Home(A, F'(4)). (6.4.1)

Here natural means that maps B — A and A’ — B’ induce a commutative
diagram:
Home (F(A), A7) Home (A, F'(4"))

| |

Home (F(B), B') ~ Home(B, F'(B'))

1

R

Naturality serves to determine an adjoint up to canonical isomorphism. Indeed,
let F' and G be two left adjoints of F'. Given A € C, define §(A): G(A) — F(A)
to be the image of 1p(4) under the adjoint bijections

Home (F(A), F(A)) ~ Home(A, F'F(A)) =~ Home (G(A), F(A)).

To see that 0(A) is natural in A, take a map a: A — B. It induces the following
September 3, 2012 11Nts.tex



28 6. Direct Limits

diagram, which is commutative owing to the naturality of the adjoint bijections:
Home (F(A), F(A)) ~ Home(A, F'F(A)) ~ Home (G(A), F(A))

| ! |

Home: (F(A), F(B)) ~ Home(A, F'F(B)) ~ Home (G(A), F(B))

I | |

Home: (F(B), F(B)) Home (B, F'F(B)) Home/ (G(B), F(B))

2
2

¢

2

1
1

Chase after 1p(4) and 1p(p). Both map to F(a) € Home (F(A), F(B)). So
both map to the same image in Home/ (G(A), F(B)). But clockwise, 1p(4) maps to
F(a)0(A); counterclockwise, 1p(p) maps to 8(B)G(a). So 6(B)G () = F(a)0(A).
Thus the §(A) form a natural transformation : G — F'.

Similarly, there is a natural transformation 6’: F — G. It remains to show
0’0 = 1¢ and 06’ = 1. However, by naturality, this diagram is commutative:

Home (F(A), F(A)) ~ Home(A, F'F(A)) ~ Home(G(A), F(A))

| l |

Home/ (F(A), G(A)) ~ Home(A, F'G(A)) ~ Home(G(A4), G(4))

Chase after 1p(4). Clockwise, its image is §’(A)f(A) in the lower right corner.
Counterclockwise, its image is 1¢(4), owing to the definition of §’. Thus 66 = 1¢.
Similarly, 00’ = 1F, as required.

For example, the “free module” functor is the left adjoint of the forgetful functor
from ((R-mod)) to ((Sets)), since by (4.10),

Hom((R—mod))(R@Av AI) = Hom((Scts))(A7 ]‘/[)

Similarly, the “polynomial ring” functor is the left adjoint of the forgetful functor
from ((R-alg)) to ((Sets)), since by (1.3),

Hom((r-alg)) (R[X1, ..., Xn], R') = Hom((gets)) ({X1, ..., Xu}, R').
EXERCISE (6.5). — Let € and €' be categories, F: € — €’ and F': ¢/ — € an
adjoint pair. Let pa,4: Home (FA, A") =5 Home(A, F'A") denote the natural
bijection, and set 94 := ¢4, ra(lra). Do the following:

(1) Prove n4 is natural in A; that is, given g: A — B, the induced square

AL P'EA

gl lF/Fg
B % F'FB
is commutative. We call the natural transformation A — 14 the unit of (F, F’).

(2) Given f': FA — A’, prove a4 (f') = F'f ona.

(3) Prove the natural map n4: A — F'FA is universal from A to F’; that is,
given f: A — F’A’, there is a unique map f': FA — A’ with F'f'ona = f.

(4) Conversely, instead of assuming (F, F’) is an adjoint pair, assume given a
natural transformation n: 1e¢ — F'F satisfying (1) and (3). Prove the equation in
(2) defines a natural bijection making (F, F’) an adjoint pair, whose unit is 7.

(5) Identify the units in the two examples in (6.4): the “free module” functor
and the “polynomial ring” functor.

(Dually, we can define a counit e: F'F' — 1e/, and prove similar statements.)
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(6.6) (Direct limits). Let A, C be categories. Assume A is small; that is,
its objects form a set. Given a functor A — M, from A to C, its direct limit
or colimit, denoted hglM \ or hﬂxe A My, is defined as the universal example of
an object P of C equipped with maps 8,: M, — P, called insertions, that are
compatible with the transition maps oj;: M,, — M,,, which are the images of the
maps of A. In other words, there is a unique map (3 such that all these diagrams
commute:

“Z Ap .
My, =2 M, =2 Tim My

[ n ]

p-lry,p_r . p

To indicate this context, the functor A — M) is often called a direct system.

As usual, universality implies that, once equipped with its insertions ¢, the limit
lim M), is determined up to unique isomorphism, assuming it exists. In practice,
there is usually a canonical choice for hﬂ]V[ \, given by a construction. In any case,
let us use lim M), to denote a particular choice.

We say that € has direct limits indexed by A if, for every functor A — M)
from A to €, the direct limit lim M) exists. We say that C has direct limits
if it has direct limits indexed by every small category A. We say that a functor
F: @€ — € preserves direct limits if, given any direct limit lim M, in C, the
direct limit hgq F(M)) exists, and is equal to F (hgl M, ); more precisely, the maps
F(ay): F(M,) — F(h_r)n M) induce a canonical map

¢: ligF(JWA) — F(MMA)7
and ¢ is an isomorphism. Sometimes, we construct h_rr;F (My) by showing that
F(héfl M) has the requisite UMP.

Assume € has direct limits indexed by A. Then, given a natural transformation

from A\ — M) to A — N, universality yields unique commutative diagrams
M, — hg M),

L

N, — m Ny
To put it in another way, form the functor category C: its objects are the
functors A — M) from A to C; its maps are the natural transformations (they form
a set as A is one). Then taking direct limits yields a functor lim from G* to €.
In fact, it is just a restatement of the definitions that the “direct limit” functor
lig is the left adjoint of the diagonal functor

A:C— A
By definition, A sends each object M to the constant functor AM, which has the
same value M at every A € A and has the same value 1,/ at every map of A; further,

A carries a map v: M — N to the natural transformation Avy: AM — AN, which
has the same value v at every A € A.

(6.7) (Coproducts). — Let € be a category, A a set, and My an object of € for
each A € A. The coproduct [, My, or simply [] My, is defined as the universal
example of an object P equipped with a map 3,: M, — P for each p € A. The
maps ¢, : M, — [] My are called the inclusions. Thus, given an example P, there
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exists a unique map 8: [[ My — P with Si, = B, for all p € A.

If A = 0, then the coproduct is an object B with a unique map 3 to every other
object P. There are no u in A, so no inclusions ¢,: M,, — B, so no equations
Bty = B, to restrict 5. Such a B is called an initial object.

For instance, suppose € = ((R-mod)). Then the zero module is an initial object.
For any A, the coproduct [] M) is just the direct sum @ M) (a convention if A = ).
Further, suppose € = ((Sets)). Then the empty set is an initial object. For any A,
the coproduct [] M) is the disjoint union | | M, (a convention if A = ).

Note that the coproduct is a special case of the direct limit. Indeed, regard A as
a discrete category: its objects are the A € A, and it has just the required maps,
namely, the 15. Then liglM,\ = ][ M, with the insertions equal to the inclusions.

(6.8) (Coequalizers). — Let o, o/: M — N be two maps in a category C. Their
coequalizer is defined as the universal example of an object P equipped with a
map 1: N — P such that na = nao'.

For instance, if € = ((R-mod)), then the coequalizer is Coker(a — ’). In partic-
ular, the coequalizer of a and 0 is just Coker(a).

Suppose € = ((Sets)). Take the smallest equivalence relation ~ on N with
a(m) ~ o (m) for all m € M; explicitly, n ~ n’ if there are elements my,...,m,
with a(mi) = n, with o/(m,) = n/, and with a(m;) = o/(miq1) for 1 < i < r.
Clearly, the coequalizer is the quotient N/~ equipped with the quotient map.

Note that the coequalizer is a special case of the direct limit. Indeed, let A be
the category consisting of two objects k, p and two nontrivial maps ¢, ¢': K — p.
Define A — M) in the obvious way: set M, := M and M, := N; send ¢ to o and
¢’ to o’. Then the coequalizer is lim M.

EXERCISE (6.9). — Let a: L — M and 3: L — N be two maps. Their pushout
is defined as the universal example of an object P equipped with a pair of maps
v: M — P and §: N — P such that ya = §5. Express the pushout as a direct
limit. Show that, in ((Sets)), the pushout is the disjoint union M U N modulo the
smallest equivalence relation ~ with m ~ n if there is ¢ € L with a(¢) = m and
B(¢) =n. Show that, in ((R-mod)), the pushout is equal to the direct sum M & N
modulo the image of L under the map («, —f3).

LEMMA (6.10). — A category C has direct limits if and only if € has coproducts and
coequalizers. If a category C has direct limits, then a functor F: € — € preserves
them if and only if F' preserves coproducts and coequalizers.

PROOF: If € has direct limits, then € has coproducts and coequalizers because
they are special cases by (6.7) and (6.8). By the same token, if F': ¢ — €
preserves direct limits, then F' preserves coproducts and coequalizers.

Conversely, assume that € has coproducts and coequalizers. Let A be a small
category, and A — M) a functor from A to C. Let ¥ be the set of transition maps
ozf;: My — M. For each o := oz;\L € %, set M, := My. Set M := ][], .5, My and
N = H)\EA M. For each o, there are two maps M, := My — N: the inclusion
tx and the composition Lﬂaﬁ. Correspondingly, there are two maps o, a’: M — N.
Let C be their coequalizer, and n: N — C' the insertion.

Given maps fx: My — P with ﬂ#aﬁ = [y, there is a unique map 5: N — P with
Bix = Bx by the UMP of the coproduct. Clearly Ba = Ba’; so 8 factors uniquely
through C' by the UMP of the coequalizer. Thus C = @N[ A, as desired.
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Finally, if F: @ — @ preserves coproducts and coequalizers, then F preserves
arbitrary direct limits as F' preserves the above construction. (]

THEOREM (6.11). — The categories ((R-mod)) and ((Sets)) have direct limits.

PRrROOF: The assertion follows from (6.10) because ((R-mod)) and ((Sets)) have
coproducts by (6.7) and have coequalizers by (6.8). O

THEOREM (6.12). — Every left adjoint F': C — C' preserves direct limits.

PRrROOF: Let A be a small category, A — M) a functor from A to € such that
I'EM » exists. Given an object P’ of €/, consider all possible commutative diagrams

F(af o,
F(M,) 22, p(ag,) Flow), F (ling M)

. . (6.12.1)
I I s

where o] is any transition map and «,, is the corresponding insertion. Given the
', we must show there is a unique /.
Say F is the left adjoint of F’: € — €. Then giving (6.12.1) is equivalent to
giving this corresponding commutative diagram:

o )
M, —"> M, = lim M,

L v

F'(P") — F'(P) L F'(P)
However, given the S, there is a unique 5 by the UMP of th A (]

PROPOSITION (6.13). — Let C be a category, A and ¥ small categories. Assume
€ has direct limits indexed by X. Then the functor category € does too.

ProOF: Let o +— (A +— M,) be a functor from ¥ to C*. Then a map o — 7 in
3 yields a natural transformation from A\ — M, to A — M;5. Soamap A +— p in
A yields a commutative square

Mgy — My,

l l (6.13.1)
M.y — M,

in a manner compatible with composition in ¥. Hence, with A fixed, the rule
o — M, is a functor from X to C.

By hypothesis, lii>ng M,y exists. So A — li%m(762 M,y is a functor from A to

C. Further, as 7 € X veeurzies there are compatible natural transformations from the
A= M.y to A — hﬂ s M. Finally, the latter is the direct limit of the functor
7+ (A = M.,) from ¥ to €A, because, given any functor A — Py from A to €
equipped with, for 7 € ¥, compatlble natural transformations from the A — M,y

to A — Py, there are, for A € A, compatible unique maps liﬂaez Myy — Pi. O
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THEOREM (6.14) (Direct limits commute). — Let € be a category with direct limits
indexed by small categories ¥ and A. Let o — (A — Myy) be a functor from X to
CA. Then

hgnaeE liﬁn)\ez\ Mo\ = @AEA héﬂoez Mg,x-
PROOF: By (6.6), the functor lim CA - Cis a left adjoint. By (6.13), the
category G has direct limits indexed by ¥. So (6.12) yields the assertion. O

COROLLARY (6.15). — Let A be a small category, R a ring, and C either ((Sets))
or ((R-mod)). Then functor hHm CA — C preserves coproducts and coequalizers.

PRrOOF: By (6.7) and (6.8), both coproducts and coequalizers are special cases
of direct limits, and € has them. So (6.14) yields the assertion. O

EXERCISE (6.16). — Let € be a category, 3 and A small categories.
(1) Prove C¥*A = (€M)® with (0, \) = M, corresponding to o + (A — M, ).
(2) Assume € has direct limits indexed by ¥ and by A. Prove that C has direct

limits indexed by ¥ x A and that hﬂAeA 1i_r>ng62 = li_n)l(m)\)ezxA.
EXERCISE (6.17). — Let A — M, and A — N, be two functors from a small

category A to ((R-mod)), and {fx: M) — N} a natural transformation. Show
lim Coker(0x) = Coker(lim My — lim Ny).

Show that the analogous statement for kernels can be false by constructing a
counterexample using the following commutative diagram with exact rows:

727 -7/2) =0

o e

727 —17/2) =0
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Filtered direct limits are direct limits indexed by a filtered category, which is
a more traditional sort of index set. We give an alternative construction of these
limits for modules. We conclude that forming them preserves exact sequences, and
so commutes with forming the module of homomorphisms out of a fixed finitely
presented source. We end by proving that every module is a filtered direct limit of
finitely presented modules.

(7.1) (Filtered categories). — We call a small category A filtered if

(1) given objects k and A, for some p there are maps £ — p and A\ — p,
(2) given two maps o, 7: 1 = k with the same source and the same target, for
some 4 there is a map ¢: k — p such that po = pr.

Given a category C, we say a functor A\ — M, from A to C is filtered if A is
filtered. If so, then we say the direct limit lim M) is filtered if it exists.

For example, let A be a partially ordered set. Suppose A is directed; that is,
given k, A € A, there is a p with x < g and A < pu. Regard A as a category
whose objects are its elements and whose sets Hom(k, A) consist of a single element
if kK < A, and are empty if not; morphisms can be composed as the ordering is
transitive. Clearly, the category A is filtered.

EXERCISE (7.2). — Let R be a ring, M a module, A a set, M a submodule for
each A € A. Assume [J M) = M. Assume, given A, u € A, there is v € A such that
My, M,, € M,. Order A by inclusion: A < p if My C M,,. Prove that M = thx

EXERCISE (7.3). — Show that every module M is the filtered direct limit of its
finitely generated submodules.

EXERCISE (7.4). — Show that every direct sum of modules is the filtered direct
limit of its finite direct subsums.

ExXAMPLE (7.5). — Let A be the set of all positive integers, and for each n € A,
set M, :=={r/n|r € Z} C Q. Then YM, = Q and M,,, M,, C M. Then (7.2)
yields Q = h_r)nMn where A is ordered by inclusion of the M,.

However, M,, C M, if and only if 1/m = s/n for some s, if and only if m | n.
Thus we may view A as ordered by divisibility of the n € A.

For each n € A, set R,, := Z, and define 8,,: R, — M, by B,(r) := r/n. Clearly,
By is a Z-module isomorphism. And if n = ms, then this diagram is commutative:

R, 25 R,

fo|=  po|= (7.5.1)

L

My, <25 M,

where ¢ is the inclusion. Hence Q = lian where the transition maps are the
multiplication maps .

EXERCISE (7.6). — Keep the setup of (7.5). For each n € A, set N,, := Z/(n); if
n =ms, define a': N, — N,, by o'(z) := s (mod n). Show ligqN" =Q/Z.
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PROPOSITION (7.7). — Let A be a filtered category, R a ring, and C either ((Sets))
or ((R-mod)) or ((R-alg)). Let A\ — My be a functor from A to C. Define a
relation ~ on the disjoint union | | My as follows: my ~ ma for m; € My, if there
are transition maps ozf;f: My, — M, such that af;‘ my = a;}Zmz. Then ~ is an
equivalence relation. Set M := (|_| ]\A)/N. Then M = li_r)n]V[A, and for each p, the

canonical map o2 My, — M is equal to the insertion map M, — ligMA.

PROOF: Clearly ~ is reflexive and symmetric. Let’s show it is transitive. Given
m,; € M), for i =1,2,3 with m; ~ mg and my ~ mg, there are a:\; fori=1,2 and
ap for i = 2,3 with ay'my = a*my and a?my = aj*ms. Then (7.1)(1) yields
a# and af. Possibly, aka)? # aba)?, but in any case, (7.1)(2) yields o with
ab(atan?) = af (a%ay?). Hence, (afak)any my = (afak)ap?ms. Thus my ~ ms.

If € = ((R-mod)), define addition in M as follows. Given m; € My, for i =1, 2,
there are a)' by (7.1)(1). Set

o A A
ax, M1+ ax,ma = ooy mi + ag?ma).

We must check that this addition is well defined.
First, consider p. Suppose there are o too. Then (7.1)(1) yields af and aj.

Possibly, aﬁja;}i #* a’/ja,’)i, but (7.1)(2) yields o with aﬁ(aﬁaﬁl) = oa{;(a;a,’)l) and

then a? with a:(aga‘;aﬁi’) = ai(a@a%ai@). Therefore,
(a;‘aga‘;)(aﬁlml + a;\ﬁmg) = (aZaﬁaZ)(aﬁlml + aj?ms).

Thus both p and v yield the same value for ay, mi + ax,mo.

Second, suppose my ~ mj € M ;- Then a similar, but easier, argument yields
ax,m1 + ax,me = a)\/lm’l + ay,ma. Thus addition is well defined on M.

Define scalar multiplication on M similarly. Then clearly M is an R-module.

If ¢ = ((R-alg)), then we can see similarly that M is canonically an R-algebra.

Finally, let 8y: My — N be maps with 8yaf = B, for all af. The ) induce
a map | My — N. Suppose m; ~ mg for m; € My,; that is, af;lml = a;‘zmg

for some azi. Then Bx,m1 = Br,m2 as 6uo¢2i = [,. So there is a unique map
B: M — N with Bay = By for all A. Further, if € = ((R-mod)) or € = ((R-alg)),
then clearly g is a homomorphism. The proof is now complete. O
COROLLARY (7.8). — Preserve the conditions of (7.7).

(1) Given m € 1i_n>'1M)\, for some A, there is my € My such that m = aymy.

A

i
0 such

(2) Given m; € My, for i = 1,2 such that ax,m1 = ax,ma, there are a
that aﬁlml = aﬁ2m2.
(3) Suppose € = ((R—mod)) or C = ((R—alg)). Then given my € My such that

aymy =0, there is af‘t such that a;}mA =0.

PROOF: The assertions follow immediately from (7.7). O

EXERCISE (7.9). — Let R be a filtered direct limit of rings Ry. Show R = 0 if
and only if Ry = 0 for some A. Show R is a domain if Ry is a domain for every A.

THEOREM (7.10) (Exactness of filtered direct limits). Let R be a ring, A a
filtered category. Let C be the category of 3-term exact sequences of R-modules: its

September 3, 2012 11Nts.tex

7. Filtered Direct Limits 35

objects are the 3-term exact sequences, and its maps are the commutative diagrams
L — M — N

| 1]

L' — M — N’

Then, for any functor A — (Ly LEN My 2 Ny) from A to C, the induced sequence
l'glL,\ £> ligAMA N liﬁ}NA 18 exact.

PRroOF: Abusing notation, in all three cases, denote by af the transition maps
and by «a the insertions. Then given ¢ € lim Ly, there is {5 € Ly with a)l) = ¢
by (7.8)(1). By hypothesis, yx8xfx = 0; so v8¢ = 0. Thus Im(3) C Ker(y).

For the opposite inclusion, take m € liAqM,\ with ym = 0. By (7.8)(1), there is
my € My with axmy = m. Now, axyamy = 0 by commutativity. So by (7.8)(3),

there is oef; with a:\t'yAmA = 0. So fyuaﬁm,\ = 0 by commutativity. Hence there is

4, € L, with 8,0, = af;m)\ by exactness. Apply ¢, to get

Bauly = o Buly = auazmA =m.
Thus Ker(vy) C Im(3). So Ker(y) = Im(3) as asserted. O
EXERCISE (7.11). — Let M := lim M) be a filtered direct limit of modules, and

N C M a submodule. For each A, let ay: My — M be the insertion, and set
Ny = a;lN C M). Prove that N = li_n)JN,\.

PROPOSITION (7.12). — Let A a filtered category, R a ring, A — My a functor
from A to ((R-mod)), and N an R-module. Consider the canonical homomorphism

O(N): ligHom(N, M) — Hom(N, liQJVIA)7
which is induced by the insertions My — l'l)nM)\. Then O(N) is injective if N is
finitely generated; further, O(N) is bijective if N is finitely presented.

PRrROOF: If N := R, then 6(N) is bijective by (4.3). Assume N is finitely gener-
ated, and take a presentation R®* — R® — N — 0 with ¥ finite if N is finitely
presented. It induces the following commutative diagram:

0— ligHom(N, M) — ligHom(R", My) — li_n}lHom(R@E7 M)
O(N)l 9(R")l: e(RGB:)l
0 — Hom(N, th)\) — Hom(R", li_r}n]\l,\) — Hom(R%®, li_n)1]W)\)
The rows are exact owing to (5.17), the left exactness of Hom, and to (7.10), the
exactness of filtered direct limits. Now, Hom preserves finite direct sums by (4.13),

and direct limit does so by (6.15) and (6.7); hence, (R") is bijective, and §( R®%)
is bijective if ¥ is finite. A diagram chase yields the assertion. |

EXERCISE (7.13). — Let A and A’ be small categories, C: A’ — A a functor.
Assume A’ is filtered. Assume C is cofinal; that is,

(1) given X € A, there is a map A — CX for some A" € A/, and
(2) given v, @: A = CN, there is x: N — A} with (Cx)y¥ = (Cx)e.
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Let A — M) be a functor from A to € whose direct limit exists. Show that
lim, e po Mox = Tim, M
more precisely, show that the right side has the UMP characterizing the left.

EXERCISE (7.14). — Show that every R-module M is the filtered direct limit over
a directed set of finitely presented modules.
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Given two modules, their tensor product is the target of the universal bilinear
map. We construct the product, and establish various properties: bifunctoriality,
commutativity, associativity, cancellation, and most importantly, adjoint associa-
tivity; the latter relates the product to the module of homomorphisms. With one
factor fixed, the product becomes a linear functor. We prove Watt’s Theorem; it
characterizes “tensor-product” functors as those linear functors that commute with
direct sums and cokernels. Lastly, we discuss the tensor product of algebras.

(8.1) (Bilinear maps). — Let R a ring, and M, N, P modules. We call a map
a:MxN— P
bilinear if it is linear in each variable; that is, given m € M and n € N, the maps
m' — a(m’,n) and n'— a(m,n’)

are R-linear. Denote the set of all these maps by Bilg(M, N; P). It is clearly an
R-module, with sum and scalar multiplication performed valuewise.

(8.2) (Tensor product). — Let R be a ring, and M, N modules. Their tensor
product, denoted M @ N or simply M ® N, is constructed as the quotient of the
free module R®M*N) modulo the submodule generated by the following elements,

where (m,n) stands for the standard basis element e, ,):

(m +m/7 n) - (mv TL) - (m/v TL) and (m7 n +n/) - (m7 TL) - (m7 n/)7 8.2.1
(xm, n) —x(m,n) and (m, an)—z(m,n) (8.2.1)
for all m,m’ € M and n,n’ € N and = € R.

Note that M ® N is the target of the canonical map with source M x N

B:MxN—M®®N,
which sends each (m,n) to its residue class m ® n. By construction, # is bilinear.

THEOREM (8.3) (UMP of tensor product). — Let R be a ring, M, N modules.
Then B: M x N — M ® N is the universal example of a bilinear map with source
M x N; in fact, B induces, not simply a bijection, but a module isomorphism,

0: Homp(M ®g N, P) = Bilg(M, N; P). (8.3.1)

PRrROOF: Note that, if we follow any bilinear map with any linear map, then the
result is bilinear; hence, 6 is well defined. Clearly, 6 is a module homomorphism.
Further, 0 is injective since M ®pr N is generated by the image of 3. Finally, given
any bilinear map a: M x N — P, by (4.10) it extends to a map o/ : R®(M*N) _ p,
and o carries all the elements in (8.2.1) to 0; hence, o’ factors through 3. Thus
0 is also surjective, so an isomorphism, as asserted. d

(8.4) (Bifunctoriality). — Let R be a ring, a: M — M’ and o': N — N’ module
homomorphisms. Then there is a canonical commutative diagram:

’
aXo

Mx N === M'x N’

g [

a®a’

M®@N — M' @ N’

September 3, 2012 11Nts.tex



38 8. Tensor Products

Indeed, /' o (o x ) is clearly bilinear; so the UMP (8.3) yields a® /. Thus e®@ N
and M ® e are commuting linear functors, that is, linear on maps (see (9.2)).

PROPOSITION (8.5). — Let R be a ring, M and N modules.
(1) Then the switch map M x N — N x M induces an isomorphism

M®rN=NQ®grM.
(2) Then multiplication of R on M induces an isomorphism

R®r M = M. (unitary law)

(commutative law)

PROOF: The switch map induces an isomorphism REMXN) _~, REWNXM) gnq
it preserves the elements of (8.2.1). Thus (1) holds.

Define 8: R x M — M by B(xz,m) := zm. Clearly j is bilinear. Let’s check 3
has the requisite UMP. Given a bilinear map o: R x M — P, define v: M — P by
~v(m) := a(1,m). Then ~ is linear as « is bilinear. Also, o = [ as

a(z,m) = za(l,m) = a(l,zm) = y(zm) = yB(z,m).
Further, v is unique as § is surjective. Thus the UMP holds, so (2) does too. O

EXERCISE (8.6). — Let R be a domain, a a nonzero ideal. Set K := Frac(R).
Show that a ®p K = K.

(8.7) (Bimodules). — Let R and R’ be rings. An abelian group N is an (R, R’)-
bimodule if it is both an R-module and an R’-module and if x(z'n) = 2'(xn)
for all z € R, all 2’ € R’, and all n € N. At times, we think of N as a left R-
module, with multiplication zn, and as a right R’-module, with multiplication nx’.
Then the compatibility condition becomes the associative law: z(nz') = (zn)a’. A
(R, R')-homomorphism of bimodules is a map that is both R-linear and R'-linear.

Let M be an R-module, and let N be an (R, R’)-bimodule. Then M ®g N
is an (R, R')-bimodule with R-structure as usual and with R’-structure defined
by z'(m ®n) == m® (a’n) for all ' € R, all m € M, and all n € N. The
latter multiplication is well defined and the two multiplications commute because
of bifunctoriality (8.4) with o := p, and o' := p,.

For instance, suppose R’ is an R-algebra. Then R’ is an (R, R')-bimodule. So
M ®g R’ is an R’-module. It is said to be obtained by extension of scalars.
EXERCISE (8.8). — Let R be a ring, R’ an R-algebra, M, N two R’-modules.
Show there is a canonical R-linear map 7: M @ g N -+ M Qg N.

Let K € M ®r N denote the R-submodule generated by all the differences
('m)®n —m® (2'n) for ' € R and m € M and n € N. Show K = Ker(7).
Show 7 is surjective, and is an isomorphism if R’ is a quotient of R.

THEOREM (8.9). — Let R and R’ be rings, M an R-module, P an R'-module, N
an (R, R')-bimodule, . Then there are two canonical (R, R')-isomorphisms:

M @r (N ®pr P)= (M ®r N)®pr P,

Homp (M ®g N, P) = Hompg (M, Homp (N, P)).  (adjoint associativity)

(associative law)

PrOOF: Note that M @ (N ®@p P) and (M ® g N)®@pg: P are (R, R')-bimodules.
For each (R, R')-bimodule @, call a map 7: M x N x P — @ trilinear if it is
R-bilinear in M x N and R'-bilinear in N x P. Denote the set of all these 7 by
Tril(M, N, P; Q). It is, clearly, an (R, R)-bimodule.
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A trilinear map 7 yields an R-bilinear map M x (N ® g P) — @, whence a map
M ®pg (N ®g P) — @Q, which is both R-linear and R’-linear, and vice versa. Thus

Tvil g gy (M, N, P; Q) = Hom(M @5 (N @ P), Q).
Similarly, there is a canonical isomorphism of (R, R’)-bimodules
Tril(g,ry (M, N, P; Q) = Hom((M ®Qr N)®p P, Q)

Hence both M ®p (N ®pgs P) and (M ®pg N) ®pg' P are universal examples of a
target of a trilinear map with source M x N x P. Thus they are equal, as asserted.
To establish the isomorphism of adjoint associativity, define a map

a: Homp (M ®g N, P) — Homp (M, Homg (N, P)) by
(a(m)(m))(n) = y(m @ n).
Let’s check « is well defined. First, a(y)(m) is R'-linear, because given 2’ € R/,
Y(m @ (2'n)) =(2'(m @ n)) = a"y(m@n)
since 7 is R'-linear. Further, a(7) is R-linear, because given x € R,
(zm)®@n=m® (zn) andso (a(y)(zm))(n) = (a(y)(m))(zn).

Thus a(y) € Homg (M, Homg (N, P)). Clearly, a is an (R, R')-homomorphism.

To obtain an inverse to «, given n € Hompg (]\/[, Homp/ (N, P))7 define a map
(: M x N — P by ¢(m,n) := (n(m))(n). Clearly, ¢ is Z-bilinear, so ¢ induces a
Z-linear map 6: M ®z N — P. Given z € R, clearly (n(zm))(n) = (n(m))(zn); so
d((xm) ® n) = 6(m ® (an)). Hence, 6 induces a Z-linear map B(n): M @z N — P

owing to (8.8) with Z for R and with R for R’. Clearly, 3(n) is R’-linear as n(m)
is so. Finally, it is easy to verify that «(3(n)) = n and B(a(y)) = 7, as desired. O

COROLLARY (8.10). — Let R and R’ be rings, M an R-module, P an R’'-module.
If R is an R-algebra, then there are two canonical (R, R')-isomorphisms:

(]\/[ KR Rl) ®Qpr P=M ®pr P,

Homp (M ®g R, P) = Homg(M, P). (left adjoint)

(cancellation law)

Instead, if R is an R'-algebra, then there is another canonical (R, R')-isomorphism:
Homp/ (M, P) = Homp(M, Homp (R, P)). (right adjoint)

In other words, @ @g R’ is the left adjoint of restriction of scalars from R’ to R,
and Homp/ (R, ®) is the right adjoint of restriction of scalars from R to R'.

PRrROOF: The cancellation law results from the associative and unitary laws; the
adjoint isomorphisms, from adjoint associativity, (4.3) and the unitary law. d

COROLLARY (8.11). — Let R, R’ be rings, N a bimodule. Then the functor e®@r N
preserves direct limits, or equivalently, direct sums and cokernels.

PROOF: By adjoint associativity, e®@r N is the left adjoint of Hompg: (N, ). Thus
the assertion results from (6.12) and from (6.7) and (6.8). O

EXAMPLE (8.12). — Tensor product does not preserve kernels, nor even injections.
Indeed, consider the injection po: Z — Z. Tensor it with N := Z/(2), obtaining
po: N — N. This map is zero, but not injective as N # 0.
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40 8. Tensor Products

EXERCISE (8.13). — Let R be a ring, a and b ideals, and M a module.

(1) Use (8.11) to show that (R/a)®@ M = M/aM.

(2) Use (1) to show that (R/a) ® (R/b) = R/(a+ b).
EXERCISE (8.14). — Let k be a field, M and N nonzero vector spaces. Prove that
M®N #0.

THEOREM (8.15) (Watts). — Let F': ((R-mod)) — ((R-mod)) be a linear functor.
Then there is a natural transformation 0(e): e RF(R) — F(e) with (R) =1, and
0(e) is an isomorphism if and only if F preserves direct sums and cokernels.

PROOF: As F'is a linear functor, there is, by definition, a natural R-linear map
6(M): Hom(R, M) — Hom(F(R), F(M)). But Hom(R,M) = M by (4.3). Set
N := F(R). Then, with P := F(M), adjoint associativity yields the desired map

9(M) € Hom(M, Hom(N, F(M))) = Hom(M ® N, F(M)).
Explicitly, 0(M)(m ® n) = F(p)(n) where p: R — M is defined by p(1) = m.
Alternatively, this formula can be used to construct (M), as (m,n) — F(p)(n) is

clearly bilinear. Either way, it is not hard to see that (M) is natural in M.

If 6(e) is an isomorphism, then F preserves direct sums and cokernels by (8.11).

To prove the converse, take a presentation R®* LNy E R RN VN 0; one exists

by (5.19). Applying 0, we get this commutative diagram:
R#AQN — R®E@N — M®N — 0
lemﬂ%) le(REBE) l€<M> (8.15.1)
F(R®)) — F(R®¥) — F(M) — 0
By construction, §(R) = 1y. If F preserves direct sums, then §(R®}) = 1ysa
and O(R®%) = 1yes; in fact, given any natural transformation 0: T — U, let’s
show that, if " and U preserve direct sums, then so does 6.
Given a collection of modules My, each inclusion ¢y : My — €D M) yields, because
of naturality, the following commutative diagram:
T(My) 2 @1 ()
6(My) 0(D M)
UMy 2 @u(ay)
Hence 0() M)T(tx) = @ O(M))T(x). But the UMP of direct sum says that,
given any N, a map @ T(M)) — N is determined by its compositions with the
inclusions T'(¢y). Thus 0(€) My) = @ 0(1M), as desired.
Suppose F preserves cokernels. Since @ ® N does too, the rows of (8.15.1) are
exact by (5.2). Therefore, (M) is an isomorphism. a

EXERCISE (8.16). — Let F': ((R-mod)) — ((R-mod)) be a linear functor. Show
that F always preserves finite direct sums. Show that 6(M): M ® F(R) — F(M)
is surjective if F' preserves surjections and M is finitely generated, and that 6(M)
is an isomorphism if F' preserves cokernels and M is finitely presented.

(8.17) (Additive functors). — Let R be aring, M a module, and form the diagram
M 25 MM 2 M
where 0y := (1]%7 1]\4) and oy =1y + 1.
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Let a, 8: M — N be two maps of modules. Then
on(a® B)on =a+p, (8.17.1)

because, for any m € M, we have

(on(a® B)orr)(m) = on(a® B)(m,m) = on(a(m), B(m)) = a(m) + 5(m).

Let F: ((R-mod)) — ((R-mod)) be a functor that preserves finite direct sums.
Then F(a @ B) = F(a) @ F(8). Also, F(dxm) = dpry and F(onm) = oparn
as F(1y) = lpry. Hence F(a + ) = F(a) + F(8) by (8.17.1). Thus F is
additive, that is, Z-linear.

Conversely, every additive functor preserves finite direct sums owing to (8.16).

However, not every additive functor is R-linear. For example, take R := C.
Define F(M) to be M, but with the scalar product of x € C and m € M to be Tm
where T is the conjugate. Define F'(«) to be a. Then F is additive, but not linear.

LeEMMA (8.18) (Equational Criterion for Vanishing). — Let R be a ring, M and
N modules, and {nx}recan a set of generators of N. Then any element of M @ N
can be written as a finite sum Y my ® ny with my € M. Further, > . mx®mny =0
if and only if there are my € M and x), € R for o € ¥ for some ¥ such that

Yoo TacMe =my for all X and Y, zxsnx =0 for all o.

PRrROOF: By (8.2), M ® N is generated by elements of the form m ® n with
méE M andn € N, and if n =) xz\ny with ) € R, then m®@n = (zam) @ ny.
Thus any element of M ® N has the asserted form Y my @ ny.

Assume the m, and the z), exist. Then

SmaAQny=>, (Za Ikamg) @ny=y, (m(7 Q> x,\ank) =0.

Conversely, by (5.19), there is a presentation R®* By ROA 2 N 5 0 with
afex) = ny for all X where {e)} is the standard basis of R®A. Then by (8.11) the
following sequence is exact:

M@ R®% 228, pp o ROA 189 o N 0.

Further, (1 ® a)(}_mx ® ex) = 0. So the exactness implies there is an element
s € M ® R®® such that (1 ® B)(s) = Y. mx ®ex. Let {e,} be the standard basis
of R®¥, and write s = 3" m, ® e, with m, € M. Write B(e,) = > s Txsex. Then
clearly 0 = af(es) = Y, Trsn, and

0= ma®@ex—>,me® () 2aver) = 25 (M — X, Zr0Te) @ €.
Since the ey are independent, my = ZU TaoMy, as asserted. O
(8.19) (Algebras). — Let R be a ring, S and T algebras with structure maps
c:R— Sand 7: R = T. Set U := S ®grT; it is an R-module. Now, define

SxTx8xT—U by (s,t,s,t) +— ss’ ®tt'. This map is clearly linear in each
factor. So it induces a bilinear map

pw:UxU—=U with p(s®t, s @t')=(ss' @tt').

It is easy to check that U is a ring with g as product. In fact, U is an R-algebra
with structure map w given by w(r) := o(r) ® 1 = 1 ® 7(r), called the tensor
product of S and T over R.
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Define tg: S — S®pr T by ts(s) := s® 1. Clearly tg is an R-algebra homomor-
phism. Define t7: T'— S ® T similarly. Given an R-algebra V', define a map
v: Hom((p.alg)) (S ®r T, V) — Hom((r.alg)) (S, V) x Hom((p-aig)) (T, V).

by v(¢) := (¢ts, Yer). Conversely, given R-algebra homomorphisms 6: S — V

and (: T — V, define : S x T — V by n(s,t) := 6(s) - {(t). Then 5 is clearly

bilinear, so it defines a linear map ¢: S ®r T — V. It is easy to see that the map

(0,¢) — 9 is an inverse to v. Thus v is bijective.
In other words, S ®g T is the coproduct of S and T in ((R-alg)):

EXAMPLE (8.20). — Let R be a ring, S an algebra, and X;,...,X,, variables.
Then there is a canonical S-algebra isomorphism

S®g RIX1,..., X, = S[X1,..., X,].

Indeed, given an S-algebra homomorphism S — T and elements 1, ...,x, of T,
there is an R-algebra homomorphism R[X;,...,X,] = T by (1.3). So by (8.19),
there is a unique S-algebra homomorphism S ®r R[X1,...,X,] — T. Thus both
S®gr R[X1,...,X,] = T and S[Xq,...X,] possess the same UMP.

In particular, for variables Y7, ..., Y,,, we obtain

R[Xh" '7Xn] XR R[Yh" ~7Y’;rL] = R[Xla~ . ,X",Y17.. '7Y;n}~

EXERCISE (8.21). — Let X be a variable, w a complex cubic root of 1, and /2
the real cube root of 2. Set k := Q(w) and K := k[v/2]. Show K = k[X]/(X> — 2)
and then K @ K = K x K x K.
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A module is called flat if tensor product with it is an exact functor. First, we
study exact functors in general. Then we prove various properties of flat modules.
Notably, we prove Lazard’s Theorem, which characterizes the flat modules as the
filtered direct limits of free modules of finite rank. Lazard’s Theorem yields the
Ideal Criterion for Flatness, which characterizes the flat modules as those whose
tensor product with any finitely generated ideal is equal to the ordinary product.

LEMMA (9.1). — Let R be a ring, a: M — N a homomorphism of modules. Then
there is a diagram with two short exact sequences involving N’

[e3

0— M — M —; N P 0

"

N S (9.1.1)

00— N —0

if and only if M’ = Ker(a) and N’ = Im(a) and P = Coker(«).

PROOF: The equations yield the diagram since Coim(a) == Im(a) by (4.9).

Conversely, given the diagram, note that Ker(a) = Ker(a) since o’ is injective.
So M’ = Ker(a). So N’ = Coim(«) since o is surjective. Hence N’ = Im(«).
Therefore, P = Coker(a)). Thus the equations hold. O

(9.2) (Ezact Functors). — Let R be a ring, R’ an algebra, F' a functor from
((R-mod)) to ((R’-mod)). Assume F is R-linear; that is, the associated map

Homp(M,N) — Homp (FM,FN)

is R-linear. Then, if a map a: M — N is 0, so is Fa: FM — FN. But M =0 if
and only if 1y = 0. Further, F(15;) = 1pp. Thus if M =0, then FM = 0.

We call F' exact if it preserves exact sequences. For example, Hom(P, e) is exact
if and only if P is projective by (5.22).

We call F left exact if it preserves kernels. When F' is contravariant, we call F'
left exact if it takes cokernels to kernels. For example, Hom(N, ¢) and Hom(e, V)
are left exact covariant and contravariant functors.

We call F right exact if it preserves cokernels. For example, M ® e is right
exact.

PROPOSITION (9.3). — Let R be a ring, R’ an algebra, F an R-linear functor.
Then the following conditions are equivalent:

(1) F preserves exact sequences; that is, F is exact.

(2) F preserves short exact sequences.

(3) F preserves kernels and surjections.

(4) F preserves cokernels and injections.

(5) F preserves kernels and images.

ProOOF: Trivially, (1) implies (2). In view of (5.2), clearly (1) yields (3) and (4).

Assume (3). Let 0 - M’ — M — M"” — 0 be a short exact sequence. Since F
preserves kernels, 0 — FM' — FM — FM" is exact; since F preserves surjections,
FM — FM" — 0 is also exact. Thus (2) holds. Similarly, (4) implies (2).

Assume (2). Given a: M — N, form the diagram (9.1.1). Applying F to it and
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using (2), we obtain a similar diagram for F(«). Hence (9.1) yields (5).

[e3

Finally, assume (5). Let M’ — M Ly M be exact; that is, Ker(f) = Im(a).
Now, (5) yields Ker(F(8)) = F(Ker(8)) and Im(F(«)) = F(Im(a)). Therefore,
Ker(F(B)) = Im(F(«)). Thus (1) holds. O

(9.4) (Flatness). — An R-module M is said to be flat over R or R-flat if the
functor M ® preserves injections. It is equivalent by (9.3) that M ® g e be exact
since it is right exact.

An R-algebra R’ and its structure map are said to be flat if R’ is flat as an
R-module.

LEMMA (9.5). — A direct sum @ My is flat if and only if each summand is flat.
PROOF: Let 8: N’ — N be an injective map. Then (8.11) yields

(B M) @B =DMy ® f);

see the end of the proof of (8.15), taking T' (M) := M @ N' and U(M) := M ® N.
Now, the map on the right is injective if and only if each summand M) ® 3 is
injective by (5.4). The assertion follows. O

PROPOSITION (9.6). — A free module is flat; in fact, a projective module is flat.

ProOF: The unitary law implies that R is flat over R. Hence a free module is
flat by (9.5). Finally, a projective module is a direct summand of a free module
by (5.22), and therefore flat by (9.5). O

EXERCISE (9.7). — Let R be a ring, R’ a flat algebra, and P a flat R’-module.
Show that P is a flat R-module.

EXERCISE (9.8). — Let R be a ring, M a flat module, and R’ an algebra. Show
that M ®g R’ is a flat R’-module.

EXERCISE (9.9). — Let R be a ring, a an ideal. Assume that R/a is R-flat. Show
that a = a%.

EXERCISE (9.10). — Let R be aring, R’ a flat algebra with structure map . Then
R’ is said to be faithfully flat if for every R-module M, the map M — M ® R’
given by z — x ®1 is injective. Show that the following conditions are equivalent:

(1) R’ is faithfully flat.

(2) ¢~ Y(aR') = a for every ideal a of R.

(3) Spec(R') — Spec(R) is surjective.

(4) For every maximal ideal m of R, the ideal mR’ # R/.

(5) For any nonzero R-module M, the module M ®g R’ # 0.

EXERCISE (9.11). — Let A and B be local rings, m and n their maximal ideals.
Let ¢: A — B be a local homomorphism; that is, ¢(m) C n. Assume ¢ is flat.
Show that ¢ is faithfully flat.

PROPOSITION (9.12). — Let R be a ring, 0 - M' — M — M" — 0 an ezact
sequence of modules. Assume M" is flat.
(1) Then0 > M'® N - M ®N — M" @ N — 0 is ezact for any module N.
(2) Then M is flat if and only if M’ is flat.
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Proor: By (5.19), there is an exact sequence 0 — K — R®A — N — 0. Tensor
it with the given sequence to obtain the following commutative diagram:

0

l

MK — MK — M'"® K — 0

l | L

0 — M' @R 2 M@ R® — M @ R®A

| |

M@N 25 M®N

| |

0 0

Here o and j are injective by Definition (9.4), as M” and R®% are flat by hypothesis
and by (9.6). So the rows and columns are exact, as tensor product is right exact.
Finally, the Snake Lemma, (5.12), implies v is injective. Thus (1) holds.

To prove (2), take an injection 5: N’ — N, and form this commutative diagram:

0 =MN - MN — M"@N' — 0

SR

00— MN — MN — M"@N — 0

Its rows are exact by (1).
Assume M is flat. Then « is injective. Hence o is too. Thus M’ is flat.
Conversely, assume M’ is flat. Then o is injective. But o’ is injective as M" is
flat. Hence « is injective by the Snake lemma. Thus M is flat. Thus (2) holds. O

PROPOSITION (9.13). — A filtered direct limit of flat modules li_n}MA is flat.

PRrROOF: Let 8: N’ — N be injective. Then M)y ® 8 is injective for each A since
M, is flat. So h_n&(M A ® ) is injective by the exactness of filtered direct limits,
(7.10). So (h%m M) ® j is injective by (8.11). Thus lim M) is flat. O

PROPOSITION (9.14). — Let R and R’ be rings, M an R-module, N an (R, R’)-
bimodule, and P an R'-module. Then there is a canonical homomorphism

0: HOHIR(]\/[7 N) Rp P — HOII’IR(]W7 N Qg P) (9.14.1)

Assume P is flat. If M is finitely generated, then 6 is injective; if M is finitely
presented, then 0 is an isomorphism.

PROOF: The map 0 exists by Watts’s Theorem, (8.15), with R’ for R, applied
to Homg(M, N ®p e). Explicitly, (¢ ® p)(m) = ¢(m) ® p. Alternatively, this
formula can be used to construct 0, as (¢,n) — 1, where ¥(m) = ¢(m) @ p, is
clearly bilinear.

Clearly, 6 is bijective if M = R. So 6 is bijective if M = R™ for any n, as
Hompg(e, Q) preserves finite direct sums for any @ by (4.13).

Assume that M is finitely generated. Then from (5.19), we obtain a presentation
R®M 5 R™ — M — 0, with A finite if P is finitely presented. Since # is natural, it
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yields this commutative diagram:
0 — Hompg(M,N)®p P — Homg(R",N)®r P — Homp(R® N)®p P

| | |

0 — HOHlR(M7N®R/ P) — HomR(R",N®R/ P) — HOIHR(RQBA7 N Qg P)

Its rows are exact owing to the left exactness of Hom and to the flatness of P. The
right-hand vertical map is bijective if A is finite. The assertion follows. g

EXERCISE (9.15). — Let R be a ring, R" an algebra, M and N modules. Show
that there is a canonical map

o: HOHIR(]\/I, N) RRr R — HOHIR/(M KRR Rl, N ®r R,).

Assume R’ is flat over R. Show that if M is finitely generated, then o is injective,
and that if M is finitely presented, then o is an isomorphism.

DEFINITION (9.16). — Let R be a ring, M a module. Let Aj; be the category
whose objects are the pairs (R™,a) where a: R™ — M is a homomorphism, and
whose maps (R™, a) — (R", 8) are the homomorphisms ¢: R™ — R" with 8¢ = .

PROPOSITION (9.17). — Let R be a ring, M a module, and (R™,«) — R™ the

forgetful functor from Ay to ((R-mod)). Then M = hﬂ(Rm,a)eAM R™.

PRrROOF: By the UMP, the a: R™ — M induce a map (: hgan — M. Let’s
show ( is bijective. First, ( is surjective, because each x € M is in the image of
(R, ay) where ag(r) = rz.

For injectivity, let y € Ker(¢). By construction, @(Rm?a) R™ — li_n;Rm is surjec-
tive; see the proof of (6.10). So y is in the image of some finite sum B zm,; o) B™.
Set m := > m;. Then @ R™ = R™. Set a:= ) ;. Then y is the image of some
y" € R™ under the insertion ¢y, : R™ — lim R™. But y € Ker(¢). So a(y’) = 0.

Let 6, 9: R = R™ be the homomorphisms with 6(1) := 3’ and (1) := 0. They
yield maps in Ajps. So, by definition of direct limit, they have the same compositions
with the insertion t¢,,. Hence y = ¢,,(y") = 0. Thus ( is injective, so bijective. O

THEOREM (9.18) (Lazard). — Let R be a ring, M a module. Then the following
conditions are equivalent:
(1) M is flat.
(2) Given a finitely presented module P, this version of (9.14.1) is surjective:
Homp(P,R) @ M — Hompg(P, M).

(3) Given a finitely presented module P and a map 3: P — M, there exists a
factorization 8: P 2 R™ % M ;

(4) Given an a: R™ — M and a k € Ker(a), there exists a factorization
a: R™ %y R* — M such that p(k) = 0.

(5) Given an a: R™ — M and ky, ..., k, € Ker(«a) there exists a factorization
a: R™ £ R — M such that (ki) =0 fori=1,...,r.

(6) Given R™ £ R™ 2% M such that ap = 0, there exists a factorization
a: R™ % R* — M such that pp = 0.

(7) A is filtered.

(8) M is a filtered direct limit of free modules of finite rank.
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PROOF: Assume (1). Then (9.14) yields (2).

Assume (2). Consider (3). There arey1,...,7v, € Hom(P, R) and z1,...,2, € M
such that B(p) = > ~vi(p)z;. Let v: P — R™ be (y1,...,7), and let a: R — M
be given by a(r1,...,7,) =Y. r;z;. Then 5 = ary, as (3) requires.

Assume (3), and consider (4). Set P := R™/Rk, and let k: R™ — P denote
the quotient map. Then P is finitely presented, and there is 8: P — M such that
Bk = . By (3), there is a factorization 3: P X R" — M. Set ¢ := k. Then
B: R™ % R® — M is a factorization of 3 and (k) = 0.

Assume (4), and consider (5). Set mg :=m and ag = «. Inductively, (4) yields

i Rt 25 Rmi LM for i=1,...,r

such that ¢; - - - p1(k;) = 0. Set ¢ := ¢, - -1 and n := m,. Then (5) holds.

Assume (5), and consider (6). Let ey, ..., e, be the standard basis of R", and set
ki := p(e;). Then a(k;) = 0. So (5) yields a factorization a: R™ %5 R™ — M such
that ¢(k;) = 0. Then @p = 0, as required by (6).

Assume (6). Given (R™,aq) and (R™2,a2) in Ay, set m := my + me and
«a := a1 + ag. Then the inclusions R™i — R™ induce maps in Ap;. Thus the first
condition of (7.1) is satisfied.

Given o, 7: (R",w) = (R™,a) in Ay, set p := 0 — 7. Then ap = 0. So (6)
yields a factorization a: R™ £ R™ — M with @p = 0. Then ¢ is a map of Ay,
and po = ¢7. Hence the second condition of (7.1) is satisfied. Thus (7) holds.

If (7) holds, then (8) does too, since M = @(R’".a)GAM R™ by (9.17).

Assume (8). Say M = lim M) with the M) free. Each M) is flat by (9.4), and
a filtered direct limit of flat modules is flat by (9.13). Thus M is flat O

EXERCISE (9.19) (Equational Criterion for Flatness). — Prove that the Condition
(9.18)(4) can be reformulated as follows: For every relation Y, z;y; = 0 with
z; € R and y; € M, there are x;; € R and y;- € M such that

Zj xijy;- =y; forall ¢ and >, x4z = 0 for all 5. (9.19.1)

LEMMA (9.20) (Ideal Criterion for Flatness). — A module N is flat if and only if,
for every finitely generated ideal a, the natural map is an isomorphism:

a® N == aN.

PROOF: In any case, (8.5)(2) implies R N = N with a®z — az. If N is flat,
then the inclusion a < R yields an injection a® N — R® N, and so a®@ N == alN.
To prove the converse, let’s check the criterion (9.19). Given > 2;y; = 0 with
zi€ Rand y; € N, set a:= (z1,...,2,). fa® N =5 aN, then >, z; ® y; = 0; so
the Equational Criterion for Vanishing (8.18) yields (9.19.1). Thus N is flat. O

EXAMPLE (9.21). — Let R be a domain, and set K := Frac(R). Then K is flat,
but K is not projective unless R = K. Indeed, (8.6) says a ®g K = K, with
a® x = ax, for any ideal a of R. So K is flat by (9.20).

Suppose K is projective. Then K < R™ for some A by (5.22). So there is a
nonzero map «: K — R. So there is an 2 € K with a(z) # 0. Set a := a(z).
Take any nonzero b € R. Then ab- a(x/ab) = a(z) = a. Since R is a domain,
b-a(z/ab) = 1. Hence b € R*. Thus R is a field. So (2.3) yields R = K.
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EXERCISE (9.22). Let R be a domain, M a module. Prove that, if M is flat,

then M is torsion free; that is, p,: M — M is injective for all nonzero z € R.
Prove that, conversely, if R is a PID and M is torsion free, then M is flat.
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10. Cayley—Hamilton Theorem

The Cayley—Hamilton Theorem says that a matrix satisfies its own characteristic
polynomial. We prove an equivalent form, known as the “Determinant Trick.”
Using the Trick, we obtain various results, including the uniqueness of the rank of
a finitely generated free module. We also obtain Nakayama’s Lemma, and use it to
study finitely generated modules further. Then we turn to the important notions
of integrality and module finiteness for an algebra. Using the Trick, we relate these
notions to each other, and study their properties. We end with a discussion of
integral extensions and normal rings.

(10.1) (Cayley-Hamilton Theorem). — Let R be a ring, and M := (a;;) an n x n
matrix with a;; € R. Let I, be the n x n identity matrix, and T a variable. The
characteristic polynomial of M is the following polynomial:

pm(T) :=T" +a T+ -+ + ay, = det(TT,, — M).

Let a be an ideal. If a;; € a for all 7, j, then clearly az € a” for all k.
The Cayley—Hamilton Theorem asserts that, in the ring of matrices,
M (M) =0.

It is a special case of (10.2) below; indeed, take M := R™, take my,...,my to be
the standard basis, and take ¢ to be the endomorphism defined by M.

Conversely, given the setup of (10.2), form the surjection a: R" — M taking
the ith standard basis element to m;, and form the map ®: R™ — R" associated
to the matrix M. Then o = a®. Hence, given any polynomial p(T), we have
p(p)a = ap(®). Hence, if p(®) = 0, then p(¢) = 0 as « is surjective. Thus the
Cayley—Hamilton Theorem and the Determinant Trick (10.2) are equivalent.

THEOREM (10.2) (Determinant Trick). Let M be an R-module generated by
M1, ...,My, and ¢: M — M an endomorphism. Say ¢(m;) =: Z?zl a;;m; with
a;j € R, and form the matriz M := (ai;). Then pm(p) = 0 in End(M).

PROOF: Let 6;; be the Kronecker delta function, p,,; the multiplication map.
Let A stand for the matrix (d;¢ — jta,;) with entries in End(M), and X for the
column vector (m;). Then clearly AX = 0. Multiply on the left by the matrix of
cofactors T of A: the (i,7)th entry of T' is (—1)i*/ times the determinant of the
matrix obtained by deleting the jth row and the ith column of A. Then TAX = 0.
Now, I'A = det(A)I,. Hence det(A)m; = 0 for all j. Thus pm(p) = 0. O

ProPOSITION (10.3). — Let M be a finitely generated module, a an ideal. Then
M = aM if and only if there exists a € a such that (1 +a)M = 0.

PROOF: Assume M = aM. Say mu,...,m, generate M, and m; = > 7, a;;jm;
with a;; € a. Set M := (a;;). Say pm(T) = T™ + a1+ - +a, Set
a:=ay+ --+a, €a Then (1+a)M =0 by (10.2) with ¢ := 1.

Conversely, if there exists a € a such that (1 + a)M = 0, then m = —am for all
méeM. SoM CaM C M. Thus M = aM. O

COROLLARY (10.4). — Let R be a ring, M a finitely generated module, and ¢ an
endomorphism of M. If ¢ is surjective, then ¢ is an isomorphism.
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PROOF: Let P := R[X] be the polynomial ring in one variable. By the UMP of
P, there is an R-algebra homomorphism p: P — End(M) with u(X) = ¢. So M is
an P-module such that p(X)M = p(¢)M for any p(X) € P by (4.4). Set a := (X).
Since ¢ is surjective, M = aM. By (10.3), there is a € a with (14 a)M = 0. Say
a = Xr for some polynomial . Then 1y + ¢r(p) = 0. Thus ¢ is invertible. O

COROLLARY (10.5). — Let R be a nonzero ring, m and n positive integers.
(1) Then any n generators v1,...,v, of the free module R™ form a free basis.
(2) If R™ ~ R", then m = n.

PRrROOF: Form the surjection a: R™ — R" taking the ¢th standard basis element
to v;. Then ¢ is an isomorphism by (10.4). So the v; form a free basis by (4.10)(3).
To prove (2), say m < n. Then R™ has m generators. Add to them n —m zeros.
The result is a free basis by (1), so can contain no zeros. Thus n —m = 0. g

EXERCISE (10.6). — Let R be a ring, a an ideal. Assume a is finitely generated
and idempotent (or a = a2). Prove there is a unique idempotent e with (e) = a.

PROPOSITION (10.7). — Let R be a ring, a an ideal. Then these conditions are
equivalent:

(1) R/a is projective over R.

(2) R/a is flat over R, and a is finitely generated.

(3) a is finitely generated and idempotent.

(4) a is generated by an idempotent.

(5) a is a direct summand of R.

PROOF: Suppose (1) holds. Then R/a is flat by (9.6). Further, the sequence
0 — a— R— R/a— 0 splits by (5.22), and so a is principal. Thus (2) holds.

If (2) holds, then (3) holds by (9.9). If (3) holds, then (4) holds by (10.6). If
(4) holds, then (5) holds by (1.12). If (5) holds, then (1) holds by by (5.22). O

EXERCISE (10.8). — Prove the following conditions on a ring R are equivalent:

(1) R is absolutely flat; that is, every module is flat.

(2) Every finitely generated ideal is a direct summand of R.
(3) Every finitely generated ideal is idempotent.

(4) Every principal ideal is idempotent.

EXERCISE (10.9). — Let R be a ring.

(1) Assume R is Boolean. Prove R is absolutely flat.

(2) Assume R is absolutely flat. Prove any quotient ring R’ is absolutely flat.
(3) Assume R is absolutely flat. Prove every nonunit z is a zerodivisor.

(4) Assume R is absolutely flat and local. Prove R is a field.

LEMMA (10.10) (Nakayama). — Let R be a ring, m C rad(R) an ideal, M a
finitely generated module. Assume M = mM. Then M = 0.

ProOOF: By (10.3), there is a € m with (1+a)M = 0. By (3.2), 1+ a is a unit.
Thus M = (1+a)"'(1+a)M = 0.

Alternatively, suppose M # 0. Say mq,...,m, generate M with n minimal.
Then my = aymy+- - -+a,m, with a; € m. By (3.2), we may set z; := (1—a1) 'a;.
Then m; = xg9mg + - - - + My, contradicting minimality of n. Thus M =0. O
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PROPOSITION (10.11). — Let R be a ring, m C rad(R) an ideal, N C M modules.
(1) If M/N is finitely generated and if N +wmM = M, then N = M.
(2) Assume M is finitely generated. Then elements mq,...,m, generate M if
and only if their images mY,...,m} generate M' := M/mM.

PrOOF: In (1), the second hypothesis holds if and only if m(AM/N) = M/N.
Hence (1) holds by (10.10) applied with M/N for M.

In (2), let N be the submodule generated by my,...,my. Since M is finitely
generated, so is M/N. Hence N = M if the m/ generate M/mM by (1). The
converse is obvious. O

EXERCISE (10.12). — Let R be aring, m C rad(R) an ideal. Let a, 8: M — N be
two maps of finitely generated modules. Assume « is surjective and S(M) C mN.
Set v := o+ (. Show that ~ is an isomorphism.

EXERCISE (10.13). — Let A be a local ring, m the maximal ideal, M a finitely
generated A-module, and myq,...,m, € M. Set k := A/m and M’ := M/mM, and
write m/ for the image of m; in M’. Prove that m/,...,m) € M’ form a basis
of the k-vector space M’ if and only if mq,...,m, form a minimal generating
set of M (that is, no proper subset generates M), and prove that every minimal
generating set of M has the same number of elements.

EXERCISE (10.14). — Let A be a local ring, k its residue field, M and N finitely
generated modules. (1) Show that M = 0 if and only if M ® 4 k = 0. (2) Show
that M @4 N #0if M # 0 and N # 0.

PROPOSITION (10.15). — Consider these conditions on an R-module P:

(1) P is free and of finite rank;
(2) P is projective and finitely generated;
(3) P is flat and finitely presented.

Then (1) implies (2), and (2) implies (3); all three are equivalent if R is local.

PROOF: A free module is always projective by (5.21), and a projective module is
always flat by (9.6). Further, each of the three conditions requires P to be finitely
generated; so assume it is. Thus (1) implies (2).

Let p1,...,pn € P generate, and let 0 - L — R™ — P — 0 be the short exact
sequence defined by sending the ith standard basis element to p;. Set F':= R".

Assume P is projective. Then the sequence splits by (5.22). So (5.9) yields a
surjection p: F' — L. Hence L is finitely generated. Thus (2) implies (3).

Assume P is flat and R is local. Denote the residue field of R by k. Then,
by (9.12)(1), the sequence 0 - L®k - F®k - P®k — 0 is exact. Now,
F®ok=(R®k)" =k™ by (8.11) and the unitary law; so dim, F'® k = n. Finally,
rechoose the p; so that n is minimal. Then dim; P ® k = n, because the p; ® 1 form
a basis by (10.13). Therefore, dimy L® k= 0;s0 L® k = 0.

Assume P is finitely presented. Then L is finitely generated by (5.24). Hence
L =0 Dby (10.14)(1). So F = P. Thus (3) implies (1). O

DEFINITION (10.16). — Let R be a ring, R’ an R-algebra. Then R’ is said to be
module finite over R if R’ is a finitely generated R-module.
An element z € R’ is said to be integral over R or integrally dependent on
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R if there exist a positive integer n and elements a; € R such that
"4 a" M+ a, =0. (10.16.1)

Such an equation is called an equation of integral dependence of degree n.
If every x € R’ is integral over R, then R’ is said to be integral over R.

EXERCISE (10.17). — Let G be a finite group acting on a domain R, and R’ the
ring of invariants. Show every = € R is integral over R’, in fact, over the subring R”
generated by the elementary symmetric functions in the conjugates gz for g € G.

PROPOSITION (10.18). — Let R be a ring, R' an R-algebra, n a positive integer,
and x € R'. Then the following conditions are equivalent:

(1) x satisfies an equation of integral dependence of degree n;

(2) R[z] is generated as an R-module by 1,,...,x" L

(3) x lies in a subalgebra R" generated as an R-module by n elements;
4

) there is a faithful R[z]-module M generated over R by n elements.

PROOF: Assume (1) holds. Say p(X) is a monic polynomial of degree n with
p(z) = 0. For any m, let M,,, C R[z] be the R-submodule generated by 1,...,z™.
For m > n, clearly 2™ — 2™ "p(x) is in M,,—1. But p(z) = 0. So also 2™ € M,,_1.
So by induction, M, = M,,_1. Hence M,,_1 = R[z]. Thus (2) holds.

If (2) holds, then trivially (3) holds with R” := R]x].

If (3) holds, then (4) holds with M := R”, as zM = 0 implies z =z - 1 = 0.

Assume (4) holds. In (10.2), take ¢ := p,,. We obtain a monic polynomial p of
degree n with p(z)M = 0. Since M is faithful, p(z) = 0. Thus (1) holds. O

EXERCISE (10.19). — Let k be a field, P := k[X] the polynomial ring in one
variable, f € P. Set R := k[X?] C P. Using the free basis 1, X of P over R, find
an explicit equation of integral dependence of degree 2 on R for f.

COROLLARY (10.20). — Let R be a ring, P the polynomial ring in one variable,
and a an ideal of P. Set R’ := P/a, and let x be the image of X in R'. Let n be a
positive integer. Then the following conditions are equivalent:

(1) a= (p) where p is a monic polynomial of degree n;

(2) 1,z,...,2"" 1 form a free basis of R’ over R;

(3) R is a free R-module of rank n.

PROOF: Assume (1) holds. Then p(x) = 0 is an equation of integral dependence

of degree n. So 1,z,...,2" 1 generate R’ by (1)=(2) of (10.18). Suppose
big" 4 b, =0

with the b; € R. Set q(X) := b1 X" '+ -+ b,. Then g(z) = 0. So ¢ € a. Hence
g = fp for some f € P. But p is monic of degree n. Hence ¢ = 0. Thus (2) holds.

Trivially, (2) implies (3).

