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Abstract
For brittle failures, the probability distribution of structural strength and lifetime are known to
be Weibullian, in which case the knowledge of the mean and standard deviation suffices to
determine the loading or time corresponding to a tolerable failure probability such as 10−6.
Unfortunately, this is not so for quasibrittle structures, characterized by material
inhomogeneities that are not negligible compared with the structure size (as is typical, e.g. for
concrete, fibre composites, tough ceramics, rocks and sea ice). For such structures, the
distribution of structural strength was shown to vary from almost Gaussian to Weibullian as a
function of structure size (and also shape). Here we predict the size dependence of the
distribution type for the lifetime of quasibrittle structures. To derive the lifetime statistics from
the strength statistics, the subcritical crack growth law is requisite. This empirical law is
shown to be justified by fracture mechanics of random crack jumps in the atomic lattice and
the condition of equality of the energy dissipation rates calculated on the nano-scale and the
macro-scale. The size effect on the lifetime is found to be much stronger than that on the
structural strength. The theory is shown to match the experimentally observed systematic
deviations of lifetime histograms from the Weibull distribution.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For many engineering structures, such as bridges, buildings,
dams, aircraft and ships, the reliability analysis is of paramount
importance because the safety factors guarding against the
uncertainties in structural strength are the most uncertain
aspect of design. As generally agreed [20, 31, 33], the design
must ensure that the failure probability of structure Pf < 10−6

for the entire lifetime. Such a small Pf is beyond the means of
direct experimental verification by histogram testing. Hence,
it is necessary to develop a realistic, physically justified,
probabilistic model, which can be verified indirectly.

We restrict attention to the broad class of structures of
positive geometry (i.e. structures having a geometry for which
the stress intensity factor gradient >0). These structures
reach their maximum load and begin softening right after the

initiation of a macro-crack from one representative volume
element (RVE) of material. When they are brittle, the
probability distribution function of structural lifetime is well
known. Statistically, the brittle structures are equivalent to
the weakest link model in which the number of links, each
corresponding to one RVE, is infinite. Noting that the structure
survives if and only if all the links (i.e. all RVEs) survive,
one can apply the joint probability theorem. In this way one
finds that the cumulative distribution functions (cdf) of both
the strength and the lifetime of structure must be Weibullian.
The distribution type being known, it suffices to calculate or
experimentally determine the mean and the standard deviation.
Thus the loading or time needed to reach Pf = 10−6 is obtained
easily. Not so for quasibrittle structures.

The quasibrittle structures consist of brittle heteroge-
neous, or quasibrittle, materials in which the size of the RVE
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(typically about three inhomogeneity sizes) is not negligible
compared with the structure size. They include concrete, tough
ceramics, fibre composites, rocks, sea ice, snow slabs, wood,
etc, and all brittle materials on the micrometre scale. Their
salient feature is that, as the structure size increases, the fail-
ure behaviour transits from quasi-plastic (characterized by a
load-deflection diagram with a yield plateau) to brittle (no
plateau but a sudden load drop as soon as the maximum load
is reached) [5–8, 15].

Along this transition, spanning about three orders of
magnitude of structure size, the strength cdf gradually changes
from Gaussian to Weibullian [10, 13, 14]. The consequences
for safety are serious because, e.g. when the coefficient of
variation of strength is ω = 0.1 (a typical value), the distance
from the mean to the point of Pf = 10−6 is 4.75ω for the
Gaussian cdf, and 6.65ω for the Weibull cdf. This difference
is huge and requires a large change of safety factors, which
underscores the importance of finding a theoretical basis for
the dependence of cdf on the structure size (and shape). A
logical basis is the atomistic fracture mechanics.

The atomistic basis of the size effect on the cdf of
strength has recently been established [9–11], and the present
objective is to do the same for the lifetime. Significant
advances in lifetime prediction have already been made
for various engineering materials. Tobolsky and Eyring
[42] first developed an activation energy model for the
lifetime of polymers, and later Zhurkov [46, 47] championed
a similar model for the lifetime of polymers, alloys and
non-metallic crystals. However, they neglected the effect
of restoration of ruptured interatomic bonds during random
interatomic crack growth. This restoration was later taken
into account by Hsiao et al [27], but it was in the
context of an atomic pair potential, which is insufficient to
capture the near-symmetry of forward and backward jumps
during the crack propagation. All of these models led
to deterministic results and could not predict the type of
lifetime cdf.

