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The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like
ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the
thermal voltage (kT/e≈25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or
induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several
V≈100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields
and induced surface charges are large enough to violate the assumptions of the classical theory. In this
article, we review the experimental and theoretical literatures, highlight discrepancies between theory and
experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that,
in response to a large applied voltage, the “compact layer” and “shear plane” effectively advance into the
liquid, due to the crowding of counterions. Using simple continuummodels, we predict two general trends at
large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus
decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces
the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict
high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with
increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere
in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific.
Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of
solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-
sized ions.
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1. Introduction

1.1. Nonlinear “induced-charge” electrokinetic phenomena

Due to favorable scaling with miniaturization, electrokinetic
phenomena are finding many new applications in microfluidics [1–3],
but often innew situations that raise fundamental theoretical questions.
The classical theory of electrokinetics, dating back to Helmholtz and
Smoluchowski a century ago [4], was developed for the effective linear
hydrodynamic slip driven by an electric field past a surface in chemical
equilibriumwith the solution,whose double-layer voltage is of order the
thermal voltage, kT/e=25mV, and approximately constant [5–10]. The
discovery of AC electro-osmotic flow (ACEO) over micro-electrodes
[11–13] has shifted attention to a new nonlinear regime [14], where the
induced double-layer voltage is typically several V≈100 kT/e, oscillating
at frequencies up to 100 kHz, and nonuniform at the micron scale.
Related phenomena of induced-charge electro-osmosis (ICEO) [15–17]
also occur around polarizable particles [18,19] and microstructures
[20,21] (in AC or DCfields), aswell as driven biologicalmembranes [22].
Due to broken symmetries in ICEO flow, asymmetric colloidal particles
undergo nonlinear, induced-charge electrophoresis (ICEP) [15,23–25].
Some of these fundamental nonlinear electrokinetic phenomena are
illustrated in Fig. 1.

A “standard model” (outlined below) has emerged to describe a
wide variety of induced-charge electrokinetic phenomena, but some
crucial aspects remain unexplained. In their pioneering work 25 years
ago in the USSR, which went unnoticed in the West until recently
[15,16], V. A. Murtsovkin, A. S. Dukhin and collaborators first predicted

Fig. 1. Examples of nonlinear electrokinetic phenomena, driven by induced charge (+,−)
in the diffuse part of the electrochemical double layer at polarizable, blocking surfaces,
subject to an applied electric field E or voltage V. (a) Induced-charge electro-osmosis
(ICEO) around a metal post [15,16,18,20], (b) induced-charge electrophoresis (ICEP) of a
metal/insulator Janus particle [23,25], (c) a nonlinear electrokinetic jet of ICEO flow at a
sharp corner in a dielectric microchannel [26,27], and (d) AC electro-osmosis (ACEO) over
a pair of microelectrodes [11,12].
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Author's personal copy

quadrupolar flow (which we call “ICEO”) around a polarizable sphere
in a uniform electric field [28] and observed the phenomenon using
mercury drops [29] and metal particles [30], although the flow was
sometimes in the opposite direction to the theory, as discussed below.
(See Ref. [18] for a review.) More recently, in microfluidics, Ramos
et al. observed and modeled ACEO flows over a pair of micro-
electrodes, and the theory over-predicted the observed velocity by an
order of magnitude [11,31–33]. Around the same time, Ajdari used a
similar model to predict ACEO pumping by asymmetric electrode
arrays [12], which was demonstrated using planar electrodes of un-
equal widths and gaps [34–39], but the model cannot predict experi-
mentally observed flow reversal at high frequency and loss of flow at
high salt concentration [38,40,41], even if extended to large voltages
[42,43]. The same model has also been used to predict faster three-
dimensional ACEO pump geometries [44], prior to experimental
verification [40,45–48], but again the data depart from the theory at
large voltages. Discrepancies between theory and experiments,
including flow reversal, also arise in traveling-wave electro-osmosis
(TWEO) for electrode arrays applying a wave-like four-phase voltage
pulse [49–52]. Recent observations of ICEO flow around metal
microstructures [20,21], ICEP rotation of metal rods [53], ICEP
translation of metallo-dielectric particles [25] have likewise con-
firmed qualitative theoretical predictions [15,16,23,54,55], while
exhibiting the same poorly understood decay of the velocity at high
salt concentration. We conclude that there are fundamental gaps in
our understanding of induced-charge electrokinetic phenomena.

In this article, we review recent experimental and theoretical work
in this growing area of nonlinear electrokinetics, as well as some
possibly relevant literatures from other fields, and we consider a
number of possible modifications of classical electrokinetic theory.
Some of these ideas are new, while others were proposed long ago by
O. Stern, J. J. Bikerman, J. Lyklema, and others, and effectively
forgotten. We build the case that at least some failures of the standard
model can be attributed to the breakdown of the dilute solution
approximation at large induced voltages. Using simple models, we
predict two general effects associated with counterion crowding —

decay of the double-layer capacitance and reduction of the electro-
osmotic mobility—which begin to explain the experimental data. Our
models, although incomplete, also imply generic new ion-specific
nonlinear electrokinetic phenomena at large voltages related to
atomic-level details of polarizable solid/electrolyte interfaces.

1.2. Scope and context of the article

We first presented these ideas in a paper at the ELKIN International
Electrokinetics Symposium in Nancy, France in June 2006 [56] and in a
letter, which was archived online in March 2007 [57] and recently
published [58]. The present article is a review article with original
material, built around the letter, where its basic arguments are further
developed as follows:

1. We begin with a critical review of recent studies of induce-charge
electrokinetic phenomena in Section 2. By compiling results from
the literature and performing our own simulations of other experi-
ments, we systematically compare theory and experiment across a
wide range of nonlinear electrokinetic phenomena. To motivate
modified electrokinetic models, we also review various concen-
trated-solution theories from electrochemistry and electrokinetics
in Sections 3 and 4.

2. In our original letter, the theoretical predictions of steric effects of
finite ion sizes in electrokinetics were based on what we call
“Bikerman's model” below [59,60], a simple lattice-gas approach
that allows analytical results. Here, we develop a general, mean-
field local-density theory of volume constraints and illustrate it
with hard-sphere liquid models [61,62]. In addition to the charge-
induced thickening effect from the original letter, we also consider

the field-induced viscoelectric effect in the solvent proposed by
Lyklema and Overbeek [63,64], in conjunction with our models for
steric effects. We also consider dielectric relaxation of the solution
in large electric fields, which tends to enhance these effects.

3. We provide additional examples of new electrokinetic phenomena
predicted by our models at large voltages. In the letter [57], we
predicted high-frequency flow reversal in ACEO (Fig. 10 below)
and decay of ICEO flow at high concentration (Fig. 17). Here, we
also predict two mechanisms for ion-specific, field-dependent
mobility of polarizable colloids at large voltages. The first has to do
with crowding effects on the redistribution of double-layer charge
due to nonlinear capacitance, as noted by A. S. Dukhin [65,66]
(Fig. 12). The second results from a novel ion-specific viscosity
increase at high charge density (Fig. 20).

4. We present a general theoretical framework of modified electro-
kinetic equations and boundary conditions for concentrated
solutions and/or large voltages in Section 5, which could find
many other applications in nonlinear electrochemical relaxation or
electrokinetics.

In spite of these major changes, the goal of the paper remains the
same: to provide an overview of various physical aspects of
electrokinetic phenomena, not captured by classical theories, which
become important at large induced voltages. Here, we focus on
general concepts, mathematical models, and simple analytical
predictions. Detailed studies of some particular phenomena will
appear elsewhere, e.g. Ref. [67] on high-frequency flow reversal in AC
electro-osmosis.

There have been a few other attempts to go beyond dilute-solution
theory in electrokinetics, but in the rather different context of linear
“fixed-charge” flows in nanochannels at low surface potentials. The
first electrokinetic theories of this type may be those of Cervera et al.
[68,69], who used Bikerman's modified Poisson–Boltzmann (MPB)
theory to account for the crowding of finite-sized ions during
transport by conduction and electro-osmosis through a membrane
nanopore. Independently, J. J. Horno et al. [70–73] also used
Bikerman's model (albeit, attributed to others [74–76] — see below)
to analyze linear electrophoresis of colloids in a concentrated
electrolyte. Recently, Liu et al. [77] numerically implemented a more
complicated MPB theory [78–80] to predict effects of finite ion sizes,
electrostatic correlations, and dielectric image forces on electro-
osmotic flow and streaming potential in a nanochannel. In these
studies of linear electrokinetic phenomena, effects beyond the dilute-
solution approximation can arise due to nano-confinement, but, as we
first noted in Ref. [60], much stronger and possibly different crowding
effects also arise due to large induced voltages, regardless of
confinement or bulk salt concentration. Our goal here is to make a
crude first attempt to understand the implications of ion crowding for
nonlinear electrokinetic phenomena, using simple mean-field
approximations that permit analytical solutions in the thin double-
layer limit.

Similar models for double-layer charging dynamics are also
starting to be developed for ionic liquids and molten salts [81–84],
since describing ion crowding is paramount in the absence of a
solvent. Kornyshev recently suggested using what we call the
“Bikerman-Freise” (BF) mean-field theory below to describe the
differential capacitance of the double layer, with the bulk volume
fraction of ions appearing as a fitting parameter to allow for a slightly
different density of ions [81]. (An equivalent lattice-gas model was
also developed long ago for the double layer in an ionic crystal by
Grimley andMott [85–87], and a complete history of relatedmodels is
given below in Section 3.1.2.) The BF capacitance formula, extended to
allow for a thin dielectric Stern layer, has managed to fit recent
experiments and simulations of simple ionic liquids rather well,
especially at large voltages [82,83,88]. However, we are not aware of
any work addressing electrokinetic phenomena in ionic liquids, so
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perhaps the mean-field electro-hydrodynamic models developed
here for concentrated electrolytes at large voltages might provide a
useful starting point, in the limit of nearly close packing of ions.

As a by-product of this work, our attempts to model nanoscale
phenomena in nonlinear electrokinetics may also have broader
applicability in nanofluidics [89,90]. Dilute-solution theory remains
the state-of-the-art in mathematical modeling, and the main focus of
the field so far has been on effects of geometrical confinement,
especially with overlapping double layers. The classical Poisson–
Nernst–Planck and Navier–Stokes equations provide a useful first
approximation to understand nanochannel transport phenomena,
such as charge selectivity [91–94], mechanical-to-electrical power
conversion efficiency [95–100], current–voltage characteristics [101],
and nonlinear ion-profile dynamics [102,103], but in some cases itmay
be essential to introduce newphysics into the governing equations and
boundary conditions to account for crowding effects and strong
surface interactions. Molecular dynamics simulations of nanochannel
electrokinetics provide crucial insights and can be used to test and
guide the development of modified continuum models [104–109].

We stress that there are other important, developing areas of
nonlinear electrokinetics, which are related, but outside the scope of
this article. For example, we do not discuss the nonlinear electrophoresis
of fixed-charge particles [66,110,111], which can result from surface
conduction [112–115] (Du>0) and advection–diffusion [110] (Pe>0),
although we will analyze a different mechanism for field-dependent
electrophoretic mobility for polarizable particles [65]. We also neglect
nonlinear electrokinetic phenomena associated with strong salt concen-
tration gradients, such as second-kind “superfast” electrophoresis [116–
121], electro-osmotic fluid instability [101,122–126], and concentration-
polarization shocks [102,103], which can now be directly observed in
microfluidic systems [101,103,125,126] and porous bead packings
[127,128]. These effects result from “super-limiting” normal current
into a polarized surface, membrane, or nanochannel, which depletes the
local salt concentration significantly and forces the diffuse charge out of
equilibrium. In such cases, dilute-solution theory is likely to remain valid
up to large applied voltages in the regions of low ionic strength away from
the surface,where theflowismostlygenerated. In contrast, our focushere
is on metal structures and electrodes that do not sustain normal current,
e.g. due toAC forcing and insufficient voltage to trigger Faradaic reactions.
As a result, the applied voltage leads mostly to capacitive charging of the
diffuse layer, and thus potentially to the crowding of counterions
attracted to the surface.

The article is organized as follows. In Section 2, we review the
standard low-voltage model for induced-charge electrokinetic phe-
nomena and its failure to explain certain key experimental trends. We
then reviewvarious attempts to go beyond the dilute-solution theory in
electrochemistry and electrokinetics and analyze the effects of two
types of new physics in nonlinear electrokinetic phenomena at large
voltages: In Section 3,we build on our recent work on diffuse-charge
dynamics at large applied voltages [60,129,130] to argue that the
crowding of counterions plays a major role in induced-charge
electrokinetic phenomena by reducing the double-layer capacitance in
ways that are ion-specific and concentration-dependent; In Section 4,
we postulate that the local viscosity of the solution grows with
increasing charge density, which in turn decreases the electro-osmotic
mobility at high voltage and/or concentration and introduces another
source of ion specificity. Finally, in Section 5, we present a theoretical
framework of modified electrokinetic equations, which underlies the
results in Sections 3 and 4 and can be applied to general situations.

2. Background: theory versus experiment

2.1. The standard model

We begin by summarizing the “standard model” of induced-charge/
AC electrokinetics, used in most theoretical studies, and bringing out

some crucial experimental trends it fails to capture. The general starting
point for the standard model is the coupling of the Poisson–Nernst–
Planck (PNP) equations of ion transport to the Navier Stokes equations
of viscous fluid flow. ICEO flows are rather complex, so many
simplifications from this starting point have been made to arrive at an
operational model [11,12,16,18,23]. For thin double layers (DL)
compared to the geometrical length scales, the standard model is
based on the assumption of “linear” or “weakly nonlinear” charging
dynamics [129], which further requires that the applied voltage is small
enough not to significantly perturb the bulk salt concentration,whether
by double-layer salt adsorption or Faradaic reaction currents. In this
regime, theproblemisgreatly simplified, and theelectrokinetic problem
decouples into one of electrochemical relaxation and another of viscous
flow:

2.1.1. Electrochemical relaxation
The first step is to solve Laplace's equation for the electrostatic

potential across the bulk resistance,

∇⋅J = ∇⋅ðσEÞ = −σ∇2ϕ = 0 ð1Þ

assuming Ohm's Law with a constant conductivity σ. A capacitance-
like boundary condition for charging of the double layer at a blocking
surface (which cannot pass normal current) then closes the “RC
circuit” [129],

CD
dΨD

dt
= σEn; ð2Þ

where the local diffuse-layer voltage dropΨD(ϕ) (surfaceminus bulk)
responds to the normal electric field En=−n̂·∇ϕ. In the standard
model, the bulk conductivity σ and diffuse-layer capacitance CD are
usually taken to be constants, although these assumptions can be
relaxed [42,43,131]. The diffuse layer capacitance is calculated from
the PNP equations by applying the justifiable assumption that the thin
double layers are in thermal equilibrium; see Section 3.1. A compact
Stern layer or dielectric surface coating of constant capacitance CS is
often included [12,42,129], so that only part of the total double-layer
voltage Δϕ is dropped across the diffuse layer “capacitor”,

ΨD =
Δϕ

1 + δ
=

CSΔϕ
CS + CD

; ð3Þ

where δ=CD/CS is the diffuse-layer to compact-layer capacitance
ratio.

2.1.2. Viscous flow
The second step is to solve for a (possibly unsteady) Stokes flow,

ρm
∂u
∂t = −∇p + ηb∇

2u;∇⋅u = 0; ð4Þ

with the Helmholtz–Smoluchowski (HS) boundary condition for
effective fluid slip outside the double layer,

us = −bEt = − εbΨD

ηb
Et ð5Þ

where Et is the tangential field, b=ɛbζ/ηb is the electro-osmotic
mobility, ζ is the zeta potential at the shear plane (=ΨD in the sim-
plest models), and ɛb, ηb, and ρm are the permittivity, viscosity, and
mass density of the bulk solvent. Osmotic pressure gradients, which
would modify the slip formula [123,124], are neglected since the bulk
salt concentration is assumed to be uniform.

Although this model can be rigorously justified only for very small
voltages, ΨD≪kT/e, in a dilute solution [16,32,129], it manages to
describe many features of ICEO flows at much larger voltages.

51M.Z. Bazant et al. / Advances in Colloid and Interface Science 152 (2009) 48–88



Author's personal copy

There has been extensive theoretical work using the standard
model, and it provides the basis for most of our understanding of
induced-charge electrokinetics. In recent years, it has been widely
used to model nonlinear electrokinetic phenomena in microfluidic
devices, such as ACEO flows around electrode pairs [11,31–33,132]
and arrays [12,34,44–47,133,134], traveling-wave electro-osmotic
flows (TWEO) [49,50,52], ICEO interactions between dielectric
particles and electrodes [135–138], ICEO flow around metal struc-
tures [15,16,20,139–143] and dielectric corners [26,27] and particles
[16,144,145], fixed-potential ICEO around electrodes with a DC bias
[16,146], ICEP motion of polarizable asymmetric particles
[15,16,23,24], collections of interacting particles [53,54,147–149],
particles near walls [55,150], and particles in field gradients [23]. The
standard model has had many successes in describing all of these
phenomena, but it also has some fundamental shortcomings, when
compared to the experimental data.

One possibility is that the underlying PNP/NS equations and
boundary conditions are physically accurate, but the thin-DL approx-
imation introduces largemathematical errors. A number of theoretical
studies have allowed for arbitrary DL thickness in a dilute solution
while solving the linearized equations of ion transport and fluid flow
in the regime of low voltages. This modeling approach has been
applied to ACEO [32] and TWEO [151] flows over electrode arrays and
ICEP particle motion in uniform [152] or non-uniform [153] fields. For
the model problem of ICEO flow around a thick metal stripe on a flat
wall in a parallel electric field [129,146], Gregersen et al. [143] have
recently compared full numerical solutions of the Poisson–Nernst–
Planck (PNP) and Navier–Stokes (NS) equations with thin double-
layer approximations in both the linear regime (standard model) and
the “weakly nonlinear” regime [129,131] (including tangential surface
conduction, but not diffuse-layer salt adsorption, surface reactions,
and bulk concentration polarization, discussed below). For their
model problem, they concluded that for micron-scale electrodes, the
(outer) boundary-layer approximations can over-estimate ICEO
velocities by 10% for thin double layers, and by 100% for double-
layer thickness comparable to the electrode height. These errors could
be reduced by constructing uniformly valid approximations forfinite
double layer thickness [44,154] (adding double layer contributions
and subtracting the overlap), but the main point for us is that
mathematical errors in thin double layer approximations (compared
to full PNP/NS numerical solutions) vanish in the thin double layer
limit and are small (of order λD/L≪1) for typical experimental
situations in microfluidics. In particular, we cannot attribute the
systematic and large (sometimes order of magnitude) discrepancies
between theory and experiment discussed below to the thin double-
layer approximation, especially if the asymptotic analysis is done
carefully, going beyond the leading-order low-voltage approximation
of the standard model. Instead, in this paper, we build the case that at
least some of the discrepancies may be attributable to the breakdown
of the underlying PBP/NS equations of dilute-solution theory (and its
boundary conditions), close to a highly charged surface.

2.2. Open questions

2.2.1. The “correction factor”
Low-voltage, dilute-solution theories in nonlinear electrokinetics

tend to over-predict fluid velocities, compared to experiments. A
crude way to quantify this effect in the standard model is to multiply
the HS slip velocity (5) on all surfaces by a fitting parameter Λ, the
“correction factor” introduced by Green et al. [31,33]. This approach
works best at low voltages and in very dilute solutions, but even in
such a regime, we should stress that it is generally impossible to
choose Λ to fit complete flow profiles or multiple experimental trends,
e.g. velocity versus voltage and frequency, at the same time.
Nevertheless, one can often make a meaningful fit of Λ to reproduce
a key quantity, such as the maximum flow rate or particle velocity.

Such a quantitative test of themodel has been attempted for a number
of data sets [20,25,31,33,55,67,132,146], but there has been no
attempt to synthesize the results from different types of experiments
to seek general trends in the correction factor.

As a background for our study, we provide a critical evaluation of
the standard model based on Λ values for a wide range of
experimental situations. In Table 1, we have compiled all available
results from the literature. We have also addedmany entries by fitting
our own standard–model simulations to published data, for which no
comparison has previously been done.

It is striking that Λ is never larger than unity and can be orders of
magnitude smaller. We managed to find only one published
measurement where the standard model correctly predicts the
maximum of the observed flow (Λ=1), from a recent experiment
on ACEO pumping of micromolar KCl by a planar, gold electrode array
at relatively low voltage [41], but even in that data set the model fails
to predict weak flow reversal at high frequency and salt concentration
dependence (see below). Remarkably, there has not yet been a single
ICEO experiment where the model has been able to predict, or even to
fit, how the velocity depends on the basic operating conditions —

voltage, AC frequency, and salt concentration — let alone the
dependence on surface and bulk chemistries. The greatest discrepan-
cies come from ACEO pumping by a disk-annulus electrode pair [132]
(Λ=0.0025) and fixed-potential ICEO around a metal stripe [146]
(Λ=0.005), both in millimolar KCl and at high induced voltages Vmax.

In Table 1, we have also used Λ to convert the maximum nominal
voltage Vmax induced across the double layer in each experiment to a
maximum zeta potential ζmax=ΛVmax. The range of ζmax is much
smaller for Λ, but still quite significant. It is clear that ζmax rarely
exceeds 10 kT/e, regardless of the applied voltage. For very dilute
solutions, the largest value in the table, ζmax=0.75V=30 kT/e, comes
from ACEO pumping of micromolar KCl [41], while the smallest
values, ζmax<0.5 kT/e, come from ICEP of gold-latex Janus particles in
millimolar NaCl.

The values of Λ and ζmax from all the different experimental
situations in Table 1 are plotted versus c0 and Vmax in Fig. 2, and some
general trends become evident. In Fig. 2(b), we see that ζmax decays
strongly with increasing salt concentration and becomes negligible in
most experiments above 10 mM. In Fig. 2(c), we see that ζmax exhibits
sub-linear growth with Vmax and appears to saturate below ten times
the thermal voltage (10 kT/e=0.25 V at room temperature), or much
lower values at high salt concentration. Even with applied voltages up
to 10 V in dilute solutions, the effectivemaximum zeta potential tends
to stay well below 1 V. From the perspective of classical electrokinetic
theory, this implies that most of the voltage applied to the double
layer is dropped across the immobile, inner “compact layer”, rather
than the mobile outer “diffuse layer”, where electro-osmotic flow is
generated.

This effect can be qualitatively, but not quantitatively, understood
using the standard model. Many authors have assumed a uniform,
uncharged Stern layer (or dielectric thin film) of permittivity ɛS and
thickness hS=ɛS/CS, acting as a capacitor in series with the diffuse
layer. Via Eq. (3), this model implies

Λ =
1

1 + δ
; with δ =

CD

CS
=

εb
εS

hS
λD

=
λS

λD
; ð6Þ

where λD is the Debye–Hückel screening length (diffuse-layer
thickness), which takes the form

λD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εbkT

2ðzeÞ2c0

s
ð7Þ

for a z:z electrolyte, and λS is an effective width for the Stern layer, if it
were a capacitor with the same dielectric constant as the bulk.
Inclusion of the Stern layer only transfers the large, unexplained
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variation in the correction factor Λ to the parameter λS (or CS=ɛb/λS)
without any theoretical prediction of why it should vary somuchwith
voltage, concentration, and geometry. Using these kinds of equivalent
circuit models applied to differential capacitance measurements
[155], electrochemists sometimes infer a tenfold reduction in
permittivity in the Stern layer versus bulk water, ɛb/ɛS≈10, but,
even if this were always true, it would still be hard to explain the data.
For many experimental situations in Table 1, the screening length λD

is tens of nanometers, or hundreds of molecular widths, and the
effective Stern-layer width λS would need to be much larger — up to
several microns— to predict the observed values of Λ≪1. In contrast,
if we take the physical picture of a Stern monolayer literally, then hS
should be only a few Angstroms, and λS at most a few nanometers, so
there is noway to justify themodel. As noted in early papers by Brown
et al. [34] and Green et al. [31], it is clear that the effective diffuse-
layer voltage (or induced zeta potential) is not properly described by
the standard model under typical experimental conditions.

2.2.2. Electrolyte dependence
In addition to overestimating experimental velocities, the standard

model fails to predict some important phenomena, even qualitatively.
For example, ICEO flows have a strong sensitivity to solution
composition, which is under-reported and unexplained. Most experi-
mental work has focused on dilute electrolytes [20,31,34,156]. (See
Table 1.) Some recent experiments suggest a logarithmic decay of the
induced electro-osmotic mobility, b∝ ln(cc/c0), with bulk concentration
c0 seen in KCl for ACEOmicropumps [38,41], in KCl and CaCO3 for ICEO

flows aroundmetal posts [157], and in NaCl for ICEPmotion of metallo-
dielectric Janus particles [25]. This trend is visible to some extent at
moderate concentrations in Fig. 2(b) over a wide range of experimental
conditions, although a power-law decay also gives a reasonable fit at
high salt concentrations. Two examples of different nonlinear electro-
kinetic phenomena (ACEO fluid pumping and ICEP particle motion)
showing this unexplained decay with concentration are shown in Fig. 3.