Finally, assume (3) holds. Then (3)=-(1) of (10.18) yields a monic polynomial
p € aof degree n. Form the induced homomorphism v¢: P/(p) — R'. It is obviously

surjective. Since (1) implies (3), the quotient P/(p) is free of rank n. So ¢ is an
isomorphism by (10.4). Hence (p) = a. Thus (1) holds. O

LEMMA (10.21). — Let R be a ring, R’ a module-finite R-algebra, and M a finitely
generated R’ -module. Then M is a finitely generated R-module.
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PROOF: Say elements x; generate R’ as a module over R, and say elements m;
generate M over R'. Then clearly the products x;m; generate M over R. d

THEOREM (10.22) (Tower Law for Integrality). — Let R be a ring, R’ an algebra,
and R" an R'-algebra. If x € R" is integral over R’ and if R’ is integral over R,
then x is integral over R.

ProOOF: Say 2" +a;2" ' 4+ ---+a, = 0 with a; € R". Form = 1,...,n, set
R,, := Rlai,...,an] C R". Then R,, is module finite over R,,—1 by (1)=(2) of
(10.18). So R,, is module finite over R by (10.21) and induction on m.

Moreover, z is integral over R,,. So Ry,[z] is module finite over R,, by (1)=(2)
of (10.18). Hence R,[z] is module finite over R by (10.21). So z is integral over
R by (3)=(1) of (10.18), as desired. O

THEOREM (10.23). — Let R be a ring, R' an R-algebra. Then the following
conditions are equivalent:

(1) R’ is finitely generated as an R-algebra and is integral over R;

(2) R' = R[z1,...,z,] with all z; integral over R;

(3) R is module-finite over R.

PROOF: Trivially, (1) implies (2).

Assume (2) holds. To prove (3), set R” := R[z1] C R'. Then R” is module finite
over R by (1)=(2) of (10.18). We may assume R’ is module finite over R” by
induction on n. So (10.21) yields (3).

If (3) holds, then R’ is integral over R by (3)=(1) of (10.18); so (1) holds. O

EXERCISE (10.24). — Let Ry, ..., R, be R-algebras, integral over R. Show that
their product [] R; is a integral over R.

DEFINITION (10.25). — Let R be aring, R’ an algebra. The integral closure or
normalization of R in R’ is the subset R of elements that are integral over R. If
R C R and R =R, then R is said to be integrally closed in R’.

If R is a domain, then its integral closure R in its fraction field Frac(R) is called
simply its normalization, and R is said to be normal if R = R.

EXERCISE (10.26). — For 1 < i <r, let R; be a ring, R} an extension of R;, and
x; € R. Set R:=[[ Ry, set R' ;=[] R}, and set z := (x1,...,,). Prove

(1) z is integral over R if and only if z; is integral over R; for each i;

(2) R is integrally closed in R’ if and only if each R; is integrally closed in R}.

COROLLARY (10.27). — Let R be a ring, R’ an R-algebra, R the integral closure
of R in R'. Then R is an R-algebra, and is integrally closed in R'.

PROOF: Take a € R and z,y € R. Then the ring R[z,y] is integral over R by
(2)=(1) of (10.23). So azx and x +y and zy are integral over R. Thus R is an
R-algebra. Finally, R is integrally closed in R’ owing to (10.22). O

THEOREM (10.28) (Gauss). — A UFD is normal.

PROOF: Let R be the UFD. Given = € Frac(R), say = r/s with r,s € R
relatively prime. Suppose x satisfies (10.16.1). Then

= —(ar" T A aps™ T Y)s.

So any prime element dividing s also divides r. Hence s is a unit. Thusz € R. 0O
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54 10. Cayley—Hamilton Theorem

ExXAMPLE (10.29). — (1) A polynomial ring in n variables over a field is a UFD,
so normal by (10.28).

(2) The ring R := Z[v/5] is not a UFD, since

(1+V5)(1-V5)=—-4=-2-2,

and 1 + \/57 and 1 — /5 and 2 are irreducible, but not associates. However, set
7 := (1 ++/5)/2, the “golden ratio.” The ring Z[r] is known to be a PID; see
[8, p.292]. Hence, Z[7] is a UFD, so normal by (10.28); hence, Z[7] contains the
normalization R of R. On the other hand, 72 — 7 — 1 = 0; hence, Z[r] C R. Thus
Z|r] = R.

(3) Let d € Z be square-free. In the field K := Q(v/d), form R := Z + Z§ where

s )+ Vd)/2, ifd=1 (mod 4);
o \/E, if not.

Then R is the normalization Z of Z in K see [1, pp. 412-3].

(4) Let k be a field, k[t] the polynomial ring in one variable. Set R := k[t2, ¢3].
Then Frac(R) = k(t). Further, ¢ is integral over R as t satisfies X2 — 2 = 0; hence,
k[t] C R. However, k[t] is normal by (1); hence, k[t] D R. Thus k[t] = R.

Let k[X,Y] be the polynomial ring in two variables, and ¢: k[X,Y] — R the
k-algebra homomorphism defined by ¢(X) := t? and (V) := 3. Clearly ¢ is
surjective. Set p := Kery. Since R is a domain, but not a field, p is prime by
(2.9), but not maximal by (2.17). Clearly p D (Y2 — X3). Since Y2 — X3 is
irreducible, (2.26) implies that p = (Y2 — X3). So k[X,Y]/(Y? — X3) == R,
which provides us with another description of R.

EXERCISE (10.30). — Let k be a field, X and Y variables. Set
R:=k[X,Y]/(Y? - X? - X3),

and let x,y € R be the residues of X, Y. Prove that R is a domain, but not a field.
Set t :=y/x € Frac(R). Prove that k[t] is the integral closure of R in Frac(R).
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11. Localization of Rings

Localization generalizes construction of the fraction field of a domain. We local-
ize an arbitrary ring using as denominators the elements of any given multiplicative
subset. The result is the universal example of an algebra where all these elements
become units. When the multiplicative subset is the complement of a prime ideal,
we obtain a local ring. We relate the ideals in the original ring to those in the local-
ized ring. We end by localizing algebras and then varying the set of denominators.

(11.1) (Localization). — Let R be a ring, and S a multiplicative subset. Define a
relation on R x S by (z,s) ~ (y,t) if there is u € S such that ztu = ysu.

This relation is an equivalence relation. Indeed, it is reflexive as 1 € S and is
trivially symmetric. As to transitivity, let (y,t) ~ (z,r). Say yrv = ztv with v € S.
Then zturv = ysurv = ztvsu. Thus (z,s) ~ (z,r).

Denote by S~!R the set of equivalence classes, and by /s the class of (z, s).

Define z/s - y/t := xy/st. This product is well defined. Indeed, say y/t = z/r.
Then there is v € S such that yrv = ztv. So zsyrv = zsztv. Thus zy/st = xz/sr.

Define /s + y/t := (tx + sy)/(st). Then, similarly, this sum is well defined.

It is easy to check S™1R is a ring, with 0/1 for 0 and 1/1 for 1. It is called the
ring of fractions with respect to S or the localization at S.

Let pg: R — S™IR be the map given by ¢g(z) := x/1. Then ¢g is a ring map,
and it carries elements of S to units in S71R as s/1-1/s = 1.

EXERCISE (11.2). — Let R be a ring, S a multiplicative subset. Prove S™1R =0
if and only if S contains a nilpotent element.

EXERCISE (11.3). — Let R be a ring, S a multiplicative subset, S its saturation.

Set T:= (S™'R)*. Show T = {z/s |z € S and s € S }. Show ¢5'T = S.
(11.4) (Total quotient ring). — Let R be a ring, S the set of all nonzerodivisors
of R. Clearly S is a multiplicative subset. The map ¢gs: R — S™!R is injective,
because if pgz = 0, then sz = 0 for some s € S, and so x = 0. We call S™!R the
total quotient ring of R, and view R as a subring.

Let T C S be a multiplicative subset. Clearly, RC T"'R c S~'R.

Suppose R is a domain. Then S = R — {0}; so the total quotient ring is just
the fraction field Frac(R), and ¢g is just the natural inclusion of R into Frac(R).
Further, T7!'R is a domain by (2.3) as T"'R C S™!R = Frac(R).

EXERCISE (11.5). — Find all intermediate rings Z C R C Q, and describe each R
as a localization of Z. As a starter, prove Z[2/3] = S™'Z where S = {3° | i > 0}.

THEOREM (11.6) (UMP). — Let R be a ring, S a multiplicative subset. Then
STIR is the universal ezample of an R-algebra in which all the elements of S
become units. In fact, given a ring map ¢: R — R’, then ¢(S) C R if and only if
there is a ring map p: ST'R — R’ with pps = 1; that is, this diagram commutes:

R -5 g1p
ol
R/
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56 11. Localization of Rings

Further, there is at most one p. Moreover, R' may be noncommutative.

PRrOOF: First, suppose that p exists. Let s € S. Then 9(s) = p(s/1). Hence
P(s)p(1/s) = p(s/1-1/s) = 1. Thus ¢(S) C R'*.
Next, note that p is determined by v as follows:
p(z/s) = plx/1)p(1/s) = Y(@)y(s) "
Conversely, suppose 1(S) C R'™. Set p(z/s) := 1(s)"1(x). Let’s check that p
is well defined. Say z/s = y/t. Then there is u € S such that atu = ysu. Hence
(@)Y (t)(u) = P(y)P(s)(u).
Since ¢ (u) is a unit, ¥ (z)Y(t) = ¥(y)Y(s). Now, st = ts, so
D) p(s) T = p(s) (D)

Hence v¥(2)¥(s)™1 = ¢ (y)w(t)~!. Thus p is well defined. Clearly, p is a ring map.
Clearly, ¥ = pps. g

COROLLARY (11.7). — Let R be a ring, and S a multiplicative subset. Then the
canonical map ps: R — S™'R is an isomorphism if and only if S consists of units.

PROOF: If g is an isomorphism, then S consists of units, because pg(S) does
so. Conversely, if S consists of units, then the identity map R — R has the UMP
that characterizes ¢g; whence, pg is an isomorphism. O

EXERCISE (11.8). — Let R’ and R” be rings. Consider R := R’ x R” and set
S:={(1,1), (1,0) }. Prove R’ = S7'R.

EXERCISE (11.9). — Take R and S as in (11.8). On R x .S, impose this relation:
(z,8) ~ (y,t) if axt=uys.
Prove that it is not an equivalence relation.

DEFINITION (11.10). — Let R be aring, f € R. Set S := {f" | n > 0}. We call
the ring S™!R the localization of R at f, and set Ry := S™!R and ¢y := pg.

PROPOSITION (11.11). — Let R be a ring, f € R, and X a variable. Then
Ry = R[X]/{l - fX).

PROOF: Set R’ := R[X]/(1 — fX), and let ¢: R — R’ be the canonical map.
Let’s show that R’ has the UMP characterizing localization (11.6).

First, let 2 € R’ be the residue of X. Then 1 — zp(f) = 0. So ¢(f) is a unit. So
©(f™) is a unit for n > 0.

Second, let ¥: R — R” be a homomorphism carrying f to a unit. Define
0: R[X] — R" by |R = ¢ and X = o (f)~!. Then 6(1 — fX) = 0. So @ factors
via a homomorphism p: R’ — R”, and ¢ = pp. Further, p is unique, since every
element of R’ is a polynomial in = and since pz = ¢(f)~! as 1 — (pz)(ppf) =0. O

PROPOSITION (11.12). Let R be a ring, S a multiplicative subset, a an ideal.
(1) Then aS~'R={a/s€ ST'R|ac€aand s € S}.
(2) Then anS # 0 if and only if aS™'R = S™'R if and only if pg' (aS™'R) = R
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PROOF: Let a,b € a and 2/s, y/t € ST'R. Then az/s + by/t = (axt + bys)/st;
further, axt + bys € a and st € S. So aS™'R C {a/s | a € a and s € S}. But the
opposite inclusion is trivial. Thus (1) holds.

As to (2),if anS > s, then aS7™'R 3 s/s = 1, so aS™!R = ST R; whence,
gogl(aS_lR) = R. Conversely, suppose wgl(aS_lR) = R. Then aS™'R > 1. So
(1) yields @ € a and s € S such that a/s = 1. So there exists a ¢ € S such that
at = st. But at € a and st € S. So aN.S # . Thus (2) holds. O

DEFINITION (11.13). — Let R be a ring, S a multiplicative subset, a a subset of
R. The saturation of a with respect to S is the set denoted by a® and defined by

5.={a € R |thereis s € S with as € a}.

If a = a®, then we say a is saturated.

PROPOSITION (11.14). — Let R be a ring, S a multiplicative subset, a an ideal.
(1) Then Ker(ps) = (0)%. (2) Then a C a®. (3) Then a° is an ideal.

PRrROOF: Clearly, (1) holds, for a/1 = 0 if and only if there is s € S with as = 0.
Clearly, (2) holds as 1 € S. Clearly, (3) holds, for if as, bt € a, then (a + b)st € a,
and if x € R, then zas € a. O

EXERCISE (11.15). — Let R be a ring, S a multiplicative subset, a and b ideals.
Show (1) if a C b, then a® C 6%; (2) (a®)% =a, and (3) (a”0%)% = (ab).

EXERCISE (11.16). — Let R be a ring, S a multiplicative subset. Prove that
nil(R)(S™'R) = nil(ST'R).

PROPOSITION (11.17). — Let R be a ring, S a multiplicative subset.
(1) Let b be an ideal of ST *R. Then

(a) 95'0 = (p5'0)° and (b) b= (p5'B)(S7'R).

(2) Let a be an ideal of R. Then gogl(aS_lR) = a5,
(3) Let p be a prime ideal of R, and assume pNS =10. Then

(a) p= p®  and (b) pSTIR is prime.

ProOF: To prove (1)(a), take a € R and s € S with as € pg'b. Then as/1 € b;
s0 a/1 € b because 1/s € ST'R. Hence a € ¢g'b. Therefore, (pg'b)% C ¢g'b.
The opposite inclusion holds as 1 € S. Thus (1)(a) holds.

To prove (1)(b), take a/s € b. Then a/1 € b. So a € gpslb Hence a/1-1/s is in
(5 0)(ST'R). Thus b C (pg'b)(S~'R). Now, take a € pg'b. Then a/1 € b. So
b O (p5'6)(STIR). Thus ( )(b) holds too.

To prove (2), take a € a®. Then there is s € S with as € a. But a/l as/1-1/s.
So a/1 € aS7'R. Thus ¢5'(aS7'R) D a°. Now, take 2 € ¢5'(aS™'R). Then
z/1 = a/s with a € a and s € S by (11.14)(1). Hence there is ¢t € S such that
zst =at € a. So x € a. Thus ' (aS™'R) C a®. Thus (2) holds.

To prove (3), note p C p° as 1 € S. Conversely, if sa € p with s € S C R — p,
then a € p as p is prime. Thus (a) holds.

As for (b), say a/s-b/t € pST'R. Then ab € ¢g'(pS~'R), and the latter is
equal to p° by (2), so to p by (a). Hence ab € p, so either a € p or b € p. So either
a/s € pST'Ror b/t € pST'R. Thus pS~™'R is prime. Thus (3) holds. O
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58 11. Localization of Rings

COROLLARY (11.18). Let R be a ring, S a multiplicative subset.
(1) Then a — aS™IR is an inclusion-preserving bijection from the set of all ideals
a of R with a = a® to the set of all ideals b of S~'R. The inverse is b — gpglb.
(2) Then p — pS~IR is an inclusion-preserving bijection from the set of all
primes of R with p NS = () to the set of all primes q of ST'R. The inverse is
q— 5’4

PrOOF: In (1), the maps are inverses by (11.17)(1), (2); clearly, they preserve
inclusions. Further, (1) implies (2) by (11.17)(3), by (2.8), and by (11.12)(2). O

DEFINITION (11.19). — Let R be a ring, p a prime ideal. Set S := R —p. We call
the ring S~ R the localization of R at p, and set R, := S™'R and ¢, := ¢s.

PROPOSITION (11.20). Let R be a ring, p a prime ideal. Then R, is local with
maximal ideal pR.

PROOF: Let b be a proper ideal of R,. Then ¢, 'b C p owing to (11.12)(2).
Hence (11.18)(1) yields b C pR,. Thus pR, is a maximal ideal, and the only one.

Alternatively, let z/s € R,. Suppose x/s is a unit. Then there is a y/t with
xy/st = 1. So there is a u ¢ p with zyu = stu. But stu ¢ p. Hence z ¢ p.

Conversely, let « ¢ p. Then s/x € Ry. So /s is a unit in Ry, if and only if « ¢ p,
so if and only if z/s ¢ pR,. Thus by (11.12)(1), the nonunits of R, form pR,,
which is an ideal. Hence (3.4) yields the assertion. O

PROPOSITION (11.21). — Let R be a domain, a an ideal. Then a = (), aRm where
m runs through the mazimal ideals and the intersection is taken in Frac(R).

PROOF: Set I := (), aRm. Clearly, a C I. For the opposite inclusion, given
xel,setb:={yec R|yx € a}. Suppose z ¢ a. Then 1 ¢ b, so there is a maximal
ideal n D b by (2.27). But « € aR,,. So there is s € R —n with sz € a by (11.12).
Then s € b C n, a contradiction. Thus x € a, as desired. O

(11.22) (Algebras). — Let R be a ring, S a multiplicative subset, R’ an R-algebra.
It is easy to generalize (11.1) as follows. Define a relation on R’ xS by (z,s) ~ (y,t)
if there is v € S with ztu = ysu. It is easy to check, as in (11.1), that this relation
is an equivalence relation.

Denote by S™'R’ the set of equivalence classes, and by /s the class of (z,s).
Clearly, ST'R’ is an S~!R-algebra with addition and multiplication given by

x/s+y/t:= (zt+ys)/(st) and x/s-y/t:=xy/st.
We call S~'R’ the localization of R’ with respect to S.

Let ¢s: R’ — ST!R’ be the map given by ¢/s(x) := /1. Then ¢s makes S~1R’
into an R'-algebra, so also into an R-algebra, and ¢’ is an R-algebra map.

Note that elements of S become units in S~'R’. Moreover, it is easy to check, as
in (11.6), that S~ R’ has the following UMP: ¢ is an algebra map, and elements
of S become units in STIR’; further, given an algebra map v: R’ — R" such that
elements of S become units in R", there is a unique R-algebra map p: ST'R' — R”
such that pp's = v; that is, the following diagram is commutative:

’

R <Ps> SR

ol
Rl/
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In other words, S™'R’ is the universal exzample of an R’-algebra in which the
elements of S become units.

Let 7: R' — R” be an R-algebra map. Then there is a commutative diagram of
R-algebra maps

T

Rl Rl/
S"Sl lwg
g-1p S'T g-1pn
Further, S~'7 is an S~!R-algebra map.
Let T C R’ be the image of S C R. Then T is multiplicative. Further,
S—lR/ — T—IR/
even though R’/ x.S and R/ xT are rarely equal, because the two UMPs are essentially

the same; indeed, any ring map R’ — R” may be viewed as an R-algebra map, and
trivially the elements of S become units in R” if and only if the elements of T' do.

EXERCISE (11.23). — Let R'/R be a integral extension of rings, S a multiplicative
subset of R. Show that S™!R’ is integral over S™!R.

EXERCISE (11.24). — Let R be a domain, K its fraction field, L a finite extension
field, and R the integral closure of R in L. Show L is the fraction field of }_Z._Show
every element of L can, in fact, be expressed as a fraction b/a with b € R and
a € R.

EXERCISE (11.25). — Let R C R’ be domains, K and L their fraction fields.
Assume that R’ is a finitely generated R-algebra, and that L is a finite dimensional
K-vector space. Find an f € R such that R}- is module finite over Ry.

PROPOSITION (11.26). — Let R be a ring, S a multiplicative subset. Let T' be a
multiplicative subset of ST'R, and set T := gogl(T’). Assume S CT. Then

(T YS™'R) =T"'R.

PROOF: Let’s check (77)"1(S7'R) has the UMP characterizing T-'R. Clearly
o g carries T into ((T’)*l(S*IR))XA Next, let ¢p: R — R’ be a map carrying T
into R’*. We must show ¥ factors uniquely through (7")~'(S™'R).

First, ¢ carries S into R'* since S C T. So % factors through a unique map
p: ST'R — R'. Now, given r € T’, write r = z/s. Then z/1 = s/1-r € T’ since
S CT. Sox eT. Hence p(r) = ¢(x) - p(1/s) € (R')*. So p factors through a
unique map p: (T")"1(S7IR) — R'. Hence v = p'pr/ g, and p’ is clearly unique,
as required. a

COROLLARY (11.27). — Let R be a ring, p C q prime ideals. Then R, is the
localization of Rq at the prime ideal pRg.

PROOF: Set S:= R—qand 7’ := Ry —pRy. Set T := o' (T"). Then T = R—p
by (11.18)(2). So S C T, and (11.26) yields the assertion. O

EXERCISE (11.28). — Let R be a ring, S and 7" multiplicative subsets.
(1) Set T" := ¢g(T') and assume S C T'. Prove

T'R=T""YS7'R)=T"YS'R).
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60 11. Localization of Rings

(2) Set U:={stc R|se€ S andteT}. Prove
TYS7'R) =51 (I"'R)=U"'R.

(3) Let 8" := {t' € R|t't € S for some t € R}. Prove SR =S~ 'R.
PROPOSITION (11.29). — Let R be a ring, S a multiplicative subset, X a variable.
Then (S™'R)[X] = S~ (R[X]).

PROOF: Let’s check (S™1R)[X] and S~(R[X]) have the same UMP: a ring map
¥: R — R’ factors uniquely through either one if ¥(S) C (R')* and if an z € R’
is preassigned as the image of X. First, since ¢¥(S) C (R')*, there is a unique
R-algebra map S™'R — R/, so a unique (S~!R)-algebra map (S7'R)[X] — R’
sending X to x. Second, there is a unique R-algebra map R[X] — R’ sending X
to z, so a unique R[X]-algebra map R[X] — R’ sending X to z, and so a unique
R[X]-algebra map S™1(R[X]) — R’ since 1(S) C (R')*, as required. O
COROLLARY (11.30). — Let R be a ring, S a multiplicative subset, X a variable, p
an ideal of R[X]. Set R' :== SR, and let ¢: R[X] — R'[X] be the canonical map.
Then p is prime and pNS = O if and only if pR'[X] is prime and p = o~ * (pR’[X]).

PROOF: The assertion results directly from (11.30) and (11.18)(2). O

EXERCISE (11.31). — Let R be a domain, S a multiplicative subset with 0 ¢ S.
Assume R is normal. Show that S™'R is normal.
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12. Localization of Modules

Formally, we localize a module just as we do a ring. However, the result is
a module over the localized ring, and comes equipped with a linear map from
the original module; in fact, the result is the universal module with these two
properties. Further, as a functor, localization is the left adjoint of restriction of
scalars. Hence, localization preserves direct limits, or equivalently, direct sums
and cokernels. Therefore, by Watts’ Theorem, localization is naturally isomorphic
to tensor product with the localized ring. Moreover, localization is exact; so the
localized ring is flat. We end by discussing various compatibilities and examples.

PROPOSITION (12.1). — Let R be a ring, S a multiplicative subset. Then a module
M has a compatible S~ R-module structure if and only if, for all s € S, the multi-
plication map ps: M — M is bijective; if so, then the S™'R-structure is unique.

PROOF: Assume M has a compatible S~!R-structure, and take s € S. Then
Hs = ftg/1- SO s fl1/s = Hi(s/1)(1/s) = 1. Similarly, u; /- s = 1. So p is bijective.
Conversely, assume p is bijective for all s € S. Then pr: R — Endz(M)
sends S into the units of Endz(M). Hence ug factors through a unique ring map
ps-1g: STIR — Endz(M) by (11.6). Thus M has a unique compatible S~ R-
structure by (4.5). O

(12.2) (Localization of modules). — Let R be a ring, S a multiplicative subset, M
a module. Define a relation on M x S by (m,s) ~ (n,t) if there is u € S such that
utm = usn. As in (11.1), this relation is an equivalence relation.

Denote by S™1M the set of equivalence classes, and by m/s the class of (m, s).
Then S~1M is an S~!R-module with addition given by m/s+mn/t :== (tm+ sn)/st
and scalar multiplication by a/s - m/t := am/st similar to (11.1). We call S™*M
the localization of M at S.

For example, let a be an ideal. Then S~'a = aS™'R by (11.12)(1). Similarly,
S~HaM) = S7'aS™'M = aS~!M. Further, given an R-algebra R’, the S~!R-
module ST1R’ constructed here underlies the S—!R-algebra S~*R’ of (11.22).

Define ¢s: M — S™tM by ¢s(m) := m/1. Clearly, s is R-linear.

Note that ps: S71M — S~1M is bijective for all s € S by (12.1).

If S = {f"|n >0} for some f € R, then we call S~'M the localization of M
at f, and set My := S7'M and p5 = @g.

Similarly, if S = R—p for some prime ideal p, then we call S~! M the localization
of M at p, and set My, := S™1M and ¢, := ps.

THEOREM (12.3) (UMP). — Let R be a ring, S a multiplicative subset, and M
a module. Then S™'M is the universal example of an S™'R-module equipped with
an R-linear map from M.

PRrROOF: The proof is like that of (11.6): given an R-linear map ¢: M — N
where N is an S~!R-module, it is easy to prove that v factors uniquely via the
S~IR-linear map p: S™1M — N well defined by p(m/s) :=1/s - (m). O

EXERCISE (12.4). — Let R be a ring, S a multiplicative subset, and M a module.
Show that M = S~'M if and only if M is an S~!R-module.
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EXERCISE (12.5). Let R be a ring, S C T multiplicative subsets, M a module.
Set Ty := ps(T) € S™'R. Show T~'M = T-Y(S~'M) = Ty (S~ M).
EXERCISE (12.6). — Let R be a ring, S a multiplicative subset. Show that S
becomes a filtered category when equipped as follows: given s,t € S, set
Hom(s,t) := {x € R | xzs = t}.
Given a module M, define a functor S — ((R-mod)) as follows: for s € S, set

M := M; to each z € Hom(s, t), associate pi.: Ms — M;. Define 8s: Mg — S~ M
by Bs(m) := m/s. Show the 35 induce an isomorphism hjg]\/[s -~ SN

EXERCISE (12.7). Let R be a ring, S a multiplicative subset, M a module.
Prove S~1M = 0 if Aun(M)N S # 0. Prove the converse if M is finitely generated.

(12.8) (Functoriality). — Let R be a ring, S a multiplicative subset, a: M — N
an R-linear map. Then @ga carries M to the S~ R-module S~!N. So (12.3) yields
a unique S~!R-linear map S~'a making the following diagram commutative:

M 5 S7IM
la ls*la
N £5 S7IN
The construction in the proof of (12.3) yields
(S7ta)(m/s) = a(m)/s. (12.8.1)
Thus, canonically, we obtain the following map, and clearly, it is R-linear:
Hompg(M, N) — Homg-15(S™'M, STIN). (12.8.2)

Any R-linear map 8: N — P yields S~}(Ba) = (S718)(S~1a) owing to uniqueness
or to (12.8.1). Thus S~1(e) is a linear functor from ((R-mod)) to ((S~!R-mod)).

THEOREM (12.9). — Let R be a ring, S a multiplicative subset. Then the functor
S~1(e) is the left adjoint of the functor of restriction of scalars.

PROOF: Let N be an S~!R-module. Then N = S~'N by (12.4), and the map
(12.8.2) is bijective with inverse taking : S™'M — N to Sps: M — N. And
(12.8.2) is natural in M and N by (6.3). Thus the assertion holds. O

COROLLARY (12.10). — Let R be a ring, S a multiplicative subset. Then the
functor S~1(e) preserves direct limits, or equivalently, direct sums and cokernels.

PROOF: By (12.9), the functor is a left adjoint. Hence it preserves direct limits
by (6.12); equivalently, it preserves direct sums and cokernels by (6.10). d

EXERCISE (12.11). — Let R be a ring, S a multiplicative subset, P a projective
module. Then S™!'P is a projective S~ R-module.

COROLLARY (12.12). — Let R be a ring, S a multiplicative subset. Then the
functors S~1(e) and ST'R®p e are canonically isomorphic.

PROOF: As S~!(e) preserves direct sums and cokernels by (12.10), the assertion
is an immediate consequence of Watts Theorem (8.15).

Alternatively, both functors are left adjoints of the same functor by (12.9) and
by (8.10). So they are canonically isomorphic by (6.4). a
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EXERCISE (12.13). Let R be a ring, S a multiplicative subset, M and N mod-
ules. Show S~} (M®grN)=S"'1M®zrN =S 1M®g-1gS !N =S"1M®rS™IN.

DEFINITION (12.14). — Let R be a ring, S a multiplicative subset, M a module.
Given a submodule N, its saturation N¥ is defined by

N%:={m & M | there is s € S with sm € N}.
If N = N¥, then we say N is saturated.

PROPOSITION (12.15). — Let R be a ring, M a module, N and P submodules.
Let S be a multiplicative subset, and K an S™'R-submodule of S™'M.

(1) Then (a) N® is a submodule of M, and (b) ST'N is a submodule of S~ M.

(2) Then (a) p5'K = (p5'K)® and (b) K = 57 (¢5'K).

(3) Then p5*(S™'N) = N¥; in particular, Ker(ps) = 0°.

(4) Then (a) (NN P)S = NN PS and (b) STY(NNP)=S"'NnS'P.

(5) Then (a) (N + P)S D N9+ P and (b) STY(N +P)=S"IN+571P.

PROOF: Assertion (1)(b) holds because N x S is a subset of M x.S and is equipped
with the induced equivalence relation.

Assertions (1)(a), (2) and (3) can be proved as in (11.14)(3) and (11.17)(1),
(2).

As to (4)(a), clearly (N N P)° ¢ N9n PS. Conversely, given m € N9 n PS5,
there are s,t € S with sm € N and tm € P. Then stm € NN P and st € S. So
m € (NN P)%. Thus (a) holds. Alternatively, (4)(b) and (3) yield (4)(a).

As to (4)(b), since NN P C N, P, using (1) yields ST{(NNP) Cc STINNS~IP.
But, given m/s =n/t € STIN N S~LP, there is a u € S with utm = usn € NN P.
Hence utm /uts = usn/uts € S~Y(N N P). Thus (b) holds.

As to (5)(a), given n € N° and p € P¥, there are s,t € S with sn € N and
tp € P. Then st € S and st(n+p) € N + P. Thus (5)(a) holds.

As to (5)(b), note N, P C N+ P. So (1)(b) yields S~Y(N+P) D S~IN+S~1P.
But the opposite inclusion holds as (n +p)/s = n/s+p/s. Thus (5)(b) holds. O

THEOREM (12.16) (Exactness of Localization). — Let R be a ring, and S a mul-
tiplicative subset. Then the functor S~1(e) is exzact.

PROOF: As S~1(e) preserves injections by (12.15)(1) and cokernels by (12.10),
it is exact by (9.3).

Alternatively, given an exact sequence M’ % M LNy Ve ', for each s € S, take a
copy M. — My — M. Using (12.6), make S into a filtered category, and make
these copies into a functor from S to the category of 3-term exact sequences; its
limit is the following sequence, which is exact by (7.10), as desired:

s Sy g-ipg S8 gy

The latter argument can be made more direct as follows. Since fa = 0, we
have (S718)(S71a) = S71(Ba) = 0. Hence Ker(S~!8) D Im(S~'a). Conversely,
given m/s € Ker(S™13), there is t € S with t3(m) = 0. So B(tm) = 0. So
exactness yields m’ € M’ with a(m’) = tm. So (S~'a)(m//ts) = m/s. Hence
Ker(S718) C Im(S~'a). Thus Ker(S713) = Im(S~'a), as desired. O
COROLLARY (12.17). — Let R be a ring, S a multiplicative subset. Then S™'R
is flat over R.
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PROOF: The functor S~!(e) is exact by (12.16), and is isomorphic to S R®@re
by (12.12). Thus S™1R is flat.

Alternatively, using (12.6), write S™!R as a filtered direct limit of copies of R.
But R is flat by (9.6). Thus S™!R is flat by (9.13). O

COROLLARY (12.18). — Let R be a ring, S a multiplicative subset, a an ideal, and
M a module. Then S~ (M/aM)=S"'M/S~ (aM)=S""M/aS™'M.

PROOF: The assertion results from (12.16) and (12.2). O

COROLLARY (12.19). — Let R be a ring, p a prime. Then Frac(R/p) = R, /pR,.
PrOOF: We have Frac(R/p) = (R/p)y = Rp/pR, by (11.22) and (12.18). O

PROPOSITION (12.20). — Let R be a ring, M a module, S a multiplicative subset.
(1) Let my,...,mn, € M. If M is finitely generated and if the m;/1 € S™1M
generate over STIR, then there’s f € S so that the m;/1 € My generate over Ry.
(2) Assume M is finitely presented and S™'M is a free S~1R-module of rank n.
Then there is h € S such that My, is a free Rj,-module of rank n.

PRrROOF: To prove (1), define a: R™ — M by «a(e;) := m; with e; the ith standard
basis vector. Set C' := Coker(a). Then S~1C = Coker(S~'a) by (12.10). Assume
the m;/1 € S™*M generate over S~'R. Then S~'« is surjective by (4.10)(1) as
S~I(R") = (STR)" by (12.10). Hence S~!1C = 0.

In addition, assume M is finitely generated. Then so is C. Hence, (12.7) yields
f € S such that Cy = 0. Hence oy is surjective. So the m;/1 generate My over Ry
again by (4.10)(1). Thus (1) holds.

For (2), let m1/s1,...,mn/sn be a free basis of ST1M over ST'R. Then so is
mi/1,...,my/1 asthe 1/s; are units. Form « and C' as above, and set K := Ker(a).
Then (12.16) yields S™'K = Ker(S~'a) and S~1C = Coker(S~'a). But S~ta is
bijective. Hence S™'K =0 and S~'C = 0.

Since M is finitely generated, C' is too. Hence, as above, there is f € S such
that Cy = 0. Then 0 — K; — R} 2 My — 0 is exact by (12.16). Take a
finite presentation R? — R? — M — 0. By (12.16), it yields a finite presentation
R% — R} — My — 0. Hence Ky is a finitely generated Ry-module by (5.24).

Let S; C Ry be the image of S. Then (12.5) yields S;'(K;) = S~'K. But
S~'K = 0. Hence there is g/1 € Sy such that (Ky),/1 = 0. Set h := fg. Let’s show
K, =0. Let x € K. Then there is a such that (¢*z)/1 = 0 in Ky. Hence there
is b such that f¢%z = 0in K. Take ¢ > a, b. Then h¢x = 0. Thus K, = 0. But
Cy = 0 implies C}, = 0. Hence ay,: R} — Mj, is an isomorphism, as desired. O

PROPOSITION (12.21). — Let R be a ring, S a multiplicative subset, and M and
N modules. Then there is a canonical homomorphism
o: S~ Homp(M, N) — Homg-1(S™'M,S7IN).

Further, o is injective if M 1is finitely generated; o is an isomorphism if M is
finitely presented.

PROOF: The assertions result from (9.15) with R’ := S™1R, since S™!R is flat
by (12.17) and since ST!R® P = S™1P for every R-module P by (12.12). O
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EXAMPLE (12.22). — Set R :=Z and S := Z — (0) and M := Q/Z. Then M is
faithful since z € S implies z - (1/2z) = 1/2 # 0; thus, ur: R — Hompg(M, M) is
injective. But ST!R = Q. So (12.16) yields S~ Homp (M, M) # 0. On the other
hand, S~'M =0 as s-7/s =0 for any r/s € M. So the map o(M, M) of (12.21)
is not injective. Thus (12.21)(2) can fail if M is not finitely generated.

EXAMPLE (12.23). — Take R:=Z and S :=Z — 0 and M,, := Z/(n) for n > 2.
Then S~'M, = 0 for all n as nm = 0 (mod n) for all m. On the other hand,
(1,1,...)/1 is nonzero in S~*([]M,) as the kth component of m - (1,1,...) is
nonzero in [ M, for k > m if m is nonzero. Thus S~ ([T M,) # [[(S™'M,).
Also S7'Z = Q. So (12.12) yields Q ® ([] M) # [[(Q ® M,,), whereas (8.11)
yields Q® (D M,,) = P(Q & M,).
EXERCISE (12.24). — Set R:=Z and S =Z — (0). Set M := P,,»,Z/(n) and
N := M. Show that the map o of (12.21) is not injective. -
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13. Support

The spectrum of a ring is this topological space: its points are all the prime ideals;
each closed set consists of those primes containing a given ideal. The support of a
module is this subset: its points are the primes at which the localized module is
nonzero. We relate the support to the closed set of the annihilator. We prove that
a sequence is exact if and only if it is exact after localizing at each maximal ideal.
Lastly, we prove that a module is finitely generated and projective if and only if it
is locally free of finite rank.

(13.1) (Spectrum of a ring). Let R be a ring. Its set of prime ideals is denoted
Spec(R), and is called the (prime) spectrum of R.
Let a be an ideal. Let V(a) denote the subset of Spec(R) of those primes that
contain a. We call V(a) the variety of a.
Let b be another ideal. Then by the Scheinnullstellensatz, V(a) = V(b) if and
only if v/a = v/b. Further, (2.2) yields
V(a)UV(b) =V(anb) = V(ab).

A prime ideal p contains the ideals ay in an arbitrary collection if and only if p
contains their sum Y ay; hence,

ﬂV(a,\) = V(E a)\).
Finally, V(R) = (), and V({0)) = Spec(R). Thus the subsets V(a) of Spec(R) are
the closed sets of a topology; it is called the Zariski topology.
Given an element f € R, we call the open set

D(f) := Spec(R) — V({f))
a principal open set. These sets form a basis for the topology of Spec(R); indeed,
given any prime p 2 a, there is an f € a —p, and so p € D(f) C Spec(R) — V(a).
Further, f,g ¢ p if and only if fg ¢ p, for any f,g € R and prime p; in other words,

D(f) nD(g) = D(fg). (13.1.1)
A ring map ¢: R — R’ induces a set map
Spec(p): Spec(R') = Spec(R) by  Spec(p)(p’) := o~ (p').

Clearly, Spec()~! V(a) = V(aR'); hence, Spec(ip) is continuous. Thus Spec(e) is
a contravariant functor from ((Rings)) to ((Top spaces)).
For example, the quotient map R — R/a induces a closed embedding

Spec(R/a) < Spec(R),

whose image is V(a), owing to (1.8) and (2.8). Furthermore, the localization map
R — Ry induces an open embedding

Spec(Ry) — Spec(R),
whose image is D(f), owing to (11.18).

EXERCISE (13.2). — Let R be a ring, p € Spec(R). Show that p is a closed
point — that is, {p} is a closed set —if and only if p is a maximal ideal.
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EXERCISE (13.3). Let R be a ring, R’ a flat algebra with structure map .
Show that R’ is faithfully flat if and only if Spec(yp) is surjective.

PROPOSITION (13.4). — Let R be a ring, X := Spec(R). Then X is quasi-
compact: if X =J,c, Ux with Uy open, then X =J;_; Uy, for some \; € A.

PROOF: Say Uy = X — V(ay). Then V(Y ay) = V(ax) = 0. So > ay lies
in no prime ideal. Hence there are A1,..., A\, € A and f, € ay, for all ¢ with
> fr, =1. Hence > ay, = Ryso V(Y ay,) =N V(ay,) =0; 50 X =JUy,. O

EXERCISE (13.5). — Let R be a ring, X := Spec(R), and U an open subset. Show
U is quasi-compact if and only if X — U = V(a) where a is finitely generated.

EXERCISE (13.6). — Let B be a Boolean ring, and set X := Spec(B). Show X is
a compact Hausdorff space. (Following Bourbaki, “quasi-compact” is shortened to
“compact” when the space is Hausdorff.) Further, show a subset U C X is both
open and closed if and only if U = D(f) for some f € B.

EXERCISE (13.7) (Stone’s Theorem). — Show every Boolean ring B is isomorphic
to the ring of continuous functions from a compact Hausdorff space X to Fo with
the discrete topology. Equivalently, show B is isomorphic to the ring R of open and
closed subsets of X; in fact, X := Spec(B), and B = R is given by f +— D(f).

DEFINITION (13.8). — Let R be a ring, M a module. Its support is the set
Supp(M) := {p € Spec(R) | M, #0}.

PROPOSITION (13.9). — Let R be a ring, M a module.
(1) Let 0> L - M — N — 0 be exact. Then Supp(L) U Supp(N) = Supp(M).
(2) Let My be submodules with >~ My = M. Then |JSupp(My) = Supp(M).
(3) Then Supp(M) C V(Ann(M)), with equality if M is finitely generated.

PRrOOF: Consider (1). For every prime p, the sequence 0 = L, = M, — N, — 0
is exact by (12.16). Hence M, # 0 if and only if L, # 0 or N, # 0. Thus (1)
holds.

In (2), My C M. So (1) yields |JSupp(My) C Supp(M). To prove the opposite
inclusion, take p ¢ (JSupp(M»). Then (M), = 0 for all \. By hypothesis,
the natural map @ My — M is surjective. So @ (M), — M, is surjective by
(12.10). Hence M, = 0. Alternatively, given m/s € My, express m as a finite sum
m =Y my with my € My. For each such A, there is ¢y € R — p with tymy = 0.
Set t :=[]¢x. Then tm =0 and ¢t ¢ p. So m/s =0 in M,. Hence again, M, = 0.
Thus p ¢ Supp(M), and so (2) holds.

Consider (3). Let p be a prime. By (12.7), M, = 0 if Ann(M) N (R —p) # 0,
and the converse holds if M is finitely generated. But Ann(M)N(R—p) # 0 if and
only if Ann(M) ¢ p. The assertion follows directly.

DEFINITION (13.10). — Let R be a ring, 2 € R. We say z is nilpotent on a
module M if there is n > 1 with z"m = 0 for all m € M, that is, if z € \/Ann(M).
We denote the set of nilpotents on M by nil(M); that is, nil(M) := /Ann(M).

PROPOSITION (13.11). — Let R be a ring, M a finitely generated module. Then
nil(M) = Npesupp(ar) P-
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ProoF: First, nil(M) = (,5ann(ar) P by the Scheinnullstellensatz (3.22). But

p D Ann(M) if and only if p € Supp(M) by (13.9)(3). O
PROPOSITION (13.12). — Let R be a ring, M and N modules. Then
Supp(M ®r N) C Supp(M) N Supp(N), (13.12.1)

with equality if M and N are finitely generated.

PRrOOF: First, (M ®r N), = My, ®r, Ny by (12.13); whence, (13.12.1) holds.
The opposite inclusion follows from (10.14) if M and N are finitely generated. O

COROLLARY (13.13). — Let R be a ring, a an ideal, M a module. Then
Supp(M/aM) C Supp(M) N V(a).
with equality if M is finitely generated.

ProoF: First, (8.13)(1) yields M/aM = M ® R/a. But Ann(R/a) = a; hence
(13.9)(3) yields Supp(R/a) = V(a). Thus (13.12) yields the assertion. O

EXERCISE (13.14). — Let R be a ring, M a module, p € Supp(M). Prove
V(p) C Supp(M).

EXERCISE (13.15). — Let Z be the integers, Q the rational numbers, and set
M := Q/Z. Find Supp(M), and show that it is not Zariski closed.

PROPOSITION (13.16). — Let R be a ring, M a module. These conditions are
equivalent: (1) M = 0; (2) Supp(M) = 0; (3) Mw = 0 for every mazimal ideal m.

PROOF: Trivially, if (1) holds, then S~'M = 0 for any multiplicative subset S.
In particular, (2) holds. Trivially, (2) implies (3).

Finally, assume M # 0, and take a nonzero m € M, and set a := Ann(m). Then
1 ¢ a, so a lies in some maximal ideal m. Then, for all f € R—m, we have fm # 0.
Hence m/1 # 0 in My,. Thus (3) implies (1). O

EXERCISE (13.17). — Let R be a ring, P a module, and M, N submodules. Show
M = N if My, = Ny, for every maximal ideal m. First assume M C N.

EXERCISE (13.18). — Prove these three conditions on a ring R are equivalent:
(1) R is reduced.
(2) S7IR is reduced for all multiplicatively closed sets S.
(3) Ru is reduced for all maximal ideals m.

EXERCISE (13.19). — Let R be a ring, ¥ the set of minimal primes. Prove this:
(1) If Ry is a domain for any prime p, then the p € ¥ are pairwise comaximal.
(2) R =TI, R; where R; is a domain if and only if R, is a domain for any
prime p and X is finite. If so, then R; = R/p; with {p1,...,pn} =X.

PROPOSITION (13.20). — A sequence of modules L %5 M L, N is ezact if and

only if its localization Ly, 2y My 22 Ny is ezact at each mazimal ideal m.

PRrROOF: If the sequence is exact, then so is its localization by (12.16).

Consider the converse. First Im(8mam) = 0. But Im(Bmam) = (Im(ﬁa))m by
(12.16) and (9.3). Hence Im(fSa) = 0 by (13.16). So Sa = 0. Thus Im(a) C
Ker(B).

Set H := Ker(3)/Im(c). Then Hy = Ker(8n)/Im(am) by (12.16) and (9.3).
So Hy = 0 owing to the hypothesis. Hence H = 0 by (13.16), as required. d
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EXERCISE (13.21). Let R be a ring, M a module. Prove elements my € M
generate M if and only if, at every maximal ideal m, their images m) generate My,.

PROPOSITION (13.22). — Let A be a semilocal ring, my, . .., m, its mazimal ideals,
M, N finitely presented modules. Assume My, = Nn, for each i. Then M = N.

PROOF: For each i, take an isomorphism 1;: My, = Ny,. Then (12.21)
yields s; € A —m; and ¢;: M — N with (¢;)m;, = sity;. However, (2.2) implies
ﬂj# m; ¢ m;; so there’s z; € ﬂj# m; with z; ¢ m;. Set v := " ;5.

For each i, set a; := x;s;¢;. Then a;: My, =5 Nn,. Set f; := Z#i 58505
Then B;(Mw,) C m; Ny, as x; € m; for j # 4. Further, v, = a; + ;. S0 Ym, is an
isomorphism by (10.12). Hence (13.20) implies v: M — N. O

PROPOSITION (13.23). — Let R be a ring, S a multiplicative subset, M a module.
Then the following conditions are equivalent:

(1) M is flat over R.

(2) S™'M is flat over STR and over R.

(3) At every mazimal ideal m, the localization My, is flat over Ry,.

PRrOOF: Assume (1) holds. Let a: N’ — N be an injection of S~!R-modules.
Then M ®r a: M ®g N' — M ®g N is injective. Now, (12.4) yields o = S~1a.
So (12.13) yields M@gra = S~!M®g-1pa. Hence S~ M ®g-1za is injective; that
is, ST M is flat over ST'R. Therefore, S™'M is flat over R by (12.17) and (9.7).
Thus (2) holds. Trivially, (2) implies (3).

Assume (3) holds. Let a: N’ — N be an injection of R-modules. Then auy
is injective by (13.20). So My ®pg, am is injective. Now, that map is equal to
(M ® &) by (12.13), hence is injective. Therefore, M ® « is injective by (13.20);
that is, (1) holds. O

EXERCISE (13.24). — Let R be a ring, R’ a flat algebra, p’ a prine in R’, and p
its contraction in R. Prove that R;,, is a faithfully flat Ry-algebra.

DEFINITION (13.25). — Let R be a ring, M a module. We say M is locally
finitely generated if each p € Spec(R) has a neighborhood on which M becomes
finitely generated; more precisely, there exists f € R — p such that M is finitely
generated over Ry. Similarly, we define the properties locally finitely presented,
locally free of finite rank, and locally free of rank n.

PROPOSITION (13.26). — Let R be a ring, M a module.
(1) If M is locally finitely generated, then it is finitely generated.
(2) If M is locally finitely presented, then it is finitely presented.

PRrROOF: By (13.4), there are f1,..., fn, € Rwith |JD(f;) = Spec(R) and finitely
many m; ; € M such that, for some n; ; > 0, the m; ;/f;""’ generate My,. Clearly,
for each i, the m; ;/1 also generate My,.

Given any maximal ideal m, there is 7 such that f; ¢ m. Let Sy be the image
of R—m in Ry,. Then (12.5) yields My = Sy *(Mj,). Hence the m; ;/1 generate
M. Thus (13.21) yields (1).

Assume M is locally finitely presented. Then M is finitely generated by (1). So
there is a surjection R¥ —» M. Let K be its kernel. Then K is locally finitely
generated owing to (5.24). Hence K too is finitely generated by (1). So there is a
surjection R¢ — K. Tt yields the desired finite presentation R® — R¥ — M — 0.
Thus (2) holds. O
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THEOREM (13.27). These conditions on an R-module P are equivalent:

(1) P is finitely generated and projective.

(2) P is finitely presented and flat.

(3) P is finitely presented, and Py is free over Ry at each mazimal ideal m.

(4) P is locally free of finite rank.

(5) P is finitely generated, and for each p € Spec(R), there are f and n such
that p € D(f) and Py is free of rank n over Ry at each q € D(f).

ProoF: Condition (1) implies (2) by (10.15).

Let m be a maximal ideal. Then Ry, is local by (11.20). If P is finitely pre-
sented, then Py, is finitely presented, because localization preserves direct sums and
cokernels by (12.10).

Assume (2). Then P is flat by (13.23), so free by (10.15). Thus (3) holds.

Assume (3). Fix a surjective map a: M — N. Then au: My — Ny, is surjective.
So Hom(Py, am): Hom(Py, My) — Hom(Py, Nuy) is surjective by (5.22) and
(5.21). But Hom(Py, am) = Hom(P, a)m by (12.21) as P is finitely presented.
Further, m is arbitrary. Hence Hom(P, ) is surjective by (13.20). Therefore, P
is projective by (5.22). Thus (1) holds.

Again assume (3). Given any prime p, take a maximal ideal m containing it. By
hypothesis, Py, is free; its rank is finite as Py, is finitely generated. By (12.20)(2),
there is f € R —m such that Py is free of finite rank over Ry. Thus (4) holds.

Assume (4). Then P is locally finitely presented. So P is finitely presented by
(13.26)(2). Further, given p € Spec(R), there are f € R —p and n such that My
is locally free of rank n over Ry. Given q € D(f), let Si be the image of R — q in
Ry. Then (12.5) yields My = Sy (My). Hence My is locally free of rank n over
R,. Thus (5) holds. Further, (3) results from taking p := m and ¢ := m.

Finally, assume (5), and let’s prove (4). Given p € Spec(R), let f and n be
provided by (5). Take a free basis p1/f*,...,p,/f* of P, over R,. The p; define
amap a: R" — P, and op: Ry — P, is bijective, in particular, surjective.

As P is finitely generated, (12.20)(1) provides g € R —p such that a,: R} — P,
is surjective. It follows that aq: Ry — Py is surjective for every q € D(g). If also
q € D(f), then by hypothesis Py ~ Ry. So aq is bijective by (10.4).

Set h := fg. Clearly, D(f) N D(g) = D(h). By (13.1), D(h) = Spec(R},).
Clearly, g = (an)(qr,,) for all g € D(h). Hence oy : R} — Py is bijective owing to
(13.20) with Ry, for R. Thus (4) holds. O

EXERCISE (13.28). — Given n, prove an R-module P is locally free of rank n if
and only if P is finitely generated and Py ~ R} holds at each maximal ideal m.

EXERCISE (13.29). — Let A be a semilocal ring, P a locally free module of rank
n. Show that P is free of rank n.
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14. Krull-Cohen—Seidenberg Theory

Krull-Cohen—Seidenberg Theory relates the prime ideals in a ring to those in
an integral extension. We prove each prime has at least one prime lying over it —
that is, contracting to it. The overprime can be taken to contain any ideal that
contracts to an ideal contained in the given prime; this stronger statement is known
as the Going-up Theorem. Further, one prime is maximal if and only if the other
is, and two overprimes cannot be nested. On the other hand, the Going-down
Theorem asserts that, given nested primes in the subring and a prime lying over
the larger, there is a subprime lying over the smaller, either if the subring is normal
and the overring is a domain or if the extension is flat even if it’s not integral.

LEMMA (14.1). — Let R C R’ be an integral extension of domains. Then R’ is a
field if and only if R is.

PRroor: First, suppose R’ is a field. Let € R be nonzero. Then 1/x € R/, so
satisfies an equation of integral dependence:

(1/x)n +a1(1/x)”_1 +---+a,=0

7=l we obtain

with n > 1 and a; € R. Multiplying the equation by x
1z = —(a1 +ap_ox 4+ +a,z"" ') € R.
Conversely, suppose R is a field. Let y € R’ be nonzero. Then y satisfies an
equation of integral dependence
Y +ay" a1yt a, =0
with n > 1 and a; € R. Rewriting the equation, we obtain
Yy et an1) = —an.
Take n minimal. Then a,, # 0 as R’ is a domain. So dividing by —a,y, we obtain
1y = (~1/an)(y" " + -+ an1) € R, O
DEFINITION (14.2). — Let R be a ring, R’ an R-algebra, p a prime of R, and p’
a prime of R/. We say p’ lies over p if p’ contracts to p.

THEOREM (14.3). — Let R C R’ be an integral extension of rings, and p a prime
of R. Let p' C q' be nested primes of R, and o’ an arbitrary ideal of R'.

(1) (Maximality) Suppose p’ lies over p. Then p’ is maximal if and only if p is.

(2) (Incomparability) Suppose both p’ and q' lie over p. Then p' =q'.

(3) (Lying over) Then there is a prime v’ of R’ lying over p.

(4) (Going up) Suppose ' N R C p. Then in (3) we can take v’ to contain a'.

PROOF: Assertion (1) follows from (14.1) applied to the extension R/p C R'/p’,
which is integral as R C R’ is, since, if y € R’ satisfies ™ + a1y '+ -+ +a, = 0,
then reduction modulo p’ yields an equation of integral dependence over R/p.

To prove (2), localize at R — p, and form this commutative diagram:

R — R,

[

R — R,
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Here Ry, — Ry, is injective by (12.15)(1), and the extension is integral by (11.23).

Here p'R;, and q'R), are nested primes of R, by (11.18)(2). By the same token,
both lie over pR,, because both their contractions in R, contract to p in R. Thus
we may replace R by R, and R’ by R, and so assume R is local with p as maximal
ideal by (11.20). Then p’ is maximal by (1); whence, p’ = ¢'.

To prove (3), again we may replace R by Ry, and R’ by Ry: if v” is a prime ideal
of Ry, lying over pRy, then the contraction v’ of ¢ in R’ lies over p. So we may
assume R is local with p as unique maximal ideal. Now, R’ has a maximal ideal v/
by 2.28; further, v’ contracts to a maximal ideal v of R by (1). Thus t = p.

Finally, (4) follows from (3) applied to the extension R/(a’ N R) C R'/d’. O

EXERCISE (14.4). — Let R C R’ be an integral extension of rings, and p a prime
of R. Suppose R’ has just one prime p’ over p. Show (a) that p’R), is the only
maximal ideal of Ry, (b) that R}, = Ry, and (c) that Ry, is integral over R),.

EXERCISE (14.5). — Let R C R’ be an integral extension of domains, and p a
prime of R. Suppose R’ has at least two distinct primes p’ and ¢’ lying over p.
Show that R;, is not integral over R,. Show that, in fact, if y lies in ¢, but not in
p’, then 1/y € Ry, is not integral over R,.

EXERCISE (14.6). — Let k be a field, and X an indeterminate. Set R’ := k[X],
and Y := X2 and R := k[Y]. Set p := (Y —1)R and p’ := (X — 1)R'. Is R,
integral over R,? Explain.

LEMMA (14.7). — Let R C R’ be a ring extension, X a variable, f € R[X] a
monic polynomial. Suppose f = gh with g, h € R'[X] monic. Then the coefficients
of g and h are integral over R.

PROOF: Set Ry := R'[X]/(g). Let z1 be the residue of X. Then 1, z1, 2%, ...
form a free basis of Ry over R’ by (10.20) as g is monic; hence, R’ C R;. Now,
g(x1) = 0; so g factors as (X — x1)g; with g1 € R;[X] monic of degree 1 less
than g. Repeat this process, extending R;. Continuing, obtain g(X) = [[(X — ;)
and h(X) = J[(X — y;) with all 2; and y; in an extension of R’. The z; and
y; are integral over R as they are roots of f. But the coefficients of g and h are
polynomials in the x; and y;; so they too are integral over R. O

PROPOSITION (14.8). — Let R be a normal domain, K := Frac(R), and L/K a
field extension. Let y € L be integral over R, and p € K[X] its monic minimal
polynomial. Then p € R[X], and so p(y) = 0 is an equation of integral dependence.

PROOF: Since y is integral, there is a monic polynomial f € R[X] with f(y) = 0.
Write f = pg with ¢ € K[X]. Then by (14.7) the coefficients of p are integral over
R, so in R since R is normal. O

THEOREM (14.9) (Going down for integral extensions). — Let R C R’ be an
integral extension of domains, p ; q nested primes of R, and q' a prime of R lying
over q. If R is normal, then there is a prime p’ lying over p and contained in q'.

PrOOF: First, let us show pR, N R = p. Take y € pR, N R. Say y = /s with
z € pR ands € R —q'. Say ¢ = >.", y;x; with y; € p and z; € R’, and set
R" := R[x1,...,%m]. Then R” is a finite R-module by (10.23) and zR” C pR".
Let f(X) = X"+ a1 X" ' 4.4 a, be the characteristic polynomial of yi,: R” —
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R". Then a; € p* C p by (10.1), and f(z) = 0 by the Determinant Trick (10.2).
Set K := Frac(R). Suppose f = gh with g, h € K[X] monic. By (14.7)

the coefficients of g, h lie in R as R is normal. Further, f = X™ (mod p). So

g = X" (mod p) and h = X" " (mod p) for some r by unique factorization in

Frac(R/p)[X]. Hence g and h have all nonleading coefficients in p. Replace f by a

monic factor of minimal degree. Then f is the minimal polynomial of = over K.
Recall s = z/y. So s satisfies the equation

s+ bys" L b, =0 with b;:=a;/y’ € K.

This equation is of minimal degree since y € R C K and deg(f) is minimal for z.
But s is integral over R. So all b; are in R by (14.8).

Assume y ¢ p. Then b; € p since a; = by’ € p. So s™ € pR' C qR' C q'. So
s € q', a contradiction. Hence y € p. Thus pR;, NR C p. But the opposite inclusion
holds trivially. Thus pR;, N R = p.

Hence, there is a prime p” of R{, with p” N R = p by (3.10). Set p’ :=p" N R".
Then p’ N R = p, and p’ C q’ by (11.18)(2), as desired. O

LEMMA (14.10). — Always, a minimal prime consists entirely of zerodivisors.

PRrOOF: Let R be the ring, p the minimal prime. Then R, has only one prime pR,
by (11.18)(2). So by the Scheinnullstellensatz, pR, consists entirely of nilpotents.
Hence, given = € p, there is s € R — p with sz”™ = 0 for some n > 1. Take n
minimal. Then sz~ # 0, but (sz" 1)z = 0. Thus z is a zerodivisor. O

THEOREM (14.11) (Going down for Flat Algebras). — Let R be a ring, R’ a flat
algebra. Let p G q be nested primes of R, and q' a prime of R’ lying over q. Then
there is a prime p’ of R’ that lies over p and is contained in ¢’ .

Proor: The canonical map Rq — Ry, is faithfully flat by (13.24). Therefore,
Spec(Ry) — Spec(fy) is surjective by (13.3). Thus (11.18) yields the desired p’.

Alternatively, R’ g (R/p) is flat over R/p by (9.8). Also, R'/pR' = R' ®r R/p
by (8.13)(1). Hence, owing to (1.8), we may replace R by R/p and R’ by R'/pR/,
and thus assume R is a domain and p = 0.

By (3.11), q’ contains a minimal prime p’ of R'. Let’s show that p’ lies over (0).
Let z € R be nonzero. Then the multiplication map p,: R — R is injective. Since
R’ is flat, p,: R — R’ is also injective. Hence, (14.10) implies that z does not
belong to the contraction of p’, as desired. ]

EXERCISE (14.12). — Let R be a reduced ring, ¥ the set of minimal primes. Prove
that z.div(R) = ez p and that R, = Frac(R/p) for any p € 3.

EXERCISE (14.13). — Let R be a ring, ¥ the set of minimal primes, and K the
total quotient ring. Assume X is finite. Prove these three conditions are equivalent:
(1) R is reduced.
(2) z.div(R) = Upex b, and R, = Frac(R/p) for each p € 3.

(3) K/pK = TFrac(R/p) for each p € ¥, and K =[] . K/pK.

EXERCISE (14.14). — Let A be a reduced local ring with residue field k and finite
set ¥ of minimal primes. For each p € ¥, set K (p) := Frac(A/p). Let P be a finitely
generated module. Show that P is free of rank r if and only if dim,(P ®4 k) =r
and dimg () (P ®a K(p)) = r for each p € X.
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EXERCISE (14.15). Let A be a reduced local ring with residue field k and a
finite set of minimal primes. Let P be a finitely generated module, B an A-algebra
with Spec(B) — Spec(A) surjective. Show that P is a free A-module of rank r if
and only if P ® B is a free B-module of rank r.

(14.16) (Arbitrary normal rings). — An arbitrary ring R is said to be normal
if Ry is a normal domain for every prime p. If R is a domain, then this definition
recovers that in (10.24), owing to (11.31).

EXERCISE (14.17). — Let R be a ring, p;...,p, all its minimal primes, and K
the total quotient ring. Prove that these three conditions are equivalent:

(1) R is normal.

(2) R is reduced and integrally closed in K.

(3) R is a finite product of normal domains R;.

Assume the conditions hold. Prove the R; are equal to the R/p; in some order.
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15. Noether Normalization

The Noether Normalization Lemma describes the basic structure of a finitely
generated algebra over a field; namely, given a chain of ideals, there is a polynomial
subring over which the algebra is module finite, and the ideals contract to ideals
generated by initial segments of variables. After proving this lemma, we derive
several versions of the Nullstellensatz. The most famous is Hilbert’s; namely, the
radical of any ideal is the intersection of all the maximal ideals containing it.

Then we study the (Krull) dimension: the maximal length of any chain of primes.
We prove our algebra is catenary; that is, if two chains have the same ends and
maximal lengths, then the lengths are the same. Further, if the algebra is a domain,
then its dimension is equal to the transcendence degree of its fraction field.

In an appendix, we give a simple direct proof of the Hilbert Nullstellensatz. At
the same time, we prove it in significantly greater generality: for Jacobson rings.

LeEMMA (15.1) (Noether Normalization). — Let k be a field, R := k[x1,...,2,] a
finitely generated k-algebra, and ay C --- C a, a chain of proper ideals of R. Then
there are algebraically independent elements t1,...,t, € R such that

(1) R is module finite over P := k[t1,...t,] and

(2) fori=1,---,r, there is an h; such that a; " P = (t1,...,tn,).

If k is infinite, then we may choose the t; to be k-linear combinations of the x;.

PRrROOF: Let R := k[Xy,...,X,] be the polynomial ring, and ¢: R" — R the
k-algebra map with ¢X; := x;. Set af) := Kerp and a} := ¢ la; fori=1,--- 7.
It suffices to prove the lemma for R' and aj C --- C aj.: if t; € R’ and h} work
here, then ¢; := ‘Pt;+h6 and h; := h} — h{, work for R and the a;, because the t;
are algebraically independent by (1.9), and clearly (1) and (2) hold. Thus we may
assume the x; are algebraically independent.

The proof proceeds by induction on r (and shows v := n works now).

First, assume r = 1 and a; = ¢; R for some nonzero t;. Then t; ¢ k because
a; is proper. Suppose we have found to,...,t, € R so that z; is integral over
P := k[t1,ta,...,t,) and so that Plx;] = R. Then (10.23) yields (1).

Further, by the theory of transcendence bases [1, (8.3), p.526], [6, Thm.1.1,
p. 356], the elements ¢4, . .., t, are algebraically independent. Now, take x € a; N P.
Then x = t12’ where ' € RN Frac(P). Further, R N Frac(P) = P because P is
normal by (10.29) as P is a polynomial algebra. Hence a; N P = t; P. Thus (2)
holds too.

To find ts,...,t,, we are going to choose ¢; and set t; := x; — :1:{ Then clearly
Plxz1] = R. Now, say t; = Za(j)xil ceexdr with (§) == (j1,...,Jn) and a(;) € k.
Recall t; ¢ k, and note that x; satisfies this equation:

S agaf (ta + 2l - (b + 2l =1,
Set e(j) = j1 + lojo + - -+ + lnjn. Take £ > max{j;} and ¢; := ¢. Then the e(j)
are distinct. Let e(j’) be largest among the e(j) with a(;y # 0. Then e(j) > 0, and
the above equation may be rewritten as follows:
agnas?) + Lece(jny Peti =0
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where p. € P. Thus x; is integral over P, as desired.
Suppose k is infinite. We are going to reorder the z;, choose a; € k, and set
t; := x; — a;x1. Then clearly Plxz;] = R. Now, say t; = Hq + --- + Hp where H;

is homogeneous of degree ¢ in x1,...,z, and where Hy # 0. Then d > 0 as t; ¢ k.
Since k is infinite, we may reorder the x; and take a; € k with Hy(1,as,...,a,) # 0.
Then Hy(1,as,...,a,) is the coefficient of 2§ in Hy(x1,ts + asxy, ... ty + apnxy).

So after we collect like powers of x1, the equation
Hg(x1,t2 4+ ag1, ... by + anx1) + -+« + Ho(@1,t2 + asx1, ..., ty +anz1) +11 =0

becomes an equation of integral dependence for x; over P, as desired.

