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ABSTRACT

An analytic procedure for inverting ab initio cohesive energy vs. volume curves to obtain
a parameter-free interatomic potential is presented. The procedure determines the radial
functions in a cluster potential, assuming an angular dependence. The method is a nonlinear
generalization of the ab initio pair potential formula of Carlsson, Gelatt and Ehrenreich
to higher orders of cluster expansion [1]. We demonstrate our method by deriving an ab
initio cluster potential for silicon with the Stillinger-Weber angular dependence [2]. A novel
property of the potential is that bond-bending forces are not monotonic in the bond length, as
is the case with most empirical potentials, but rather are peaked at the first neighbor distance.
The validity of the inverted potential is discussed along with its use in the development of
new interatomic potentials.

INTRODUCTION

Classical interatomic potentials could play a crucial role in the study of complex materials
phenomena through large-scale molecular dynamics simulations because they allow a much
faster evaluation of energies and forces, compared to quantum mechanical methods. What
is limiting the applicability of classical potentials is that typically, efficiency is attained at
the cost of accuracy. For semiconductors like silicon, the prototypical covalent material for
developing new potentials, the situation is particularly demanding because pair potentials,
which work well for metals and ionic solids, are simply not adequate [3]. Theories that discuss
the basic form of a cluster expansion for an empirical potential [3, 4] provide little guidance
on the specific form of the potential: The form is usually an educated guess, motivated by
physical intuition and containing a number of adjustable fitting parameters [5].

In this paper, we present a method for obtaining parameter-free classical potentials directly
from first principles quantum mechanical energy calculations. A truncated cluster expansion
for the cohesive energy of a crystal implies a functional relationship between the energy and
various factors in the expansion. Inversion of this relationship leads to determination of the
radial functions in the cluster expansion. For three-body and higher order terms, angular
dependences must be assumed. Our method represents a generalization of the “ab initio pair
potential” of Carlsson, Gelatt, and Ehrenreich (CGE in the following), originally applied to
metals [1]. The inversion procedure provides theoretical insight to guide the development of
new empirical potentials and may produce useful interatomic potentials for semiconductors
without the arduous and uncontrolled process of fitting adjustable parameters.

THEORY

We begin with a brief description of the inversion method. Consider an isotropic crystal
structure defined by a set of atomic positions {R;} about a central atom located at the
origin. Let r be the nearest neighbor distance, and group the atoms into shells of radius



s,r containing n, atoms each. Number the shells so that s; < s3 < s3 < .... By construc-
tion s; = 1. Isotropic expansion and contraction of the crystal is described by varying r
while keeping {s,} and {n,} constant. Assume first that the cohesive energy is completely
described by a pair potential interaction,

E[g](r) =Y  6(R:) =Y _ n,06(s,r). (1)
7 p=1
Then separate the first shell term from the sum in Eq.(1), and solve for ¢(r),
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Now view Eq.(3) as a recursion: by recursive substitution for ¢(r), we obtain
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which is identical to the expression obtained by CGE. The original derivation of the inversion
formula by CGE relies on the linearity of E[¢], and thus cannot be generalized to higher
orders of cluster expansion, in which products of radial functions appear [1]. All that is
required for our derivation, however, is the ability to solve for ¢(r) in terms of ¢(s,r) for
p > 2, which permits a straightforward generalization to higher order terms.

Our approach reveals the mathematical structure of the CGE formula in a simple manner:
the pair potential at r is chosen so that the first neighbor contribution to the cohesive
energy, n1¢(r), provides exactly the energy left over from interactions with higher shells. A
simple consequence of this observation is that, if ¢(r’) is known for all ' > r, then Eq.(3)
uniquely determines ¢(r). This suggests an analytic procedure that does not involve an
explicit formula like Eq.(4). Suppose that the potential has a cutoff distance a such that
é(r) = 0 for r > a. The pair potential can then be generated by solving for ¢(r) using
Eq.(3) in order of decreasing r starting at the cutoff. The sums in the CGE formula are
implicitly contained in the procedure. In addition to providing a simpler way to compute
the potential, our procedure is crucial for nonlinear energy functionals in which it would be
cumbersome even to write down the explicit formulae.