In all experiments, suchas those in Fig. 2, theflowpractically vanishes
for c0>10 mM, which is two orders of magnitude below the salinity of
most biologicalfluids andbuffer solutions (c0>0.1 M). Experimentswith
DC [158,159] and AC [146,160] field-effect flow controls, where a gate
voltage controls the zeta potential of a dielectric channel surface, have
likewise been limited to low salt concentrations below 10 mM in a
variety of aqueous solutions. Sodium carbonate/bicarbonate buffer
solutions have also been used in ICEO mixers with platinum struc-
tures [141], but experimental data were only reported at a low ionic
strength of 2.5 mM after dilution by water, and not for the original 1 M
solutions. Remarkably, out of all the experimental work reviewed in this
section, we could not find any observation of induced-charge electroki-
netic phenomena at salt concentrations above 30 mM in water.

The standard model seems unable to explain the decay of flow
with increasing salt concentration quantitatively, although it does aid
in qualitative understanding. Substituting the Debye–Hückel screen-
ing length for a binary z:z electrolyte in Eq. (6) we obtain

Λ =
1

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 = cc

p e ffiffiffiffiffi
cc
c0

r
for c0≫cc ð8Þ

Table 1
Comparison of the standard low-voltage model of induced-charge electrokinetic phenomena with experimental data (column 1) for a wide range of situations (column 2), although
limited to a small set of aqueous electrolytes (column 3) at low bulk salt concentrations c0 (column 4).

Reference Type of flow Solution c0 Vmax
induced Λ ζmax eζmax/kT

Green et al. [31] ACEO electrode pair KCl 0.16 mM 1.0 V 0.13 0.13 V 5.2
0.67 mM 1.0 V 0.055 0.055 V 2.2
6.6 mM 2.5 V 0.015 0.038 V 1.52

Green et al. [33] ACEO electrode pair KCl 0.16 mM 0.5 V 0.25‡ 0.125 V 5
0.67 mM 0.5 V 0.24‡ 0.12 V 4.8

Studer et al. [38] Planar ACEO array KCl 0.1 mM 1.41 V 0.18 0.25 V 10
Ramos et al. [50] TWEO electrode array KCl 0.16 mM 0.5 V 0.05 0.025 V 1

1.4 V 0.026 0.036 V 1.44
Bown et al. 2006 [132] Disk electrode ACEO KCl 0.43 mM 2.0 V 0.0025 0.005 V 0.2
Urbanski et al. [45] 3D ACEO array KCl 3 μM 1.5 V 0.2 0.3 V 12
Bazant et al. [41] Planar ACEO array KCl 0.001 mM 0.75 V 1⁎ 0.75 V 30

0.003 mM 0.88⁎ 0.66 V 26.4
0.01 mM 0.65⁎ 0.49 V 19.6
0.03 mM 0.47⁎ 0.35 V 14
0.1 mM 0.41⁎ 0.31 V 12.4
0.3 mM 0.24⁎ 0.18 V 6.4
1 mM 0.10⁎ 0.075 V 3

Storey et al. [67] Planar ACEO array KCl 0.03 mM 0.75 V 0.667 0.5 V 20
Levitan et al. [20] Metal cylinder ICEO KCl 1 mM 0.25 V 0.4‡ 0.1 V 4
Soni et al. [146] Fixed-potential ICEO KCl 1 mM 9.0 V 0.005 0.045 1.8
Brown et al. [34] ACEO array NaNO3 0.1 mM 1.7 V 0.068⁎ 0.115 V 4.6

1.41 V 0.062⁎ 0.087 V 3.5
1.13 V 0.071⁎ 0.08 V 3.2
0.85 V 0.079⁎ 0.067 V 2.7
0.57 V 0.076⁎ 0.043 V 1.7
0.28 V 0.081⁎ 0.023 V 0.92

Urbanski et al. [40] ACEO array Water ≈μM 1.5 V 0.25⁎ 0.375 V 15
1.0 V 0.5⁎ 0.5 V 20

Gangwal et al. [25] Janus particle ICEP Water ≈μM 0.085 V 0.14† 0.012 V 0.48
Kilic and Bazant [55] NaCl 0.1 mM 0.14† 0.012 V 0.48

0.5 mM 0.105† 0.009 V 0.36
1 mM 0.08† 0.007 V 0.27
3 mM 0.048† 0.004 V 0.16

In each case, the nominal maximum induced double-layer voltage Vmax is estimated (column 5). A crude comparison with the standard model is made by multiplying the predicted
slip velocity (5) everywhere by a constant factor Λ (column 6) for a given c0 and Vmax. In addition to the Λ values from the cited papers, we have added entries to the table, indicated
by ⁎, by fitting our own standard-model simulations to published experimental data. Estimates indicated by ‡ assume a frequency-dependent constant-phase-angle impedance for
the double layer, and those labeled by † are affected by particle-wall interactions, which are not fully understood. In each case, we also estimate the maximum induced zeta potential
ζmax=Vmax Λ in volts (column 7) and in units of thermal voltage kT/e (column 8).
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where

cc =
kT
2εb

εS
hSze

� �2
=

εbkT
2ðzeÞ2λ2

S

ð9Þ

is a crossover concentration, above which the flow decays like the
inverse square-root of concentration. As noted above, it is common to
attribute the theoretical over-prediction of ICEO flows, even in very
dilute solutions to a large voltage drop across the compact layer (δ≫1),
but this would imply a strong concentration dependence (c0≫cc) that
is not observed. Alternatively, fitting the compact-layer capacitance to
reproduce the transition from dilute to concentrated solution behavior
(c0≈cc, δ≈1) would eliminate the correction factor in dilute solutions
(δ≪1), making the theory again over-predict the observed velocities.
For example, such difficulties are apparent in Ref. [55] where this
argument applied to the data of Gangwal et al [25] for ICEP motion of
metallo-dielectric Janus particles (Fig. 3(a)).

Beyond the dependence on salt concentration, another failing of the
dilute-solution theory is the inability to explain the experimentally
observed ion-specificity of ICEO phenomena. At the same bulk
concentration, it has been reported that ICEO flow around metal posts
[157], ACEO pumping by electrode arrays [41] and AC-field induced
interactions in colloids [161] depend on the ions. Comparing experi-
ments under similar conditions with different electrolytes or different
metal surfaces further suggests a strong sensitivity to the chemical
composition of the double layer, although more systematic study is
needed. In any case, none of these effects can be captured by the
standard model, which posits that the ions are simply mathematical
points in a dielectric continuum and that the surface is a homogeneous

conductor ordielectric; all specific physical or chemical properties of the
ions, solvent molecules, and the surface are neglected.

2.2.3. Flow reversal
In many situations of large induced voltages, the standard model

does not even correctly predict the direction of the flow, let alone its
magnitude. Flow reversal was first reported around tin particles in
water [30], where the velocity agreed with the theory [18,28] sketched
in Fig. 1(a) only for micron-sized particles and reversed for larger ones
(90–400 μm). The transition occured when several volts was applied
across the particle and reversal was conjectured to be due to Faradaic
reactions [30]. In this regime, reverseflowshave recently beenobserved
around large (millimeter scale) copper washers and steel beads with
flow patterns resembling second-kind electro-osmosis [121] (see
below); although the fieldwas kept below the level causing gas bubbles
at the anodic side of the metal, copper dendrites (resulting from
electrodeposition) were observed on the cathodic side in dilute CuCl2
solutions, implying normal currents and concentration gradients.

Inmicrofluidic systems, flow reversal has also been observed at high
voltage (>2 V) and high frequency (10–100 kHz) in ACEO pumping by
10 μm-scale planar electrode arrays for dilute KCl [38,40,41,51], as
shown in Fig. 3(b), although not for water in the same pump geometry
[34,40]. Non-planar 3D stepped electrodes [44] can be designed that do
not exhibit flow reversal, as demonstrated for KCl [45] and water [48],
but certain non-optimal 3D geometries can still reverse, as shown in
water [40]. In the latter case the frequency spectrum also develops a
double peak with the onset of flow reversal around 3 V peak to peak. In
travelling-wave electro-osmosis (TWEO) in aqueous electrolytes
[49,50], strong flow reversal at high voltage has also been observed,
spanning all frequencies [50,51,162], and not yet fully understood.

Fig. 2. General trends in the under-prediction of ICEO flow velocity by the standard model from Table 1, compared with (solid and dashed) scaling curves, simply to guide the eye.

(a) Log–log plot of Λ versus c0 compared with the curves Λ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10−3mM= c0

q
(dashed) and =ln10(10 mM=c0)=4 (solid); (b) log-linear plot and (c) log–log plot of ζmax versus c0

compared with the curves eζmax = kT =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10mM = c0

p
(dashed) and =5 ln10(10 mM=c0) (solid); and (d) log–log plot of ζmax vs. Vmax compared to ζmax=Vmax (solid). Points from

the same experiment (varying concentration or voltage) are connected by line segments.
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Flow reversal of ACEO was first attributed to Faradaic reactions
under different conditions of larger voltages (8–14 V) and frequencies
(1–14 MHz) in concentrated NaCl solutions (0.001–0.1 S/m) with a
100 μm-scale T-shaped electrode pair composed of different metals
(Pt, Al, and Chromel) [163]. Indeed, clear signs of Faradaic reactions
(e.g. gas bubbles from electrolysis of water) can always be observed at
sufficiently large voltage, low frequency and high concentration
[38,163]. In recent TWEO experiments [162,164], signatures of
Faradaic reactions (including pH gradients from electrolysis) have
been correlated with low-frequency flow reversal at high voltage and
bulk electroconvection has been implicated [164] (see below). Under
similar conditions another possible source of flow reversal is the AC
electrothermal flow driven by bulk Joule heating [165], which has
been implicated in reverse pumping over planar electrode arrays at
high salt concentrations [166]. Closer to standard ACEO conditions,
e.g. at 1–2 V and 50–100 Hz in water with Au electrode arrays, flow
reversal can also be induced by applying a DC bias voltage of the same
magnitude as the AC voltage [167–169]. Reverse ACEO flow due to
“Faradaic charging” (as opposed to the standard case of “capacitive
charging”) is hypothesized to grow exponentially with voltage above
a threshold for a given the electrolyte/metal interface [163,168], but
no quantitative theory has been developed.

Simulations of the standard low-voltage model with Butler–
Volmer kinetics for Faradaic reactions have only managed to predict
weak flow reversal at low frequency in ACEO [12,42,43] and TWEO
[52,151]. In the case of ACEO with a planar, asymmetric electrode
array, this effect has recently been observed using sensitive (μm/s)
velocity measurements in dilute KCl with Pt electrodes at low voltage
(<1.5 V) and low frequency (<20 kHz) [170]. Faradaic reactions can
also produce an oscillating quasi-neutral diffusion layer between the
charged diffuse layer and the uniform bulk, due to the normal flux of
ions involved in reactions, and it has been shown via a low-voltage,
linearized analysis of TWEO that flow reversal can arise in the case of
ions of unequal diffusivities due to enhanced diffusion-layer forces on
the fluid [151]. Recently, flow reversal has been successfully predicted
in TWEO by sucha model allowing for bulk electroconvection in
regions of pH gradients from electrolysis reactions and compared to
experimental data [164]. However, the theory is still incomplete, and
it seems that current models cannot predict the strong (>100 μm/s),
high-frequency (>10 kHz) flow reversal seen in many ACEO and
TWEO experiments [38,40,41,51]. Faradaic reactions generally reduce
the flow at low frequency by acting as a resistive pathway to “short
circuit” the capacitive charging of the double layer [42,52], and
diffusion-layer phenomena are also mostly limited to low frequency.
Resolving the apparent paradox of high-frequency flow reversal is a
major motivation for our study.

2.3. Nonlinear dynamics in a dilute solution

Dilute-solution theories generally predict that nonlinear effects
dominate at low frequency. One reason is that the differential capacitance
D of the diffuse layer, and thus the “RC” time for capacitive charging of a
metal surface, grows exponentially with voltage in nonlinear Poisson–
Boltzmann (PB) theory. The familiar PB formula for the diffuse-layer
differential capacitance of a symmetric binary electrolyte [6,129],

CPB
D ðΨDÞ =

εb
λD

cosh
zeΨD

2kT

� �
ð10Þ

was first derived by Chapman [171], based on Gouy's solution of the
PB model for a flat diffuse layer [172]. It has been shown that this
nonlinearity shifts the dominant flow to lower frequencies at high
voltage in ACEO [42] or TWEO [173] pumping. It also tends to suppress
the flow with increasing voltage at fixed frequency, since there is not
adequate time for complete capacitive charging in a single AC period.

At the same voltage where nonlinear capacitance becomes impor-
tant, dilute-solution theory also predicts that salt adsorption
[129,131,174–176] and tangential conduction [114,131] by the diffuse
layer also occur and are coupled to (much slower) bulk diffusion of
neutral salt, which would enter again at low frequency in cases of AC
forcing. If concentration gradients have time to develop, then they
generally alter the electric field (“concentration polarization”) and can
drivebulk electroconvection [164], diffusio-osmotic slip [8,123,177] and
in some cases, non-equilibrium space charge and second-kind electro-
osmotic flow [116–118,124,176] (if the bulk concentration goes to zero,
at a limiting current).

Bulk gradients in salt concentration may play a crucial role in
induced-charge electrokinetics, especially at voltages large enough to
drive Faradaic reactions. Concentration polarization has been demon-
strated around electrically floating and (presumably) blocking metal
posts in DC fields and applied to microfluidic demixing of electrolytes
[178]. In nonlinear electrokinetic theory, diffusion-layerphenomena
havebegun tobe considered in low-voltage, linearized analysis of TWEO
with Faradaic reactions [151], and flow reversal of TWEO has been
attributed to bulk electro-convection in regions of concentration
polarization, for asymmetric electrolytes with unequal ionic mobilities
[164]. Such effects could be greatly enhanced in the strongly nonlinear
regime and as yet unexplored. Including all of these effects in models of

Fig. 3. Typical experimental data (included in the estimates of Table 1) for two different
types of nonlinear, induced charge electrokinetic phenomena showing qualitative
features not captured by the standardmodel, or the underlying electrokinetic equations
of the dilute-solution theory. (a) Velocity of ACEO pumping of dilute aqueous solutions
of KCl around a microfluidic loop by an asymmetric planar Au electrode array with the
geometry of Refs. [34,38] versus AC frequency at constant voltage, 3V peak to peak
(Vmax=1:5 V), reproduced from Ref. [41]. The data exhibits the unexplained flow
reversal at high frequency (10–100 kHz) and strong concentration dependence first
reported in Ref. [38]. (b) Velocity of ICEP motion of 5.7 µm metallo-dielectric Janus
particles versus field-squared at different concentrations of NaCl in water at constant
1 kHz AC frequency, reproduced from Ref. [25]. The data show a similar decay of the
velocity with increasing bulk salt concentration, which becomes difficult to observe
experimentally above 10 mM, in both experiments.
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induced-charge electrokinetic phenomena presents a formidable
mathematical challenge.

To our knowledge, such complete nonlinear modeling within the
framework of dilute-solution theory has only begun to be accom-
plished in the case of ACEO pumping (albeit without Faradaic
reactions) in the Ph.D. thesis of Olesen [43] and the papers of Suh
and Kang [175,179] by applying asymptotic boundary-layer methods
to the classical electrokinetic equations in the thin-double-layer limit.
At least in this representative case, all of the nonlinear large-voltage
effects in dilute-solution theory in the solution phase tend to make
the agreement with experiment worse than in the standard model
[43]. The flow is greatly reduced and shifts to low frequency, while the
effects of salt concentration and ion-specificity are not captured.
Similar conclusions have been reached by a recent numerical and
experimental study of fixed-potential ICEO for DC bias of 9 Volts [146],
where the correction factor is found to be Λ=0.005 for the linear
theory, but only Λ=0.05 if nonlinear capacitance (10) and surface
conduction from PB theory are included in the model (albeit without
accounting for bulk concentration gradients).

On the other hand, Suh and Kang [179] have recently shown that the
experiments of Green et al. on ACEO over a symmetric electrode pair
[33] can be better described by nonlinear dilute-solution theory
(without surface conduction, but with oscillating diffusion layers), if
the no-flux boundary condition for ideally polarizable electrodes is
replaced by a model of surface adsorption of ions [175], using a
Langmuir isotherm applied at the Stern plane [180,181]. This approach
relies on theclassical, but somewhat arbitrary, partitioningof thedouble
layer into an outer diffuse part (where “free” ions can drive fluid flow,
governed by continuum equations of dilute-solution theory) and an
inner compact part (where “adsorbed” ions cannot, described by
boundary conditions). Itmakes sense to describe ions thatmake contact
with the electrode surface (breaking free of their own solvation shells
and penetrating that of the metal, i.e. jumping from the “outer
Helmholtz plane” to the “inner Helmholtz plane” [155]) via an
adsorption boundary condition, but the transition to dilute-solution
behavior is surely not so abrupt. Indeed, we will see that concentrated
solution theories of the liquid phase can predict an effectively immobile
compact layer forming at high voltage and advancing into the solution.

Certainly,more theoretical work is needed onnonlinear dynamics of
electrolytes in response to large voltages, especially in the presence of
Faradaic reactions, butwebelieve the timehas come to alsoquestion the
validity of the underlying electrokinetic equations themselves. Based on
experimental and theoretical results for induced-charge electrokinetic
phenomena,we conclude thatdilute-solution theoriesmaynot properly
describe the dynamics of electrolytes at large voltages. In the following
sections, we consider some fundamental changes to the standardmodel
and the underlying electrokinetic equations, while preserving the
mean-field and local-density approximations, which permit a simple
mathematical description in terms of partial differential equations. We
review relevant aspects of concentrated-solution theories and develop
some new ideas as well. Through a variety of model problems in
nonlinear electrokinetics, we make theoretical predictions using
modified electrokinetic equations, which illustrate qualitatively new
phenomena, not predicted by the standard model and begin to resolve
some of the experimental puzzles highlighted above.

3. Crowding effects in a concentrated solution

3.1. Mean-field local-density approximations

3.1.1. Modified Poisson–Boltzmann theories
All dilute-solution theories, which describe point-like ions in a

mean-field approximation, break down when the crowding of ions
becomes significant, and steric repulsion and correlations potentially
become important. If this can be translated into a characteristic length
scale a for the distance between ions, then the validity of the Poisson–

Boltzmann theory is limited by a cutoff concentration cmax=a−3, which
is reached at a fairly small diffuse-layer voltage,

Ψc = − kT
ze

ln
cmax

c0

� �
=

kT
ze

lnða3c0Þ: ð11Þ

where z is the valence (including its sign) and c0 the bulk concentration
of the counterions. In a dilute solution of small ions, this leads to cutoffs
well below typical voltages for ICEO flows. For example, even if only
steric effects are taken into account, with e.g. a=3 Å (for solvated bulk
K+–Cl− interactions [182]), thenΨc≈0.33 V for c0=10−5M and z=1.

To account for the obvious excess ions in PB theory, Stern [183] long
agopostulateda static compactmonolayerof solvated ions [155].A similar
cutoff is also invoked in models of ICEO flows, where a constant
capacitance is added to model the Stern layer and/or a dielectric coating,
which carriesmost of the voltagewhen the diffuse-layer capacitance (10)
diverges. However, it seems unrealistic that amonolayer couldwithstand
most of the voltagedrop in induced-charge electrokinetic phenomenaat a
blocking surface (e.g. without dielectric breakdown [184]). In any case, a
dynamical model is required for a “condensed layer” that is built and
destroyed as the applied field alternates. As sketched in Fig. 4, the

Fig. 4. Sketch of solvated counterions (larger green spheres) and co-ions (smaller
orange spheres) near a polarizable surface. (a) At small induced voltages, ΨD≪Ψc, the
neutral bulk is only slightly perturbed with a diffuse-charge layer of excess counterions
at the scale of λD. (b) At moderate voltages, ΨD≈Ψc, the diffuse layer contracts, as
described by Poisson–Boltzmann (PB) theory. (c) At large voltages, ΨD≫Ψc, the
counterions inevitably become crowded, causing an expansion of the diffuse layer
compared to the predictions of the classical Gouy–Chapman–Stern model, sketched in
(d), which is based on the PB theory for point-like ions with a minimum distance of
approach, the “outer Helmholtz plane” (OHP), to model solvation of the surface.
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condensed layer forms in the diffuse part of the double layer and thus
shouldbedescribedby the same ion transport equations. For anon-ideally
blockingsurface, itmayalsobenecessary toaccount for surfaceadsorption
of ions (breaking free of solvation shells) and Faradaic reactions (electron
transfer) via compact-layer boundary conditions (see below), but these
should be applied to a model of the diffuse layer that allows for the
crowding of ions near the surface, whichmust occur to some degreewith
increasing voltage.

A plethora of “modified Poisson–Boltzmann” (MPB) theories have
been proposed to describe equilibrium ion profiles near a charged
wall. As described in recent reviews [60,62,185–189]), there are many
possible modifications to describe different physical effects, such as
dielectric relaxation, electrostatic correlations and volume con-
straints. In this paper, we focus on the simplest continuum models,
which are based on the local-density and mean-field approximations.
In spite of various limitations discussed below, this class of models is
very convenient (if not required) for mathematical analysis and
numerical simulation of time-dependent nonlinear problems (based
on modified Poisson–Nernst–Planck equations [75,130,176]).

The starting point for continuum modeling is a theory for the
excess electrochemical potential of an ion

μex
i = μi−μ ideal

i = kT ln fi; ð12Þ

relative to its ideal value in a dilute solution,

μ ideal
i = kT ln ci + zieϕ; ð13Þ

where ci is the mean concentration and fi is the chemical activity
coefficient. (Equivalently, one can write μi=kT ln(λi)+zieϕ, where
λi= fici is the absolute chemical activity [190].) In the mean-field
approximation (MF), the electrostatic potential ϕ in Eq. (13) self-
consistently solves the MPB equation,

−∇⋅ðε∇ϕÞ = ρ = ∑
i
zieci; ð14Þ

where the source of the electric field acting on an individual ion is the
mean charge density ρ, rather than the sum of fluctuating discrete
charges. Time-dependent modified PNP equations then express mass
conservation with gradient-driven fluxes [130], as described below.

In the asymptotic limit of thin double layers, it is often justified to
assume that the ions are in thermal equilibrium, if the normal current is
not too large and the nearby bulk salt concentration is not too low
[154,191], even in the presence of electro-osmotic flow [123,124]. In
termsof electrochemical potentials, the algebraic system {μi=constant}
then determines the ion profiles ci in the diffuse layer, which leads to
effective surface conservation laws [114]. In the dilute-solution theory
(μex=0), this procedure yields the Boltzmann distribution,

ciðψÞ = c0i exp
−zieψ
kT

� �
; ð15Þ

where ψ=ϕ−ϕb is the potential relative to its bulk value ϕb just
outside the double layer. For a symmetric binary electrolyte (z±=±z),
substituting into Eq. (14) yields the standard form of the PB equation

ðεψ′Þ′ = −ρðψÞ = 2c0ze sinh
zeψ
kT

� �
; ð16Þ

from the Gouy–Chapman model of the double layer [171,172], where ε
is typically set to a constant bulk value of ɛb (which we relax below). In
that case, by scaling length to λD and the potential to kT/ze, the PB
equation takes the simple dimensionless form, ψ̃″=sinhψ̃.

In concentrated-solution theories, the simplest and most common
approach is based on the local density approximation (LDA), where μex

depends only on the local ion densities, in the same way as in a

homogeneous bulk system [60,62,185,192,193]. The choice of a model
for μiex then yields a modified charge density profile ρ, differing from
Eq. (16) with increasing voltage. In this section, we focus on entropic
effects in bulk lattice-gas and hard-sphere models, where μiex depends
only on the local ion concentrations, but not, e.g., explicitly on the
distance to a wall [106,194] or non-local integrals of the ion con-
centrations [195–197], as discussed below.

For any MF-LDA model, the equilibrium charge density can be
expressed as a function of the potential, ρ(ψ), but the Boltzmann
distribution (Eq. (16)) is modified for non-ideal behavior, as we now
demonstrate. Here, we set the permittivity to its bulk value, ε=εb=
constant, but belowwewill extend the derivation for field-dependent
dielectric response ε(E) in Section 3.1.6. Given ρ(ψ), we integrate the
MPB equation (multiplied by ψ′) to obtain the electrostatic pressure,
pe and normal electric field ED at the inner edge of the diffuse layer,

peðΨDÞ =
1
2
εE2D = ∫0

ΨD
ρðψÞdψ: ð17Þ

From the total diffuse charge per unit area,

q = −signðΨDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εpeðΨDÞ

p
; ð18Þ

we then arrive at a general formula for the differential capacitance,

CDðΨDÞ = − dq
dΨD

= −ρðΨDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ε
peðΨDÞ

s
; ð19Þ

which reduces to Eq. (10) in a dilute solution.