Second, assume r = 1 and a; is arbitrary. We may assume a; # 0. The proof
proceeds by induction on n. The case n = 1 follows from the first case (but is
simpler) because k[z1] is a PID. Let ¢; € a; be nonzero. By the first case, there
exist elements uo, ..., u, such that t;,us,...u, are algebraically independent and
satisfy (1) and (2) with respect to R and t; R. By induction, there are t,...,t,
satisfying (1) and (2) with respect to k[us, ..., u,] and a1 Nkfug, ..., uy].

Set P := k[t1,...,t,]. Since R is module finite over k[ti,us,...,u,] and the
latter is module finite over P, the former is module finite over P by (10.22). Thus
(1) holds, and so t1,...,t, are algebraically independent. Further, by assumption,

ay NEkfta, ... tn] = (ta, ..., tp)

for some h. But 1 € a;. Soa; NP D (t1,...,tn).

Conversely, given € a; N P, say ¢ = Zfzo fith with f; € k[ta,...,t,). Since
t1 € a1, we have fo € a; Nk[ta,...,tn]; 0 fo € {t2,...,tn). Hence x € (t1,...,1tp).
Thus a; N P = (t1,...,t,). Thus (2) holds for r = 1.

Finally, assume the lemma holds for » — 1. Let ui,...,u, € R be algebraically
independent elements satisfying (1) and (2) for the sequence a; C --+ C a,_1, and
set h := h,_1. By the second case, there exist elements tp41, ..., t, satisfying (1)
and (2) for k[up41,...,un] and a,. N k[upt1, ..., uy,]. Then, for some h,,

a, N k[th+la' . 7tn} = <th+la" "thr>'

Set t; :== u; for 1 < ¢ < h. Set P := k[t1,...,t,]. Then, by assumption, R is
module finite over kfuq, ..., uy,], and k[uq, ..., u,] is module finite over P; hence, R
is module finite over P by (10.22). Thus (1) holds, and ¢4, ..., ¢, are algebraically
independent over k.

Fix ¢ with 1 <4 <7r. Set m := h;. Then t1,...,t, € a;. Given x € a; N P, say
T =) ftit -ty with (v) = (vi,...,0m) and f) € k[tmt1, ..., ta]. Then f)
lies in a; N kftm1,-..,tn). We are going to see the latter intersection is equal to
(0). Tt is so if ¢ < r—1 because it lies in a; N Ek[wpm1, ..., uy], which is equal to (0).
Further, if # = r, then, by assumption, a; N k[tm+1,---,tn] = Emtty -y tm) = 0.
Thus f) = 0. Hence x € (t1,...,tp,). Thus a;N P C (t1,...,tp,). So the two are
equal. Thus (2) holds, and the proof is complete. a

EXERCISE (15.2). — Let k := F, be the finite field with ¢ elements, and k[X,Y]
the polynomial ring. Set f := X7V — XY? and R := k[X, Y}/(f) Let z,y € R
be the residues of X, Y. For every a € k, show that R is not module finite over
P := kly—az]. (Thus, in (15.1), no k-linear combination works.) First, take a = 0.
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EXERCISE (15.3). — Let k be a field, and X, Y, Z variables. Set
R:=k[X,Y, Z]/(X*-Y®-1,XZ -1),
and let x, y, z € R be the residues of X, Y, Z. Fix a,b € k, and set t := x+ay+ bz

and P := k[t]. Show that z and y are integral over P for any a,b and that z is
integral over P if and only if b # 0.

THEOREM (15.4) (Weak Nullstellensatz). — Let k be a field, and R a finitely
generated k-algebra. Suppose R is a field. Then R is a finite extension field of k.

PRrROOF: By the Noether Normalization Lemma (15.1), R is module finite over
a polynomial subring P := k[t1,...,t,]. Then P C R is an integral extension by
(10.18). Since R is a field, so is P by (14.1). Hence v = 0. So P = k. Thus R is
module finite over k, as asserted. O

COROLLARY (15.5). — Let k be a field, R := k[z1,...,2,] a finitely generated
k-algebra, and m a mazimal ideal of R. Assume k is algebraically closed. Then
there are ai,...,an € k such that m = (x1 — a1,...,Tn — an).

PROOF: Set K := R/m. Then K is a finite extension field of k£ by the Weak
Nullstellensatz (15.4). But k is algebraically closed. Hence k = K. Let a; € k be
the residue of x;, and set n:= (r1 — a1,...,2Z, — ap). Then n C m.

Let R’ := k[X1,...,X,] be the polynomial ring, and ¢: R" — R the k-algebra
map with ¢X; := z;. Set 0’ := (X1 —a1,..., X, — an). Then p(n’) =n. But ' is
maximal by (2.19). So n is maximal. Hence n = m, as desired. O

THEOREM (15.6) (Hilbert Nullstellensatz). — Let k be a field, and R a finitely
generated k-algebra. Let a be a proper ideal of R. Then

\/a = ﬂm)a m

where m runs through all maximal ideals containing a.

PROOF: We may assume a = 0 by replacing R by R/a. Clearly v/0 C m.
Conversely, take f ¢ +/0. Then Ry # 0 by (11.2). So Ry has a maximal ideal n
by (2.28). Let m be its contraction in R. Now, R is a finitely generated k-algebra
by hypothesis; hence, Ry is one too owing to (11.11). Therefore, by the weak
Nullstellensatz, Ry /n is a finite extension field of k.

Set K := R/m. By construction, K is a k-subalgebra of Ry/n. Therefore, K is
a finite-dimensional k-vector space. So k C K is an integral extension by (10.18).
Since k is a field, so is K by (14.1). Thus m is maximal. But f/1 is a unit in Ry;

so f/1¢n. Hence f ¢ m. So f ¢ (\m. Thus v0 = (m. O

EXERCISE (15.7). — Let & be a field, K an algebraically closed extension field. (So
K contains a copy of every finite extension field.) Let P := k[X1,...,X,] be the

polynomial ring, and f, f1,..., fr € P. Assume f vanishes at every zero in K™ of
f1,.- ., fr; in other words, if (a) := (a1,...,a,) € K™ and f1(a) =0,..., fr(a) =0,
then f(a) = 0 too. Prove that there are polynomials ¢1, ..., g, € P and an integer

N such that f¥ =gif1 +-+ + grfr.

LEMMA (15.8). — Let k be a field, R a finitely generated k-algebra. Assume R
is a domain. Let po G --- G p, be a chain of primes. Set K := Frac(R) and
d := tr.deg, K. Then r < d, with equality if and only if the chain cannot be
lengthened.
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PRrROOF: By the Noether Normalization Lemma (15.1), R is module finite over a
polynomial subring P := k[t1,. .., ] such that p;NP = (t1, ..., tp,) for suitable h;.
Set M := Frac(P). Then m = tr.deg;, M. But P C R is an integral extension by
(10.18). So M C K is algebraic. Hence m = d. Now, Incomparability (14.3)(2)
yields h; < h;y1 for all <. Hence r < h,. But h, <m and m =d. Thus r <d.

If » = d, then r is maximal, as it was just proved that no chain can be longer.
Conversely, assume r is maximal. Then py = 0 since R is a domain. So hg = 0.
Further, p,. is maximal since p,. is contained in some maximal ideal and it is prime.
So p, N P is maximal by Maximality (14.3)(1). Hence h, = m.

Suppose there is an ¢ such that h; +1 < h;y1. Then

(PN P) G (t1,. .o sthg1) G (Piy1 N P).
Now, P/(p; N P) is, by (1.9), equal to k[tp,+1,...,tm]; the latter is a polynomial
ring, so normal by (10.29)(1). Also, the extension P/(p; N P) C R/p; is integral
as P C R is. Hence, the Going-down Theorem (14.9) yields a prime p with
pi Cp Cpg1 and pNP = (t1,...,th,11). Then p; G p & piy1, contradicting the
maximality of 7. Thus h; +1 = h;yq for all i. But hg = 0. Hence r = h,. But
h, =m and m = d. Thus r = d, as desired. O

DEFINITION (15.9). — Given a ring R, its (Krull) dimension dim(R) is defined

to be the supremum of the lengths r of all strictly ascending chains of primes:
dim(R) := sup{ 7 | there’s a chain of primes po G --- G p, in R}.

EXERCISE (15.10). — Let R be a domain of (finite) dimension r, and p a nonzero

prime. Prove that dim(R/p) < r.

EXERCISE (15.11). — Let R’/R be an integral extension of rings. Prove that

dim(R) = dim(R’).

THEOREM (15.12). — Let k be a field, R a finitely generated k-algebra. If R is a

domain, then dim(R) = tr. deg, (Frac(R)).

PROOF: The assertion is an immediate consequence of (15.8). O
COROLLARY (15.13). — Let k be a field, R a finitely generated k-algebra, and p a
prime of R. Suppose R is a domain. Then

dim(Ry) + dim(R/p) = dim(R).
If also p is mazimal, then dim(R,) = dim(R).

PROOF: A chain of primes po & --- S p & --- & pr in R gives rise to a pair of
chains of primes, one in R, and one in R/p,

Polty G- G PRy and 0=p/pG---Gpr/p,
owing to (11.18) and to (1.8) and (2.7); conversely, every such pair of chains
arises from a unique chain in R through p. But by (15.8), every strictly ascending
chain through p of maximal length is of length dim(R). The asserted equation
follows.
If also p is maximal, then clearly dim(R/p) = 0, and so dim(R,) = dim(R). O

DEFINITION (15.14). — We call a ring catenary if, given any two nested primes
q C p, there exists a chain of primes po G --- G p,- of maximal length r with po = q
and p, = p, and any two such chains have the same length r.
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THEOREM (15.15). QOver a field, a finitely generated algebra is catenary.

PRrROOF: Let R be the algebra, and q C p two nested primes. Replacing R by
R/q, we may assume R is a domain. Then the proof of (15.13) shows that any
chain of primes 0 G - - - & p of maximal length is of length dim(R) — dim(R/p). O

EXERCISE (15.16). — Let k be a field, R a finitely generated k-algebra, f € R
nonzero. Assume R is a domain. Prove that dim(R) = dim(Ry).

EXERCISE (15.17). — Let k be a field, P := k[f] the polynomial ring in one
variable f. Set p := (f) and R := P,. Find dim(R) and dim(Ry).

EXERCISE (15.18). — Let R be a ring, R[X] the polynomial ring. Prove
1+ dim(R) < dim(R[X]) < 1+ 2dim(R).
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15. Appendix: Jacobson Rings

(15.19) (Jacobson Rings). — We call a ring R Jacobson if, given any ideal a, its
radical is equal to the intersection of all maximal ideals containing it; that is,

Va = Npoa M- (15.19.1)

Plainly, the nilradical of a Jacobson ring is equal to its Jacobson radical. Also,
any quotient ring of a Jacobson ring is Jacobson too. In fact, a ring is Jacobson if
and only if the the nilradical of every quotient ring is equal to its Jacobson radical.

In general, the right-hand side of (15.19.1) contains the left. So (15.19.1) holds
if and only if every f outside /a lies outside some maximal ideal m containing a.

Recall the Scheinnullstellensatz, (3.22): it says v/a =[5, p with p prime. Thus
R is Jacobson if and only if (15.19.1) holds whenever a is prime.

For example, a field k is Jacobson. More generally, a local ring A is Jacobson
if and only if its maximal ideal is its only prime. Further, a Boolean ring B is
Jacobson, as every prime is maximal by (2.16), and so trivially (15.19.1) holds
whenever a is prime. Moreover, the polynomial ring k[X7, ..., X,] is Jacobson by
(2.21). Finally, owing to the next lemma, both Z and k[X;] are Jacobson.

LEMMA (15.20). — Let R be a 1-dimensional domain. Assume every nonzero
element lies in only finitely many mazimal ideals. Then R is Jacobson if and only
if the set {myx}rea of mazimal ideals is infinite.

ProOOF: If {m,} is finite, take a nonzero x) € my for each \. Set z := [[zx.
Then = # 0 and 2 € (Ymy. But \/(0) = (0) as R is a domain. So 1/(0) # (m,.
Thus R is not Jacobson.

If {m,} is infinite, then (Ymy = (0) by hypothesis. But every nonzero prime is
maximal as R is 1-dimensional. Thus (15.19.1) holds whenever a is prime. O

PROPOSITION (15.21). — A ring R is Jacobson if and only if, for any nonmazimal
prime p and any f ¢ p, the extension pRy is not mazimal.

PROOF: Assume R is Jacobson. Take a nonmaximal prime p and an f ¢ p. Then
f ¢ m for some maximal ideal m containing p. So pRy is not maximal by (11.18).
Conversely, let a be an ideal, f ¢ y/a. Then (R/a); # 0. So there is a maximal
ideal n in (R/a)s. Let m be its contraction in R. Then m D a and f ¢ m. Further,
(4.8) and (12.18) yield Ry/mR; = (R/a/m/a); = (R/a)s/n. Since n is maximal,
R;/mRy is a field. So m is maximal by hypothesis. Thus R is Jacobson. O

EXERCISE (15.22). Let X be a topological space. We say a subset Y is locally
closed if Y is the intersection of an open set and a closed set; equivalently, Y is
open in its closure Y'; equivalently, Y is closed in an open set containing it.
We say a subset Xy of X is very dense if Xy meets every nonempty locally
closed subset Y. We say X is Jacobson if its set of closed points is very dense.
Show that the following conditions on a subset Xy of X are equivalent:
(1) Xy is very dense.
(2) Every closed set F of X satisfies F N Xy = F.
(3) The map U — U N Xy from the open sets of X to those of Xy is bijective.
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EXERCISE (15.23). — Let R be a ring, X := Spec(R), and X, the set of closed
points of X. Show that the following conditions are equivalent:

(1) R is a Jacobson ring.

(2) X is a Jacobson space.

(3) If y € X is a point such that {y} is locally closed, then y € Xj.

THEOREM (15.24) (Generalized Hilbert Nullstellensatz). — Let R be a Jacobson
ring, R a finitely generated algebra, m' a mazimal ideal of R', and m its contraction.
Then (1) m is mazimal, and R'/m’ is algebraic over R/m, and (2) R’ is Jacobson.

ProOF: To prove (1), replace R by R/m and R’ by R'/m’. Then R is Jacobson,
R’ is a field as well as a finitely generated algebra, and R C R’. We must show R
is a field and R’/R is a finite field extension.

Write R’ = R[z1,...,%,] with z; # 0. Then R’ = R[z1,...,Zp—1][xs]. So the
tower property for finite extensions (10.22) implies it suffices to prove (1) for n = 1.

Set z := x1 and @ := Frac(R). Then Q[z] = R’ as R C Q. But R’ is a field, and
x #0;s80 1/x € Qz]. Say 1/x = qoz™ + - -+ + ¢, with ¢; € @ and go # 0. Then

ar™ ™t f a2+ o+ amr + am+1 =0 with a,a; € R and a#0.

So z is integral over R,. Further R,[x] = R’. Also R’ is a field. Hence R, is a field
by (14.1); so (0) C R, is maximal. But R is a Jacobson domain. Hence, (0) C R
is maximal by (15.21). So R is a field. So R = R,. So R[z] = R’. Thus (1) holds.
To prove (2), let p’ C R’ be prime, and p its contraction. Given a’ € R’ — p’ with
p’R!, maximal, apply (1) to R.,/R; thus p is maximal and R!,/p’R], is integral
(algebraic) over R/p. But R/, /p'R!, D R'/p’. Hence R'/p’ is integral over R/p. So
R'/p’ is a field by (14.1). So p’ is maximal. Thus (15.21) yields (2). O
EXERCISE (15.25). — Let P := Z[X;,...,X,] be the polynomial ring. Assume
f € P vanishes at every zero in K" of f1,..., f, € P for every finite field K; that
is, if (a) := (a1,...,a,) € K™ and fi(a) = 0,..., fr-(a) = 0 in K, then f(a) =0
too. Prove there are g1,...,g, € P and N > 1 such that fN = g1 f; +---+ g fr.

EXERCISE (15.26). — Let R be a ring, R’ an algebra. Prove that if R’ is integral
over R and R is Jacobson, then R’ is Jacobson.

EXERCISE (15.27). — Let R be a Jacobson ring, S a multiplicative subset, f € R.
True or false: prove or give a counterexample to each of the following statements:
(1) The localized ring Ry is Jacobson.
(2) The localized ring S~ R is Jacobson.
(3) The filtered direct limit lim R of Jacobson rings R is Jacobson.

EXERCISE (15.28). — Let R be a reduced Jacobson ring with a finite set 3 of
minimal primes, and P a finitely generated module. Show that P is locally free of
rank 7 if and only if dimp/m (P/mP) = r for any maximal ideal m.
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16. Chain Conditions

In a ring, often every ideal is finitely generated; if so, we call the ring Noe-
therian. Examples include the ring of integers and any field. We characterize
Noetherian rings as those in which every ascending chain of ideals stabilizes, or
equivalently, in which every set of ideals has one member maximal under inclusion.
‘We prove the Hilbert Basis Theorem: if a ring is Noetherian, then so is any finitely
generated algebra over it. We define and characterize Noetherian modules similarly,
and we prove that, over a Noetherian ring, a module is Noetherian if and only if
it is finitely generated. Lastly, we study Artinian rings and modules; in them, by
definition, every descending chain of ideals, respectively of submodules, stabilizes.

(16.1) (Noetherian rings). — We call a ring Noetherian if every ideal is finitely
generated.

A PID is, trivially, Noetherian. Examples include a field k, the polynomial ring
k[X] in one variable, and the ring of integers Z.

Here are two standard examples of non-Noetherian rings. A third is given below
in (16.6), and a fourth later in (18.26).

First, form the polynomial ring k[X1, X2,...] in infinitely many variables. It is
non-Noetherian as (X7, Xo,...) is not finitely generated (but the ring is a UFD).

Second, in the polynomial ring k[X, Y], form this subring R and its ideal a:

R:={f:=a+Xg|ackandgek[X,Y]} and
a:= (X, XY, XY? ...

Then a is not generated by any f1,..., fi, € a. Indeed, let n be the highest power
of Y occurring in any f;. Then XY™t ¢ (f,..., fm). Thus R is non-Noetherian.

EXERCISE (16.2). Let a be a finitely generated ideal in an arbitrary ring. Show
every set that generates a contains a finite subset that generates a.

DEFINITION (16.3). — We say the ascending chain condition (acc) is satisfied
if every ascending chain of ideals ag C a; C --- stabilizes; that is, thereisa j > 0
such that a; = a1 =---.

We say the maximal condition (maxc) is satisfied if every nonempty set of
ideals 8 contains ones mazimal for inclusion, that is, properly contained in no
other in 8.

LEMMA (16.4). — Acc is satisfied if and only if mazc is.

Proor: Let ap C a; C --- be a chain of ideals. If a; is maximal, then trivially
a; = a;j41 = ---. Thus maxc implies acc.

Conversely, given a nonempty set of ideals § with no maximal member, there’s
ap € 8; for each j > 0, there’s a; 41 € 8§ with a; ; a;+1. So the Axiom of Countable

Choice provides an infinite chain ag ; a; g -++. Thus acc implies maxc. g
PROPOSITION (16.5). — Given a ring R, the following conditions are equivalent:

(1) R is Noetherian; (2) acc is satisfied; (3) mazc is satisfied.
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PROOF: Assume (1) holds. Let ag C a; C - - be a chain of ideals. Set a := |J a,,.
Clearly, a is an ideal. So by hypothesis, a is finitely generated, say by z1,...,z,.
For each 4, there is an j; such that z; € aj,. Set j := max{j;}. Then z; € a; for all
i.SoaCa;Cajy; C---Ca. Soa; =a;4; =---. Thus (2) holds.

Assume (2) holds. Then (3) holds by (16.4).

Assume (3) holds. Let a be an ideal, ay for A € A generators, § the set of ideals
generated by finitely many ay. Let b be a maximal element of §; say b is generated
by ax,,...,ax,,. Then b C b+ (ay) for any A. So by maximality, b = b + (ay).
Hence ay € b. So b = a; whence, a is finitely generated. Thus (1) holds. O

EXAMPLE (16.6). — In the field of rational functions k(X,Y’), form this ring:
R:=k[X,Y, XY, X/Y? X/Y3 ...].

Then R is non-Noetherian by (16.5). Indeed, X does not factor into irreducibles:
X =(X/Y) Y and X/Y = (X/Y?)-Y and so on. Correspondingly, there is an
ascending chain of ideals that does not stabilize:

(X) S(X/Y) S (X/Y) G-

PROPOSITION (16.7). — Let R be a Noetherian ring, S a multiplicative subset, a
an ideal. Then R/a and STIR are Noetherian.

PROOF: If R satisfies the acc, so do R/a and S™'R by (1.8) and by (11.18)(1).
Alternatively, any ideal b/a of R/a is, clearly, generated by the images of gener-
ators of b. Similarly, any ideal b of S™!R is generated by the images of generators
of pg'b by (11.17)(1)(b). O

EXERCISE (16.8). — Let R be a ring, X a variable, R[X] the polynomial ring.
Prove this statement or find a counterexample: if R[X] is Noetherian, then so is R.

THEOREM (16.9) (Cohen). — A ring is Noetherian if every prime ideal is finitely
generated.

PROOF: Let R be a ring. Suppose there are non-finitely-generated ideals. Given
a nonempty set of them {ay} that is linearly ordered by inclusion, set a := (Jay.
If a is finitely generated, then all the generators lie in some ay, so generate ay, a
contradiction. Thus a is non-finitely-generated. Hence, by Zorn’s Lemma, there is
a maximal non-finitely-generated ideal p. In particular, p # R.

Assume every prime is finitely generated. Then there are a,b € R—p with ab € p.
So p + (a) is finitely generated, say by x1 + wia,...,z, + wya with z; € p. Then
{z1,...,2Zn,a} generate p + (a).

Set b= Ann((p+ (a))/p). Then b D (b) +p and b ¢ p. So b is finitely generated,
say by y1,...,Ym. Take z € p. Then z € p + (a), so write

z=a1x1+ -+ apr, +ya

with a;,y € R. Then ya € p. Soy € b. Hence y = biy1 + -+ - + byym with b; € R.
Thus p is generated by {z1,...,%n,ay1,...,aym}, a contradiction. Thus there are
no non-finitely-generated ideals; in other words, R is Noetherian. g

LEMMA (16.10). — If a ring R is Noetherian, then so is the polynomial ring R[X].
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PROOF: By way of contradiction, assume there is an ideal a of R[X] that is not
finitely generated. Set ag := (0). For each ¢ > 1, choose inductively f; € a — a;_1
of least degree d;, and set a; := (f1,..., fi). Let a; be the leading coefficient of f;,
and b the ideal generated by all the a;. Since R is Noetherian, b = (aq,...,ay) for
some n by (16.2). Then an4+1 = r1a1 + -+ + rpa, with r; € R.

By construction, d; < d;4+1 for all i. Set

f = fn+1 - (Tlfl)(dwr]7d1 +- 4+ Tn,andn+]7dn)'
Then deg(f) < dn+41, so f € a,. Therefore, f,11 € a,, a contradiction. d

THEOREM (16.11) (Hilbert Basis). — Let R be a Noetherian ring, R' a finitely
generated algebra. Then R’ is Noetherian.

PROOF: Say z1,...,2, generate R’ over R, and let P := R[X1,...,X,] be the
polynomial ring in r variables. Then P is Noetherian by (16.10) and induction
on r. Assigning z; to X; defines an R-algebra map P — R/, and obviously, it is
surjective. Hence R’ is Noetherian by (16.7). d

(16.12) (Noetherian modules). — We call a module M Noetherian if every sub-
module is finitely generated. In particular, a ring is Noetherian as a ring if and
only if it is Noetherian as a module, because its submodules are just the ideals.
We say the ascending chain condition (acc) is satisfied in M if every ascending
chain of submodules My C M; C --- stabilizes. We say the maximal condition
(maxc) is satisfied in M if every nonempty set of submodules contains ones maximal
under inclusion. It is simple to generalize (16.5): These conditions are equivalent:

(1) M is Noetherian; (2) acc is satisfied in M ; (3) mazc is satisfied in M.

LEMMA (16.13). — Let R be a ring, M a module. Nested submodules My C My
of M are equal if both these equations hold:

MynN=M,NN and (M, +N)/N = (M,+ N)/N.

PROOF: Given my € My, there is my € My with n := mgs — my € N. Then
n € MyN N = M; "NN. Hence mo € M;. Thus My = Ms. O

EXERCISE (16.14). — Let 0 = L = M B, N = 0 be a short exact sequence of
R-modules, and M;, M, two submodules of M. Prove or give a counterexample to
this statement: if 3(M1) = 8(Mz) and o~ (M;) = a~(M>), then M; = M.

PROPOSITION (16.15). Let R be a ring, M a module, N a submodule.
(1) Then M is finitely generated if N and M /N are finitely generated.
(2) Then M is Noetherian if and only if N and M /N are Noetherian.

PROOF: Assertion (1) is equivalent to (5.6) owing to (5.2).

To prove (2), first assume M is Noetherian. A submodule N’ of N is also a
submodule of M, so N’ is finitely generated; thus N is Noetherian. A submodule of
M/N is finitely generated as its inverse image in M is so; thus M /N is Noetherian.

Conversely, assume N and M/N are Noetherian. Let P be a submodule of M.
Then PNN and (P+ N)/N are finitely generated. But P/(PNN) = (P+N)/N
by (4.8.2). So (1) implies P is finitely generated. Thus M is Noetherian.

Here is a second proof of (2). First assume M is Noetherian. Then any ascending
chain in N is also a chain in M, so it stabilizes. And any chain in M/N is the image
of a chain in M, so it too stabilizes. Thus N and M /N are Noetherian.
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Conversely, assume N and M/N are Noetherian. Given M; C My C --- C M,
both (M3;NN) C (MoNN) C--+ and (M;+N)/N C (M2+ N)/N C --- stabilize,
say MjﬂN = ]\/[j+1 ﬂN = - and (A/[J—‘—N)/N: (Mj+1 -|—N)/N: ThCIl
Mj = Mji1 =--- by (16.13). Thus M is Noetherian. O

COROLLARY (16.16). — Modules My, ..., M, are Noetherian if and only if their
direct sum My @ --- @ M, is Noetherian.

PROOF: The sequence 0 — My — M1 & (Ma® - & M,) > Mo @®---® M, -0
is exact. So the assertion results from (16.15)(2) by induction on r. O

EXERCISE (16.17). — Let R be a ring, ay,...,a, ideals such that each R/a; is a
Noetherian ring. Prove (1) that @ R/a; is a Noetherian R-module, and (2) that,
if Na; =0, then R too is a Noetherian ring.

THEOREM (16.18). — Let R be a Noetherian ring, and M a module. Then the
following conditions on M are equivalent:

(1) M is Noetherian; (2) M is finitely generated; (3) M is finitely presented.

PROOF: Assume (2). Then there is an exact sequence 0 - K — R™ — M — 0.
Now, R™ is Noetherian by (16.16) and by (16.12). Hence K is finitely generated,
so (3) holds; further, (1) holds by (16.15)(2). Trivially, (1) or (3) implies (2). O

THEOREM (16.19) (E. Artin-Tate). — Let R C R’ C R” be rings. Assume R is
Noetherian. Assume R is module finite over R, and R" is algebra finite over R.
Then R’ is algebra finite over R.

PROOF: Say x1,..., 2Ty, generate R” as an R-algebra, and yy, ..., ¥y, generate R”
as an R’-module. Then there exist z;; € R’ and z;;, € R’ with
Xr; = Zzijy]- and YiY; = Z ZijkYk- (1619.1)

Let R, be the R-algebra generated by the z;; and the z;j;. Since R is Noetherian,
so is R}, by the Hilbert Basis Theorem, (16.11).

Any z € R” is a polynomial in the z; with coefficients in R. Therefore, (16.19.1)
implies that  is a linear combination of the y; with coefficients in Rj. But Ry is a
Noetherian ring, and R’ is an R{-submodule of R”. Hence R’ is module finite over
R{, by (16.15). Since Ry, is algebra finite over R, it follows that R’ is too. O

EXERCISE (16.20). — Let G be a finite group acting on a domain R, and R’ the
subring of invariants. Let £ C R’ be a field. Using (10.17), prove this celebrated
theorem of E. Noether (1926): if R is algebra finite over k, then so is R'.

EXAMPLE (16.21). — Set § := /=5, set R := Z[], and set p := (2,1 +J). Let’s
prove that p is finitely presented and that pR, is free of rank 1 over R, for every
maximal ideal q of R, but that p is not free. Thus the equivalent conditions of
(13.27) do not imply that P is free.

Since Z is Noetherian and since R is generated over Z, the Hilbert Basis Theorem
(16.11) yields that R is Noetherian. So since p is generated by two elements,
(16.18) yields that p is finitely presented.

Recall from [1, pp.417,421,425] that p is maximal in R, but not principal. Now,
3 ¢ p; otherwise, 1 € pas 2 € p, but p # R. So (1 —9)/3 € R,. Hence (1+0)R,
contains (146)(1—0)/3, or 2. So (1+ )R, = pR,. Since Ry is a domain, the map
p14s: Ry — pR, is injective, so bijective. Thus pR,, is free of rank 1.
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Let q be a maximal ideal distinct from p. Then p N (R — q) # 0; so, pRq = Ry
by (11.12)(2). Thus pRy is free of rank 1.

Finally, suppose p ~ R". Set S := R — 0. Then S™!R is the fraction field, K
say, of R. So S~!p ~ K™. But the inclusion p < R yields an injection S™1p — K.
Hence S™'p == K, since S™'p is a nonzero K-vector space. Therefore, n = 1. So
p ~ R. Hence p is generated by one element. But p is not principal. So there is a
contradiction. Thus p is not free.

DEFINITION (16.22). — We say a module M is Artinian or the descending
chain condition (dcc) is satisfied in M if every descending chain of submodules
stabilizes.

We say the ring itself is Artinian if it is an Artinian module.

We say the minimal condition (minc) is satisfied in M if every nonempty set
of submodules has a minimal member.

PROPOSITION (16.23). Let My,..., M., M be modules, N a submodule of M.
(1) Then M is Artinian if and only if minc is satisfied in M.
(2) Then M is Artinian if and only if N and M/N are Artinian.
(3) Then M, ..., M, are Artinian if and only if My & --- & M, is Artinian.

PROOF: It is easy to adapt the proof of (16.4), the second proof of (16.15)(2),
and the proof of (16.16). O

EXERCISE (16.24). — Let k be a field, R an algebra. Assume that R is finite
dimensional as a k-vector space. Prove that R is Noetherian and Artinian.

EXERCISE (16.25). — Let p be a prime number, and set M := Z[1/p]/Z C Q/Z.
Prove that any Z-submodule N C M is either finite or all of M. Deduce that M is
an Artinian Z-module, and that it is not Noetherian.

EXERCISE (16.26). — Let R be an Artinian ring. Prove that R is a field if it is a
domain. Deduce that, in general, every prime ideal p of R is maximal.
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17. Associated Primes

Given a module, a prime is associated to it if the prime is equal to the annihilator
of an element. Given a subset of the set of all associated primes, we prove there
is a submodule whose own associated primes constitute that subset. If the ring is
Noetherian, then the set of annihilators of elements has maximal members; we prove
the latter are prime, so associated. Then the union of all the associated primes is
the set of zerodivisors on the module. If also the module is finitely generated, then
the intersection is the set of nilpotents. Lastly, we prove there is then a finite chain
of submodules whose successive quotients are cyclic with prime annihilators; these
primes include all associated primes, which are, therefore, finite in number.

DEFINITION (17.1). — Let R be a ring, M a module. A prime ideal p is said to
be associated to M if there is a (nonzero) m € M with p = Ann(m). The set of
associated primes is denoted by Ass(M) or Assg(M).

The primes that are minimal in Ass(M) are called the minimal primes of M;
the others, the embedded primes.

Warning: following a old custom, we mean by the associated primes of an
ideal a not those of a viewed as an abstract module, but rather those of R/a.

LEMMA (17.2). — Let R be a ring, M a module, and p a prime ideal. Then
p € Ass(M) if and only if there is an R-injection R/p < M.

PROOF: Assume p = Ann(m) with m € M. Define a map R — M by = — zm.
This map induces an R-injection R/p < M.

Conversely, suppose there is an R-injection R/p < M, and let m € M be the
image of 1. Then p = Ann(m), so p € Ass(M). O

PROPOSITION (17.3). — Let M be a module. Then Ass(M) C Supp(M).

PROOF: Let p € Assg(M). Say p = Ann(m). Then m/1 € M, is nonzero as no
x € (R—p) satisfies zm = 0. Alternatively, (17.2) yields an R-injection R/p < M.
It induces an injection (R/p), — M, by (12.16). But (R/p), = Frac(R/p) by
(12.19). Thus M, # 0 and so p € Supp(M). O

LEMMA (17.4). Let R be a ring, p a prime ideal, m € R/p a nonzero element.
Then (1) Ann(m) = p and (2) Ass(R/p) = {p}.

PrOOF: To prove (1), say m is the residue of y € R. Let € R. Then xm = 0 if
and only if zy € p, so if and only if 2 € p, as p is prime and m # 0. Thus (1) holds.
Trivially, (1) implies (2). O

PROPOSITION (17.5). — Let M be a module, N a submodule. Then
Ass(N) C Ass(M) C Ass(N) U Ass(M/N).

ProOOF: Take m € N. Then the annihilator of m is the same whether m is
regarded as an element of N or of M. So Ass(N) C Ass(M).

Let p € Ass(M). Then (17.2) yields an R-injection R/p < M. Denote its image
by E. If ENN = 0, then the composition R/p — M — M/N is injective; hence,
p € Ass(M/N) by (17.2). Else, take a nonzero m € EN N. Then Ann(m) = p by
(17.4)(1). Thus p € Ass(N). O
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EXERCISE (17.6). Given modules My, ..., M,, set M := M1 & ---& M,. Prove
Ass(M) = Ass(M;y) U --- U Ass(M,).

EXERCISE (17.7). — Take R := Z and M := Z/(2) ® Z. Find Ass(M) and find
two submodules L, N C M with L+ N = M but Ass(L) U Ass(N) & Ass(M).

PROPOSITION (17.8). — Let M be a module, and ¥ a subset of Ass(M). Then
there is a submodule N of M with Ass(M/N) =V and Ass(N) = Ass(M) — 0.

PROOF: Given submodules Ny of M totally ordered by inclusion, set N := [ J Ny.
Given p € Ass(N), say p = Ann(m). Then m € Ny for some A; so p € Ass(Ny).
Conversely, Ass(Ny) C Ass(N) by (17.5). Thus Ass(N) = |J Ass(Ny).

So we may apply Zorn’s Lemma to obtain a submodule NV of M that is maximal
with Ass(N) C Ass(M) — ¥. By (17.5), it suffices to show that Ass(M/N) C W.

Take p € Ass(M/N). Then M/N has a submodule N’/N isomorphic to R/p by
(17.2). So Ass(N') C Ass(N) U {p} by (17.5) and (17.4)(2). Now, N’ 2 N and
N is maximal with Ass(N) C Ass(M) — W. Hence p € Ass(N’) C Ass(M), but
p & Ass(M) — ¥. Thus p € . O

PROPOSITION (17.9). — Let R be a ring, S a multiplicative subset, M a module,
and p a prime ideal. If pNS =0 and p € Ass(M), then S™'p € Ass(S™LM); the
converse holds if p is finitely generated.

PROOF: Assume p € Ass(M). Then (17.2) yields an injection R/p < M. It
induces an injection S~1(R/p) — S~IM by (12.16). But S~} (R/p) = S~1R/S~p
by (12.18). Assume pN S = @ also. Then pS™R is prime by (11.17)(3)(b). But
pSTIR = S71p by (12.2). Thus S~'p € Ass(S~1M).

Conversely, assume S~1p € Ass(S~'M). Then there are m € M and ¢ € S with
S~lp = Ann(m/t). Say p = (w1,...,2,). Fix i. Then z;m/t = 0. So there is
s; € S with s;z;m = 0. Set s :=][s;. Then z; € Ann(sm). Thus p C Ann(sm).

Take b € Ann(sm). Then bsm/st =0. Sob/1 € S~p. Sob € p by (11.17)(1)(a)
and (11.17)(3)(a). Thus p D Ann(sm). So p = Ann(sm). Thus p € Ass(M).

Finally, pN .S = by (11.18)(2), as S~!p is prime. O

EXERCISE (17.10). — Let R be a ring, and suppose R, is a domain for every
prime p. Prove every associated prime of R is minimal.

LEMMA (17.11). — Let R be a ring, M a module, and a an ideal. Suppose a is
mazimal in the set of annihilators of nonzero elements m of M. Then a € Ass(M).

PROOF: Say a:= Ann(m) with m # 0. Then 1 ¢ a as m # 0. Now, take b,c € R
with be € a, but ¢ ¢ a. Then bem = 0, but em # 0. Plainly, a C Ann(cm). So
a = Ann(em) by maximality. But b € Ann(cm), so b € a. Thus a is prime. O

PROPOSITION (17.12). — Let R be a Noetherian ring, M a module. Then M =0
if and only if Ass(M) = 0.

PROOF: Obviously, if M = 0, then Ass(M) = (. Conversely, suppose M # 0.
Let 8§ be the set of annihilators of nonzero elements of M. Then § has a maximal
element a by (16.5). By (17.11), a € Ass(M). Thus Ass(M) # 0. O

DEFINITION (17.13). — Let R be a ring, M a module, x € R. We say z is a
zerodivisor on M if there is a nonzero m € M with xm = 0; otherwise, we say «
is a nonzerodivisor. We denote the set of zerodivisors by z.div(M).
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PROPOSITION (17.14). — Let R be a Noetherian ring, M a module. Then
2.div(M) = Upeass(ar) P-

PRrROOF: Given z € z.div(M), say xm = 0 where m € M and m # 0. Then
x € Ann(m). But Ann(m) is contained in an ideal p that is maximal among
annihilators of nonzero elements because of (16.5); hence, p € Ass(M) by (17.11).
Thus z.div(M) C |Jp. The opposite inclusion results from the definitions. d

EXERCISE (17.15). — Let R be a Noetherian ring, M a module, N a submodule,
z € R. Show that, if x ¢ p for any p € Ass(M/N), then zM NN = zN.

LEMMA (17.16). — Let R be a Noetherian ring, M a module. Then
Supp(M) = Ugeass(an V(@) D Ass(M).

PROOF: Let p be a prime. Then R, is Noetherian by (16.7) as R is. So M, # 0
if and only if Assg, (M) # 0 by (17.12). But R is Noetherian; so Assg, (M,) # 0
if and only if there is q € Ass(M) with qN(R—p) =0, or q C p, owing to (11.18)(2)
and (17.9). Thus p € Supp(M) if and only if p € V(q) for some q € Ass(M). O
THEOREM (17.17). — Let R be a Noetherian ring, M a module, p € Supp(M).
Then p contains some q € Ass(M); if p is minimal in Supp(M), then p € Ass(M).

PROOF: By (17.16), q exists. Also, q € Supp(M); so ¢ =p if p is minimal. O

THEOREM (17.18). — Let R be a Noetherian ring, and M a finitely generated
module. Then

nil(M) = Nyeass(ar) P
PRrOOF: Since M is finitely generated, nil(M) = (\,cgupp(ar) P by (18.11). Since
R is Noetherian, given p € Supp(M), there is q € Ass(M) with q C p by (17.16).
The assertion follows. O

LEMMA (17.19). Let R be a Noetherian ring, M a finitely generated module.
Then there ezists a chain of submodules
0=MyCMiC---Mp_1CM,=M
with M;/M;_1 ~ R/p; for some prime p; fori=1,...,n. For any such chain,
Ass(M) C {p1,...,pn} C Supp(M). (17.19.1)
PrOOF: Among all submodules of M having such a chain, there is a maximal
submodule N by (16.18) and (16.12). Suppose M /N # 0. Then by (17.12), the
quotient M/N contains a submodule N’/N isomorphic to R/p for some prime p.
Then N g N’, contradicting maximality. Hence N = M. Thus a chain exists.
The first inclusion of (17.19.1) follows by induction from (17.5) and (17.4)(2).

Now, p; € Supp(R/p;) owing to (12.19). Thus (17.19.1) follows from (13.9)(1).
g

THEOREM (17.20). — Let R be a Noetherian ring, and M a finitely generated
module. Then the set Ass(M) is finite.

PRrROOF: The assertion follows directly from (17.19). O

EXERCISE (17.21). — Let R be a Noetherian ring, a an ideal. Prove the primes
minimal containing a are associated to a. Prove such primes are finite in number.
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EXERCISE (17.22). — Take R := Z and M := Z in (17.19). Determine when a
chain 0 C M1 G M is acceptable, and show that then py ¢ Ass(M).

EXERCISE (17.23). — Take R :=Z and M := Z/(12) in (17.19). Find all three
acceptable chains, and show that, in each case, {p;} = Ass(M).

PROPOSITION (17.24). — Let R be a Noetherian ring, and M and N finitely
generated modules. Then
Ass(Hom(M, N)) = Supp(M) () Ass(V).

ProoF: Take p € Ass(Hom(M, N)) Then (17.2) yields an injective R-map
R/p — Hom(M,N). Set k(p) := Frac(R/p). Then k(p) = R,/pR, by (12.19).
Now, M is finitely presented by (16.18) as R is Noetherian; hence,

Hom(M, N), = Hompg, (M, Ny) (17.24.1)
by (12.21)(2). Therefore, by exactness, localizing yields an injection
@: k(p) — Hompg, (M, Ny).
Hence M, # 0; so p € Supp(M). For any m € M, with ¢(1)(m) # 0, the map
k(p) — N, given by x +— ¢(z)(m) is nonzero, so an injection. Hence by (17.2), we
have pR, € Ass(N,). Therefore, also p € Ass(N) by (17.9).

Conversely, take p € Supp(M) N Ass(N). Then M, # 0. So by Nakayama’s
Lemma, M,/pM, is a nonzero vector space over k(p). Take any nonzero R-map
M, /pM, — k(p), precede it by the canonical map M, — M, /pM,, and follow it by
an R-injection k(p) < N, which exists by (17.2) and (17.9). We obtain a nonzero
element of Homp, (M, N,), annihilated by pR,. But pR, is maximal, so is the
entire annihilator. So pR, € Ass(Hompg, (M, Ny)). Hence p € Ass(Hom(M, N))
by (17.24.1) and (17.9). O

PROPOSITION (17.25). — Let R be a Noetherian ring, p a prime, M a finitely
generated module, and x,y € p nonzerodivisors on M. Then p € Ass(M/zM) if
and only if p € Ass(M/yM).

PROOF: Form the sequence 0 — K — M/zM %5 M/xM with K := Ker(u,).
Apply the functor Hom(R/p, e) to that sequence, and get this one:

0 — Hom(R/p, K) — Hom(R/p, M/xM) X% Hom(R/p, M/xM).
It is exact by (5.17). But y € p; so the right-hand map vanishes. Thus
Hom(R/p, K) = Hom(R/p, M /xM).
Form the following commutative diagram with exact rows:
0— M5 M — M/zM — 0

||

0— M M — M/zM — 0

The Snake Lemma, (5.12) yields an exact sequence 0 — K — M/yM 2% M /yM.
Hence, similarly, Hom(R/p, K) = Hom(R/p, M/yM). Therefore,

Hom(R/p, M/yM) = Hom(R/p, M/xM). (17.25.1)

Finally, p € Supp(R/p) by (13.9)(3). Hence (17.24) yields the assertion. O
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Primary decomposition of a submodule generalizes factorization of an integer
into powers of primes. A submodule is called primary if the quotient module
has only one associated prime. We characterize these submodules in various ways
over a Noetherian ring, emphasizing the case of ideals. A primary decomposition
is a representation of a submodule as a finite intersection of primary submodules.
The decomposition is called irredundant, or minimal, if cannot be reduced. We
consider several illustrative examples in a polynomial ring.

Then we prove existence and uniqueness theorems for a proper submodule of a
finitely generated module over a Noetherian ring. The celebrated Lasker—Noether
Theorem asserts the existence of an irredundant primary decomposition. The First
Uniqueness Theorem asserts the uniqueness of the primes that arise; they are just
the associated primes of the quotient. The Second Uniqueness Theorem asserts
the uniqueness of the primary components whose primes are minimal among these
associated primes; the other primary components may vary.

DEFINITION (18.1). — Let R be aring, M a module, @) a submodule. If Ass(M/Q)
consists of a single prime p, we say @ is primary or p-primary in M.

EXAMPLE (18.2). — A prime p is p-primary, as Ass(R/p) = {p} by (17.4)(2).

PROPOSITION (18.3). — Let R be a Noetherian ring, M a finitely generated mod-
ule, Q a submodule. If Q is p-primary, then p = nil(M/Q).

PrOOF: The assertion holds as nil(M/Q) = ;e ass(ar/q) 9 by (17.18). O

THEOREM (18.4). — Let R be a Noetherian ring, M a nonzero finitely generated
module, Q a submodule. Set p := nil(M/Q). Then these conditions are equivalent:
(1) p is prime and Q is p-primary. (2) p =2zdiv(M/Q).
(3) Given z € R and m € M with xm € Q but m ¢ Q, necessarily x € p.

PRrOOF: Recall p = (N cass(nr/q) 4 by (17.18), and z.div(M/Q) = Ugeass(ar/q) 9
by (17.14). Thus p C z.div(M/Q).

Further, (2) holds if Ass(M/Q) = {p}, that is, if (1) holds.

Conversely, if z € q € Ass(M/Q), but z ¢ q' € Ass(M/Q), then = ¢ p, but
z € z.div(M/Q); hence, (2) implies (1). Thus (1) and (2) are equivalent.

Clearly, (3) means every zerodivisor on M /@ is nilpotent, or p D z.div(M/Q).
But the opposite inclusion always holds. Thus (2) and (3) are equivalent. O

COROLLARY (18.5). — Let R be a Noetherian ring, and q a proper ideal. Set
p :=./q. Then q is primary (in R) if and only if, given x,y € R with xy € q but
x & q, necessarily y € p; if so, then p is prime and q is p-primary.

PRrROOF: Clearly g = Ann(R/q). Sop = nil(R/q). So the assertions result directly
from (18.4) and (18.3). O

EXERCISE (18.6). — Let R be a ring, and p = (p) a principal prime generated by
a nonzerodivisor p. Show every positive power p” is p-primary. Show conversely, if
R is Noetherian, then every p-primary ideal q is equal to some power p™.
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EXERCISE (18.7). Let k be a field, and k[X,Y] the polynomial ring. Let a be
the ideal (X2, XY). Show a is not primary, but 1/a is prime. Show a satisfies this
condition: ab € a implies a® € a or b € a.

EXERCISE (18.8). — Let ¢: R — R’ be a homomorphism of Noetherian rings, and
q C R’ a p-primary ideal. Show that ¢~ 'q C R is ¢~ !p-primary. Show that the
converse holds if ¢ is surjective.

PROPOSITION (18.9). — Let R be a Noetherian ring, M a finitely generated mod-
ule, @ a submodule. Set p :=nil(M/Q). If p is mazimal, then Q is p-primary.

PROOF: Since p = ﬂquss(M/Q) q by (17.18), if p is maximal, then p = q for
any q € Ass(M/Q), or {p} = Ass(M/Q), as desired. O
COROLLARY (18.10). Let R be a Noetherian ring, q an ideal. Set p := \/q. If
p is mazximal, then q is p-primary.

PROOF: Since p = nil(R/q), the assertion is a special case of (18.9). O
COROLLARY (18.11). — Let R be a Noetherian ring, m a mazimal ideal. An ideal

q is m-primary if and only if there exists n > 1 such that m™ C q C m.

PROOF: The condition m”™ C q C m just means that m := ,/q by (8.26). So the
assertion results from (18.5) and (18.10). |

LEMMA (18.12). — Let R be a Noetherian ring, p a prime ideal, M a module. Let
Q1 and Q2 be p-primary submodules; set Q := Q1 N Q2. Then Q is p-primary.

PRrOOF: Form the canonical map M — M/Q1 ® M/Q2. Its kernel is @, so it
induces an injection M/Q — M/Q1 & M/Q2. Hence (17.12) and (17.5) yield
0 # Ass(M/Q) C Ass(M/Q1) U Ass(M/Q2).
Since the latter two sets are each equal to {p}, so is Ass(M/Q), as desired. O
(18.13) (Primary decomposition). — Let R be a ring, M a module, and N a
submodule. A primary decomposition of N is a decomposition
N=Q@N---NQ, with the Q; primary.

We call the decomposition irredundant or minimal if these conditions are satis-
fied:

(1) N # ﬂ#i Q;, or equivalently, ﬂ#i Q¢ Qifori=1,...r

(2) Say Q; is p;-primary for i = 1,...,r. Then py,...,p, are distinct.
If R is Noetherian, then owing to (18.12), any primary decomposition can be made

irredundant by intersecting all the primary submodules with the same prime and
then discarding those of them that are not needed.

EXAMPLE (18.14). — Let k be a field, R := k[X,Y] the polynomial ring, and
a:= (X2, XY). Below, it is proved that, for any n > 1,

a=(X)N(X3 XY, Y") = (X)N(X%Y). (18.14.1)
Here (X2, XY, Y™) and (X2,Y) contain (X, Y)", so are (X, Y )-primary by (18.11).
Thus (18.14.1) shows infinitely many distinct primary decompositions of a. They

are clearly irredundant. Note: the (X,Y)-primary component is not unique!
Plainly, a € (X) and a C(X2%, XY, Y") C (X2,Y). Tosee a D (X) N (X2 Y),
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take F € (X) N (X2 Y). Then F = GX = AX? + BY where A, B,G € R. Then
X(G— AX)=BY. So X | B. Say B = B'X. Then F = AX? + B'XY € a.

EXAMPLE (18.15). — Let k be a field, P := k[X,Y, Z] the polynomial ring. Set
R := P/{(XZ —Y?). Let x,y,z be the residues of X,Y,Z in R. Set p := (x,7).
Clearly p2 = (22, zy,y?) = x{w,y,z). Let’s show that p? = (z) N (z2,y,2) is an
irredundant primary decomposition.
First note the inclusions z(z,y,2) C (x) N (z,y,2)? C (x) N (2%, y, 2).
Conversely, given f € (z) N (x2,y, z), represent f by GX with G € P. Then

GX =AX?+BY +CZ+D(XZ~-Y?) with A B,C,DcP.

So (G — AX)X = B'Y + C'Z with B',C" € P. Say G — AX = A" + B'Y + C"Z
with A” € k[X] and B"”,C"” € P. Then

A"X =-B"XY -C"XZ+BY+C'Z=(B -B'X)Y +(C' - C"X)Z;

whence, A" = 0. Therefore, GX € X(X,Y,Z). Thus p? =(x) N (22, y, 2).

The ideal (x) is (z,y)-primary in R by (18.8). Indeed, the preimage in P of
(x) is (X, Y?2) and of (z,y) is (X, Y). Further, (X, Y2) is (X, Y)-primary, as
under the map ¢: P — k[Y, Z] with ¢(X) = 0, clearly (X, Y?2) = ¢~Y?) and
(X, Y) = ¢~ HY); moreover, (Y?) is (Y)-primary by (18.5), or by (18.6).

Finally (z,y,2)2 C (22,y,2) C (x,y,2) and {(z,y, z) is maximal. So (z%,y,2) is
(x,y, z)-primary by (18.11).

Thus p? = (x) N (2%, y, 2) is a primary decomposition. It is clearly irredundant.

EXERCISE (18.16). — Let k be a field, R := k[X,Y, Z] be the polynomial ring.
Set a:= (XY, X —YZ), set q; := (X, Z) and set q3 := (Y2, X — Y Z). Show that
a = g1 N g2 and that this expression is an irredundant primary decomposition.

EXERCISE (18.17). — Let R := R’ x R" be a product of two domains. Find an
irredundant primary decomposition of (0).

LEMMA (18.18). — Let R be a ring, M a module, N = Q1N ---NQ, a primary
decomposition in M. Say Q; is p;-primary fori=1,...,r. Then

Ass(M/N) C {p1,....p.}. (18.18.1)

If equality holds and if p1,...,p, are distinct, then the decomposition is irredundant;
the converse holds if R is Noetherian.

PROOF: Since N = () Q;, the canonical map is injective: M/N — @ M/Q;. So
(17.5) and (17.6) yield Ass(M/N) C | JAss(M/Q;). Thus (18.18.1) holds.

IfN=Q2N---NQy, then Ass(M/N) C {pa,...,p,} too. Thus if equality holds
in (18.18.1) and if py,...,p, are distinct, then N = Q1 N---N Q, is irredundant.

Conversely, assume N = Q1 N---NQ), is irredundant. Given i, set P; := ﬂ#i Q.
Then P, N Q; = N and P;/N # 0. Consider these two canonical injections:

P,/N < M/Q; and P;/N < M/N.

Assume R is Noetherian. Then Ass(P;/N) # (0 by (17.12). So the first injection
yields Ass(P;/N) = {p;} by (17.5); then the second yields p; € Ass(M/N). Thus
Ass(M/N) 2 {p1,...,pr}, and (18.18.1) yields equality, as desired. O
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THEOREM (18.19) (First Uniqueness). Let R be a Noetherian ring, and M a
module. Let N = Q1 N---NQ, be an irredundant primary decomposition in M ; say
Q; is pi-primary fori=1,...,r. Then p1,...,p, are uniquely determined; in fact,
they are just the distinct associated primes of M/N.

PRrROOF: The assertion is just part of (18.18). O

THEOREM (18.20) (Lasker—Noether). — Over a Noetherian ring, each proper sub-
module of a finitely generated module has an irredundant primary decomposition.

PROOF: Let M be the module, N the submodule. By (17.20), M/N has finitely
many distinct associated primes, say p1,...,p,. Owing to (17.8), for each i, there
is a p;-primary submodule Q; of M with Ass(Q;/N) = Ass(M/N) — {p;}. Set
P :=(Q;. Fixi. Then P/N C Q;/N. So Ass(P/N) C Ass(Q;/N) by (17.5). But
i is arbitrary. Hence Ass(P/N) = (. Therefore, P/N = 0 by (17.12). Finally, the
decomposition N = Q; is irredundant by (18.18). O

EXERCISE (18.21). — Let R be a Noetherian ring, a an ideal, and M a finitely
generated module. Consider the following submodule of M:

La(M) :=U,>1{m € M | a"m = 0 for some n > 1}.

(1) For any decomposition 0 = () Q; with Q; p;-primary, show I'q(M) = ﬂagzm Q;-
(2) Show I'q(M) is the set of all m € M such that m/1 € M, vanishes for every
prime p with a ¢ p. (Thus I'q(M) is the set of all m whose support lies in V(a).)

LEMMA (18.22). — Let R be a Noetherian ring, S a multiplicative subset, p a
prime ideal, M a module, and Q a p-primary submodule. If SNp # 0, then
S71Q = S7'M and Q%5 = M. If SNy = 0, then S~1Q is S~ p-primary and
Q% =5 (57'Q)=Q.

PRrOOF: Every prime of S™!R is of the form S~!q where q is a prime of R with
SNg=0by (11.18)(2) and (12.2). And S~1q € Ass(S~(M/Q)) if and only if
q € Ass(M/Q), that is, g = p, by (17.9).

However, S~Y(M/Q) = S™*M/S~1Q by (12.16). Therefore, if SNp # 0, then
Ass(STIM/S71Q) = 0; whence, (17.12) yields S~'M/S71Q = 0. Otherwise, if
SNp=0, then Ass(S~'M/S~1Q) = {S~p}; whence, S~1Q is S~!p-primary.

Finally, Q° = gagl(S*lQ) by (12.15)(3). So if S7'Q = S~'M, then Q% = M.
Now, suppose S Np = (). Given m € Q°, there is s € S with sm € Q. But s ¢ p.
Further, p = z.div(M/Q) owing to (17.14). Therefore, m € Q. Thus Q° C Q.
But Q> Qas1¢€S. Thus Q% = Q. a

PROPOSITION (18.23). — Let R be a Noetherian ring, S a multiplicative subset,
M a finitely generated module. Let N = Q1 N---NQ, C M be an irredundant
primary decomposition. Say Q; is p;-primary for all i, and S Ny, = O just for
1 < h. Then

SilN2571Q1ﬂ'~'ﬁ571Qh Cc S 'M and NS = QiN---NQrCc M
are 1rredundant primary decompositions.

PRrROOF: By (12.15)(4)(b), S~I!N = S71Q;N---NS~1Q,. Further, by (18.22),
S71Q; is S~ 'p;-primary for i < h, and S7'Q; = S™'M for i > h. Therefore,
STIN =S871Q,n---NS~'Qy, is a primary decomposition.

It is irredundant by (18.18). Indeed, Ass(S~1M/S™IN) = {S~!py,..., S tpp}
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by an argument like that in the first part of (18.22). Further, S~!py,..., S p,
are distinct by (11.18)(2) as the p; are distinct.

Apply pg' to STIN = S71Q1 N --- N S7'Q,. Owing to (12.15)(3), we get
N%=Qf{n---NQ7. But Q7 = Q; by (18.22). So N¥ = Q1N---NQy is a primary
decomposition. It is irredundant as, clearly, (18.13)(1) and (2) hold for it, since
they hold for N =@y N---NQ,. (]

THEOREM (18.24) (Second Uniqueness). — Let R be a ring, M a module, N a
submodule. Assume R is Noetherian and M is finitely generated. Letp be a minimal
prime of M/N. Then, in any irredundant primary decomposition of N in M, the
p-primary component Q is uniquely determined; in fact, @ = NS where S := R—p.

ProOF: In (18.23), take S := R —p. Then h =1 as p is minimal. d

EXERCISE (18.25). — Let R be a Noetherian ring, M a finitely generated module,
N a submodule. Prove N = (\,cas(a1/n) op (V).

EXERCISE (18.26). — Let R be a Noetherian ring, p a prime. Its nth symbolic
power p(™ is defined as the saturation (p™)° where S := R — p.

(1) Show p(™ is the p-primary component of p™.

(2) Show p(™+7) is the p-primary component of p(™p(™),

(3) Show p(™ = p™ if and only if p” is p-primary.

(4) Given a p-primary ideal g, show q D p(™ for all large n.
EXERCISE (18.27). — Let R be a Noetherian ring, (0) = q;N- - :Nq,, an irredundant
primary decomposition. Set p; := ,/q; for i =1,...,n.

(1) Suppose p; is minimal for some i. Show ¢; = pl(.r) for all large 7.

(2) Suppose p; is not minimal for some i. Show that replacing q; by plm for large
r gives infinitely many distinct irredundant primary decompositions of (0).
THEOREM (18.28) (Krull Intersection). — Let R be a Noetherian ring, a an ideal,
and M a finitely generated module. Set N :=(),~oa" M. Then there exists x € a
such that (1 4+ x)N = 0. N

PROOF: By (16.18), N is finitely generated. So the desired x € a exists by
(10.3) provided N = aN. Clearly N D aN. To prove N C alN, use (18.20): take a
primary decomposition aN = [ Q; with Q; p;-primary. Fix 4. If there’s a € a —p;,
then aN C @Q;, and so (18.4) yields N C Q;. If a C p;, then there’s n; with
a™M C @Q; by (18.3) and (3.25), and so again N C Q;. Thus N C (\Q; = aN,
as desired. O

EXERCISE (18.29). — Let R be a Noetherian ring, m C rad(R) an ideal, M a

finitely generated module, and M’ a submodule. Considering M/M’, show that
M =,5o(m"M + M').

EXAMPLE (18.30) (Another non-Noetherian ring). — Let R denote the ring of

C functions on the real line, m the ideal of all f € R that vanish at the origin.

Note that m is maximal, as f — f(0) defines an isomorphism R/m —= R.
Let f € R and n > 1. Then, Taylor’s Theorem yields

F@) = FO) + f(O)z + -+ L0 gnt 4 gn f, ()

where  f,(z) := fol (l(;’i);L):lf("')(a:t) dt.
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Here f,, is C* too, since we can differentiate under the integral sign by [5, (7.1),
p.276]. So, if f € m, then f(x) = zf1(z). Thus m C (z). But, obviously, m D (x).
Hence m = (z). Therefore, m”™ = (z™).

If the first n — 1 derivatives of f vanish at 0, then Taylor’s Theorem yields
f € (z"™). Conversely, assume f(z) = 2"g(z) for some g € R. By Leibniz’s Rule,

) (z) = Z?:o (1;) #wanffrlg(kﬁ) (2).

Hence f*) vanishes at 0 if n > k. Thus (") consists of the f € R whose first n — 1
derivatives vanish at 0. But (z") = m”. Thus (., m" consists of those f € R all
of whose derivatives vanish at 0. a

There is a well-known nonzero C'*°-function all of whose derivatives vanish at 0:

h(x) == {el/mz ?f =70,
0 if x =0;
see [5, Ex.7, p.82]. Thus (,>,m" # 0.

Given g € m, let’s show (1 + ¢)h # 0. Since g(0) = 0 and g is continuous, there
is § > 0 such that |g(z)| < 1/2 if |z| < 6. Hence 1+ g(z) > 1/2 if |z| < §. Hence
(1+g(x))h(z) > (1/2)h(z) > 0if 0 < |z| < §. Thus (1+ g)((Ym™) # 0. Thus the
Krull Intersection Theorem (18.28) fails for R, and so R is non-Noetherian.
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The length of a module is a generalization of the dimension of a vector space.
The length is the number of links in a composition series, which is a finite chain
of submodules whose successive quotients are simple—that is, their only proper
submodules are zero. Our main result is the Jordan—Ho6lder Theorem: any two
composition series do have the same length and even the same successive quotients;
further, their annihilators are just the primes in the support of the module, and the
module is equal to the product of its localizations at these primes. Consequently,
the length is finite if and only if the module is both Artinian and Noetherian. We
also prove Akizuki’s Theorem: a ring is Artinian if and only if it is Noetherian and
every prime is maximal. Consequently, a ring is Artinian if and only if its length is
finite; if so, then it is the product of Artinian local rings.

(19.1) (Length). — Let R be a ring, and M a module. We call M simple if it is
nonzero and its only proper submodule is 0. We call a chain of submodules,

M=My>MD>---D>DM,, =0 (19.1.1)

a composition series of length m if each successive quotient M;_1/M; is simple.
Finally, we define the length ¢(M) to be the infimum of all those lengths:

0(M) := inf{m | M has a composition series of length m }. (19.1.2)
By convention, if M has no composition series, then ¢(M) := oo; further, £(0) := 0.
For example, if R is a field, then M is a vector space and ¢(M) = dimpg(M).

Further, the chains in (17.23) are composition series, but those in (17.22) are
not.

EXERCISE (19.2). — Let R be a ring, M a module. Prove these statements:

(1) If M is simple, then any nonzero element m € M generates M.

(2) M is simple if and only if M ~ R/m for some maximal ideal m, and if so,
then m = Ann(M).

(3) If M has finite length, then M is finitely generated.

THEOREM (19.3) (Jordan-Holder). — Let R be a ring, and M a module with a
composition series (19.1.1). Then any chain of submodules can be refined to a
composition series, and every composition series is of the same length ¢(M). Also,

Supp(M) = {m € Spec(R) | m = Ann(M;_1/M;) for some i };
the m € Supp(M) are mazimal; there is a canonical isomorphism
M == HmESupp(M) Mm;
and 0(My) is equal to the number of i with m = Ann(M;_1/M;).

ProoF: First, let M’ be a proper submodule of M. Let’s show that
(M) < U(M). (19.3.1)
To do so, set M/ := M; " M’. Then M/_; N M,; = M/. So
M]_,/M] = (M]_, + M;)/M; C M;_1/M;.
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Since M;_1/M; is simple, either M/_; /M! =0, or M]_, /M = M;_1/M; and so
M., + M; = M;_1. (19.3.2)

If (19.3.2) holds and if M; C M’, then M;_1 C M'. Hence, if (19.3.2) holds for
all 4, then M C M’, a contradiction. Therefore, there is an ¢ with M/ _,/M] = 0.
Now, M = M} > --- D M), = 0. Omit M/ if M/ _,/M] = 0. Thus M’ has a
composition series of length strictly less than m. Therefore, £(M') < m for any
choice of (19.1.1). Thus (19.3.1) holds.

Next, given a chain Ny 2 --- 2 N, = 0, let’s prove n < (M) by induction on
L(M). Tf {(M) = 0, then M = 0; so also n = 0. Assume ¢(M) > 1. If n = 0,
then we're done. If n > 1, then ¢(N1) < ¢(M) by (19.3.1); so n — 1 < £(Ny) by
induction. Thus n < ¢(M).

If N;_1/Nj is not simple, then there is N' with N;_; 2 N’ 2 N;. The new chain
can have length at most ¢(M) by the previous paragraph. Repeating, we can refine
the given chain into a composition series in at most £(M) — n steps.

Suppose the given chain is a composition series. Then ¢(M) < n by (19.1.2).
But we proved n < ¢(M) above. Thus n = ¢(M), and the first assertion is proved.