Other approaches have been taken to characterize the
lifetime statistics for fibrous materials, composites and
ceramics [18, 19, 24, 32, 36, 37]. Many of them used some
intuitively chosen functions, e.g. the two-parameter Weibull
distribution [24, 32], lognormal distribution [1] and Weibull
hazard function [18, 19, 36, 37]. However, these functions
were not (and could not be) physically justified for quasibrittle
structures, and often the histogram fits were poor [24, 32].

To calculate structure lifetime, the rate of creep growth
of a subcritical crack must be known. For constant loads,
the growth rate has been extensively investigated for decades,
both theoretically and experimentally [21–23, 26, 29, 41, 44].
The crack growth rate law was first studied in the context of
corrosive environment [26, 44], where the classical rate process
theory was adopted to explain the effect of chemical reaction
on the crack propagation rate at low stress [25, 26, 44].

For the stress-dominated crack growth, a power-law
function has been empirically proposed to describe the
dependence of crack growth velocity on the applied stress
[21, 22, 41]. Some theoretical justification of the power-law
form of crack growth law has recently been suggested [23, 32],
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Figure 1. Fracture of atomic lattice block.

based on the break frequency of a bond between a pair of two
atoms. Such a justification, however, is problematic, for three
reasons: (1) The pair potential, such as the Morse potential,
neglects the contribution of surrounding atoms, which is major.
(2) As the crack grows, the breakage of each pair occurs not in
one step but over a series of many steps separated by metastable
states. (3) The scale bridging between the atomic scale and the
macro-scale is missing. Thus, the power law for crack growth
rate has so far been justified only empirically.

This paper presents a physical justification of the power-
law form of crack growth rate based on the atomistic fracture
mechanics and on the multiscale transition of the fracture
kinetics from nano- to macro-scale. The crack growth law
is then used to extend a recently developed theory of the
strength distribution of quasibrittle structures to the statistics
of structure lifetime under constant load. An extension to other
monotonic loading histories would be straightforward and will
not be presented here.

2. Crack growth rate at nano-scale

Consider the crack propagation in an atomic lattice block,
which is subjected to some remote stress (figure 1(a)). On
the nano-scale, the propagation of a nano-crack is directly
caused by the breaks of atomic bonds ahead of the crack tip.
As the crack propagates, the separation between the opposite
atoms across the crack, δ, increases by small fractions of their
initial distance. The integral of the force transmitted between
two opposite atoms, Fb (which includes the contributions
of all nearby atoms), is the local potential function �1(δ)

(figure 1(b)), i.e. Fb(δ) = ∂�1(δ)/∂δ. The bond strength is
exhausted at the peak point of the interatomic force-separation
curve Fb(δ) (figure 1(c)), which also corresponds to the point
of maximum slope of the curve �1(δ). This point (labelled 3
in figure 1(a)) normally defines the end of the fracture process
zone (FPZ), in which the stresses decrease with increasing
separation (which is a classical idea of Barenblatt [4]). The
FPZ, also called the cohesive zone, begins (and the real crack
ends) at the point where the interatomic force is reduced to
zero (labelled 5 in figure 1(a)).
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Figure 2. (a) Load–displacement curve of atomic lattice block,
(b) curve of free energy potential of atomic lattice block,
(c) activation energy barriers of atomic lattice block for fracture
extension and shortening.