Now let us generalize of the procedure to the next order in the cluster expansion. Define
the many-body component of the cohesive energy by subtracting off the pair contribution,

Fo(r) = Eolr) - if:lnpqs(spr), (5)

where (' denotes the crystal structure. In the following derivation we must assume that
Fe(r) is known, i.e. that ¢(r) can be determined, either directly or by inversion of F¢,(r)
for some Cy # C. The latter case is possible only if the angular dependence in Cy makes
the many-body terms vanish (as for example, in the diamond lattice for silicon empirical
potentials [5]).

Although more complicated cluster potentials and cluster functionals can be accommo-
dated, we will only consider separable three-body potentials of the form [2, 6],

Flg, b)(r) = >3 g(Ri)g(R;)h(0s;), (6)
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where cos 0;; = R - fx)j. Assuming that we are given the angular dependence h(#), then we
can invert Flg] to obtain the radial function ¢(r) as follows: With A, denoting the set of

atoms in shell p, define,
= > hiby), (7)
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where in the second sum, if p = ¢, then only 57 > ¢ should be considered to avoid double
counting a triplet of atoms. With these definitions, the many-body contribution to the
cohesive energy becomes,
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Separate the terms involving only ¢(r),
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where 3(r) and ~(r) denote the corresponding terms in square brackets, giving

F(r) = ang(r
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g(r) = (10)
We have chosen the positive root in the quadratic formula, because the many-body energy
should be positive [3]. As before, the idea is to view Eq.(10) as a recursion, since g(r’)
appears in the expressions 3(r) and v(r). An explicit formula could be obtained by recursive
substitution, but it involves a complicated set of nested square roots. As in the pair potential
case, it is much simpler to use the recursion directly in place of an explicit formula. The
right hand side of Eq.(10) depends only on ' for ' > r, so we can solve for g(r) in order of
decreasing radius starting at the cutoff distance.

APPLICATION TO SILICON

To illustrate the inversion procedure, we have performed density functional calculations
in the local density approximation (LDA) to obtain the cohesive energy vs. volume curves
for silicon in the cubic diamond and fS-tin structures. We use a plane wave basis with a 12
Ry cutoff and 512 points in the full Brillouin zone for reciprocal space integrations. The
LDA data is shifted, by choosing the appropriate energy for an isolated atom, so that the
equilibrium binding energy for the diamond structure is equal to the experimental value of
-4.63 eV [5].

In order to invert the energy curves, an interpolant must be constructed so that the
energy can be sampled at arbitrary volume (or, equivalently, at any first neighbor distance).
Following CGE, we use rational interpolation in the region of calculated cohesive energy
values and an exponential tail, a exp(—br — cr?), for larger distances. The coefficients a, b
and ¢ are chosen so that the interpolant is continuous with two continuous derivatives. Curve
(i) of Fig. 1(a) shows the LDA data points for the diamond lattice with the interpolant.

For reasons discussed below, it is also instructive to consider a shorter cutoff for the
potential, which, of course, implies the same cutoff for the energy. As an example, we choose

the Stillinger-Weber (SW) cutoff distance a = 3.77118A. Smooth cutoff of the energy at



r = a is accomplished by multiplying the interpolated curve by the following function,

1 if 2 <0
f(r) =1 exp(o)exp (1,2"—_1) ifo<z<l1 , (11)
0 ifz>1

where © = (r — (a — 6))/6. This choice of cutoff function is continuous with all derivatives
continuous, except at * = 0 where only one derivative is continuous. It also has exactly
the asymptotic behavior of the SW pair potential at the cutoff distance with the choice
o = 205w /6 = 3.49183A [2]. The smoothing range § = 1.2A is chosen to allow for flexibility
in cutting off the original curve while maintaining the exact energy values near the minimum
in order to preserve important equilibrium properties (e. ¢. binding energy, lattice constant,
and bulk modulus). The inversion procedure is implemented by starting at the cutoff, and
solving for @(r) at equally spaced mesh points (67 = 0.011A) using piecewise quadratic
interpolation to evaluate ¢(r’) for ' > r.

The pair potential is shown in Fig. 1(b) for energy curves (i) and (ii). The potential
obtained from the energy curve before the cutoff is applied (i), the CGE potential, has long
range. The equilibrium volume is set by a balance between a repulsive force among first
neighbors and an attractive force among second and third neighbors. The situation is quite
different, however, after the cutoff is applied (ii): In that case the potential is short-ranged
with the equilibrium volume set by a zero force interaction with only the first neighbors.