To proceed, fix a prime p. Exactness of Localization, (12.16), yields this chain:

M, = (Mg)p D (M1)p D+ D (M), =0. (19.3.3)
Now, consider a maximal ideal m. If p = m, then (R/m), ~ R/m by (12.4). If
p # m, then there is s € m — p; so (R/m), = 0.
Set m; := Ann(M,;_1/M;). So M;_1/M; ~ R/m; and m; is maximal by (19.2)(2).
Then Exactness of Localization yields (M;—1/M;), = (Mi=1)p/(M;),. Hence

(Mi—1)p/(M;)p = {Mil/Mi ~ R/m;, ifp=m,.

Thus Supp(M) = {my,...,mp}.
If we omit the duplicates from the chain (19.3.3), then we get a composition
series from the (M;), with M;_1/M; ~ R/p. Thus the number of such i is £(M,).
Finally, consider the canonical map ¢: M — ], €Supp(M) My,. To prove ¢ is an
isomorphism, it suffices, by (13.20), to prove ¢, is for each maximal ideal p. Now,
localization commutes with finite product by (12.10). Therefore,

op: My — ([T Mm)p = L (Mw)p = My
as (Mm)p =0 if m # p and (Mw), = M, if m = p by the above. Thus ¢, =1. O
EXERCISE (19.4). — Let R be a Noetherian ring, M a finitely generated module.

Prove the equivalence of the following three conditions:

(1) that M has finite length;
(2) that Supp(M) consists entirely of maximal ideals;
(3) that Ass(M) consists entirely of maximal ideals.

Prove that, if the conditions hold, then Ass(M) and Supp(M) are equal and finite.

EXERCISE (19.5). — Let R be a Noetherian ring, q a p-primary ideal. Consider
chains of primary ideals from g to p. Show (1) all such chains have length at most
0(A) where A := (R/q), and (2) all maximal chains have length exactly ¢(A).

COROLLARY (19.6). — A module M is both Artinian and Noetherian if and only
if M is of finite length.
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PROOF: Any chain M D Np 2 --- 2 N, = 0 hasn < £(M) by the Jordan-Holder
Theorem, (19.3). So if £(M) < oo, then M satisfies both the dcc and the acc.

Conversely, assume M is both Artinian and Noetherian. Form a chain as follows.
Set My := M. For ¢« > 1, if M;_1 # 0, take a maximal M; g M;_1 by the maxc.
By the dcc, this recursion terminates. Then the chain is a composition series. [

EXAMPLE (19.7). — Any simple Z-module is finite owing to (19.2)(2). Hence, a
Z-module is of finite length if and only if it is finite. In particular, {(Z) = co.

Of course, Z is Noetherian, but not Artinian.

Let p € Z be a prime, and set M := Z[1/p] /Z. Then M is an Artinian Z-module,
but not Noetherian by (16.25). Since M is infinite, /(M) = cc.

EXERCISE (19.8). — Let k& be a field, and R a finitely generated k-algebra. Prove
that R is Artinian if and only if R is a finite-dimensional k-vector space.

THEOREM (19.9) (Additivity of Length). — Let M be a module, and M’ a sub-
module. Then ((M) =¢(M") + ¢(M/M").

PRrROOF: If M has a composition series, then the Jordan—Holder Theorem yields
another one of the foom M = My D --- D M’ D --- D M,, = 0. The latter
yields a pair of composition series: M/M' = My/M’' > --- D M'/M' = 0 and
M' D> -+ D M,, = 0. Conversely, every such pair arises from a unique composition
series in M through M’'. Therefore, (M) < oo if and only if ¢(M/M’) < co and
(M) < oo; furthermore, if so, then £(M) = ¢(M') + £(M/M’), as desired. O

EXERCISE (19.10). — Let k be a field, A a local k-algebra. Assume the map from
k to the residue field is bijective. Given an A-module M, prove ¢(M) = dimy(M).

THEOREM (19.11) (Akizuki). — A ring R is Artinian if and only if R is Noether-
ian and dim(R) = 0. If so, then R has only finitely many primes.

Proor: If dim(R) = 0, then every prime is maximal. If also R is Noetherian,
then R has finite length by (19.4). Thus R is Artinian by (19.6).

Conversely, suppose R is Artinian. Let m be a minimal product of maximal ideals
of R. Then m? = m. Let 8 be the set of ideals a contained in m such that am # 0.
If § # 0, take a € § minimal. Then am? = am # 0; hence, am = a by minimality of
a. For any = € a, if 2m # 0, then a = (z) by minimality of a.

Let n be any maximal ideal. Then nm = m by minimality of m. But nm C n. Thus
m C rad(R). But a = (z). So Nakayama’s Lemma yields a = 0, a contradiction.
So zm = 0 for any x € a. Thus am = 0, a contradiction. Hence 8§ = ). Therefore,
m? =0. But m®> =m. Thus m = 0. Say m = m; - - -m, with m; maximal.

Set a; :=my---m; for 1 <i <r. Consider the chain

R=:apD>a1D---Da.=0.
Fix 4. Set V; := a;,_1/a;. Then V; is a vector space over R/m;. Given linearly
independent elements x1, z2,... € V;, let W; C V; be the subspace spanned by
Zj, Tj4+1,-... The W; form a descending chain. It must stabilize as R is Artinian.
Thus dim(V;) < co. Hence ¢(R) < oo by (19.9). So R is Noetherian by (19.6). So,
by (19.4), every prime is maximal, and there are only finitely many primes. O
EXERCISE (19.12). — Prove these conditions on a Noetherian ring R equivalent:
(1) that R is Artinian;
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(2) that Spec(R) is discrete and finite;
(3) that Spec(R) is discrete.

EXERCISE (19.13). — Let R be an Artinian ring. Show that rad(R) is nilpotent.

COROLLARY (19.14). — Let R be an Artinian ring, and M a finitely generated
module. Then M has finite length, and Ass(M) and Supp(M) are equal and finite.

PROOF: By (19.11) every prime is maximal, so Supp(M) consists of maximal
ideals. Also R is Noetherian by (19.11). Hence (19.4) yields the assertions. O

COROLLARY (19.15). — A ring R is Artinian if and only if {(R) < oco.
PRrROOF: Simply take M := R in (19.14) and (19.6). O

EXERCISE (19.16). — Let R be a ring, p a prime ideal, and R’ a module-finite
R-algebra. Show that R’ has only finitely many primes p’ over p, as follows: reduce
to the case that R is a field by localizing at p and passing to the residue rings.

COROLLARY (19.17). A ring R is Artinian if and only if R is a finite product
of Artinian local rings; if so, then R = Hmespcc(R) Ry.

PROOF: A finite product of rings is Artinian if and only if each factor is Artinian
by (16.23)(3). If R is Artinian, then ¢(R) < oo by (19.15); whence, R = [[ R
by the Jordan-Hoélder Theorem. Thus the assertion holds. O

EXERCISE (19.18). — Let R be a Noetherian ring, and M a finitely generated
module. Prove the following four conditions are equivalent:

(1) that M has finite length;

(2) that M is annihilated by some finite product of maximal ideals [] m;;

(3) that every prime p containing Ann(M) is maximal;

(4) that R/Ann(M) is Artinian.
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The Hilbert Function of a graded module lists the lengths of its components.
The corresponding generating function is called the Hilbert Series. This series
is, under suitable hypotheses, a rational function, according to the Hilbert—Serre
Theorem, which we prove. Passing to an arbitrary module, we study its Hilbert—
Samuel Series, namely, the generating function of the colengths of the submodules
in a filtration. We prove Samuel’s Theorem: if the ring is Noetherian, if the module
is finitely generated, and if the filtration is stable, then the Hilbert—-Samuel Series
is a rational function with poles just at 0 and 1. In the same setup, we prove the
Artin—Rees Lemma: given any submodule, its induced filtration is stable.

In a brief appendix, we study further one notion that arose: homogeneity.

(20.1) (Graded rings and modules). — We call a ring R graded if there are
additive subgroups R,, for n > 0 with R = @ R,, and R,,R,, C Ry4y for all m, n.

For example, a polynomial ring R with coefficient ring Ry is graded if R,, is the
Ry-submodule generated by the monomials of (total) degree n.

In general, Ry is a subring. Obviously, Ry is closed under addition and under
multiplication, but we must check 1 € Rg. So say 1 =Y x,, with ,,, € R,,. Given
z € R,ysay z = Yz, with 2z, € R,. Fix n. Then 2z, = 12, = > x;,2, with
Tmzn € Rpman. SO Zm>0 TmiZn = Zn — Tozn € R,. Hence z,,z, = 0 for m > 0.
But n is arbitrary. So z,,z = 0 for m > 0. But z is arbitrary. Taking z := 1 yields
Ty = T -1 =0 for m > 0. Thus 1 = z9 € Ry.

We call an R-module M (compatibly) graded if there are additive subgroups M,,
for n € Z with M = @ M,, and R,,M,, C M,y for all m, n. We call M,, the nth
homogeneous component; we say its elements are homogeneous. Obviously,
M, is an Rg-module.

Given m € Z, set M(m) := @ My,4+n,. Then M(m) is another graded module;
its nth graded component M (m),, is My, 4+,. Thus M(m) is obtained from M by
shifting m places to the left.

LEMMA (20.2). — Let R = @ Ry, be a graded ring, and M = @ M, a graded
R-module. If R is a finitely generated Ro-algebra and if M is a finitely generated
R-module, then each M, is a finitely generated Ry-module.

PROOF: Say R = Ro[z1,...,z]. fz; = Z]. xi; with z;; € R;, then replace the
x; by the nonzero x;;. Similarly, say M is generated over R by my,...,m, with
m; € M;,. Then any m € M, is a sum m = ) fym; where f; € R. Say fi = fi;
with fi;; € R;, and replace f; by fir, with k :=n —1; or by 0 if n < l;. Then f;
is an Rp-linear combination of monomials a:zf ---x¥r € Ry,; hence, m is one of the
products ycil’l cee xfrmi € M,. Thus M, is a finitely generated Rp-module. O
(20.3) (Hilbert functions). — Let R = @ R,, be a graded ring, and M = M,
a graded R-module. Assume Ry is Artinian, R is a finitely generated Rp-algebra,
and M is a finitely generated R-module. Then each M, is a finitely generated
Ry-module by (20.2), so is of finite length ¢(M,,) by (19.14). We call n — ¢(M,,)
the Hilbert Function of M and its generating function

H(M, t):= EnEZ (M )t"
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the Hilbert Series of M. This series is a rational function by (20.7) below.

If R = Ro[z1,...,z,] with z; € Ry, then by (20.8) below, the Hilbert Function
is, for n > 0, a polynomial h(M, n), which we call the Hilbert Polynomial of
M.

EXAMPLE (20.4). — Let R := Ry[Xj, ..., X,] be the polynomial ring, graded by
degree. Then R, is free over Ry on the monomials of degree n, so of rank (tiﬁ")
Assume Ry is Artinian. Then ¢(R,) = ¢(Ro)("."t") by Additivity of Length,
(19.9). Thus the Hilbert Function is, for n > 0, a polynomial of degree r — 1.
Formal manipulation yields (7::“") =(-1)" (_nr) Therefore, Newton’s binomial
theorem for negative exponents yields this computation for the Hilbert Series:

H(R, t) = ano Z(RO)(T;in)tn = ano Z(RO)(;LT)(*t)n = E(RO)/(l =)

EXERCISE (20.5). — Let k be a field, k[X, Y] the polynomial ring. Show (X,Y?)
and (X2,Y?) have different Hilbert Series, but the same Hilbert Polynomial.

EXERCISE (20.6). — Let R = @ R,, be a graded ring, M = @ M,, a graded R-
module. Let N = @ N,, be a homogeneous submodule; that is, N,, = N N M,,.
Assume Ry is Artinian, R is a finitely generated Rp-algebra, and M is a finitely
generated R-module. Set

N’ :={m € M | there is ko such that Rym € N for all k > kg }.

(1) Prove that N’ is a homogeneous submodule of M with the same Hilbert
Polynomial as N, and that N’ is the largest such submodule.

(2) Let N = (1 Q; be a decomposition with Q; ps-primary. Set Ry := @, . Rn-
Prove that N' =, 5z, Qi-

THEOREM (20.7) (Hilbert—Serre). — Let R = @ R, be a graded ring, and let
M = @ M, be a graded R-module. Assume Ry is Artinian, R is a finitely generated
Ro-algebra, and M is a finitely generated R-module. Then

H(M, t)=e(t)/t"(1—t") - (1 —thr)
with e(t) € Z[t], with | > 0, and with k1, ..., k. > 1.

PRrOOF: Say R = Ry[z1,...,2,] with z; € Ry,. First, assume r = 0. Say M is
generated over R by mq,...,ms with m; € M;,. Then R = Ry. So M,, = 0 for
n < lo := min{l;} and for n > max{l;}. Hence t~"0 H(M, t) is a polynomial.

Next, assume r > 1 and form the exact sequence

0 K= M(—k) 2 M- L—0

where pi5, is the map of multiplication by z1. Since z; € Ry,, the grading on M
induces a grading on K and on L. Further, u,, acts as 0 on both K and L.

Since Ry is Artinian, Ry is Noetherian by Akizuki’s Theorem, (19.11). So, since
R is a finitely generated Rp-algebra, R is Noetherian by (16.11). Since M is a
finitely generated R-module, obviously so is M(—k;). Hence, so are both K and
L by (16.15)(2). Set R’ := Rg[z2,...,z,]. Since z; acts as 0 on K and L, they
are finitely generated R’-modules. Therefore, H(K,t) and H(L,t) are defined, and
they may be written in the desired form by induction on 7.

By definition, M (—k1)y, := M, _g,; hence, H(M(—k,),t) = t*' H(M, t). There-
fore, Additivity of Length, (19.9), and the previous paragraph yield

(L—t")YH(M, t)= H(L, t) — H(K, t) = e(t)/t"(1 — t¥2) ... (1 — t™).
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Thus the assertion holds. O

COROLLARY (20.8). — Under the conditions of (20.7), assume that M # 0 and
R = Rolx1,...,x,] with x; € R1. Then H(M, t) can be written uniquely in the
form e(t) /t'(1 — t)* where e(t) € Z[t] with e(0) # 0 and e(1) # 0 and where | € Z
and r > d > 0; further, there is a polynomial h(M, n) € Q[n] with degree d—1 and
leading coefficient e(1)/(d — 1) ! such that £(M,) = h(M, n) for n > deg(e(t)) — L.

PROOF: We may take k; = 1 for all 7 in the proof of (20.7). Hence H (MM, t) is of
the form e(t)(1—1t)* /t'(1—t)" with (0) # 0 and e(1) # 0 and [ € Z. Set d :=r—s.
Then d > 0 since H(M, 1) > 0 as M # 0. Thus H(M, t) is of the asserted form.
This form is unique owing to the uniqueness of factorization of polynomials.

Say e(t) = Zilio eitt. Now, (1—1t)"¢ =3 (;ld)(—t)” =3 (d;f{")t”‘ Hence
U(My) = SN gei(THmHT) for n+ 1> N But (CUTT) = nd 1 /(d - 1) 14
Therefore, £(M,,) = e(1)n?"1/(d —1)! + ---, as asserted. O

EXERCISE (20.9). — Let k be a field, P := k[X, Y, Z] the polynomial ring in three
variables, f € P a homogeneous polynomial of degree d > 1. Set R := P/(f). Find
the coeflicients of the Hilbert Polynomial h(R, n) explicitly in terms of d.

EXERCISE (20.10). — Under the conditions of (20.8), assume there is a homo-
geneous nonzerodivisor f € R with My = 0. Prove deg(h(R,n)) > deg(h(M,n));
start with the case M = R/{f*).

(20.11) (Filtrations). — Let R be an arbitrary ring, q an ideal, and M a module.
A filtration of M is an infinite descending chain of submodules:

M=My>M >My>---. (20.11.1)

We call it a g-filtration if qM,, C M,,1, for all n, and a stable g-filtration if also
qM,, = M, for n > 0, or equivalently, if also there is an m with q"M,,, = My, +m
for n > 0. For example, setting M,, := q" M, we get a stable g-filtration; we call it
the g-adic filtration.

The g-adic filtration of R yields a graded ring G4(R) or G(R), defined by

G(R) = @,>,G(R), where G(R), :=q"/q"".

We obtain the product of an element in g°/q**! and one in ¢7/¢’+! by choosing a
representative of each, forming their product, and taking its residue in q*+7 /qi+7+1.
We call G(R) the associated graded ring.

Similarly, if (20.11.1) is a g-filtration, then we obtain a graded G(R)-module

Go(M) :=G(M) =D, 50G(M), where G(M), = M,/Mpi1.

If all the quotients M/M,, of the filtration (20.11.1) are of finite length, then we
call n — ¢(M/M,) the Hilbert—Samuel Function, and the generating function
P(M,,t) := 2"20 O(M /M)t

the Hilbert—Samuel Series. If the function n — £(M/M,) is, for n > 0, a
polynomial p(M,,n), then we call it the Hilbert—Samuel Polynomial. If the
filtration is the g-adic filtration, we also denote P(M,,t) and p(M,,n) by Pq(M,t)
and pq(M,n).
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LEMMA (20.12). Let R be a Noetherian ring, q an ideal, M a finitely generated
module with a stable q-filtration. Then G(R) is generated as an R/q-algebra by
finitely many elements of q/q%, and G(M) is a finitely generated G(R)-module.

PrOOF: Since R is Noetherian, q is a finitely generated ideal, say by z1,...,z,.
Then, clearly, the residues of the z; in q/q? generate G(R) as a R/g-algebra.
Say the filtration is M = My D My D ---. Since it is stable, there is an m with

q"My, = Myt for n > 0. Hence G(M) is generated by Mo/Mu, ..., My, /My41
over G(R). But R is Noetherian and M is finitely generated over R; hence, every
M; is finitely generated over R. Therefore, every M, /M, is finitely generated
over R/q. Thus G(M) is a finitely generated G(R)-module. O

THEOREM (20.13) (Samuel). — Let R be a Noetherian ring, q an ideal, M a
finitely generated module with a stable q-filtration M = My D My D ---. Assume
UM/qM) < co. Then £(My/My41) < oo and ¢(M/M,) < oo for every n; further,

P(M., t) = H(G(M), t)t/(1 - t).

PROOF: Set a := Ann(M). Set R’ := R/a and q' := (a + q)/a. Then R'/q’ is
Noetherian as R is. Further, M can be viewed as a finitely generated R’-module,
and M = My D M; D --- as a stable g'-filtration. So G(R’) is generated as a R’/q’-
algebra by finitely many elements of degree 1, and G(M) is a finitely generated
G(R')-module by (20.12). Therefore, each M,,/M,11 is a finitely generated R’/q'-
module by (20.2) or by the proof of (20.12).

On the other hand, (13.1) and (13.9)(3) and (13.13) yield, respectively,

V(a+q) = V(a)1V(a) = Supp(M) (1 V(q) = Supp(M/qM).
Hence V(a + q) consists entirely of maximal ideals, because Supp(M/qM) does
by (19.4) as ¢{(M/qM) < co. Thus dim(R'/q’) = 0. But R’/q’ is Noetherian.

Therefore, R’'/q’ is Artinian by Akizuki’s Theorem, (19.11).
Therefore, {(M,,/M,+1) < oo for every n by (19.14). Form the exact sequence

0— M, /Mpt1 — M/My+1 — M/M, — 0.
Then Additivity of Length, (19.9), yields
(M /M) = €M /M) — (M /M),
So induction on n yields ¢(M/M,11) < oo for every n. Further, multiplying that
equation by ¢ and summing over n yields the desired expression in another form:
H(G(M), t) = ("' —=1)P(M,, t) = P(M., t) (1 — t)/t. d

COROLLARY (20.14). — Under the conditions of (20.13), assume q is generated
by r elements and M # 0. Then P(M,, t) can be written uniquely in the form
e(t)/t1(1 = t)4FT where e(t) € Z[t] with e(0) # 0 and e(1) # 0 and where | € Z
and r > d > 0; further, there is a polynomial p(Ms,n) € Q[n| with degree d and
leading coefficient e(1)/d! such that ((M/M,) = p(Me,n) for n > deg(e(t)) — 1.
Finally, pg(M,n)—p(Ma,n) is a polynomial with degree at most d—1 and nonneg-
ative leading coefficient; further, d and e(1) are the same for every stable q-filtration.

PrOOF: The proof of (20.13) shows that G(R’) and G(M) satisfy the hypotheses
of (20.8). So (20.8) yields a certain form for H(G(M), t). Then (20.13) yields
the asserted form for P(M,, t). In turn, that form yields the asserted polynomial
p(Ma,,n) by the argument in the second paragraph of the proof of (20.8).
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Finally, as M = My D M; D --- is a stable g-filtration, there’s an m such that
My, D>q"M D q" My, = Myptm
for all n > 0. Dividing into M and extracting lengths yields
O(M/My) < UM/q" M) < U(M/Myim)-
Therefore, for large n, we get
p(MOa n) < pq(A47 Tl) < p(]\/[h n+ m)

The two extremes are polynomials in n with the same degree and leading coefficient,
say d and ¢. Dividing by n¢ and letting n — oo, we conclude that the polynomial
pq(M,n) also has degree d and leading coefficient c.

Thus the degree and leading coefficient are the same for every stable g-filtration.

Further pq(M,n)—p(M,,n) has degree at most d—1 and positive leading coefficient,
owing to cancellation of the two leading terms and to the first inequality. 0

EXERCISE (20.15). — Let R be a Noetherian ring, q an ideal, and M a finitely
generated module. Assume £(M/qM) < co. Set m := ,/q. Show

deg pm (M, n) = degpq (M, n).
(20.16) (Rees Algebras). — Let R be an arbitrary ring, q an ideal. The sum
R() =D, 00"

is, canonically, a graded ring, with R as zeroth graded component and q as first.
We call R(q) the Rees Algebra of q.
Let M be a module with a g-filtration M = My D M; D ---. Then the sum

R(Ma) = D,50 M

is canonically a module over the Rees Algebra R(q).

LEMMA (20.17). — Let R be a Noetherian ring, q an ideal, and M a finitely
generated module with a q-filtration. Then R(q) is generated as an R-algebra by
finitely many elements of q, and R(Ma,) is a finitely generated R(q)-module if and
only if the filtration is stable.

PROOF: Say the filtration is M = My D M; D ---. Suppose R(M,) is generated
over R(q) by ma, ..., ms. Say m; = E;‘:O mi; with m;; € M;. Then for any n > 0,
any m € My, isasum m =Y fi;m;; where fi; € q"t#=3. But q"t#=J = quqrI.
Thus M4, = q"My; that is, the filtration is stable.

The rest of the proof is similar to that of (20.12), but simpler. O

LEMMA (20.18) (Artin-Rees). — Let R be a Noetherian ring, M a finitely gener-
ated module, N a submodule, q an ideal, M = Mo D My D --- a stable q-filtration.
Forn >0, set N, ;= NN M,. Then N =Ny D Ny D --- is a stable q-filtration.

PRrROOF: By (20.17), the Rees Algebra R(q) is finitely generated over R, so
Noetherian by (16.11). By (20.17), the module R(M,) is finitely generated over
R(g), so Noetherian by (16.18). Clearly, N = Ny D Ny D --- is a g-filtration;
hence, R(N,) is a submodule of R(M,), so Noetherian by (16.15)(2), so finitely
generated by (16.18). Hence, N = Ny D N; D --- is stable by (20.17), as
desired. O
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EXERCISE (20.19). — Derive the Krull Intersection Theorem, (18.28), from the
Artin—Rees Lemma, (20.18).

PROPOSITION (20.20). — Let R be a Noetherian ring, q an ideal, and
0->M —-M—>M'—0

an exact sequence of finitely generated modules. Then M/qM has finite length if
and only if M'/qM' and M"/qM" do. If so, then the polynomial

pa(M',n) — pg(M,n) + pe(M",n)
has degree at most deg (pq(M’, n)) —1 and has positive leading coefficient; also then
deg pq(M, n) = max{ degpq(M’',n), degpq(M",n) }.
PRrOOF: First off, (13.13) and (13.9)(1) and (13.13) again yield
Supp(M/qM) = Supp(M) ( V(q) = (Supp(M") U Supp(M")) N V(q)
= (Supp(M") N V(a)) U(Supp(M") N V(q))
— Supp(M'/qM") U Supp(M" /qM"),

Hence M/qM has finite length if and only if M’/qM’" and M"” /qM" do by (19.4).
For n > 0, set M) == M'(\q"M. Then M’ = M} D> M{ D --- is a stable
g-filtration by the Artin-Rees Lemma. Form this canonical commutative diagram:

0— M, —q"M — q"M" — 0
00— M —M— M —0
Its rows are exact. So the Nine Lemma yields this exact sequence:
0— M'/M!, — M/q"M — M"/q"M" — 0.
Assume M /qM has finite length. Then Additivity of Length and (20.14) yield
p(My,n) — pg(M,n) + pg(M",n) = 0. (20.20.1)
Hence pq(M',n) — pq(M,n) + pg(M",n) is equal to pq(M’,n) — p(M],n). But by
(20.14) again, the latter is a polynomial with degree at most dcg(pq(M’,n)) -1
and positive leading coefficient.
Finally, deg pq(M,n) = max{degp(M,,n), degpq(M",n)} owing to (20.20.1),
as the leading coefficients of p(M],n) and pq(M",n) are both positive, so cannot
cancel. But degp(M],n) = degpq(M’,n) by (20.14), completing the proof. O
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(20.21) (Homogeneity). — Let R be a graded ring, and M = @ M,, a graded
module. We call the M,, the homogeneous components of M.

Given m € M, write m = Y m,, with m,, € M,,. Call the finitely many nonzero
m,, the homogeneous components of m. Say that a component m,, is homo-
geneous of degree n. If n is lowest, call m,, the initial component of m.

Call a submodule N C M homogeneous if, whenever m € N, also m,, € N, or
equivalently, N = @(M,, N N).

Call a map a: M’ — M of graded modules with components M/, and M, ho-
mogeneous of degree r if a(M],) C M, for all n. If so, then clearly Ker(«) is
a homogeneous submodule of M. Further, Coker(«) is canonically graded, and the
quotient map M — Coker(a) is homogeneous of degree 0.

EXERCISE (20.22). — Let R = @ R,, be a graded ring, M =
module, a C @

n>no M,, a graded

>0 Bn @ homogeneous ideal. Assume M = aM. Show M = 0.

EXERCISE (20.23). — Let R = € R, be a Noetherian graded ring, M = @ M, a
finitely generated graded R-module, N = € N,, a homogeneous submodule. Set

N :={meM|R,meN foralln>0}.

Show that N’ is the largest homogeneous submodule of M containing N and having,
for all n > 0, its degree-n homogeneous component N}, equal to IN,,.

PROPOSITION (20.24). — Let R be a Noetherian graded ring, M a nonzero finitely
generated graded module, QQ a homogeneous submodule. Suppose Q) possesses this
property: given any homogeneous v € R and homogeneous m € M with xm € Q
but m ¢ Q, necessarily x € p :=nil(M/Q). Then p is prime, and Q is p-primary.

PrROOF: Given ¢ € R and m € M, decompose them into their homogeneous
components: T = Ein z; and m = Z]’Zs mj. Suppose zm € @, but m ¢ Q.
Then m; ¢ Q for some ¢; take ¢t minimal. Set m’ := 2j<t m;. Then m’ € Q. Set
m” :=m —m’. Then zm” € Q.

Either xsm; vanishes or it’s the initial component of zm’. But @ is homogeneous.
So xsmy € Q. But my ¢ Q. Hence z5 € p by the hypothesis. Say zs,...,z, € p
with u maximal. Set 2/ := > i ;. Then 2/ € p. So 2™* € Ann(M/Q) for some
k>1. So z’*m" € Q. Set 2 := x — 2’. Since zm/” € Q, also z"*m" € Q.

Suppose x ¢ p. Then z” # 0. And its initial component is z,, with v > u. Either
zl/my vanishes or it is the initial component of xm. But @ is homogeneous. So
Tyme € Q. But my ¢ Q. Hence z, € p by the hypothesis, contradicting v > wu.
Thus z € p. Thus @ is p-primary by (18.4). O

EXERCISE (20.25). — Let R be a graded ring, a a homogeneous ideal, and M a
graded module. Prove that v/a and Ann(M) and nil(M) are homogeneous.

EXERCISE (20.26). — Let R be a graded ring, M a graded module, and Q a
primary submodule. Let Q* C @ be the submodule generated by the homogeneous
elements of Q). Then Q* is primary.
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THEOREM (20.27). Let R be a Noetherian graded ring, M a finitely generated
graded module, N a homogeneous submodule. Then all the associated primes of
M/N are homogeneous, and N admits an irredundant primary decomposition in
which all the primary submodules are homogeneous.

PROOF: Let N = (@, be any primary decomposition; one exists by (18.20).
Let @ C @Q; be the submodule generated by the homogeneous elements of Q;.
Trivially, NQ; € NQ; = N C (NQ}. Further, each Q7 is clearly homogeneous,
and is primary by (20.26). Thus N = ﬂQ; is a primary decomposition into
homogeneous primary submodules. And, owing to (18.18), it is irredundant if
N =[1Q is, as both decompositions have minimal length. Finally, M/Q7 is graded
by (20.21); so each associated prime is homogeneous by (18.19) and (20.25). O

(20.28) (Graded Domains). — Let R = €D, », Rn be a graded domain, and set
K := Frac(R). We call z € K homogeneous of degree n € Z if z = z/y with
r € Ry, and y € Ry,—p. Clearly, n is well defined.

Let K,, be the set of all such z, plus 0. Then K,,K,, C K;,+,. Clearly, the
canonical map @, ., K, — K is injective. Thus €, K5, is a graded subring of
K. Further, Ky is a field.

The n with K,, # 0 form a subgroup of Z. So by renumbering, we may assume
K; # 0. Fix any nonzero x € K;. Clearly, x is transcendental over Ky. If z € K,
then z/z™ € Ky. Hence R C Ko[z]. So (2.3) yields K = Ky(x).

Any w € @ K, can be written w = a/b with a,b € R and b homogeneous: say
w =Y (an/by) with a,,b, € R homogeneous; set b := [[b,, and a := > (a,b/by,).

THEOREM (20.29). — Let R be a Noetherian graded domain, K := Frac(R), and
R the integral closure of R in K. Then R is a graded subring of K.

PROOF: Use the setup of (20.28). Since Ky[z] is a polynomial ring over a field,
it is normal by (10.29). Hence R C Koy[z]. So every y € R can be written as
y= Z:;n y;, with y; homogeneous and nonzero. Let’s show y; € R for all i.

Since y is integral over R, the R-algebra R[y] is module finite by (10.18). So
(20.28) yields a homogeneous b € R with bR[y] C R. Hence by’ € R for all j > 0.
But R is graded. Hence byl € R. Set z := 1/b. Then yJ € Rz. Since R is
Noetherian, the R-algebra R[y,] is module finite. Hence y, € R. Then y — y, € R.
Thus y; € R for all i by induction on n. Thus R is graded. g

EXERCISE (20.30). — Under the conditions of (20.8), assume that R is a domain
and that its integral closure R in Frac(R) is a finitely generated R-module.

(1) Prove that there is a homogeneous f € R with Ry = Ry.

(2) Prove that the Hilbert Polynomials of R and R have the same degree and
same leading coefficient.

21. Dimension

The dimension of a module is defined as the sup of the lengths of the chains of
primes in its support. The Dimension Theorem, which we prove, characterizes the
dimension of a nonzero finitely generated semilocal module over a Noetherian ring
in two ways. First, the dimension is the degree of the Hilbert—Samuel Polynomial
formed with the radical of the ring. Second, the dimension is the smallest number
of elements in the radical that span a submodule of finite colength.

Next, in an arbitrary Noetherian ring, we study the height of a prime: the length
of the longest chain of subprimes. We bound the height by the minimal number of
generators of an ideal over which the prime is minimal. In particular, when this
number is 1, we obtain Krull’s Principal Ideal Theorem. Finally, we study regular
local rings: Noetherian local rings whose maximal ideal has the minimum number
of generators, namely, the dimension.

(21.1) (Dimension of a module). — Let R be a ring, and M a nonzero module.
The dimension of M, denoted dim(M), is defined by this formula:

dim(M) := sup{ r | there’s a chain of primes po G - & p, in Supp(M) }.

Assume R is Noetherian, and M is finitely generated. Then M has finitely
many minimal (associated) primes by (17.19). They are also the minimal primes
po € Supp(M) by (17.16). Thus (1.8) yields

dim (M) = max{ dim(R/po) | po € Supp(M) is minimal }. (21.1.1)

(21.2) (Parameters). — Let R be a ring, M a nonzero module. Denote the in-
tersection of the maximal ideals in Supp(M) by rad(M), and call it the radical of
M. If there are only finitely many such maximal ideals, call M semilocal.Call an
ideal q a parameter ideal of M if q C rad(M) and M/qM is Artinian.

Assume M is finitely generated. Then Supp(M) = V(Ann(M)) by (13.9)(3).
Hence M is semilocal if and only if R/ Ann(M) is a semilocal ring.

Assume, in addition, R is Noetherian; so M is Noetherian by (16.18). Fix an
ideal q. Then (19.6) yields that M/qM is Artinian if and only if £(M/qM) < oco.

However, £(M/qM) < oo if and only if Supp(M/qM) consists of finitely many
maximal ideals by (19.4) and (17.20). Further, (13.13), (13.9)(3), and (13.1)
yield

Supp(M/qM) = Supp(M)(V(q) = V(Ann(M)) (1 V(q) = V(Ann(M) + q).

Set q' := Ann(M) + q. Thus M/qM is Artinian if and only if V(q’) consists
of finitely many maximal ideals; so by (19.11), if and only if R/q’ is Artinian.
But (19.18) implies that R/q’ is Artinian if and only if g’ contains a product of
maximal ideals each of which contains q’. Then each lies in Supp(M), so contains
rad(M).

Set m :=rad(M). Thus if R/q’ is Artinian, then ¢’ > m™ for some n > 0.

Assume, in addition, M is semilocal, so that Supp(M) contains only finitely many
maximal ideals. Then their product is contained in m. Thus, conversely, if ¢ D> m™
for some n > 0, then R/q’ is Artinian. Thus q is a parameter ideal if and only if

m>Dq Dm"” for somen, (21.2.1)
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or by (3.26) if and only if m = +/q’, or by (13.1) if and only if V(m) =V(q'). In
particular, m™ is a parameter ideal for any n.

Assume q is a parameter ideal. Then the Hilbert-Samuel polynomial pq(M, n)
exists by (20.14). Similarly, p, (M, n) exists, and the two polynomials have the
same degree by (20.15) since m = /¢’ and pg/ (M, n) = pq(M, n). Thus the degree
is the same for every parameter ideal. Denote this common degree by d(M).

Alternatively, d(M) can be viewed as the order of pole at 1 of the Hilbert series
H(G4(M), t). Indeed, that order is 1 less than the order of pole at 1 of the Hilbert—
Samuel series Py (M, t) by (20.13). In turn, the latter order is d(M)+1 by (20.14).

Denote by s(M) the smallest s such that there are z1,...,zs € m with

UM/(z1,...,x5)M) < . (21.2.2)

By convention, if ¢(M) < oo, then s(M) = 0. We say that z1,...,z, € m form a
system of parameters (sop) for M if s = s(M) and (21.2.2) holds. Note that a
sop generates a parameter ideal.

LEMMA (21.3). — Let R be a Noetherian ring, M a nonzero Noetherian semilocal
module, q a parameter ideal of M, and = € rad(M). Set K := Ker(M £ M).
(1) Then s(M) < s(M/xM) + 1.
(2) Then dim(M/zM) < dim(M) — 1 if x ¢ p for any p € Supp(M) with
dim(R/p) = dim(M).
(3) Then deg(pq(K, n) — pq(M/zM, n)) < d(M) — 1.

PRrROOF: For (1), set s := s(M/xzM). There are x1,...,xs € rad(M/zM) with
U M/(z, x1,...,z5) M) < c0.

Now, Supp(M/zM) = Supp(M) N V({z)) by (13.13). However, x € rad(M).
Hence, Supp(M/xM) and Supp(M) have the same maximal ideals. Therefore,
rad(M/xM) = rad(M). Hence s(M) < s+ 1. Thus (1) holds.

To prove (2), take a chain of primes po G --- G p, in Supp(M/2zM). Now,
Supp(M/xzM) = Supp(M) N V((z)) by (13.13). So z € pg € Supp(M). So, by
hypothesis, dim(R/po) < dim(M ). Hence r < dim(M) — 1. Thus (2) holds.

To prove (3), set M := Im(u,), and form these two exact sequences:

0K—>M-—zM—0, and 0—aM —- M — M/zM — 0.

Then (20.20) yields d(K) < d(M) and d(zM) < d(M). So by (20.20) again, both
pq(K, n) + pg(zM, n) — pqg(M, n) and pq(xM, n) + pg(M/xM, n) — pg(M, n) are
of degree at most d(M) — 1. So their difference is too. Thus (3) holds. O

THEOREM (21.4) (Dimension). — Let R be a Noetherian ring, M a nonzero finite-
ly generated semilocal module. Then

dim(M) = d(M) = s(M) < .

PROOF: Let’s prove a cycle of inequalities. Set m := rad(M). First, let’s prove
dim(M) < d(M). We proceed by induction on d(M). Suppose d(M) = 0. Then
(M/m"™M) stabilizes. So m"M = m"T'M for some n. Hence m"M = 0 by
Nakayama’s Lemma applied over the semilocal ring R/ Ann(M). Hence ¢(M) < oco.
So dim(M) =0 by (19.4).

Suppose d(M) > 1. Take pg € Ass(M) with dim(R/pg) = dim(M). Then M has
a submodule N isomorphic to R/pg by (17.2). Further, d(N) < d(M) by (20.20).

Take a chain of primes pg g g pr in Supp(N). If r = 0, then r < d(M).

September 3, 2012 11Nts.tex

21. Dimension 111

Suppose r > 1. Then there’s an x1 € p1 — po. Further, since py is not maximal, for
each maximal ideal n in Supp(M), there is an x, € n—pg. Set x := x1 [[ 4. Then
x € (prNm) —po. Then py G --- G py lies in Supp(N) (| V((z)). But the latter is
equal to Supp(N/zN) by (13.13). Sor — 1 < dim(N/zN).

However, i, is injective on N as N ~ R/pg and x ¢ po. So (21.3)(3) yields
d(N/zN) < d(N) — 1. But d(N) < d(M). So dim(N/zN) < d(N/xN) by the
induction hypothesis. Therefore, » < d(M). Thus dim(M) < d(M).

Second, let’s prove d(M) < s(M). Let q be a parameter ideal of M with s(M)
generators. Then d(M) := degpq(M, n). But degpq(M, n) < s(M) owing to
(20.14). Thus d(M) < s(M).

Finally, let’s prove s(M) < dim(M). Set r := dim(M), which is finite since
r < d(M) by the first step. The proof proceeds by induction on r. If r = 0, then
M has finite length by (19.4); so s(M) = 0.

Suppose r > 1. Let p1, ..., pi be the primes of Supp(M) with dim(R/p;) = r. No
p; is maximal as r > 1. So m lies in no p;. Hence, by Prime Avoidance (3.15), there
is an x € m such that = ¢ p; for all i. So (21.3)(1), (2) yield s(M) < s(M/zM)+1
and dim(M/xzM)+1 < r. By the induction hypothesis, s(M/xM) < dim(M/zM).
Hence s(M) < r, as desired. O

COROLLARY (21.5). — Let R be a Noetherian ring, M a nonzero Noetherian semi-
local module, © € rad(M). Then dim(M/xM) > dim(M) — 1, with equality if © ¢ p
for p € Supp(M) with dim(R/p) = dim(M); equality holds if x ¢ z.div(M).

PRrROOF: By (21.3)(1), we have s(M/xM) > s(M)—1. So the asserted inequality
holds by (21.4). If x ¢ p € Supp(M) when dim(R/p) = dim(M), then (21.3)(2)
yields the opposite inequality, so equality. Finally, if « ¢ z.div(M), then x ¢ p for
any p € Supp(M) with dim(R/p) = dim(M) owing to (17.17) and (17.14). O

(21.6) (Height). — Let R be a ring, and p a prime. The height of p, denoted
ht(p), is defined by this formula:

ht(p) := sup{ 7 | there’s a chain of primes po & --- G pr =p }.
The bijective correspondence p — pR, of (11.18)(2) yields this formula:
ht(p) = dim(Rp). (21.6.1)

COROLLARY (21.7). Let R be a Noetherian ring, p a prime. Then ht(p) < r if
and only if p is minimal containing an ideal generated by r elements.

PROOF: Assume p is minimal containing an ideal a generated by r elements.
Now, any prime of R, containing aR,, is of the form qR,, where q is a prime of R with
aCqCpby (11.18). So q=p. Hence pR, = \/aR, by the Scheinnullstellensatz.
Hence r > s(Ry) by (21.2). But s(R,) = dim(R,) by (21.4), and dim(R,) = ht(p)
by (21.6.1). Thus ht(p) <r.

Conversely, assume ht(p) < r. Then R, has a parameter ideal b generated by r
elements, say y1,...,y, by (21.6.1) and (21.4). Say y; = x;/s; with s; ¢ p. Set
a:=(z1,...,o,). Then aR, =b.

Suppose there is a prime q with a C q C p. Then b = aR, C qR, C pR,, and
qR, is prime by (11.18)(2). But vb = pR,. So qR, = pR,. Hence q = p by
(11.18)(2). Thus p is minimal containing a, which is generated by r elements. [
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EXERCISE (21.8). Let R be a Noetherian ring, and p be a prime minimal
containing x1,...,2z,. Given v’ with 1 < ¢ < r, set R’ := R/(x1,...,2z,») and
p =p/{x1,...,2). Assume ht(p) = r. Prove ht(p’) =r —r'.

THEOREM (21.9) (Krull Principal Ideal). — Let R be a Noetherian ring, x € R,
and p a prime minimal containing x. If v ¢ z.div(R), then ht(p) = 1.

PrROOF: We have ht(p) < 1 by (21.7). But if ht(p) = 0, then p € Ass(R) by
(17.17), and so z € z.div(R) by (17.14). O

EXERCISE (21.10). — Let R be a Noetherian ring, p a prime ideal with ht(p) > 2.
Prove p is the union of infinitely many distinct prime ideals q with ht(q) = 1.

EXERCISE (21.11). — Let R be a Noetherian ring with only finitely many prime
ideals. Show dim(R) < 1.

EXERCISE (21.12). — Let R be a domain. Prove that, if R is a UFD, then every
height-1 prime is principal, and that the converse holds if R is Noetherian.

EXERCISE (21.13). — (1) Let A be a Noetherian local ring, and p a principal
prime of height at least 1. Prove that A is a domain.

(2) Let k be a field, P := k[[X]] the formal power series ring in one variable. Set
R := P x P. Prove that P is Noetherian and semilocal, and that P contains a
principal prime p of height 1, but that P is not a domain.

EXERCISE (21.14). — Let R be a finitely generated algebra over a field. Assume
R is a domain of dimension r. Let € R be neither 0 nor a unit. Set R’ := R/(x).
Prove that r — 1 is the length of any chain of primes in R’ of maximal length.

COROLLARY (21.15). — Let A and B be Noetherian local rings, m and n their
mazximal ideals. Let ¢: A — B be a local homomorphism. Then

dim(B) < dim(A) + dim(B/mB),
with equality if B is flat over A.

PROOF: Set s := dim(A). By (21.4), there is a parameter ideal q generated by s
elements. Then m/q is nilpotent by (21.2.1). Hence mB/qB is nilpotent. It follows
that dim(B/mB) = dim(B/qB). But (21.5) yields dim(B/qB) > dim(B)—s. Thus
the inequality holds.

Assume B is flat over A. Let p D mB be a prime with dim(B/p) = dim(B/mB).
Then dim(B) > dim(B/p) + ht(p) because the concatenation of a chain of primes
containing p of length dim(B/p) with a chain of primes contained in p of length
ht(p) is a chain of primes of B of length ht(p) + dim(B/p). Hence it suffices to show
that ht(p) > dim(A).

AsnDp D mB and as ¢ is local, ¢~ !(p) = m. Since B is flat over A4, (14.11)
and induction yield a chain of primes of B descending from p and lying over any
given chain in A. Thus ht(p) > dim(A), as desired. |

EXERCISE (21.16). — Let R be a Noetherian ring. Prove that
dim(R[X]) = dim(R) + 1.
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EXERCISE (21.17). — Let A be a Noetherian local ring of dimension 7. Let m be
the maximal ideal, and k := A/m the residue class field. Prove that

r < dimy(m/m?),
with equality if and only if m is generated by r elements.

(21.18) (Regular local rings). — Let A be a Noetherian local ring of dimension r.
We say A is regular if its maximal ideal is generated by r elements. Then any r
generators are said to form a regular system of parameters.

By (21.17), A is regular if and only if 7 = dimy(m/m?).

For example, a field is a regular local ring of dimension 0, and is the only one.

LEMMA (21.19). — Let A be a Noetherian semilocal ring of dimension r, and q a
parameter ideal. Then deg h(Gq(R), n) =r — 1.

PROOF: By (20.8), degh(G4(A), r) is equal to 1 less than the order of pole at

1 of the Hilbert series H(G4(A), t). But that order is equal to d(A) by (21.2).
Further, d(A) = r by the Dimension Theorem, (21.4). Thus the assertion holds.
0

PROPOSITION (21.20). — Let A be a Noetherian local ring of dimension r, and m
its mazimal ideal. Then A is reqular if and only if its associated graded ring Gm(A)
is a polynomial ring; if so, then the number of variables is .

PROOF: Assume G(A) is a polynomial ring in s variables. Then dim(m/m?) = s.
By (20.4), degh(Gw(A), n) = s —1. So s = r by (21.19). So A is regular by
(21.18).

Conversely, assume A is regular. Let 1, ..., 2, be a regular sop, and 2} € m/m?
the residue of x;. Set k := A/m, and let P := k[X1,...,X,] be the polynomial
ring. Form the k-algebra homomorphism ¢: P — G(A) with p(X;) = z}.

Then ¢ is surjective as the z; generate G(A). Set a := Ker¢. Let P = @ P, be
the grading by total degree. Then ¢ preserves the gradings of P and G(A). So a
inherits a grading: a = @ a,,. So for n > 0, there’s this canonical exact sequence:

0—a, = P, = m"/m"" 0. (21.20.1)

Suppose a # 0. Then there’s a nonzero f € a,, for some m. Take n > m. Then
P,_mf Ca,. Since P is a domain, P,_,;, = P,_,, f. Therefore, (21.20.1) yields

dimy (m™/m"*1) = dimy, (P,,) — dimg(a,)

< dimy(Pp) — dimy(Py—m) = ('7'71+n) - (r71+n7m)‘

r—1 r—1
The expression on the right is a polynomial in n of degree r — 2.

On the other hand, dimy(m™/m"+1) = h(G(A), n) for n > 0 by (20.8). Further,
deg h(G(A), n) =r —1 by (21.19). However, it follows from the conclusion of the
preceding paragraph that deg h(G(A), n) < r — 2. We have a contradiction! Hence
a = 0. Thus ¢ is injective, so bijective, as desired. d

EXERCISE (21.21). — Let A be a Noetherian local ring of dimension r, and let

Z1,...,x5 € A with s < 7. Set a:= (x1,...,z5) and B := A/a. Prove equivalent:
(1) A is regular, and there are x44y1,...,z, € A with z1,..., 2, a regular sop.
(2) B is regular of dimension r — s.

THEOREM (21.22). — A regular local ring A is a domain.
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PROOF: Use induction on r := dim(A4). If r = 0, then A is a field, so a domain.
Assume r > 1. Let z be a member of a regular sop. Then A/(z) is regular of
dimension r — 1 by (21.21). By induction, A/(z) is a domain. So (z) is prime.
Thus A is a domain by (21.13). O

LEMMA (21.23). — Let A be a local ring, m its mazimal ideal, a a proper ideal.
Set n:=m/a and k := A/m. Then this sequence of k-vector spaces is exact:

0 — (m?+a)/m? = m/m? = n/n? - 0.

PRrROOF: The assertion is very easy to check. O
PROPOSITION (21.24). — Let A be a regular local ring of dimension r, and a an
ideal. Set B := A/a, and assume B is regular of dimension r —s. Then a is

generated by s elements, and any such s elements form part of a regular sop.

PROOF: In its notation, (21.23) yields dim((m? + a)/m?) = s. Hence, any set
of generators of a includes s members of a regular sop of A. Let b be the ideal the
s generate. Then A/b is regular of dimension r — s by (21.21). By (21.22), both
A/b and B are domains of dimension r — s; whence, (15.10) implies a = b. O
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Completion is used to simplify a ring and its modules beyond localization. First,
we discuss the topology of a filtration, and use Cauchy sequences to construct the
completion. Then we discuss the inverse limit, the dual notion of the direct limit;
thus we obtain an alternative construction. We conclude that, if we use the adic
filtration of an ideal, then the functor of completion is exact on finitely generated
modules over a Noetherian ring. Further, then the completion of a Noetherian ring
is Noetherian; if the ideal is maximal, then the completion is local. We end with a
useful version of the Cohen Structure Theorem for complete Noetherian local rings.

(22.1) (Topology and completion). — Let R be a ring, M a module equipped with
a filtration M = My D My D ---. Then M has a topology: the open sets are
the arbitrary unions of the sets m + M,. Indeed, the intersection of two open
sets is open, because the intersection of two unions is the union of the pairwise
intersections; further, if the intersection U of m + M,, and m’ + M, is nonempty
and if n > n/, then U = m + M,,, because, if say m” € U, then

m+ M, =m" +M, Cm" + M,y =m'+ M,. (22.1.1)
The addition map M x M — M, given by (m,m’) — m 4+ m’, is continuous, as
(m+ M)+ (m' + M,) C (m+m')+ M,.

So, with m’ fixed, the translation m — m + m’' is a homeomorphism M — M.

(Similarly, inversion m — —m is a homeomorphism; so M is a topological group.)
Let a be an ideal, and give R the a-adic filtration. If the filtration on M is an

a-filtration, then scalar multiplication (x,m) — xm too is continuous, because

(x +a™)(m+ M,) C xm + M,.

Further, if the filtration is a-stable, then it yields the same topology as the a-adic
filtration, because

M, Da"M D a" M, = My
Thus any two stable a-filtrations give the same topology, called the a-adic topol-
ogy.

When a is given, it is conventional to use the a-adic filtration and a-adic topology
unless there’s explicit mention to the contrary. Further, if R is semi-local, then it
is conventional to take a := rad(R).

Let N be a submodule of M. Then the closure N of N is equal to ), (N+My),
because m ¢ N means there’s n > 0 with (m + M,) NN =0, or m ¢ (N + M,,).
In particular, each M, is closed, and {0} is closed if and only if (| M,, = {0}.

Further, M is separated — that is, Hausdorff — if and only if {0} is closed.
For, if {0} is closed, then so is each {m}. Hence, given m’ # m, there’s n’ so that
m ¢ (m'+M,). Take n > n'. Then (m+ M,)N(m'+ M,/) = 0 owing to (22.1.1).

Finally, M is discrete— that is, every {m} is both open and closed— if and
only if {0} is open.

A sequence (my)n>0 in M is called Cauchy if, given ng, there’s ny with

My — My € My, or simply m, —m,y1 € My, forall n,n’ >ny;
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the two conditions are equivalent because My, is a subgroup and
My, — My = (mn - mn+1) + (mn+1 - mn+2) + o+ (mn’—l - mn’)-
An m € M is called a limit of (m,,) if, given ng, there’s ny with m —m,, € M,,
for all n > ny. If every Cauchy sequence has a limit, then M is called complete.
The Cauchy sequences form a module under termwise addition and termwise
scalar multiplication. The sequences with 0 as a limit form a submodule. The

quotient module is denoted M and is called the completion. There is a canonical
homomorphism, which carries m € M to the class of the constant sequence (m):
ki M — M by k(m):=(m).

It is straightforward to check that the notions of Cauchy sequence and limit
depend only on the topology. Similarly, Mis separated and complete with respect to
the filtration M = J/\/l\o D ]/Vfl D .-+, and k is the universal example of a continuous
homomorphism from M into a separated and complete, filtered module.

Again, let a be an ideal. Under termwise multiplication of Cauchy sequences, R
is a ring, k: R — Risa ring homomorphism, and M is an R-module. Further,
M+ M is a linear functor from ((R-mod)) to ((R-mod)).

For example, let k be a ring, and R := k[X3,...,X,] the polynomial ring in
r variables. Set a := (Xi,...,X,). Then a sequence (my)n>o of polynomials is
Cauchy if and only if, given ng, there’s n; such that, for all n > ny, the m,, agree
in degree less than ng. Thus Ris just the power series ring k[[X1,..., X,]].

For another example, take a prime integer p, and set a := (p). Then a sequence
(mn)n>o0 of integers is Cauchy if and only if, given ng, there’s ny such that, for all
n,n’ > ni, the difference m,, — m, is a multiple of p™. The completion of Z is
called the p-adic integers, and consists of the sums Y >~ zip® with 0 < z; < p.

PROPOSITION (22.2). — Let R be a ring, and a an ideal. Then @ C rad(R).

PROOF: Recall from (22.1) that Ris complete in the a-adic topology. Hence for
r€d, wehave 1/(1—x)=1+=x+2%+--- in R. Thus @ C rad(R) by (3.2). O
EXERCISE (22.3). — In the 2-adic integers, evaluate the sum 1 +2+44+84---.

EXERCISE (22.4). — Let R be a ring, a an ideal, and M a module. Prove the
following three conditions are equivalent:

1) k: M — M is injective; (2) ﬂa”M = (0); (3) M is separated.
COROLLARY (22.5). — Let R be a Noetherian ring, a C rad(R) an ideal, and M
a finitely generated module. Then M C M.

PROOF: The assertion results from (22.4), (18.28) or (20.19), and (3.2). O

(22.6) (Inverse limits). — Let R be a ring. Given modules @, equipped with

homomorphisms a;’“: Qnt1 — Qn for n > 0, their inverse limit lim @,, is the

submodule of [ Q,, of all vectors (g,) with a”*1(g,+1) = gn for all n. Note that
hm Q, = Ker(6) (22.6.1)

where 0: [][Qn — []@Qx is the map defined by 0(q,) := (gn — @ 1gni1).
Clearly, @Qn has this UMP: given maps Bn: P — Qn with o 8,11 = B,
there’s a unique map B: P — l'&i@n with 7,8 = By for all n.
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Further, the UMP yields these two natural module isomorphisms:

lim Hom(P, Q,,) = Hom(P, lim Q,),
@Hom(@n, N) = Hom(%ﬂQn, N).

(The notion of inverse limit is formally dual to that of direct limit.)

For example, let k be a ring, and R := k[X;,...,X,] the polynomial ring in r
variables. Set m := (Xy,..., X,) and R,, := R/m"™*l. Then R, is just the R-algebra
of polynomials of degree at most n, and the canonical map a”*!: R, 1 — R, is
just truncation. Thus @Rn is equal to the power series ring k[[ X1, ..., X;]].

For another example, take a prime integer p, and set Z, := Z/{p"*!). Then
Zy, is just the ring of sums Z?:o zp' with 0 < 2; < p, and the canonical map
ot Z, 1 — 7, is just truncation. Thus @Zn is just the ring of p-adic integers.

In general, consider exact sequences of modules

0= Q25 Qu 25 Q1 =0
and commutative diagrams

Brt1 Yn+1
/ "
0 — Qn+l I Qn+1 ? n+1 —0

rn41 n41 141

0— @ —2 Q@ —— Q) —0
Then the induced sequence
0 1im @, % lmQ, 2 lim Q! (22.6.2)

is exact; further, ¥ is surjective if all the /"1 are surjective.

Indeed, the above commutative diagrams yield the following one:

0 — T1Q, 1L mMe. I 17 — o

o]

0 — 1@, 12 M. I 117 -0

Owing to (22.6.1), the Snake Lemma (5.12) yields the exact sequence (22.6.2)
and an injection Coker(q) < Coker(¢'). Also, Coker(§) = 0 if the o/**! are surjec-
tive, because given (¢},) € [1Q), , we can solve the equations p,, — /" (p, 1) = ¢/,

recursively to get (p,) € [1Q), with '(p},) = (¢},). Thus 7 is surjective.

PROPOSITION (22.7). — Let R be a ring, M a module, M = My D My D -+ a
filtration. Then M - @(AI/Mn)

ProOF: First, let’s define a map a: M — w(AI/Mn) Given a Cauchy sequence
(my), let g, be the image of m,, in M/M,, for v > 0. Then g, is independent of v,
because the sequence is Cauchy. Clearly, ¢, is the residue of g,41 in M/M,. Also,
(my) has 0 as a limit if and only if g, = 0 for all n. Define a by a(m,) := (gn)-
Clearly, « is well defined, linear, and injective.

As to surjectivity, given (g,) € ]‘&n(]vf/Mn), let m, € M represent q, € M/M,
for each v. Then m, —m, € M, for ;1 > v because the residue of ¢, in M/M, is
g». Hence (m,) is Cauchy. Thus « is surjective, so an isomorphism. O
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EXERCISE (22.8). — Let A be a Noetherian semilocal ring, and my, ..., m,, all its
maximal ideals. Prove that A =[] Am,.
EXERCISE (22.9). — Let R be a ring, M a module, M = My D M; D --- a
filtration, and N C M a submodule. Filter N by N,, := NN M,,. Assume N D M,
for n > ng for some ng. Prove N C M and M /N = M/N and G(M ) = G(M).
EXERCISE (22.10). — (1) Let R be a ring, a an ideal. If G4(R) is a domain, show
R is an domain. If also ﬂnZO a™ =0, show R is a domain.

(2) Use (1) to give an alternative proof that a regular local ring is a domain.

PROPOSITION (22.11). — Let A be a ring, m a mazimal ideal. Then A is a local
ring with mazimal ideal m.

PROOF: First, A\/ﬁ = A/m by (22.9); so m is maximal. Next, rad(;l\) D m by
(22.2). Finally, let m’ be any maximal ideal of A. Then m’ D rad(A4). Hence

m’ = m. Thus m is the only maximal ideal. O
EXERCISE (22.12). — Let A be a semilocal ring, my, ..., m,, all its maximal ideals,
and set m := rad(A4). Prove that A is a semilocal ring, that mi,...,M,, are all its

maximal ideals, and that m = rad(4).

(22.13) (Completion, units, and localization). — Let R be a ring, a an ideal, and
k: R — R the canonical map. Given ¢t € R, for each n denote by ¢, € R/a™ the
residue of t. Let’s show that x(t) is a unit if and only if each t,, is.

Indeed, by (22.7), we may regard R as a submodule of [1R/a™. Then each ¢,
is equal to the projection of k(t). Hence t,, is a unit if x(¢) is. Conversely, assume
t,, is a unit for each n. Then there are u, € R with u,t = 1 (mod a™). By the
uniqueness of inverses, up+1 = u, in R/a™ for each n. Set u := (u,) € [[R/a™.
Then u € R, and ux(t) = 1. Thus x(t) is a unit.

Set T := x~'(R*). Then by the above, T consists of the t € R whose residue
t, € R/a™ is a unit for each n. So (2.29) and (1.8) yield

T ={t € R |t lies in no maximal ideal containing a }. (22.13.1)
Set S :=14a. Then S C T owing to (22.13.1) as no maximal ideal can contain
both z and 1 + x. Hence the UMP of localization (11.6) yields this diagram:
R

Sasl m §
SR~ T'R — R
Further, S and 7" map into (R/a™)*; hence, (11.7), (11.22), and (12.18) yield:
R/a"=S7'R/a"ST'R=T"'R/a"T~'R.
Therefore, R is, by (22.7), equal to the completion of each of S™'R and T~'R in
their aS—!R-adic and a7 ~!R-adic topologies.

For example, take a to be a maximal ideal m. Then "= R — m by (22.13.1).
Thus R is equal to the completion of the localization Ry,.

Finally, assume R is Noetherian. Let’s prove that o and T are injective. Indeed,
say To(x/s) = 0. Then k(z) = 0 as k(s) is a unit. So = € ()a”. Hence the
Krull Intersection Theorem, (18.28) or (20.19), yields an s’ € S with s’z = 0. So
x/s=0in S~'R. Thus o is injective. Similarly, 7 is injective.
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THEOREM (22.14) (Exactness of completion). Let R be a Noetherian ring, a
an ideal. Then on the finitely generated modules M, the functor M — M is exact.

PrOOF: Let 0 - M’ — M — M"” — 0 be an exact sequence of modules. Set
M), := M’ Nna™M. Then we obtain these exact sequences:
0— MM, — M/a"M — M" /a" M" — 0.
The maps M’ /M), | — M'/M], are surjective. So (22.6) yields this exact sequence:
0— @M//M{L — Jm M/a" M — lim M" /a™ M"" — 0.
Assume R is Noetherian and M is finitely generated. Then M’ = M} > M{ D ---

is an a-stable filtration by the Artin-Rees Lemma (20.18). Hence, (22.1) and
(22.7) yield the desired exactness of the sequencce 0 — M’ - M — M"” — 0. O

EXERCISE (22.15). — Let A be a Noetherian semilocal ring. Prove that an element
x € A is a nonzerodivisor if and only if its image Z € A is also.

EXERCISE (22.16). — Let p € Z be prime. For n > 0, define a Z-linear map
an: Z/(p) = Z/(p") by an(l)=p""".
Set A:= D, >, Z/(p) and B :=D,>, Z/(p"). Set a =D an;soa: A— B.

(1) Show that the p-adic completion Ais just A.
(2) Show that, in the topology on A induced by the p-adic topology on B, the
completion A is equal to [[>7 ; Z/(p).
(3) Show that the natural sequence of p-adic completions
0->A% BE (B/A)”
is not exact at B. (Thus p-adic completion is not right-exact on ((Z-mod)).)

COROLLARY (22.17). — Let R be a Noetherian ring, a an ideal, and M a finitely
generated module. Then the natural map is an isomorphism:

R®M = M.
PROOF: By (22.14), the functor M M is exact on the category of finitely
generated modules, and so (8.16) yields the conclusion. O

EXERCISE (22.18). Let R be a ring, a an ideal. Show that M +— M preserves
surjections, and that R ® M — M is surjective if M is finitely generated.

COROLLARY (22.19). — Let R be a Noetherian ring, a and b ideals, M a finitely
generated module. Then, using the a-adic topology, we have

(1) (bM) =bM =bM and (2) (b") =b"R = (bR)" = (b)" for any n > 0.
PROOF: In general, the inclusion bM — M induces a commutative square
R® (bM) — Ro M

l |

(6M) —— M

It is not hard to see that top map’s image is b(ﬁ ® M).
In the present case, the two vertical maps are isomorphisms by (22.17), and the
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bottom map is injective by (22.14). Thus (bM) = bMM.

Taking R for M yields b = bR. Hence bA = bR M = b M. Thus (1) holds.

In (1), taking b" for b and R for M yields (b") = b"R. In particular, b = bR;
so (bR)™ = (b)". But b"R’ = (bR')" for any R-algebra R’. Thus (2) holds. O

COROLLARY (22.20). — Let R be a Noetherian ring, a an ideal. Then R is flat.

PROOF: Let b be any ideal. Then R®b = b by (22.17), and b = bR by
(22.19)(2). Thus R is flat by the Ideal Criterion (9.20). O

EXERCISE (22.21). — Let R be a Noetherian ring, and a and b ideals. Assume
a C rad(R), and use the a-adic topology. Prove b is principal if bR is.

LEMMA (22.22). — Let R be a ring, 8: M — N a map of filtered modules (so B
preserves the filtration). If G(B) is injective or surjective, then so is 3.

ProoF: Consider the following commutative diagram of exact sequences:
0— M, /My+1 — M/Mp+1 — M/M, — 0

Gn(ﬁ)l ﬂn-f—ll Enl

0 — N,/Npt+1 — N/Npy1 — N/N, — 0

Apply the Snake Lemma (5.12). It yields the following exact sequence:
Ker G, (8) — Ker 8,41 — Ker 3, — Coker G,,(8) — Coker 3,1 — Coker 3,,.

Assume G(B) is injective. Then Ker G, (8) = 0. Hence induction on n yields
Ker 5, = 0 for all n. Thus E is injective by (22.6).

Assume G(f) is surjective. Then Coker G, (8) = 0. So Ker 5,411 — Ker 3, is
surjective for all n. Also, induction on n yields Coker §8,, = 0 for all n; that is,

0 — Ker B, — M/M, 2% N/N, — 0

is exact. Thus B is surjective by (22.6). a

LEMMA (22.23). — Let R be a complete ring, M a separated module. If G(M) is
finitely generated over G(R), then M is finitely generated over R and complete.

PROOF: Take finitely many homogeneous generators of G(M). Lift them to M.
The lifts define a map a: R® — M, and G(«a) is surjective. So & is surjective by
(22.22). Now, form this canonical commutative diagram:

KRn

RTL ETL
| &
M My A

Since R is complete, kpn is surjective by (22.1). Since M is separated, rps is
injective by (22.4). Hence k) is an isomorphism and « is surjective, as desired. 0O

EXERCISE (22.24) (Nakayama’s Lemma for a complete ring). — Let R be a ring,
a an ideal, and M a module. Assume R is complete, and M separated. Show
mi,...,my € M generate if their images in M/aM generate.