As the crack propagates through the atomic lattice block,
its length changes by jumps equal to the atomic spacing δa .
During each jump, one barrier on the overall potential � of
the lattice block must be overcome. Therefore, the load–
displacement curve of the lattice P(u) exhibits the wavy shape
instead of the usual smooth curve (figure 2(a)). After each
jump, potential � decreases slightly (figure 2(b)). Because
of thermal activation, the states of the atomic lattice block
fluctuate and can jump over the activation energy barrier in
either direction (forward or backward, figure 2(c)), though not
with the same frequency. When crack length a jumps by one
atomic spacing, the activation energy barrier Q changes by
a small amount �Q corresponding to the energy release by
fracture, which is associated with the equilibrium load drop P

from one metastable state to the next.
The FPZ of the nano-crack cannot be assumed to be

negligible compared with the size of the nano-scale atomic
lattice block, la . Therefore, the approximation by equivalent
linear elastic fracture mechanics (LEFM), in which the tip of
an equivalent sharp LEFM crack lies roughly in the middle
of the FPZ, needs to be used. We may idealize the crack
as planar and three-dimensional, growing in a self-similar
manner. Its stress intensity factor can generally be expressed
as Ka = τ

√
laka(α) where α = a/la = relative crack length,

ka(α) = dimensionless stress intensity factor, τ = cσ =
remote stress applied on the nano-scale atomic lattice block;
c = nano–macro stress concentration factor and σ = macro-
scale stress applied to the structure. The corresponding energy
release rate function is

Ga(α) = K2
a /E1 = k2

a (α)laτ
2/E1, (1)

where E1 = elastic modulus for a continuum approximation
of the lattice (which is larger than the macroscopic elastic
modulus E). The increment of energy that is released when
the crack advances by δa along its entire perimeter of length
γ1αla is

�Q = δa(γ1αla)Ga = Va(α)
τ 2

E1
, (2)

where Va(α) = δa(γ1αl2
a )k

2
a (α) = activation volume (note that

if the stress tensor is written as τ s where τ = stress parameter,
one may write Va = s : va where va = activation volume
tensor, as in the atomistic theories of phase transformations in
crystals [2]).

Since each atomic jump δa is much shorter than the
cohesive crack length, the interatomic separation increases
during each jump by only a small fraction of the atomic
spacing. So, the activation energy barrier for a forward jump,
Q0 − �Q/2, differs very little from the activation energy
barrier for a backward jump, Q0 + �Q/2 (Q0 = activation
energy at no stress). Consequently, the jump of the state of
atomic lattice block must be happening in both directions,
though with slightly different frequencies. Based on the
transition rate theory [28, 35], the first-passage time for each
transition is given by Kramer’s formula [39], according to
which the net frequency of crack jumps is [9]

f1 = νT(e−(Q0−�Q/2)/kT − e−(Q0+�Q/2)/kT ) (3)

= 2νTe−Q0/kT sinh[Va(α)/VT], (4)

where VT = 2E1kT /τ 2, νT = characteristic attempt frequency
for the reversible transition, νT = kT /h where h = 6.626 ×
10−34 J s = Planck constant, T = absolute temperature and
k = Boltzmann constant. Considering typical values of
the parameters in equation (4), one finds Va/VT � 1 [10].
Therefore, equation (4) becomes

f1 = CTτ 2 (5)

where CT = γ1αk2(α)e−Q0/kT (δal
2
a /E1h). For the foregoing

derivation to be valid, it is also required that �Q � kT � Q0,
or τ � (E1kT /Va)

1/2.
More generally, the growth of nano-crack can be attributed

to two mechanisms: (1) stress-driven drift and (2) stress-
independent diffusion. The drift velocity caused by applied
stress is simply given by

v = δaf1. (6)

When the applied stress becomes low enough, the stress-
independent diffusion will govern the crack growth. The rate
of nanocrack growth may then be treated as a first-passage
process of random walk [38].

Consider, for simplicity, a one-dimensional random walk
in which the crack-tip, initially located at x0, moves at drift
velocity v (a multi-dimensional random walk, requiring a
numerical approach, would be more realistic but is not needed
for our purpose). The occupation probability of the crack tip,
p(x, t) (i.e. the probability of the crack tip being at position x

at time t), satisfies the Fokker–Plank equation [38]:

∂p(x, t)

∂t
+ v

∂p(x, t)

∂x
− D

∂2p(x, t)