3.1.2. The Bikerman–Freise formula
Since most MPB models are not analytically tractable, we first

illustrate the generic consequences of steric effects using the oldest
and simplest mean-field theory [59,60,76,81,183,198]. This model has
a long and colorful history of rediscovery in different communities
and countries (pieced together here with the help of P. M. Biesheuvel,
Wageningen). It is widely recognized that O. Stern in 1924 [183] was
the first to cutoff the unphysical divergences of the Gouy–Chapman
model of the double layer [171,172] by introducing the concept of a
“compact layer” or “inner layer” of solvent molecules (and possibly
adsorbed ions) forming a thin mono-molecular coating separating an
electrode from the “diffuse layer” in the electrolyte phase. The
resulting two-part model of the double layer has since become
ingrained in electrochemistry [155]. Over the years, however, it has
somehow been overlooked that in the same ground-breaking paper
[183], Stern also considered volume constraints on ions in the
electrolyte phase and in his last paragraph, remarkably, wrote down
amodified charge-voltage relation [his Eq. (2)] very similar to Eq. (24)
below, decades ahead of its time. We have managed to find only one
reference to Stern's formula, in a footnote by Freise [198].

Although Stern had clearly introduced the key concepts, it seems
the first complete MPB model with steric effects in the electrolyte
phase was proposed by J. J. Bikerman in 1942, in a brilliant, but poorly
known paper [59]. (Bikerman also considered polarization forces on
hydrated-ion dipoles in non-uniform fields, discussed below.) Over
the past sixty years, Bikerman's MPB equation has been indepen-
dently reformulated by many authors around the world, including
Grimley and Mott (1947) in England [85,86], Dutta and Bagchi (1950)
in India [199–202], Wicke and Eigen (1951) in Germany [203–205],
Strating andWiegel (1993) in the Netherlands [74,206–208], Iglic and
Kralj-Iglic (1994) in Slovenia [209–212], and Borukhov, Andelman
and Orland (1997) in Israel and France [76,213,214]. For an early
review of electrolyte theory, which cites papers of Dutta, Bagchi,
Wicke and Eigen up to 1954 (but not Bikerman or Freise, discussed
below), see Redlich and Jones [215].
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Unlike Bikerman, who applied continuum volume constraints to
PB theory, most of these subsequent authors derived the same MPB
model starting from the bulk statistical mechanics of ions and solvent
molecules on a cubic lattice of spacing a in the continuum limit (MF-
LDA) where the concentration profiles vary slowly over the lattice.
(More recently, “semi-discrete” lattice-gas models have also been
developed, which consist of discrete layers described via mean-field
approximations, without taking the continuum limit in the normal
direction [87,188,216,217].)While early authors were concernedwith
departures from PB theory in concentrated electrolytes [59,199,205]
or ionic crystals [85,86], recent interest in the very same mean-field
model proposed by Bikerman has been motivated by a wide range of
modern applications involving electrolytes with large ions or
biological molecules [74,76,213,214], polyelectolytes [218–220],
polymeric electrolytes [221], electromagnetic waves in electrolytes
[75], electro-osmosis in nanopores [68,69], electrophoresis of colloids
[70–73], and solvent-free ionic liquids [81,82,84], in addition to our
own work on dilute electrolytes in large applied voltages [58,60,130].

In the present terminology, Bikerman's model corresponds to an
excess chemical potential

μex
i = −kT ln ð1−ΦÞ ðBikermanÞ; ð20Þ

associatedwith the entropy of the solvent,whereΦ=a3∑ ici is the local
volume fraction of solvated ions on the lattice [62]. For now, we also
assume a symmetric binary electrolyte, c+0 =c−

0 =c0, z±=±z, to obtain
an analytically tractable model. As shown in Fig. 5(a), when a large
voltage is applied, the counterion concentration exhibits a smooth
transition fromanouter PBprofile to a condensed layer atc=cmax=a−3

near the surface. Due to the underlying lattice-gas model for excluded
volume, the ion profiles effectively obey Fermi–Dirac statistics,

cF =
c0e

∓zeψ=kT

1 + 2ν sinh2ðzeψ= 2kTÞ ; ð21Þ

where ν=2a3c0=Φbulk is the bulk volume fraction of solvated ions.
Classical Boltzmann statistics and the Gouy–Chapman PB model are
recovered in the limit of point-like ions, v=0.

For a flat double layer, similar results can be obtained with the even
simpler Composite Diffuse Layer model of Kilic et al. [60] (also termed
the “cutoff model” in Ref. [185]), where an outer PB diffuse layer is
abruptly patched with an inner condensed layer of only counterions at
the uniform, maximal charge density. This appealingly simple construc-
tion requires assumptions about the shape of the condensed layer (e.g. a
plane), so its position can be determined only from its thickness or total
charge. Even if it can be uniquely defined, the cutoff model introduces
discontinuities in the co-ion concentration (which drops to zero in the
condensed layer) and in the gradient of the counterion concentration,
although the same is also true of Stern's original model of the compact
layer. In this work we focus on Bikerman's model since it is the simplest
general model of steric effects that remains analytically tractable; unlike
the cutoff model, it predicts smooth ionic concentration profiles in any
geometry and can be naturally extended to time-dependent problems
[75,130].

Substituting the equilibrium ion distributions (Eq. (21)) into
Poisson's Eq. (14), we obtain Bikerman's MPB equation,

ðεψ′Þ′ = 2c0ze sinhðzeψ= kTÞ
1 + 2ν sinh2 ðzeψ= 2kTÞ ; ð22Þ

which has the simple dimensionless form (scaling length to λD,
potential to kT/ze),

ψ̃″ =
sinhψ̃

1 + 2ν sinh2 ðψ̃= 2Þ
; ð23Þ

extending the PB equation for a nonzero volume fraction v of ions in the
bulk solution. Integrating across the diffuse layer, the charge-voltage
relation (Eq. (18)) takes the form,

qν = sgnðΨDÞ2ze c0λD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ν
ln 1 + 2ν sinh2 zeΨD

2kT

� �� �s
ð24Þ

whichwas probably first derived by Grimley [86] in a lattice-gas theory of
diffuse charge in ionic crystals [85], independent of Bikerman. Grimley's
formula has the same formas Stern's surprising Eq. (2) noted above [183],
but it has all the constants correct and clearly derived. Recently, Soest-
bergen et al. [221] have given a slightly different formula approximating
Eq. (24) that is easier to evaluate numerically for large voltages, and
applied it to ion transport in epoxy resins encapsulating integratedcircuits.

Although Stern and Grimley derived themodified form of the charge-
voltage relationwithvolumeconstraints, theydidnotpointout its striking
qualitative differences with Gouy–Chapman dilute-solution theory,
noticed by several recent authors [60,81]. This important aspect was
apparently first clarified by Freise [198], who took the derivative of
Eq. (24) and derived the differential capacitance (Eq. (19)) in the form

Cν
D =

ε
λD

sinh ze jΨD j
kT

� �
1 + 2ν sinh2 zeΨD

2kT

� �h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ν
ln 1 + 2ν sinh2 zeΨD

2kT

� �h ir : ð25Þ

Fig. 5. (a) Theequilibriumdistributionof counterions inaflatdiffuse layer for large applied
voltages zeΨD/kT=10; 20, …, 100 predicted by the Poisson–Boltzmann theory (PB) and
Bikerman's modified theory (MPB) taking into account an effective (solvated) ion size a,
whereν=2a3c0=0:001 is the bulk volume fraction of solvated ions. (b) The diffuse-layer
differential capacitance CD versus voltage predicted by PB (Eq. (10)) (ν=0) and MPB
(Eq. (25)) (ν>0), scaled to the low-voltage Debye–Hückel limit ε/λD(c0).

58 M.Z. Bazant et al. / Advances in Colloid and Interface Science 152 (2009) 48–88



Author's personal copy

and pointed out that CDν decays at large voltages. This elegant formula,
also derived by Kilic et al. [60] and Kornyshev [81] (and Oldham [84]
for the ionic-liquid limit v=1), predicts the opposite dependence of
Chapman's formula (Eq. (10)) from the dilute-solution theory, which
diverges exponentially with |ΨD|. Since Chapman [171] is given credit
in the “Gouy–Chapman theory” for first deriving the capacitance
formula (Eq. (10)) for Gouy's original PB model [172], we suggest
calling Eq. (25) the “Bikerman–Freise formula” (BF), in honor of
Bikerman, who first postulated the underlyingMPB theory, and Freise,
who first derived and interpreted the modified differential capaci-
tance. By this argument, it would be reasonable to also refer to the
general MPB model as “Bikerman–Freise theory”, but we will simply
call it “Bikerman's model” below, following Refs. [62,68,69].

According to the BF formula (Eq. (25)), as shown in Fig. 5(b), the
differential capacitance increases following PB theory up to a maximum
near the critical voltage ΨD≈Ψc, and then decreases as the square-root
of the voltage,

Cν
D∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zeεb

2a3 jΨD j

s
; ð26Þ

because the effective capacitor width grows due to steric effects, as
seen in Fig. 5(a). In stark contrast, the PB diffuse-layer capacitance
diverges exponentially according to Eq. (10), since point-like ions pile
up at the surface. Although other effects, such as compact layer
compression and specific adsorption of ions [155,188] (discussed
below) can cause the differential capacitance to increase at interme-
diate voltages, this effect is quite general. As long as the surface
continues to block Faradaic current, then the existence of steric
volume constraints for ions implies the growth of an extended
condensed layer at sufficiently large voltages, and a concomitant,
universal decay of the differential capacitance. Indeed, this effect can
be observed for interfaces with little specific adsorption, such as NaF
and KPF6 on Ag [222,223] or Au [224–226]. (See Fig. 8 below for fits to
simple mean-field models.) The same square-root dependence at
large voltage can also be observed in experiments [81] and
simulations [82,83] of ionic liquids at blocking electrodes, with
remarkable accuracy. We conclude that the decay of the double-layer
differential capacitance at large voltage is a universal consequence of
the crowding of finite-sized, mobile charge carriers near a highly
charged, blocking surface.

The BF formula (Eq. (26)) also illustrates another general feature of
double-layer models with steric constraints, shown in Fig. 6: The
differential capacitance at large voltages is independent of bulk salt
concentration, but ion specific through z and a. This prediction is
reminiscent of Stern's picture [183] of an inner, compact layer of
solvent molecules which carries the majority of a large double layer

voltage, compared the outer, diffuse layer described by dilute PB
theory. This picture is ubiquitous in electrochemistry [155], and first
gained acceptance based on Grahame's famous experiments on
mercury drop electrodes [188,227,228]. The significant difference,
however, is that the condensed layer forms continuously in the
solution near the inner edge of the diffuse layer due to ion crowding
effects in a general model of the electrolyte phase, which is not
restricted to flat quasi-equilibrium double layers.

3.1.3. Hard-sphere liquid models
Although Bikerman's model describes steric effects in a convenient

and robust analytical form, the bulk ionic volume fraction v is best
viewed as an empirical fitting parameter. For crystalline solid
electrolytes, its microscopic basis in a lattice model is realistic, but
even then, the thinness of the condensed layer, comparable to the
lattice spacing at normal voltages, calls the continuum limit into
question. For liquid electrolytes involved in electrokinetic phenom-
ena, it would seem more realistic to start with the “restricted
primitive model” of charged hard spheres in a uniform dielectric
continuum [229] in developing better MPB models [61,62,192]. From
this theoretical perspective, Bikerman's lattice-based model has the
problem that it grossly under-estimates steric effects in hard-sphere
liquids; for example, in the case of a monodisperse hard-sphere liquid,
the volume excluded by a particle is eight times its own volume
[62,230,231]. Although we focus on electrolytes at large voltages, it is
also interesting to consider the MF-LDA dynamics of charged hard
spheres to model other systems, such as dense colloids [232,233],
polyelectrolytes [234,235], and ionic liquids [81,82].

Various MF-LDA approximations of μiex for bulk hard-sphere
liquids can be used to develop more sophisticated MPB models,
which yield similar qualitative behavior of the diffuse-layer differen-
tial capacitance [62,192], due to the generic arguments given above.
For example, the Carnahan–Starling (CS) equation of state for a bulk
monodisperse hard-sphere liquid corresponds to the following excess
chemical potential [7,236],

μex
i

kT
=

Φð8−9Φ + 3Φ2Þ
ð1−ΦÞ3 ðCarnahan−StarlingÞ ð27Þ

Although this algebraic form precludes analytical results, it is
much simpler to evaluate numerically and incorporate into contin-
uummodels of electrokinetic phenomena than aremore sophisticated
MPB approximations which go beyond the LDA, e.g. based on self-
consistent correlation functions [78–80,237] or density functional
theory [238–240], which require solving nonlinear integro-differen-
tial equations, even for a flat double layer in equilibrium. As shown in
Fig. 7(b), the simple CSMPBmodel predicts capacitance curves similar
to Fig. 6 with Bikerman's model, respectively, only with more realistic
salt concentrations [62]. In particular, the differential capacitance in
Bikerman's model ressembles that of CS MPB if an unrealistically large
hydrated ion size a (or large bulk volume fraction v) is used, due to
the under-estimation of liquid steric effects noted above.

In spite of similar-looking capacitance curves, however, there are
important differences in the ionic profiles predicted by the two
models. As shown in Fig 5(a), in Bikerman's model steric effects are
very weak until the voltage becomes large enough to form a thin
condensed layer at maximum packing. As such, the width of the
diffuse layer at typical large voltages is still an order of magnitude
smaller than the Debye length λD relevant for small voltages. In
contrast, steric effects in a hard-sphere liquid are stronger and cause
the diffuse layer to expand with voltage as shown in Fig. 7(c). The
widening of the diffuse layer reduces its differential capacitance, but
without forming the clearly separated condensed layer predicted by
Bikerman's model. As shown in Fig. 7(d), the counterion density at the
surface in the CS MPB model increases more slowly with voltage as

Fig. 6. Differential capacitanceCD versus voltage in Bikerman'sMPBmodel (Eq. (25))with
a=4 Å for ν values corresponding to c0=1, 10, and 100 mM. In contrast to Fig. 5(b), here
CD is scaled to a single constant, ε/λD(1 mM), for all concentrations.
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compared to the Bikermanmodel. These differences will be important
when we discuss the viscosity effects in Section 4.

An advantage of the hard-sphere approach to volume constraints
is that it has a simple extension to mixtures of unequal particle sizes
[241] which can be applied to general multicomponent electrolytes
[61,62,192,234,235]. According to the Boublik–Mansoori–Carnahan–
Starling–Leland (BMCSL) equation of state [242,243], the excess
chemical potential of species i in a mixture of N species of hard
spheres with different diameters {ai} is given by

μex
i

kT
= − 1 +

2ξ32a
3
i

Φ3 −3ξ22a
2
i

Φ2

 !
lnð1−ΦÞ + 3ξ2ai + 3ξ1a

2
i ξ0 + a3i

1−Φ

+
3ξ2a

2
i

ð1−ΦÞ2
ξ2
Φ

+ ξ1ai

� �
−ξ32a

3
i
Φ2−5Φ + 2
Φ2ð1−ΦÞ3 ðBMCSLÞ

ð28Þ

where ξn=∑j=1
N Φjaj

n−3, Φj is the volume fraction of species j, and
Φ=∑j=1

N Φj is the total volume fraction of ions. Although this for-
mula may seem complicated, it is an algebraic expression that can be
easily expanded or evaluated numerically and thus is much simpler
than statistical theories based on integral equations [186,187,241].
The first BMCSL correction to the dilute-solution theory is simply,

μex
i

kT e∑Nj=1
1 +

ai
aj

 !3

Φj ð29Þ

The BMCSL MPB model for asymmetric electrolytes predicts the
segregation of ions of different size and/or charge in the diffuse layer
[62] and has been applied to adsorption phenomena in polyelectrolyte
layers [234,235]. The broken symmetry between ions of different sizes

is an important qualitative effect, which we will show implies new
electrokinetic phenomena at large voltages, regardless of the model.

A word of caution: In spite of its mathematical convenience, the
local-density approximation is known to provide a poor description of
confined hard-sphere liquids, even in equilibrium. For example, it
cannot capture density oscillations near a wall or two-point
correlation functions of hard spheres. These features can be
approximated by various weighted-density approximations (WDA) in
statistical mechanics, which redefine the local reference densities c ̄i as
averages over the inhomogeneous densities ci with a suitable weight
function [189,244–248]. The non-local weighted densities are used in
place of the local densities in chemical potential expressions for
homogeneous systems, such as Eqs (27) and (28) for hard spheres,
and several prescriptions for the weight function are available. (See
Section 5.2.) Non-local MF-WDA models have been applied to
electrolytes to quantify excluded volume effects involving ions and
solvent molecules [195–197,249]. Recent Monte-Carlo simulations of
hard-sphere counterion profiles around a hard-sphere macro-ion
have shown that LDA can perform even worse than dilute-solution PB
theory, while WDA theories are able to fit the simulations well [250].
Even the simplest WDA, however, is a non-local continuum theory
and thus requires solving nonlinear integral equations for the
equilibrium densities, and integro-partial differential equations for
time evolution. Clearly, LDA-based partial differential equations are
much better suited for mathematical modeling, if they can capture
enough of the essential physics in a given situation.

3.1.4. Interpretation of the effective ion size
In order to apply our modified electrokinetic equations, we stress

that the effective diameter of a solvated ion in various MF-LDA
theories is not simply related to its bare atomic size and can exhibit
very different trends. Smaller bare ions tend to be more heavily
solvated and therefore have larger effective diameters [251]. Effective

Fig. 7. Modified Poisson–Boltzmann theory for a binary solution of charged hard spheres of diameter a=4 Å using the Carnahan–Starling (CS) equation of state (27). (a,b) The
diffuse-layer differential capacitance versus voltage, analagous to Figs. 5b and 6, respectively. (c) The counterion density profile in the diffuse layer at voltages zeΨD/kT=5, 10, 20, 40,
60, 80, and 100 and concentration of co=10 mM, analogous to Fig. 5(a). (d) The surface counterion density versus voltage at co=10 mM in the CS and Bikerman MPB models.
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solvated ion sizes depend on the size and charge of the ions, the
nature of the solvent, the ion concentration, and temperature — as
well as the mathematical models used in their definitions. Table 2
compares bare ionic diameters in crystalline solids to effective
solvated-ion diameters inferred from bulk properties [252] and
“hard-sphere” diameters inferred from viscosity measurements
[253], both in aqueous solutions. In these models used to interpret
experimental data, the hard sphere radius is essentially a collision
size, whereas the effective solvated radius is an effective size for
transport properties, similar to a Stokes radius. The effective solvated
radius is generally larger than the hard sphere value. Both greatly
exceed the bare diameter and exhibit roughly opposite trends with
the chemical identity of the ion.

What is the appropriate effective ion size a? Unlike the models
used to infer the various ion diameters in Table 2, our models seek to
capture crowding effects in a highly charged double layer, rather than
in a neutral bulk solution (albeit still using MF-LDA theories). As such,
it is important to think of crowded counterions of the same sign and
not a neutral mixture of oppositely charged ions (where our models
reduce to the standard model in typical situations with dilute
electrolytes). Below, we will argue that the crowding of like-charged
counterions in large electric fields leads to some different physical
effects, not evident in the neutral bulk liquid. Among them, we can
already begin to discuss solvation effects. In the bulk, ions cannot
reach very high concentrations due to solubility limits, but a
condensed layer of counterions cannot recombine and is unaffected
by solubility (except for the possibility of electron transfer reactions
near the surface). Moreover, like-charged ions cannot easily “share” a
solvation shell and become compressed to the hard-sphere limit, since
the outer surfaces of the polarized solvation shells have the same sign
and yield electrostatic repulsion. Therefore, we propose that the “ion
size” in our models is an effective solvated ion size at high charge
density, which is much larger than the bare crystalline and hard-
sphere ion sizes in Table 2 and may also exceed the solvated ion size
inferred from bulk transport models. This physical intuition is borne
out by the comparisons between theory and experiment below for
nonlinear electrokinetics, although we will not claim to reach any
quantitive molecular-level conclusions.

3.1.5. Comparison with experiments on blocking surfaces without ion
adsorption

To illustrate these points, in Fig. 8 we fit our simple mean-field
models to the experimental data of Valette [222] for the differential
capacitance of a standard electrochemical interface with negligible

surface adsorption of ions: aqueous KPF6 solution with single-crystal
Ag electrodes. These experiments and others were cited by Di Caprio
et al. [192,193] as motivation to develop mean-field hard-sphere
models for double-layer capacitance, but they concluded that “a
quantitative comparison with the experimental results is not possible
at this stage”. Here, we proceed naively to directly test the predictions
of two simple theories. To model the liquid electrolyte, we use the
simplest CS and Bikerman MPB models, each of which has only one
adjustable parameter, the effective ion size a. To model the surface
(and admittedly, to aid in the fitting), we introduce two standard
fitting parameters: (i) a “surface roughness factor” RS multiplying the
nominal electrode area, and (ii) a Stern-layer capacitance CS in series
with the diffuse-layer capacitance, ostensibly to model the dipolar
electrode solvation layer, since we already take into account the
crowding of finite-sized solvated ions. Unlike Valette [222], who
adjusts RS for each measurement, we choose a fixed value of RS=1.1
for all the data, since this parameter should reflect fixed surface profile
variations at scales larger than the inner part of the double layer
(where ion crowding occurs) and thus should not depend on
concentration or voltage. Perhaps more seriously, we assume a
constant Stern capacitance CS for simplicity, in order to highlight what
nonlinear trends can be captured by the MPB liquid model alone. This
is rather different from the standard fitting procedure in electro-
chemistry dating back to Grahame [155,227], which essentially de-
fines the compact-layer capacitance empirically to account for all

Table 2
Comparison of the bare ion diameter in a crystalline solid, dx, with the effective solvated
diameter ds in water from bulk transport measurements (akin to a Stokes diameter) [252]
and the “hard-sphere” diameter (akin to a collision cross section) inferred from viscosity
data dv in dilute aqueous solution [253] for some common ions used in nonlinear
electrokinetic experiments.

The figure depicts an ion with its effective hard-sphere and solvation shells, in red and
blue respectively. Note that the effective sizes ds and dv in solution are much larger than
the bare ion size dx and exhibit different trends. In the text, we argue that the appropriate
effective ion size a in our models of highly charged double layers may be approximated
by ds, and possibly larger. (For interpretation of the references to color in this table legend,
the reader is referred to the web version of this article.)

Fig. 8. Fitting of simple MF-LDA models of finite-sized ions to the experimental data of
Valette (Fig. 3 of Ref. [222]) for the differential capacitance of the aqueous KPF6| Ag
double layer. For all curves, the electrode area is scaled by a surface roughness factor
R=1:1, and the theoretical diffuse-layer capacitance CD from Eq. (19) is taken in series
with a constant Stern-layer capacitance CS=125 µF/cm2. The only other adjustable
parameter in each panel is the effective solvated ion size a. In (a), we use a hard-sphere
radius of a=4 Å in the Carnahan–Starling model (Eq. (27)), while in (b) we use a lattice
spacing of a=11 Å in Bikerman's MPB model (Eqs. (20)–(25)).
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effects not predicted by the dilute-solution PB model of the diffuse
layer.

First, we consider the CS excess chemical potential (Eq. (27)) for a
hard-sphere liquid in the general MPB formula for the differential
capacitance (Eq. (19)). As shown in Fig. 8, a reasonably good fit is
obtained using CS=125 μF/cm2 and an effective ion diameter of
a=4 Å, comparable to the various ion sizes (in particular for K+)
inferred from completely different measurements. Near the point of
zero charge and in dilute solutions (<100 mM), the modified theory
reduces to the Gouy–Chapman formula for a dilute solution (Eq. (10)),
and we obtain an excellent fit of the data, consistent with volumes
of prior work in electrochemistry [155,188,227,228]. At the highest
salt concentration (c0=100 mM), the theory underestimates the
capacitance, although this is could be improved by adjusting CS for
each salt concentration, as is commonly done. Of course, it is more
interesting for us to focus on the regime of large voltage, where ion
crowding occurs in the model. From Fig. 8(a) it is clear that the CS
model cannot fit the fairly sudden decay of CD beyond the maximum,
although it predicts the qualitative loss of bulk salt concentration
dependence (due to the dominance of near-surface crowding effects,
as described above). This is due to the gradual onset of crowding
effects for hard spheres in large fields, illustrated earlier in Fig. 7.