PROPOSITION (22.25). Let R be a complete ring, M a separated module. If
G(M) is a Noetherian G(R)-module, then M is a complete Noetherian R-module.
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PROOF: Given a submodule N C M, set N, := M,, " N. Then G(N) C G(M).
As G(M) is Noetherian, G(N) is finitely generated. Hence N is finitely generated
and complete by (22.23). Thus M is Noetherian and complete. a

THEOREM (22.26). Let R be a ring, a an ideal. If R is Noetherian, so is R.

PROOF: Assume R is Noetherian. Then G(R) is finitely generated as an (R/a)-
algebra by (20.12). So G(R) is Noetherian by the Hilbert Basis Theorem, (16.11).
But G(R) = G(R) by (22.9). Hence R is Noetherian by (22.25) with R for R and

for M. d
EXAMPLE (22.27). — Let k be a Noetherian ring, P := k[Xq,...,X,] the poly-
nomial ring, and A := k[[X1, ..., X,]] the formal power series ring. Then A is the

completion of P in the (Xi,..., X, )-adic topology by (22.1). Further, P is Noe-
therian by the Hilbert Basis Theorem, (20.12). Thus A is Noetherian by (22.26).
Assume k is a domain. Then A is a domain. Indeed, A is one if r = 1, because

(am X"+ ) Ou X+ ) = ambp X7 4+
If r > 1, then A =k[[Xq,..., Xi]] [[Xit1,--., X,]]; so A is a domain by induction.
Set p; := (Xit1,...,X,). Then A/p; = k[[X1,...,X;]] by (3.7). Hence p; is
prime. So 0 =p, G --- G po is a chain of primes of length r. Thus dim(A4) > 7.
Assume k is a field. Then A is local with mazimal ideal (X1,...,X,) and with
residue field k by the above and either by (22.11) or again by (3.7). Therefore,
dim(A) < r by (21.17). Thus A is regular of dimension r.

EXERCISE (22.28). — Let A be a Noetherian local ring, m the maximal ideal.
Prove (1) that A is a Noetherian local ring with m as maximal ideal, (2) that
dim(A) = dim(A ), and (3) that A is regular if and only if A is regular.

THEOREM (22.29) (UMP of Formal Power Series). — Let R be a ring, R’ an
R-algebra, b an ideal of R', and x1,...,x, € b. Let P := R[[X1,...,X,]] be the
formal power series ring. If R’ is separated and complete, then there is a unique
R-algebra map w: P — R with n(X;) = z; for 1 <i <n.

PROOF: For each m, there’s a unique R-algebra map R[Xq,...,X,] — R'/b™
sending X; to the residue of x;. This map induces a map

P/(X1, ... X)) = R[X1, ..., Xu]/(X1,. .. Xo)™ — R/ /6™,
Taking inverse limits yields 7 owing to (22.6) and (22.7). O

THEOREM (22.30) (Cohen Structure). — Let A be a complete Noetherian local
ring with maximal ideal m. Assume that A contains a coefficient field k; that
is, k = A/m. Then A ~ k[[X1,...,X,]]/a for some variables X; and ideal a.
Further, if A is regular of dimension r, then A ~ k[[X1,..., X;]].

ProOF: Take generators x1,...,z, € m. Let m: k[[X1,...,X,]] = A be the
map with 7(X;) = x; of (22.29). Then G() is surjective. Hence, 7 is surjective
by (22.22). Set a := Ker(m). Then k[[Xq,...,X,]]/a = A.

Assume A is regular of dimension r. Take n = r. Then G(A) is a polynomial
ring in r variables over k by (21.20). And G(k[[X1,...,X,]]) is too by (22.6).
Since G(7) is surjective, its kernel is a minimal prime, so equal to (0). Hence G(r)
is bijective. So 7 is bijective by (22.22). Thus k[[X1,..., X;]] = A. O
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23. Discrete Valuation Rings

A discrete valuation is a homomorphism from the multiplicative group of a field
to the additive group integers such that the value of a sum is at least the minimum
value of the summands. The corresponding discrete valuation ring consists of the
elements whose values are nonnegative, plus 0. We characterize these rings in
various ways; notably, we prove they are the normal Noetherian local domains of
dimension 1. Then we prove that any normal Noetherian domain is the intersection
of all the discrete valuation rings obtained by localizing at its height-1 primes.
Finally, we prove Serre’s Criterion for normality of Noetherian domains.

(23.1) (Discrete Valuations). — Let K be a field. We define a discrete valuation
of K to be a surjective function v: K* — Z such that, for every z,y € K*,

(1) () = v(@) +o(y), (2) vz +y) = minfo(@), v(y)} o £ —y. (23.1.1)
Condition (1) just means v is a group homomorphism. Hence, for any = € K*,
(1) v(1) =0 and (2) v(z™') = —v(x). (23.1.2)

As a convention, we define v(0) := co. Consider the sets
A={zeK|v(x)>0} and m:={ze K |v(z)>O0}.

Clearly, A is a subring, so a domain, and m is an ideal. Further, m is nonzero as v
is surjective. We call A the discrete valuation ring (DVR) of v.

Notice that, if x € K, but z ¢ A, then 27! € m; indeed, v(z) < 0, and so
v(@~1) = —v(z) > 0. Hence, Frac(A) = K. Further,

A ={ze K|v(x)=0}=A—-m.

Indeed, if z € A%, then v(z) > 0 and —v(z) = v(z~1) > 0; so v(x) = 0. Conversely,
if v(z) = 0, then v(z~!) = —v(z) = 0; so 27! € A, and so z € A*. Therefore, by
the nonunit criterion, A is a local domain, not a field, and m is its mazximal ideal.
An element ¢t € m with v(t) = 1 is called a (local) uniformizing parameter.
Such a t is irreducible, as t = ab with v(a) > 0 and v(b) > 0 implies v(a) = 0 or
v(b) = 0 since 1 = v(a) 4+ v(b). Further, any x € K> has the unique factorization
x = ut"™ where u € A* and n := v(z); indeed, v(u) = 0 as u = xt~™. In particular,
t; is uniformizing parameter if and only if ¢; = ut with u € A*; also, A is a UFD.
Moreover, A is a PID; in fact, any nonzero ideal a of A has the form

a=(t") where m:=min{v(z)|x€a}. (23.1.3)

Indeed, given a nonzero = € a, say x = ut” where u € A*. Then " € a. Son > m.
Set y := ut"~"™. Then y € A and = = yt™, as desired.
In particular, m = (t) and dim(A4) = 1. Thus A is regular local of dimension 1.

EXAMPLE (23.2). — The prototype is this example. Let k be a field, ¢ a variable,
and K := k((t)) the field of formal Laurent series © := .o a;t’ with n € Z and
with a; € k and a, # 0. Set v(z) := n, the “order of vanishing” of z. Clearly, v is
a discrete valuation, the formal power series ring k[[t]] is its DVR, and m := (t) is
its maximal ideal.

The preceding example can be extended to cover any DVR A that contains a
field k£ with k = A/(t) where t is a uniformizing power. Indeed, A is a subring
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of its completion A by (22.5), and A = k[[t]] by the proof of the Cohen Structure
Theorem (22.30). Further, clearly, the valuation on A restricts to that on A.

A second old example is this. Let p € Z be prime. Given x € Q, write x = ap™/b
with a,b € Z relatively prime and prime to p. Set v(z) := n. Clearly, v is a discrete
valuation, the localization Z, is its DVR, and pZ, is its maximal ideal. We call
v the p-adic valuation of Q.

LEMMA (23.3). — Let A be a local domain, m its mazimal ideal. Assume that m
is nonzero and principal and that (), m" =0. Then A is a DVR.

ProOF: Given a nonzero x € A, there is an n > 0 such that © € m” — m"*%,
Say m = (t). Then z = ut", and u ¢ m, so u € A*. Set K := Frac(A). Given
x € K*, write x = y/z where y = bt™ and z = ctF with b,c € AX. Then 2 = ut”
with u := b/c € A* and n := m —k € Z. Define v: K* — Z by v(z) := n. If
ut™ = wt with n > h, then (u/w)t" " =1, and so n = h. Thus v is well defined.

Since v(t) = 1, clearly v is surjective. To verify (23.1.1), take 2 = ut"™ and
y = wt" with u,w € AX. Then zy = (uw)t"*". Thus (1) holds. To verify (2), we
may assume n > h. Then z +y = t" (ut” " 4+ w). Hence

v(z +y) > h =min{n, h} = min{v(z), v(y)}.

Thus (2) holds. So v: K* — Z is a valuation. Clearly, A is the DVR of v. O
(23.4) (Depth). Let R be a ring, M a nonzero module, and z1,...,z, € R. Set
M; = M/{z1,...,2;). We say the sequence z1,...,z, is regular on M, or is an

M-sequence, and call n its length if M,, # 0 and z; ¢ z.div(M,_;) for all i.

We call the supremum of the lengths n of the M-sequences found in an ideal a the
depth of a on M, and denote it by depth(a, M). By convention, depth(a, M) =0
means a contains no nonzerodivisor on M.

When M is semilocal, we call the depth of rad(M) on M simply the depth
of M and denote it by depth(M). If depth(M) = dim(M), we call M Cohen—
Macaulay.

LEMMA (23.5). — Let A be a Noetherian local Ting, m its mazimal ideal, and M
a nonzero finitely generated module.

(1) Then depth(M) =0 if and only if m € Ass(M).

(2) Then depth(M) = 1 if and only if there is an x € m with x ¢ z.div(M) and
m € Ass(M/zM).

(3) Then depth(M) < dim(M).

Proor: Consider (1). If m € Ass(M), then it is immediate from the definitions
that m C z.div(M) and so depth(M) = 0.

‘1Conversely, assume depth(M) = 0. Then m C z.div(). Since A is Noetherian,
2.div(M) = Upeass(ar) P by (17.14). Since M is also finitely generated, Ass(M) is
finite by (17.20). Hence m = p for some p € Ass(M) by Prime Avoidance, (3.15).

Consider (2). Assume depth(M) = 1. Then there is an M-sequence of length 1,
but none longer. So there is an x € m with « ¢ z.div(M) and depth(M/zM) = 0.
Then m € Ass(M/xM) by (1).

Conversely, assume there is © € m with ¢ z.div(M). Then depth(M) > 1 by
definition. Assume m € Ass(M/xM). Then given any y € m with y ¢ z.div(M),
also m € Ass(M/yM) by (17.25). So depth(M/yM) = 0 by (1). So there is no
z € m such that y, z is an M-sequence. Thus depth(M) < 1. Thus depth(M) = 1.
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Consider (3). Given any M-sequence Z1,. .., Ty, set M; := M/{(z1,...,2;). Then
dim(M;41) = dim(M;) — 1 by (21.5). Hence dim(M) — n = dim(M,,) > 0. But
depth(M) := sup{n}. Thus (3) holds. a

EXERCISE (23.6). — Let R be a ring, M a module, and z,y € R.

(1) Prove that, if z,y form an M-sequence, then, given any m,n € M such that
xm = yn, there exists p € M such that m = yp and n = zp.

(2) Prove the converse of (1) if R is local, and x, y lie in its maximal ideal m, and
M is Noetherian.

EXERCISE (23.7). — Let R be a local ring, m its maximal ideal, M a Noetherian
module, x1,...,2, € m, and o a permutation of 1,...,n. Assume x1,...,xz, form
an M-sequence, and prove Zs1, ..., Ty, do too; first, say o transposes ¢ and i + 1.

EXERCISE (23.8). — Prove that a Noetherian local ring A of dimension r > 1 is
regular if and only if its maximal ideal m is generated by an A-sequence.

THEOREM (23.9) (Characterization of DVRs). — Let A be a local ring, m its
mazimal ideal. Assume A is Noetherian. Then these five conditions are equivalent:

(1) A is a DVR.

(2) A is a normal domain of dimension 1.
(3) A is a normal domain of depth 1.

(4) A is a regular local ring of dimension 1.
(5) m is principal and of height at least 1.

PROOF: Assume (1). Then A is UFD by (23.1); so A is normal by (10.28).
Further, A has just two primes, (0) and m; so dim(A) = 1. Thus (2) holds. Further,
(4) holds by (23.1). Clearly, (4) implies (5).

Assume (2). Take a nonzero z € m. Then A/(x) # 0, so Ass(A/(x)) # 0 by
(17.12). Now, A is a local domain of dimension 1, so A has just two primes, (0)
and m. Clearly, (0) ¢ Ass(A/(x)). Hence, m € Ass(A/(z)). Thus (3) holds.

Assume (3). By (23.5)(2), there are =,y € m such that = is nonzero and y has
residue § € A/(z) with m = Ann(y). So ym C (z). Set z := y/x € Frac(A). Then
zm = (ym)/z C A. Suppose zm C m. Then z is integral over A by (10.18). But
A is normal, so z € A. So y = zx € (x), a contradiction. Hence, 1 € zm; so there
is t € m with 2t = 1. Given w € m, therefore w = (wz)t with wz € A. Thus m is
principal. Finally, ht(m) > 1 because z € m and x # 0. Thus (5) holds.

Assume (5). The Krull Intersection Theorem (18.28) yields an z € m with
(I+2z)(Ym™ =0. Then 1 +2 € A*. So (Ym™ = 0. Further, A is a domain by
(21.13)(1). Hence (1) holds by (23.3). O

EXERCISE (23.10). — Let A be a DVR with fraction field K, and f € A a nonzero
nonunit. Prove A is a maximal proper subring of K. Prove dim(A) # dim(Ay).

EXERCISE (23.11). — Let & be a field, P := k[X, Y] the polynomial ring in two
variables, f € P an irreducible polynomial. Say f = ((X,Y) + ¢(X,Y) with
UX,Y) = aX + bY for a,b € k and with g € (X,Y)2. Set R := P/{f) and
p:= (X,Y)/(f). Prove that R, is a DVR if and only if £ # 0. (Thus R, is a DVR
if and only if the plane curve C : f = 0 C k? is nonsingular at (0,0).)
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EXERCISE (23.12). Let k be a field, A a ring intermediate between the poly-
nomial ring and the formal power series ring in one variable: k[X] C A C k[[X]].
Suppose that A is local with maximal ideal (X). Prove that A is a DVR. (Such
local rings arise as rings of power series with curious convergence conditions.)

EXERCISE (23.13). — Let L/K be an algebraic extension of fields, X1,..., X,
variables, P and @) the polynomial rings over K and L in X1,...,X,.
(1) Let g be a prime of @, and p its contraction in P. Prove ht(p) = ht(q).
(2) Let f,g € P be two polynomials with no common prime factor in P. Prove
that f and g have no common prime factor g € Q.

(23.14) (Serre’s Conditions). — Let R be a Noetherian ring. We say Serre’s
Condition (R,,) holds if, for any prime p of height m < n, the localization R, is
regular of dimension m. We say Serre’s Condition (S,,) holds if, for any prime p
of any height m, the depth of p on R, is at least min{m, n}, or equivalently, if

depth(Rp) > min{dim(Ry), n}

as T1,...,T, € pis an Rp-sequence if and only if x1/t;,. ..,z /t, is for any ¢; ¢ p.
For example, (Ro) holds if and only if Ry, is a field for any minimal prime p. Also,
(R1) holds if and only if (Rg) does and R, is a DVR for any p of height-1.
Note depth(Rp) < dim(R,) by (23.5)(3). Hence (S,,) holds if and only if R, is
Cohen-Macaulay when depth(R,) < n. In particular, (S;) holds if and only if p is
minimal when p € Ass(R) by (17.14); that is, there are no embedded primes.

EXERCISE (23.15). — Let R be a Noetherian ring. Show that R is reduced if and
only if (Ro) and (S1) hold.

LEMMA (23.16). — Let R be a Noetherian domain. Set
O :={p prime | ht(p) =1} and X :={p prime|depth(R,) =1}.
Then ® C X, and ® =X if and only if (S2) holds. Further, R = ﬂpez R,.

PROOF: Given p € @, set q := pRy,. Take 0 # = € q. Then q is minimal over (z).
So q € Ass(R,/(z)) by (17.17). Hence depth(R,) =1 by (23.5)(2). Thus ® C X.

However, (S1) holds by (23.15). Hence (S2) holds if and only if ® D ¥. Thus
® =¥ if and only if R satisfies (S2).

Further, R C R, for any prime p by (11.4); so R C ﬂpez R,. As to the opposite
inclusion, take an x € ﬂpeE R,. Say x = a/b with a,b € R and b # 0. Then
a € bR, for allp € . But p € ¥ if p € Ass(R,/bR;,) by (23.5)(2). So a € bR by
(18.25). Thus z € R, as desired. O
THEOREM (23.17). — Let R be a normal Noetherian domain. Then

R={\ycq Ry where @:={p prime|ht(p)=1}.

PROOF: As R is normal, so is R}, for any prime p by (11.31). So depth(R,) =1
if and only if dim(R,) = 1 by (23.9). Thus (23.16) yields the assertion. O

THEOREM (23.18) (Serre’s Criterion). — Let R be a Noetherian domain. Then R
is normal if and only if (R1) and (S3) hold.
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PROOF: As R is a domain, (Rg) and (S:) hold by (23.15). If R is normal, then
so is Ry for any prime p by (11.31); whence, (R;) and (S2) hold by (23.9).

Conversely, assume R satisfies (R1) and (S2). Let x be integral over R. Then
x is integral over R, for any prime p. Now, R, is a DVR for all p of height 1 as
R satisfies (R1). Hence, z € R, for all p of height 1, so for all p of depth 1 as R
satisfies (S2). So x € R owing to (23.16). Thus R is normal. O

EXAMPLE (23.19). — Let k be an algebraically closed field, P := k[X,Y] the
polynomial ring in two variables, f € P irreducible. Then dim(P) = 2 by (15.12).
Set R := P/{f). Then R is a domain.

Let p C R be a nonzero prime. Say p = m/(f). Then 0 & (f) & m is a chain of
primes of length 2, the maximum. Thus m is maximal, and dim(R) = 1.

Hence m = (X — a,Y — b) for some a,b € k by (15.5). Write

FX.Y) = 0f/0X (a,0)(X — a) + 0f /O (a,b)(Y —b) + g

where g € m2. Then R, is a DVR if and only if 9f/9X (a,b) and 8f/9Y (a,b)
are not both equal to zero owing to (23.11) applied after making the change of
variables X’ := X —aqand Y’ :=Y —b.

Clearly, R satisfies (S2). Further, R satisfies (R1) if and only if R, is a DVR
for every nonzero prime p. Hence, by Serre’s Criterion, R is normal if and only if
0f/0X and f/0Y do not both belong to any maximal ideal m of P containing f.
(Put geometrically, R is normal if and only if the plane curve C : f = 0 C k? is
nonsingular everywhere.) Thus R is normal if and only if (f, /90X, 9f/0Y) = 1.

EXERCISE (23.20). — Prove that a Noetherian domain R is normal if and only if,
given any prime p associated to a principal ideal, pR,, is principal.

EXERCISE (23.21). — Let R be a Noetherian ring, K its total quotient ring,
®:={pprime |ht(p) =1} and X := {p prime|depth(R,)=1}.
Assuming (S7) holds in R, prove ® C ¥, and prove ® = X if and only if (S3) holds.
Further, without assuming (S;) holds, prove this canonical sequence is exact:

R— K = [[,ex Kp/Ry. (23.21.1)
EXERCISE (23.22). — Let R be a Noetherian ring, and K its total quotient ring.
Set @ := {p prime | ht(p) = 1 }. Prove these three conditions are equivalent:

(1) R is normal.
(2) (R1) and (S2) hold.
(3) (R1) and (Sy) hold, and R — K — [] .4 Kp/Ry is exact.
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Dedekind domains are defined as the normal Noetherian domains of dimension 1.
We prove they are the Noetherian domains whose localizations at nonzero primes
are discrete valuation rings. Next we prove the Main Theorem of Classical Ideal
Theory: in a Dedekind domain, every nonzero ideal factors uniquely into primes.
Then we prove that a normal domain has a module-finite integral closure in any
finite separable extension of its fraction field by means of Artin’s Character Theorem
and the trace pairing of a separable extension. We conclude that a ring of algebraic
integers is a Dedekind domain and that, if a domain is a finitely generated algebra
over a field of characteristic 0, then in any algebraic extension of its fraction field —
in particular, in the fraction field itself — the integral closure is a finitely generated
module over the domain and is a finitely generated algebra over the field.

DEFINITION (24.1). — A domain R is said to be Dedekind if it is Noetherian,
normal, and of dimension 1.

EXAMPLE (24.2). — Examples of Dedekind domains include the integers Z, the
Gaussian integers Z[ V-1 ], the polynomial ring k[X] in one variable over a field,
and any DVR. Indeed, those rings are PIDs, and every PID R is a Dedekind domain:
R is Noetherian by definition; R is a UFD, so normal by Gauss’s Theorem, (10.28);
and R is of dimension 1 since every nonzero prime is maximal by (2.23).

On the other hand, any local Dedekind domain is a DVR by (23.9).

EXAMPLE (24.3). — Let d € Z be a square-free integer. Set R := Z + Zn where

_Ja+Vay2 ifd=1 (mod 4);
e Vd if not.

Then R is the integral closure of Z in Q(v/d) by [1, Prp.(6.14), p.412]; so R
is normal. Also, dim(R) = dim(Z) by (15.11); so dim(R) = 1. Finally, R is
Noetherian by (16.11) as Z is so and as R := Z + Zn. Thus R is Dedekind.

EXAMPLE (24.4). — Let k be an algebraically closed field, P := k[X,Y] the
polynomial ring in two variables, f € P irreducible. By (23.19), R is a Noetherian
domain of dimension 1, and R is Dedekind if and only if (f, 9f/0X, 0f/0Y) = 1.

EXERCISE (24.5). — Let R be a domain, S a multiplicative subset.

(1) Assume dim(R) = 1. Prove dim(S~!'R) = 1 if and only if there is a nonzero
prime p with pN .S = 0.

(2) Assume dim(R) > 1. Prove dim(R) = 1 if and only if dim(R,) = 1 for every
nonzero prime p.

EXERCISE (24.6). — Let R be a Dedekind domain, S a multiplicative subset.
Prove S7!R is a Dedekind domain if and only if there’s a nonzero prime p with
pNS=0.

PROPOSITION (24.7). — Let R be a Noetherian domain, not a field. Then R is a
Dedekind domain if and only if Ry is a DVR for every nonzero prime p.
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PRrOOF: If R is Dedekind, then R, is too by (24.6); so R, is a DVR by (23.9).
Conversely, suppose R, is a DVR for every nonzero prime p. Then, trivially, R
satisfies (R1) and (S2); so R is normal by Serre’s Criterion. Since R is not a field,
dim(R) > 1; whence, dim(R) = 1 by (24.5)(2). Thus R is Dedekind. O

EXERCISE (24.8). — Let R be a Dedekind domain, and a, b, ¢ ideals. By first
reducing to the case that R is local, prove that

an(b+c)=(anb)+ (anc),
a+(bNe)=(a+b)N(a+c).

PROPOSITION (24.9). — In a Noetherian domain R of dimension 1, every ideal
a # 0 has a unique factorization a = qq - - - q, with the q; primary and their primes
p; distinct; further, {p1,...,p,} = Ass(R/a) and q; = aR,, N R for each i.

PRrOOF: The Lasker—Noether Theorem, (18.20), yields an irredundant primary
decomposition a = [ ¢;. Say q; is p;-primary. Then by (18.18) the p; are distinct
and {p;} = Ass(R/a).

The q; are pairwise comaximal for the following reason. Suppose q; + q; lies in
a maximal ideal m. Now, p; := ,/q; by (18.5); so p;"* C q; for some n; by (3.25).
Hence p'* C m. So p; C m by (2.2). But 0 # a C p;; hence, p; is maximal since
dim(R) = 1. Therefore, p; = m. Similarly, p; = m. Hence ¢ = j. Thus the q; are
pairwise comaximal. So the Chinese Remainder Theorem, (1.13), yields a = [T, g;.

As to uniqueness, let a = [] q; be any factorization with the ¢; primary and their
primes p; distinct. The p; are minimal containing a as dim(R) = 1; so the p; are
associated primes by (17.17). By the above reasoning, the g; are pairwise comax-
imal and so [[q; = () q:;. Hence a = () q; is an irredundant primary decomposition
by (18.18). So the p; are unique by the First Uniqueness Theorem, (18.19), and
q; = aRp,NR by the Second Uniqueness Theorem, (18.24), and by (12.15)(3). O

THEOREM (24.10) (Main Theorem of Classical Ideal Theory). — Let R be a do-
main. Assume R is Dedekind. Then every nonzero ideal a has a unique factoriza-
tion into primes p. In fact, if v, denotes the valuation of Ry, then

a= Hp”"(“) where  vp(a) :==min{vy(a) |a € a}.

PRrOOF: Using (24.9), write a = [] q; with the g; primary, their primes p; dis-
tinct and unique, and q; = aRp, N R. Then Ry, is a DVR by (24.7). So (23.1.3)
yields aR,, = p;" R,, with m; := min{vy,(a/s) | « € aand s € R —p; }. But
vp; (1/s) = 0. So vy, (a/s) = vy, (a). Hence m; := min{ vy, (a) | a € a}. Now, p™
is primary by (18.10) as p; is maximal; so p;"" R,, N R = p;"* by (18.22). Thus
qi = p;". 0

COROLLARY (24.11). A Noetherian domain R of dimension 1 is Dedekind if
and only if every primary ideal is a power of its radical.

ProoF: If R is Dedekind, every primary ideal is a power of its radical by (24.10).

Conversely, given a nonzero prime p, set m := pR,. Then m # 0. So m # m? by
Nakayama’s Lemma. Take ¢t € m — m?. Then m is the only prime containing ¢, as
dim(R,) = 1 by (24.5)(2). So tR, is m-primary by (18.10). Set q := tR, N R.
Then q is p-primary by (18.8). So q = p” for some n by hypothesis. But qR, = tR,
by (11.17)(3)(b). So tR, = m". But t ¢ m2. Son = 1. So R, is a DVR by (23.9).
Thus R is Dedekind by (24.7). O
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EXERCISE (24.12). — Prove that a semilocal Dedekind domain A is a PID. Begin
by proving that each maximal ideal is principal.

EXERCISE (24.13). — Let R be a Dedekind domain, a and b two nonzero ideals.
Prove (1) every ideal in R/a is principal, and (2) b is generated by two elements.

LEMMA (24.14) (E. Artin). — Let L be a field, G a group, o;: G — L* distinct
homomorphisms. Then the o; are linearly independent over L in the vector space
of set maps o: G — L under valuewise addition and scalar multiplication.

PROOF: Suppose there’s an equation 27;1 a;o; = 0 with nonzero a; € L. Take
m > 1 minimal. Now, o; # 0 as 0;: G — L*; so m > 2. Since 01 # o9, there’s an
z € G with 01(x) # o2(z). Then Y 1" a;04(2)0i(y) = > ieq aioi(zy) = 0 for every
y € G since o0; is a homomorphism.

Set 7;(z) := 1 — o;(x)/o1(z). Then

m m 1 m
. R . e —0.
; a;7;(x)o; ; a;o; @) ; a;oi(r)o;

But 71 (z) = 0 and 7»(x) # 0, contradicting the minimality of m. O
(24.15) (Trace). — Let L/K be a finite Galois field extension. Its trace is this:
tr: L - K by tr(z):= Z o(z).

o€Gal(L/K)

Clearly, tr is K-linear. It is nonzero by (24.14) applied with G := L*.
Consider the symmetric K-bilinear Trace Pairing:

LxL—K by (z,y)— tr(zy). (24.15.1)

It is nondegenerate for this reason. Since tr is nonzero, there is a z € L with
tr(z) # 0. Now, given x € L™, set y := z/z. Then tr(zy) # 0, as desired.

LEMMA (24.16). — Let R be a normal domain, K its fraction field, L/K a finite
Galois field extension, and x € L integral over R. Then tr(z) € R.

PROOF: Let 2™ + a;2™ ! +--- 4+ a, = 0 be an equation of integral dependence
for z over R. Let o € Gal(L/K). Then

(o) +ar(ox)" 4+ +a, =0;
so oz is integral over R. Hence tr(z) is integral over R, and lies in K. Thus

tr(z) € R since R is normal. O

THEOREM (24.17) (Finiteness of integral closure). — Let R be a normal Noether-
ian domain, K its fraction field, L/ K a finite separable field extension, and R’ the
integral closure of R in L. Then R’ is module finite over R.

PROOF: Let Ly be the Galois closure of L/K, and R} the integral closure of R
in Ly. Let z1,...,2, € Ly form a K-basis. Using (11.24), write z; = y;/a; with
yi € R} and a; € R. Clearly, y1, ...,y form a basis of L;/K contained in Rj.

Let x1,...,z, form the dual basis with respect to the Trace Paring, (24.15.1),
so that tr(z;y;) = d;;. Given b € R', write b =) ¢;x; with ¢; € K. Fix j. Then

tr(by,) = tr (Z Lzl1y]) = Z ¢ tr(zyy;) = ¢; for each j.
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But by; € R}. So ¢; € R by (24.16). Thus R’ C ) Rx;. Since R is Noetherian,
R’ is a finitely generated R-module, as desired. O

COROLLARY (24.18). — Let R be a Dedekind domain, K its fraction field, L/K a
finite separable field extension. Then the integral closure R' of R in L is Dedekind.

PRrROOF: First, R’ is module finite over R by (24.17); so R’ is Noetherian by
(16.18). Second, R’ is normal by (10.27). Finally, dim(R') = dim(R) by (15.11),
and dim(R) = 1 as R is Dedekind. Thus R is Dedekind. O

THEOREM (24.19). — A ring of algebraic integers is a Dedekind domain.

PROOF: By (24.2), Z is a Dedekind domain; whence, so is its integral closure in
any field that is a finite extension of Q by (24.18). O

THEOREM (24.20) (Noether). — Let k be a field of characteristic 0, and R a
domain that is a finitely generated k-algebra. Set K := Frac(R). Let L/K be a
finite field extension (possibly L = K ), and let R’ be the integral closure of R in L.
Then R’ is a finitely generated R-module and a finitely generated k-algebra.

PRrROOF: By the Noether Normalization Lemma, (15.1), R is a module-finite
k-algebra over a polynomial subring P. Then P is normal by Gauss’s Theorem,
(10.28), and Noetherian by the Hilbert Basis Theorem, (16.11); also, L/ Frac(P)
is a finite field extension, which is separable as k is of characteristic 0. Hence, R’
is module finite over P by (24.17). The assertion follows. O

(24.21) (Other cases). — In (24.18), even if L/K is inseparable, the integral
closure R’ of R in L is still Dedekind, as is proved below in Lecture 26.

However, Akizuki constructed an example of a DVR R and a finite inseparable
extension L/ Frac(R) such that the integral closure of R is a DVR, but is not module
finite over R. The construction is nicely explained in [7, Secs.9.4(1) and 9.5]. Thus
separability is a necessary hypothesis in (24.17).

Noether’s Theorem, (24.20), remains valid in positive characteristic, but the
proof is more involved. See [3, (13.13), p.297].
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A fractional ideal is defined to be a submodule of the fraction field of a domain.
A fractional ideal is called invertible if its product with another fractional ideal is
equal to the given domain. We characterize the invertible fractional ideals as those
that are nonzero, finitely generated, and principal locally at every maximal ideal.
We prove that, in a Dedekind domain, any two nonzero integral (that is, ordinary)
ideals have an invertible fractional ideal as their quotient. We characterize Dedekind
domains as those domains whose integral ideals are, equivalently, all invertible, all
projective, or all finitely generated and flat. Further, we prove a Noetherian domain
is Dedekind if and only if every torsion-free module is flat. Finally, we prove the
ideal class group is equal to the Picard group; the former is the group of invertible
fractional ideals modulo those that are principal, and the latter is the group, under
tensor product, of isomorphism classes of modules local free of rank 1.

DEFINITION (25.1). — Let R be a domain, and set K := Frac(R). We call an
R-submodule M of K a fractional ideal. We call M integral if M C R. We call
M principal if there is an z € K with M = Rx.

Given another fractional ideal N, form these two new fractional ideals:

MN :={Y zy; |, € Mandy; € N} and (M:N):={z€K|zNCM}.
We call them the product of M and N and the quotient of M by V.

EXERCISE (25.2). — Let R be a domain, M and N nonzero fractional ideals.
Prove that M is principal if and only if there exists some isomorphism M ~ R.
Construct the following canonical surjection and canonical isomorphism:

T M®N— MN and ¢: (M:N)—=5 Hom(N,M).

PROPOSITION (25.3). — Let R be a domain, and K := Frac(R). Consider these
finiteness conditions on a fractional ideal M :

(1) There exist integral ideals a and b with b # 0 and (a:b) = M.

(2) There exists an x € K* with M C R.

(3) There exists a nonzero v € R with tM C R.

(4) M is finitely generated.

Then (1), (2), and (3) are equivalent, and they are implied by (4). Further, all four
conditions are equivalent for every M if and only if R is Noetherian.

PROOF: Assume (1) holds. Take any nonzero x € b. Given m € M, clearly
xm € a C R; so M C R. Thus (2) holds.

Assume (2) holds. Write z = a/bwith a,b € Rand a,b# 0. Then aM C bR C R.
Thus (3) holds.

If (3) holds, then xM and zR are integral, and M = (xM : xR); thus (1) holds.

Assume (4) holds. Say y1/z1,...,yn/Tn € K™ generate M with x;,y; € R. Set
2 :=[]2;. Then x # 0 and xM C R. Thus (3) holds.

Assume (3) holds and R is Noetherian. Then M C R. So xM is finitely
generated, say by y1,...,yn. Then y1/x,...,yn/x generate M. Thus (4) holds.

Finally, assume all four conditions are equivalent for every M. If M is integral,
then (3) holds with x := 1, and so (4) holds. Thus R is Noetherian. O
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LEMMA (25.4). Let R be a domain, M and N fractional ideals. Let S be a
multiplicative subset. Then

STYMN) = (ST'M)(ST'N) and S™'(M:N)cC (S7'M:S7IN),
with equality if N is finitely generated.

ProOF: Givenz € STH(MN), write x = (Y. m;n;)/s withm; € M, withn; € N,
and with s € S. Then z = Y (m;/s)(n;/1), and so x € (S~1M)(S~IN). Thus
STYMN) C (S~'M)(S~'N).

Conversely, given z € (STIM)(S™IN), say x = Y (mi/s;)(ni/t;) with m; € M
and n; € N and s;,¢; € S. Set s:=[]s; and ¢ := [] ¢;. Then

x =Y (mini/sit;) = > min}/st € STL(MN)
with m} € M and n} € N. Thus S~Y(MN) D (S~'M)(S™1N), so equality holds.

Given 2 € S7YM : N), write z = x/s with z € (M : N) and s € S. Given
y € STIN, write y = n/t withn € N and t € S. Then z-n/t = xn/st and zn € M
and st € S. So z € (S7IM : S7IN). Thus S~Y(M : N) C (S71M : S7IN).

Conversely, say N is generated by ni,...,n,.. Given z € (S71M : S™IN), write
zni/1 = m;/s; with m; € M and s; € S. Set s := [[s;. Then sz-n; € M. So
sz € (M : N). Hence z € S~H(M : N), as desired. O

DEFINITION (25.5). — Let R be a domain. We call a fractional ideal M locally
principal if, for every maximal ideal m, the localization M, is principal over Ry,.

EXERCISE (25.6). — Let R be a domain, M and N fractional ideals. Prove that
the map 7: M ® N — MN is an isomorphism if M is locally principal.

(25.7) (Invertible fractional ideals). — Let R be a domain. A fractional ideal M
is said to be invertible if there is some fractional ideal M ! with MM ~! = R.
For example, a nonzero principal ideal Rz is invertible, as (Rz)(R-1/x) = R.

PROPOSITION (25.8). — Let R be a domain, M an invertible fractional ideal.
Then M~ is unique; in fact, M~ = (R : M).

PROOF: Clearly M~! C (R: M) as MM~' = R. But, if z € (R : M), then
r-1€(R: M)MM-*C M~ sox € M~!. Thus (R: M) C M~} as desired. O

LEMMA (25.9). — An invertible ideal is finitely generated and nonzero.

PROOF: Let R be the domain, M the ideal. Say 1 =Y m;n; with m; € M and
ng € M~'. Let m € M. Then m = > mymn;. But mn; € R asm € M and
n; € M. So the m; generate M. Trivially, M # 0. O

LEMMA (25.10). — Let A be a local domain. Then a fractional ideal M is invert-
ible if and only if M is principal and nonzero.

PROOF: Assume M is invertible. Say 1 = > m;n; with m; € M and n; € M~
As A is local, A — A* is an ideal. So there’s a j with m;n; € A*. Let m € M.
Then mn; € A. Set a := (mn;)(m;n;)~! € A. Then m = am;. Thus M = Am,.

Conversely, if M is principal and nonzero, then it’s always invertible by (25.7).

O

EXERCISE (25.11). — Let R be a UFD. Show that a fractional ideal M is invertible
if and only if M is principal and nonzero.
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THEOREM (25.12). Let R be a domain, M a fractional ideal. Then M is
invertible if and only if M is finitely generated and locally principal.

PROOF: Say MN = R. Then M is finitely generated and nonzero by (25.9).
Let S be a multiplicative subset. Then (S~!M)(S™'N) = S~!R by (25.4). Let m
be a maximal ideal. Then, therefore, My, is an invertible fractional ideal over Ry,.
Thus My, is principal by (25.10), as desired.

Conversely, set a := M(R : M) C R. Assume M is finitely generated. Then
(25.4) yields am = Mpn(Rm : Muw). In addition, assume My, is principal and
nonzero. Then (25.7) and (25.8) yield aym = Ry. Hence (13.16) yields a = R, as
desired. O

THEOREM (25.13). — Let R be a Dedekind domain, a, b nonzero integral ideals.
Set M := (a:b). Then M is invertible, and has a unique factorization into powers
of primes p. In fact, if v, denotes the valuation of Ry, then

M= Hp”"(M) where  vp(M) := min{ vp(z) | z € M }.
Finally, vy(M) = min{vp(z;)} if the x; generate M.

ProOOF: First, R is Noetherian. So (25.2) yields that M is finitely generated
and that there is a nonzero x € R with xM C R. Hence, each localization 2 M, is
principal by (23.1.3). Thus M is invertible by (25.12).

Next, the Main Theorem of Classical Ideal Theory, (24.10), yields (z) = []p*» )
and zM = [ p*»@M). Since vy (2 M) = vy(2) + v, (M), we can cancel the v, () to
conclude M = [ pv» (M),

Finally, given € M, say « = > ., a;,x; with a; € R. Then (23.1.1) yields

vp(x) > min{vp (a;z;)} > min{vy(z;)}
by induction on n. Thus v, (M) = min{v,(z;)}. O

EXERCISE (25.14). — Show that a ring is a PID if and only if it’s a Dedekind
domain and a UFD.

(25.15) (Invertible modules). — Let R be an arbitrary ring. We call a module M
invertible if there is another module N with M ® N ~ R.

For example, suppose R is a domain. Let M be an invertible fractional ideal; say
N is a fractional ideal with M N = R. Then M is locally principal by (25.12). So
M ®N = MN by (25.6). Thus M is an invertible abstract module.

EXERCISE (25.16). — Let R be an ring, M an invertible module. Prove that M
is finitely generated, and that, if R is local, then M is free of rank 1.
EXERCISE (25.17). — Show these conditions on an R-module M are equivalent:

(1) M is invertible.
(2) M is finitely generated, and My, ~ Ry at each maximal ideal m.
(3) M is locally free of rank 1.

Assuming these conditions hold, show that M ® Hom(M, R) = R.

LEMMA (25.18). — Let R be a domain, M a fractional ideal. Then M is an
invertible fractional ideal if and only if M is a projective abstract module.
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PrROOF: Assume M is an invertible fractional ideal. Then M is an invertible
abstract module by (25.15). Hence M is locally free of rank 1 by (25.17). So M
is projective by (13.27).

Conversely, assume M is projective. Then by (5.22), there exists a module M’
with M @ M’ ~ R®*. Let p: R®* — M be the projection, and set ) := p(ey).
Define @y : M — R®* — R as the composition of the injection with the projection
@x on the Ath factor. Then for all z € M, we have 2 = > ., ¢a(z)zr and
pa(z) = 0 for almost all A.

Fix a nonzero y € M. For A € A, set ¢y := iq:u(y) € Frac(R). Set N := Y Rgy.
Then for any nonzero x € M, let’s check that zgyx = ¢i(z). Write x = a/b and
y = ¢/d with a,b,c,d € R. Then a,c € M; whence, adp(y) = ¢(ac) = bep(z).
Thus zgx = pr(x) € R. Hence M - N C R. But y =Y ¢a(y)yr, so 1 = yagx. Thus
M-N =R. O

THEOREM (25.19). — Let R be a domain. Then the following are equivalent:
(1) R is Dedekind;
(2) every integral ideal is invertible;
(3) every integral ideal is projective;
(4) every integral ideal is finitely generated and flat.

PROOF: Let a be an integral ideal. Assume (1). Since a = (a : R), it is invertible
by (25.13). Thus (2) holds.

Conversely, assume (2). Then a is finitely generated by (25.9). Thus R is
Noetherian. Let p be any nonzero prime of R. Then by hypothesis, p is invertible.
So by (25.12), it is locally principal. So R, is a DVR by (23.9). Hence R is
Dedekind by (24.7). Thus (1) holds. Thus (1) and (2) are equivalent.

Recall that (2) and (3) are equivalent by (25.18). But (2) implies that R is
Noetherian by (25.9). Thus (3) and (4) are equivalent by (16.18) and (13.27). O

THEOREM (25.20). — A Noetherian domain R is Dedekind if and only if every
torsion-free module is flat.

ProOF: (Of course, as R is a domain, every flat module is torsion free by (9.22).)

Assume R is Dedekind. Let M be a torsion-free module, m a maximal ideal.
Let’s see that My, is torsion free over Ry,. Let z € Ry be nonzero, and say z = /s
with z,s € R and s ¢ m. Then pu,: M — M is injective as M is torsion free. So
Mg My — My is injective by the Exactness of Localization. But pz/s = tef1/s
and pi1/, is invertible. So p,/s is injective. Thus My, is torsion free.

Since R is Dedekind, Ry, is a DVR by (24.7), so a PID by (24.1). Hence M, is
flat over Ry by (9.22). But m is arbitrary. Therefore, M is flat over R by (13.23).

Conversely, assume every torsion-free module is flat. Then, in particular, every
integral ideal is flat. But R is Noetherian. Thus R is Dedekind by (25.19). O

(25.21) (The Picard Group). — Let R be a ring. We denote the collection of
isomorphism classes of invertible modules by Pic(R). By (25.16), every invertible
module is finitely generated, so isomorphic to a quotient of R™ for some integer n.
Hence, Pic(R) is a set. Further, Pic(R) is, clearly, a group under tensor product
with the class of R as identity. We call Pic(R) the Picard Group of R.

Assume R is a domain, and set K := Frac(R). Given an invertible module M,
we can embed M into K as follows. Set S := R — 0, and form the canonical map
M — S7M. Tt is injective owing to (12.15) if the multiplication map p,: M — M
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is injective for any x € S. Fix z, and let’s prove pu, is injective.

Let m be a maximal ideal. Clearly, M, is an invertible Ry,-module. So My, ~ Ry,
by (25.16). Hence p;: My — My, is injective. Therefore, p,: M — M is injective
by (138.20). Thus M embeds canonically into S™1M. Now, S~'M is a localization
of My, so is a 1-dimensional K-vector space, again as My, =~ Ry,. Choose an
isomorphism S™!M ~ K. It yields the desired embedding of M into K.

Since M is invertible, M is finitely generated by (25.16). Further, as noted,
My >~ Ry, at each maximal ideal m. Say x € My, corresponds to 1 € Ry,. Then
yz € My, corresponds to y € Ry. Thus M is locally principal. So, by (25.12), M
is also invertible as a fractional ideal.

The invertible fractional ideals M, clearly, form a group F(R). Sending an M to
its isomorphism class yields a map x: F(R) — Pic(R) by (25.15). By the above,
k is surjective. Further, x is a group homomorphism by (25.6). It’s not hard to
check that its kernel is the group P(R) of principal ideals and that P(R) = K> /R*.
We call F(R)/P(R) the Ideal Class Group of R. Thus F(R)/P(R) = Pic(R); in
other words, the Ideal Class Group is canonically isomorphic to the Picard Group.

Every invertible fractional ideal is, by (25.12), finitely generated and nonzero,
so of the form (a : b) where a and b are integral and nonzero by (25.3). Conversely,
by (25.13) and (25.19), every fractional ideal of this form is invertible if and only
if R is Dedekind. In fact, then F(R) is the free abelian group on the prime ideals.
Further, then Pic(R) = 0 if and only if R is UFD, or equivalently by (25.14), a
PID. See [1, Ch. 11, Sects. 10-11, pp. 424-437] for a discussion of the case in which
R is a ring of quadratic integers, including many examples where Pic(R) # 0.
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26. Arbitrary Valuation Rings

A valuation ring is, by definition, a subring of a field whose elements either lie in
the subring or their reciprocals do. Valuation rings are normal local domains. They
are maximal under domination, that is, inclusion of both the local rings and their
maximal ideals. Given any subring, its normalization is equal to the intersection
of all the valuation rings containing it. We end with the Krull-Akizuki Theorem:
given a 1-dimensional Noetherian domain, a finite extension of its fraction field,
and a proper subring of the extension containing the domain, that subring too is 1-
dimensional and Noetherian. We conclude that, if we normalize a Dedekind domain
in any finite extension of its fraction field, we obtain another Dededind domain.

DEFINITION (26.1). — A subring V of a field K is said to be a valuation ring
of K if, whenever z € K — V, then 1/z € V.

PROPOSITION (26.2). — Let V be a valuation ring of a field K, and set
m:={1/z|ze K—-V}U{0}.
Then V' is local, m is its mazximal ideal, and K 1is its fraction field.

PrOOF: Clearly m = V—V*. Let’s show m is an ideal. Take a nonzeroa € V and
nonzero z,y € m. Suppose ax ¢ m. Then axz € V*. So a(l/az) € V. So 1/z € V.
So x € VX, a contradiction. Thus ax € m. Now, by hypothesis, either z/y € V or
y/x € V. Say y/r € V. Then 1+ (y/z) € V. Soz +y = (1 + (y/x))x € m. Thus
m is an ideal. Hence V is local and m is its maximal ideal by (3.4). Finally, K is
its fraction field, because whenever z € K —V, then 1/z € V. O

EXERCISE (26.3). — Let V be a domain. Show that V' is a valuation ring if and
only if, given any two ideals a and b, either a lies in b or b lies in a.

EXERCISE (26.4). — Let V be a valuation ring, m its maximal ideal, and p C m
another prime ideal. Prove that V} is a valuation ring, that its maximal ideal pV;,
is equal to p, and that V/p is a valuation ring of the field V; /p.

EXERCISE (26.5). — Prove that a valuation ring V' is normal.

LEMMA (26.6). — Let R be a domain, a an ideal, K := Frac(R), and x € K*.
Then either 1 ¢ aR[z] or 1 ¢ aR[1/x].

PROOF: Assume 1 € aR[z] and 1 € aR[1/z]. Then there are equations
l=ap+- - +apz” and 1=by+---+by/z™ withall a;b;€a.
Assume n, m minimal and m < n. Multiply through by 1 — by and a,z", getting
1—bo=(1—bg)ag+ -+ (1 —bg)anz™ and
(1 = bg)anz™ = anb1z™ 1 4 - + apbpz™ ™.

Combine the latter equations, getting
1—bo=(1—=bglap+---+(1— bg)an_lmn_l +anbiz" - anbma™ ™.
Simplify, getting an equation of the form 1 = ¢y +- - -+ ¢, 12"~ ! with ¢; € a, which

contradicts the minimality of n. O
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LEMMA (26.7). Let A, B be local rings, and m, n their mazimal ideals. If
B D A, then these conditions are equivalent: (1) nNA=m; (2) 1 ¢ mB; (3) m C n.

PROOF: Assume B D A. If (1) holds, then mB C n, so (2) holds. If (2) holds,
then mB C n, so (3) holds. If (3) holds, then m C nN A C A, so (1) holds. O

(26.8) (Domination). — Let A, B be local rings, and m, n their maximal ideals.
We say B dominates Aif BDO AandnNA=m.

PROPOSITION (26.9). — Let K be a field, A a local subring. Then A is dominated
by a valuation ring V of K.

PROOF: Let m be the maximal ideal of A. Let 8§ be the set of subrings R of K
with R D Aand 1 ¢ mR. Then A € 8. Order 8 by inclusion. Let { R} be a totally
ordered subset. Set R :=|JRx. If 1 € mR, then

l=a1x1+- -+ apr, with a; €m and z; € R.

But then there is A such that z; € Ry for all 7; so 1 € mR), a contradiction. Thus
R € 8. Hence, by Zorn’s Lemma, 8 has a maximal element V.

For any nonzero z € K, set V' := V[z] and V" := V[1/z]. By (26.6), either
1¢ mV' or1¢ mV”. Hence by maximality, either V =V’ or V. = V". So either
z € Vorl/x € V. Thus V is a valuation ring. So V is local by (26.2), and
dominates A by (26.8) as 1 ¢ mV. O

EXERCISE (26.10). — Let K be a field, 8 the set of local subrings with fraction
field K, ordered by domination. Show its maximal elements are the valuation rings.

THEOREM (26.11). — Let K be a field, and R a subring of K. Then the integral
closure R’ of R in K is the intersection of all valuation rings V of K containing
R. Further, if R is local, then the V' dominating R suffice.

PROOF: Every valuation ring V' is normal by (26.5). Soif V O R, then V D R’.
Thus 5z V D R'.

To prove the opposite inclusion, take any z € K — R’. To find a valuation ring
VwithV D Rand x ¢V, set y :=1/z. If 1/y € R[y], then for some n,

l/y:aoy"+a1y"71+-~~+an with a) € R.

Multiplying by " yields 2"t — a,z™ —--- —ag = 0. So z € R’, a contradiction.
Thus 1 ¢ yR[y]. So there is a maximal ideal m of R[y] containing y. Then the
composition R — R[y] — R[y|/m is surjective as y € m. So m N R is a maximal
ideal of R. By (26.9), there is a valuation ring V' that dominates R[y]w; whence,
if R is local, then V also dominates R. But y € m; so x = 1/y ¢ V, as desired. O

(26.12) (Valuations). — We call an additive abelian group I' totally ordered if
T has a subset I'} that is closed under addition and satisfies —I'; U {0} UTy =T
Given z,y € I, write x > y if x — y € I'y. Note that either z > y or z = y or
y > z. Note that, if x >y, then z + 2z > y + 2z for any z € .
Let V be a domain, and set K := Frac(V) and I" := K> /V*. Write the group I'
additively, and let v: K* — T" be the quotient map. It is a homomorphism:

v(zy) = v(z) + v(y). (26.12.1)

Set I'y := v(V — 0) —0. Then I';. is closed under addition. Clearly, V' is a valuation
ring if and only if —T'y U {0} UT; =T, so if and only if T is totally ordered.
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Assume V is a valuation ring. Let’s prove that, for all z,y € K*,
v(z +y) > min{v(z), v(y)} i z#—y. (26.12.2)
Indeed, say v(z) > v(y). Then z:=xz/y € V. So v(z + 1) > 0. Hence
vz +y) =v(z+1)+v(y) = v(y) = minfu(z),v(y)},
Note that (26.12.1) and (26.12.2) are the same as (1) and (2) of (23.1).

Conversely, start with a field K, with a totally ordered additive abelian group T,
and with a surjective homomorphism v: K* — T satisfying (26.12.2). Set

Vi={zxe K*|v(z)>0}u{0}.

Then V is a valuation ring, and I' = K */V*. We call such a v a valuation of K,
and I' the value group of v or of V.

For example, a DVR V of K is just a valuation ring with value group Z, since
any x € K* has the form x = ut™ with v € V* and n € Z.

EXAMPLE (26.13). — Fix totally ordered additive abelian group I', and a field
k. Form the k-vector space R with basis the symbols X® for ¢ > 0 in I'. Define
XeXb .= Xt and extend this product to R by linearity. Then R is a k-algebra
with Xo = 1. We call R the group algebra of I".Define v: (R —0) — I' by

v(E TaX“) :=min{a | r, # 0}.

Then for z,y € (R — 0), clearly v(zy) = v(z) + v(y) because k is a domain and I’
is ordered. Hence R is a domain. Moreover, if v(z + y) = a, then either v(z) < a
or v(y) < a. Thus v(z +y) > min{v(z), v(y)}.

Set K := Frac(R), and extend v to a map v: K* — T’ by v(z/y) := v(z) — v(y)
if y # 0. Clearly v is well defined, surjective, and a homomorphism. Further, for
z,y € K*, clearly v(z+y) > min{v(z), v(y)}. Thus v is a valuation with group I'.

Set R :={x € R|v(z) >0} and p := {z € R | v(z) > 0}. Clearly, R’ is a ring,
and p is a prime of R’. Further, Ry is the valuation ring of v.

There are many choices for I' other than Z. Examples include the additive
rationals, the additive reals, its subgroup generated by two incommensurate reals,
and the lexicographically ordered product of any two totally ordered abelian groups.

PROPOSITION (26.14). — Let v be a valuation of a field K, and x1, ..., 1, € K*
with n > 2. Set m := min{v(z;)}.

(1) If n =2 and if v(z1) # v(z2), then v(z1 + z2) = M.

(2) Ifx1 + - -+ xp =0, then m = v(z;) = v(z;) for some i # j.

PrOOF: For (1), say v(z1) > v(x2); so v(z2) = m. Set z := z1/x3. Then
v(z) > 0. Also v(—z) = v(z) + v(—=1) > 0. Now,
0=v(l)=v(z+1-2) >min{v(z+1), v(-2)} > 0.

Hence v(z+1) = 0. Now, 21 + 22 = (2 + 1)x2. Therefore, v(x1 + x2) = v(z2) = m.
Thus (1) holds.

For (2), reorder the x; so v(x;) = m for i < k and v(x;) > m for i > k.
By induction, (26.12.2) yields v(2p41 + -+ + @n) > mingsp{v(z;)}. Therefore,
v(zgp1+- 4 xy) >m. If k=1, then (1) yields v(0) = v(z1 + (x2+- - +z,)) =m,
a contradiction. So k > 1, and v(z1) = v(z2) = m, as desired. O
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EXERCISE (26.15). Let V be a valuation ring, such as a DVR, whose value
group I' is Archimedean; that is, given any nonzero «, § € T, there’s n € Z such
that na > 8. Show that V' is a maximal proper subring of its fraction field K.

EXERCISE (26.16). — Let V' be a valuation ring. Show that
(1) every finitely generated ideal a is principal, and
(2) V is Noetherian if and only if V' is a DVR.

LEMMA (26.17). — Let R be a 1-dimensional Noetherian domain, K its fraction
field, M a torsion-free module, and x € R nonzero. Then {(R/xR) < co. Further,
UM/xM) < dimg (M @r K)¢(R/zR), (26.17.1)

with equality if M is finitely generated.

PROOF: Set r := dimg (M ®g K). If r = oo, then (26.17.1) is trivial; so we
may assume r < 0.

Set S := R—{0}. Given any module N, set Nx := S™!N. Recall Ny = NQrK.

First, assume M is finitely generated. Choose any K-basis mq/s1,...,m;/s, of
My with m; € M and s; € S. Then my/1,...,m,/1 is also a basis. Define an
R-map a: R” — M by sending the standard basis elements to the m;. Then its
localization ak is an K-isomorphism. But Ker(«) is a submodule of R", so torsion
free. Further, S~! Ker(a) = Ker(ax) = 0. Hence Ker(a) = 0. Thus « is injective.

Set N := Coker(a). Then Ng = 0, and N is finitely generated. Hence, Supp(XN)
is a proper closed subset of Spec(R). But dim(R) = 1 by hypothesis. Hence,
Supp(N) consists entirely of maximal ideals. So £(N) < oo by (19.4).

Similarly, Supp(R/zR) is closed and proper in Spec(R). So {(R/zR) < co.

Consider the standard exact sequence:

0—+N —-N-—=N-—=N/zN -0 where N’ :=Ker(u,).

Apply Additivity of Length, (19.9); it yields £(N') = ¢((N/xN).
Since M is torsion free, u,: M — M is injective. Consider this commutative
diagram with exact rows:

(e}

0—-R — M — N —0

pe | we| o ome|

[e3

0 —-R" — M —=N—=0
Apply the snake lemma (5.12). It yields this exact sequence:
0— N'"— (R/zR)" — M/xM — N/zN — 0.

Hence ((M/xzM) = (((R/zR)") by additivity. But £((R/zR)") = r{(R/zR) also
by additivity. Thus equality holds in (26.17.1) when M is finitely generated.

Second, assume M is arbitrary, but (26.17.1) fails. Then M possesses a finitely
generated submodule M’ whose image H in M/xM satisfies ¢(H) > r{(R/xR).
Now, Mg D Mj; so r > dimg (M}, ). Therefore,

(M JzM') > ((H) > r{(R/zR) > dimy (M) ((R/zR).

However, together these inequalities contradict the first case with M’ for M. O

THEOREM (26.18) (Krull-Akizuki). — Let R be a 1-dimensional Noetherian do-
main, K its fraction field, K' a finite extension field, and R’ a proper subring of
K’ containing R. Then R’ is, like R, a 1-dimensional Noetherian domain.
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140 26. Arbitrary Valuation Rings

PROOF: Given a nonzero ideal a’ of R/, take any nonzero z € a’. Since K'/K
is finite, there is an equation a,x™ + --- 4+ a9 = 0 with a; € R and ag # 0. Then
ap € o/ N R. Further, (26.17) yields {(R/agR) < co.

Clearly, R’ is a domain, so a torsion free R-module. Further, R’ ® g K C K’;
hence, dimg (R’ ® g K) < co. Therefore, (26.17) yields {r(R'/agR') < .

But a'/aoR' C R'/apR'. So {r(a’/apR') < 0. So a’/aoR’ is finitely generated
over R by (19.2)(3). Hence o’ is finitely generated over R’. Thus R’ is Noetherian.

Set R := R'/agR’. Clearly, {rvR" < {rR". So {pvR" < 0. So, in R", every
prime is maximal by (19.4). So if @’ is prime, then a’/agR’ is maximal, whence o’
maximal. So in R, every nonzero prime is maximal. Thus R’ is 1-dimensional. 0

COROLLARY (26.19). — Let R be a 1-dimensional Noetherian domain, such as a
Dedekind domain. Let K be its fraction field, K' a finite extension field, and R’
the normalization of R in K'. Then R' is Dedekind.

PROOF: Since R is 1-dimensional, it’s not a field. But R’ is the normalization of
R. So R’ is not a field by (14.1). Hence, R’ is Noetherian and 1-dimensional by
Theorem (26.18). Thus R’ is Dedekind by Definition (24.1). O

COROLLARY (26.20). — Let K'/K be a field extension, and V' a valuation ring
of K’ mot containing K. Set V :=V' N K. Then V is a DVR if and only if V' is.

PRrROOF: It follows easily from Definition (26.1) that V is a valuation ring, and
from Subsection (26.12) that its value group is a subgroup of that of V’. Now, a
nonzero subgroup of Z is a copy of Z. Thus V is a DVR if V"’ is.

Conversely, assume V is a DVR, so Noetherian and 1-dimensional. Now, V' does
not contain K, so is proper in K'.- Hence, V' is Noetherian by Theorem (26.18),
so a DVR by Exercise (26.16)(2). O
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1. Rings and Ideals

EXERCISE (1.6). — Let R be a ring, a an ideal, and P := R[Xy,...,X,] the
polynomial ring. Construct an isomorphism ¢ from P/aP onto (R/a)[X1,...,Xn].

SOLUTION: Let k: R — R/a be the quotient map. Form the homomorphism
¢: P — (R/a)[Xq,...,X,] such that |R = k and p(X;) = X;. Then

99<Z a(n,m,in)Xfl : Xi) = Z ’i(a(il,“.,in))X? X
Since  is surjective, so is ¢. Since Ker(x) = a, it follows that
Ker(p) =Y aXj'--- X" =aP.
Therefore, ¢ induces the desired isomorphism ¢ by (1.5.1). O

EXERCISE (1.9). — Let R be ring, and P := R[X1,..., X,,] the polynomial ring.
Let m < n and ay,...,am € R. Set p := (X1 —a1,...,Xm — am). Prove that
P/p=R(Xpor,. ... Xo).

SoLUTION: First, assume m = n. Set P’ := R[Xq,...,X,,—1] and
p/ = <X1 — A1, .- 7Xn71 — (Ln,1> cP.
By induction on n, we may assume P’'/p’ = R. However, P = P’[X,]. Hence

PP = (P J9/)[X,] by (1-6). Thus P/p'P = R[X,.
We have P/p = (P/p’'P)/p(P/p'P) by (1.8). But p = p’P + (X,, — a,)P. Hence
p(P/p'P) = (X5 —an)(P/p'P). So P/p = R[Xy]/(Xn—an). So P/p =R by (1.7).
In general, P = (R[X1, ..., X0m])[Xm+1, ..., Xy]. Thus P/p = R[Xpmt1, ..., Xn]
by (1.6). O

EXERCISE (1.13) (Chinese Remainder Theorem). — Let R be a ring.
(1) Let a and b be comaximal ideals; that is, a + b = R. Prove
(a) ab=anb and (b) R/ab= (R/a)x (R/b).

(2) Let a be comaximal to both b and b’. Prove a is also comaximal to bb’.
(3) Let a, b be comaximal, and m,n > 1. Prove a™ and b™ are comaximal.
(4) Let ay,...,a, be pairwise comaximal. Prove

(a) a3 and az---a, are comaximal;

(b) agN---Nay =ag---ay;

(c) R/(ar---an) = [[(R/a;).

SoLUTION: To prove (1)(a), note that always ab C anb. Conversely, a+b =R
implies x+y = 1 with x € a and y € b. So given z € aNb, we have z = xz+yz € ab.

To prove (1)(b), form the map R — R/a x R/b that carries an element to its
pair of residues. The kernel is a N b, which is ab by (1). So we have an injection

¢: R/ab— R/ax R/b.
To show that ¢ is surjective, take any element (Z,7) in R/a x R/b. Say T and g
141
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are the residues of x and y. Since a+ b = R, we can find a € a and b € b such that
a+b=y—xz. Then p(x +a) = (Z,7), as desired. Thus (1) holds.
To prove (2), note that

R=(a+06)(a+0b') = (a® 4 ba+ab’) +bb' C a+bb' CR.

To prove (3), note that (2) implies a and b™ are comaximal for any n > 1 by
induction on n. Hence, b™ and a™ are comaximal for any m > 1.

To prove (4)(a), assume a; and as - - - a,—1 are comaximal by induction on n. By
hypothesis, a; and a,, are comaximal. Thus (2) yields (a).

To prove (4)(b) and (4)(c), again proceed by induction on n. Thus (1) yields

apN(azN---Na,) =ayN(az---ay) = aray - ap;

R/(ar---an) = R/ay x R/(az---an) = [ [(R/wi). 0

EXERCISE (1.14). — First, given a prime number p and a k > 1, find the idempo-
tents in Z/{p*). Second, find the idempotents in Z/(12). Third, find the number

of idempotents in Z/(n) where n = Hf.vzlp

n;

. with p; distinct prime numbers.

SorLuTION: First, let m € Z be idempotent modulo p*. Then m(m—1) is divisible
by p*. So either m or m — 1 is divisible by p*, as m and m — 1 have no common
prime divisor. Hence 0 and 1 are the only idempotents in Z/(p*).

Second, since —3 + 4 = 1, the Chinese Remainder Theorem (1.13) yields

Z/(12) =Z/(3) X Z/{4).

Hence m is idempotent modulo 12 if and only if m is idempotent modulo 3 and
modulo 4. By the previous case, we have the following possibilities:

m=0 (mod3) and m=0 (mod4);

m=1 (mod3) and m=1 (mod4);

m=1 (mod3) and m=0 (mod 4);

m=0 (mod3) and m=1 (mod4).
Therefore, m =0, 1, 4, 9 (mod 12).

Third, for each i, the two numbers pi* ---p;"]' and p!'* have no common prime

divisor. Hence some linear combination is equal to 1 by the Euclidean Algorithm.

So the principal ideals they generate are comaximal. Hence by induction on N, the
Chinese Remainder Theorem yields

1

N
z/(n) = [12/ 7).

So m is idempotent modulo n if and only if m is idempotent modulo p™ for all 4;
hence, if and only if m is 0 or 1 modulo p™ for all ¢ by the first case. Thus there
are 2V idempotents in Z/(n). O

EXERCISE (1.15). — Let R := R’ x R” be a product of rings, a C R an ideal.
Show a = o’ x @’/ with @’ C R’ and o’ C R" ideals. Show R/a = (R’/a’) x (R"/a").
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SOLUTION: Set o' := {2’ | (2/,0) € a} and a” := {2” | (0,2”) € a}. Clearly
a’ C R and a” C R” are ideals. Clearly,

ad>a' x0+0xa’=d xada"
The opposite inclusion holds, because if a 3 (z’,z"), then
a>(2,2") (1,0)=(2/,0) and a3 (z/,2")-(0,1) = (0,2").

Finally, the equation R/a = (R/a’) x (R/a’) is now clear from the construction of
the residue class ring. O

EXERCISE (1.16). — Let R be a ring, and e, ¢’ idempotents. (See (10.6) also.)