∂x2
= 0 (7)

where D = 1
2νTδ2

a e−Q0/kT = diffusivity.
The relative dominance of stress-driven drift over stress-

independent diffusion is measured by the Péclet number, Pe =
vla/2D = 2(la/δa)(Va/VT). The mean time for the crack tip
to reach the domain boundary ensues by calculating the flux
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of occupation probability at the boundary [38]. A reflecting
boundary is considered at x = 0, and an absorbing boundary
at x = la. When the crack tip reaches the reflecting boundary,
the tip can move only in the positive x direction, i.e. the flux
of the occupation probability at x = 0 vanishes. When the
crack tip reaches the absorbing boundary, the lattice fails, i.e.
the occupation probability at x = la is zero. By using these
boundary conditions and solving equation (7), one obtains the
mean exit time or mean failure time as

〈t〉 = l2
a

2D

[
1 − x0/la

Pe
+

cosh Pe

(Pe)2ePe
− cosh(Pe x0/la)

(Pe)2 ePe x0/la

]
.

(8)

For a small Pe (Pe → 0), the mean failure time is l2
a /2D. For

large Pe, the mean failure time approaches (la − x0)/v. It is
found that, when Pe > 4, the failure process is predominantly
governed by a stress-dependent drift mechanism.

In fracture, the Péclet number is normally large enough
such that the stress-independent crack front diffusion is
negligible [10]. Therefore, the nano-crack velocity is the
stress-driven drift velocity:

ȧ = ν1e−Q0/kT K2
a (9)

where ȧ = da/dt , ν1 = δ2
a (γ1αla)/E1h and Ka =

stress intensity factor of the atomic lattice block. The
stress-independent crack growth driven by diffusion (called
the environment-assisted crack growth [29]) is nevertheless
important in corrosive environments, not considered here.

3. Multiscale transition of fracture kinetics

On the structure scale, the crack growth rate may be described
by a simple empirical law [21, 22, 41]:

ȧ = Ae−Q0/kT Kn, (10)

where A, n = positive empirical constants, K = stress
intensity factor at macro-structure scale and a = length
of macro-crack. One may set K = σ

√
Dsk(α), where

Ds = structure size, α = a/Ds and k(α) = dimensionless
stress intensity factor; see also [15, 16, 22, 32, 41]. Exponent n
typically ranges from 10 to 30 [21, 32]. Equations (9) and (10)
have different exponents but the same form, except that, unlike
A, ν1 depends on α. However, except near the boundaries,
the FPZ does not change significantly as the macro-crack
propagates through the structure (which is a central tenet
behind the constancy of fracture energy Gf ). Therefore, all
the different relative crack lengths α in the nano-structure of a
FPZ must average out to give a constant A.

To explain the difference in exponents n, consider the
multiscale transition of the fracture kinetics from nano-scale to
macro-scale. This transition may be expressed by the condition
that the rate of energy dissipation of the macro-crack must be
equal to the sum of energy dissipation rates of all the active
nano-cracks ai (i = 1, . . . , N) in the FPZ of the macro-crack.
Hence,

Gȧ =
N∑

i=1

Gi ȧi , (11)

where G and Gi denote the energy release rate functions
for macro-crack a and nano-crack ai , respectively. Upon
expressing the energy release rate in terms of the stress intensity
factor and substituting equation (9) for ȧi , one obtains

ȧ = e−Q0/kT φ(K) (12)

where

φ(K) =
N∑

i=1

νiK
4
i E

K2Ei

, (13)

where Ki = stress intensity factor of the atomic lattice block
containing nano-crack ai , Ei = elastic modulus of the atomic
lattice and νi = δ2

a (γ1αili)/Eih. In the context of linear
elasticity, one may assume Ki = ωiK , where ωi are some
constants. Hence, one may re-write equation (13) as

φ(K) = K2
N∑

i=1

viω
4
i E

Ei

. (14)

The number of active nano-cracks N in the FPZ of the
macro-crack must be estimated in a multiscale framework:
the FPZ of a macro-crack contains q1 meso-cracks, each of
which contains a meso-FPZ with q2 micro-cracks, each of
which contains a micro-FPZ with q3 sub-micro-cracks, and
so forth, all the way down to the atomic lattice scale. So, if the
multiscaling from macro to nano bridges s scales, the number
of nano-cracks contained in the macro-FPZ is N = �s