Next, we fit Bikerman's MPB model to the same experimental data
by fixing the parameters of the surface, RS=1.1 and CS=125 μF/cm2,
and varying only the ion-size parameter a. We might expect a worse
fit because the model (based on a lattice gas) has less statistical
justification in the liquid state, but the results in Fig 8(b) show a
significant improvement in fitting the voltage dependence, due to the
more sudden onset of steric effects with increasing voltage versus the
CS model (Fig. 7). Overall, Bikerman's model provides an impressive
fit to the concentration and voltage dependence of CD across the
entire experimental range, considering that it has only one adjustable
parameter a to describe the liquid (and we added twomore, RS and CS,
for the surface).

On the other hand, the excellent fit by Bikerman's model in Fig. 8
(b) is achievedwith a surprisingly large value for the effective ion size,
a=1.1 nm, at least twice the typical solvated ion sizes in the bulk
liquid from Table 2. Interestingly, very similar large values of a result
from fitting Bikernan's model to completely different experiments on
ACEO pumping by electrode arrays [67], as discussed below. These
results may point to the correlation effects at high charge density or
other neglected effects (see below), which are fortuitously fitted well
by Bikerman's model with an enlarged ion size.

It would be interesting to extend our capacitance analysis to
electrolytes with little ion adsorption on Au surfaces [224–226], since
gold surfaces are widely used in experimental studies of induced-
charge electrokineticphenomena (including most of the entries
Table 1). Given the successful fit in Fig. 8(b), it would also be
interesting to perform ICEO experiments using silver surfaces and
KPF6 solutions or other electrolytes with similar capacitance behavior,
showing little surface adsorption of ions. By taking the differential
capacitance from fitting independent measurements, one can directly
test other assumptions in themodel, such as the HS slip formula (or its
modifications, derived below).

3.1.6. Dielectric response in a concentrated solution
We close our discussion of mean-field models of ion crowding by

briefly considering nonlinear dielectric response. We have already
mentioned that Bikerman, in his pioneering paper on effects of finite
ion size [59], also modeled the polarization of solvated ions by the
local electric field, in terms of induced dipoles. A related effect is
the polarization of a Stern monolayer of solvent dipoles on a metal
electrode, which plays a major role in classical models of the compact
inner layer [188,228]. This approach was extended by Macdonald
and Kenkel [87,216,217] to also describe the diffuse part of the
double layer by postulating discrete layers of finite-sized dipoles

separating layers of ions, where each layer is treated by a mean-field
approximation.

Closer in spirit to the continuous MF-LDA theories of this section,
Abrashkin, Andelman and Orland [254] recently derived a “Modified
Dipolar PB” equation for a symmetric binary electrolyte by consider-
ing an equilibrium lattice gas of bothions and dipoles of (the same)
finite size, thus generalizing Bikerman's model (or its many
reincarnations cited above, including Borukhov, Andelman, Orland
[76]) in a natural way to allow for a variable dipole density. In our
notation, their dipolar MPB equation takes the form

ε0ψ″ +
cdp0
a3

Gðp0ψ′=kTÞ
D

� �
′
=

2c0ze
a3

sinhðzeψ= kTÞ
D ð30Þ

where ε0 is the vacuum permittivity, cd is the bulk density of dipoles
of moment p0 on a lattice of spacing a given by cd+2c0=a−3, where
c0 is the bulk salt concentration; the second term describes solvent
polarization as a generalization of the classical expression for a dilute
solution of dipoles (below), where the function

GðẼÞ = sinhẼ

Ẽ
LðẼÞ = coshẼ

Ẽ
− sinhẼ

Ẽ
2 ð31Þ

relates the nonlinear polarization to the Langevin function L(x)=
coth(x)−1/x, which arises in the limiting probability distribution of a
sum of independent, randomly oriented unit vectors (also known as
Rayleigh's randomwalk [255]); the third term is the free charge density,
where the familiar PB expression (Eq. (10)) appears in the numerator;
the effect of volume constraints enters through a generalized “Bikerman
factor”,

D = 2c0cosh
zeψ
kT

� �
+ cd

sinhðp0ψ′
= kTÞ

p0ψ
′ = kT

ð32Þ

which rescales both the solvent polarization and the free charge density.
In the limit of linear dielectric response, p0ψ′/kT→0, the dipolar MPB
Eq. (30) reduces to Bikerman'sMPBEq. (22), where the permittivity has
the effective bulk value

εb = ε0 +
cdp

2
0

3kT
: ð33Þ

In the limit of point-like ions and dipoles a→0, Eq. (30) reduces to
the PB equation with the classical field-dependent permittivity,

εðEÞ = ε0 +
cdp0
E

G p0E
kT

� �
ð34Þ

It would be interesting to develop this model further, test it against
experiments, and eventually apply it to electrokinetics. In its present
form, however, the dipolar MPB theory defies the common wisdom in
electrochemistry by predicting a large increase in permittivity in the
inner part of the double layer, due to a rise in the dipole density near the
surface [254]. Perhaps this discrepancy is due to the breakdown of the
LDA [250] already noted above, and different predictions might result
from non-local WDA theories with dielectric relaxation [195–197,249].

Based on half a century of fitting experimental capacitance data
(with admittedly simple models), electrochemists have come to
believe that that the local dielectric constant of an electrolyte is
generally reduced in the inner part of the double layer, due to the
alignment of solvent dipoles in the large local field (“dielectric
saturation”) as in Eq. (34); more precisely, in aqueous solutions, the
compact Stern layer (defined as the inner part of the double layer not
described by PB theory) is inferred to have an effective permittivity εS
smaller than that of bulk water εb by roughly an order of magnitude,
e.g. reduced from εb=78ε0 to εS=6ε0 [155]. This conclusion comes
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mostly from fitting compact layer models with nonlinear dielectric
response [188,227,228], but also from some models assuming similar
nonlinear dielectric properties in the diffuse layer.

Grahame [256] was perhaps the first to analyze the structure of the
diffuse layer with a field-dependent permittivity, using PB theory and
the empirical form

εðEÞ = εS +
εb−εS

ð1 + ðE=EsÞ2Þ
m ð35Þ

where m is an empirical exponent, conjectured to be in the range
0<m<2 to avoid overly sudden onset of dielectric saturation above
the characteristic field strength Es. For any permittivity model such as
Eq. (35), where dielectric saturation sets in above a characteristic field
strength Es, the importance of variable permittivity in regions of
diffuse charge is measured by the dimensionless parameter

Ẽs =
Es

ðkT = zeλDÞ
= Es

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εb

2c0kT

r
=

ffiffiffiffiffiffiffiffiffiffi
ps

c0kT

r
ð36Þ

which compares the critical electric field Es to the characteristic
diffuse-layer field (at low voltage), E0=kT/zeλD, where the screening
length λD is defined using the bulk permittivity εb. Equivalently, the
dimensionless parameter E ̃s2 compares the critical electrostatic
pressure for dielectric saturation, ps =

1
2 εbE

2
s , to the bulk osmotic

pressure, c0kT. For Ẽs≫1, the diffuse layer maintains a constant
permittivity for typical voltages of order kT/ze.

To study the effects of nonlinear dielectric response in the present
context, we extend Grahame's analysis by deriving the differential
capacitanceof thedouble layer for anyMPB theorywith anarbtiraryfield-
dependent permittivity ε(E). Given the (non-Boltzmann) equilibrium
charge density profile ρ(ψ), we use Poisson's equation (in the normal
coordinate),−(ɛψ′)′=ρ(ψ), towriteρ(ψ)ψ′=h(E)E′, where E=−ψ′and
h(E)=ε′(E)E2+ε(E)E. Next, we integrate from the bulk (ψ=0, E=0) to
the inner edge of the diffuse layer (ψ=ΨD, E=ED) to obtain

HðEDÞ≡∫ED
0 hðEÞdE =

1
2

εðEDÞE2D + ∫ED
0 ε′ðEÞE2dE

� �
= ∫0

ΨD
ρðψÞdψ = peðΨDÞ

ð37Þ

The electrostatic pressure at the surface pe(ΨD) must be non-
negative, as is the function H(ED) from its definition since ε>0. There-
fore, there are an even number of nonzero solutions to the algebraic
equation H(ED)=pe(ΨD), typically two for a monotonic ɛ(E), and we
select the physical solution by requiring that ED and ΨD have the same
sign. (It can be shown that a unique solution exists if h(E)/E=ε+ε′E>0
for all E.) To derive the differential capacitance CD(ΨD), we integrate
Poisson's equation across the diffuse layer (i.e. apply Gauss' law) to
obtain the total charge density, q=−ε(ED)ED. Inserting ED(ΨD) from Eq.
(37), we finally obtain a general formula for the differential capacitance
of the diffuse layer,

CDðΨDÞ = − ρðΨDÞ
H−1ðpeðΨDÞÞ

ð38Þ

valid for any ρ(ψ) and ε(E), which reduces to Eq. (19) in the case of a
constant permittivity, ε=εb.

It is instructive to consider the Grahame's model (Eq. (35)) with
m = 1

2, since it permits an analytical solution for CD. In this case, we
obtain the function

HðEÞ
E2s

=
1
2
εS

E
Es

� �2
+ ðεb−εSÞ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

E
Es

� �2
s24 35 ð39Þ

which can be inverted analytically by solving a quadratic equation for
E2, taking a square root, and choosing the physical solution as

described above. Substitution into Eq. (38) then yields an explicit
formula for CD(ΨD) in terms of the charge density ρ(ΨD) and
electrostatic pressure pe(ΨD) at the surface, valid for any MPB
model with field-dependent permittivity ε(E). For example, in
Bikerman's model, these functions are given by

ρðψÞ = − 2zec0 sinh ðzeψ= kTÞ
1 + 2ν sinh2 ðzeψ= 2kTÞ and

peðψÞ =
c0kT
ν

ln 1 + 2ν sinh2 zeψ
2kT

� �� � ð40Þ

where PB theory corresponds to the limit v→0.
In Fig. 9, we show the effects of dielectric saturation on the diffuse-

layer differential capacitance, using our analytical formula for
Bikerman'sMPB theory. In all cases, the capacitance shows a transition
from low-field dependence with ε≈εb to a very similar high-field
dependence with ε≈εS, which differs only by a multiplicative factor
εS/εb. The transition occurs when the electric field strength at the
surface reaches Es. Applying PB theory for low voltages, this happens at
a transition voltage of roughly Ψ̃D=zeΨD/kT=2sinh−1(Ẽs/2), consis-
tent with the plots in Fig. 9. For PB theory, shown in Fig. 9(a), upon
increasing the voltage, dielectric saturation leads to a fairly sudden
decrease in CD, followed by another exponential increase,
corresponding to the PB formula (Eq. (10)) with εb replaced by εS.

Fig. 9. The effect of dielectric saturation on the differential capacitance of the diffuse
layer, given by Eqs. (35), for (a) PB theory (ν=0) and (b) Bikerman's MPB theory with
ν=10−4. The field-dependent permittivity ε(E) given by Grahame's model (Eq. (38)–
(40)) withm=1/2. The characteristic field strength for dielectric saturation Es is scaled

to E0/kT=zeλD, where λD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εbkT = 2ðzeÞ2c0

q
is the screening length based on the bulk

permittivity.
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This physical interpretation of dielectric saturation followed by
“electro-constriction” is also contained in classical models of the
Stern layer, which can lead to excellent fits of capacitance data for
interfaceswith little surface adsorption, such as NaF at amercury drop,
although only for positive polarization [188,228,257]. Perhaps the
asymmetry with negative polarization not captured by PB theory with
dielectric saturation, which is also seen in NaF on silver surfaces
[222,223], and may be better captured by asymmetric MPB models
with different ion sizes. Here, we do not attempt such fitting, but
simply discuss our exact result for dielectric saturation in Bikerman's
MPB theory with one ion size.

As shown in Fig. 9(b), the shape of the theoretical capacitance
curves depends on whether dielectric saturation occurs at lower or
higher voltage than ion crowding. If dielectric saturation sets in first,
then the transition εb→εS leads to second small peak at low voltage,
separate from the main peak corresponding to ion crowding; if
crowding sets in first, then dielectric saturation only causes the
capacitance to drop more quickly at higher voltage. Overall, the effect
of dielectric saturation is similar to that of increasing the ion size. As
noted below and in Ref. [67], this effect may contribute to the
artificially large ions sizes inferred from Bikerman's model without
dielectric saturation, and allow more realistic, smaller ion sizes to be
used.

It is interesting that so much structure in the differential
capacitance can be predicted by simple mean-field models of the
diffuse layer, without introducing a compact layer with additional
parameters to fit large voltage behavior. Indeed, various modified
models of the diffuse layer already mimic the formation of a compact
layer with increasing voltage, as ions become crowded in an inner
condensed layer where the local permittivity drops. The “Stern plane”
or “outer Helmholtz plane” effectively expands and contracts in
response to the applied voltage, in ways that may be captured by the
same continuum equations describing the diffuse layer. Below in
Section 4, we will argue that the viscosity increases in the condensed
region, and thus the “shear plane” also effectively moves in response
to the voltage.

3.2. Implications for nonlinear electrokinetics

The cutoff and eventual decrease of diffuse-layer capacitance at
large voltages for blocking surfaces (without Faradaic reactions or
adsorption of ions) is robust to variations in the model and has
important consequences for nonlinear electrokinetics. Here, we
provide two examples of induced-charge electrokinetic phenomena,
where any MPB theory with volume constraints is able to correct
obvious failures of PB theory. As shown above, dielectric saturation
only enhances these effects, but as a first approximation we assume
constant permittivity ε=εb in our calculations. This is also consistent
with theoretical estimates [63,64] and atomistic simulations [105] (at
low voltages), which suggest that dielectric saturation in the diffuse
layer is weak compared to other effects. Our results suggest that
incorporating crowding effects into the electrokinetic equations may
be essential in many other situations in electrolytes or ionic liquids,
whenever the voltage or salt concentration is large.

3.2.1. High-frequency flow reversal of AC electro-osmosis
Steric effects on the double-layer capacitance alone suffice to

predict high-frequency flow reversal of ACEO pumps, without
invoking Faradaic reactions. Representative results are shown in
Fig. 10, and the reader is referred to Ref. [67] for amore detailed study.
Numerical simulations of a well studied planar pump geometry
[34,38,40,41] with the standard model in the linearized low-voltage
regime [11,12,35,44] predicts a single peak in flow rate versus
frequency at all voltages. If the nonlinear PB capacitance (Eq. (10)) is
included [42,43], then the peak is reduced and shifts to much lower
frequency (contrary to experiments), due to slower charging dynam-

ics at large voltage [129,131]. As shown in Fig. 10, the BF capacitance
for Bikerman's MPBmodel of steric effects (Eq. (25)) reduces the peak
shift and introduces flow reversal similar to experiments.

This result is the first, and to our knowledge the only, theoretical
prediction of high-frequency flow reversal in ACEO. The physical
mechanism for flow reversal in our model can be easily understood as
follows: At low voltages, the pumping direction is set by the larger
electrode, which overcomes a weaker reverse flow driven by the
smaller electrode. At large voltages, however, themore highly charged,
smaller electrode has its RC charging time reduced by steric effects, so
at high frequency it is able to charge more fully in a single AC period
and thus pump harder than the larger electrode.

As shown in Fig. 11, the MPB model is able to reproduce ex-
perimental data for ACEO pumping of dilute KCl rather well, including
the dependence on both voltage and frequency. Through Fig. 11, we
compare simulations to experimental data at two different concen-
trations. In the left columnwe show the experimental data and on the
right we show the corresponding simulations using Bikerman's MPB
theory for the double later capacitance. As in experiments, the flow
reversal arises at 10–100 kHz frequency and high voltage, without
shifting appreciably the main peak below 10 kHz frequency (which is
hard to see in experiments at high voltage due to electrolysis). This is
all the more remarkable, since the model has only one fitting
parameter, the effective ion size a, and does not include any additional
Stern-layer capacitance. As seen in Fig. 11(a) and (b), the magnitude
of the flow is over-estimated by a roughly a factor of two (Λ≈0.4), but
this is much better than in most predictions of the standard model (in
Table 1), which fail to predict flow reversal under any circumstances.

In spite of this success, we do not claim a complete understanding
of theflow reversal in ACEO. Onedifficultywith these results is that the

Fig. 10. (a) One period of an asymmetric array of planar microelectrodes in an ACEO
pump studied in experiments [34,38,40,41] and simulations with the low-voltage
model [34,35,42,44] with W1=4.2 µm, W2=25.7 µm, G1=4.5 µm, and
G2=15.6 µm. (b) The dimensionless flow rate versus frequency for different models.
In the low-voltage limit V≪kT/e=25 mV, low-voltage models predict a single peak
(black dash–dot line). For a typical experimental voltage, V=100kT/e=2:5 V, PB
theory breaks downs and its capacitance (Eq. (10)) shifts the flow to low frequency (red
dashed line) and Stern capacitance is needed to prevent the capacitance from diverging.
Accounting for steric effects (Eq. (25)) with ν=0:01 (solid blue line) reduces the shift
and predicts high frequency flow reversal, similar to experiments [38,41]. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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effective ion size in Bikerman's model needed to fit the data is
unrealistically large. For the simulations to reproduce the experiments
we seem to typically require v=0.001–0.01, which implies an overly
small bulk ion spacing l0=(2c0)−1/3=ν−1/3a, or overly large ion size
a. For example, for the c0=0.1 mM KCl data shown in Fig. 11(a) and
(b), we use a=4.4 nm in the model, which is clearly unphysical. As
noted above and shown in Fig. 7, this can be attributed at least in part
to the significant under-estimation of the steric effects in a liquid by
the simple lattice approximation behind Bikerman's model.

Indeed, hard-sphere liquid models tend to improve the agreement
between the simulation and the experiment, and this increases our
confidence in the physicalmechanism of ion crowding at large voltage.
Using the CSMPBmodel formonodisperse charged hard spheres in the
same simulations of ACEO pumping allows a smaller value of the ion
size. For example, the 0.1 mM KCl shown in Fig. 11(a) can be fit by
using a=2.2 nm (instead of 4.4 nm for Bikerman), and themagnitude
of the velocity also gets closer to the experimental data (Λ≈0.7).
Assuming a reduced permittivity in the condensed layer could further

yield a≈1 nm (≈10 atomic diameters) [67]. This value is more
realistic but still considerably larger than the bulk hydrated ion sizes in
KCl andNaCl. For the commonly used electrolytes in ICEO experiments
(see Table 1), the cation-anion radial distribution function from
neutron scattering exhibits a sharp hard-sphere-like first peak at 3 Å,
although the water structure is strongly perturbed out to the second
neighbor shell (up to 1 nm), as if under electrostriction. Anion-anion
correlations are longer ranged and softer, with peaks at 5 Å and 7 Å,
but unfortunately such data are not available for crowded like charges
within the double layer at high voltage. Perhaps under such conditions
the effective hard-sphere radius grows due to strong correlations,
beyond the mean-field approximation.

We have already noted that similar over-sized ionic sizes are
needed to fit electrochemical capacitance data with MPBmodels. (See
Fig. 8, where a=1.1 nm in Bikerman's model yields an excellent fit of
capacitance data for KPF6|Ag.) In the case of hard-sphereMPBmodels,
DiCaprio et al. have likewise concluded that, in spite of good quali-
tative predictions, effective sphere radii over 1.2 nm are required to

Fig. 11. (a) Velocity of ACEO pumping in 0.1 mMKCl by a planar electrode array around amicrofluidic loop versus frequency at different voltages from the experiments of Studer et al.
[38]. (b) Simulations by Storey et al. [67] of the same flow using the standardmodel with Bikerman'sMPB theory (Eq. (25)) for the double-layer differential capacitancewith only one
fitting parameter, a=4.4 nmor ν=0.01. Countour plots of ACEOpumping velocity contours in frequency-voltage space for (c) 0.1 mMand (e) 1.0 mMKCl fromexperiments of Studer
et al. [38], compared to simulations under the same conditions usingBikerman'sMPB theorywithν=0.01 in (d) and (f), respectively. Red indicates forwardflowand blue reverseflow.
The solid contour lines show positive velocity contour and the dashed show reverse flow. The heavy solid contour is the zero velocity contour in the simulations. (c, e) Reproduced
by permission of The Royal Society of Chemistry. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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fit capacitance data [192]. The fact that we reach similar conclusions
in the completely different context of ACEO pumping suggests
that various neglected effects, in addition to dielectric saturation
(Section 3.1.6), may be extending the apparent scale for crowding
effects in MPB models, as discussed below.

Along with overly large ion sizes, another difficulty is that the
simulated results in Fig. 11(d) and (f), are reproducing data from two
different concentrations using the same value of v=0.01 in Biker-
man's MPB theory. Since the concentration varies between the two
experiments by a factor of 10, the simulations are using different
values of the ion size, a: 4.4 nm at 0.1 mM and 2 nm at 1 mM.
Physically, it would make sense to use the same ion size in the model
regardless of concentration. If we use the same ion size to fit data from
both concentrations, the comparisonworsens significantly, represent-
ing one of the key difficulties of fitting model to experimental data.

The simple steric models (without dielectric saturation) can thus
provide good qualitative agreement between the measured and
predicted frequency responses. However, they cannot predict the
proper frequency response as we change concentration and hold the
ion size fixed. In the model calculations, the frequency response at
high voltage always shows regions of forward and reverse flow. As
concentration changes, features in the modeled frequency response
(e.g. forward and reverse peaks, crossover frequency) shift along the
frequency axis as the RC charging time changes with concentration.
Since the capacitance of the double layer is insensitive to bulk
concentration at high voltage (see Fig. 6), the RC charging time
depends on concentration through the bulk resistance. Thus the
location of peaks on the frequency response should vary approxi-
mately linearly with concentration; experiments at high voltage
indicate a much weaker dependence. The difficulty in matching the
frequency response of the experiments to the simulations may be due
to the neglect of Faradaic reactions and other effects discussed below.

At least at a qualitative level, changes in the double-layer charging
time due to crowding effects likely also play a role in the sensitivity of
ACEO flow to the solution chemistry. For example, flow reversal in our
models is related to an ion-specific scale for crowding effects. In cases
of asymmetric electrolytes, there may also be two different frequency
responses at large voltages, one for positive and another for negative
charging of the double layer. Perhaps this effect is responsible for
the double-peaked frequency spectrum of ACEO pumping in water
with non-planar electrodes at high voltage [40]. In multicomponent
electrolytes, the situation is even more complicated, since large
voltages can induce segregation of different counterions, opposite to
the PB predictions, e.g. with smaller ions condensing closest to the
surface, even if the larger ions have high bulk concentration or carry
more charge. These effects can be predicted by multi-component
hard-sphere MPB models [62,192,193] consistent with x-ray reflec-
tivity measurements on mixed double layers [258,259], so there is
hope that applying such models in our weakly nonlinear formalism
for ACEO may also be fruitful.

3.2.2. Field-dependent electrophoretic mobility
In the classical theory of electrophoresis [6,8], the electrophoretic

mobility bep of a homogeneous particle with thin double layers is a
material constant, given by the Smoluchowski's formula,

bep = b =
εbζ
ηb

: ð41Þ

In particular, the electrophoretic mobility does not depend on the
background field Eb or the shape or size of the particle. These are
partly consequences of the assumption of fixed surface charge, or
constant zeta potential. For polarizable particles, the theory must be
modified to account for ICEO flows [19], which produce a shape-
sensitive ICEP velocity scaling as U∝εbREb2/ηb, where R is the particle
size [15,23,24]. Transverse ICEP of metallo-dielectric Janus particles in

AC fields has recently been observed in experiments [25] up to fairly
large induced double-layer voltages EbR≈15kT/e.

ICEP theories aimed at AC fields tend to assume zero total charge,
but ICEO flows can also alter the DC electrophoretic mobility of a
charged, polarizable particle. In the limit of weak fields Eb≪kT/eR,
A. S. Dukhin first showed that an ideally polarizable sphere with
equilibrium zeta potential ζ0 and radius R has a field-dependent
electrophoretic mobility,

bepðEbÞ∼
εb
ηb

ζ0−
3
8
C′
Dðζ0Þ

CDðζ0Þ
ðEbRÞ2 + …

 !
ð42Þ

if the diffuse-layer differential capacitance is voltage dependent [65].
(Note that field-depedent mobility is a general phenomenon [66] that
can also arise for fixed-charge particles due to surface conduction
[111] or convection [110].) This general correction has only been
applied in the context of PB theory, Eq. (10), which predicts decreased
mobility, Δbep<0 since dCD/dψ>0 for ζ0>0. It has also recently been
derived as the small field limit of a general PB analysis for thin double
layers by Yariv [145].

The basic physics of this nonlinear effect is illustrated in Fig. 12(a–b).
If thedouble-layer voltage varies enough to cause spatial variations in its
differential capacitance, then counterions aggregate with varying
density (per area) around the surface of the particle upon polarization
by the applied field, and this nonlinearity breaks symmetry in polarity
with respect to themean voltage. For example, if the positively charged
part of the diffuse layer (relative to the mean charge) is less dense (e.g.
due to larger or less charged cations than anions), it will cover more of
the surface than the negatively charged part; cations are then more
likely to dominate in regions of large tangential field near the equator
and thusmakeanenhanced contribution to the electrophoreticmobility
of the particle, regardless of its true surface charge.Other effects can also
be important (see below), but this one is particularly sensitive to MPB
models for the double layer.