(1) Set a := (¢). Show a is idempotent; that is, a? = a.

(2) Let a be a principal idempotent ideal. Show a = (f) with f idempotent.
(3) Assume (e) = (¢’). Show e =¢’.

(4) Set e’ :==e+ € —ee’. Show (e, ¢/) = (¢”) and €” is idempotent.

(5) Let e1,..., e, be idempotents. Show (e, ...,e,) = (f) with f idempotent.
(6) Assume R is Boolean. Show every finitely generated ideal is principal.

SoLuTION: For (1), note a? C a always. Conversely, ze = xze? for any z € R; so
a C a2, Thus (1) holds.

For (2), say a = {(g). Then a? = (¢?). But a®> = a. So g = zg? for some x. Set
f:=zg. Then f € a; s0 (f) Ca. And g = fg. So a C (f). Thus (2) holds.

For (3), say € = ze. So €’ = ze? = €’e. By symmetry, e = ee’. Thus (3) holds.

For (4), note (") C (e, e’). Conversely, ee” = e? + ee’ —e2e’ = e+ ee’ —ee' = e.
By symmetry, e’e” =¢’. So (e, ¢’) C (") and ¢"? = ee” + e’e” — ee’e” = €. Thus
(4) holds.

For (5), induct on r. Thus (4) yields (5).

For (6), recall that every element of R is idempotent. Thus (5) yields (6). O

2. Prime Ideals

EXERCISE (2.2). — Let a and b be ideals, and p a prime ideal. Prove that these
conditions are equivalent: (1) a Cpor b C p; and (2) anb C p; and (3) ab C p.

SOLUTION: Trivially, (1) implies (2). If (2) holds, then (3) follows as ab C anb.
Finally, assume a ¢ p and b ¢ p. Then there are z € a and y € b with z, y ¢ p.
Hence, since p is prime, zy ¢ p. However, zy € ab. Thus (3) implies (1). d

EXERCISE (2.4). Given a prime number p and an integer n > 2, prove that the
residue ring Z/(p™) does not contain a domain.

SOLUTION: Any subring of Z/(p™) must contain 1, and 1 generates Z/(p") as an
abelian group. So Z/(p™) contains no proper subrings. However, Z/(p™) is not a
domain, because in it, p - p"~! = 0 but neither p nor p"~! is 0. O

EXERCISE (2.5). — Let R := R’ x R” be a product of two rings. Show that R is
a domain if and only if either R’ or R” is a domain and the other is 0.

SOLUTION: Assume R is a domain. As (1,0)-(0,1) = (0,0), either (1,0) = (0,0)
or (0,1) = (0,0). Correspondingly, either R’ = 0 and R = R”, or R” = 0 and
R = R”. The assertion is now obvious. O
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EXERCISE (2.10). Let R be a ring, p a prime ideal, R[X] the polynomial ring.
Show that pR[X] and pR[X] + (X) are prime ideals of R[X].

SorLuTIOoN: Note R[X]/pR[X] = (R/p)[X] by (1.6). But R/p is a domain by
(2.9). So R[X]/pR[X] is a domain by (2.3). Thus pR[X] is prime by (2.9).

Note (pR[X]+ (X))/pR[X] is equal to (X) C (R/p)[X]. But (R/p)[X]/(X) is
equal to R/p by (1.7). So R[X]/(pR[X]+ (X)) is equal to R/p by (1.8). But R/p
is a domain by (2.9). Thus pR[X] + (X) is prime again by (2.9). O

EXERCISE (2.11). — Let R be a domain, and R[Xy,...,X,] the polynomial ring
in n variables. Let m < n, and set p := (X1,..., X,,). Prove p is a prime ideal.

SOLUTION: Simply combine (2.9), (2.3), and (1.9) O

EXERCISE (2.12). — Let R := R’ x R” be a product of rings. Show every prime
ideal of R has the form p’ x R” with p’ C R’ prime or R’ X p” with p” C R” prime.

SOLUTION: Simply combine (1.15), (2.9), and (2.5). O

EXERCISE (2.16). — Let k be a field, R a nonzero ring, ¢: k — R a ring map.
Prove ¢ is injective.

SoruTiOoN: By (1.1), 1 # 0 in R. So Ker(p) # k. So Ker(¢) = 0 by (2.15).
Thus ¢ is injective. d

EXERCISE (2.18). — Let B be a Boolean ring. Show that every prime p is maximal,
and B/p = F.

SOLUTION: Take any z € B/p. Then z(z — 1) = 0. But B/p is a domain. So
z=0or z=1. Thus B/p = Fs. Clearly, F is a field. Thus (2.17) yields (1). O

EXERCISE (2.20). Prove the following statements or give a counterexample.

(1) The complement of a multiplicative subset is a prime ideal.

(2) Given two prime ideals, their intersection is prime.

(3) Given two prime ideals, their sum is prime.

(4) Given a ring map ¢: R — R’, the operation ¢~
R’ to maximal ideals of R.

(5) In (1.8), k! takes maximal ideals of R/a to maximal ideals of R.

I carries maximal ideals of

SoLUTION: (1) False. In the ring Z, consider the set S of powers of 2. The
complement 7" of S contains 3 and 5, but not 8; so 7" is not an ideal.

(2) False. In the ring Z, consider the prime ideals (2) and (3); their intersection
(2) N (3) is equal to (6), which is not prime.

(3) False. Since 2-3 —5 =1, we have (3) + (5) = Z.

(4) False. Let : Z — Q be the inclusion map. Then ¢~1(0) = (0).

(5) True. The assertion is immediate from (1.8). O

EXERCISE (2.21). — Let k be a field, P := k[Xq,...,X,] the polynomial ring,
f € P nonzero. Let d be the highest power of any variable appearing in f.

(1) Let S C k have at least dn + 1 elements. Proceeding by induction on n, find
ai,...,an € S with f(aq,...,a,) #0.

(2) Using the algebraic closure K of k, find a maximal ideal m of P with f ¢ m.
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SOLUTION: Consider (1). Assume n = 1. Then f has at most d roots by [Artin,
(1.8), p.392]. So f(a1) # 0 for some a; € S.

Assume n > 1. Say f =3, g; X{ with g; € k[Xa,..., X,]. But f #0. So g; # 0
for some i. By induction, g;(az,...,a,) # 0 for some ag,...,a, € S. By n =1,
find ay € S such that f(ay,...,an) =3, g;(az, .. ., an)al # 0. Thus (1) holds.

Consider (2). As K is infinite, (1) yields aq,...,a, € K with fi(a1,...,a,) #0.
Define ¢: P — K by ¢(X;) = a;. Then Im(p) C K is the k-subalgebra generated
by the a;. It is a field by [Artin, (2.6), p.495]. Set m := Ker(¢). Hence m is a
maximal ideal, and f; ¢ m as ¢(f;) = fi(a1,...,a,) # 0. Thus (2) holds. a

EXERCISE (2.24). — Prove that, in a PID, elements x and y are relatively prime
(share no prime factor) if and only if the ideals (z) and (y) are comaximal.

SOLUTION: Say (z) + (y) = (d). Then d = ged(z, y), as is easy to check. The
assertion is now obvious. d

EXERCISE (2.27). — Preserve the setup of (2.26). Let f := apX"+---+a, be a
polynomial of positive degree n. Assume that R has infinitely many prime elements
p, or simply that there is a p such that p { ag. Show that (f) is not maximal.

SOLUTION: Set a := (p, f). Then a 2 (f), because p is not a multiple of f. Set
k= R/{p). Since p is irreducible, k is a domain by (2.6) and (2.8). Let f’ € k[X]
denote the image of f. By hypothesis, deg(f’) =n > 1. Hence f’ is not a unit by
(2.8) since k is a domain. Therefore, (f’) is proper. But P/a == k[X]/(f’) by
(1.6) and (1.8). So a is proper. Thus (f) is not maximal. O

3. Radicals

EXERCISE (3.6). — Let A be a ring, m a maximal ideal such that 1 +m is a unit
for every m € m. Prove A is local. Is this assertion still true if m is not maximal?

SOLUTION: Take y € A. Let’s prove that, if y ¢ m, then y is a unit. Since m is
maximal, (y) + m = A. Hence there exist € R and m € m such that zy +m =1,
or in other words, zy = 1 —m. So zy is a unit by hypothesis; whence, y is a unit.
Thus A is local by (3.4).

The assertion is not true if m is not maximal. Indeed, take any ring that is not
local, for example Z, and take m := (0). d

EXERCISE (3.10). — Let ¢: R — R’ be a map of rings, p an ideal of R. Prove
(1) there is an ideal q of R’ with ¢~!(q) = p if and only if =1 (pR') = p;
(2) if p is prime with ¢ ~!(pR’) = p, then there’s a prime q of R’ with p~1(q) = p.

SoLuTION: In (1), given q, note p(p) C q, as always ¢(»~1(q)) C q. So pR’ C q.
Hence ¢ (pR') C v~ 1(q) = p. But, always p C o *(pR’). Thus ¢ L(pR’) = p.
The converse is trivial: take q := pR'.

In (2), set S := p(R—p). Then SNpR' =0, as ¢(x) € pR’ implies x € ¢~ (pR')
and o 1 (pR’) = p. So there’s a prime q of R’ containing pR’ and disjoint from S by
(8.9). So ' (q) D¢ ' (pR) =pand o~ (q)N(R—p) =0. Thus ¢~ '(q) =p. O

EXERCISE (3.11). — Use Zorn’s lemma to prove that any prime ideal p contains
a prime ideal q that is minimal containing any given subset s C p.
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SOLUTION: Let 8§ be the set of all prime ideals q such that s C ¢ C p. Thenp € §,
s0 8 # (. Order 8 by reverse inclusion. To apply Zorn’s Lemma, we must show
that, for any decreasing chain {qx} of prime ideals, the intersection q :=()qy is a
prime ideal. Plainly q is always an ideal. So take x,y ¢ q. Then there exists A such
that z,y ¢ qx. Since qy is prime, zy ¢ qx. So zy ¢ q. Thus q is prime. a

EXERCISE (3.13). — Let R be a ring, S a subset. Show that S is saturated
multiplicative if and only if R — S is a union of primes.

SOLUTION: First, take x € R — S. Assume S is multiplicative. Then zy ¢ S for
all y € R. So () NS = (. Assume S is saturated too. Then (3.9) gives a prime
p D (z) with pn S =0. Thus R — S is a union of primes.

Conversely, assume R — S is a union of primes p. Then 1 € S as 1 lies in no p.
Take z,y € R. Then x,y € S if and only if x, y lie in no p; if and only if xy lies in no
p, as every p is prime; if and only if zy € S. Thus S is saturated multiplicative. [J

EXERCISE (3.14). — Let R be a ring, and S a multiplicative subset. Define its
saturation to be the subset

S:={x € R|thereisy € R with zy € S}.

(1) Show (a) that S D S, and (b) that S is saturated multiplicative, and (c) that
any saturated multiplicative subset T’ containing S also contains S.

(2) Show that R — S is the union U of all the primes p with pN.S = (.

(3) Let a be an ideal; assume S =1+ a; set W := |,y (q) p- Show R -S=Ww.

SoruTioN: Consider (1). Trivially, if z € S, then z-1 € S. Thus (a) holds.

Hence 1 € S as 1 € S. Now, take x,2/ € S. Then there are y,y’ € R with
zy, o'y’ € S. But S is multiplicative. So (zz”)(yy’) € S. Hence zz' € S. Thus
S is multiplicative. Conversely, take z,2’ € R with z2’ € S. Then there is y € R
with zz'y € S. So 2,2’ € S. Thus S is saturated. Thus (b) holds

Finally, given x € S, there is y € R with zy € S. So zy € T. But T is saturated
multiplicative. So « € T. Thus T O S. Thus (c) holds.

Consider (2). Plainly, R—U contains S. Further, R—U is saturated multiplicative
by (3.13). So R—U D> S by (1)(c). Thus U ¢ R—S. Conversely, R— S is a union
of primes p by (3.13). Plainly, pNS =@ for all p. So U D R —S. Thus (2) holds.

For (3), first take a prime p with pNS =0. Then 1 ¢ p+ a. So p + a lies in a
maximal ideal m by (8.9). Then a C m; so m € V(a). Also, p Cm. Thus U C W.

Conversely, take p € V(a). Then S C1+p. But pNn(1+p)=0. SopnsS = 0.
Thus U D W. Thus U = W. Thus (2) yields (3). O

EXERCISE (3.16). — Let k be an infinite field.
(1) Let V be a vector space, Wi, ..., W, proper subspaces. Show |JW; # V.
(2) In (1), let W C |JW; be a subspace. Show W C W; for some i.
(3) Let R a k-algebra, a,ay,...,q, ideals. If a C | a;, show a C a; for some 3.

SoLuTION: For (1), for all ¢, take v; € V — W;. Form their span V' C V. Set
n:=dimV’ and W} := W; N'V'. Then n < oo, and it suffices to show |J W/ # V.

Identify V'’ with k™. Form the polynomial ring P := k[Xy, ..., X,]. For each i,
take a linear form f; € P that vanishes on W/. Set f := fy--- f.. Then (2.21)(1)
yields aq,...,a, € k with f(ai1,...,a,) # 0. Then (a1,...,a,) € V' = JW/.

For (2), for all 4, set U; := W NW,. Then | JU; = W. So (1) implies U; = W for
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some 7. Thus W C W;.
Finally, as every ideal is a k-vector space, (3) is a special case of (2). O

EXERCISE (3.17). — Let k be a field, R := k[X,Y] the polynomial ring in two
variables, m := (X,Y’). Show m is a union of smaller primes.

SOLUTION: Since R is a UFD, and m is maximal, so prime, any nonzero f € m
has a prime factor p € m. Thus m = |J,(p), but m # (p) as m is not principal. O
EXERCISE (3.19). — Find the nilpotents in Z/(n). In particular, take n = 12.

SOLUTION: An integer m is nilpotent modulo n if and only if some power m* is
divisible by n. The latter holds if and only if every prime factor of n occurs in m.
In particular, in Z/(12), the nilpotents are 0 and 6. d

EXERCISE (3.20). — Let ¢: R — R’ be a ring map, b C R’ a subset. Prove
o Wb = /o 1b.

SOLUTION: Below, (1) is clearly equivalent to (2); and (2), to (3); and so forth:

(1) = € p~'Vb; (4) (z™) € b for some n;
(2) oz € Vb; (5) 2™ € p~1b for some n;
(3) (px)™ € b for some n; (6) x € 4/~ lb. O

EXERCISE (3.21). — Let R be a ring, a C 1/(0) an ideal, and P := R[Y] the
polynomial ring in one variable. Let v € R be a unit, and € R a nilpotent.
(1) Prove (a) that v + z is a unit in R and (b) that u + 2Y is a unit in P.
(2) Suppose w € R maps to a unit of R/a. Prove that w is a unit in R.

SorLuTION: In (1), say 2" = 0. Set y := —zu~!. Then (a) holds as
(wta) u Ity +y*++y" =1
Now, u is also a unit in P, and (2Y)™ = 0; hence, (a) implies (b).

In (2), say wy € R maps to 1 € R/a. Set z := wy — 1. Then z € a, so z is
nilpotent. Hence, 1+z is a unit by (1)(a). So wy is a unit. Then w-y(wy)~! =1. O

EXERCISE (3.23). — Let B be a Boolean ring. Show that rad(B) = nil(B) = (0).

SOLUTION: By (3.22), nil(B) = (p where p runs through all the primes of B.
Every p is maximal by (2.18); the converse holds by (2.22). Thus rad(B) = nil(B).
Let f € nil(B). Then f™ = 0 for some n > 1 by (3.18). But f2 = f by (1.2).
So f =0. Thus nil(B) = (0). O

EXERCISE (3.25). — Let R be a ring, and a an ideal. Assume /a is finitely
generated. Show (v/a)" C a for all large n.

SOLUTION: Let z1,...,x,, be generators of /a. For each i, there is n; such that
" € a. Let n > Y (n; — 1). Given a € v/a, write a = > v, y;z; with y; € R.
Then a” is a linear combination of terms of the form 27" - - - z/m with > g =n.
Hence j; > n; for some 4, because if j; < n; — 1 for all ¢, then )" j; < > (n; — 1).
Thus a™ € a, as desired. O

EXERCISE (3.26). — Let R be a ring, q an ideal, p a finitely generated prime.
Prove that p = /q if and only if there is n > 1 such that p D q D p”.
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SoLUTION: If p = /4, then p D g D p” by (3.25). Conversely, if ¢ D p”, then
clearly \/q D p . Further, since p is prime, if p D q, then p D /q. d

EXERCISE (3.28). — Let R be a ring. Assume R is reduced and has finitely many
minimal prime ideals py,...,p,. Prove that p: R — [[(R/p;) is injective, and for
each 7, there is some (z1,...,2,) € Im(p) with z; # 0 but z; = 0 for j # 1.

SoLuTION: Clearly Ker(yp) = (| p;. Now, R is reduced and the p; are its minimal
primes; hence, (3.22) and (3.11) yield

(0) = V/(0) = ﬂpz‘-

Thus Ker(p) = (0), and so ¢ is injective.
Finally, fix ¢. Since p; is minimal, p; 2 p; for j # 4; say a; € p; — p;. Set
a:=[];4 a;. Then a € p; —p; for all j # i. Thus Im(p) meets R/p;. O

4. Modules

EXERCISE (4.3). — Let R be a ring, M a module. Consider the set map
0: Hom(R,M) — M defined by 6(p) := p(1).

Show that 6 is an isomorphism, and describe its inverse.

SOLUTION: First off, § is R-linear, because
O(zp +a'p') = (xp +2'p')(1) = zp(1) + 2'p'(1) = 20(p) + 2’0 (p").
Set H := Hom(R, M). Define n: M — H by n(m)(x) := xm. It is easy to check
that n6 = 1y and 0n = 1p. Thus 6 and n are inverse isomorphisms by (4.2). O

EXERCISE (4.12). — Let R be a domain, and x € R nonzero. Let M be the

submodule of Frac(R) generated by 1, 2!, 72,.... Suppose that M is finitely

generated. Prove that 27! € R, and conclude that M = R.

SOLUTION: Suppose M is generated by my,...,mg. Say m; = Z?:o a;jz 4 for
some n; and a;; € R. Set n := max{n;}. Then 1, x71,..., 7™ generate M. So
() — ant "4+ arz~ !+ ag
for some a; € R. Thus
sl =an +- - +arz" ' +apz” € R.
Finally, as 2~' € R and R is a ring, also 1, z7', 272%,... € R; so M C R.
Conversely, M D R as 1€ M. Thus M = R. d

EXERCISE (4.14). — Let A be an infinite set, Ry a ring for A € A. Endow [[ Ry
and @ R, with componentwise addition and multiplication. Show that [] R has
a multiplicative identity (so is a ring), but that @ Ry does not (so is not a ring).

SoLuTION: Consider the vector (1) whose every component is 1. Obviously, (1)
is a multiplicative identity of [T Rx. On the other hand, no restricted vector (ey)
can be a multiplicative identity in € R»; indeed, because A is infinite, e, must be
zero for some p. So (ey) - (za) # (za) if z, #0. O
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EXERCISE (4.15). Let L, M, and N be modules. Consider a diagram
a B
L=2MzZN
P o
where «, 3, p, and o are homomorphisms. Prove that
M=LeN and a=ty, B=7N, O=1IN, p=TL
if and only if the following relations hold:
Ba=0, fo=1, po =0, pa=1, and ap+ o8 = 1.
SorutioN: If M = L& N and a = 1y, f = 7N, 0 = LN, p = 7L, then the
definitions immediately yield ap + o8 =1 and fa =0, fo =1, po =0, pa = 1.
Conversely, assume ap + o =1 and fa =0, fo =1, po =0, pa = 1. Consider
the maps ¢: M — L& N and 0: L® N — M given by om := (pm, fm) and
6(l,n) := al + on. They are inverse isomorphisms, because
©l(l,n) = (pal + pon, pal + pon) = (I,n) and Opm = apm + ofm =m.
Lastly, 8 = mnp and p = 7w by definition of ¢, and o = 01, and o = iy by
definition of 6. O

EXERCISE (4.16). — Let N be a module, A a nonempty set, M, a module for
A € A. Prove that the injections ¢, : M, — @ M) induce an injection

@ Hom(N, My) < Hom(N, @ M),
and that it is an isomorphism if N is finitely generated.

SOLUTION: For A € A, let ay: N — M, be maps, almost all 0. Then

(3 taan)(n) = (ax(n)) € P M.
So if Y eaay =0, then ay = 0 for all A\. Thus the ¢,, induce an injection.

Assume N is finitely generated, say by ni,...,ng. Let a: N — €D M, be a map.
Then each a(n;) lies in a finite direct subsum of @ M. So a(N) lies in one too. Set
oy, = mga for all & € A. Then almost all a,; vanish. So (a,) lies in @ Hom(N, M),
and > txa,; = a. Thus the ¢, induce a surjection, so an isomorphism. a

EXERCISE (4.17). — Let N be a module, A a nonempty set, M, a module for
A € A. Prove that the injections ¢\ : M, — @ M) induce an injection
@ Hom(N, M) — Hom(N, @ M),

and that it is an isomorphism if N is finitely generated.

SOLUTION: First, a(@ MA) C @ aM) because a - (my) = (amy). Conversely,
a(EB ZW,\) D @ aM) because (axmy) = Y axtamy since the sum is finite.

Second, a(J] My) C [[aMy as a(my) = (amy). Conversely, say a is generated
by fi,...,fn. Then a(J[My) D [JaMy. Indeed, take (m}) € [JaMy. Then for
each A, there is ny such that m/, = Z;L;l ax;my; with ay; € a and my; € M.
Write ay; = Z;;l Zxjifi with the xy;; scalars. Then

nx

(my) = (iifix)\jim)\j> = sz;fi (z_:l x/\jim,\j) € a(H J»A). O

j=11i=1

5. Exact Sequences
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EXERCISE (5.5). Let M’ and M" be modules, N C M’ a submodule. Set
M :=M'"® M". Using (5.2)(1) and (5.3) and (5.4), prove M/N = M'/N & M".

SoLuTION: By (5.2)(1) and (5.3), the two sequences 0 — M"” — M"” — 0 and
0— N — M — M'/N — 0 are exact. So by (5.4), the sequence
0 N->MaoeM' - (M/N)eM" -0
is exact. Thus (5.3) yields the assertion. O

EXERCISE (5.6). — Let 0 — M’ — M — M"” — 0 be a short exact sequence.
Prove that, if M’ and M" are finitely generated, then so is M.

SOLUTION: Let m{,...,m! € M map to elements generating M". Let m € M,
and write its image in M"” as a linear combination of the images of the m/. Let
m’ € M be the same combination of the m}. Set m' := m —m/”. Then m’ maps
to 0 in M"; so m’ is the image of an element of M’.

Let mf,...,m; € M be the images of elements generating M’. Then m’ is a
linear combination of the m}. So m is a linear combination of the m; and m.
Thus the m; and m} together generate M. a

EXERCISE (5.10). — Let M’, M" be modules, and set M := M’ ® M". Let N be
a submodule of M containing M’, and set N” := NN M". Prove N =M & N".

SoLUTION: Form the sequence 0 — M’ — N — mp N — 0. It splits by (5.9)
as (ma|N) o eprr = 1pgr. Finally, if (m/, m”) € N, then (0, m"”) € N as M’ C N;
hCIlCC, oy N = N". O

EXERCISE (5.11). — Criticize the following misstatement of (5.9): given a short
exact sequence 0 — M’ % M LN VN 0, there is an isomorphism M ~ M’ & M”
if and only if there is a section o: M"” — M of S.

SoLuTION: We have a: M' — M, and tpp: M — M’ @ M”, but (5.9) requires
that they be compatible with the isomorphism M ~ M’ @& M", and similarly for
B: M — M" and mpp: M & M — M".

Let’s construct a counterexample (due to B. Noohi). For each integer n > 2, let
M,, be the direct sum of countably many copies of Z/(n). Set M := €D M,

First, let us check these two statements:

(1) For any finite abelian group G, we have G & M ~ M.
(2) For any finite subgroup G C M, we have M/G ~ M.
Statement (1) holds since G is isomorphic to a direct sum of copies of Z/(n) for
various n by the structure theorem for finite abelian groups [1, (6.4), p.472], [4,
Thm. 13.3, p. 200].

To prove (2), write M = B@ M’, where B contains G and involves only finitely
many components of M. Then M’ ~ M. Therefore, (5.10) and (1) yield

M/G ~ (B/G)@® M’ ~ M.

To construct the counterexample, let p be a prime number. Take one of the
Z/{p?) components of M, and let M’ C Z/{p?) be the cyclic subgroup of order p.
There is no retraction Z/(p?) — M’, so there is no retraction M — M’ either, since
the latter would induce the former. Finally, take M” := M/M’. Then (1) and (2)
yield M ~ M' & M". O
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EXERCISE (5.13). Referring to (4.8), give an alternative proof that 8 is an
isomorphism by applying the Snake Lemma to the diagram

0— M N N/M 0

[ ’|

0 — M/L — N/L 2 (N/L)/(M/L) — 0

SOLUTION: The Snake Lemma yields an exact sequence,

L& L — Ker(8) — 0;

hence, Ker(8) = 0. Moreover, 3 is surjective because x and X are. a
EXERCISE (5.14) (Five Lemma). — Consider this commutative diagram:

My 25 My 225 My, 225 My 25 M,

wlow| o wm] o w] ]
Ny 25N 2 N, 2 N 2SN

Assume it has exact rows. Via a chase, prove these two statements:
(1) If v3 and 77 are surjective and if vy is injective, then 7 is surjective.
(2) If v3 and 41 are injective and if 74 is surjective, then vo is injective.

SOLUTION: Let’s prove (1). Take ng € Ns. Since 77 is surjective, there is
my € My such that vi(my) = B2(n2). Then yoai(m1) = B1y1(m1) = B1B2(n2) =0
by commutativity and exactness. Since g is injective, ag (m1) = 0. Hence exactness
yields mo € ]\/[2 with Oég(mz) =mi. So 62(’}’2(7712) - nz) = ’Yl()éz(mg) — 52(TL2) =0.

Hence exactness yields ng € N3 with 83(ng) = y2(mz) —n2. Since 73 is surjective,
there is mg € M3 with y3(ms3) = ns. Then yoas(ms) = B3y3(ms) = y2(ma) — na.
Hence 2 (m2 — ag(mgs)) = na. Thus 72 is surjective.

The proof of (2) is similar. O

EXERCISE (5.15) (Nine Lemma). — Consider this commutative diagram:
0 0 0

1]

0—L —L—L"—0

L]

0—>M —-M—M" —0

L]

0N —-N-—N'"—=0

|1

0 0 0

Assume all the columns are exact and the middle row is exact. Prove that the first
row is exact if and only if the third is.

SoLuTION: The first row is exact if the third is owing to the Snake Lemma
(5.12) applied to the bottom two rows. The converse is proved similarly. O
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EXERCISE (5.16). — Consider this commutative diagram with exact rows:

VNV g Vi

a/l aJ{ a//JV
N E N 2 N
Assume o/ and 7 are surjective. Given n € N and m” € M"” with o'(m”) = +'(n),
show that there is m € M such that a(m) =n and y(m) = m”.

SOLUTION: Since + is surjective, there is my € M with y(mq) = m”. Then
7' (n—a(m1)) = 0as a”(m”) = +'(n) and as the right-hand square is commutative.
So by exactness of the bottom row, there is n’ € N’ with 8'(n') = n—«a(m;). Since
o/ is surjective, there is m’ € M’ with o/(m’) = n/. Set m := my + S(m'). Then
v(m) =m"” as y8 = 0. Further, a(m) = a(m1)+ 4’ (n’) = n as the left-hand square
is commutative. Thus m works. g

EXERCISE (5.21). — Show that a free module R®A is projective.

SoLuTION: Given f: M —» N and a: R®* — N, use the UMP of (4.10) to
define v: R — M by sending the standard basis vector ey to any lift of a(ey),
that is, any my € M with S(my) = a(ex). (The Axiom of Choice permits a
simultaneous choice of all my if A is infinite.) Clearly @ = Bv. Thus R®" is
projective. O

EXERCISE (5.24). — Let R be a ring, and 0 - L — R™ — M — 0 an exact
sequence. Prove M is finitely presented if and only if L is finitely generated.

SOLUTION: Assume M is finitely presented; say R* — R™ — M — 0 is a finite
presentation. Let L’ be the image of R'. Then L' ® R® ~ L @ R™ by Schanuel’s
Lemma (5.23). Hence L is a quotient of R’ @ R". Thus L is finitely generated.

Conversely, assume L is generated by £ elements. They yield a surjection R — L
by (4.10)(1). It yields a sequence R* — R™ — M — 0. The latter is, plainly, exact.
Thus M is finitely presented. O

EXERCISE (5.25). — Let R be a ring, X1, Xo,... infinitely many variables. Set
P := R[X;,Xs,...] and M := P/(X1,Xo,...). Is M finitely presented? Explain.

SOLUTION: No, otherwise by (5.24), the ideal (X1, X5, ...) would be generated
by some fi,..., fn € P, so also by Xi,...,X,, for some m, but plainly it isn’t. 0O

EXERCISE (5.27). — Let 0 = L % M Z, N = 0 be a short exact sequence with
M finitely generated and N finitely presented. Prove L is finitely generated.

SOLUTION: Let R be the ground ring. Say M is generated by m elements. They
yield a surjection p: R™ —» M by (4.10)(1). As in (5.26), p induces the following
commutative diagram, with A surjective:

0—K—R"™"— N —0

]

0L MS5N=0

By (5.24), K is finitely generated. Thus L is too, as A is surjective. ]
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6. Direct Limits

EXERCISE (6.3). — (1) Show that the condition (6.2)(1) is equivalent to the
commutativity of the corresponding diagram:

Home (B, C) — Home (F(B), F(C))

l |

Home (A, C) — Home (F(A), F(C))

(2) Given v: C' — D, show (6.2)(1) yields the commutativity of this diagram:
Home (B, C) — Home (F(B), F(C))

| |

Home(A, D) — Home (F(A), F(D))

SoLuTION: The left-hand vertical map is given by composition with «, and the
right-hand vertical map is given by composition with F(«). So the composition of
the top map and the right-hand map sends 5 to F'(5)F(«), whereas the composition
of the left-hand map with the bottom map sends 8 to F(S«). These two images
are always equal if and only if the diagram commutes. Thus (1) holds if and only
if the diagram commutes.

As to (2), the argument is similar. O

EXERCISE (6.5). — Let € and €’ be categories, F: € — € and F’: ¢’ — C an
adjoint pair. Let ¢4 4: Home (FA, A") = Home(A, F'A’) denote the natural
bijection, and set n4 := pa,ra(lra). Do the following:

(1) Prove n4 is natural in A; that is, given g: A — B, the induced square

A F'FA

gl lF'Fg
B 2 F'FB
is commutative. We call the natural transformation A — 14 the unit of (F, F’).

(2) Given f': FA — A, prove pa a(f') = F'f' ona.

(3) Prove the natural map n4: A — F'F A is universal from A to F’; that is,
given f: A — F'A’, there is a unique map f': FA — A’ with F'f'ona = f.

(4) Conversely, instead of assuming (F, F’) is an adjoint pair, assume given a
natural transformation n: 1le¢ — F'F satisfying (1) and (3). Prove the equation in
(2) defines a natural bijection making (F, F’) an adjoint pair, whose unit is 7.

(5) Identify the units in the two examples in (6.4): the “free module” functor
and the “polynomial ring” functor.

(Dually, we can define a counit e: FF’ — 1le/, and prove similar statements.)

SoruTioN: For (1), form this canonical diagram, with horizontal induced maps:

Home (FA, FA) —"2* s Home (FA, FB) <" Home (FB, FB)

SGA,FAl WA,FBl SGB,FBl

Home (A, F'FA) 59 Home(A, F'FB) +%— Home(B, F'FB)
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It commutes since ¢ is natural. Follow 1p4 out of the upper left corner to find

F'Fgona = ¢a rp(g) in Home(A, F'FB). Follow 1pp out of the upper right

corner to find pa, p(g) = np o g in Home(A, F'FB). Thus (F'Fg)ona=ngog.
For (2), form this canonical commutative diagram:

Home (FA, FA) —* Home (FA, A')
WA.FAl Pa,al
Home (4, F'FA) 7 Home(A, F/ A
Follow 14 out of the upper left-hand corner to find @a a/(f") = F'f ona.
For (3), given an f’, note that (2) yields pa,a/(f’) = f; whence, f/ = LPE}A/(f).
Thus f’ is unique. Further, an f’ exists: just set f’:= QDZ}A,(f).
For (4), set ¥4, 4 (f") := F'f' ona. As na is universal, given f: A — F'A’, there
is a unique f': FA — A’ with F'f' ong = f. Thus ¥4, 4/ is a bijection:

Pa,ar: HOIIl@/(FA7 Al) - HOIHQ(A7 F/AI).

Also, 14,4/ is natural in A, as n4 is natural in A and F”’ is a functor. And, 94 as
is natural in A’, as F’ is a functor. Clearly, ¥4, pa(1pa) = na. Thus (4) holds.
For (5), use the notation of (6.4). Clearly, if F'is the “free module” functor, then
na: A — RO carries an element of A to the corresponding standard basis vector.
Further, if F' is the “polynomial ring” functor and if A is the set of variables
X1,...,Xn, then n4(X;) is just X; viewed in R[X7, ..., X,]. O

EXERCISE (6.9). — Let a: L — M and 3: L — N be two maps. Their pushout
is defined as the universal example of an object P equipped with a pair of maps
v: M — P and §: N — P such that ya = §5. In terms of the definitions, express
the pushout as a direct limit. Show directly that, in ((Sets)), the pushout is the
disjoint union M LI N modulo the smallest equivalence relation ~ with m ~ n if
there is £ € L with «(¢) = m and (¢) = n. Show directly that, in ((R-mod)), the
pushout is the direct sum M & N modulo the image of L under the map (o, —f).

SOLUTION: Let A be the category with three objects A, p, and v and two non-
identity maps A — p and A — v. Define a functor A — M) by My := L, M, := M,
M, :=N, oef; ‘=a, and ) := . Set Q := li_ngMA. Then writing

N m L% M
nul ml ml as Bl nul
Qe Q 50 N 5 Q

we see that @ is equal to the pushout of o and 3; here v =1, and § = n,.

In ((Sets)), take v and § to be the inclusions followed by the quotient map.
Clearly ya = 3. Further, given P and maps v': M — P and §': N — P, they
define a unique map M LU N — P, and it factors through the quotient if and only
if ya=¢'B. Thus (M U N)/ ~ is the pushout.

In ((R-mod)), take v and ¢ to be the inclusions followed by the quotient map.
Then for all £ € L, clearly tpra(f) — enB(€) = (a(€),—B(0)). So tpra(l) — enB(E)
is in Im(L); hence, tpra(€) and ¢ B(€) have the same image in the quotient. Thus
ya=483. Giveny': M — P and §': N — P | let op: M & N — P be the induced
map. Clearly ¢ factors through the quotient if and only if with v'a = §’3. Thus
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M & N)/Im(L) is the pushout. O
( )/ Im(L) p

EXERCISE (6.16). — Let C be a category, ¥ and A small categories.
(1) Prove C=*A = (€M with (0, \) = M, corresponding to o +— (A — M,y).
(2) Assume C has direct limits indexed by ¥ and by A. Prove that C has direct
limits indexed by ¥ x A and that liglAGA li_ngJGZ = @(U,A)ezx/\‘

SOLUTION: In ¥ X A, a map (0, \) — (7, 1) factors in two ways:
(0,0) = (1,A) = (1) and (0,A) = (0, p) = (7, 1)

So, given a functor (o, \) — M, , there is a commutative diagram like (6.13.1).
It shows that the map ¢ — 7 in ¥ induces a natural transformation from A — M, »
to A — M, x. Thus the rule o — (A — M,») is a functor from ¥ to cA.

A map from (o,\) — M, x to a second functor (o, \) — N, x is a collection of
maps 0y x: My » — N » such that, for every map (o, \) — (7, ), the square

Moy — M,

ed,Al 197#

Na)\ — N‘r,u

is commutative. Factoring (o, \) — (7, ) in two ways as above, we get a commu-
tative cube. It shows that the 6, , define a map in (C)%.

This passage from CZ** to (€1)® is reversible. Thus (1) holds.

Assume @ has direct limits indexed by ¥ and A. Then C* has direct limits
indexed by ¥ by (6.13). So the functors lim A — € and lim . (eM*E —
@M exist, and they are the left adjoints of the diagonal functors € — €A and
eA — (€M)* by (6.6). Hence the composition lim,  lim o is the left adjoint of
the composition of the two diagonal functors. But the latter is just the diagonal
€ — C¥*A owing to (1). So this diagonal has a left adjoint, which is necessarily
lig(m)\)ezw\ owing to the uniqueness of adjoints. Thus (2) holds. O

EXERCISE (6.17). — Let A — M) and A — N be two functors from a small
category A to ((R-mod)), and {@x: My — Ny} a natural transformation. Show

dlim Coker(6)) = Coker(li_n} My — ligNA).

Show that the analogous statement for kernels can be false by constructing a
counterexample using the following commutative diagram with exact rows:

727 - 7/2) =0

ICERCEE

727 - 7/2) =0

SOLUTION: By (6.8), the cokernel is a direct limit, and by (6.14), direct limits
commute; thus, the asserted equation holds.

To construct the desired counterexample using the given diagram, view its rows
as expressing the cokernel Z/(2) as a direct limit over the category A of (6.8). View
the left two columns as expressing a natural transformation {6}, and view the third
column as expressing the induced map between the two limits. The latter map is
0, so its kernel is Z/(2). However, Ker(6y) = 0 for A € A; so liglKer(G,Q =0. O
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7. Filtered direct limits

EXERCISE (7.2). — Let R be a ring, M a module, A a set, M) a submodule for
each A € A. Assume | J My = M. Assume, given A, p € A, there is v € A such that
My, M, C M,. Order A by inclusion: A < pif My C M. Prove that M = ligl]bﬁ.

SOLUTION: Let us prove that M has the UMP characterizing lim M. Given
homomorphisms 8y: My — P with 8y = 8,|My when A < v, define g: M — P
by B(m) := Bx(m) if m € M. Such a X exists as |JMy = M. If also m € M,
and My, M, C M,, then Bx(m) = B,(m) = Bu(m); so § is well defined. Clearly,
B: M — P is the unique set map such that 5|M, = ). Further, given m,n € M
and z € R, there is v such that m,n € M,,. So B(m+n) = B,(m+n) = B(m)+5(n)
and B(zm) = B,(xm) = xB(m). Thus S is R-linear. Thus M = lim M. O

EXERCISE (7.3). — Show that every module M is the filtered direct limit of its
finitely generated submodules.

SOLUTION: Every element m € M belongs to the submodule generated by m;
hence, M is the union of all its finitely generated submodules. Any two finitely
generated submodules are contained in a third, for example, their sum. So the
assertion results from (7.2) with A the set of all finite subsets of M. g

EXERCISE (7.4). — Show that every direct sum of modules is the filtered direct
limit of its finite direct subsums.

SoLUTION: Consider an element of the direct sum. It has only finitely many
nonzero components. So it lies in the corresponding finite direct subsum. Thus
the union of the subsums is the whole direct sum. Now, given any two finite direct
subsums, their sum is a third. Thus the finite subsets of indices form a directed
partially ordered set A. So the assertion results from (7.2). g

EXERCISE (7.6). — Keep the setup of (7.5). For each n € A, set N,, := Z/{(n); if
n =ms, define a: N, = N,, by a)'(z) := xs (mod n). Show lim N, = Q/z.

SOLUTION: For each n € A, set Q,, := M, /Z C Q/Z. If n = ms, then clearly
Diagram (7.5.1) induces this one:
o

Ny, —— N,

where 77" is the inclusion. Now, | @, = Q/Z and Q,,, Q. C Qppr. So (7.2) yields
Q/Z:@Mn. Thus @Nn:Q/Z. O

EXERCISE (7.9). — Let R be a filtered direct limit of rings Ry. Show R = 0 if
and only if Ry = 0 for some A. Show R is a domain if Ry is a domain for every A.

SoLuTION: If Ry =0,then 1 =01in Ry;s01=01in R as ay: Ry — R carries 1
to 1 and 0 to 0; hence, R = 0 by (1.1). Conversely, assume R = 0. Then 1 =0 in
R. So a1 =0 for any given A. Hence, by (7.8)(3) with Z for R, there is aﬁ such
that a1 =0. But a)1 =1. Thus 1 =0 in R, and so R, = 0 by (1.1).

Suppose every Ry is a domain. Given z, y € R with xy = 0, we can lift x, y
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back to zy, yx € Ry for some A by (7.8)(1) and (7.1)(1). Then z)yx maps to
0 € R. Hence, by (7.8)(3), there is a transition map a;, with o)) (zxyx) = 0 in Rj,.
However, o) (zayx) = oy (2x)), (ya), and Ry, is a domain. Hence either aj(zx) = 0

or af‘i(y,\) = 0. Therefore, either x = 0 or y = 0. Thus R is a domain. O

EXERCISE (7.11). — Let M := lim M) be a filtered direct limit of modules, and
N C M a submodule. For each A, let ay: My — M be the insertion, and set
Ny = a;lN C M). Prove that N = liHmN,\.

SorLuTION: The given functor A — M, induces a functor A — N, and the
insertions ay: My — M induce maps (5y: Ny — N. So there is §: @NA — N
with Bay = Bx. By (7.10), li_n}NA — M is injective; so 3 is too. Further, for any
m € M, there is an m) € M) such that m = aymy, and if m € N, then m) € N,
since Ny = a;lN. Thus g is surjective, so an isomorphism. |

EXERCISE (7.13). — Let A and A’ be small categories, C: A’ — A a functor.
Assume A’ is filtered. Assume C is cofinal; that is,

(1) given A € A, there is a map A — C\ for some X' € A/, and

(2) given v, p: A = CN, there is x: N — \] with (Cx)y¥ = (Cx)e.
Let A — M), be a functor from A to € whose direct limit exists. Show that

lim,, Moy =lim, M
more precisely, show that the right side has the UMP characterizing the left.

SOLUTION: Let P be an object of €. For X € A’, take maps vy : Mcy — P
compatible with the transition maps Moy — Mg,s. Given A € A, choose a map
A — C)N, and define 3): M) — P to be the composition

Ba: My — Moy 25 P.

Let’s check that 3, is independent of the choice of A — C\.

Given a second choice A — C\’, there are maps N/ — u/ and X — p’ for some
u' € A since A’ is filtered. So there is a map p' — pj such that the compositions
A= CN = Cu — Cul and A — CX' — Cu/ — Cuf are equal since C is cofinal.
Therefore, A — C\ gives rise to the same 3y, as desired.

Clearly, the ) are compatible with the transition maps M,, — My. So the ()
induce amap 3: lim My — P with Say = () for every insertion ay : My — liLnM)\.
In particular, this equation holds when A = C\ for any A € A’; as required. O

EXERCISE (7.14). — Show that every R-module M is the filtered direct limit over
a directed set of finitely presented modules.

SoLuTION: By (5.19), there is a presentation R®®1 % R®®2 — M — 0. For
i = 1,2, let A; be the set of finite subsets ¥; of ®;, and order A; by inclusion.
Clearly, an inclusion ¥; < ®; yields an injection R®Y: <« R®®i which is given by
extending vectors by 0. Hence (7.2) yields h_I)nREB‘D‘ = R9%:,

Let A C A1 X Ay be the set of pairs A := (¥, Uy) such that a induces a map
ax: RO — R®¥2 Order A by componentwise inclusion. Clearly, A is directed.
For A € A, set M) := Coker(ay). Then M), is finitely presented.

For i = 1,2, the projection C;: A — A; is surjective, so cofinal. Hence, (7.13)
yields limy, RO = ling, RV, Thus (6.17) yields lim My = M. O
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8. Tensor Products

EXERCISE (8.6). — Let R be a domain. Set K := Frac(R). Given a nonzero
submodule M C K, show that M ®p K = K.

SOLUTION: Define a map 8: ax K — K by 8(z,y) := xzy. It is clearly R-bilinear.
Given any R-bilinear map a:: ax K — P, fix a nonzero z € a, and define an R-linear
map v: K — P by v(y) := a(z,y/z). Then a =~ as

a(z,y) = a(zz,y/2) = a(z,zy/z) = v(zy) = 78(z,y).
Clearly, f3 is surjective. So « is unique with this property. Thus the UMP implies
that K = a®p K. (Also, as v is unique, v is independent of the choice of z.)
Alternatively, form the linear map ¢: a®@ K — K induced by the bilinear map /.
Since f3 is surjective, so is ¢. Now, given any w € a® K, say w = Y a; ® z; /x with
all z; and z in R. Set a := ) a;x; € a. Then w = a ® (1/x). Hence, if p(w) =0,
then a/x = 0; so a = 0 and so w = 0. Thus ¢ is injective, so bijective. O

EXERCISE (8.8). — Let R be a ring, R’ an R-algebra, M, N two R’-modules.
Show there is a canonical R-linear map 7: M g N - M Qg N.

Let K € M ®r N denote the R-submodule generated by all the differences
('m)®n —m® (2'n) for ' € R and m € M and n € N. Show K = Ker(7).
Show 7 is surjective, and is an isomorphism if R’ is a quotient of R.

SOLUTION: The canonical map 3': M x N — M ®pg N is R’-bilinear, so R-
bilinear. Hence, by (8.3), it factors: 8/ = 78 where 8: M x N - M ®g N is the
canonical map and 7 is the desired map.

Set Q := (M ®g N)/K. Then 7 factors through a map 7/: Q@ — M ®p/ N since
each generator (z'm) ® n — m ® (z'n) of K maps to 0 in M ®p' N.

By (8.7), there is an R'-structure on M @z N with ¢'(m ®n) = m ® (y'n), and
so by (8.5)(1), another one with 3/'(m®n) = (y'm) ®n. Clearly, K is a submodule
for each structure, so @ is too. But on ) the two structures coincide. Further,
the canonical map M x N — @ is R'-bilinear. Hence the latter factors through
M ®p/ N, furnishing an inverse to 7. So 7/: Q@ = M ®p' N. Hence Ker(7) is
equal to K, and 7 is surjective.

Finally, suppose R’ is a quotient of R. Then every =’ € R’ is the residue of some
x € R. So each (2'm) ® n —m ® (z'n) is equal to 0 in M ®p N as z'm = zm and
a'n = xn. Hence Ker(7) vanishes. Thus 7 is an isomorphism. O

EXERCISE (8.13). — Let R be a ring, a and b ideals, and M a module.
(1) Use (8.11) to show that (R/a)®@ M = M/aM.
(2) Use (1) to show that (R/a) ® (R/b) = R/(a+b).

SoLuTION: To prove (1), view R/a as the cokernel of the inclusion a — R. Then
(8.11) implies that (R/a)® M is the cokernel of a@ M — R M. Now, R M = M
and  ® m = xzm by (8.5)(2). Correspondingly, a ® M — M has aM as image.
The assertion follows. (Caution: a ® M — M needn’t be injective; if it’s not, then
a® M # aM. For example, take R := Z, take a := (2), and take M := Z/(2); then
a® M — M is just multiplication by 2 on Z/(2), and so alM = 0.)

To prove (2), apply (1) with M := R/b. Note a(R/b) = (a + b)/b. Hence

R/a® R/b = (R/b)/((a+b)/b).
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The latter is equal to R/(a + b) by (4.8). |

EXERCISE (8.14). — Let & be a field, M and N nonzero vector spaces. Prove that
M@ N #0.

SOLUTION: Since k is a field, M and N are free; say M = k®® and N = k®¥,
Then (8.11) yields M @ N = k®(®*¥) as k@ k = k by (8.5)(2). Thus M ® N #
0. d

EXERCISE (8.16). — Let F': ((R-mod)) — ((R-mod)) be a linear functor. Show
that F always preserves finite direct sums. Show that 6(M): M ® F(R) — F(M)
is surjective if F' preserves surjections and M is finitely generated, and that 8(M)
is an isomorphism if F' preserves cokernels and M is finitely presented.

SoLUTION: The first assertion follows immediately from the characterization of
finite direct sum in terms of maps (4.15), since F preserves the stated relations.

The second assertion follows from the first via the second part of the proof of
Watt’s Theorem (8.15), but with ¥ and A finite. O

EXERCISE (8.21). — Let X be a variable, w a complex cubic root of 1, and /2
the real cube root of 2. Set k := Q(w) and K := k[V/2]. Show K = k[X]/(X® —2)
and then K @, K = K x K x K.

SOLUTION: Note w is a root of X2 4+ X + 1, which is irreducible over Q; hence,
[k : Q] = 2. But the three roots of X3 — 2 are ¥/2 and w+/2 and w?+/2. Therefore,
X?3—2hasnoroot in k. So X3 —2 is irreducible over k. Thus k[X]/(X?-2) = K.

Note K[X] = K ®, k[X] as k-algebras by (8.20). So (8.5)(2) and (8.10) and
(8.13)(1) yield

KIX)/(XP — 2) @0 K = K[X]/(X® — 2) @) (K[X] 0 K)
= k[X]/(X? - 2) @yx) K[X] = K[X]/(X? —2).
However, X3 — 2 factors in K as follows:
X% —2= (X - V2)(X - wV2) (X —w?V2).
So the Chinese Remainder Theorem, (1.13), yields
KIX]/(X?-2)=Kx K x K,
because K[X]/(X — wiV/2) == K for any i by (1.7). O

9. Flatness

EXERCISE (9.7). — Let R be a ring, R’ a flat algebra, and P a flat R’-module.
Show that P is a flat R-module.

SoLuTION: Cancellation (8.10) yields e @z P = (e ®g R') ®gr P. But e @ R’
and e @, P are exact. Hence, eg P is too. Thus P is R-flat. O

EXERCISE (9.8). — Let R be a ring, M a flat module, and R’ an algebra. Show
that M ®r R’ is a flat R’-module.

SoLuTION: Cancellation (8.10) yields (M ®r R') ®pr ¢ = M ®p o. Therefore,
(M ®r R') ®p o is exact. Thus M ®p R’ is R'-flat. O
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EXERCISE (9.9). — Let R be a ring, a an ideal. Assume that R/a is R-flat. Show
that a = a?.

SOLUTION: Since R/a is flat, tensoring it with the inclusion a — R yields an
injection a ®g (R/a) — R ®g (R/a). But the image vanishes: a @ r =1® ar = 0.
Further, a ®g (R/a) = a/a? by (8.13). Hence a/a? = 0. Thus a = a?. O

EXERCISE (9.10). — Let R be aring, R’ a flat algebra with structure map . Then
R’ is said to be faithfully flat if for every R-module M, the map M — M ® R’
given by x — x ® 1 is injective. Show that the following conditions are equivalent:

(1) R’ is faithfully flat.

(2) Every ideal a of R is the contraction of its extension, or a = p~!(aR’).
(3) Every prime p of R is the contraction of some prime q of R, or p = o~ 1q .
(4) Every maximal ideal m of R extends to a proper ideal, or mR’ # R'.

(5) Every nonzero R-module M remains nonzero when tensored with R’, or

M ®pr R #0.

SOLUTION: Assume (1). Then R/a — (R/a) @ R’ is injective. Hence (8.13)(1)
implies R/a — R’/aR’ is injective. Thus (2) holds.

Assume (2). Let p be a prime ideal of R. Then (2) yields p = ¢~(pR’). Thus
(3.10) yields (3).

Assume (3). Let m be a maximal ideal of R. By (3), there is a prime ideal n of
R’ with ¢~ 1(n) = m. So mR’ C n. Thus (4) holds.

Assume (4). Take a nonzero m € M; set M’ := Rm. As R’ is flat, the inclusion
M' — M yields an injection M'QR' — M®R’. So it suffices to show M'®@rR’ # 0.

Note M’ = R/a for some a by (4.7). So M’ @z R’ = R'/aR’ by (8.13)(1).
Take a maximal ideal m D a. Then aR’ C mR. But mR’ G R’ by (4). Hence
M’ ®g R # 0. Thus (5) holds.

Assume (5). Set K := Ker(M — M ®pgR’). Since R’ is flat, the induced sequence

0-K®rR - M@pR S M®rR ®r R

is exact. But a has a retraction, namely, m ® r ® y — m ® zy; hence, « is injective.
Thus K ®p R’ = 0. Hence (5) yields K = 0. Thus (1) holds. O

EXERCISE (9.11). — Let A and B be local rings, m and n their maximal ideals.
Let ¢: A — B be a local homomorphism; that is, ¢(m) C n. Assume ¢ is flat.
Show that ¢ is faithfully flat.

SOLUTION: The assertion results from (9.10), as (4) holds since p(m) Cn. O

EXERCISE (9.15). — Let R be a ring, R’ an algebra, M and N modules. Show
that there is a canonical map
o: Homg(M, N) ®r R’ — Homg (M @r R, N @r R).
Assume R’ is flat over R. Show that if M is finitely generated, then o is injective,

and that if M is finitely presented, then o is an isomorphism.

SOLUTION: Simply put R’ := R and P := R’ in (9.14), put P := N ®r R’ in
the second equation in (8.10), and combine the two results. O
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EXERCISE (9.19) (Equational Criterion for Flatness). Prove that Condition
(9.18)(4) can be reformulated as follows: For every relation ), z;y; = 0 with
z; € R and y; € M, there are z;; € R and y; € M such that

> @ijy; = yi for all i and 37, zi;2; = 0 for all j. (9.19.1)

SOLUTION: Assume (9.18)(4) holds. Let eq, ..., e, be the standard basis of R™.
Given a relation > 7" ;y; = 0, define a: R™ — M by af(e;) := y; for each i. Set
k:=z;e;. Then a(k) = 0. So (9.18)(4) yields a factorization a:: R™ % R" LN
with (k) = 0. Let ef,...,e;, be the standard basis of R", and set y; := §(e];) for
each j. Let (v;;) be the n x m matrix of ¢; that is, p(e;) = > zje’. Then
yi = >_xjiy;. Now, (k) = 0; hence, 37,  zj;z;€}; = 0. Thus (9.19.1) holds.

Conversely, given a: R™ — M and k € Ker(a), write k£ = > x;e;. Assume
(9.19.1). Let ¢: ™ — R™ be the map with matrix (z;;); that is, p(e;) = >_ zjie.
Then (k) = Y zizjie; = 0. Define 3: R™ — M by S(e}) := yj. Then Bp(e;) = yi;
hence, B¢ = a. Thus (9.18)(4) holds. O

EXERCISE (9.22). — Let R be a domain, M a module. Prove that, if M is flat,
then M is torsion free; that is, p,: M — M is injective for all nonzero z € R.
Prove that, conversely, if R is a PID and M is torsion free, then M is flat.

SOLUTION: Since R is a domain, p,: R — R is injective. So if M is flat, then
ey ® M: R® M — R® M is injective too. But R® M = M by (8.5).

Conversely, assume R is a PID and M is torsion free. Let a be a nonzero ideal,
say a = (x). Define a: R — a by a(y) := zy. Then « is injective as R is a domain
and = # 0. Further, « is surjective as a = (). So « is bijective.

Consider the composition

B:M=ReoM M ao M — M.
Clearly, 8 = p,. So (8 is injective since M is torsion free. Hence a @ M — M is
injective too. So M is flat by the Ideal Criterion (9.20). O

10. Cayley—Hamilton Theorem

EXERCISE (10.6). — Let R be a ring, a an ideal. Assume a is finitely generated
and idempotent (or a = a?). Prove there is a unique idempotent e with (¢) = a.

SOLUTION: By (10.3) with a for M, there is e € a such that (1 —e)a = 0. So
for all z € a, we have (1 —e)x =0, or x = ex. Thus a = () and e = 2.

Finally, e is unique by (1.16)(2). O

EXERCISE (10.8). — Prove the following conditions on a ring R are equivalent:

(1) R is absolutely flat; that is, every module is flat.

(2) Every finitely generated ideal is a direct summand of R.
(3) Every finitely generated ideal is idempotent.

(4) Every principal ideal is idempotent.
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SOLUTION: Assume (1). Let a be a finitely generated ideal. Then R/a is flat by
hypotheses. So a is a direct summand of R by (10.7). Thus (2) holds.

Conditions (2) and (3) are equivalent by (10.7).

Trivially, if (3) holds, then (4) does. Conversely, assume (4). Given a finitely
generated ideal a, say a = (x1,...,x,). Then each (z;) is idempotent by hypothesis.
So (x;) = (fi) for some idempotent f; by (1.16)(2). Then a = (f1,..., fn). Hence
a is idepotent by (1.16)(5), (1). Thus (3) holds.

Assume (2). Let M be a module, and a a finitely generated ideal. Then a is a
direct summand of R by hypothesis. So R/a is flat by (9.5). Hence a®@ M — aM
by (9.12)(1). So M is flat by (9.20). Thus (1) holds. O

EXERCISE (10.9). — Let R be a ring.

(1) Assume R is Boolean. Prove R is absolutely flat.

(2) Assume R is absolutely flat. Prove any quotient ring R’ is absolutely flat.
(3) Assume R is absolutely flat. Prove every nonunit z is a zerodivisor.

(4) Assume R is absolutely flat and local. Prove R is a field.

SoruTIoN: In (1), as R is Boolean, every element is idempotent. Hence every
principal ideal is idempotent by (1.15)(1). Thus (10.8) yields (1).

For (2), let b C R’ be principal, say b = (T). Let « € R lift Z. Then (z) is
idempotent by (10.8). Hence b is also idempotent. Thus (10.8) yields (2).

For (3) and (4), take a nonunit x. Then (x) is idempotent by (10.8). So x = ax?
for some a. Then z(axz —1) = 0. But z is a nonunit. So az—1 # 0. Thus (3) holds.

Suppose R is local, say with maximal ideal m. Since x is a nonunit, x € m. So
ar €m. Soaxr —1 ¢ m. So ar — 1 is a unit. But z(az —1) =0. So z = 0. Thus 0
is the only nonunit. Thus (4) holds. O

EXERCISE (10.12). — Let R be aring, m C rad(R) an ideal. Let o, 8: M — N be
two maps of finitely generated modules. Assume « is surjective and S(M) C mN.
Set v := a4+ . Show that « is an isomorphism.

SOLUTION: As « is surjective, given n € N, there is m € M with a(m) = n. So
n=a(m)+ B(m) — f(m) € v(M) + mN.
Hence v(M) = N by (10.11). So v is an isomorphism by (10.4). O

EXERCISE (10.13). — Let A be a local ring, m the maximal ideal, M a finitely
generated A-module, and my,...,m, € M. Set k:= A/m and M’ := M/mM, and
write m/ for the image of m; in M’. Prove that mj,...,m) € M’ form a basis
of the k-vector space M’ if and only if mq,..., m, form a minimal generating
set of M (that is, no proper subset generates M), and prove that every minimal
generating set of M has the same number of elements.

SoLUTION: By (10.11), reduction mod m gives a bijective correspondence be-
tween generating sets of M as an A-module, and generating sets of M’ as an
A-module, or equivalently by (4.5), as an k-vector space. This correspondence
preserves inclusion. Hence, a minimal generating set of M corresponds to a min-
imal generating set of M’, that is, to a basis. But any two bases have the same
number of elements. d
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EXERCISE (10.14). Let A be a local ring, k its residue field, M and N finitely
generated modules. (1) Show that M = 0 if and only if M ® 4 k = 0. (2) Show
that M ® 4 N #£0if M # 0 and N # 0.

SOLUTION: Let m be the maximal ideal. Then M ® k = M/mM by (8.13)(1).
So (1) is nothing but a form of Nakayama’s lemma (10.10).

In(2), M@k#0and N®k #0 by (1). So (M ®k)® (N ®k) #0 by (8.14)
and (8.8). But (M ®k)® (N®k) = (M ® N)® (k® k) by the associative and
commutative laws. Finally, k ® k = k by (8.13)(1). O

EXERCISE (10.17). — Let G be a finite group acting on a domain R, and R’ the
ring of invariants. Show every z € R is integral over R/, in fact, over the subring R”
generated by the elementary symmetric functions in the conjugates gz for g € G.

SOLUTION: Given an z € R, form F(X) :=[[ .o(X —gz). Then the coefficients
of F(X) are the elementary symmetric functions in the conjugates gx for g € G;
hence, they are invariant under the action of G. So F'(z) = 0 is a relation of integral
dependence for z over R, in fact, over its subring R”. d

EXERCISE (10.19). — Let k be a field, P := k[X] the polynomial ring in one
variable, f € P. Set R := k[X?] C P. Using the free basis 1, X of P over R, find
an explicit equation of integral dependence of degree 2 on R for f.

SorLuTION: Write f = f. + fo, where f. and f, are the polynomials formed by
the terms of f of even and odd degrees. Say f, = gX. Then the matrix of uy is
(J; 922 ) Its characteristic polynomial is T2 — 2f.T + f2 — f2. So the Cayley-
Hamilton Theorem (10.1) yields f2 — 2f.f + f2 — f2 =0. O

EXERCISE (10.24). — Let Ry, ..., R, be R-algebras that are integral over R. Show
that their product [] R; is a integral over R.

SoLUTION: Let y = (y1,...,yn) € [[}, Ri. Since R;/R is integral, Ry,] is a
module-finite R-subalgebra of R;. Hence [T, R[y;] is a module-finite R-subalgebra
of [Ti; R; by (4.14) and induction on n. Now, y € []", R[y;]. Therefore, y is
integral over R. Thus []}_, R; is integral over R. O

EXERCISE (10.26). — For 1 < i <r, let R; be a ring, R} an extension of R;, and
z; € R}. Set R :=[[R;, set R :=[[ R}, and set x := (z1,...,2,). Prove

(1) z is integral over R if and only if z; is integral over R; for each i;

(2) R is integrally closed in R’ if and only if each R; is integrally closed in R}.

SOLUTION: Assume z is integral over R. Say z” + ajz" ' + --- + a, = 0 with
aj € R. Say a; =: (ay;,...,a,;). Fixi. Then 2% + a;12" "1 + -+ + a;n = 0. So w;
is integral over R;.

Conversely, assume each z; is integral over R;. Say x" —b—ail:c;“*l 4+ +apm, =0.

Set n := maxn;, set a;; := 0 for j > n,, and set a; := (ay;,...,ar;) € R for each j.
Then 2™ + a12" " + -+ + a, = 0. Thus x is integral over R. Thus (1) holds.
Assertion (2) is an immediate consequence of (1). O
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EXERCISE (10.30). — Let k be a field, X and Y variables. Set
R:=k[X,Y]/(Y? - X? - X3),

and let x,y € R be the residues of X, Y. Prove that R is a domain, but not a field.
Set ¢ := y/x € Frac(R). Prove that k[t] is the integral closure of R in Frac(R).

SoLUTION: As k[X,Y]isa UFD and Y2— X2 — X3 is irreducible, (Y2 — X2 - X3)
is prime by (2.6); however, it is not maximal by (2.27). Hence R is a domain
by (2.9), but not a field by (2.17).

Note y? — 2% — 2® = 0. Hence z = > — 1 and y = t3 — t. So k[t] D k[z,y] = R.
Further, ¢ is integral over R; so k[t] is integral over R by (2)=-(1) of (10.23).

Finally, k[t] has Frac(R) as fraction field. Further, Frac(R) # R, so z and y
cannot be algebraic over k; hence, ¢ must be transcendental. So k[t] is normal by
(10.29)(1). Thus k[t] is the integral closure of R in Frac(R). O

11. Localization of Rings

EXERCISE (11.2). — Let R be a ring, S a multiplicative subset. Prove S™'R = 0
if and only if S contains a nilpotent element.

SoLuTioN: By (1.1), ST'R = 0 if and only if 1/1 = 0/1. But by construction,
1/1=0/1 if and only if 0 € S. Finally, since S is multiplicative, 0 € S if and only
if S contains a nilpotent element. d

EXERCISE (11.3). — Let R be a ring, S a multiplicative subset, S its saturation.
Set T := (S™'R)*. Show T'={x/s |z € S and s € S}. Show ¢5'T = S.

SOLUTION: First, given z € S and s € S, take y € R such that zy € S. Then
x/s-sy/ry = 1in ST'R. Thus z/s € T. Conversely, say z/s-y/t = 1 in S7'R
with z,y € R and s,t € S. Then there’s u € S with zyu = stu in R. But stu € S.
Thus 2 € S. Thus the first assertion holds.

Set U := <p§1T. Then U is saturated multiplicative by (3.12). Further, U D S
by (11.1). Thus (1)(c) of (3.14) yields U D S. Conversely, take z € U. Then
x/1 € T. So the first assertion yields 2/1 = y/s with y € S and s € S. So there’s
t € S with zst = yt in R. But S O S by (1)(a) of (3.14), and S is multiplicative
by (1)(b); so yt € S. But S is saturated by (1)(b). Thusz € S. Thus U = S. O

EXERCISE (11.5). — Find all intermediate rings Z C R C Q, and describe each R
as a localization of Z. As a starter, prove Z[2/3] = S~1Z where S = {3% | i > 0}.

SoLuTION: Clearly Z[2/3] C Z[1/3] as 2/3 = 2-(1/3). But the opposite inclusion
holds as 1/3 = 1 — (2/3). Obviously, S~1Z = Z[1/3].