The LDA data for #-tin is interpolated and is cutoff in a similar way as diamond. The
many-body energy F(r) is computed using the inverted pair potential (ii). To ensure
that F'(r) > 0 in the smoothing range, a larger value of o, 4.15, is required. As an
important example, we assume the widely-used Stillinger-Weber angular dependence [2],

h(0) = (cos(@) + 1)2, which vanishes at the tetrahedral angle, so that F'(r) = 0 for the

3
diamond lattice (the Cy lattice introduced earlier). In order to get reasonably fast decay

of g(r) at the cutoff, F(r) is multiplied by the same cutoff function as F(r). This only
affects energies in the original smoothing range and gives g(r) exactly the same asymptotic
dependence as the SW radial function with the choice o = 4ysw /6 = 8.3804.

The inverted radial function ¢(r) for the S-tin lattice is shown Fig. 1(c). Notice that r,.,,
the minimum radius for validity of the inversion, is around 2.2 A, where second neighbor
contributions in the diamond lattice become important. The inverted curve starts out very
close to SW near the cutoff radius; it peaks around the nearest neighbor distances (both
shells 1 and 2 contribute to the coordination, nqy +ny = 2 + 4 = 6) and becomes smaller
at decreasing radii. This behavior is in contrast to most empirical potentials which have
monotonic radial functions like SW. We have observed similar behavior by inverting energies
for other lattices as well as different angular dependences. Thus, we have theoretical evidence
that the many-body radial function should be peaked at roughly the first neighbor distance,
i.e. the strength of bond-bending forces is largest at the equilibrium distance and decreases
when bonds are either stretched or compressed.

DISCUSSION AND CONCLUSION

Although the inversion procedure is exact, it does not necessarily produce a realistic
potential. The reason is that it requires the cluster expansion to be valid over the entire
range of atomic volumes from solid to gas, producing a potential of artificially long range,
which can be understood as follows: Because the solution begins at the cutoff and proceeds
to smaller distances, the tail of the inverted potential comes from the energy of a greatly



expanded crystal whose first neighbors are near the cutoff. This tail is then used to describe
interactions with higher shells in determining the potential at the nearest neighbor distance
in the equilibrium solid. The problem is that long-range interactions in a solid are screened
compared to isolated atoms at the same separation.

For semiconductors like Si, which require higher orders of cluster expansion, the problem
is even more serious. The angular dependence of cluster potentials is intended to describe
bond-bending forces, primarily for sp® hybrid orbitals, in condensed phases However, when
the crystal is expanded so that the atoms are well isolated, covalent bonding between hybrids
is presumably replaced by a more spherically symmetric, metallic type interaction. Thus, we
would not expect the inversion procedure with a long range to produce a reasonable three-
body radial function ¢(r). From these considerations, the introduction of a cutoff function
in the manner described above is motivated by physical requirements.

We propose that this procedure of determining the effective interatomic potential is closer
to first-principles than other approaches that rely on arbitrarily chosen functional forms
with many adjustable parameters. Moreover, the procedure can be generalized to handle
anisotropic structures (for ¢(r) at least) as well as other classes of cluster potentials and
cluster functionals. By comparing the inverted pair potentials ¢(r) for multiple crystals,
information on the environmental dependence of bond strengths can be extracted. A com-
parison of radial functions ¢(r) for multiple crystals is equally interesting. The degree of
similarity of the inverted radial functions for a particular choice of h(f) is a parameter-free
quantitative measure of how well the angular dependence can describe the energetics of
volume expansions in different bulk phases.

In conclusion, we have described a procedure for inverting ab initio cohesive energy vs.
volume curves to obtain the radial functions of a cluster potential that exactly reproduces
the curves with a given angular function. The procedure generalizes a recursive proof of the
CGE pair potential formula. We have inverted LDA curves for diamond and f-tin silicon
resulting in an ab initio cluster potential with the SW angular dependence, and have briefly
discussed strengths and weaknesses of the procedure.
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Figure 1: An ab initio cluster potential for silicon: (a) the diamond LDA energy data vs.
first neighbor distance (<), the interpolant without (i) and with (ii) the SW cutoff; (b) the
inverted pair potentials that exactly reproduce (i) and (ii), the SW pair potential, numbers
p = 1 — 4 marking equilibrium diamond shell radii; (¢) the inverted radial function the
reproduces the -tin LDA data with the SW cutoff (not shown) assuming the SW angular
factor, the SW radial function; numbers marking equilibrium g-tin shell radii.