Dukhin's formula (Eq. (42)) can be derived from the general
weakly nonlinear formalism of Refs. [19,23] for ideally polarizable
particles with thin double layers (yielding the same result as Ref.
[65]). In the low-frequency or DC limit, the background field Eb causes
a nonuniform polarization of the double layer around the particle to
screen the bulk electric field E=−∇ϕ, which thus solves the Laplace's
equation ∇2ϕ=0 with the effective boundary condition, n̂·E=0. If
we let ϕ0 denote the induced potential of the particle, relative to the
background applied potential, then Δϕ(r)=ϕ0−ϕ(r) is the non-
uniform voltage across the double layer, which enters the electro-
osmotic slip formula, either the HS formula (Eq. (5)) or one of its
generalizations below. For a sphere with HS slip, the electrophoretic
mobility is simply bep=εbϕ0/ηb.

The crucial step is to determine the particle's potential ϕ0, after
polarization of the double layers, which generally differs from its
initial equilibrium value, ζ0, due to nonlinearity of the charging
process. (This phenomenon, first noted by Dukhin [65], was over-
looked in recent ICEO papers [15,16,23,24].) Using the mathematical
formalism of Ref. [23], the potential of the particle must adjust to
maintain the same total charge Q, which can be related to the
differential capacitance of the double layer as follows:

Q = ∮ ∫ζ0
0 CDðψÞdψ

� �
dA = ∮ ∫ϕ0−ϕðrÞ

0 CDðψÞdψ
� �

dA; ð43Þ

for a given initial zeta potential ζ0, bulk polarization ϕ(r), and (total)
double layer differential capacitance, CD(ψ). For simplicity, we assume
the diffuse layer carries all the double-layer voltage, but a compact Stern
layer can be easily included in Eq. (43) by replacingΔϕwithΔϕ/(1+δ).
Regardless of the particle shape, the assumption of a uniform, constant
CD implies ϕ0=ζ0=Q/(CDA) (where A is the surface area), and thus no
impact of polarization on the electrophoretic mobility in the case of a
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sphere [23].With a nonlinear differential capacitance, however, Eq. (43)
is a nonlinear algebraic equation for ϕ0, and thus bep, in terms of ζ0 and
Eb. In the geometry of a sphere, Dukhin's formula (Eq. (42)) can be
derived by asymptotic analysis in the limit of small fields, Eb≪kT/eR for
any choice of CD(ψ) [19], and for some models exact solutions and the
large-field limit can also be derived [260].

Using this mathematical formalismwith our MPBmodels, we predict
that steric effects in the electrolyte can significantly influence themobility
of polarizable particles in large applied fields and/or highly concentrated
solutions. Here,we focus onnewqualitative phenomenapredicted by the
theory. (More details can be found in Ref. [260].) From Fig. 5 and Eq. (25),
we see that the mobility of a highly charged particle |ζ0|≫kT/e can
increase with the field squared in Dukhin's formula (Eq. (42)) since dCD/
dψ<0, which is the opposite prediction of PB theory. Themobility is also
clearly sensitive to the ionic species through CD.

The discrepancy with PB theory becomes more dramatic in a large
applied field, Eb≫ kT/eR, even if the particle is not highly charged
|ζ0|≈ kT/e. Previous authors have only considered weak fields [65,66],
so it was apparently not noticed until Refs. [145,260] that PB theory
(Eq. (10)) leads to a surprising prediction, shown in Fig. 12(c): The
mobility of a charged, ideally polarizable, spherical particle vanishes
exponentially in the limit Eb≫kT/eR (=100 V/cm for R=2.5 μm),

bPBep∼
3εb
ηb

sinh
zeζ0
2kT

� �
EbRe

−3zeEbR=4kT ; ð44Þ

which is the large-voltage limit of an exact solution for the ICEP
mobility of an ideally polarizable sphere with thin double layers in PB
theory,

bPBep = 2
kT
ze

sinh−1 3zeEbR
4kT

sinhðzeζ0 = 2kTÞ
sinhð3zeEbR= 4kTÞ

� �
ð45Þ

The mechanism for this seemingly unphysical effect is the massive
overcharging of the diffuse layer in PB theory at large voltages in
Fig. 5(b), which causes the anti-symmetric induced charge (not
causing motion) to overwhelm the symmetric pre-existing charge
(giving rise to mobility). We view this prediction as another failure
of the PB theory, since we are not aware of any evidence that po-
larizable particles lose their electrophoretic mobility so strongly in
such fields, which are routinely applied in electrophoresis experi-
ments. (Note that kT/eR=100 V/cm for a 5 μm diameter particle at
room temperature.) The PB prediction of vanishing mobility is closely
tied to the unphysical pile-up of point-like ions near a highly charged
surface in PB theory.

Indeed, the situation is completely different and more physically
reasonable in any mean-field theory with finite-sized ions, regardless
of the model. Using our general MPB formula (Eq. (19)), the mobility
in large fields Eb≫kT/eR can be expressed as

bepe3εbEbRqðζ0Þ2ηbq
3
2 EbR
	 
 ð46Þ

Fig. 12. Field-depenent electrophoretic velocity U of an ideally polarizable, charged sphere of radius Rwith thin double layers in a background field Eb. (a) In small fields, themobility
bep=U/Eb is set by the uniformly distributed double-layer charge. (b) In large fields, Eb≫kT/eR, the dipolar induced charge overwhelms the pre-existing charge and alters bep, if
cations and anions do not condense at the same density and must redistribute to conserve total charge. (c) In PB theory, the unphysical collapse of point-like ions to the surface
causes exponential decay of bep(Eb) via Eq. (44); finite-size effects in Bikerman's MPB model (Fig. 5) prevent this decay and lead to the opposite trend: increase of mobility in large
fields via Eq. (47).
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and typically grows as bνep∝
ffiffiffiffiffi
Eb

p
. For example, in Bikerman's model

the BF formula (Eq. (25)) yields

bνepe εbηb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3νkTEbR

4ze

r
: ð47Þ

As shown in Fig. 12(c), the mobility bep
v rapidly decreases in weak

electric fields until the PB theory breaks down, and then gradually
increases in larger fields [260]. Physically, steric effects prevent
overcharging of the double layer in the PB theory, thus preserving the
asymmetry of the initial charge distribution.

A related general consequence is that asymmetry in the electro-
lyte, e.g. ions of different effective sizes, can affect a particle's elec-
trophoretic mobility. Remarkably, an uncharged particle can acquire a
nonzero mobility in an asymmetric electrolyte in a large applied field
(ζ0=0 but bep≠0). An asymmetric field-dependence of the double-
layer capacitance is enough to predict such exotic effects on very
general grounds.

As a first approximation for the weakly nonlinear regime using
MPB theory, we simply postulate two different (homogeneous) ion
sizes a± for positive and negative polarization of the diffuse layer,

CDðΨDÞ = CDðΨD;ν = νþÞ for ΨD > 0
CDðΨD;ν = ν−Þ for ΨD < 0

�
ð48Þ

where ν±=2a±3 c0 (or Φ± for hard sphere models). This may seem
like a crude approximation, but it is quite accurate for a binary
electrolyte at large voltages since the diffuse layer mostly contains
counterions of one sign; at low voltages, where all species are present
in a dilute mixture, the ion sizes play no role. Inserting Eq. (48) into
Eq. (43) yields the results shown in Fig. 13 for the (weakly nonlinear)
mobility of a charged, ideally polarizable sphere in a DC field.
Interestingly, at large voltages, positive or negative, the mobility
tends to a |E| scaling, set by the ratio a+/a−, independent of the total
charge of the particle Q. We also see that an uncharged particle with
Q=0 can still have a nonzero mobility, once nonlinear charging of the
double layers sets in.

We stress that all the calculations of this paper consider theweakly
nonlinear limit of thin double layers, where the bulk concentration
remains uniform and surface conduction is neglected. As such, the
trends we predict for PB and MPBmodels are meaningful at moderate
voltages, but may need to be significantly modified at large voltages
for strongly nonlinear dynamics. Moreover, even in the weakly
nonlinear regime, we will now argue that at least one more physical
important effect may need to be considered.

4. Viscoelectric effect in a concentrated solution

4.1. Mean-field local-density theories

4.1.1. Modified Helmholtz–Smoluchowski slip formulae
There is a considerable literature on electrokinetic phenomena

at highly charged surfaces with large (but constant) zeta potential
[5,6,10,112,113]. In this context, it is well known that the linear elec-
trophoretic mobility departs from Smoluchowski's formula at large
surface potentials, Ψ>Ψc, and decreases at large voltage, due to
effects of surface conduction (large Dukhin number). Using the PB
theory for thin double layers, Dukhin and Semenikhin [112] derived a
formula for the electrophoretic mobility of a highly charged, non-
polarizable sphere, which was famously verified by O'Brien andWhite
[261] via numerical solutions of the full electrokinetic equations for a
dilute solution. This established the mathematical validity of the
formula, but in this article we are questioning the physical validity of
the underlying equations at large induced voltages and/or high salt
concentrations.

As described in Section 2, recent experiments on induced-charge
electrokinetic phenomena reveal a strong decay of electro-osmotic
mobility with increasing salt concentration at highly charged surfaces,
which cannot be explained by the standard model, based on the HS
formula (Eq. (5)), even if corrected for strongly nonlinear effects
perturbing the salt concentration. Continuum electrohydrodynamics,
however, does not require the HS formula, even for thin double layers,
but instead provides a general expression for the electro-osmotic
mobility [6],

b = ∫ΨD
0

ε
η
dΨ ð49Þ

as an integral over the potential differenceΨ entering the diffuse layer
from the bulk. This allows us to derive “modified Helmholtz–
Smoluchowski” (MHS) formulae for b(ΨD, c0, …) based on general
microscopic electrokinetic equations.

The standard way to interpret electrokinetic measurements is in
terms of the effective zeta potential,

ζeff =
bηb

εb
; ð50Þ

Fig. 13. Electrophoretic mobility bep of an ideally polarizable sphere of total charge Q in an
asymmetric binary z: z electrolyte, scaled to bep0 =εbkT/zeηb, in theweakly nonlinear limit of
thin double layers. The case of an uncharged particle Q=0 is compared to those of total
charge Q=±Q0 where Q0=εbkT/zeλD. Using the approximation (Eq. (48)), the mobility
is calculatedwithBikerman'sMPBmodel (Eq. (25)) for an effective volume ratio (a−/a+)3=
10 in two cases: (a) high salt concentrationwith ν−=0.1 and ν+ =0.01 and (b)moderate
salt concentration with ν− =10−3 and ν+=10−4. At small electric fields and/or low salt
concentrations, the size asymmetry is irrelevant, and the predictions of PB theory from
Fig. 12 are apparent; at large fields and/or low concentrations, the particle acquires an
apparent positive charge, due to the covering of more of the particle's area by the larger
cations, regardless of its true surface charge.
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but we view this as simply a measure of flow generated in units of
voltage, and not a physically meaningful electrostatic potential. One
can also use the PB theory for the hypothetical “mobile” part of the
double layer to express the mobility in terms of an effective
“electrokinetic charge” [6,10], e.g. using the Gouy–Chapman solution
for a symmetric binary electrolyte,

qek = 2λDzec0sinh
zeζeff
2kT

� �
ð51Þ

which measures the observed flow in units of charge.
It is well known that the classical theory tends to overpredict

experimentally inferred zeta potentials (|ζeff|<|ΨD| or |qek|<|q|), and
the discrepancy is often interpreted in terms of a “slip plane” or “shear
plane” separated from the surface by a molecular distance d≥0,
where the no-slip boundary condition is applied [10,262]. If the low-
voltage theory with ε=εb and η=ηb is applied beyond this point,
then ζeff acquires physical meaning, as the potential of the slip plane
relative to the bulk. Behind the slip plane, the fluid is assumed to be
“stagnant”with effectively infinite viscosity, although it may still have
finite ionic surface conductivity [10].

As in the case of effective hydrodynamic slip (d<0) over
hydrophobic surfaces [263,264] the slip-plane concept, although
useful, obscures the true physics of the interface. In particular, it has
limited applicability to nonlinear electrokinetic phenomena, where
the double layer responds non-uniformly to a large, time-dependent
applied voltage. We have already argued this leads to significant
changes in the structure of the double layer, and clearly it must also
have an impact on its rheology. Without microscopic models of how
local physical properties, such as viscosity and permittivity, depend
on local variables, such as ion densities or electric field, it is impossible
to predict how the effective electro-osmotic slip depends on the glo-
bal double-layer voltage or bulk salt concentration. This is also true in
complicated geometries, such as nanochannels or porous structures,
where the concept of a flat “slip plane” is not realistic.

4.1.2. The viscoelectric effect
Based on Eq. (49), there are good reasons to expect reducedmobility

at large voltage, |ΨD|>Ψc, compared to the HS formula, ζeff=ΨD, based
only onfield-dependent properties of a polar solvent [6]. As discussed in
Section 3.1.6, large normal electric fields in a highly charged double
layer can decrease the permittivity by aligning the solvent dipoles
(“dielectric saturation”). The local viscosity can also increase [251,265],
through viscoelectric thickening of a dipolar liquid with polarization
transverse to the shear direction.

Long ago, Lyklema and Overbeek [63,64] (LO) proposed the first
(and to date, perhaps the only) microscopic electro-rheological model
leading to an MHS slip formula. They focused on the viscoelectric
effect in water, which they estimated to be more important than
dielectric saturation for electrokinetics (consistent with recent
atomistic simulations [105], albeit at low voltage). Physically, they
argued that, for typical electric fields in aqueous double layers,
dielectric saturation interferes more with the strongly cooperative
rearrangements involved in viscous flow than the weakly correlated
dipole alignments contributing to reduced permittivity. To model the
viscoelectric effect, LO assumed a field-squared viscosity increase in
PB theory,

η = ηbð1 + fE2Þ; ð52Þ

and were able to integrate Eq. (49) to obtain an analytical (although
cumbersome) MHS formula. Physically, their model predicts that b
saturates to a constant value at large |ΨD|, which decays with
increasing c0. The saturation in the LO model, however, is tied to the
unphysical divergence of the counterion concentration (and thus E) in

PB theory, and thus should be revisited with volume constraints and
other effects.

It is straightforward to use the LO postulate (Eq. (52)) for the
viscoelectric effect in our modified PBmodels to obtain corresponding
MHS slip relations, although the integration of Eq. (49) cannot be
done analytically. Numerical results for a typical case are shown in
Fig. 14, using the value f=10−15m2V−2 suggested by LO for water
[63,64]. It is interesting to note that this choicemakes all threemodels
of double layer structure, PB, Bikerman MPB, and CS MPB, yield very
similar electro-osmotic mobility versus voltage, in spite of completely
different ion density profiles. The reason is that the viscoelectric effect
sets in so quickly with increasing voltage that the shear plane is
effectively still in the dilute, outer part of the diffuse layer, where all
theories reduce to PB. Indeed, as shown in the figure, more differences
become apparent we if choose a smaller value, f=10−17m2V−2. The
reduction in normal electric field due to crowding-induced expansion
of the inner diffuse layer leads to slower saturation of ζeff compared to
PB theory, especially in the CS MPB model, since it has stronger steric
effects than the Bikerman MPB model.

What this exercise shows is that the inner part of a highly charged
double layer is effectively frozen by field-dependent viscosity in a
similar way regardless of the model for the diffuse-charge profile. The
LO model attributes this effect entirely to the solvent (water),
independent of the local diffuse charge density or ionic currents, but
this hypothesis does not seem entirely satisfactory. An implication is
that water is effectively immobilized within a few molecular layers of
the surface near a charged surface, even if there is no added salt. This
effect seems to contradict recent experimental and theoretical
literature on hydrodynamic slip [1,263,264,266] which has shown
that shear flow in water persists down to the atomic scale with a no-
slip boundary condition for smooth hydrophilic surfaces and with
significant slip lengths (up to tens of nanometers) on hydrophobic
surfaces [267–269]. If the viscosity is a property of pure water (as
opposed to the local electrolytic solution), then the field dependence
should also be observable in the bulk, but we are not aware of any
experiments or simulations showing that bulkde-ionized water
becomes rigid in fields larger than f−1=30V/μm. Of course, it is
hard to apply such fields in the bulk at low frequency, due to
capacitive screening by the double layers and Faradaic reactions, but
the LO model is time-independent and should also apply at high
frequency where these effects are reduced.

Molecular dynamics (MD) simulations of electrokinetic phenom-
ena in nanochannels generally imply a local viscosity increase close to

Fig. 14. Modified Helmholtz–Smoluchowski (MHS) slip formulae assuming a charge-
independent viscoelectric effect in the polar solvent Eq. (52). This example assumes a
bulk concentration c0=1 mM of z:z electrolyte using different models of double-layer
structure. The Lyklema–Overbeek (LO) model, based on Poisson–Boltzmann (PB)
theory of point-like ions, is compared to MHS slip with the Bikerman (MPB) and
Carnahan–Starling (CS) modified PB theories, using an effective ion size of a=4 Å. The
viscoelectric coefficient is set to the value f=10−15 m2 V−2 suggested by LO for water
as well as a smaller value f=10−17 m2 V−2, which reduces the viscoelectric effect.
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a charged surface, although its origin and mathematical description
are not well understood. An early MD simulation of Lyklema et al.
[104] showed a stagnant monolayer of water, which could pass ions
freely, with a surface conductivity comparable to the bulk, but
subsequent MD simulations of electro-osmosis have shownmotion of
the liquid (both ions and solvent) down to the atomic scale near the
wall [105–109,194,270], albeit with an apparent viscosity often
smoothly increasing across the closest molecular layers. We are not
aware of any MD simulations of electro-osmosis in a large transverse
voltage (≫kT/e), but it seems that the presence of crowded counter-
ions near the surface (described in Section 3) must affect the apparent
viscosity, since the liquid no longer resembles the pure bulk solvent.

4.1.3. Charge-induced thickening
A natural physical hypothesis, sketched in Fig. 15, is that the

crowding of counterions in a highly charged diffuse layer increases the
local viscosity, not only through the viscoelectric effect of the bare
solvent, but also through the presence of a large volume fraction of like-
charged ions compressed against the surface. For now, we neglect
explicit field dependence, such as Eq. (52), to focus on effects of large
charge density. In a very crude attempt at a model, we consider an
electrolyte with solvated ions of finite size and postulate that ε/η
diverges as a power law,

ε
η

=
εb
ηb

1− jρ j
ρF
j

 !α" #β
ð53Þ

as the local charge density approaches a critical value, ρj±, which
generally must depend on the polarity sign(ρ)=± in an asymmetric
electrolyte.

A natural choice is to postulate diverging viscosity (“jamming”) at
the steric limit, ρj=ρmax

± =|z±|ecmax
± . In that case, similar exponents α

and β controlling the singularity also arise in the rheology of dense
granular materials [271]. If we also assume α=β=1, then there are
no new fitting parameters,

ε
η

=
εb
ηb

1− jρ j
ρFmax

� �
ð54Þ

since the steric constraints ρmax
± come from the MPB model. In our

original letter [57], we considered only this postulate with Bikerman's
model for steric effects and thus assumed an even simpler form,

ε
η

=
εb
ηb

1− a3 jρ j
ze

 !
ð55Þ

The resulting electrokinetic model is extremely simple in that it
only involves one parameter beyond dilute-solution theory, the
effective ion size, a. As such, it lacks flexibility to fit multiple sets
of experimental data, but we will use it in our analytical calcula-
tions below to further understand the general consequences of steric
constraints.

The general model (Eq. (53)) also allows for other types of behavior.
With ρj±>ρmax

± , there is a finite maximum viscosity in the condensed
layer, or effectively some flow behind the slip plane. With ρj±<ρmax

± , the
model postulates flow arrest at high charge density before the close-
packing limit is reached (and η=∞ for |ρ|>ρj±). The new parameters ρj±,
α and β allow some flexibility to fit experiments or simulations, in
addition to the ion sizes a± from the MPB models above.

The arbitrary choice (Eq. (53)) is motivated by a number of
possible physical effects:

• Jamming against a surface. In a bulk colloid [7], themaximumdensity
corresponds to random close packing at the jamming point [272],
where the shear modulus becomes finite [273], diffusivity vanishes
[274–276] and the viscosity diverges [271]. Molecular dynamics

simulations of soft disks in a periodic box have recently established
a viscosity divergence of the form Eq. (53) with α=1 and β=1.7
[271]. In an electrolyte, strong electrostatic compression of solvated
counterions against a (typically rough) surface may cause some
transient local jamming of the condensed layer, and thus increased
viscosity (and decreased mobility of individual ions) at high charge
density.

• Electrostatic correlations. Condensed counterions at large voltages
ressemble a Wigner crystal [277,278] (or glass) of like charges.
Discrete Coulomb interactions [187,189,279] may contribute to
increased viscosity, e.g. through the attraction between a displaced
ion and its “correlation hole”, which effectively carries an opposite
charge. (See Fig. 16.) We are not aware of attempts to predict the
rheological response of shearedWigner crystals or glasses, let alone
discrete, correlated counterion layers, but we expect that electro-
static correlations will generally contribute to charge-induced
thickening in electrolytes and ionic liquids.

• Solvent effects. Several molecular dynamics simulations of linear
electro-osmosis (at low voltages) have inferred ≈5× greater vis-
cosity within 1 nm of a flat surface [105,106], which grows with
surface charge [270] and surface roughness [280] (but decreases
with hydrophobicity [108]). Dielectric saturation near a highly
charged surface (Section 3.1.6) reduces the electro-osmotic mobility
by lowering ε, but the aligning of dipoles leads to collective
interactions that can also increase η, i.e. the classical viscoelectric
effect, at even lower fields [63]. In the presence of crowded, like-

Fig. 15. Sketches of finite-sized hydrated ions near a polarizable surface as in Fig. 4,
showing the solution velocity u profile in response to a tangential electric field. (a) At
small induced voltages, the no-slip boundary condition holds at the surface, and the
effective electro-osmotic slip us builds up exponentially across the diffuse layer. (b) At
large voltages, crowding of hydrated ions increases the viscosity of the condensed layer,
and the apparent slip plane “SP” (dashed line) moves away from the surface with
increasing voltage.
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charged counterions, frustrated solvation shells and confined
hydrogen-bond networks in water may further increase η. The
latter effect may be related to local electrostriction, which
compresses the second hydration shell around certain cations (K+

and Na+, also used in ICEO experiments, Table 1) [182].

Of course, this electrohydrodynamic model is rather simple. In
general, we expect that ε and η will depend independently on both
the local field E and the solution composition. We have already
mentioned the different physical effects affecting ε and η in a pure
dipolar solvent, and the situation only becomes more complicated
with large ion densities. In order to model general phenomena such as
diffusio-osmosis or surface conduction, it is necessary to provide
separate functional forms for ε and η, since these variables no longer
only appear as the ratio ε/η. In that case, we would propose viewing
Eq. (53) as a model for η with ε=εb fixed, since molecular dynamics
simulations of electro-osmosis predict smaller changes in permittivity
than in viscosity near a charged surface, even within a few molecular
diameters [105,106]. This is also analytically convenient because
variable ε is a major complication in MPB models, although progress
can be made as shown in Section 3.1.6. Finally, our neglect of explicit
field-dependence such as Eq. (52), in favor of charge-density
dependence (which is more closely related to our modeling of
crowding effects), does not affect the modeling of quasi-equilibrium
double layers, since the dominant normal field can be expressed in
terms of the charge-density, and vice versa, in any MPB model. In
more general models, however, it may be important to also include a
field-dependent viscoelectric effect.

Our basic picture of charge-induced thickening is consistent with
prior models for the increase of viscosity with salt concentration in
neutral bulk solutions [251,253,265]. Traditionally, the viscosity of
electrolytes has been described empirically using the Dole–Jones
correlations [281–283], but more recent theories based on molecular
models take a more fundamental approach. Like our hypothesis, these
models also postulate infinite viscosity as the hard sphere solvated
volume fraction approaches unity [253]. In a neutral bulk electrolyte,
such high volume fractions are never reached due to limits of
solubility, though a factor of ten increase in viscosity has been
observed for some systems at high salt concentration [284]. The
effective hard-sphere diameters (see Table 2) inferred from these
viscosity models may also have relevance for our models, although
there is an important difference: We neglect crowding effects in a
neutral bulk solution and focus instead on crowding of like-charged
counterions. As discussed above, at high charge density in a large
electric field, various physical effects could significantly increase the
viscosity compared to what would be observed in a neutral solution at
the same concentration. Moreover, solubility limits are not relevant
for like-charged ions, so higher concentrations approaching packing

limits can more easily be reached, as we have postulated in response
to a large voltage.