Let P C Z be the set of all prime numbers that appear as factors of the de-
nominators of elements of R in lowest terms; recall that x = r/s € Q is in lowest
terms if r and s have no common prime divisor. Let S be the multiplicative subset
generated by P, that is, the smallest multiplicative subset containing P. Clearly,
S is equal to the set of all products of elements of P.

First note that, if p € P, then 1/p € R. Indeed, take an element = r/ps € R in
lowest terms. Then sz = r/p € R. Also the Euclidean algorithm yields m, n € Z
such that mp +nr = 1. Then 1/p = m + nsx € R, as desired. Hence S™'Z C R.
But the opposite inclusion holds because, by the very definition of S, every element
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of R is of the form r/s for some s € S. Thus S™'Z = R. O

EXERCISE (11.8). — Let R’ and R” be rings. Consider R := R’ x R” and set
S:={(1,1), (1,0) }. Prove R' = S7'R.

SOLUTION: Let’s show that the projection map 7: R’ X R” — R’ has the UMP
of (11.6). First, note that 7S = {1} C R’*. Let ¢: R’ x R” — B be a ring map
such that ¢(1,0) € B*. Then in B,

$(1,0) - 9(0,2) = ¥((1,0) - (0,2)) = (0,0) =0 in B.
Hence ¢(0,z) = 0 for all x € R”. So ¢ factors uniquely through 7 by (1.5). O

EXERCISE (11.9). — Take R and S as in (11.8). On R x S, impose this relation:
(z,8) ~ (y,t) if axt=ys.
Prove that it is not an equivalence relation.

SOLUTION: Observe that, for any z € R”, we have

((1,2), (1,1)) ~ ((1,0), (1,0)).

However, if z # 0, then

((1,2), (1,1)) £ ((1,0), (1,1)).

Thus although ~ is reflexive and symmetric, it is not transitive if R” # 0. O

EXERCISE (11.15). — Let R be a ring, S a multiplicative subset, a and b ideals.
Show (1) if a C b, then a® C b%; (2) (a%)° =a“, and (3) (a®6)° = (ab)®.

SoLuTioN: For (1), take z € a®. Then there is s € S with sz € a. If a C b, then
sz € b, and so z € b%. Thus (1) holds.

To show (2), proceed by double inclusion. First, note a® D a by (11.14)(2). So
(a%) > a’ again by (11.14)(2). Conversely, given x € (a%)%, there is s € S with
sz € a®. So there is t € S with tsz € a. But ts € S. So x € a®. Thus (2) holds.

To show (3), proceed by double inclusion. First, note a C a® and b C b by
(11.14)(2). So ab C a®p®. Thus (11.14)(2) yields (ab)® C (a®b%)%.

Conversely, given = € a®b%, say = = > yizi with y; € a® and z; € b%. Then
there are s;,¢; € S such that s;y; € a and t;2; € b. Set u := [[s;t;. Then u € S
and uz € ab. So z € (ab)®. Thus a“b° C (ab)®. So (a®6%) C ((ab)¥)® by (1).
But ((ab)%)® = (ab)® by (2). Thus (3) holds. O

EXERCISE (11.16). — Let R be a ring, S a multiplicative subset. Prove that
nil(R)(S™'R) = nil(ST'R).

SOLUTION: Proceed by double inclusion. Given an element of nil(R)(S~!R), put
it in the form z/s with 2 € nil(R) and s € S using (11.12)(1). Then z™ = 0 for
some n > 1. So (x/s)"* = 0. So x/s € nil(S~'R). Thus nil(R)(S~!R) C nil(S~!R).

Conversely, take /s € nil(S™'R). Then (x/s)™ = 0 with m > 1. So there’st € S
with tz™ = 0 by (11.14)(1). Then (tz)™ = 0. So tzx € nil(R). But tz/ts = x/s.
So z/s € nil(R)(S7'R) by (11.12)(1). Thus nil(R)(S™'R) D nil(S~'R). O

EXERCISE (11.23). — Let R’/R be an integral extension of rings, and S a multi-
plicative subset of R. Show that S~'R’ is integral over S™'R.
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SoruTioN: Given x/s € STIR’, let 2™ +ap_12" ' +---+ag = 0 be an equation
of integral dependence of x on R. Then

(@/8)" + (an-1/1)(1/s)(x/s)" " + -+~ + ao(1/5)" = 0
is an equation of integral dependence of z/s on S™!R, as required. (]
EXERCISE (11.24). — Let R be a domain, K its fraction field, L a finite extension
field, and R the integral closure of R in L. Show that L is the fraction field of R.

Show that, in fact, every element of L can be expressed as a fraction b/a where b
isin R and a is in R.
SOLUTION: Let 2z € L. Then z is algebraic (integral) over K, say
$'L+y1x7L71+"'+yn:0
with y; € K. Write y; = a;/a with a1, ...,a,,a € R. Then
(az)™ + (aar)(az)" ™ + -+ a"ag = 0.

Set b:=ax. Then b € R and x = b/a. O
EXERCISE (11.25). — Let R C R’ be domains, K and L their fraction fields.

Assume that R’ is a finitely generated R-algebra, and that L is a finite dimensional
K-vector space. Find an f € R such that R} is module finite over Ry.

SOLUTION: Let x1,..., 2, generate R’ over R. Using (11.24), write z; = b;/a;
with b; integral over R and a; in R. Set f := [[a;. The x; generate R’f as an
Ry-algebra; so the b; do too. Thus R} is s module finite over Ry by (10.23). O

EXERCISE (11.28). — Let R be a ring, S and T multiplicative subsets.
(1) Set T" := g (T') and assume S C T'. Prove

T'R=T"YS™'R)=T"'(S7'R).
(2) Set U:={ste R|se€ S andteT}. Prove
T YS™'R)=S"Y(T"'R)=U"'R.
(3) Let S" := {t € R| t't € S for some t € R}. Prove S'"'R = S~1R.

SOLUTION: A proof similar to that of (11.26) shows T-!R =T'"}(S~1R). By
(11.22), 7""1(S7'R) =T-1(S7!R). Thus (1) holds.

As 1 € T, obviously S C U. So (1) yields UT'R = U~}(S™'R). Now, clearly
U~Y(S™IR) =T~ Y(S7'R). Similarly, U"'R = S~}(T~'R). Thus (2) holds.

Finally, in any ring, a product is a unit if and only if each factor is a unit. So a
homomorphism ¢: R — R’ carries S’ into R’ if and only if ¢ carries S into R'*.
Thus S’~'R and S~'R are universal examples of R-algebras that satisfy equivalent
conditions. Thus (3) holds. O

EXERCISE (11.31) (Localization and normalization commute). — Given a domain
R and a multiplicative subset S with 0 ¢ S. Show that the localization of the
normalization S™'R is equal to the normalization of the localization S—1R.
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SoLUTION: Since 0 ¢ S, clearly Frac(S™'R) = Frac(R) owing to (11.4). Now,
S~IR is integral over ST'R by (11.23). Thus S~'R c S—1R.
Conversely, given x € S—1R, consider an equation of integral dependence:

" +ax" + - a, =0.
Say a; = b;/s; with b; € R and s; € S; set s := [[s;. Multiplying by s™ yields
(s2)" + sai(s2)" "' + -+ s"a, = 0.
Hence sz € R. So z € S™'R. Thus S™*R D S—IR, as desired. O

12. Localization of Modules

EXERCISE (12.4). — Let R be aring, S a multiplicative subset, and M a module.
Show that M = S~'M if and only if M is an S~!R-module.

SoruTioN: If M = S~'M, then obviously M is an S~!R-module. Conversely, if
M is an S~!R-module, then M equipped with the identity map has the UMP that
characterizes S~'M; whence, M = S™1M. O

EXERCISE (12.5). — Let R be a ring, S C T multiplicative subsets, M a module.
Set Ty := ¢g(T) C S™'R. Show T~'M = T-Y(S~'M) = T (S~ M).

SOLUTION: Let’s check that both T—'(S~'M) and 77 *(S~'M) have the UMP
characterizing T~'M. Let 1: M — N be an R-linear map into an 7! R-module.
Then the multiplication map us: N — N is bijective for all s € T by (12.1),
so for all s € S since S C T. Hence 1 factors via a unique S~!R-linear map
p: S7IM — N by (12.3) and by (12.1) again.

Similarly, p factors through a unique 7! R-linear map p': T-3(S™1M) — N.
Hence ¥ = p'ores, and p is clearly unique, as required. Also, p factors through
a unique T7 ' (S~™'R)-linear map py: Ty (S™'M) — N. Hence % = p| o, s, and
Py is clearly unique, as required. O

EXERCISE (12.6). — Let R be a ring, S a multiplicative subset. Show that S
becomes a filtered category when equipped as follows: given s,t € S, set

Hom(s,t) := {x € R | zs =t}.

Given a module M, define a functor S — ((R-mod)) as follows: for s € S, set
M, := M; to each x € Hom(s, t), associate ji,: My — M;. Define 3s: My — S™'M
by Bs(m) :=m/s. Show the 3, induce an isomorphism ling - SN

SorLuTION: Clearly, S is a category. Now, given s,t € S, set u := st. Then
u € S; also t € Hom(s,u) and s € Hom(¢,u). Given z,y € Hom(s,t), we have
zs =t and ys =t. So s € Hom(¢,u) and xs = ys in Hom(s, u). Thus S is filtered.

Further, given « € Hom(s,t), we have SBiu, = 35 since m/s = xm/t as xs = t.
So the s induce a homomorphism S: ligiMS — S™'M. Now, every element of
S~IM is of the form m/s, and m/s =: Bs(m); hence, 3 is surjective.

Each m € lim Mj lifts to an m’ € M, for some s € S by (7.8)(1). Assume
Bm = 0. Then Bsm’ = 0 as the B, induce 8. But Ssm’ = m'/s. So thereist € S
with tm’ = 0. So ugm’ =0 in Mg, and pym’ — m. So m = 0. Thus 3 is injective,
so an isomorphism. d
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EXERCISE (12.7). Let R be a ring, S a multiplicative subset, M a module.
Prove S~1M = 0 if Aun(M)N S # 0. Prove the converse if M is finitely generated.

SOLUTION: Say f € Ann(M)NS. Let m/t € S™'M. Then f/1-m/t = fm/t = 0.
Hence m/t = 0. Thus S™'M = 0.

Conversely, assume S~'M = 0, and say my,...m, generate M. Then for each
i, there is f; € S with f;m; = 0. Then [] f; € Ann(M) N S, as desired. a

EXERCISE (12.11). — Let R be a ring, S a multiplicative subset, P a projective
module. Then S™!P is a projective S~ R-module.

SoLuTION: By (5.22), there is a module K such that F := K @ P is free.
So (12.9) yields that S™'F = S7!P @ S71L and that S~1F is free over S7!R.
Hence S™1P is a projective S~! R-module again by (5.22). d

EXERCISE (12.13). — Let R be a ring, S a multiplicative subset, M and N mod-
ules. Show ST M®rN) =S 'M@rN =S 'M®g-15S !N =S"'MorS™'N.

SoLuTioN: By (12.12), S~Y(M ®p N) = ST'R®gr (M ®r N). The latter is
equal to (STIR®gr M) ®g N by associativity (8.9). Again by (12.12), the latter
is equal to S™'M ®p N. Thus the first equality holds.

By cancellation (8.10), S™'!M ®zr N = S7'M ®g-15 (ST'R ®g N), and the
latter is equal to S™'M ®g-1z SN by (12.12). Thus the second equality holds.

Finally by (8.8), the kernel of the map S™*M ®r S™!N — S™'M ®g-15 S™IN
is generated by elements (zm/s) ® (n/1) — (m/1) @ (xn/s) with m € M, n € N,
x € R, and s € S. Those elements are zero because s is an isomorphism on the
S~1R-module S™'M ®r STIN. Thus the third equality holds. O

EXERCISE (12.24). — Set R:=Z and S = Z — (0). Set M := p,,~,Z/(n) and
N := M. Show that the map o of (12.21) is not injective. N

SoLUTION: Given m > 0, let e, be the nth standard basis element for some
n > m. Then m -e, # 0. Hence pugr: R — Hompg(M, M) is injective. But
S™IM =0, as any x € M has only finitely many nonzero components; so kz = 0 for
some nonzero integer k. So Hom(S~*M, S™*M) = 0. Thus ¢ is not injective. 0O

13. Support

EXERCISE (13.2). — Let R be aring, p € Spec(R). Show that p is a closed point —
that is, {p} is a closed set —if and only if p is a maximal ideal.

SOLUTION: If p is maximal, then V(p) = {p}; so p is closed.
Conversely, suppose p is not maximal. Then p ; m for some maximal ideal m. If
p € V(a), then m € V(a) too. So {p} # V(a). Thus {p} is not closed. O

EXERCISE (13.3). — Let R be a ring, R’ a flat algebra with structure map .
Show that R’ is faithfully flat if and only if Spec(yp) is surjective.

SOLUTION: Owing to the definition of Spec(y) in (13.1), the assertion amounts
to the equivalence of (1) and (3) of (9.10). O

EXERCISE (13.5). — Let R be a ring, X := Spec(R), and U an open subset. Show
U is quasi-compact if and only if X — U = V(a) where a is finitely generated.
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SOLUTION: Assume U is quasi-compact. By (13.1), U = |J, D(f») for some fy.
Hence U = |J] D(f;) for some f;. Thus X —U = N\V(fi) = V({f1s---s fa))-

Conversely, assume X —U = V((f1,..., fn)). Then U = |, D(f;). By (13.4),
each D(f;) is quasi-compact. Thus U is quasi-compact. d

EXERCISE (13.6). — Let B be a Boolean ring, and set X := Spec(B). Show X is
a compact Hausdorff space. (Following Bourbaki, “quasi-compact” is shortened to
“compact” when the space is Hausdorff.) Further, show a subset U C X is both
open and closed if and only if U = D(f) for some f € B.

SOLUTION: Let f € B. Then D(f) UD(1 — f) = X whether B is Boolean or
not; indeed, if p € X —D(f), then f € p,so1— f & p,sop € D(1— f). Further,
D(f)ND(1 — f) = 0; indeed, if p € D(f), then f ¢ p, but f(1— f) =0 as B is
Boolean, so 1 — f € p,sop ¢ D(1 — f). Thus X — D(f) = D(1 — f). Thus D(f) is
closed as well as open.

Let p, q be prime ideals with p # q. Then there is f € p —q. So p ¢ D(f), but
q € D(f). By the above, D(f) is both open and closed. Thus X is Hausdorff. By
(13.4), X is quasi-compact, so compact as it is Hausdorff.

Finally, let U C X be open and closed. Then U is quasi-compact, as U is closed
and X is quasi-compact. So X —U = V(a) where a is finitely generated by (13.5).
Since B is Boolean, a = (f) for some f € B by (1.16) (5). Thus U = D(f). O

EXERCISE (13.7) (Stone’s Theorem). — Show every Boolean ring B is isomorphic
to the ring of continuous functions from a compact Hausdorff space X to Fy with
the discrete topology. Equivalently, show B is isomorphic to the ring R of open and
closed subsets of X; in fact, X := Spec(B), and B = R is given by f — D(f).

SOLUTION: The two statements are equivalent by (1.2). Further, X := Spec(B)
is compact Hausdorff, and its open and closed subsets are precisely the D(f) by
(13.6). Thus f — D(f) is a well defined function, and is surjective.

This function preserves multiplication owing to (13.1.1). To show it preserves
addition, we must show that, for any f,g € B,

D(f+g) = (D(f) = D(g)) U (D(g9) — D(f)). (13.7.1)

Fix a prime p. There are four cases. First, if f ¢ p and g € p, then f+ g & p.
Second, if g ¢ p but f € p, then again f + g ¢ p. In both cases, p lies in the open
sets on both sides of (13.7.1).

Third, if f € p and g € p, then f + g € p. The first three cases do not use
the hypothesis that B is Boolean. The fourth does. Suppose f ¢ p and g ¢ p.
Now, B/p = Fy by (2.18). So the residues of f and g are both equal to 1. But
1+1=0¢€F;y. Soagain f+ g € p. Thus in both the third and fourth cases, p lies
in neither side of (13.7.1). Thus (13.7.1) holds.

Finally, to show that f — D(f) is injective, suppose that D(f) is empty. Then
f € nil(B). But nil(B) = (0) by (3.23). Thus f =0. O

EXERCISE (13.14). — Let R be a ring, M a module, p € Supp(M). Prove
V(p) C Supp(M).

SOLUTION: Let g € V(p). Then q D p. So M, = (M), by (11.28)(1). Now,
p € Supp(M). So M, # 0. Hence My # 0. Thus g € Supp(M). d
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EXERCISE (13.15). Let Z be the integers, Q the rational numbers, and set
M := Q/Z. Find Supp(M), and show that it is not Zariski closed.

SOLUTION: Let p € Spec(R). Then M, = Q,/Z, since localization is exact by
(12.16). Now, Q, = Q by (12.4) and (12.1) since Q is a field. If p # (0), then
Zy # Q, since pZy, NZ = p by (11.17). If p = (0), then Z, = Q,. Thus Supp(M)
consists of all the nonzero primes of Z.

Finally, suppose Supp(M) = V(a). Then a lies in every nonzero prime; so
a = (0). But (0) is prime. Hence (0) € V(a) = Supp(M ), contradicting the above.
Thus Supp(M) is not closed. O

EXERCISE (13.17). — Let R be a ring, P a module, and M, N submodules. Show
M = N if My, = Ny, for every maximal ideal m. First assume M C .

SoLuTION: If M C N, then (12.16) yields (N/M)m = Nm /My = 0 for each m;
so N/M =0 by (13.16). The general case follows by replacing N by M + N owing
to (12.15)(4), (5). O

EXERCISE (13.18). — Prove these three conditions on a ring R are equivalent:

(1) R is reduced.
(2) STIR is reduced for all multiplicatively closed sets S.
(3) Ru is reduced for all maximal ideals m.

SoruTiON: Assume (1) holds. Then nil(R) = 0. But nil(R)(S™'R) = nil(S~!R)
by (11.16). Thus (2) holds. Trivially (2) implies (3).

Assume (3) holds. Then nil(Ry,) = 0. Hence nil(R)w = 0 by (11.16) and (12.2).
So nil(R) = 0 by (13.16). Thus (1) holds. O

EXERCISE (13.19). — Let R be a ring, ¥ the set of minimal primes. Prove this:

(1) If Ry is a domain for any prime p, then the p € ¥ are pairwise comaximal.
(2) Ry is a domain for any prime p and X is finite if and only if R =[] | R;
where R; is a domain. If so, then R; = R/p; with {p1,...,pn} =X.

SoruTioN: Consider (1). Suppose p,q € X are not comaximal. Then p + q lies
in some maximal ideal m. Hence R, contains two minimal primes, pRy and qRy,
by (11.18). However, Ry, is a domain by hypothesis, and so (0) is its only minimal
prime. Hence pRy = qRm. So p = q. Thus (1) holds.

Consider (2). Assume R, is a domain for any p. Then R is reduced by (13.18).
Assume, also, . is finite. Form the canonical map ¢: R — Hp62 R/p; it is injective
by (3.28), and surjective by (1) and the Chinese Remainder Theorem (1.13). Thus
R is a finite product of domains.

Conversely, assume R = [[I_, R; where R; is a domain. Let p be a prime of R.
Then R, = [[(R;), by (12.10). Each (R;), is a domain by (11.4). But R, is
local. So Ry, = (R;), for some i by (2.5). Thus R, is a domain. Further, owing to
(2.12), each p; € ¥ has the form p; = [] a; where, after renumbering, a; = (0) and
aj = R; for j # i. Thus the ith projection gives R/p; =+ R;. Thus (2) holds. O

EXERCISE (13.21). — Let R be a ring, M a module. Prove elements my € M
generate M if and only if, at every maximal ideal m, their images m) generate My,.
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SoLuTION: The my define a map a: R®1Y — M. By (13.20), it is surjective
if and only if oy : (R@{/\})m — My, is surjective for all m. But (R@{/\})m = Rﬁ{k}
by (12.10). Hence (4.10)(1) yields the assertion. O

EXERCISE (13.24). — Let R be a ring, R’ a flat algebra, p’ a prine in R’, and p
its contraction in R. Prove that R;,, is a faithfully flat Ry-algebra.

SoruTioN: First, R;, is flat over R, by (13.23). Next, R, is flat over Ry by
(12.17) and (11.28) as R —p C R’ —p’. Hence R}, is flat over R, by (9.7). But
a flat local homomorphism is faithfully flat by (9.10)(4). O

EXERCISE (13.28). — Given n, prove an R-module P is locally free of rank n if
and only if P is finitely generated and Py ~ R} holds at each maximal ideal m.

SOLUTION: If P is locally free of rank n, then P is finitely generated by (13.27).
Also, for any p € Spec(R), there’s f € R—p with Py ~ R}; so P, ~ R} by (12.5).

As to the converse, given any prime p, take a maximal ideal m containing it.
Assume Py, ~ RI. Take a free basis pl/flkl, eoosDn/ fEn of Py over Ry. The p;
define a map a: R™ — P, and am: R}, — Py is bijective, so surjective.

Assume P is finitely generated. Then (12.20)(1) provides f € R — m such that
ay: R} — Py is surjective. Hence aq: Ry — Py is surjective for every q € D(f)
by (12.5) and (12.16). Assume Py ~ Ry if also q is maximal. So aq is bijective
by (10.4). Clearly, ag = (ay)(qr,)- Hence ay: R} — Py is bijective owing to
(13.20) with Ry for R, as desired. O

EXERCISE (13.29). — Let A be a semilocal ring, P a locally free module of rank
n. Show that P is free of rank n.

SOLUTION: As P is locally free, P is finitely presented by (13.27), and Py, ~ A7
at the maximal m by (13.28). But A is semilocal. So P = A™ by (13.22). O

14. Krull-Cohen—Seidenberg Theory

EXERCISE (14.4). — Let R C R’ be an integral extension of rings, and p a prime
of R. Suppose R’ has just one prime p’ over p. Show (a) that p'R, is the only
maximal ideal of Ry, (b) that Ry, = Ry, and (c) that R), is integral over Rj.

SOLUTION: Since R’ is integral over R, the localization R; is integral over Ry, by
(11.23). Moreover, R, is a local ring with unique maximal ideal pR, by (11.20).
Hence, every maximal ideal of R), lies over pR, by (14.3)(1). But every maximal
ideal of Ry, is the extension of some prime g’ C R’ by (11.18)(2), and therefore g’
lies over p in R. So, by hypothesis, g = p’. Thus p'R, is the only maximal ideal of
Ry; that is, (a) holds. So R, — p'R;, consists of units. Hence (11.28) and (11.7)
yield (b). But Rj, is integral over Ry; so (c) holds too. O

EXERCISE (14.5). — Let R C R’ be an integral extension of domains, and p a
prime of R. Suppose R’ has at least two distinct primes p’ and ¢’ lying over p.
Show that R;, is not integral over R,. Show that, in fact, if y lies in ¢/, but not in
p’, then 1/y € Ry, is not integral over R,.
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SOLUTION: Suppose 1/y is integral over R,. Say
(/)" +ar(1/y)" '+ +an=0

n—1

with n > 1 and a; € Rp. Multiplying by y"~", we obtain

Vy=—(a1 4 +ay"t) € R,

However, y € q', so y € q'R),. Hence 1 € ¢'R;,. So ¢’ N (R —p) # 0 by (11.17)(3).
But ¢’ N R = p, a contradiction. So 1/y is not integral over R,,. a

EXERCISE (14.6). — Let k be a field, and X an indeterminate. Set R’ := k[X],
and YV := X? and R := k[Y]. Set p := (Y —1)R and p’ := (X — 1)R". Ts R,
integral over R,? Explain.

SoLuTION: Note that R’ is a domain, and that the extension R C R’ is integral
as R’ is generated by 1 and X as an R-module.

Suppose the characteristic is not 2. Set q' := (X + 1)R’. Then both p’ and ¢’
contain Y — 1, so lie over the maximal ideal p of R. Further X + 1 lies in ¢’, but
not in p’. Hence Ry, is not integral over Ry by (14.5).

Suppose the characteristic is 2. Then (X —1)2 =Y — 1. Let ' C R’ be a prime
over p. Then (X —1)2 € q’. So p’ C ¢’. But p’ is maximal. So ¢’ = p’. Thus R’
has just one prime p’ over p. Hence R, is integral over R, by (14.4). d

EXERCISE (14.12). — Let R be a reduced ring, ¥ the set of minimal primes. Prove
that z.div(R) = Upeyx p and that R, = Frac(R/p) for any p € .

SOLUTION: If p € X, then p C z.div(R) by (14.10). Thus z.div(R) D U,exn b-

Conversely, say xy = 0. If = ¢ p for some p € X, then y € p. Soif z ¢ Upezp7
theny € (,cx p. But (,cx p = (0) by the Scheinnullstellensatz (3.22) and (3.11).
So y = 0. Hence if z ¢ J,cx b, then 2 ¢ z.div(R). Thus z.div(R) C U,y p. Thus
2.div(R) = Uyex b-

Fix p € ¥. Then R, is reduced by (13.18). Further, R, has only one prime,
namely pR,, by (11.18)(2). Hence R, is a field, and pR, = (0). But by (12.19),
R, /pR, = Frac(R/p). Thus R, = Frac(R/p). O

EXERCISE (14.13). — Let R be a ring, ¥ the set of minimal primes, and K the
total quotient ring. Assume ¥ is finite. Prove these three conditions are equivalent:

(1) R is reduced.
(2) z.div(R) = Upex b, and Ry, = Frac(R/p) for each p € .
(3) K/pK =TFrac(R/p) for each p € &, and K =[],y K/pK.

SOLUTION: Assume (1) holds. Then (14.12) yields (2).

Assume (2) holds. Set S := R — z.div(R). Let q be a prime of R with ¢N S = 0.
Then q C Upezp. But ¥ is finite. So q C p for some p € ¥ by Prime Avoidance
(8.15). Hence q = p since p is minimal. But K = S~!R. Therefore, by (11.18)(2),
for p € X, the extensions pK are the only primes of K, and they all are both maximal
and minimal.

Fix p € ¥. Then K/pK = S~Y(R/p) by (12.18). So S~1(R/p) is a field. But
clearly ST1(R/p) C Frac(R/p). Therefore, K/pK = Frac(R/p) by (2.3). Further,
S C R—p. Hence (11.18)(2) yields p = Lpgl(pK). Therefore, gogl(Kpr) =R—p.
So Kyx = Ry by (11.26). But R, = Frac(R/p) by hypothesis. Thus K has only
finitely many primes, the pK; each pK is minimal, and each K,k is a domain.
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Therefore, (13.19)(2) yields K =[],y K/pK. Thus (3) holds.

Assume (3) holds. Then K is a finite product of fields, and fields are reduced.
But clearly, a product of reduced ring is reduced. Further, R C K, and trivially, a
subring of a reduced ring is reduced. Thus (1) holds. O

EXERCISE (14.14). — Let A be a reduced local ring with residue field k and a finite
set 3 of minimal primes. For each p € X, set K (p) := Frac(A/p). Let P be a finitely
generated module. Show that P is free of rank r if and only if dimy(P ®4 k) = r
and dim g ) (P ®4 K(p)) = r for each p € X.

SOLUTION: If P is free of rank r, then dim(P ® k) = r and dim(P ® K(p)) =r
owing to (8.11).

Conversely, suppose dim(P ® k) = r. As P is finitely generated, (10.13) implies
P is generated by r elements. So (5.19) yields an exact sequence

0M3B A P 0.

Momentarily, fix a p € X. Since A is reduced, K(p) = R, by (14.12). So K(p)
is flat by (12.17). So the induced sequence is exact:

0->MeK(@{p)—K@p) —PoK(p)—0.

Suppose dim(P ® K (p)) = r too. It then follows that M ®4 K (p) = 0.
Let K be the total quotient ring of A, and form this commutative square:

M —25 A7

l‘/’lﬂ LPA"‘

MoK — K"
Here a is injective. And @ 4- is injective as ¢ 4: A — K is. Hence, @)/ is injective.
By hypothesis, A is reduced and X is finite; so K = Hpez K(p) by (14.13). So
M®K =[](M®K(p)). But M @4 K(p) =0 for eachp € . So M ® K = 0. But
om: M — M ® K is injective. So M = 0. Thus A" = P, as desired. O

EXERCISE (14.15). — Let A be a reduced local ring with residue field k¥ and a
finite set of minimal primes. Let P be a finitely generated module, B an A-algebra
with Spec(B) — Spec(A) surjective. Show that P is a free A-module of rank r if
and only if P ® B is a free B-module of rank r.

SoLuTION: If P is a free A-module of rank r, then P ® B is a free B-module of
rank 7 owing to (8.11).

Conversely, let p C A be a prime. Since Spec(B) — Spec(A4) is surjective, there
is a prime q C B whose trace is p. Set K := Frac(A4/p) and L := Frac(B/q). Then
the structure map A — B induces a map K — L. Moreover,

(PoaB)®pL=(P®sK)®xk L. (14.15.1)
Suppose P ® B is a free B-module of rank r. Then dimy((P®4 B) ®p L) =r

owing to (8.11). Hence (14.15.1) implies dimg (P ® 4 K) = r. But p is arbitrary.
Thus P is a free A-module of rank r by (14.14), as desired. O

EXERCISE (14.17). Let R be a ring, py...,p, all its minimal primes, and K
the total quotient ring. Prove that these three conditions are equivalent:

(1) R is normal.

(2) R is reduced and integrally closed in K.
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(3) R is a finite product of normal domains R;.

If so, then the R; are equal to the R/p; up to order.

SoLUTION: Assume (1). Then R is reduced by (13.18). Let z € K be integral
over R, and m any maximal ideal. Then z/1 is integral over Ry. So 2/1 € Ry by
hypothesis. Hence (R[z]/R)m = 0. Therefore, R[z]/R = 0 by (13.16). Soz € R
Thus (2) holds.

Assume (2). Set R; := R/p; and K; := Frac(R;). Then K = [[ K; by (14.13).
Let R; be the normalization of R;. Then R C [[R; C [[R;. Further, the first
extension is integral by (10.24), and the second, by (10.26); whence, R C [[ R}
is integral by the tower property (10.22). However, R is integrally closed in K by
hypothesis. Hence R = [[ R; = [[ R}. Thus (3) and the last assertion hold.

Assume (3). Let p be any prime of R. Then R, = [[(R;), by (12.10), and each
(Ri)p is normal by (11.31). But R, is local. So R, = (R;), for some i by (3.5).
Hence R, is a normal domain. Thus (1) holds. O

15. Noether Normalization

EXERCISE (15.2). — Let k := F, be the finite field with ¢ elements, and k[X,Y]
the polynomial ring. Set f := X7V — XY? and R := k[X, Y}/(f) Let z,y € R
be the residues of X, Y. For every a € k, show that R is not module finite over
P := kly—az]. (Thus, in (15.1), no k-linear combination works.) First, take a = 0.

SOLUTION: Take a = 0. Then P = k[y]. Any algebraic relation over P satisfied
by x is given by a polynomial in k[X,Y], which is a multiple of f. However, no
multiple of f is monic in X. So z is not integral over P. By (10.18), R is not
module finite over P.

Consider an arbitrary a. Since a? = a, after the change of variable Y’ := Y —a X,
our f still has the same form. Thus, we have reduced to the previous case. O

EXERCISE (15.3). — Let k be a field, and X, Y, Z variables. Set
R:=k[X,Y, Z]/(X?-Y®—1,XZ-1),

and let x, y, z € R be the residues of X, Y, Z. Fix a,b € k, and set t := z+ay+ bz
and P := k[t]. Show that z and y are integral over P for any a,b and that z is
integral over P if and only if b # 0.

SoLuTioN: To see x is integral, notice zz = 1, so ?> —tz+b = —axy. Raising both
sides of the latter equation to the third power, and using the equation ¢ = 2% — 1,
we obtain an equation of integral dependence of degree 6 for x over P. Now,
y® — 22 —1 =0, so y is integral over P[z]. Hence, the Tower Property, (10.22),
implies that y too is integral over P.

If b # 0, then 2 = b~ 1(t — x — ay) € P[x,y], and so z is integral over P by
(10.23).

Assume b = 0 and z is integral over P. Now, P C k[z, y]. So z is integral over
[z, y] as well. But y® — 22 + 1 = 0. So y is integral over k[z]. Hence z is too.
However, k[z] is a polynomial ring, so integrally closed in its fraction field k(x) by
(10.29)(1). Moreover, z = 1/x € k(z). Hence, 1/ € k[z], which is absurd. Thus
z is not integral over P if b = 0. O
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EXERCISE (15.7). — Let k be a field, K an algebraically closed extension field. (So
K contains a copy of every finite extension field.) Let P := k[X1,..., X,] be the
polynomial ring, and f, f1,..., fr € P. Assume f vanishes at every zero in K™ of
fiy. -, fr; in other words, if (a) := (a1,...,a,) € K™ and f1(a) =0,..., fr.(a) =0,
then f(a) = 0 too. Prove that there are polynomials ¢1, ..., ¢, € P and an integer
N such that fN =g fi + -+ grfo

SOLUTION: Set a := (f1,..., fr). We have to show f € v/a. But, by the Hilbert
Nullstellensatz, v/a is equal to the intersection of all the maximal ideals m containing
a. So given an m, we have to show that f € m.

Set L := P/m. By the weak Nullstellensatz, L is a finite extension field of k.
So we may embed L/k as a subextension of K/k. Let a; € K be the image of the
variable X; € P, and set (a) := (a1,...,a,) € K™. Then fi(a) =0,..., f-(a) =0.
Hence f(a) = 0 by hypothesis. Therefore, f € m, as desired. d

EXERCISE (15.10). — Let R be a domain of (finite) dimension r, and p a nonzero
prime. Prove that dim(R/p) < r.

SOLUTION: Every chain of primes of R/p is of the form po/p G --- G ps/p where
05 po S -+ G ps is a chain of primes of R. So s < 7. Thus dim(R/p) < r. O

EXERCISE (15.11). — Let R’/R be an integral extension of rings. Prove that
dim(R) = dim(R’).

SOLUTION: Let po G -+ & p, be a chain of primes of R. Set p’; := 0. Given
pi_q for 0 < i < r, Going up, (14.3)(4), yields a prime p; of R’ with p,_; C p} and
p;NR=p; Thenpy G --- G praspo G-+ G o, Thus dim(R) < dim(R').

Conversely, let p’y G --- G p’,. be a chain of primes of R'. Set p; := p’; N R. Then
po G --- S pr by Incomparability, (14.3)(2). Thus dim(R) > dim(R’). O

EXERCISE (15.16). — Let k be a field, R a finitely generated k-algebra, f € R
nonzero. Assume R is a domain. Prove that dim(R) = dim(Ry).

SOLUTION: Note that Ry is a finitely generated R-algebra by (11.11), as Ry is,
by (11.11), obtained by adjoining 1/f. So since R is a finitely generated k-algebra,
Ry is one too. Moreover, R and R; have the same fraction field K. Hence both
dim(R) and dim(Ry) are equal to tr.deg, (K) by (15.12). O

EXERCISE (15.17). — Let k be a field, P := k[f] the polynomial ring in one
variable f. Set p := (f) and R := P,. Find dim(R) and dim(Ry).

SOLUTION: In P, the chain of primes 0 C p is of maximal length by (2.6) and
(2.23) or (15.12). So (0) and pR are the only primes in R by (11.18). Thus
dim(R) = 1.

Set K := Frac(P). Then Ry = K since, if a/(bf") € K with a, b€ P and f1{b,
then a/b € R and so (a/b)/f™ € Ry. Thus dim(Ry) = 0. O

EXERCISE (15.18). — Let R be a ring, R[X] the polynomial ring. Prove
1+ dim(R) < dim(R[X]) <1+ 2dim(R).
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SOLUTION: Let po G -+ S pn be a chain of primes in R. Then

is a chain of primes in R[X] by (2.10). Thus 1 4 dim(R) < dim(R[X]).

Let p be a prime of R, and qo G --- & dr be a chain of primes of R[X] with
qiNR = p for each i. Then (1.8) yields a chain of primes of length r in R[X|/pR[X].
Further, as q; N R = p for each i, the latter chain gives rise to a chain of primes of
length r in k(p)[X] where k(p) = (R/p), by (11.29) and (11.18). But k(p)[X] is
a PID. Hence r < 1.

Take any chain Po & -+ G By, of primes in R[X]. Then it contracts to a chain
Po g ; pn in R. But at most two 9; can contract to a given p; by the above
discussion. Thus m < 2n + 1. O

EXERCISE (15.22). — Let X be a topological space. We say a subset Y is locally
closed if Y is the intersection of an open set and a closed set; equivalently, Y is
open in its closure Y; equivalently, Y is closed in an open set containing it.
We say a subset Xy of X is very dense if X meets every nonempty locally
closed subset Y. We say X is Jacobson if its set of closed points is very dense.
Show that the following conditions on a subset Xy of X are equivalent:
(1) Xo is very dense.
(2) Every closed set F of X satisfies F N Xy = F.
(3) The map U — U N Xy from the open sets of X to those of Xy is bijective.

SOLUTION: Assume (1). Given a closed set F, take any z € F', and let U be an
open neighborhood of z in X. Then F N U is locally closed, so meets X,. Hence
x € FNXy. Thus F C F N Xy. The opposite inclusion is trivial. Thus (2) holds.

Assume (2). In (3), the map is trivially surjective. To check it’s injective, suppose
UNXy=VnNXp. Then (X -U)NXy = (X-V)NXy. So (2) yields X—-U = X -V.
So U = V. Thus (3) holds.

Assume (3). Then the map F — F N X, of closed sets is bijective too; whence,
so is the map Y — Y N Xj of locally closed sets. In particular, if a locally closed
set Y is nonempty, then so is Y N Xp. Thus (1) holds. d

EXERCISE (15.23). — Let R be a ring, X := Spec(R), and X, the set of closed
points of X. Show that the following conditions are equivalent:

(1) R is a Jacobson ring.
(2) X is a Jacobson space.
(3) If y € X is a point such that {y} is locally closed, then y € Xj.

SOLUTION: Assume (1). Let FF C X be closed. Trivially, F > F N Xy. To
prove F' C FN Xy, say F = V(a) and FN Xy = V(b). Then F N Xj is the set
of maximal ideals m containing a by (13.2), and every such m contains b. So (1)
implies b C v/a. But V(y/a) = F. Thus F C F'N Xo. Thus (15.22) yields (2).

Assume (2). Let y € X be a point such that {y} is locally closed. Then {y} (1 Xo
is nonempty by (2). So ({y} () Xo) 2 y. Thus (3) holds.

Assume (3). Let p be a prime ideal of R such that pRy is maximal for some
f ¢ p. Then {p} is closed in D(f) by (13.1). So {p} is locally closed in X. Hence
{p} is closed in X by (3). Thus p is maximal. Thus (15.21) yields (1). O
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EXERCISE (15.25). Let P := Z[X1,...,X,] be the polynomial ring. Assume
f € P vanishes at every zero in K™ of fi,..., f, € P for every finite field K; that
is, if (a) := (a1,...,a,) € K™ and fi(a) = 0,..., fr(a) = 0 in K, then f(a) =0
too. Prove there are g1,...,9, € P and N > 1 such that f¥ = g1 f1 +--- + g, fr.

SoLUTION: Set a := (f1,..., fr). Suppose f & \/a. Then f lies outside some
maximal ideal m containing a by (15.24)(2) and (15.19). Set K := P/m. Then
K is a finite extension of FF,, for some prime p by (15.24)(1). So K is finite. Let a;
be the residue of X;, set (a) := (a1,...,an) € K™ Then fi(a) =0,..., fr(a) =0.
So f(a) = 0 by hypothesis. Thus f € m, a contradiction. Thus f € /a. (]

EXERCISE (15.26). Let R be a ring, R’ an algebra. Prove that if R’ is integral
over R and R is Jacobson, then R’ is Jacobson.

SOLUTION: Given an ideal @’ C R’ and an f outside v/a, set R” := R[f]. Then
R is Jacobson by (15.24). So R” has a maximal ideal m” that avoids f and
contains a’ N R”. But R’ is integral over R”. So R’ contains a prime m’ that
contains a’ and that contracts to m” by Going Up (14.3)(4). Then m’ avoids f as
m” does, and m’ is maximal by Maximality, (14.3)(1). Thus R’ is Jacobson. [

EXERCISE (15.27). — Let R be a Jacobson ring, S a multiplicative subset, f € R.
True or false: prove or give a counterexample to each of the following statements:

(1) The localized ring Ry is Jacobson.
(2) The localized ring S~ R is Jacobson.
(3) The filtered direct limit li_n;R,\ of Jacobson rings Ry is Jacobson.

SOLUTION: (1) True: Ry = R[1/f]; so Ry is Jacobson by (15.24).
(2) False: by (15.20), Z is Jacobson, but Z,y isn’t for any prime number p.
(3) False: Z,) isn’t Jacobson by (2), but Z,) = lim Z by (12.6). O

EXERCISE (15.28). — Let R be a reduced Jacobson ring with a finite set X of
minimal primes, and P a finitely generated module. Show that P is locally free of
rank r if and only if dimp/ (P/mP) = r for any maximal ideal m.

SOLUTION: Suppose P is locally free of rank r. Then given any maximal ideal
m, there is an f € R — m such that Py is a free Ry-module of rank r by (13.25).
But P, is a localization of P; by (12.5). So Py is a free Ryn-module of rank r
by (12.10). But Pn/mPy, = (P/mP)y by (12.18). Also Ry/mRy, = R/m by
(12.19). Thus dimp/n(P/mP) =r.

Consider the converse. Given a p € X, set K := Frac(R/p). Then P ®r K is a
K-vector space, say of dimension n. Since R is reduced, K = R, by (14.12). So
by (12.20), there is an h € R—p with P}, free of rank n. As R is Jacobson, there is
a maximal ideal m avoiding h, by (15.19). Hence, as above, dimpy (P/mP) = n.
But, by hypothesis, dimp/m(P/mP) = 7. Thus n = r.

Given a maximal ideal m, set A := Ry. Then A is reduced by (13.18). Each
minimal prime of A is of the form pA where p € ¥ by (11.18)(2). Further, it’s not
hard to see, essentially as above, that Py ® Frac(A/pA) = P ® Frac(R/p). Hence
(14.14) implies Py, is a free A-module of rank r. Finally, (13.28) implies P is
locally free of rank r. d

16. Chain Conditions
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EXERCISE (16.2). Let a be a finitely generated ideal in an arbitrary ring. Show
every set that generates a contains a finite subset that generates a.

SOLUTION: Say a is generated by x1,...,z, and also by the yy for A € A. Write
x; = ); zjyr,,;- Then the yy,; generate a. O

EXERCISE (16.8). — Let R be a ring, X a variable, R[X] the polynomial ring.
Prove this statement or find a counterexample: if R[X] is Noetherian, then so is R.

SOLUTION: It’s true. Since R[X] is Noetherian, so is R[X]/(X) by (16.7). But
the latter ring is isomorphic to R by (1.7); so R is Noetherian. d

EXERCISE (16.14). — Let 0 - L % M Z, N = 0 be a short exact sequence of

R-modules, and My, M5 two submodules of M. Prove or give a counterexample to
this statement: if B(M1) = 8(Mz) and a~Y(M;) = a~1(Ma), then My = M.

SOLUTION: The statement is false: form the exact sequence

I-REReRL R0
with a(r) := (r,0) and S(r, s) := s, and take
My :={(2t)|teR} and Msy:={(2t,t)|te€R}.

(Geometrically, we can view M; as the line determined by the origin and the point
(1,2), and M as the line determined by the origin and the point (2,1). Then
ﬂ(ﬂfl) = ,B(MQ) = R, and Oé_l(Ml) = (1_1(]\/[2) =0, but M, 75 Ms in R@R) O

EXERCISE (16.17). — Let R be a ring, a4, ..., a, ideals such that each R/a; is a
Noetherian ring. Prove (1) that @ R/a; is a Noetherian R-module, and (2) that,
if (Na; = 0, then R too is a Noetherian ring.

SOLUTION: Any R-submodule of R/a; is an ideal of R/a,. Since R/a; is a Noe-
therian ring, such an ideal is finitely generated as an (R/a;)-module, so as an R-
module as well. Thus R/a; is a Noetherian R-module. So €@ R/a; is a Noetherian
R-module by (16.16). Thus (1) holds.

To prove (2), note that the kernel of the natural map R — @ R/a; is () a;, which
is 0 by hypothesis. So R can be identified with a submodule of the Noetherian
R-module @ R/a;. Hence R itself is a Noetherian R-module by (16.15)(2). So R
is a Noetherian ring by (16.12). d

EXERCISE (16.20). — Let G be a finite group acting on a domain R, and R’ the
subring of invariants. Let k C R’ be a field. Using (10.17), prove this celebrated
theorem of E. Noether (1926): if R is algebra finite over k, then so is R’.

SOLUTION: By (10.17), R is integral over R”. But it’s algebra finite. So it’s
module finite by (10.23). Hence (16.19) yields the assertion. O

EXERCISE (16.24). — Let k be a field, R an algebra. Assume that R is finite
dimensional as a k-vector space. Prove that R is Noetherian and Artinian.

SoLUTION: View R as a vector space, and ideals as subspaces. Now, by a simple
dimension argument, any ascending or descending chain of subspaces of R stabilizes.
Thus R is Noetherian by (16.5) and is Artinian by definition. O
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EXERCISE (16.25). — Let p be a prime number, and set M := Z[1/p]/Z. Prove
that any Z-submodule N C M is either finite or all of M. Deduce that M is an
Artinian Z-module, and that it is not Noetherian.

SOLUTION: Given ¢ € N, write ¢ = n/p® where n is relatively prime to p. Then
there is an m € Z with nm = 1 (mod p°). Hence N > m(n/p®) = 1/p®, and so
1/p" =p=~"(1/p¢) € N for any 0 < r < e. Therefore, either N = M, or there is a
largest integer e > 0 with 1/p¢ € N. In the second case, N is finite.

Let M 2 Ny D N2 D --- be a descending chain. By what we just proved, each
Nj is finite, say with n; elements. Then the sequence n; > ng > - - stabilizes; say
n;=mni41 =---. But N; D Niy1 D -+, 80 N; = Njpq = ---. Thus M is Artinian.

Finally, suppose my,...,m, generate M, say m; = n;/p®. Set e := maxe;.
Then 1/p® generates M, a contradiction since 1/p°T! € M. Thus M is not finitely
generated, and so not Noetherian. a

EXERCISE (16.26). — Let R be an Artinian ring. Prove that R is a field if it is a
domain. Deduce that in general every prime ideal p of R is maximal.

SoLuTION: Take any nonzero element x € R, and consider the chain of ideals
(x) D (x?) D ---. Since R is Artinian, the chain stabilizes; so (z¢) = (z°T!) for
some e. Hence 2¢ = az®*! for some a € R. If R is a domain, then we can cancel to
get 1 = ax; thus R is then a field.

In general, R/p is Artinian by (16.23)(2). Now, R/p is also a domain by (2.9).
Hence, by what we just proved, R/p is a field. Thus p is maximal by (2.17). O

17. Associated Primes

EXERCISE (17.6). — Given modules My, ..., M,, set M := My ® ---@® M,. Prove
Ass(M) = Ass(M;) U--- U Ass(M,.).
SOLUTION: Set N := My @ ---@® M,. Then N, My C M. Also, M/N = M. So
(17.5) yields
Ass(N), Ass(M7) C Ass(M) C Ass(N) U Ass(Mq).
So Ass(M) = Ass(IN) U Ass(My). The assertion follows by induction on r. O

EXERCISE (17.7). — Take R := Z and M := Z/(2) ® Z. Find Ass(M) and find
two submodules L, N C M with L + N = M but Ass(L) U Ass(N) G Ass(M).

SOLUTION: First, we have Ass(M) = {(0), (2)} by (17.6) and (17.4)(2). Next,
take L := R-(1,1) and N := R-(0,1). Then the canonical maps Z — L and Z — N
are isomorphisms. Hence both Ass(L) and Ass(N) are {(0)} by (17.4)(2). Finally,
L+ N = M because (a,b) =a-(1,1)+ (b—a)-(0,1). O

EXERCISE (17.10). — Let R be a ring, and suppose R, is a domain for every
prime p. Prove every associated prime of R is minimal.
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SOLUTION: Let p € Ass(R). Then pR, € Ass(R,) by (17.9). By hypothesis,
R, is a domain. So pR, = (0) by (17.4). Hence p is a minimal prime of R by
(11.18)(2).

Alternatively, say p = Ann(z) with € R. Then /1 # 0 in R,; otherwise, there
would be some s € R — p such that sz = 0, contradicting p = Ann(z). However,
for any y € p, we have zy/1 = 0 in R,. Since R, is a domain and since /1 # 0, we
must have y/1 = 0 in R,. So there exists some ¢ € R — p such that ty = 0. Now,
p D q for some minimal prime q by (3.11). Suppose p # q. Then there is some
y € p —q. So there exists some ¢t € R — p such that ty = 0 € q, contradicting the
primeness of q. Thus p = q; that is, p is minimal. g

EXERCISE (17.15). — Let R be a Noetherian ring, M a module, N a submodule,
x € R. Show that, if z ¢ p for any p € Ass(M/N), then zM NN = zN.

SoLUTION: Trivially, N C zM (| N. Conversely, take m € M with am € N.
Let m' be the residue of m in M/N. Then xm/ = 0. By (17.14), z ¢ z.div(M/N).
Som’=0. Som e N. Soxm € zN. Thus M ()N C zN, as desired. O

EXERCISE (17.21). — Let R be a Noetherian ring, a an ideal. Prove the primes
minimal containing a are associated to a. Prove such primes are finite in number.

SOLUTION: Since a = Ann(R/a), the primes in question are the primes minimal
in Supp(R/a) by (13.9)(3). So they are associated to a by (17.17), and they are
finite in number by (17.20). O

EXERCISE (17.22). — Take R := Z and M := Z in (17.19). Determine when a
chain 0 C My G M is acceptable, and show that then py ¢ Ass(M).

SOLUTION: If the chain is acceptable, then My # 0 as M;/0 ~ R/p;, and M; is
a prime ideal as My = Ann(M/M;) = po. Conversely, the chain is acceptable if M
is a nonzero prime ideal p, as then M;/0 ~ R/0 and M/M; ~ R/p.

Finally, Ass(M) = 0 by (17.4). Further, as just observed, given any acceptable
chain, po = My # 0. So pa ¢ Ass(M). O

EXERCISE (17.23). — Take R :=Z and M := Z/(12) in (17.19). Find all three
acceptable chains, and show that, in each case, {p;} = Ass(M).

SOLUTION: An acceptable chain in M corresponds to chain
(12) C {a1) C {az) C --- C (an) = Z.

Here (a1)/(12) ~ Z/(p1) with p; prime. So a1p1 = 12. Hence the possibilities are
p1 =2, a1 =6 and p; = 3, a1 = 4. Further, (a2)/{a1) ~ Z/{p2) with ps prime. So
asps = ay. Hence, if a; = 6, then the possibilities are ps = 2, as = 3 and py = 3,
as = 2; if a3 = 4, then the only possibility is p2 = 2 and a2 = 2. In each case, as is
prime; hence, n = 3, and these three chains are the only possibilities. Conversely,
each of these three possibilities, clearly, does arise.

In each case, {p;} = {(2), (3)}. Hence (17.19.1) yields Ass(M) C {(2), (3)}. For
any M, if 0 C My C --- C M is an acceptable chain, then (17.5) and (17.4)(2)
yield Ass(M) D Ass(M;) = {p1}. Here, there’s one chain with p; = (2) and another
with p; = (3); hence, Ass(M) D {(2), (3)}. Thus Ass(M) = {(2), (3)}. O

18. Primary Decomposition
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EXERCISE (18.6). Let R be a ring, and p = (p) a principal prime generated by
a nonzerodivisor p. Show every positive power p” is p-primary, and conversely, if
R is Noetherian, then every p-primary ideal q is equal to some power p".

SOLUTION: Let’s proceed by induction. Form the exact sequence
0 — p"/p"tt = R/p™T = R/p™ — 0.

Consider the map R — p™/p"*t! given by 2+ zp™. It is surjective, and its kernel
is p as p is a nonzerodivisor. Hence R/p - p"/p"tl. But Ass(R/p) = {p}
by (17.4)(2). Hence (17.5) yields Ass(R/p™) = {p} for every n > 1, as desired.
Conversely, p = /q by (18.5). So p™ € q for some n; take n minimal. Then
p™ C q. Suppose there is an x € ¢ — p™. Say x = yp™ for some y and m > 0. Then
m < nasx ¢ p". Take m maximal. Now, p™ ¢ q as n is minimal. So (18.5)
yields y € q C p. Hence y = 2zp for some z. Then x = 2p™*!, contradicting the
maximality of m. Thus q = p”. a

EXERCISE (18.7). — Let k be a field, and k[X,Y] the polynomial ring. Let a be
the ideal (X2, XY). Show a is not primary, but \/a is prime. Show a satisfies this
condition: ab € a implies a® € a or b? € a.

SoLuTioN: First, (X) is prime by (2.11). But (X?) C a C (X). So va = (X)
by (3.26). On the other hand, XY € a, but X ¢ a and Y ¢ +/a; thus a is not
primary by (18.5). If ab € a, then X | a or X | b, so a® € a or b2 € a. O

EXERCISE (18.8). — Let ¢: R — R’ be a homomorphism of Noetherian rings, and
q C R’ a p-primary ideal. Show that ¢~!'q C R is ¢~ !p-primary. Show that the
converse holds if ¢ is surjective.

SOLUTION: Let zy € ¢~ tq, but @ ¢ ¢~ 1q. Then ¢(z)p(y) € g, but ¢(z) ¢ q.
So p(y)™ € q for some n > 1 by (18.5). Hence, y™ € ¢~ 'q. So ¢~1q is primary
by (18.5). Its radical is ¢~ !p as p = /4, and taking the radical commutes with
taking the inverse image by (3.27). The converse can be proved similarly. |

EXERCISE (18.16). — Let k be a field, R := k[X,Y, Z] be the polynomial ring.
Set a:= (XY, X — Y Z), set q1 := (X, Z) and set q2 := (Y2, X — Y Z). Show that
a = ¢1Nqz holds and that this expression is an irredundant primary decomposition.

SoLuTION: First, XY =Y(X ~Y Z)+Y?2Z € q. Hence a C q;Ngs. Conversely,
take F' € q1 Nqa. Then F € q9, 50 F = GY?2 + H(X — YZ) with G, H € R. But
Feq,soGEeqy;say G=AX + BZ with A, B € R. Then

F=(AY+B)XY+(H-BY)(X—-ZY)€a.
Thus a D g1 N g2. Thus a = q; N g2 holds.

Finally, q; is prime by (2.11). Now, using (18.8), let’s show g2 is (X,Y)-
primary. Form ¢: k[X,Y, Z] — k[Y, Z] with ¢(X) := YZ. Clearly, g2 = ¢~ 1(Y'?)
and (X, Y) = o~ 1(Y); also, (Y2) is (Y)-primary by (18.2). Thus a = q; N g is a
primary decomposition. It is irredundant as q; and (X,Y’) are distinct. g

EXERCISE (18.17). — Let R := R’ x R” be a product of two domains. Find an
irredundant primary decomposition of (0).
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SOLUTION: Set p’ := (0) x R” and p” := R"” x (0). Then p’ and p” are prime by
(2.12), so primary by (17.4)(2). Clearly (0) = p’ Np”. Thus this representation is
a primary decomposition; it is irredundant as both p’ and p” are needed. a

EXERCISE (18.21). Let R be a Noetherian ring, a an ideal, and M a finitely
generated module. Consider the following submodule of M:

Lo(M) == U,»{m € M | a™m = 0 for some n > 1}.

(1) For any decomposition 0 = (Q; with @; p;-primary, show I'a(M) = (1,4, Qi
(2) Show I'q(M) is the set of all m € M such that m/1 € M, vanishes for every
prime p with a ¢ p. (Thus I'q(M) is the set of all m whose support lies in V(a).)

SoLuTION: For (1), given m € I'qy(M), say a™m = 0. Given i with a ¢ p;, take
a € a—p;. Then a"m =0 € Q;. Hence m € Q; by (18.4). Thus m € ﬂa@i Q;-

Conversely, given m € ﬂa@? Qi, take any j with a C p,;. Now, p; = nil(M/Q,)
by (18.3). So there is n; with a™m € Q;. Set n:= max{n;}. Then a"m € Q; for
all 4, if a C p; or not. Hence a"m € (Q; = 0. Thus m € T'y(M).

For (2), given m € T'q(M), say a"m = 0. Given a prime p with a ¢ p, take
a€a—p. Then a"m =0 and a™ ¢ p. So m/1 € M, vanishes.

Conversely, given an m € M such that m/1 € M, vanishes for every prime p
with a ¢ p, consider a decomposition 0 = () Q; with Q; p;-primary; one exists by
(18.20). By (1), it suffices to show m € @Q; if a ¢ p;. But m/1 € M,,, vanishes. So
there’s an a € R — p; with am =0 € Q;. So (18.4) yields m € @Q;, as desired. O

EXERCISE (18.25). — Let R be a Noetherian ring, M a finitely generated module,
N a submodule. Prove N = (", caqs(as/n) op ' (Np).

SOLUTION: (18.20) yields an irredundant primary decomposition N = (] Q;.
Say Q; is p;-primary. Then {p;}7 = Ass(M/N) by (18.19). Also, (18.23) yields
90;11(NP1) = ﬂpjcp, QJ Thus ﬂTl @EI(NW) = ﬂTl (mpjcpi QJ) = 071 Qi=N. |

EXERCISE (18.26). — Let R be a Noetherian ring, p a prime. Its nth symbolic
power p(™ is defined as the saturation (p™)° where S := R — p.

(1) Show p(™ is the p-primary component of p”.

(2) Show p(™+7) is the p-primary component of p(™p(™),

(3) Show p(™ = p™ if and only if p” is p-primary.

(4) Given a p-primary ideal q, show q D p(™ for all large n.

SoLUTION: Clearly, p is minimal in V(p™). But V(p™) = Supp(R/p™) by (13.9).
Hence p is minimal in Ass(R/p™) by (17.17) and (17.3). Thus (18.24) yields (1).

Clearly, (11.15)(3) yields (p(™p(™)5 = p(m+n) Thus (18.24) yields (2).

If p(®) = p™ then p” is p-primary by (1). Conversely, if p™ is p-primary, then
p™ = p(™ because primary ideals are saturated by (18.22). Thus (3) holds.

For (4), recall p = ,/q by (18.5). So q D p”" for all large n by (3.26). Hence
g% > p™. But q° = q by (18.22) since p N (R — p) = 0. Thus (4) holds. O
EXERCISE (18.27). — Let R be a Noetherian ring, (0) = q1N- - -Nq,, an irredundant
primary decomposition. Set p; := /q; fori=1,...,n.

(1) Suppose p; is minimal for some i. Show ¢; = pl(.r) for all large 7.

(2) Suppose p; is not minimal for some 7. Show that replacing q; by pgr) for large
r gives infinitely many distinct irredundant primary decompositions of (0).
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SOLUTION: Set A := R,, and m := p,A. Then A is Noetherian by (16.7).
Suppose p; is minimal. Then m is the only prime in A. So m = \/@ by the
Scheinnullstellensatz (3.22). So m” = 0 for all large r by (3.25). So p(") = g; by
the Second Uniqueness Theorem (18.24) and Lemma (18.22). Thus (1) holds.

Suppose p; is not minimal. Then the m” are distinct. Otherwise, m” = m"*! for
some r. So m" = 0 by Nakayama’s Lemma (10.10). But then m is minimal; so p;
is too, contrary to hypothesis. So (11.17)(1) implies the pgr) are distinct.

However, q; D py) for all large r by (18.26)(4). Hence (0) = py) Oz 95-
But plm is p;-primary by (18.26)(1). Thus replacing ¢; by pgr) for large r gives
infinitely many distinct primary decompositions of (0).

These decompositions are irredundant owing to two applications of (18.18). A
first yields {p;} = Ass(R) as (0) = q1 N---N gy, is irredundant. So a second yields
the desired irredundancy. d

EXERCISE (18.29). — Let R be a Noetherian ring, m C rad(R) an ideal, M a
finitely generated module, and M’ a submodule. Considering M /N, show that

M’ = (), 5(m"M + M").

SOLUTION: Set N := (),v,m"(M/M’). Then by (18.28), there is z € m such
that (1 +2)N = 0. By (3.2), 1+ is a unit since m C rad(R). Therefore,
N=0+z1Y(1+2)N = (0). However, m"*(M/M') = (m"M + M')/M’. Thus
N(m"M + M') /M’ = 0, as desired. |

19. Length

EXERCISE (19.2). — Let R be a ring, M a module. Prove these statements:

(1) If M is simple, then any nonzero element m € M generates M.

(2) M is simple if and only if M ~ R/m for some maximal ideal m, and if so,
then m = Ann(M).

(3) If M has finite length, then M is finitely generated.

SOLUTION: Obviously, Rm is a nonzero submodule. So it is equal to M, because
M is simple. Thus (1) holds.

Assume M is simple. Then M is cyclic by (1). So M ~ R/m for m := Ann(M)
by (4.7). Since M is simple, m is maximal owing to the bijective correspondence
of (1.8). By the same token, if, conversely, M ~ R/m with m maximal, then M is
simple. Thus (2) holds.

Assume (M) < co. Let M = My D My D -+ D M, = 0 be a composition
series. If m = 0, then M = 0. Assume m > 1. Then M; has a composition series
of length m — 1. So, by induction on m, we may assume Mj is finitely generated.
Further, M /M is simple, so finitely generated by (1). Hence M is finitely generated
by (16.15)(1). Thus (3) holds. O

EXERCISE (19.4). — Let R be a Noetherian ring, M a finitely generated module.
Prove the equivalence of the following three conditions:

(1) that M has finite length;

(2) that Supp(M) consists entirely of maximal ideals;

(3) that Ass(M) consists entirely of maximal ideals.
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Prove that, if the conditions hold, then Ass(M) and Supp(M) are equal and finite.

SoLuTION: If (1) holds, then (2) holds owing to (19.3). If (2) holds, then (1)
holds owing to (17.19) and (19.2)(2). Finally, (17.16) and (17.20) imply that
(2) and (3) are equivalent and that the last assertion holds. O

EXERCISE (19.5). — Let R be a Noetherian ring, q a p-primary ideal. Consider
chains of primary ideals from g to p. Show (1) all such chains have length at most
£(A) where A := (R/q), and (2) all maximal chains have length exactly £(A).

SoLuTION: There is a natural bijective correspondence between the p-primary
ideals containing q and the (p/q)-primary ideals of R/q, owing to (18.8). In turn,
there is one between the latter ideals and the ideals of A primary for its maximal
ideal m, owing to (18.8) again and also to (18.22) with M := A.

However, p = /q by (18.5). So m = \/@ . Hence every ideal of A is m-primary
by (18.10). Further, m is the only prime of A; so ¢(A) is finite by (19.4) with
M := A. Hence (19.3) with M := A yields (1) and (2). O

EXERCISE (19.8). — Let & be a field, and R a finitely generated k-algebra. Prove
that R is Artinian if and only if R is a finite-dimensional k-vector space.

SOLUTION: Since k is Noetherian by (16.1) and since R is a finitely generated
k-algebra, R is Noetherian by (16.11). Assume R is Artinian. Then ¢(R) < co by
(19.6). So R has a composition series. The successive quotients are isomorphic to
residue class fields by (19.2)(2). These fields are finitely generated k-algebras, since
Ris so. Hence these fields are finite extension fields of k£ by the Weak Nullstellensatz.
Thus R is a finite-dimensional k-vector space. The converse holds by (16.24). O

EXERCISE (19.10). — Let k be a field, A a local k-algebra. Assume the map from
k to the residue field is bijective. Given an A-module M, prove ¢(M) = dimy(M).

SoLuTION: If M = 0, then ¢(M) = 0 and dimi(M) = 0. If M = k, then
(M) =1 and dimy (M) = 1. Assume 1 < {(M) < co. Then M has a submodule
M’ with M/M’' = k. So Additivity of Length, (19.9), yields {(M') = ¢(M) — 1
and dimy(M') = dimy (M) — 1. Hence ¢(M’) = dimy(M’) by induction on ¢(M).
Thus (M) = dimy(M).

If ¢(M) = oo, then for every m > 1, there exists a chain of submodules,

M=M2M 22 M,=0.
Hence dimy (M) = oo. O

EXERCISE (19.12). — Prove these conditions on a Noetherian ring R equivalent:
(1) that R is Artinian;
(2) that Spec(R) is discrete and finite;
(3) that Spec(R) is discrete.

SoruTIoN: Condition (1) holds, by (19.11), if and only if Spec(R) consists of
finitely points and each is a maximal ideal. But a prime p is a maximal ideal if and
only if {p} is closed in Spec(R) by (13.2). It follows that (1) and (2) are equivalent.

Trivially, (2) implies (3). Conversely, (3) implies (2), since Spec(R) is quasi-
compact by (13.4). Thus all three conditions are equivalent. O

EXERCISE (19.13). — Let R be an Artinian ring. Show that rad(R) is nilpotent.
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SOLUTION: Set m := rad(R). Then m D m? D .- is a descending chain. So
m” = m"! for some r. But R is Noetherian by Akizuki’s Theorem (19.11). So m
is finitely generated. Thus Nakayama’s Lemma (10.10) yields m” = 0. d

EXERCISE (19.16). — Let R be a ring, p a prime ideal, and R’ a module-finite
R-algebra. Show that R’ has only finitely many primes p’ over p, as follows: reduce
to the case that R is a field by localizing at p and passing to the residue rings.