Regardless of the specific formof ourmodel, its key feature is that the
concentrated solution of counterions near a highly charged surface is
thickened with voltage, compared to the bulk, although it can still flow
slowly. This picture is consistent with molecular dynamics simulations
of electro-osmosis [105,106,108,270,280,285], which do not observe a
truly stagnant layer, even at low surface potentials. As sketched in
Fig. 15, from amacroscopic point of view, there is an apparent slip plane
separated from the surface, which depends on the ion density profiles
and thus external conditions of voltage and bulk solution composition.
At low voltage, near the point of zero charge, there is no change in the
local viscosity, aside fromanypure solvent interactionswith the surface,
e.g. due to hydrophobic or hydrophilic effects (which we neglect). At
high voltage, the crowding of counterions leads to thickening and an
apparent movement of the slip plane away from the surface. Without a
microscopic model, it would not be possible to predict this dependence
or derive a functional form for fitting.

The picture of a thin layer near the surface with different electro-
rheological properties also appears in models of electrokinetics with
porous or soft surfaces [286,287], which build on the Zukowski-Saville
[288,289] and Mangelsdorf-White [180,181,290] theories of the
“dynamical Stern layer”. In these models, ions are allowed to move
within a flat Stern monolayer, while the diffuse layer is described by
the standard electrokinetic model. Recently, López-Garcia, Grosse and
Horno have extended these models to allow for some fluid flow in a
thicker dynamical surface layer, and this allows more flexibility in
fitting (linear) electrical and electrokinetic measurements [291,292].
In the case of a flat surface with an equilibrium double layer, this is
similar to our picture, if the surface layer is ascribed a higher viscosity,
but in our model there is no need to postulate a sharp plane where
properties of the solution change. Instead, by modifying the electro-
kinetic equations everywhere in the solution, its electro-rheology
changes continuously as a function of local continuum variables.

The concept of charge-induced viscosity increase may be widely
applicable in nano-scale modeling of electrolytes, in conjunction with
modified theories of the ions densities. The general modified
electrokinetic equations are summarized in Section 5. Now, let us
consider generic consequences of this hypothesis for electrokinetic
phenomena with thin double layers and make some explicit calcula-
tions using Eq. (53).

4.2. Implications for nonlinear electrokinetics

4.2.1. Electro-osmotic slip at large voltages in concentrated solutions
To describe electro-osmotic flows with thin double layers, we can

use our microscopic models to derive modified Helmholtz–Smolu-
chowski (MHS) slip formulae, which depend nonlinearly on double-
layer voltage (or surface charge) and bulk salt concentration. Such
predictions could perhaps be directly tested experimentally by field-
effect flow control of electro-osmosis in microfluidic devices [158–
160], if a nearly constant double-layer voltage could be maintained
along a channel and then varied systematically for different electro-
lytic solutions. Alternatively, one could compare with molecular
dynamics simulations of electro-osmotic flow in nanochannels with
oppositely and highly charged walls, leading to large induced double-
layer voltages.

A general MHS slip formula — If we assume ε=εb in Eq. (54) with
α=β=1 (an arbitrary choice for analytical convenience), then for
any MPB model with |ρmax

± |<∞ we can integrate Eq. (49) obtain an
MHS formula for the effective electro-osmotic slip outside the double
layer,

ζeff = ΨDF
peðΨDÞ
ρFj

= ΨDF
qðΨDÞ2
2εbρ

F
j

ð56Þ

Fig. 16. Sketch of a physical mechanism for charge-induced thickening due to
electrostatic correlations. A condensed layer of solvated counterions (spheres) is
confined against a highly charged surface by the normal electric field. Shear of the fluid
(arrow) causes an ion to leave its local equilibrium position in a Wigner-like crystal of
like charges, but its motion is inhibited by a strong attraction back to its oppositely
charged “correlation hole” (dashed).
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where ±=sign(q)=−sign(ΨD) and pe(ΨD) and q(ΨD) are given by
Eqs. (17) and (18), respectively. This simple and general expression
reduces to the HS formula (ζeff=ΨD) in the limit of point-like ions
(ρmax

± →∞) and/or small voltages (ΨD≪kT/e). At large voltages, |ζeff|
is always reduced, depending on how the model for μ i

ex imposes
volume constraints or other contributions to the excess chemical
potential.

In any MPB model, such as Bikerman's, where counterions (±)
form nearly uniform condensed layers with c±≈cmax

± and η≫ηb
from Eq. (53), the apparent zeta potential (Eq. (56)) either saturates
to a constant,

ζeff ∼ΨF
c = − kT

zFe
ln

cFmax

c0

 !
ð57Þ

if the condensed layer is stagnant (ρj±=ρmax
± ) or switches to a slower

linear dependence

ζeff∼ΨD− 1−
aFj
aF

 !3" #
ðΨF

D−ΨF
c Þ ð58Þ

if the condensed layer has a finite viscosity, as shown in Fig. 17. The
former case (Eq. (57)) resembles the logarithmic concentration
dependence of equilibrium zeta potential observed in many micro-
fluidic systems [262], as well as the decay of ICEO flow noted above.
The latter case allows for intermediate behavior between strong
saturation of ζeff ~Ψc

± and the HS limit ζeff=ΨD.
MHS slip with Bikerman's model — The reduction of ζeff arises in

different ways depending on the diffuse-layer model. In Bikerman's
model for a symmetric electrolyte [57], the limiting behavior is
reached fairly suddenly. In that case the integral (Eq. (55)) can be
performed analytically to obtain a simple formula:

ζνeff = ΨDF
kT
ze

aj
a

� �3
ln 1 + 4a3c0 sinh

2 zeΨD

2kT

� �� �
; ð59Þ

illustrated in Fig. 17. For a rigid condensed layer, this model predicts a
simple logarithmic decay of ICEO flow with concentration, Eq. (57). If
the condensed layer has a large, but finite viscosity, the decay is
slower andmore complex via Eq. (58). A general feature of even these
very simple models is that ICEO flow becomes concentration-
dependent and ion-specific at large voltages and/or high salt
concentrations, through z±, a±, aj± and c0.

It is interesting to compare Eq. (59) to the only previous MHS
formula of Lyklema and Overbeek [63,64], based on the viscoelectric

effect (Eq. (52)) in the context of PB dilute-solution theory. As shown
in Figs. 14 and 17, the two formulae make similar predictions of
saturation of the zeta potential with voltage with aj=a, but our
formula (Eq. (59)) is simpler and more amenable to mathematical
analysis, as illustrated below. (In contrast, the LO formula takes
several lines to write down in closed form [64].) The parameter a is
also more constrained on physical grounds, to be of order the
hydrated ion size, than the empirical viscoelectric constant f.
Qualitatively, the LO formula based on PB theory does not offer any
explanation of the experimental fact that ICEO flows depend on the
particular ions, even in different solutions of the same ionic valences,
{zi} (such as NaCl and KCl), although we do not claim that our
Bikerman MHS formula correctly captures any specific trends.

MHS slip in a hard-sphere liquid — As noted above, hard-sphere
liquid models show qualitative differences with Bikerman's lattice-
based model, beyond just allowing the use of more realistic, smaller
effective ion sizes. As shown in Fig. 7, steric effects are stronger in a
hard-sphere liquid. The ion density approaches close packing as the
voltage is increased much more slowly with the Carnahan–Starling
model when compared to Bikerman's model, as shown in Fig. 7(d).
When the CS model is used to compute the effective zeta potential
with ρj±=ρmax

± and α=β=1 in Eq. (53) as shown in Fig. 18, the
effective zeta potential does not saturate as with Bikerman's model,
and the layer continues to flow until extremely high voltages are
reached, albeit much more slowly than in the classical HS model
without charge-induced thickening.

However, at this time we have no reason to assume that α=β=1
in Eq. (53). The crucial exponent controlling the viscosity divergence is
β. If we set β=4, then the divergence is fairly strong as shown by the
dashed curves in Fig. 18. Here, we find a strong saturation of ζeff,
similar towhat is predicted by Bikerman'smodel (Fig. 17),whichmore
easily formsa condensed layer. A range of possibleMHS slip behavior is
possiblewith a givenMPBmodel for the ion density profile, depending
on the precise postulate for charge-induced thickening.

It is important to note that the CS equation was never intended to
be used at high volume fractions and only fits the homogeneous
chemical potential in the liquid state for Φ<0.55. From Eq. (27) and
Fig. 7(d) we see that the chemical potential diverges asΦ→1, but the
physical maximum for random close packing for bulk hard spheres is
Φ≈0.63 [271–273], which is exceeded in the CS MPB theory already
at 1 V across the diffuse layer. Moreover, crowding in the double layer
occurs against a hard wall, which removes geometrical degrees of
freedom and thus reduces the accessible local volume fraction for
random close packing of hard spheres [293], and induces correlations
not captured by the LDA [250]. It is therefore not clear what the proper
value of ρmax

± should be to control our postulated viscosity divergence.

Fig. 17. MHS slip formula (59) using Bikerman's model with ion size a=4 Å and
charge-induced thickening (53) with α=1=β=1 at different bulk concentrations,
c0=1 µM, 1 mM, and 1 M. The viscosity is postulated to diverge either at a mean ion
spacing aj=a (solid curves), in which case the condensed layer in Fig. 5(a) is effectively
rigid, or at aj=0.9a (dashed curves), in which case it flows with a large, but finite
viscosity.

Fig. 18. Effective zeta potential ζeff versus diffuse-layer voltage ΨD at different bulk
concentrations using the Carnahan–Starling MPB model for charged hard spheres of
diameter a=4 Å from Fig. 7. The concentration are c0=1 µM, 1 mM, and 1 M from top
to bottom. The solid curves use the MHS slip formula (Eq. (53)) with α=β=1 and
ρj=ρmax, and the dashed curves change to β=4.
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The development of accurate models of the local rheology of highly
charged double layers should ideally be guided by molecular theories
and simulations. We simply give a range of examples to show
what kind of qualitative behavior can be predicted by various simple
MPB/MHS models, which are suitable for macroscopic theory and
simulation of electrokinetic phenomena.

Comparison to compact-layer models. For completeness, we briefly
discuss how the general liquid-statemodelswe develop above compare
to the traditional approach of dividing the double layer into two parts, a
flowing diffuse layer and a rigid compact layer, and assuming a constant
viscosity and permittivity everywhere, leading to the HS formula. First
we consider the classical Gouy–Chapman–Stern model which postu-
lates an uncharged dielectric monolayer of solvent of constant effective
thickness λS in contact with a diffuse layer of point-like ions obeying PB
theory. The nonlinear charge-voltage relation [129],

Ψ = ΨD + 2
kTλD

zeλS
sinh

zeΨD

2kT

� �
; ð60Þ

then implies that only a logarithmically small diffuse-layer voltageΨD

contributes to the zeta potential at large total voltageΨ applied to the
double layer,

ζ = ΨD∼
kT
ze

ln
εbΨ

2

2kTλ2
Sc0

 !
1− kT

zeΨ
+ …

� �
: ð61Þ

This HS model also predicts that the zeta potential decays loga-
rithmically with concentration and somewhat resembles our MHS
models, as shown in Fig. 19.

Although the thin-dielectric compact-layer hypothesis leads to
some reasonable predictions, it is not fully satisfactory either. As
noted above, the saturation of zeta depends on the pileup of point-like
ions, albeit reduced by transferringmost of the voltage to the compact
layer. This can be avoided by using an MPB model with steric
constraints, such as Bikerman's model, together with a Stern layer and
HS slip. As shown in Fig. 19(a), this tends to reduce the Stern-layer
effect, since the diffuse layer is able to carry more voltage due to its
reduced capacitance. With increasing δ, however, the Stern layer
always carries most of the voltage, and the difference between PB and
MPB models on HS slip with the Stern model is eventuallylost, as
shown in Fig. 19(b) for δ=10.

This exercise shows that some concentration and voltage effects on
slip can be captured by the classical Sternmodel andHS slip formula, but
we are left with the same general criticisms made above for charging
dynamics. Themodel placesmost of the large voltage across a region for
which no detailed physical model is assumed, without attempting to
account for liquid-state properties, salt concentration, surface rough-
ness, liquid-surface interactions, etc. It is also not clear that a hypo-
thetical Sternmonolayer of solvent couldwithstand several volts, while
leaving a dilute diffuse layer with a small voltage, and some model for
dynamical effects in response to applied voltages should be required.

We have already seen in Section 2 that the classical model is
unable to predict all the trends in nonlinear electrokinetics. Except in
the case of a true dielectric coating (e.g. a native oxide on a metal
electrode), it seems more physically realistic to discard the classical
concept of the compact layer (defined as the inner region where the
PB theory does not apply) and instead ascribe all of the double layer
response to the dynamics of the liquid state, except perhaps for the
dielectric response of a true Stern monolayer solvating the charged
surface. An appropriate modified theory of the liquid can approximate
the traditional properties of the compact layer through strong
molecular interactions, as sketched in Fig. 15. At least in this work,
we have shown that it is possible to describe a variety of nonlinear
effects in charging dynamics and electro-osmotic flow at large
voltages and/or large salt concentrations without resorting to
lumping the errors from dilute-solution theory in a hypothetical
compact layer outside the continuummodel. Perhaps a more accurate
theorywould combine the ideas of this paper for the liquid phasewith
boundary conditions representing a compact interfacial phase, along
the lines of the dynamical Stern layer model [288,290–292].

4.2.2. Ion-specific electrophoretic mobility
We have already noted that induced-charge electrokinetic phe-

nomena are sensitive to the solution composition in our models, via
both the nonlinear capacitance and the effective zeta potential. There
are some surprising, general consequences, which are well illustrated
by ICEP of an uncharged metallic sphere. It has been predicted using
low-voltage models [15,23,24] and observed [25,294] that asymmet-
ric polarizable particles in a uniform field have an ICEP velocity scaling
as Eb

2, but it is widely believed that linear velocity scaling, U=bepEb,
implies nonzero total charge. For non-polarizable particles with thin
double layers, this is the case, unless the particle has both asymmetric
shape and a non-uniform charge density [295,296]. For polarizable

Fig. 19. Compact layer effects in traditional HS slip theory assuming a thin dielectric coating between the surface and the diffuse layer, whose importance is controlled by the parameter
δ=λS/λD(c0)=CD(c0)/CS defined in Eq. (6). Both PB (dot–dash curves) and Bikerman's MPB (solid curves) models are considered for the diffuse layer. The zeta potential, equal to the
diffuse-layer voltage ζ=ΨD, is plotted versus the total double layer voltage Ψ at different values of the bulk salt concentration c0 (labeled) for δ=0.1 in (a) and δ=10 in (b).
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particles, our models predict that a nonzero mobility bep can result
simply from broken symmetry in the electrolyte, even for a perfectly
symmetric particle.

Consider an ideally polarizable, uncharged sphere of radius R in an
asymmetric binary electrolyte with ions of unequal effective sizes a± and
charges z±e, subject to a uniformDCbackgroundfieldEb. Thefirst effect to
consider is the shift in the potential ϕ0(Eb) of the particle (relative to the
applied background potential) due to its asymmetric nonlinear capaci-
tance, since the induced charge (which must integrate to zero) is more
dense on one side than the other, as shown in Fig. 20. As noted above, this
already yields a nonzero mobility with the HS formula, bep=εbϕ0/ηb.

The effect of zeta saturation (Eq. (57)) provides a different
dependence on the solution composition, which dominates in large
fields, Eb≫kT/eR. Since |ϕ0(Eb)|≪EbR, the change in polarity of the
induced charge occurs near the equator, around which there is only a
narrow region with |ζeff|<|Ψc

±|. In this limit, therefore, we approx-
imate one hemisphere with uniform ζeff=Ψc

+ and the other withΨc
−,

which yields the ion-dependent mobility

bep∼
1
2
εb
ηb

kT
e
ln

ða3þc0Þ1= zþ
ða3−c0Þ1= j z− j

" #
ð62Þ

The apparent zeta potential from a DC electrophoresis measure-
ment ζep=ηbbep/ε, tends to a constant of order≈kT/e, independent of
Eb and R. In a z:z electrolyte, the limiting value

ζep∼
3
2
kT
ze

ln
aþ
a−

ð63Þ

is set by the size ratio a+/a− and does not depend on the bulk
concentration c0. With equal sizes a+=a−=a, the limiting apparent
zeta potential

ζep∼
1
2
kT

z̄e
lnða3c0Þ ð64Þ

is set by harmonic mean of the valences, z̄=z+z−/(z++z−), if z++
z−≠0.

An interesting feature of this nonlinearity is that the limiting
mobility is set by properties of the electrolyte and is independent of
the true charge of the particle. As sketched in Fig. 20, the induced

viscosity increase alone causes the neutral sphere to have an apparent
charge whose sign is that of the ions which condense at a lower
potential (larger z and/or larger a). For consistency, however, we
should also include the nonlinear capacitance effect, which can act in
the opposite direction, making the apparent charge that of the ions
which pack less densely (smaller z and/or smaller a). As shown in
Fig. 21, it turns out that the nonlinear capacitance effect is stronger
and determines the sign of the apparent charge of the particle in large
fields and/or high salt concentrations. Nevertheless, the charge-
induced thickening effect significantly reduces the mobility in this
regime and introduces a strong decay with salt concentration.

By now, it should be clear that ICEP of charged, asymmetric, po-
larizable particles can have a very complicated dependence on the
solution chemistry in large electric fields and/or high salt concentra-
tions. We must stress again that we do not include strongly nonlinear
effects such as surface conduction and salt adsorption by the double
layers, so the predictions of this paper only pertain tomoderate voltages
and thin double layers in theweakly nonlinear regime. Nevertheless,we
already see some interesting new qualitative features predicted by the
modified models. Our examples also showthat the electrophoretic
mobility of a homogeneous polarizable particle need not provide a
reliable measure of its total charge, contrary to common wisdom.

Fig. 20. Mechanisms for DC electrophoretic motion U of an uncharged metallic sphere
in an asymmetric electrolyte (Eq. (62)) due to saturated ICEO flow (Eq. (57)) in a large
field Eb≫kT/eR. (a) Larger cations (below) in a z:z electrolyte (a+>a−, z+=|z−|) pack
at lower density than smaller anions (above) and thus cover more of the sphere, but
produce less slip due to greater crowding. (b) Divalent cations (below) cover less area
and also produce less slip than monovalent anions of the same size (a+=a−, z+>|z−|).
In both examples, the sphere has an apparent positive charge (U>0).

Fig. 21. Electrophoretic mobility of an ideally polarizable sphere of total charge Q in an
asymmetric electrolyte with (a−/a+)3=10 from Fig. 13 with HS slip (dashed curves)
compared to the same calculations redone with MHS slip (Eq. (59)) for (a) high salt
concentration ν−=0.1 and ν+=0.01 and (b) moderate salt concentration ν−=10−3

and ν+=10−4. Charge-induced thickening has the opposite effect of nonlinear
capacitance, since it gives more weight to smaller and/or more highly charged
counterions in determining the electrophoretic mobility. This significantly reduces the
apparent charge of the particle at large fields and/or high salt concentrations, but not
enough to change its sign.
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4.2.3. Concentration dependence of AC electro-osmosis
Next we revisit the weakly nonlinear analysis of ACEO pumping by

adding the effect of charge-induced thickening via the MHS slip
formula (Eq. (59)) in a symmetric electrolyte. In Fig. 22 we show
predictions of an ACEO pump including steric effects (Bikerman) and
the simplest MHS, Eq. (59) with aj/a=1. In interpreting these data, it
is useful to remember that our simple model predicts the effective
zeta potential to be the same as the voltage across the double layer up
to a critical voltage whereafter the effective zeta potential saturates,
see Fig. 17. At high frequency, there is insufficient time for the double
layers to fully charge and therefore the cutoff voltage is not reached
and the slip is unaffected. At low frequency and high volatge, the
double layers fully charge and the saturated zeta potential severely
limits the flow. Thus the MHS model acts as a high-pass filter for
electro-osmotic slip. This effect can be seen in Fig. 22 as the ion size
decreases (thus the cutoff voltage increases). The upper dashed curve,
given the physical interpretation of the model would require an ion
size of 0.1 angstroms at 0.1 mM concentration. For more realistic ion
sizes (at 0.1 mM and a=3 Å, ν=7×10−6) we find that the
viscoelectric effect essentially eliminates the prediction flow reversal
from Bikerman's model. To date we have not successfully predicted
flow decay with concentration and high frequency reversal in ACEO
with a single, unified model though work continues in this direction.

Fig. 23 shows the results applying the MHS model, Eq. (59), to the
ACEO pumps of Urbanski et al. [40]. We see a decay in the maximum
flow velocity with concentration that is reminiscent of experiments,
Fig. 3, when we view the data in dimensionless form. Fig. 23(a) shows
the dimensionless frequency response as we change concentration as
in the experiments using a fixed ion size of 4 nm. As with the
predictions of flow reversal in ACEO, it seems that the ion size that best
fits the experiments is an order of magnitude larger than we would
expect. The simulated data show the promise of a simple charge-
induced thickeningmodel to predict decay of flowwith concentration.
It is interesting to note that at the relatively low voltage of these
experiments (3 Vpp≈1 Vrms) there is no flow reversal predicted
even when the viscoelectric effect is relatively weak, contrary to the
experimental observations.

We show the data in dimensional form in Fig. 23(b) for a direct
comparison to the experiments. We again see one of the key
discrepancies which occur in all models be they based on classical
electrokinetic theory or based on the modified models presented here.
All themodels assuming blocking electrodes predict that the features in
the frequency responseare strongly concentrationdependent,while the

data show relative insensitivity to concentration. As discussed in
Section 3.2.1, we hypothesize this discrepancy is due to a neglect of
Faradaic reactions though this remains an area for future study.

These simple models are capable of reproducing at least in quali-
tative way the general experimental trends of ACEO. The standard
model which does not account for charge-induced thickening does
not predict a strong flow decay as concentration is increased as all
ACEO experiments have shown. We should also emphasize that our
models are surely oversimplified, and various neglected effects, such
as specific solvent-mediated forces or electrostatic correlations can
effectively increase the range of crowding effects (to allow the use of
realistic ion sizes) and change their form in ways that may improve
the ability to fit experimental data.

5. Mathematical modeling of electrokinetics in a
concentrated solution

5.1. Nanoscale physics

The fundamental difficulty in modeling all electrokinetic phenom-
ena is that complex molecular-scale phenomena at the electrified
interface give rise to macroscopic fluid motion. The modified models
above attempt to take into account some new physics — steric effects
for finite-sized ions and charge-dependent visco-electric effects— but
these are just simple first steps away from dilute-solution theory in
electrokinetics. In this section, we develop a general theoretical
framework for modeling electrokinetic phenomena in concentrated
solutions (including large applied voltages in dilute solutions).

Fig. 22. Frequency response of ACEO pumping with MHS slip and Bikerman's model of
steric effects. Data are shown in dimensionless form where frequency is scaled by the
RC time of the equivalent circuit and the velocity is scaled by εV2/ηL0 [42]. The values of
ν=2coa3 used in Eq. (59) are 0, 10−10, 10−6, 10−4, and 10−2, from top to bottom. Even
at the extremely low values of ν, this model of charge-induced thickening essentially
removes the prediction of reverse flow. For the steric effects, ν=0.01, in the Bikerman
model was used for all cases.

Fig. 23. Predicted frequency response of the ACEO pump of Urbanski et al [40] from
Fig. 3(a) with an MPB double-layer model also accounting for MHS slip with charge-
induced thickening. In (a) we show the dimensionless frequency response of the pump
as we change concentration (C=0.001, 0.003, 0.01, 0.03, 0.1 0.3, 1, and 10 mM from top
to bottom). In (b) the same data are plotted in dimensional form. The model of charge-
induced thickening uses a constant ion size of 4 nm. The response is computed with the
Bikerman model using a constant value of ν=0.01, though no high-frequency flow
reversal is predicted at this voltage.
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Webegin by discussing various neglected effects in ourmodels above
thatmightneed tobe incorporated into thegeneral theory, someofwhich
wereanticipated(qualitatively)by J. J. Bikermandecades ago [297,298]. In
some sense, what we are attempting is to model part of the “compact
layer” in microscopic detail using the same continuum equations that
describe the “diffuse layer” and the bulk electrolyte. The hypothetical
partitioning of the interface between diffuse and compact parts has
become entrenched in electrokinetics and hadmany successes, at least in
describing linear phenomena with non-polarizable surfaces of fixed
charge. In such cases, it usually suffices to define an effective slip plane,
which marks the sharp transition from a dilute solution to a stagnant
[10,262] ordynamical [288,290–292] compact layer,whosefixedposition
can be fit to electrokinetic measurements. At large induced voltages or
concentrated solutions, however,webelieve it isnecessary todescribe the
nanoscale rheology of the liquid in more detail, since it is otherwise not
clear how to shift the effective shear planewith voltage or concentration,
as sketched in Fig. 15. As in prior work, it may still be useful to maintain
the theoretical construct of a separate “compact layer” via effective
boundary conditions on the continuum region, but crowding effects,
which vary with the local electric field and ionic concentrations, should
also be included in modified electrokinetic equations.

The following are some nanoscale physical effects, other than
volume constraints and viscoelectric effects (in the local density
approximation), that we have neglected or included only heuristical-
ly, which may be important in nonlinear electrokinetics and other
situations discussed below. In some cases, simple continuum models
are available but have not yet been applied to electrokinetic
phenomena as part of a coherent theoretical framework. Setting the
stage for such modeling is the goal of this section.

5.1.1. Electrostatic correlations
To our knowledge, all mathematical models in electrokinetics are

based on the mean-field approximation, where each ion only feels an
electrostatic force from the mean charge density of all the other ions In
reality, ions are discrete charges that exert correlated forces on each
other, which become especially important with increasing valence
[186,187]. The breakdown of the mean-field approximation for
multivalent ions can lead to counterion condensation on the surface,
effectively leading to a correlated two-dimensional liquid (or glass)
resemblingaWigner crystal of like charges in the limit of strong coupling
[189,279].

In addition to this effect, a promising direction for continuum
modeling (discussed below) may be to build on MPB equation of Ref.
[299], which describes the effective restoring force acting on an ion that
tries to fluctuate from its local electrostatic equilibrium position (in a
one-component plasma [189]), only to be drawn back toward its
correlation hole.We conjecture that this effect may not be so important
at very high charge densities in large applied voltages, where simple
crowding becomes dominant and flattens out any oscillations in the
charge-density profiles. Some evidence comes from recent molecular
simulations of the double-layer capacitance of ion liquids [83], which
verifies the square-root scaling of MPB theory with the steric effects
discuss above.

On the other hand, electrostatic correlations may be crucial for the
dynamics of highly charged double layers under mechanical shear
stress, which to our knowledge has never been studied. We have
conjectured above that the correlation hole interaction may effec-
tively enhance the viscosity of the solution and lead to charge-induced
thickening. Electrostatic correlations may also effectively increase the
critical length for crowding effects, and we have noted elsewhere that
the Bjerrum length ℓB=e2/4πεbkT is at the same scale as the effective
ion size required in our steric MPB models of ACEO, especially if
corrected for reduced permittivity in large field [60,67,130]. The
electrostatic correlation length λc (defined below) is approximately
λc=z2ℓB for a z:z electrolyte, so ion–ion correlations are particularly
important for multivalent ions.

The relative importance of corrections to mean-field theory due to
electrostatic ion–ion correlations is controlled by the dimensionless
parameter,

δc =
λc

λD

=
ℓBz

2

λD
=

ðzeÞ2ð2c0Þ1=2
4πðεbkTÞ3=2

ðz : z electrolyteÞ
ð65Þ

which grows with bulk salt concentration like
ffiffiffiffiffi
c0

p
, as the Debye

screening length shrinks. The Bjerrum length in bulk water isℓB≈7 Å,
so we expect strong correlation effects on electrochemical transport
and electrokinetics when λD>7z2 Å which is 7 Å, 1.4 nm, and 2.8 nm
for monovalent, divalent, and trivalent ions, respectively. The
condition of “intermediate coupling” δc=O(1) is met in many
concentrated aqueous solutions, so it may be necessary to include-
correlation effects in theories of nonlinear electrokinetics and double-
layer charging dynamics. Below, we discuss a possible modification of
Poisson's equation [299], which could provide a starting point.

5.1.2. Specific ion–ion interactions
In addition to entropic effects such as hard-sphere repulsion and

long-range electrostatic forces, ions can interact via more complicated
short-range forces, due to direct molecular interactions or solvent-
mediated effective forces. DiCaprio et al. [193] recently expressed the
excess free energy density of an electrolyte as the sum of a hard-
sphere entropic contribution (e.g. the CS model above, or its gen-
eralization to polydisperse mixtures) plus the first, quadratic terms
in a Taylor expansion in the ionic concentrations. In our theoretical
framework, the latter corresponds to an additional linear, enthalpic
contribution to the excess chemical potential

μex
i = kT∑

j
aijcj ð66Þ

where the coupling coefficients aij (with units of volume) are assumed
to be concentration independent. These terms effectively “soften” the
hard-sphere interactions by introducing further short-range forces.
For example, if aii>0 (or <0), then like-charged ions experience an
additional repulsion (or attraction) within a volume aii, and this
increases (or decreases) the effective hard-sphere radius for crowded
counterions. (More complicated concentration-dependent enthalpic
terms have also been postulated for ions intercalated in crystalline
solids in rechargeable battery electrodes [300]). Specific interactions
may also contribute to dynamical friction coefficients between
different ionic species, e.g. leading to off-diagonal elements in the
mobility tensor (see below), which could be important in large ac
fields [176] where oppositely charged ions must quickly pass each
other upon polarization reversal.

5.1.3. Ion-surface correlations
Just as ions in the liquid phase canhave short-range interactionswith

each other, beyond the mean-field electrostatic force and hard-sphere
repulsion, so too can they have specific interactions with molecules
comprising a phase boundary, such as a solid wall. The simplest of these
result from hard-sphere ordering and solvent-mediated forces which
produce correlationsnear theflatwall.Molecular simulations taking into
account the solvent (beyond the primitive model) reveal strong density
oscillations near a surface [105,106,301], andwe have already discussed
hownon-localWDA theories can capture hard-sphere aspects [189,195–
197,244,245,249,250]. Solvent-induced layering canalso bedescribedby
local continuum MPB models, by simply adding an effective external
potential Vw(x) to the excess chemical potential [106,108,194],

μex
i = VwðxÞ = −kT ln

ρsðxÞ
ρb

� �
ð67Þ
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which can be expressed in terms of the statistical density profile (pair
correlation function) ρs(x) of the solvent molecules near the wall,
relative to their bulk density ρb [301]. Contributions to the effective
ion-wall potential Vw(x) can also arise from other effects, such as the
polarizability of ions [302] and “cavitation forces” due to disruption of
hydrogen bonding networks in water [303,304]; these effects have
been studied for water/gas interfaces, but could also be important at
solid metal surfaces.

Stern's original model of a solvation monolayer separating ions
from the surface [183] can be viewed the simplest model of type (Eq.
(67)) to account for excluded volume, since he essentially postulated
an infinite chemical potential Vw(x) for ions in the monolayer. Of
course, it is more realistic to allow for smooth oscillations in the ion-
wall correlation function over several molecular diameters, but at
least Stern's model is easily incorporated into a boundary condi-
tion [129,154] (see below).

5.1.4. Surface heterogeneity
Discrete surface charges contribute to electrostatic correlations

[279], but chemical heterogeneities can also play an important role in
the structure of the double layer and electrokinetic phenomena
[305,306]. In the context of PB theory, the effect of surface roughness
on the differential capacitance of the double layer depends on the
correlation length of the roughness relative to the Debye length
[307,308]. With finite-size ions, roughness could have a much stronger
effect, not only on capacitance, but also on slip generation. Molecular
dynamics simulations of electro-osmosis over atomically rough surfaces
have revealed departures from PB theory [280], but large induced
voltages have yet to be studied. Given the arguments of the previous
section, the charge-inducedviscosity increase is likely tobeenhancedby
roughness, since the electrostatic compression of hydrated ions against
molecular scale asperities should thicken the fluid and make the
apparent ion size seem larger.

5.1.5. Specific adsorption of ions
Another effect we have neglected is the specific adsorption of

ions, which break free of solvation and come into direct molecular
contact with a surface, as already included by Stern [183] in his
model for the isolated equilibrium diffuse layer based on a
Langmuir adsorption isotherm. Much more refined surface adsorp-
tion models have been developed since then, especially to describe
the colloid chemistry of oxidic materials [309]. Because specific
adsorption of ions, and thus the surface charge, is a direct function
of the ion concentration within the diffuse layer directly next to the
interface, the close approach of two colloidal particles and the
overlap of their respective diffuse layers lead to surface-charge
modulation, or so-called “charge regulation” [305,310]. For identi-
cal interfaces approaching one another, the surface charge will be
reduced, and in the limit of touching Stern (adsorption) planes, the
surface charge will become zero. Charge regulation of different
interfaces (hetero-interaction) leads to the sum of the two
interfacial charge densities to approach zero when the interaction
distance is reduced, an effect which can be so strong that for
amphoteric materials (i.e., those that can be both positive and
negatively charged) it will lead to the inversion of the surface
charge on one of the interfaces. Simultaneously, the force-distance
curve can be highly non-monotonic with for instance repulsion at
contact and at sufficient separation, but with an electrostatic
attraction at intermediate separation [310].

Ion adsorption effects are beginning to be considered in electro-
kinetics and may be particularly important in nonlinear electrokinet-
ics, due to the large driving force for desolvation in large applied
voltages. Effects of specific ion adsorption on the equilibrium surface
charge of metal electrodes as function of surface potential [311] and
on the electro-osmotic flow in a microchannel between electrodes
have been considered by Duval [312]. Adsorption is an important

mechanism of ion specificity of electrokinetics with hydrophobic
surfaces [304,313]. In the present context of induced-charge electro-
kinetics, we have already highlighted the recent work of Suh and Kang
[175,179] incorporating surface adsorption of ions in models of ACEO
flow.

In electrochemistry, the effect of specific ion adsorption is widely
invoked to explain the increase of differential capacitance of the
double layer at high voltage observed in many experimental situa-
tions, since the distance between plates of the equivalent capacitor
effectively shrinks from the “outer Helmholtz plane” to the “inner
Helmholtz plane” (Fig. 24), and a number of phenomenologicalmodels
are available [155,314]. Some results combining specific adsorption
withMPBmodels of the diffuse layer are in Ref. [260]. Of course, at very
large voltages with steric effects included, the differential capacitance
at blocking electrodesmust eventually decrease, once the IHP andOHP
both become saturated with ions, as we have argued above. This
regime of universal square-root decay is often inaccessible at low
frequency due to Faradaic reactions, but our modeling of ACEO flow
reversal above suggests that it can be probed at high frequency.

5.1.6. Normal current and Faradaic reactions
Faradaic electron-transfer reactions can affect local surface poten-

tials and ion concentrations, and thus also electro-osmotic flows over
electrodes. This effect has recently been studied by Duval et al.
[312,315–317] in the context of nonlinear streaming potentials over
electrodes in the presence of a redox couple in solution. Reversible
redox couples, in particular, can greatly reduce streaming potentials
over electrodes due to conduction that results frombipolar electrolysis
[316], and this effect can be isolated using an indifferent supporting
electrolyte [317]. These studies are based on the standard Butler―-
Volmer equation,with reactions driven by the full double layer voltage
(rather than just the compact part [318]) and a Frumkin correction
based on dilute-solution theory, so some modifications may be
required for large applied voltages (see below).

Most models for induced-charge electrokinetics assume blocking
surfaces in order to focus on capacitive double-layer charging and
simple ICEO flow. As noted in Section 2, however, there is growing
evidence that Faradaic reactions play a major role, especially at low
frequency and high voltage (as in Fig. 11). This leads to normal
currents, which can perturb the equilibrium structure of the double
layer. Lacoste et al. [22] have recently noted that reverse ICEO flows
can arise even at low voltages in a mean-field theory of biological
membranes passing a normal ionic current, in the Helmholtz limit of a
thick dielectric layer (δ→∞). Since this limit corresponds to a large

Fig. 24. Sketch of the double layer near a blocking electrode at high voltage. Solvated
counterions (green) are crowded in the inner region and smoothly transition across the
outer diffuse region to a dilute solution with solvated anions (orange). An ion can break
free from its solvation shell and adsorb on the surface (black), thereby moving from the
outer Helmholtz plane (OHP) to the inner Helmholtz plane (IHP). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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“correction factor” in the standard model as inferred from most
experiments (see Section 2), it may be that non-equilibrium double-
layer structure in the presence of Faradaic reactions is involved in the
low-frequency, high-voltage flow reversal in ACEO and TWEO, in
addition to effects of diffusion-layer electroconvection [151]. Below,
we note that the mathematical description of Faradaic reactions may
also need to be modified for large voltages or concentrated solutions.

In the next section, we summarize a general mathematical
framework for the dynamics of electrolytes and ionic liquids, which
naturally allows the incorporation of some of these effects.

5.2. Modified electrokinetic equations

5.2.1. Continuum modeling approaches
Until now we have focused on situations with thin double layers

and integrated over the double-layer structure to obtain modified
effective boundary conditions on the quasi-neutral bulk fluid, namely
theMPB differential capacitance in Section 3 andMHS slip in Section 4.
In this section, we summarize the modified continuum electrokinetic
equations corresponding to these models, which could be applied to
arbitrary geometries with thin or thick double layers in nonlinear
electrokinetics. A few examples of this approach been developed for
linear electrokinetics [68,69] and electrochemical dynamics
[130,221]. Such modified continuum equations aim to capture more
of the essential physics of nanoscale electrokinetics, while remaining
much simpler and widely applicable than brute-force molecular
dynamics [104―109] or more complex statistical approaches
[77,319,320], and could have broad applicability beyond the problems
considered here.

We have made the case for modified electrokinetic equations
based on experimental and theoretical arguments in nonlinear
electrokinetics, but similar issues also arise in other fields. We have
already noted that Bikerman's model has recently been adapted to
model the double layer in ionic liquids [81―83], but mainly to predict
the differential capacitance for use in RC circuit models. We are not
aware of any attempt to describe electrokinetics or non-equilibrium
dynamics of ionic liquids, so our general approach below may have
some relevance, in the limit of very high salt concentration,
approaching a molten salt. Steric effects in polyelectrolytes have
also been described by Bikerman's model [220] as well as the CS and
BMCSL hard-sphere models [234,235], and this is another interesting
area to consider electrokinetics with crowding effects.

Even in the more familiar context of electrolytes, there has been a
recent explosion of interest in nanofluidics [89,90], since the high
surface-to-volume ratio of nanochannels amplifies the importance of
transport phenomena occurring in confined geometries, effectively
inside double layer. In recent years, the classical electrokinetic
equations for a dilute solution have been used extensively (and
exclusively) to model nanochannel phenomena such as ion selectivity
[91―94] and mechanical-to-electrical power conversion [95―100],
but quantitative agreement with experiments often requires fitting
“extra” compact-layer properties. Modified electrokinetic equations
with additional physics might improve theoretical predictions
without relying as much on adjusting boundary conditions.

As noted in the introduction, Liu et el. [77] have recently considered
correlations and crowding effects in steady nanochannel transport via
a continuum MPB theory, based on more complex statistical
thermodynamical models than those considered here [78―80]. This
approach incorporates more physics than we have considered above,
but this comes at the expense of sacrificing some generality and
mathematical simplicity, since it assumes equilibrium charge profiles
and requires numerical integration of coupled integral equations to
determine the self-consistent charge density in Poisson's equation.
Nonlinear integral equations for ion profiles or correlation functions
also result from other statistical approaches [241], such as the hyper-
netted chain and related models [186,187], and statistical density

functional theory [239,319,321]. For hard-sphere models, perhaps the
simplest theories of this type are based on the weighted-density
approximation [250], as discussed above. In spite of many successes,
however, all of these methods require significant effort to solve
numerically, even in simple situations, while their underlying physics
remains relatively simple (e.g. charged hard spheres). As such, it may
be more fruitful to apply modern computers to molecular dynamics
simulations with more realistic interatomic forces than to solve non-
local continuum models numerically.

Twenty years ago, in the context of fitting double-layer capacitance
data, Macdonald concluded that “integral-equation statistics treat-
ments are too complicated and too limited... to be of practical
usefulness”, while lattice-gas models may be “entirely adequate to
describe the diffuse layer” [188]. Although computational advances
have made integral-equation approaches more feasible today, we
believe that simple mathematical descriptions are still useful, if not
necessary, to model non-equilibrium dynamical phenomena. There-
fore, we focus here on local continuum models with finite-size ions,
following Cervera et al. [68,69]. We will also mention a simple non-
local WDA, which could serve as a first correction to the LDA in the
general theory.

5.2.2. Electrochemical transport
We now present a general modeling framework based on

electrochemical potentials, which applies to non-equilibrium situa-
tions and includes the simple cases considered above. In principle, one
could start with the full theory of non-equilibrium thermodynamics of
multicomponent systems [322,323], but we develop a simpler
phenomenological theory for electrokinetics in an isothermal concen-
trated solution. Our general starting point is to postulate a MF-LDA
continuum model for the electrochemical potential of an ion of the
species i (possibly including a solvation shell, depending on the
model), decomposed into ideal, electrostatic, and excess contributions
as follows:

μi = kT ln ci + zieϕ + μex
i ðx; fcjg;ϕÞ ð68Þ

The thermodynamic meaning of μi is the Gibbs free energy
difference upon adding a particle of species i (and replacing other
particles or empty space) within a continuum element, viewed as a
local open system in quasi-equilibrium with the reservoir of nearby
elements. Its gradient−∇μ i acts as a mean “thermodynamic force” on
each particle, driving the system toward local equilibrium. In (68), we
have defined μ i

ex as the excess chemical potential of ion i relative to a
dilute solution, expressed in terms of local continuum variables, such
as the position x (e.g. distance from a surface), ionic concentrations
{cj} and their gradients (to approximate non-local contributions),
electrostatic potential ϕ and field E=−∇ϕ, etc. The fundamental
significance of electrochemical potentials is emphasized by Newman
[190], who also questions validity of the mean electrostatic potential
ϕ at the molecular level in a multi-component concentrated solution.
Nevertheless, it is necessary to separate long-range electrostatic
forces from short-range chemical interactions to develop continuum
equations for electrokinetics, so we proceed with the phenomeno-
logical decomposition in Eq. (68). From this perspective, we can view
μiex=kT lnfi as defining the chemical activity coefficient fi in terms of
the mean-field approximation for ϕ.

In principle, the excess chemical potential uiex can be derived from
microscopic statistical models or by fitting to molecular dynamics
simulations or experiments. For example, throughout this article, we
have focused on two simple MF-LDA models of uiex for steric effects of
excluded volume for solvated ions, namely Bikerman's lattice-based
model (Eq. (20)) and the Carnahan–Starling hard-sphere-liquid
model (Eq. (27)). Above in this section, we noted some other possible
contributions. Simple MF-LDA models are also available for specific
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solvent-mediated ion-wall interactions (Eq. (67)) and ion–ion
interactions (Eq. (66)).

More complicated effects of statistical correlations can also be
included in ui

ex by making it a non-local functional of the ion density-
profiles. The simplest prescription of this type is the weighted-density
approximation (WDA), where μexfor a bulk homogeneous liquid is
evaluated with local reference concentrations c ̄i in place of ci, which
are obtained by non-local averaging of the nearby inhomogeneous
concentrations,

�ciðrÞ = ∫wð jr−r′ j Þciðr′Þdr′: ð69Þ

Several methods to construct the weight function w(r) are
available for general liquids [189,244–246,248] and have been
applied in equilibrium MF-WDA electrolyte simulations [195–
197,249,250]. For hard-sphere liquids, the simplest and most natural
choice for w(r) is the hard-sphere indicator function, w=3/(4πai3)
for r<ai and w=0 for r>ai, which turns out to be quite successful,
so it would be interesting to try to include this particular WDA in
electrokinetic models, as a first correction to the LDA. This WDA
leads to realistic density oscillations near a surface without the need
to fit an empirical wall potential (Eq. (67)) in the LDA. On the other
hand, LDA models are much simpler to implement numerically
and allow analytical progress, while any non-local continuum
model may be intractable for dynamical problems or complicated
geometries.

In non-equilibrium thermodynamics [190,322,323], the mass flux
densities Fi are obtained from the phenomenological hypothesis of
linear response:

Fi = ciu−∑
j
Lijcj∇μj ð70Þ

where fj=−cj∇μ j is the thermodynamic force density (force/volume)
acting on species j and Lij is the (symmetric, positive definite) Onsager
mobility tensor converting these forces intomeandrift velocities in the
frame moving with the mass-averaged velocity u. The mobility tensor
is related to the diffusivity tensor by the Einstein relation, Dij=LijkT,
and is usually assumed to be diagonal, Dij=Diδij, but this can only be
justified for a dilute solution. In a highly concentrated solution, the
mobility tensor (or its inverse, the friction tensor)mayhave significant
off-diagonal elements [322,323].

The Onsager mobility in Eq. (70) is generally take to be a constant
(i.e. linear response), but in highly concentrated and dissipative
liquids, there may be nonlinear concentration dependence. Various
models for glassy relaxation [274,275] and granular flow [276] have
postulated a power-law decay of the mobility,

Lij = L0ij 1− Φ
Φc

� �p

ð71Þ

as the particle volume fraction Φ approaches the jamming or glass
transition Φc, respectively. The crowding and compression of counter-
ions against a highly charged surface by a large, time-dependent normal
electric field may cause a similar, temporary decrease in mobility very
close to the surface. Such a nonlinear effect on ion transport would be
consistent with the charge-induced viscosity increase proposed above.

With the fluxes defined by Eq. (70), the differential form of mass
conservation is

∂ci
∂t + ∇⋅Fi = ri ð72Þ

where ri is the reaction rate density for production (or removal) of ion
i, which is usually (but not always [257]) set to zero for electrolytes.

With these further assumptions, the modified Nernst–Planck equa-
tions take the general form [130],

∂ci
∂t + ∇⋅ðciuÞ = ∇⋅ Di ∇ci + ci∇

zieϕ + μex
i

kT

� �� �� �
ð73Þ

5.2.3. Electrostatics
The system of modified PNP equations [130] is usually closed by

making the mean-field approximation, in which the electrostatic
potential self-consistently satisfies Poisson's equation

−∇⋅ðε∇ϕÞ = ρ = ∑
i
zieci ð74Þ

where ρ is the mean charge density. The permittivity ε of a polar
solvent like water is usually taken as a constant in Eq. (74), but
numerous models exist for field-dependent permittivity ε(|∇φ|), such
as Eq. (34) or Eq. (35), discussed in Section 3.1.6. The classical effect of
dielectric saturation reduces the permittivity at large fields due to the
alignment of solvent dipoles [155,188,228,256], although an increase
in dipole density near a surface may have the opposite effect [254].
The permittivity can also vary with temperature, due to Joule heating
or reactions, but here we only consider isothermal systems.

We are not aware of any attempts to go beyond the mean-field
approximation (Eq. (74)) in dynamical problems of ion transport or
electrokinetics. Thiswould seemto requirea simplecontinuumtreatment
of correlation effects, ideally leading to a general modification of Eq. (74).
Recently, Santangelo [299] derived a simple modified PB equation
accounting for ion–ion electrostatic correlations in a one-component
plasma [189] near a chargedwall in the relevant regime of “intermediate
coupling”, δc=λc/λD=O(1), which suggests modifying Poisson's equa-
tion with an additional term,

ðλ2
c∇

2−1Þ∇⋅ðε∇ϕÞ = ρ ð75Þ

whereλc is the electrostatic ion–ion correlation length, set by the balance
of thermal energy and Coulomb energy in the dielectric medium.
Physically, the extra term roughly accounts for interactions between an
ion and its correlation hole during thermal fluctuations. The higher
derivative of the correction term introduces the possibility of oscillations
in the ion densities at the scale of the correlation length. (It also requires
additional boundary conditions, discussed below.) The relative impor-
tance of the correction term in Eq. (75) ismeasured by the dimensionless
parameter δc=λc/λD introduced above, which takes the form δcz2ℓB/λD
for a z:z electrolyte. Since δc=O(1) for concentrated aqueous solutions
(and increases if local permittivity decreases), correlation effects could be
important in electrokinetics, and Santangelo's equation may provide a
useful starting point for analysis. For ionic liquids, correlation effects are
even more important, since the diffuse layer shrinks to the molecular
scale (δc≫1).

5.2.4. Electrochemical hydrodynamics
To determine the mass-averaged solution velocity, u, we enforce

the conservation of linear momentum

ρm
∂u
∂t + ∇⋅T = f ð76Þ

where ρm is the total solution mass density (which can be set to its
bulk value in most cases), T is the hydrodynamic stress tensor (arising
from mechanical friction), and f=∑ifi is the thermodynamic force
density (acting on all the ions, independent of fluid flow). The
nonlinear inertial convection term u ∙∇u could be added to Eq. (76),
but it is typically negligible in nonlinear electrokinetics due to a very
small Reynolds number. For the stress tensor, the first approximation
is the Newtonian form, T=pI−T(ν) with contributions from the
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dynamic pressure p (to satisfy incompressibility, ∇∙u=0) and the
viscous stress tensor,

TðvÞ
ij = η

∂ui

∂xj
+

∂uj

∂xi

 !
: ð77Þ

As explained in Section 4, there may be significant local changes in
viscosity near a highly charged surface. For example, the following
empirical form combines the viscoelectric effect (Eq. (52)) and
charge-induced thickening (Eq. (53)),

η = ηb 1− ρ
ρFj

 !2" #−β

ð1 + f E2Þγ: ð78Þ

For simplicity, one could typically set γ=0, since E tends to grow
with ρ in a similar way, via the MPB equations, as noted above.
Alternatively, one could set β=0, but that removes any explicit
dependence on the effective ion sizes or other modified interactions.