SoruTioN: First note that, if p’ C R’ is a prime lying over p, then p'R;, C Ry, is
a prime lying over the maximal ideal pR,,. Hence, by (11.18)(2), it suffices to show
that R; has only finitely many such primes. Note also that R; is module-finite over
R,. Hence we may replace R and R’ by R, and R;, , and thus assume that p is
the unique maximal ideal of R. Similarly, we may replace R and R’ by R/p and
R'/pR’, and thus assume that R is a field.

There are a couple of ways to finish. First, R’ is now Artinian by (19.15) or by
(16.24); hence, R’ has only finitely many primes by (19.11). Alternatively, every
prime is now minimal by incomparability (14.3)(2). Further, R’ is Noetherian by
(16.11); hence, R’ has only finitely many minimal primes by (17.21). O

EXERCISE (19.18). — Let R be a Noetherian ring, and M a finitely generated
module. Prove the following four conditions are equivalent:

(1) that M has finite length;

(2) that M is annihilated by some finite product of maximal ideals [] m;;

(3) that every prime p containing Ann(M) is maximal;

(4) that R/Ann(M) is Artinian.

SOLUTION: Assume (1) holds. Let M = My D --- D M,, = 0 be a composition
series, and set m; := Ann(M;_1/M,;). Then m; is maximal by (19.2)(2). Further,
m;M; 1 C M;. Hence m; ---my My C M;. Thus (2) holds.

If (2) holds, then (3) does too. Indeed, if p D Ann(M) D [[m;, then p D m; for
some i by (2.2) as p is prime, and so p = m; as m; is maximal.

Assume (3) holds. Then dim(R/Ann(M)) = 0. But, by (16.7), any quotient of
R is Noetherian. Hence Akizuki’s Theorem (19.11) yields (4).

If (4) holds, then (19.14) yields (1), because M is a finitely generated module
over R/ Ann(M) owing to (4.5). O

20. Hilbert Functions

EXERCISE (20.5). — Let k be a field, k[X, Y] the polynomial ring. Show (X, Y2)
and (X2,Y?) have different Hilbert Series, but the same Hilbert Polynomial.

SOLUTION: Set m := (X,Y) and a := (X,Y?) and b := (X2, Y?). They are
graded by degree. So f(a;) = 1, and £(a,) = ¢(m,) for all n > 2. Further,
£(b1) = 0, £(by) = 2, and £(b,,) = ¢(m,,) for n > 3. Thus the three ideals have the
same Hilbert Polynomial, namely h(n) = n + 1, but different Hilbert Series. O

EXERCISE (20.6). — Let R = @ R,, be a graded ring, M = @ M,, a graded R-
module. Let N = @ N,, be a homogeneous submodule; that is, N,, = N N M,,.
Assume Ry is Artinian, R is a finitely generated Ry-algebra, and M is a finitely
generated R-module. Set

N’ :={m € M | there is ko such that Rym € N for all k > kg }.
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(1) Prove that N’ is a homogeneous submodule of M with the same Hilbert
Polynomial as N, and that N’ is the largest such submodule.

(2) Let N = (N Q; be a decomposition with Q; p;-primary. Set Ry := @,,-q Rn-
Prove that N' =, 5z, Qi-

SOLUTION: Given m =Y m; € N’, say Rym C N. Then Rym; C N since N is
homogeneous. Hence m; € N’. Thus N’ is homogeneous.

By (19.11) and (16.11), R is Noetherian. So N is finitely generated by (16.18).
Let ny,...,n, be homogeneous generators of N’ with n; € Ng,; set k' := max{k;}.
There is k such that Ryn; € N for all . Given £ > k + £/, take n € N, and write
n =Y yn; with y; € Rg_y,. Then y;n; € N, for all i. Son € N;. Thus N; = N,
for all £ > k + k’. Thus N and N’ have the same Hilbert polynomial.

Say N” D N, and both have the same Hilbert Polynomial. Then there is ko with
L(N}) = £(Ny) for all k > ko. So N}/ = Ny, for all k > ko. So, if n € N, then
Ryn € N for all k > ky. Thus N” C N’. Thus (1) holds.

To prove (2), note 0 = ()(Q;/N) in M/N. By (18.21),

Tr, (M/N)= (] (Qi/N).
)JLZR+
But clearly I'r, (M/N) = N'/N. Thus N’ =, 45, Qi- O
EXERCISE (20.9). — Let k be a field, P := k[X, Y, Z] the polynomial ring in three

variables, f € P a homogeneous polynomial of degree d > 1. Set R := P/{f). Find
the coefficients of the Hilbert Polynomial h(R,n) explicitly in terms of d.

SOLUTION: Clearly, the following sequence is exact:
0— P(-d) 25 P R—0.

Hence, Additivity of Length, (19.9), yields h(R,n) = h(P,n) — h(P(—d),n). But
P(—d), = P(n—d), so h(P(—d),n) = h(P,n — d). Therefore, (20.4) yields

hR,n) = (*5") — 74" = dn — (d - 3)d/2. O
EXERCISE (20.10). — Under the conditions of (20.8), assume there is a homo-

geneous nonzerodivisor f € R with My = 0. Prove deg(h(R, n)) > deg(h(]%, n));
start with the case M := R/(f*).

SOLUTION: Suppose M := R/(f*). Set c := kdeg(f). Form the exact sequence
0 — R(—¢) % R — M — 0 where p is multiplication by f*. Then Additivity of
Length (19.9) yields h(M,n) = h(R,n) — h(R,n — ¢). But

h(R,n) = (sﬁll))!nd_l +--- and A(R,n—c)= —<;(_11)>! (n— c)d_1 4+

by (20.8). Thus deg(h(R,n)) > deg(h(M,n)).

In the general case, there is k with f*M = 0 by (12.7). Set M’ := R/(f*).
Then generators m; € M, for 1 < i < r yield a surjection @, M'(—¢;) — M.
Hence >, ¢(M],_,,) > €(M,,) for all n. But deg(h(M'(—c;),n)) = deg(h(M’,n)).
Hence deg(h(M’,n)) > deg(h(M,n)). But deg(h(R,n)) > deg(h(M’,n)) by the
first case. Thus deg(h(R,n)) > deg(h(M,n)). O
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EXERCISE (20.15). Let R be a Noetherian ring, q an ideal, and M a finitely
generated module. Assume ¢(M/qM) < co. Set m := ,/q. Show

deg pm (M, n) = degpq (M, n).
SOLUTION: There is an m such that m D g D m™ by (3.25). Hence
m"M D q"M D>m""M
for all n > 0. Dividing into M and extracting lengths yields
LM/m M) < (M/q"M) < (M/m™"M).
Therefore, for large n, we get
pm(M,n) < pg(M,n) < pu(M,nm).

The two extremes are polynomials in n with the same degree, say d, (but not the
same leading coefficient). Dividing by n? and letting n — oo, we conclude that the
polynomial pq(M,n) also has degree d. O

EXERCISE (20.19). — Derive the Krull Intersection Theorem, (18.28), from the
Artin—Rees Lemma, (20.18).

SoLuTION: In the notation of (18.28), we must prove that N = aN. So apply
the Artin—Rees Lemma to N and the a-adic filtration of M; we get an m such that
a(NNna™M)=Nna™M. But NNa"M = N for alln > 0. Thus N = aN. O

20. Appendix: Homogeneity

EXERCISE (20.22). — Let R = @ R, be a graded ring, M = P
module, a C P

n>ne Mn a graded

>0 FBn @ homogeneous ideal. Assume M = aM. Show M = 0.

SOLUTION: Suppose M # 0; say My, # 0. Note M = aM C €D,,-,,,, My; hence
My, =0, a contradiction. Thus M = 0. O

EXERCISE (20.23). — Let R = € R, be a Noetherian graded ring, M = @ M,, a
finitely generated graded R-module, N = & N,, a homogeneous submodule. Set

N:={meM|RymeN foralln>0}.

Show that N’ is the largest homogeneous submodule of M containing N and having,
for all n > 0, its degree-n homogeneous component N/, equal to IN,,.

SoLuTiOoN: Given m,m’ € N’  say R,m, R,m’ € N for n > 0. Let z € R.
Then R, (m +m'), Rpam € N for n > 0. So N’ C M is a submodule. Trivially
N C N'. Let m; be a homogeneous component of m. Then R,m; € N for n > 0
as N is homogeneous. Thus N’ C M is a homogeneous submodule containing N.

Since R is Noetherian and M is finitely generated, N’ is finitely generated, say
by g,¢'s...,9). Then there is ng with R,g, Rng,..., Rug(” € N for n > ny.
Replace ¢, ¢/, . .., g(") by their homogeneous components. Say g,¢’, ..., ¢(") are now
of degrees d,d’,...,d") with d>d > --->d™. Set ny := d + no.

Given m € N} with n > ng, say m = xg + 2'¢’ + -+ with ¢ € R,_4 and
2 € Rp_¢ and soon. Thenng <n—d<n-d <---. Hence m € N,. Thus
N} C N,. But N’ > N. Thus N}, = N,, for n > ny, as desired.

Let N” = @ N}/ C M be homogeneous with N}/ = N,, for n > ny. Let m € N”
and p > ny. Then Rym € @ N//C N.Some N'. Thus N" C N'. O

n>nsg
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EXERCISE (20.25). Let R be a graded ring, a a homogeneous ideal, and M a
graded module. Prove that v/a and Ann(M) and nil(M) are homogeneous.

SoLuTION: Take x = Z;;" x; € R with the x; the homogeneous components.

First, suppose € v/a. Say x* € a. Either z* vanishes or it is the initial
component of 2*. But a is homogeneous. So z¥ € a. So 2, € v/a. So z —z,. € Va
by (8.24). So all the z; are in v/a by induction on n. Thus y/a is homogeneous.

Second, suppose * € Ann(M). Let m € M. Then 0 = zm = > x;m. If m
is homogeneous, then z;m = 0 for all 4, since M is graded. But M has a set of
homogeneous generators. Thus z; € Ann(M) for all 4, as desired.

Finally, nil(M) is homogeneous, as nil(M) = y/Ann(M) by (13.10). O

EXERCISE (20.26). — Let R be a Noetherian graded ring, M a finitely generated
graded module, ) a submodule. Let Q* C @ be the submodule generated by the
homogeneous elements of (). Assume @ is primary. Then Q* is primary too.

SOLUTION: Let # € R and m € M be homogeneous with xm € Q*. Assume
x ¢ nil(M/Q*). Then, given £ > 1, there is m’ € M with x‘m’ ¢ Q*. So m' has
a homogeneous component m” with z‘m” ¢ Q*. Then z'm” ¢ Q by definition
of @*. Thus z ¢ nil(M/Q). Since @ is primary, m € Q by (18.4). Since m is
homogeneous, m € Q*. Thus Q* is primary by (20.24). a

EXERCISE (20.30). — Under the conditions of (20.8), assume that R is a domain
and that its integral closure R in Frac(R) is a finitely generated R-module.

(1) Prove that there is a homogeneous f € R with Ry = Ry.

(2) Prove that the Hilbert Polynomials of R and R have the same degree and
same leading coefficient.

SOLUTION: Let z1,...,z, be homogeneous generators of R as an R-module.
Write z; = a;/b; with a;,b; € R homogeneous. Set f := [[b;. Then fz; € R
for each i. So Ry = Ry. Thus (1) holds.

Consider the short exact sequence 0 — R — R — R/R — 0. Then (R/R); =0
by (12.16). So deg(h(R/R,n)) < deg(h(R,n)) by (20.10) and (1). But

h(R,n) = h(R,n) + h(R/R,n)
by (19.9) and (20.8). Thus (2) holds. O

21. Dimension

EXERCISE (21.8). — Let R be a Noetherian ring, and p be a prime minimal
containing x1,...,2z,. Given v’ with 1 < ¢/ < r, set R’ := R/(x1,...,2z,/) and
p =p/{x1,...,2). Assume ht(p) = r. Prove ht(p’) =r —r'.

SOLUTION: Let 2} € R’ be the residue of z;. Then p’ is minimal containing
Ty ;... 2, by (1.8) and (2.7). So ht(p’) <r —r' by (21.7).

On the other hand, R), = R} by (11.22), and R, = R,/(z1/1,...,2,/1) by
(12.18) Hence dim(R),) > dim(R,) — r’ by repeated application of (21.5). So
ht(p’) > r — ' by (21.6.1), as required. O
EXERCISE (21.10). — Let R be a Noetherian ring, p a prime ideal with ht(p) > 2.
Prove p is the union of infinitely many distinct prime ideals q with ht(g) = 1.
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SoruTION: Dividing R by a minimal prime ideal contained in p, we may, plainly,
assume R is a domain. Given a nonzero x € p, let q, C p be a prime ideal minimal
containing . Then ht(q,;) = 1 by the Krull Principal Theorem (21.9). Plainly
Ugs = p. Finally, if there were only finitely many distinct q,, then by Prime
Avoidance (3.15), one g, would be equal to p, a contradiction. O

EXERCISE (21.11). — Let R be a Noetherian ring with only finitely many prime
ideals. Show dim(R) < 1.

SOLUTION: By (21.10), there’s no prime p with ht(p) > 2. So dim(R) < 1. O

EXERCISE (21.12). — Let R be a domain. Prove that, if R is a UFD, then every
height-1 prime is principal, and that the converse holds if R is Noetherian.

SOLUTION: Let p be a height-1 prime. Then there’s a nonzero = € p. Factor z.
Omne prime factor p must lie in p as p is prime. Clearly, (p) is a prime ideal as p is
a prime element. But (p) C p and ht(p) = 1. Thus, (p) = p.

Conversely, assume every height-1 prime is principal and assume R is Noetherian.
To prove R is a UFD, it suffices to prove every irreducible element p is prime (see
[1, Ch. 11, Sec. 2, pp. 392-396]). Let p be a prime minimal containing p. By Krull’s
Principal Ideal Theorem, ht(p) = 1. So p = (z) for some z. Then z is prime by
(2.6). And p = zy for some y as p € p . But p is irreducible. So y is a unit. Thus
p is prime, as desired. O

EXERCISE (21.13). — (1) Let A be a Noetherian local ring with a principal prime
p of height at least 1. Prove that A is a domain.

(2) Let k be a field, P := k[[X]] the formal power series ring in one variable. Set
R := P x P. Prove that P is Noetherian and semilocal, and that P contains a
principal prime p of height 1, but that P is not a domain.

SoruTIoN: To prove (1), say p = (z), and let ¢ C p be a minimal prime. Take
y € q. Then y = ax for some a. But x ¢ q since htp > 1. Hence a € q. Thus q = qz.
But z lies in the maximal ideal of the local ring A, and q is finitely generated since
A is Noetherian. Hence Nakayama’s Lemma (10.10) yields ¢ = (0). Thus (0) is
prime, and so A is a domain.

Alternatively, as a € q, also a = ayx with a; € q. Repeating yields an ascending
chain of ideals (a) C {(a1) C (a2) C ---. It must stabilize as A is Noetherian: there’s
a k such that ay € (ax—1). Then ay = bar_1 = bayx for some b. So ar(1—bx) = 0.
But 1 — bz is a unit by (3.4) as A is local. So a; = 0. Hence y = 0 and so q = (0).
Thus A is a domain.

As to (2), every nonzero ideal of P is of the form (X™) by (3.8). Hence P is
Noetherian. Thus R is Noetherian by (16.16).

The primes of R are of the form q x P or P x q where q is a prime of P by (2.11).
Further, m := (X) is the unique maximal ideal by (3.7). Hence R has just two
maximal ideals m x P and P x m. Thus R is semilocal.

Set p := ((X,1)). Then p = m x P. So p is a principal prime. Further, p contains
just one other prime 0 x P. Thus ht(p) = 1.

Finally, R is not a domain as (1,0) - (0,1) = 0. O

EXERCISE (21.14). — Let R be a finitely generated algebra over a field. Assume
R is a domain of dimension r. Let 2 € R be neither 0 nor a unit. Set R’ := R/(z).
Prove that » — 1 is the length of any chain of primes in R’ of maximal length.
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SOLUTION: A chain of primes in R’ of maximal length lifts to a chain of primes
pi in R of maximal length with (z) € p1 & --- G pa. As z is not a unit, d > 1.
As x # 0, also p; # 0. But R is a domain. So Krull’s Principal Ideal Theorem,
(21.8), yields htp; =1. So 0 G p1 G --- G p, is of maximal length in R. But R is
a finitely generated algebra over a field. Hence d = dim R by (15.8). a

EXERCISE (21.16). — Let R be a Noetherian ring. Show that
dim(R[X]) = dim(R) + 1.
SOLUTION: Let ‘B be a prime ideal of R[X], and p its contraction in R. Then
R, — R[X]y is a flat local homomorphism by (13.24). Hence (21.15) yields
dim(R[X]qp) = dim(Ryp) + dim(R[X]p/pR[X]p). (21.16.1)
But R[X|p/pR[X]p = k(p)[X]p, owing to (1.6) and (11.29). So its dimension is

1, as k(p)[X] is a PID. Hence if P has dim(R[X|y) = dim(R[X]), then (21.16.1)
yields dim(R[X]) < dim(R)+1. Thus the desired equality follows from (15.18). O

EXERCISE (21.17). — Let A be a Noetherian local ring of dimension r. Let m be
the maximal ideal, and k := A/m the residue class field. Prove that

r < dimg(m/m?),
with equality if and only if m is generated by r elements.
SOLUTION: By (21.4), dim(A) is the smallest number of elements that generate a

parameter ideal. But m is a parameter ideal, and the smallest number of generators
of m is dimg(m/m?2) by (10.11)(2). The assertion follows. O

EXERCISE (21.21). — Let A be a Noetherian local ring of dimension r, and
x1,...,¢s € A with s < r. Set a := (z1,...,25) and B := A/a. Prove these
two conditions are equivalent:
(1) A is regular, and there are x441,...,2, € A with x1,..., 2, a regular sop.
(2) B is regular of dimension r — s.

SOLUTION: Assume (1). Then z1,..., 2, generate the maximal ideal m of A. So
the residues of z441, ..., z, generate that n of B. Hence dim(B) > r — s by (21.4).
But dim(B) > r — s by (21.5). So dim(B) = r — s. Thus (2) holds.

Assume (2). Then n is generated by r — s elements, say by the residues of
Tsil,---,Lr € A. Hence m is generated by z1,...,z,. Thus (1) holds. d

22. Completion

EXERCISE (22.3). — In the 2-adic integers, evaluate the sum 1 +2+44+84---.
SOLUTION: In the 2-adic integers, 1 +24+4+8+4---=1/(1—-2) = —1. O

EXERCISE (22.4). — Let R be a ring, a an ideal, and M a module. Prove the
following three conditions are equivalent:

(1) k: M — M is injective; (2) ﬂa"M = (0); (3) M is separated.

SoLuTION: Clearly, Ker(x) = [ a"M; so (1) and (2) are equivalent. Moreover,
(2) and (3) were proved equivalent in (22.1). O
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EXERCISE (22.8). — Let A be a Noetherian semilocal ring, and my, ..., m,, all its
maximal ideals. Prove that A =[] Aw,.

SoLUTION: Set m :=rad(R). Fix n > 0. Then A/m"™ is Noetherian of dimension
0; so it’s Artinian by (19.18). Hence (19.17) yields

Afm" = T[;(A/m"™) m, fmr)-

However, (A/m")(m,/mn) is equal to (A/m")n, by (11.22), so to A, /m" Ay,
by Exactness of Localization (12.16). Furthermore, m” = ([[m;)” = ((m} by
(1.13). Now, m} is m;-primary by (18.10). Hence m"A,,, = m}A,,, by (18.23).
Therefore, A/m" = [],;(Am,/m?An,). Taking inverse limits, we obtain the asser-
tion, because inverse limit commutes with finite product by the construction of the
limit. g

EXERCISE (22.9). Let R be a ring, M a module, M = My D M; D --- a
filtration, and N C M a submodule. Filter N by N,, := NN M,,. Assume N D M,
for n > ng for some ng. Prove N C M and M /N = M/N and G(M ) = G(M).

SOLUTION: For each n > ng, form this commutative diagram with exact rows:
0 — N/Myy1 — M/M,y1 — M/N — 0

| |

0 — N/M,, — M/M,, — M/N — 0
The left vertical map is surjective; the right is the identity. So the induced sequence
Oaﬁaj/vfaM/N%O

is exact by (22.6) and (22.7). Thus N C M and M/N = M/N.
In particular, ]/\/T/ﬂn = M/M,, for each n. Therefore, ]T/Tn/]/\/TnH = M, /My41.
Thus G(M ) = G(M). O

EXERCISE (22.10). — (1) Let R be a ring, a an ideal. If G4(R) is a domain, show
R is an domain. If also (1,5, @™ = 0, show R is a domain.
(2) Use (1) to give an alternative proof that a regular local ring A is a domain.

SoLuTION: Consider (1). Let x,5 € R be nonzero. Since R is separated there
are positive integers r and s with z € @" —a"** and y € a5 —a**+!. Let 2/ € GL(R)

~

and y' € GZ(R) denote the images of 2 and y. Then 2’ # 0 and 3’ # 0. Now,
Ga(R) = G4(R) by (22.9). Assume Gq(R) is a domain. Then 2y’ # 0. Hence
2y’ € GL** is the image of zy € a™**. Hence zy # 0. Thus R is a domain.
If )50 4" = 0, then R C R by (22.4); so R is a domain if R is. Thus (1) holds.
As to (2), denote the maximal ideal of A by m. Then Nysom™ = (0) by the
Krull Intersection Theorem (18.28), and G (A) is a polynomial ring by (21.20),

so a domain. Hence A is a domain, by (1). Thus (2) holds. O
EXERCISE (22.12). — Let A be a semilocal ring, my, ..., m,, all its maximal ideals,
and set m := rad(A). Prove that A is a semilocal ring, that my,...,m,, are all its

maximal ideals, and that m = rad(A ).
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SOLUTION: First, (22.9) yields A/ = A/m and A/@; = A/m;. So @, is max-
imal. By hypothesis, m = (m;; so A/m C [[(A/m;). Hence A/fﬁ c T« g/fﬁi); 50
@ = ;. So @ D rad(A). But @ C rad(A ) by (22.2). Thus @ = rad(A4).

Flnally7 let m’ be any maximal ideal of A. Then m’ D rad(A) = ﬂml Hence
m’ D m; for some ¢ by (2.2). But m; is maximal. So m’ = m;. Thus my,..., M,
are all the maximal ideals of A, and so A is semilocal. O

EXERCISE (22.15). — Let A be a Noetherian ring, € A, and T € A its image.
Prove 7 is a nonzerodivisor if x is. Prove the converse holds if A is semilocal.

SOLUTION: Assume z is a nonzerodivisor. Then the multiplication map p, is
injective on A. So by Exactness of Completion, the induced map i, is injective on
A. But Ji, = pz. Thus 7 is a nonzerodivisor.

Conversely7 assume 7 is a nonzerodivisor and A is semilocal. Then fi, is injective
on A. So its restriction is injective on the image of the canonical map A — A.
But this map is injective, as the completion is taken with respect to the Jacobson
radical; further, fi, induces p,. Thus z is a nonzerodivisor. O

EXERCISE (22.16). — Let p € Z be prime. For n > 0, define a Z-linear map
an: Z/(p) = Z/(p") by an(l)=p""".

Set A:=€P,,>,Z/(p) and B :=€P,,>, Z/{p"). Set a := P an;so a: A — B.

(1) Show that the p-adic completion Ais just A.

(2) Show that, in the topology on A induced by the p-adic topology on B, the
completion 4 is equal to [[°, Z/(p).

(3) Show that the natural sequence of p-adic completions

0 A% BE (B/A)”

is not exact at B. (Thus p-adic completion is not right-exact on ((Z-mod)).)

SoruTioN: For (1), note pA = 0. So every Cauchy sequence is constant. Hence
A= A. Thus (1) holds.

For (2), set Ay, := a~'(p* B). These Ay are the fundamental open neighborhoods
of 0 in the topology induced from the p-adic topology of B. So

A =071 08200 @, 0")/ (") = (08 & 08 B,-, Z/(p)-
Hence A/Ay = 6_9?21 Z)(p) =T1%_, Z/{p). But by (22.7), in the induced topology,

n=1

the completion A is equal to l'glk>1 A/Ag. Thus

k
A - @k>l Hn:l Z/<p>

In general, let My, Ms, ... be a sequence of modules, 71';;+1 : H’:;ll M, — HZ:1 M,
the projections. Then (22.6) yields hm, [, M, = [I;=, M,. Thus (2) holds.

n=1

For (3), note that, by (2) and (22.6.2), the following sequence is exact:
0>A—B5 (B/A)”

But A = Aby (1), and A # A as A is countable yet A is not. Thus Im(&) # Ker(%);
that is, (3) holds. a
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EXERCISE (22.18). Let R be a ring, a an ideal. Show that M — M preserves
surjections, and that ReM — M is surjective if M is finitely generated.

SOLUTION: The first part of the proof of (22.14) shows that M M preserves
surjections. So (8.16) yields the desired surjectivity. d

EXERCISE (22.21). — Let R be a Noetherian ring, and a and b ideals. Assume
a C rad(R), and use the a-adic toplogy. Prove b is principal if bR is.

SOLUTION: Since R is Noetherian, b is finitely generated. But a C rad(R).
Hence, b is principal if b/ab is cyclic by (10.11)(2). But b/ab = E/(ab)A
(22.9), and b = bR by (22.19)(2). Hence, if bR is principal, then b/ab is cyclic,
as desired. O

EXERCISE (22.24) (Nakayama’s Lemma for a complete ring). — Let R be a ring,
a an ideal, and M a module. Assume R is complete, and M separated. Show
mi,...,my, € M generate if their images in M/aM generate.

SoLuTiON: Note that the images of mq,...,m, in G(M) generate over G(R).
Therefore, mq,...,m, € M generate over R by the proof of (22.23).

Alternatively, M is finitely generated over R and complete by the statement of
(22.23). Since M is also separated, M = M. Hence M is also an R-module. Since
Ris complete, kp: R — Ris surjective. Now, a is closed by (22.1); so a is complete;
whence, rq: @ — @ is surjective too. Hence aM = aM. Thus M/aM = M/aM. So
the m; generate M/aM. But a@ C rad(R R) by (22.2). So by Nakayama’s Lemma
(10.11)(2), the m; generate M over R, so also over R as kg is surjective. a

EXERCISE (22.28). — Let A be a Noetherian local ring, m the maximal ideal.
Prove (1) that A is a Noetherian local ring with m as maximal ideal, (2) that
dim(A) = dim(A4 ), and (3) that A is regular if and only if A is regular.

SOLUTION: First, A is Noetherian by (22.26), and local with f as maximal ideal
by (22.8); thus (1) holds.

Second, A/m" = A/@" by (22.9). So d(A) = d(A) by (20.13). Thus (2) holds
by (21.4).

Third, m/m? = m/m? by (22.9). So m and m have the same number of generators
by (10.13). Thus (3) holds. O

23. Discrete Valuation Rings

EXERCISE (23.6). — Let R be a ring, M a module, and z,y € R.

(1) Prove that, if x,y form an M-sequence, then, given any m,n € M such that
xm = yn, there exists p € M such that m = yp and n = xp.

(2) Prove the converse of (1) if R is local, and z, y lie in its maximal ideal m, and
M is Noetherian.
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SoLuTION: Consider (1). Let n; be the residue of n in M; := M/xM. Then
yny = 0, but y ¢ z.div(M;). Hence ny = 0. So there exists p € M such that
n=xp. So z(m —yp) = 0. But z ¢ z.div(M). Thus m = yp.

Consider (2). Given m € M such that zm = 0, take n := 0. Then am = yn;
so there exists p € M such that m = yp and n = xp. Repeat with p in place of
m, obtaining p; € M such that p = yp; and 0 = xp;. Induction yields p; € M for
1 > 2 such that p;—1 = yp; and 0 = xp;.

Then Rpy C Rpy C --- is an ascending chain. It stabilizes as M is Noetherian.
Say Rp, = Rpp+t1. SO pp+1 = zpyn for some z € R. Then p, = yppn+1 = Y20n- S0
(1 —yz)p, =0. But y € m. So 1 —yz is a unit. Hence p, = 0. But m = y"*1p,.
Thus m = 0. Thus z ¢ z.div(M).

Given n; € My := M/xzM such that yn; = 0, take n € M with n; as residue.
Then yn = xm for some m € M. So there exists p € M such that m = yp and
n = xp. Thus ny = 0. Thus y ¢ z.div(M;). Thus z,y form an M-sequence. a

EXERCISE (23.7). — Let R be a local ring, m its maximal ideal, M a Noetherian
module, x1,...,2, € m, and ¢ a permutation of 1,...,n. Assume z1,...,xz, form
an M-sequence, and prove Zs1, ..., Ty, do too; first, say o transposes ¢ and i + 1.

SOLUTION: Say o transposes ¢ and i + 1. Set M; := M/(z1,...,z;). Then
xi, iy form an M;_i-sequence; S0 11, x; do too owing to (23.6). So

Tiyeeey Ti—1,Tip1, Ty

form an M-sequence. But M/(x1,...,%i—1,Tit1, ;) = Miy1. Hence z,1,...,Ton
form an M-sequence. In general, o is a composition of transpositions of successive
integers; hence, the general assertion follows. O

EXERCISE (23.8). — Prove that a Noetherian local ring A of dimension r > 1 is
regular if and only if its maximal ideal m is generated by an A-sequence.

SOLUTION: Assume A is regular. Given a regular sop z1,...,z,, let’s show it’s
an A-sequence. Set A; := A/(z1). Then A; is regular of dimension r — 1 by
(21.21). So z1 # 0. But A is a domain by (21.22). So z; ¢ z.div(A). Further, if
r > 2, then the residues of xa,...,x, form a regular sop of A;; so we may assume
they form an Aj-sequence by induction on r. Thus z1,...,z, is an A-sequence.

Conversely, if m is generated by an A-sequence x1, ..., Z,, then n < depth(4) <r
by (23.4) and (23.5)(3), and n > r by (21.17); thus n = r, and A is regular. O

EXERCISE (23.10). — Let A be a DVR with fraction field K, and f € A a nonzero
nonunit. Prove A is a maximal proper subring of K. Prove dim(A) # dim(Ay).

SOLUTION: Let R be a ring, A & R C K. Then there’s an z € R — A. Say
r = ut" where u € A* and t is a uniformizing parameter. Then n < 0. Set
y:=u"1t""" 1 Theny € A. Sot™! = xy € R. Hence wt™ € R for any w € A
and m € Z. Thus R = K, as desired.

Since f is a nonzero nonunit, A g Ay C K. Hence Ay = K by the above. So
dim(Ay) = 0. But dim(A4) =1 by (23.9). O

EXERCISE (23.11). — Let k be a field, P := k[X,Y] the polynomial ring in two
variables, f € P an irreducible polynomial. Say f = {(X,Y) + ¢(X,Y) with
UX,Y) = aX + bY for a,b € k and with g € (X,Y)2. Set R := P/{f) and
p:=(X,Y)/(f). Prove that R, is a DVR if and only if £ # 0. (Thus R, is a DVR
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if and only if the plane curve C : f = 0 C k? is nonsingular at (0,0).)
SOLUTION: Set A := R, and m := pA. Then (12.18) and (12.4) yield
Afm=(R/p)y =k and m/m?=p/p?.

First, assume £ # 0. Now, the k-vector space m/m? is generated by the images
and y of X and Y in A. Clearly, the image of f is 0 in m/m2. Also, g € (X,Y)?; so
its image in m/m? is also 0. Hence, the image of £ is 0 in m/m?; that is, z and y are
linearly dependent. Now, f cannot generate (X,Y), so m # 0; hence, m/m? # 0 by
Nakayama’s Lemma, (10.10). Therefore, m/m? is 1-dimensional over k; hence, m
is principal by (10.11)(2). Now, since f is irreducible, A is a domain. Hence, A is
a DVR by (23.9).

Conversely, assume £ = 0. Then f =g € (X,Y)2. So

m/m* =p/p® = (X,Y)/(X,Y)%
Hence, m/m? is 2-dimensional. Therefore, A is not a DVR by (23.10). O

EXERCISE (23.12). — Let k be a field, A a ring intermediate between the poly-
nomial ring and the formal power series ring in one variable: k[X] C A C k[[X]].
Suppose that A is local with maximal ideal (X). Prove that A is a DVR. (Such
local rings arise as rings of power series with curious convergence conditions.)

SOLUTION: Let’s show that the ideal a := 1,5 o(X™) of A is zero. Clearly, ais a
subset of the corresponding ideal (1, -, (X™) of k[[X]], and the latter ideal is clearly
zero. Hence (23.3) implies A is a DVR. O

EXERCISE (23.13). — Let L/K be an algebraic extension of fields, Xi,..., X,
variables, P and @ the polynomial rings over K and L in Xi,..., X,.

(1) Let g be a prime of @, and p its contraction in P. Prove ht(p) = ht(q).
(2) Let f,g € P be two polynomials with no common prime factor in P. Prove
that f and g have no common prime factor g € Q.

SOLUTION: Since L/K is algebraic, Q/P is integral. Furthermore, P is normal,
and @ is a domain. Hence we may apply the Going Down Theorem (14.9). So given
any chain of primes pg g ; pr = p, we can proceed by descending induction
on i for 0 < i < r, and thus construct a chain of primes qo G --- G q, = q with
q; N P = p;. Thus htp < htq. Conversely, any chain of primes qo & --- G dr = ¢
contracts to a chain of primes po C --- C p, = p, and p; # p;+1 by Incomparability,
(14.3); whence, htp > htq. Hence htp = ht q. Thus (1) holds.

Alternatively, by (15.13), ht(p) + dim(P/p) = n and ht(q) + dim(Q/q) = n
as both P and @ are polynomial rings in n variables over a field. However, by
(15.12), dim P/p = tr.degy Frac(P/p) and dimQ/q = tr.deg; Frac(Q/q), and
these two transcendence degrees are equal as /P is an integral extension. Thus
again, (1) holds.

Suppose f and g have a common prime factor ¢ € @, and set q := QQq. Then
the maximal ideal q@Q4 of Qg is principal and nonzero. Hence @4 is a DVR by
(23.9). Thus ht(q) = 1. Set p := qN P. Then p contains f; whence, p contains
some prime factor p of f. Then p O Pp, and Pp is a nonzero prime. Hence p = Pp
since htp = 1 by (1). However, p contains g too. Therefore, p | g, contrary to the
hypothesis. Thus (2) holds. (Caution: if f := X; and g := X, then f and g have
no common factor, yet there are no ¢ and ¢ such that ¢of + ¢g = 1.) a
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EXERCISE (23.15). — Let R be a Noetherian ring. Show that R is reduced if and
only if (Ro) and (S1) hold.

SoLUTION: Assume (Rg) and (S1) hold. Consider an irredundant primary de-
composition (0) = (1 q;. Set p; := \/q;. Then p; is minimal by (S1), and p; = q; by
(Ro) and (18.22). So (0) = (p; = 1/(0). Thus R is reduced.

Conversely, assume R is reduced. Then R, is reduced for any prime p by (13.18).
So if p is minimal, then R, is a field. Thus (Ro) holds. But (0) =, ipimar P- S0
p is minimal whenever p € Ass(R) by (18.19). Thus R satisfies (Sy). O

EXERCISE (23.20). — Prove that a Noetherian domain R is normal if and only if,
given any prime p associated to a principal ideal, pR,, is principal.

SOLUTION: Assume R normal. Say p € Ass(R/(x)). Then pR, € Ass(R,/(z/1))
by (17.9). So depth(R,) = 1. But R, is normal by (11.31). Hence pR,, is principal
by (23.9).

Conversely, assume that, given any prime p associated to a principal ideal, pR,, is
principal. Given any prime p of height 1, take a nonzero x € p. Then p is minimal
containing (x). So p € Ass(R/(x)) by (17.17). So, by hypothesis, pR, is principal.
So R, is a DVR by (23.9). Thus R satisfies (R1).

Given any prime p with depth(R,) = 1, say pR, € Ass(R,/(x/s)) with & # 0.
Then (z/s) = (x/1) C R,. So p € Ass(R/(z)) by (17.9). So, by hypothesis, pR,
is principal. So dim(R;) = 1 by (23.9). Thus R also satisfies (S2). So R is normal
by Serre’s Criterion, (23.18). O

EXERCISE (23.21). — Let R be a Noetherian ring, K its total quotient ring, Set
®:={pprime | ht(p) =1} and 3 := {p prime | depth(R,) =1}.

Assuming (S;) holds in R, prove ® C X, and prove ® = X if and only if (S2) holds.
Further, without assuming (S;) holds, prove this canonical sequence is exact:

R— K = [[,ex Kp/Ry. (23.21.1)

SOLUTION: Assume (S;) holds. Then, given p € ®, there exists a nonzerodivisor
x € p. Clearly, p is minimal containing (z). So p € Ass(R/(z)) by (17.17). Hence
depth(R,) =1 by (23.5)(2). Thus ® C X.

However, as (S1) holds, (S2) holds if and only if ® D ¥. Thus ® = ¥ if and only
if R satisfies (S2).

Further, without assuming (S1), consider (23.21.1). Trivially, the composition
is zero. Conversely, take an @ € K that vanishes in [, . Ky/Rp. Say = a/b with
a,b € R and b a nonzerodivisor. Then a/1 € bRy, for all p € ¥. But b/1 € R, is,
clearly, a nonzerodivisor for any prime p. Hence, if p € Ass(Rp/bR;), then p € ¥
by (23.5)(2). Therefore, a € bR by (18.25). Thus x € R. Thus (23.21.1) is
exact. g

EXERCISE (23.22). — Let R be a Noetherian ring, and K its total quotient ring.
Set @ := {p prime | ht(p) = 1 }. Prove these three conditions are equivalent:

(1) R is normal.

(2) (Rl) and (SQ) hold.

(3) (R1) and (S1) hold, and R — K — [],cq Kp/ Ry is exact.
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SOLUTION: Assume (1). Then R is reduced by (14.17). So (23.15) yields (Ro)
and (S1). But R, is normal for any prime p by (14.16). Thus (2) holds by (23.9).

Assume (2). Then (R;) and (S;) hold trivially. Thus (23.21) yields (3).

Assume (3). Let z € K be integral over R. Then x/1 € K is integral over R,
for any prime p. Now, R, is a DVR for all p of height 1 as R satisfies (R1). Hence,
xz/1 € Ry for all p € ®. So z € R by the exactness of the sequence in (3). But R is
reduced by (23.15). Thus (14.17) yields (1). O

24. Dedekind Domains

EXERCISE (24.5). — Let R be a domain, S a multiplicative subset.

(1) Assume dim(R) = 1. Prove dim(S~!'R) = 1 if and only if there is a nonzero
prime p with pN S = 0.

(2) Assume dim(R) > 1. Prove dim(R) = 1 if and only if dim(R,) = 1 for every
nonzero prime p.

SoruTioN: Consider (1). Suppose dim(S7'R) = 1. Then there’s a chain of
primes 0 G p’ C S7IR. Set p:=p’ N R. Then p is as desired by (11.18)(2).
Conversely, suppose there’s a nonzero p with p NS = (. Then 0 % pST'Ris a
chain of primes by (11.18)(2); so dim(S~*R) > 1. Now, given a chain of primes
0=p S - Sp.CS'R, set p; :=p;NR. Then 0=po G --- S p, C R is a chain
of primes by (11.18)(2). So r <1 as dim(R) = 1. Thus dim(S~'R) = 1.
Consider (2). If dim(R) = 1, then (1) yields dim(R,) = 1 for every nonzero p.
Conversely, let 0 = pg & -+ G pr C R be a chain of primes. Set pj := p;Ry,.
Then 0 = py G --- G p). is a chain of primes by (11.18)(2). So if dim(Rp,) = 1, then
r < 1. Thus, if dim(R,) = 1 for every nonzero p, then dim(R) < 1, as desired. O

EXERCISE (24.6). Let R be a Dedekind domain, S a multiplicative subset.
Prove S7!R is a Dedekind domain if and only if there’s a nonzero prime p with

pNS=40.

SOLUTION: Suppose there’s a prime nonzero p with pN.S = 0. Then 0 ¢ S. So
S~!R is a domain by (11.4). And S~!'R is normal by (11.31). Further, S™'R
is Noetherian by (16.7). Also, dim(S™*R) = 1 by (24.5)(1). Thus S~!R is
Dedekind.

The converse results directly from (24.5)(1). O

EXERCISE (24.8). Let R be a Dedekind domain, and a, b, ¢ ideals. By first
reducing to the case that R is local, prove that

an(+c¢)=(anb)+ (anc),
a+(bNe)=(a+b)N(a+c).

SOLUTION: By (13.17), it suffices to establish the two equations after localizing
at each maximal ideal p. But localization commutes with sum and intersection by
(12.15)(4), (5). So the localized equations look like the original ones, but with a,
b, ¢ replaced by ap, by, ¢,. Thus we may replace R by Ry, and so assume R is a
DVR.

Referring to (23.1), take a uniformizing parameter ¢, and say a = (t*) and
b = () and ¢ = (t*). Then the two equations in questions are equivalent to these
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two:
max{i, min{j, k} } = min{max{i, j}, max{i, k}},
min{i, max{j, k}} = max{min{s, j}, min{i, k}}.
However, these two equations are easy to check for any integers ¢, j, k. O

EXERCISE (24.12). — Prove that a semilocal Dedekind domain A is a PID. Begin
by proving that each maximal ideal is principal.

SoLuTION: Let pi,...,p, be the maximal ideals of A. Let’s prove they are
principal, starting with p;. By Nakayama’s lemma (10.10), p1A,, # pid,,; so
p1 # p?. Takey € p1—p?. Theideals p?, pa, ..., p, are pairwise comaximal because

no two of them lie in the same maximal ideal. Hence, by the Chinese Remainder
Theorem, (1.13), there is an # € A with z = y mod p? and z = 1 mod p; for i > 2.
The Main Theorem of Classical Ideal Theory, (24.10), yields (z) = p7'p5?---pl'
with n; > 0. But « & p; for i > 2; so n; = 0 for i > 2. Further, z € p1 — p?; so
ny = 1. Thus p; = (z). Similarly, all the other p; are principal.
Finally, let a be any nonzero ideal. Then the Main Theorem, (24.10), yields

a=[[p" for some m;. Say p; = (x;). Then a = [[«]", as desired. O

EXERCISE (24.13). — Let R be a Dedekind domain, a and b two nonzero ideals.
Prove (1) every ideal in R/a is principal, and (2) b is generated by two elements.

SoLUTION: To prove (1), let py,...,p, be the associated primes of a, and set
S :=,(R—p;). Then S is multiplicative. Set R’ := S~'R. Then R’ is Dedekind
by (24.6). Let’s prove R’ is semilocal.

Let q be a maximal ideal of R’, and set p := qN R. Then q = pR’ by (11.18).
So p is nonzero, whence maximal since R has dimension 1. Suppose p is distinct
from all the p;. Then p and the p; are pairwise comaximal. So, by the Chinese
Remainder Theorem, (1.13), there is a u € R that is congruent to 0 modulo p
and to 1 modulo each p;. Hence, u € pN S, but ¢ = pR’, a contradiction. Thus
p1R,...,p,R are all the maximal ideals of R'.

So R’ is a PID by (24.12); so every ideal in R’/aR’ is principal. But by (12.18),
R'JaR' = S7Y(R/a). Finally, S7'(R/a) = R/a by (11.7) because every u € S
maps to a unit in R/a since the image lies in no maximal ideal of R/a. Thus (1)
holds.

Alternatively, we can prove (1) without using (24.12), as follows. The Main
Theorem of Classical Ideal Theory, (24.10), yields a = p7*---py* for distinct
maximal ideals p;. The p'* are pairwise comaximal. So, by the Chinese Remainder
Theorem, (1.13), there’s a canonical isomorphism:

R/a =5 R/pl* X -+ X R/p}*.
Next, let’s prove each R/p}" is a Principal Ideal Ring (PIR); that is, every

ideal is principal. Set S := R—p;. Then S~H(R/p}"*) = Ry, /p} Ry,, and the latter
ring is a PIR because Ry, is a DVR. However, R/p} = S~!1(R/p) by (11.7),

because every u € S maps to a unit in R/p]" since p/p;* is the only prime in

R/pi".

Finally, given finitely many PIRs Ri,..., Rk, we must prove their product is a
PIR. Consider an ideal b C Ry X --- x Ri. Then b = by X --- X by where b; C R; is
an ideal by (1.15). Say b; = (a;). Then b = ((a1,...,ax)). Thus again, (1) holds.

Consider (2). Let x € b be nonzero. By (1), there is a y € b whose residue
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generates b/(z). Then b = (z,y). O

25. Fractional Ideals

EXERCISE (25.2). — Let R be a domain, M and N nonzero fractional ideals.
Prove that M is principal if and only if there exists some isomorphism M ~ R.
Construct the following canonical surjection and canonical isomorphism:

T M®N-—»MN and ¢:(M:N)—=5 Hom(N,M).

SoLuTION: If M ~ R, let x correspond to 1; then M = Rx. Conversely, assume
M = Rx. Then z # 0 as M # 0. Form the map R — M with a — az. It’s
surjective as M = Rz. It’s injective as x # 0 and M C Frac(R).

Form the canonical M x N — M N with (z,y) — zy. It’s bilinear. So it induces
amap m: M ® N — MN, and clearly 7 is surjective.

Define ¢ as follows: given z € (M : N), define ¢(2): N — M by ¢(2)(y) := yz.
Clearly, ¢ is R-linear. Say y # 0. Then yz = 0 implies z = 0; thus, ¢ is injective.

Finally, given §: N — M, fix a nonzero n € N, and set z := 6(n)/n. Given
y € N, say y = a/b and n = ¢/d with a,b,c,d € R. Then bcy = adn. So
bef(y) = adf(n). Hence 0(y) = yz. Thus, ¢ is surjective, as desired. O

EXERCISE (25.6). — Let R be a domain, M and N fractional ideals. Prove that
the map m: M ® N — M N is an isomorphism if M is locally principal.

SOLUTION: By (13.20), it suffices to prove that, for each maximal ideal m, the
localization Ty : (M & N)ym — (M N )y is bijective. But (M ® N)yp = My ® Ny by
(12.13), and (M N)yw = Myw Ny by (25.4). By hypothesis, My, = Rnz for some
z. Clearly Rux ~ Ry. And Ry ® Ny = Ny, by (8.5)(2). Thus my ~ 1, . O

EXERCISE (25.11). — Let R be a UFD. Show that a fractional ideal M is invertible
if and only if M is principal and nonzero.

SOLUTION: By (25.7), a nonzero principal ideal is always invertible.

Conversely, assume M is invertible. Then trivially M # 0. Say 1 = Y m;n,; with
m; € M and n; € M~!. Fix a nonzero m € M.

Then m = Y m;n;m. But n;m € Rasm & M and n; € M1, Set

d:=ged{n;m} € R and z:=)> (n;m/d)m; € M.
Then m = dzx.
Given m' € M, write m’/m = a/b where a,b € R are relatively prime. Then
d' = gcd{n;m'} = ged{n;ma/b} = aged{n;m}/b = ad/b.
So m’ = (a/b)m = (ad/b)x = d'z. But d’ € R. Thus M = Rux. O

EXERCISE (25.14). Show that a ring is a PID if and only if it’s a Dedekind
domain and a UFD.

SoLuTION: A PID is Dedekind by (24.2), and is a UFD by (2.23).

Conversely, let R be a Dedekind UFD. Then every nonzero fractional ideal is
invertible by (25.3) and (25.13), so is principal by (25.11). Thus R is a PID.

Alternatively and more directly, every nonzero prime is of height 1 as dim R = 1,
so is principle by (21.12). But, by (24.10), every nonzero ideal is a product of
nonzero prime ideals. Thus again, R is a PID. |
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EXERCISE (25.16). — Let R be an ring, M an invertible module. Prove that M
is finitely generated, and that, if R is local, then M is free of rank 1.

SOLUTION: Say a: M ® N = R and 1 = a(d> . m; ® n;) with m; € M and
n; € N. Given m € M, set a; := a(m ® n;). Form this composition:

BM=MR--->MMIN=MOINIM - R M=DM.

Then S(m) =3 a;m;. But § is an isomorphism. Thus the m; generate M.
Suppose R is local. Then R — R* is an ideal. So u := a(m; ® n;) € R* for
some 4. Set m := u~im; and n := n;. Then a(m ® n) = 1. Define v: M — R
by v(m’) := a(m’ ® n). Then v(m) = 1; so v is surjective. Define p: R — M
by w(z) := zm. Then pv(m') = v(m’)m = B(m'), or uv = 3. But B is an
isomorphism. So v is injective. Thus v is an isomorphism, as desired. O

EXERCISE (25.17). — Show these conditions on an R-module M are equivalent:

(1) M is invertible.
(2) M is finitely generated, and My ~ Ry at each maximal ideal m.
(3) M is locally free of rank 1.

Assuming the conditions, show M is finitely presented and M ® Hom (M, R) = R.

SoLUTION: Assume (1). Then M is finitely generated by (25.16). Further, say
M ® N ~ R. Let m be a maximal ideal. Then My ® N ~ Rn. Hence My ~ R
again by (25.16). Thus (2) holds.

Conditions (2) and (3) are equivalent by (13.28).

Assume (3). Then (2) holds; so My ~ Ry at any maximal ideal m. Also, M is
finitely presented by (13.27); so Hompg(M, R)w = Homp,, (Mu, Rm) by (12.21).

Consider the evaluation map
ev(M,R): M ® Hom(M,R) — R defined by ev(M, R)(m, ) := a(m).

Clearly ev(M, R)m = ev(My, Ry). Clearly ev(Rm, Ry ) is bijective. Hence ev(M, R)
is bijective by (13.20). Thus the last assertions hold; in particular, (1) holds. O

26. Arbitrary Valuation Rings

EXERCISE (26.3). — Let V be a domain. Show that V is a valuation ring if and
only if, given any two ideals a and b, either a lies in b or b lies in a.

SOLUTION: First, suppose V' is a valuation ring. Suppose also a ¢ b; say = € a,
but ¢ b. Take y € b. Then z/y ¢ V; else x = (z/y)y € b. So y/x € V. Hence
y = (y/x)x € a. Thus b C a.

Conversely, let z,y € V — {0}, and suppose z/y ¢ V. Then (z) ¢ (y); else,
x = wy with w € V. Hence (y) C (z) by hypothesis. So y = zz for some z € V; in
other words, y/x € V. Thus V is a valuation ring,. d

EXERCISE (26.4). — Let V' be a valuation ring, m its maximal ideal, and p C m
another prime ideal. Prove that V, is a valuation ring, that its maximal ideal pVj,
is equal to p, and that V/p is a valuation ring of the field V; /p.
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SOLUTION: First, set K := Frac(V;). So K = Frac(V). Let x € K —V,. Then
1/x € V. C V,. Thus V, is a valuation ring.

Second, let r/s € pV, where r € p — {0} and s € V —p. Then s/r ¢ V, else
s = (s/r)r € p. Hence r/s € V. Now, (r/s)s =r € p, but s ¢ p; since p is prime,
r/s € p. Thus pV, = p.

Third, to prove V/p is a valuation ring of V,/pV,, we need only show that,
whenever z € V,—V, thenz~! € V. But, V is a valuation ring; hence, 271 € V. O

EXERCISE (26.5). — Prove that a valuation ring V' is normal.

SoLuTION: Set K := Frac(V), and let m be the maximal ideal. Take x € K
integral over V, say 2™ + a;2" "' +--- + a, = 0 with a; € V. Then

1+aaz ™+ +a,27" =0. (26.5.1)
If x ¢ V, then 27! € m by (26.2). So (26.5.1) yields 1 € m, a contradiction.
Hence x € V. Thus V is normal. O

EXERCISE (26.10). — Let K be a field, 8 the set of local subrings with fraction
field K, ordered by domination. Show its maximal elements are the valuation rings.

SOLUTION: Let V' be maximal in 8. By (26.9), V is dominated by a valuation
ring V’ of K. By maximality, V = V’.

Conversely, let V' be a valuation ring of K. Then V lies in § by (26.2). Let
V' € 8 dominate V. Let m and m’ be the maximal ideals of V and V’. Take any
nonzero x € V'. Then 1/x ¢ m’ as 1 ¢ m'; so also 1/z ¢ m. So z € V by (26.2).
Hence, V! = V. Thus V is maximal in 8. O

EXERCISE (26.15). — Let V be a valuation ring, such as a DVR, whose value
group I' is Archimedean; that is, given any nonzero «, 8 € I, there’s n € Z such
that na > 8. Show that V' is a maximal proper subring of its fraction field K.

SOLUTION: Let R be a subring of K strictly containing V', and fix a € R — V.
Given b € K, let o and 8 be the values of @ and b. Then o < 0. So, as I is
Archimedean, there’s n > 0 such that —na > —f. Then v(b/a™) > 0. So b/a™ € V.
So b= (b/a™)a™ € R. Thus R =K. O

EXERCISE (26.16). — Let V be a valuation ring. Show that
(1) every finitely generated ideal a is principal, and
(2) V is Noetherian if and only if V' is a DVR.

SOLUTION: To prove (1), say a = (z1,...,2,) with z; # 0 for all i. Let v be the
valuation. Suppose v(z1) < v(z;) for all . Then z;/zq € V for all i. So x; € (x1).
Hence a = (z1). Thus (1) holds.

To prove (2), first assume V' is Noetherian. Then V is local by (26.2), and by (1)
its maximal ideal m is principal. Hence V is a DVR by (23.9). Conversely, assume
V is a DVR. Then V is a PID by (23.1), so Noetherian. Thus (2) holds. O
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algebra finite: (4.5), 16
algebra map: (1.1), 1
coproduct: (8.19), 42
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additive: (8.17), 41
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counit: (6.5), 28
unit: (6.5), 28
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cofinal: (7.13), 35
constant: (6.6), 29
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direct system: (6.6), 29
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forgetful: (6.2), 26
isomorphic: (6.2), 27
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linear: (8.4), 38; (9.2), 43
natural bijection: (6.4), 27
natural transformation: (6.2), 27
right adjoint: (6.4), 27

right exact: (9.2), 43

ideal: (1.4), 2
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chain stabilizes: (16.3), 82
comaximal: (1.13), 5
contraction: (1.4), 3
extension: (1.4), 3
fractional: (25.1), 131
integral: (25.1), 131
invertible: (25.7), 132
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principal: (25.1), 131
product: (25.1), 131
quotient: (25.1), 131
generated: (1.4), 2
height: (21.6), 111
idempotent: (1.16), 5
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lie over: (14.2), 71
maximal: (2.13), 7
nested: (1.8), 4
nilradical: (3.18), 12
parameter: (21.2), 109
prime: (2.1), 6
principal: (1.4), 2
product: (1.4), 3
proper: (1.4), 3
radical: (3.18), 12
saturated: (11.13), 57
saturation: (11.13), 57
sum: (1.4), 3
symbolic power: (18.26), 95
variety: (13.1), 66
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Artin-Rees: (20.18), 105

E. Artin: (24.14), 129

Equational Criterion for Flatness: (9.19),
47

Equational Criterion for Vanishing: (8.18),
41

Five: (5.14), 22

Ideal Criterion for Flatness: (9.20), 47;
(22.20), 120

Nakayama: (10.10), 50; (22.24), 120

Nine: (5.15), 22

Noether Normalization: (15.1), 75

Nonunit Criterion: (3.4), 10

Prime Avoidance: (3.15), 12; (21.4), 111;
(23.5), 123

Schanuel: (5.23), 24

Snake: (5.12), 21

Zorn’s: (2.28), 9; (3.9), 11; (16.9), 83;

Index

(17.8), 88; (26.9), 137

map

automorphism: (1.1), 1

bilinear: (8.1), 37

bimodule homomorphism: (8.7), 38
endomorphism: (1.1), 1; (4.4), 15
homogeneous: (20.21), 107
homomorphism: (1.1), 1; (4.2), 14
isomorphism: (1.1), 1; (4.2), 14
lift: (5.20), 23

Noether Isomorphisms: (4.8), 16
quotient map: (4.6), 16

retraction: (5.8), 21

section: (5.8), 21

trilinear: (8.9), 38

matrix of cofactors: (10.2), 49
module: (4.1), 14

a-dic topology: (22.1), 115

ascending chain condition (acc): (16.12), 84

annihilator: (4.1), 14

Artinian: (16.22), 86

associated graded: (20.11), 103

associated prime: (17.1), 87

bimodule: (8.7), 38

bimodule homomorphism: (8.7), 38

chain stabilizes: (16.12), 84; (16.22), 86

characteristic polynomial: (10.1), 49

closed: (4.1), 14

Cohen-Macaulay: (23.4), 123

coimage: (4.9), 17

cokernel: (4.9), 17

complete: (22.1), 116

composition series: (19.1), 97

cyclic: (4.7), 16

depth: (23.4), 123

descending chain condition (dcc): (16.22),
86

dimension: (21.1), 109

direct product: (4.13), 18

direct sum: (4.10), 18; (4.13), 18

discrete: (22.1), 115

embedded prime: (17.1), 87

endomorphism: (4.4), 15

extension of scalars: (8.7), 38

faithful: (4.4), 15; (10.18), 52; (12.22), 65

filtration: (20.11), 103
Hilbert—Samuel Function: (20.11), 103
Hilbert—Samuel Polynomial: (20.11), 103
Hilbert—Samuel Series: (20.11), 103
g-adic: (20.11), 103
g-filtration: (20.11), 103
stable g-filtration: (20.11), 103
topology: (22.1), 115

finitely generated: (4.10), 17

finitely presented: (5.18), 23

flat: (9.4), 44

free: (4.10), 17

Index

free basis: (4.10), 17
free of rank ¢: (4.10), 17
generated: (4.10), 17
graded: (20.1), 101
homogeneous component: (20.1), 101
Hilbert Function: (20.3), 102
Hilbert Polynomial: (20.3), 102
Hilbert Series: (20.3), 102
shifting (20.1), 101
homogeneous component: (20.21), 107
homomorphism: (4.2), 14
image: (4.2), 14
inverse limit: (22.6), 116
invertible: (25.15), 133
isomorphism: (4.2), 14
kernel: (4.2), 14
length: (19.1), 97
localization: (12.2), 61
localization at f: (12.2), 61
localizaton at p: (12.2), 61
locally finitely generated: (13.25), 69
locally finitely presented: (13.25), 69
locally free: (13.25), 69
maximal condition (maxc): (16.12), 84
minimal condition (minc): (16.22), 86
minimal generating set: (10.13), 51
minimal prime: (17.1), 87
modulo: (4.6), 16
M-sequence: (23.4), 123
Noetherian: (16.12), 84
presentation: (5.18), 23
projective (5.20), 23
quotient: (4.6), 16
quotient map: (4.6), 16
R-linear map: (4.2), 14
radical: (21.2), 109
regular sequence: (23.4), 123
residue: (4.6), 16
restriction of scalars
left adjoint: (8.10), 39
restriction of scalars: (4.5), 15
restriction of scalars: (8.10), 39
saturated: (12.14), 63
saturation: (12.14), 63
scalar multiplication: (4.1), 14
semilocal: (21.2), 109
separated: (22.1), 115
separated completion: (22.1), 116
simple: (19.1), 97
standard basis: (4.10), 17
submodule: (4.1), 14
homogeneous: (20.6), 102
irredundant primary decomposition:
(18.13), 92
minimal primary decomposition: (18.13),
92
p-primary: (18.1), 91
primary: (18.1), 91
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primary decomposition: (18.13), 92
sum: (4.8), 17
support: (13.8), 67
system of parameters (sop): (21.2), 110
tensor product, see also
torsion free: (9.22), 48

notation

atb: (1.4), 3

M =N: (4.2), 14
R=R: (1.1),1

anb: (1.4), 3

p(™: (18.26), 95
[IMy: (4.13), 18
R~ R': (1.1),1

ab: (1.4), 3

M~ N: (4.2), 14
((R-alg)): (6.1), 26
((R-mod)): (6.1), 26
((Rings)): (6.1), 26; (13.1), 66
((Sets)): (6.1), 26
((Top spaces)): (18.1), 66
aR': (1.4), 3
agp®da': (8.4), 38
aN: (4.1), 14
Ann(M): (4.1), 14
Ann(m): (4.1), 14

a¥: (11.13), 57
Ass(M): (17.1), 87
Bilg (M, M’; N): (8.1), 37
b/a: (1.8), 4
Coim(a): (4.9), 17
Coker(a): (4.9), 17
C: (2.3), 6

LI My: (6.7), 29
D(f): (13.1), 66

Sur: (4.10), 18
depth(a, M): (23.4), 123
depth(M): (23.4), 123
dim(M): (21.1), 109
dim(R): (15.9), 78
lim My: (6.6), 29
d(M): (21.2), 110

eyt (4.10), 18
Endgr(M): (4.4), 15
F(R): (25.21), 135
Fo: (1.1), 1

F,: (15.2), 76
Frac(R): (2.3), 6
Ta(M): (18.21), 94
G(M): (20.11), 103
Gq(M): (20.11), 103
Gq(R): (20.11), 103
R(M, n): (20.3), 102
H(M, t): (20.3), 102
Hom(M, N): (4.2), 14
Im(a): (4.2), 14

lim My: (22.6), 116
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te: (4.13), 18

Ker(a): (4.2), 14
(at,...,an): (1.4), 2
o(M): (19.1), 97
S—1R: (11.1), 55; (11.22), 58
L+ M: (4.8), 17
M(m): (20.1), 101

(M : N): (25.1), 131
M: (22.1), 116

M~1: (25.8), 132

My: (12.2), 61

My: (12.2), 61

M/N: (4.6), 16

MN: (25.1), 131

M & N: (4.13), 18

M @g N: (8.2), 37
m@mn: (8.2), 37

ur: (4.4), 15

pnz: (4.4), 15

nil(M): (18.10), 67
nil(R): (3.18), 12

14: (6.1), 26

1a: (4.2), 15
p(Me,n): (20.11), 103
P(Ma.,t): (20.11), 103
P(R): (25.21), 135
(ax): (4.18), 18

(my): (4.13), 18

(zx): (4.10), 17

ep: (11.19), 58; (12.2), 61
of: (11.10), 56; (12.2), 61
ps: (11.1), 55; (12.2), 61
T (4.13), 18

Pic(R): (25.21), 134
pq(M,n): (20.11), 103
Po(M,1): (20.11), 103
Q: (2.3), 6

R/a: (1.5), 3

RX: (1.1), 1

R x R": (1.11), 5
R[[X1,...,Xa]]: (3.7), 10
R[X1,...,Xn]: (1.3),2
rad(R): (3.1), 10
rad(M): (21.2), 109
R: (2.3), 6

Ry: (11.10), 56

Ry: (11.19), 58

R': (4.10), 17

R®A: (4.10), 17
R(M,): (20.16), 105
(Rn): (28.14), 125
Ry: (20.6), 102

R(q): (20.16), 105
Rlz1,...,zn]: (4.5), 16
NS: (12.14), 63

S: (3.14), 12

s(M): (21.2), 110
S—T: (1.1),2

Index

(Sn): (28.14), 125
Spec(R): (13.1), 66
Va: (3.18), 12

@ My: (4.13), 18

> Br: (4.18), 19
Say: (1.4), 2
Supp(M): (13.8), 67
B: M —» N (5.20), 23
A (1.1), 2

t: (24.15), 129

tr. deg: (15.8), 77
V(a): (13.1), 66

vp: (24.10), 128

z/s: (11.1), 55; (11.22), 58
Z: (1.1), 1

z.div(M): (17.13), 88
z.div(R): (2.1), 6

ring: (1.1), 1

absolutely flat: (10.8), 50

algebra, see also

Artinian: (16.22), 86; (16.26), 86; (19.8),
99; (19.11), 99; (19.13), 100

ascending chain condition (acc): (16.3), 82

associated graded: (20.11), 103

Boolean: (1.2), 2; (2.18), 8; (3.23), 13;
(13.6), 67

catenary: (15.14), 78

coefficient field: (22.30), 121

Dedekind domain: (24.1), 127

dimension: (15.9), 78

Discrete Valuation Ring (DVR): (23.1), 122

domain: (2.3), 6

dominates: (26.8), 137

extension: (14.1), 71

factor ring: (1.5), 3

field, see also

formal power series ring: (3.7), 10

graded: (20.1), 101

homomorphism: (1.1), 1

Ideal Class Group: (25.21), 135

integral closure: (10.25), 53

integrally closed: (10.25), 53

Jacobson: (15.19), 80

Jacobson radical: (8.1), 10

kernel: (1.5), 3

Laurent series ring: (3.8), 11

local: (3.3), 10

local homomorphism: (9.11), 44

localization: (11.1), 55

localization at f: (11.10), 56

localizaton at p: (11.19), 58

map: (1.1), 1

maximal condition (maxc): (16.3), 82

modulo: (1.5), 3

Noetherian: (16.1), 82

nonzerodivisor: (2.1), 6

normal: (10.25), 53; (10.28), 53; (11.31),

Index
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