The thermodynamic force f, which acts as a source of momentum in
Eq. (76), can be simplified, if we assume small departures from local
thermal equilibrium.Wealsoneglect heat transfer andassume isothermal
conditions. In that case, theGibbs free energydensity,g=∑iciμ i, varies as

δg = δp0 + ∑
i
μiδci + ρδϕ = ∑

i
ðciδμi + μiδciÞ ð79Þ

where p0 is the hydrostatic pressure. Taking the variation between
adjacent continuum elements, we obtain

−f = ∑
i
ci∇μi = ∇p0 + ρ∇ϕ ð80Þ

which is a form of the Gibbs–Duhem relation [190,322], adapted for an
isothermal charged system. Note that p0 includes the osmotic pressure
that balances concentration gradients, which takes the form, kT∑ici, in
a dilute solution upon inserting Eq. (13) into Eq. (80). In a concentrated
solution, the osmotic pressure can take a more complicated, possibly
non-algebraic form, but its gradient should still uphold the local Gibbs–
Duhem relation (Eq. (80)) near thermal equilibrium.

Since we assume incompressible flow, we can insert Eq. (80) into
Eq. (76) and absorb p0 into the dynamical pressure p. In this way, we
arrive at the familiar form of the unsteady Stokes equation,

ρm
∂u
∂t + ∇ ⋅ T = fe ð81Þ

with an electrostatic force density, fe=−ρ∇φ. The unsteady term
∂u/∂t in Eq. (81) is often overlooked, but it can be important in
nonlinear electrokinetics, e.g. for oscillating momentum boundary
layers and vortex shedding in response to AC forcing [16,43].

The Stokes Eq. (81) is the standard description of fluid mechanics at
low Reynolds number, which is normally applied in to a dilute solution,
but we see that it also holds for an isothermal, concentrated solution
near equilibrium, regardless of the form of μ i

ex. In their theory of non-
equilbrium thermodynamics, De Groot and Mazur [322] instead assert
Eq. (81) as the fundamental expression of momentum conservation,
where the “external” or “long-ranged” force fe acts as the source of
momentum flux in a continuum element, whose internal “short-
ranged” forces are described by T. Here, we show the equivalence of
starting with Eq. (76) based on the full thermodynamic force f for a
concentrated solution and deriving Eq. (81) as the quasi-equilibrium
limit, where only the external (electrostatic) force fe produces
momentum. In this limit, which is consistent with the assumption of
linear response (Eq. (70)) for the mass fluxes, all other the “chemical”
interactions in f−fe only contribute to the (osmotic) pressure.

Non-equilibrium thermodynamics can be extended to account for
the electrical polarizability of a concentrated solution [322]. For a linear

dielectric medium with variable permittivity ε, the electrostatic force
density can be expressed in the familiar form, fe=−∇∙T(e), where

TðeÞ
ij = ε EiEj−

1
2
jE j2δij

� �
ð82Þ

is theMaxwell stress tensor [324]. As noted above, in polar solvents, the
permittivity should generally decrease in large fields. Various phenom-
enological models for ε(E) can be incorporated into the theory of
electrokinetics for concentrated solutions, but they complicate analysis
and can introduce seemingly unphysical oscillations or singularities in
the concentration profiles [260] and are perhaps best avoided, or
included only heuristically in the boundary conditions.

5.3. Modified boundary conditions

5.3.1. Electrostatic boundary conditions
For Poisson's equation in themean-field approximation (Eq. (74)), the

electrostatic boundary conditions at a dielectric surface require continuity
of the tangential electric field Et and equate the jump in normal electric
displacement εE across the interface to the free chargeqS (which is related
to the equilibriumzeta potential) [324]. For a low-dielectric surfacewith a
fixed surface charge density, the internal electric field can often be
neglected, yielding the standard boundary condition,

ε n̂⋅∇ϕ = qS: ð83Þ

Alternatively, for a metal surface, one can simply fix the potential
ϕ=ϕ0 or allow for a thin dielectric layer (or compact Stern layer) on
the surface through the mixed boundary condition [22,27,144,154],

ΔϕS = ϕ−ϕ0 = λS n̂⋅∇ϕ− qS
CS

; ð84Þ

where λS=εhS/εS is an effective thickness of the layer, equal to the
true thickness hS by the ratio of permittivities of the solution ε and the
layer εS, and CS=εS/hS is its capacitance. The boundary condition can
also be generalized for voltage-dependent surface capacitance, which
makes the surface-layer voltage drop ΔφS a nonlinear function of the
normal electric field [154]. When applying Eq. (84) to a metal
electrode, one can set qS=0 to model the Stern layer as a thin
dielectric coating of solventmolecules [228], while specific adsorption
of ions would lead to qS≠0.

The preceding boundary conditions can be imposed on the mean-
field Poisson Eq. (74), but the modified equation for electrostatic
correlations (Eq. (75)) introduces a fourth derivative term and requires
one more boundary condition on each surface. Charge conservation
requires the following boundary condition

n̂ ⋅ λ2
c∇

2−1
� �

ε∇ϕ
h i

= qS ð85Þ

where brackets indicate the jump across the boundary. For consis-
tency with the derivation of Eq. (75), Santangelo sets the second term
(jump in mean dielectric displacement) to zero and thus equates the
surface charge to the jump in the curvature of the field [299]. For an
insulating surface of fixed charge density, this would imply replacing
Eq. (83) with two boundary conditions

n̂ ⋅ ∇ϕ = 0 and n̂ ⋅ λ2
c∇

2ðε∇ϕÞ = qS ð86Þ

For a metal surface with a compact Stern layer modeled as a thin
dielectric coating (with a uniform electric field), we would replace
Eq. (84) with

ϕ−ϕ0 = λS n̂⋅∇ϕ and n̂⋅λ2
c∇

2ðε∇ϕÞ = qS: ð87Þ
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This mathematical model provides an interesting opportunity for
analysis of correlation effects in electrochemical dynamics and
electrokinetics, although it is only a first approximation.

5.3.2. Electrochemical boundary conditions
Standard boundary conditions for the concentration fields equate

normal ionic fluxes with surface reaction rates

n̂ ⋅ Fi = Riðfcig;ϕ; fμig;…Þ; ð88Þ

which vanish for inert ions (Ri=0). The flux boundary condition can
also be generalized for a dynamical Stern layer, which supports
tangential ionic fluxes [288,290,291] or adsorption of ions [175,179–
181], although some effects of this type are already captured by the
modified electrokinetic equations, as noted above. The reaction rate Ri
may describe surface adsorption, in which case there is an auxiliary
equation for the surface concentration,

∂cs
∂t + ∇s⋅Fs = Ri; ð89Þ

where the second term allows for surface diffusion. If the kinetics of this
reaction are fast (largeDamkoller number) and surface transport is slow
(small Dukhin–Bikermannumber) compared to bulk transport, then the
reaction is in quasi-equilibrium. In that case, the surface concentration
cs is given by an adsorption isotherm, which equates the surface and
nearby liquid chemical potentials, μs=μi. For example, the popular
Langmuir isotherm follows from a lattice-gas model of the surface
adsorption sites, μs=kT ln[cs/(cmax−cs)], with dilute-solution theory
for μi. The reaction rate Ri may also describe Faradaic electron-transfer
reactions, such as electrodeposition (which also involves an adsorption
step, and resulting motion of the metal surface) or redox reactions
(which alter the charge of ions remaining in the liquid region).

The proper mathematical description of electrochemical reaction
kinetics is complex and not fully understood [155]. The standardmodel in
electrochemistry is theButler–Volmerequation, usually appliedacross the
entire double layer under conditions of electroneutrality [190]. Applying
an analogous expression at the molecular level has better theoretical
justification and introduces the “Frumkin correction” for diffuse-layer
voltagevariations [325]. SeeRef. [318] for a recent review. For example, for
the redox reaction R↔O+ne−, this model asserts Arrhenius kinetics for
the forward (anodic) and backward (cathodic) reaction rates,

R = kacRe
−αOneΔΦS =kT−kccOe

αRneΔϕS =kT ; ð90Þ

where ka and kc are rate constants for the anodic and cathodic
reactions, cR and cO are concentrations of species R and O, and αR and
αO are transfer coefficients defined below (αR+αO=1) . The bias
voltage ΔφS can be interpreted as the Stern-layer voltage in models of
the type we have considered here [191,318,326,327]. This approach
has been used to model ACEO [42] and TWEO [151] at reacting
electrode arrays in dilute solutions. It is straightforward to include
nonlinear differential capacitance of the Stern layer, CS(ΔφS), as well
[191], but more significant modifications may be needed for
concentrated solutions and large voltages.

For consistency with our theoretical framework based on non-
equilibrium thermodynamics, the reaction rate should properly be
expressed in terms of the electrochemical potentials [328],

R = k0 eðμR−μex
TS Þ=kT−eðμO−μex

TS Þ=kT
� �

; ð91Þ

where μR and μO are the complete electrochemical potentials of the
reaction complex in the reduced and oxidized states, and μTS

ex is the
excess electrochemical potential in the transition state, and k0 is an
arbitrary rate constant (which can be set by shifting μTS

ex). The Butler–
Volmer Eq. (90) follows from dilute-solution theory (μR

ex=μO
ex=0)

and a purely electrostatic model for the activation barrier which is a
linear combination of the electrostatic energy of the reduced and
oxidized states, weighted by the transfer coefficients:

μex
TS = Ea + αRqRϕ + αOðqOϕ−neϕ0Þ ð92Þ

where Ea is a composition-independent activation energy barrier,
absorbed into the rate constants ka and kc, and qR and qO=qR+ne are
the charges of the reduced and oxided states. The general expression
(Eq. (91)) can be derived from statistical transition-state theory in a
hypothetical local open system, and it contains a variety of possible non-
electrostatic influences on the reaction rate, via the excess contributions
to the chemical potentials. This approachwas recently introduced in the
context of ion intercalation in rechargeable-batterymaterials,where the
chemical potential in the electrode, and thus the reaction rate, depends
on gradients in the ion concentration [300]. Steric effects were also
recently considered in the context of fuel-cell membranes [327], and a
form of Eq. (91) was effectively applied. In nonlinear electrokinetics, it
may also be necessary to consider more general forms of the reaction
rate in Eq. (91), whenever the voltage is large enough to invalidate the
dilute-solution approximation close to the surface.

5.3.3. Hydrodynamic boundary conditions
Until recently, almost all theoretical studies in electrokinetics have

assumed the no-slip boundary condition for the liquid velocity, u=U,
where U is the velocity of the surface. With the emergence of
microfluidics [1], the phenomenon of hydrodynamic slip has been
studied extensively in simple, Newtownian fluids [263,264,266] and
interpreted in terms of the Navier boundary condition [329],

Δu = u−U = b n̂⋅∇u; ð93Þ

where the slip Δu is proportional to the shear strain rate via the slip
length b. Flow past smooth hydrophilic surfaces have been shown to
be consistent with the no-slip hypothesis, but b can reach tens of
nanometres for hydrophobic surfaces [267–269] or even several
microns over super-hydrophobic textured surfaces with trapped
nanobubbles [330–334].

The study of electrokinetic phenomena in the presence of slip was
perhaps first pursued by the group of N. V. Churaev [335,336]. For
electro-osmotic flow in a microchannel, Kiseleva et al. [335] considered
the effect of exponentially varying viscosity η(x) near a wall, increasing
toward a hydrophilic surface or decreasing toward a hydrophobic
surface, and Muller et al. [336] studied the impact of the slip boundary
condition Eq. (93),whichenhances theflowbya factor (1+b/λD) at low
voltage [264]. This enhancement of electro-osmosis was recently
analyzed and demonstrated by Joly et al. [108] via molecular dynamics
simulations and extended to diffusio-osmosis by Ajdari and Bocquet
[337]. (The permittivity may also vary near a hydrophobic surface, and
this also can affect particle interactions [338].) The possibility of slip-
enhanced (linear) electro-osmotic flows has generated considerable
excitement in nanofluidics [100,339], but so far it has only been
analyzed with the classical electrokinetic equations and the simple,
purely viscous boundary condition (Eq. (93)).

We suggest using a modified Navier slip boundary condition [340],

Δu = MðT ⋅n̂Þ; ð94Þ

where T ∙ n̂ is the total normal traction on the surface due to short-
range forces (force/area) and M is an interfacial mobility tensor
(velocity×area/force), which is non-diagonal for anisotropic surfaces.
For an isotropic, impermeable surface, the mobility matrix is diagonal,
M=MI, with zero elements for normal flow, and then Eq. (93) is
recovered from Eq. (94) with b=Mη.

Using these models, it would be interesting to study the
competition of viscoelectric effects (Eq. (78)) and hydrodynamic
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slip (Eq. (93) or Eq. (94)) in nonlinear electrokinetic phenomena at
polarizable, hydrophobic surfaces in large applied voltages and/or
concentrated solutions. The simple low-voltage amplification factor
(1+b/λD(c0)) associated with Eq. (93) increases with concentration
and becomes appreciable when the diffuse-layer thickness becomes
smaller than the slip length, so hydrophobic surfaces may counteract
the effect of increasing viscosity very close to the surface and allow
induced-charge electro-kinetic phenomena to be observed at higher
concentrations and voltages. On the other hand, these predictions
depend sensitively on the location of the slip plane where the
hydrodynamic boundary condition is imposed, and how it relates to
the compact-layer plane (OHP, Stern plane, reaction plane, etc.)
where the electrochemical boundary conditions are imposed, espe-
cially in the concentrated-solutions models. For example, we have
seen that charge-induced thickening reduces the flow in the diffuse
layer, but this can be counteracted by hydrodynamic slip if the slip
plane lies closer to the surface than the thickened region, due to the
amplification of viscous stress on the slip plane. We pose the effect of
hydrodynamic slip in a highly charged double layer on a metal surface
as an interesting open question for future work.

5.4. Thin double layers and diffusion layers

The modified electrokinetic equations and boundary conditions
above may be useful in modeling nanoscale electrokinetic phenom-
ena, e.g. taking into account steric effects of finite ion sizes, but at
larger scales, where the double layers become thin, matched
asymptotic expansions can be used to systematically integrate out
the diffuse layer and derive effective boundary conditions on the
quasineutral bulk. First, we briefly summarize the results in the typical
situation where the voltage is not strong enough to drive the double
layer out of equilibrium or fully deplete the bulk salt concentration,
due to diffusion limitation. In that case, the ion transport Eq. (72)
remain unchanged in the bulk, but Poisson's Eq. (74) is replaced by
the condition of electroneutrality, ∑izieci=0. The fluid equations are
also unchanged, and bulk viscosity variations can usually be
neglected.

As noted above, chemical potentials are approximately constant
(or “quasi-equilibrium” holds) in the normal direction across a thin
double layer. For the ionic concentrations, the boundary conditions
then take the form of surface conservation laws [114],

∂Γi
∂t + ∇s⋅F

ðsÞ
i = n̂⋅Fi−Ri; ð95Þ

where Γi(ΨD, {ci}) is the excess concentration of species i per unit area,
∇s∙Fi(s)(ΨD, {ci}) is the surface divergence of the integrated tangential
flux in the diffuse layer, n̂∙Fi is the normal flux from the bulk, and Ri
(ΨD, {ci}) is the Faradaic reaction rate density at the surface, evaluated
in terms of the bulk variables, which thus includes the Frumkin cor-
rection. See Ref. [114] for expressions for Γi and Fi

(s) using Bikerman's
model, neglecting convective fluxes, and Refs. [154,318,326,341] for
expressions for Ri for Faradaic reactions in a dilute solution, neglecting
tangential transport. Eq. (95) generalizes the RC boundary condition
(Eq. (2)).

Integrating over the diffuse-layer also yields a “first kind” effective
slip boundary condition for the bulk fluid velocity,

us = bðeoÞEt−∑
i
bðdoÞi kT∇t ln

ci
c0

; ð96Þ

where the first term describes electro-osmosis driven by the bulk
tangential field with b(eo)(ΨD, {ci}) given by Eq. (49) and various
approximations above. The second term describes diffusio-osmosis in
response to tangential bulk salt concentration gradients [8,112,123,
177,342]. The diffusio-osmotic mobilities bi(do)(ΨD, {ci}) can be systemat-
ically derived from the full transport equations above in the limit of thin

double layers, following the asymptotic analysis of Prieve et al. [177] or
Rubinstein andZaltzman [123,124]. Simple expressions can bederived for
dilute-solution theory, such as

us =
εb
ηb

ζEt−4
kT
ze

� �2
ln cosh

zeζ
4kT

� �
∇tln

c
c0

� �
ð97Þ

for a dilute z:z electrolyte, where c=c+=c− is the quasi-neutral bulk salt
concentration. (Equivalent forms are in Refs. [123,177], and this corrects a
missing factor of 4 in Eq. (111) of Ref. [115].). More cumbersome
expressions, which are not expressible in terms of elementary functions,
result from modified equations with volume constraints [260]. Similar
asymptoticmethods canalsoexpress theeffective slipboundarycondition
in terms of bulk electrochemical potential gradients, {∇tμ i}.

In our many examples of induced-charge electrokinetic phenom-
ena with blocking surfaces, we have assumed “weakly nonlinear”
dynamics [129,131], where the bulk concentration is not significantly
perturbed. Under “strongly nonlinear” dynamics at large voltages,
evenwith blocking electrodes [129,174–176,179,343,344], strongbulk
concentration gradients can develop, and the other terms in Eqs. (95)
and (96) become important [112,123,124]. Although steric effects
generally reduce the importance of surface conduction (smaller
Dukhin–Bikerman number) compared to dilute-solution theory
since there are not nearly as many ions in the double layer [60],
diffusio-osmosis, concentration polarization, and diffusion-layer elec-
tro-convection [151] are affected less and could be significant. In
addition to Faradaic reactions, other sources of normal ion flux, such as
salt adsorption by the diffuse-charge layers and Langmuir adsorption
of ions on the surface, can also produce time-depedent diffusion layers
(thicker than the diffuse charge layer, but thinner than the bulk
region) oscillating at twice the frequency of the AC forcing, although
these layers are weakly charged andmay not have a large effect on the
effective fluid slip [175,176,179]. All of the problems we have
considered above should be revisited in the strongly nonlinear regime
to better understand the predictions of the modified electrokinetic
equations, but this is beyond the scope of the paper.

As noted in Section 2, the effects of Faradaic reactions or other
mechanisms for normal ionic flux are still poorly understand in
nonlinear electrokinetics, even for thin double layers. Normal currents
can disturb the quasi-equilibrium structure of the double layer, even
at small currents (in the Helmholtz limit δ→0), and lead to seemingly
reverse ICEO flows [22]. Concentration gradients can also develop due
to normal ionic fluxes under diffusion limitation. If the bulk salt
concentration approaches zero, at a limiting current, the quasi-
equilibrium diffuse layer expands into a non-equilibrium space charge
layer and drives second-kind electro-osmotic flows [113] and
hydrodynamic instability [122,124]. The classical electrokinetic
equations suffice in that case, since the decreasing concentration
only helps to validate dilute-solution theory. In the case of induced-
charge electrokinetic phenomena, however, the strongly nonlinear
regime is just beginning to be explored and may require modeling
with modified electrokinetic equations.

6. Conclusion

We have provided a critical review of recent work in nonlinear
“induced-charge” electrokinetics, comparing theory to experiment for
the first time across a wide range of phenomena to extract general
trends. In doing so, we were naturally led to question the theoretical
foundations of the field and develop modified equations for electroki-
netics in concentrated solutions at large voltages. These equations may
find applications in diverse areas of electrochemistry and fluid
mechanics. A crucial aspect of this effort was to survey microscopic
models of electrolytes from different fields, where convection and
charge relaxation are neglected. Our experience shows the importance
of integrating knowledge across scientific communities. For example,
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we managed to find seven independent formulations of Bikerman's
model (1942) from 1947 to 1997 and two rediscoveries of Freise's
capacitance formula (1952) in 2007, each leading to separate literatures
without any cross references (Section 3.1.2).

We have argued that many new nonlinear phenomena can arise at
large induced voltages, and we focused on three that could play a
major role in induced-charge electrokinetics: (i) crowding of counter-
ions against a blocking surface (Fig. 4) decreases the differential
capacitance (Fig. 5), which may explain high frequency flow reversal
in ACEO pumps (Fig. 10) and imply ion-specific mobility of polarizable
particles in large fields (Fig. 12); (ii) a charge-induced viscosity
increase upon ion crowding (Fig. 15) reduces the effective zeta
potential (Fig. 17), which implies flow decay with increasing
concentration and an additional source of ion-specificity (Fig. 20);
and (iii) each of these effects is enhanced by dielectric saturation of
the solution in large electric fields (Fig. 9). To illustrate these
phenomena, we have derived extensive analytical formulae based
on simple models in the mean-field and local-density approximations
(MF-LDA), including lattice-gas and hard-sphere models for steric
effects of finite ion sizes, as well as various postulates of charge-
induced thickening leading to modified electro-osmotic slip formulae.

We have also developed a theoretical framework for electrokinet-
ics based on non-equilibrium thermodynamics in a concentrated
solution (Section 5). Although motivated by induced-charge electro-
kinetics, these general equations and boundary conditions could find
applications in many other areas involving nanoscale electrochemical
transport. Our examples of MF-LDA models focusing on the effects
above should be refined and extended in future work, e.g. to account
for various solvent effects, specific adsorption of ions, and Faradaic
reactions, and we have reviewed some of the relevant literature for
guidance. Especially for multivalent ions, it may be necessary to go
beyond the MF approximation to account for electrostatic correla-
tions, which we alter the inner double-layer structure and could
contribute to charge-induced thickening. A proper description of
volume constraintsmay require going beyond the LDA, especially very
close to a surface, to account for short-range correlations and related
density oscillations.

Legend has it that Wolfgang Pauli once said, “if God made materials,
then surfaces are the work of the Devil”. At end of this study, it is
tempting to draw the same conclusion, given the complexity of possible
phenomena occurring at large surface potentials and our inability to
devise a single model to predict all the experimental data. We remain
optimistic, however, that simple, predictive models will follow from
improved nanoscale understanding of the double layer.

Our study raises an important general question for continuum
modeling, “Where should the continuum region end and give way to a
boundary condition?” This question has received much attention
recently in the context of hydrodynamic slip, but the situation is much
more complicated for electrochemical relaxation and electrokinetic
phenomena. The pioneering papers of Stern [183] and Bikerman [59]
introduced two opposing, general perspectives, which provide the
historical context for our work. Stern first proposed describing the
outer “diffuse part” of the double layer with dilute-solution theory,
while lumping any discrepancies into an empirical boundary
condition on the inner “compact layer”. Bikerman then showed that
a similar finite-size cutoff of dilute-solution theory could instead be
obtained by modifying the bulk equations for a concentrated solution,
without adjusting the boundary condition. By the latter half of the
century, Stern's approach became widely adopted through simple
empirical models for the compact layer, and Bikerman's paper was
essentially forgotten.

We have argued that Bikerman's perspective should be revisited,
especially for extreme conditions of large applied voltage, salt
concentration, and/or frequency, since otherwise it is not clear how
compact-layer boundary conditions should change to describe a
dynamical region of nonlinear response near the surface. Bikerman's

perspective also applies more easily to nontrivial nanoscale geome-
tries, where the classical concepts of “Stern plane” and “slip plane” are
less well defined. We have shown that simple continuum equations
for ion crowding, dielectric saturation, and viscoelectric response all
predict that the compact layer and slip plane both effectively advance
into the solution with increasing surface charge, but without the need
to define these empirical concepts. On the other hand, Stern's
perspective remains attractive for mathematical modeling, since it
preserves simple equations for the fluid domain and lumps compli-
cated molecular details into boundary conditions, so perhaps a
combined approach is needed. Certainly, true surface effects, such as
specific adsorption and Faradaic reactions, require effective boundary
conditions, consistent with any modifications of the bulk equations
(Section 5.2).

In our opinion, it remains a grand challenge to describe double-
layer structure, electrochemical relaxation, and ICEO flow at a
polarizable surface over vast parameter ranges, from 10 mV to 10 V
in voltage, 0 to 100 kHz in frequency, and 1 μMto1 M in ionic strength,
using a simple — but not over-simplified — mathematical model,
amenable to analytical results (in idealized limits) and numerical
simulations (for typical experimental situations). The upper extremes
of these conditions correspond to a new regime for the theory of
electrokinetic phenomena, where counterions become crowded
during time-dependent relaxation and flow near a highly charged
surface. Nanoscale experiments and molecular dynamics simulations
will be crucial to further develop and validate various theoretical
postulates. If properly validated, we believe that modified mathemat-
ical models can advance our understanding and better predict
experimental observations.
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