µ=1qµ.
On scale µ, the number qµ of activated cracks within the

FPZ of the next higher scale must be a function of the relative
stress intensity factor K/Kµ, i.e. qµ = qµ(K/Kµ) where
Kµ = critical K for cracks of scale µ. It may be expected that
function qµ(K/Kµ) increases rapidly with increasing K/Kµ

while the ratios in φ(K) vary far less. Therefore, one may
replace Ei , ωi and νi by some effective mean values Ea, ωa

and νa:

φ(K) = νaω
4
a(E/Ea)K

2
s∏

µ=1

qµ(K/Kµ). (15)

Since there appears to be no characteristic value of K at which
the behaviour of qµ(K/Kµ) would qualitatively change, the
function qµ(K/Kµ) should be self-similar, i.e. a power law [3],
qµ(K/Kµ) = (K/Kµ)r . Consequently, the function φ(K)

should be a power law as well:

φ(K) = νaω
4
aE

Ea(
∏

µ Kr
µ)

Krs+2. (16)

Setting rs+2 = n and substituting φ(K) back to equation (12),
one thus finally obtains the power law for macro-crack growth.

Equation (12) represents the general form of the growth
law of cracks at all the scales, from nano to macro. Note that
the Arrhenius form of temperature dependence applies for the
crack growth at all the scales. The difference in the crack
growth rate at various scales is reflected by the difference in
the power exponent s and the values of ωa and Kµ. When
passing from nano to macro, exponent s increases, causing the
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Figure 3. Transition of load histories from strength test to lifetime
test.

power-law exponent to increase from 2 at the nano-scale to the
experimentally observed values of 10–30 at the macro-scale.

The foregoing analysis shows that, on the nano-scale, the
crack growth rate is a power law of exponent 2. Nevertheless,
it does not represent a rigorous proof of the power law for
macro-crack growth rate. It merely explains physically why
the power-law exponent increases on passing to higher scales.
Validation by experiments is still essential.

4. Lifetime statistics of quasibrittle structures

The creep crack growth law is important as a link between the
strength and lifetime of a RVE. Consider both the strength and
lifetime tests for an RVE (figure 3). (1) In the strength test, the
load is rapidly increased till the RVE fails. The maximum load
registered corresponds to the strength of the RVE, which may
be chosen to be equal to σN. (2) In the lifetime test, the load is
rapidly increased to a certain level σ0 and then is kept constant
till the RVE fails. The load duration up to failure represents
the lifetime λ of the RVE at stress σ0.

Now consider a RVE containing a dominant subcritical
crack with initial length a0. Within the framework of
equivalent LEFM, the crack grows to a critical value ac under
some loading history, and then the structure fails by dynamic
propagation of the RVE. The stress intensity factor of the
RVE can be written as K = σ

√
l0k(αR), where αR = aR/l0

and aR = current length of the dominant subcritical crack.
Applying the crack growth law for the strength test, one gets

σn+1
N = r(n + 1)eQ0/kT

∫ αc

α0

dα

Al
(n−2)/2
0 kn(α)

, (17)

where r = loading rate. For the lifetime test, the loading
duration λ is usually far longer than the duration of the
laboratory strength test. The applied load σ0 is much lower
than the RVE strength, and so the initial increasing portion
of the load history makes a negligible contribution compared
with the entire loading duration. Thus, by applying the crack
growth law for constant load σ0, one has

σn
0 λ = eQ0/kT

∫ αc

α0

dα

Al
(n−2)/2
0 kn(α)

. (18)

Comparing equations (17) and (18), one finds that the
structural strength and the lifetime are related through the

following simple equation:

σN = βσ
n/(n+1)

0 λ1/(n+1), (19)

where β = [r(n + 1)]1/(n+1) = constant.
Recent studies [13, 14] showed that the cdf of RVE

strength may be statistically represented by a hierarchical
model consisting of bundles (or parallel couplings) of no
more than two long sub-chains, each of them consisting of
sub-bundles of two or three long sub-sub-chains of sub-sub-
bundles, and so on [13, figure 2(e)], until the refinement
reaches the nano-scale of atomic lattice, at which the strength
distribution has been derived from equation (5) [9, 10]. The
hierarchical model indicates that the strength cdf of a RVE can
be approximately described to have a Gaussian distribution
onto which a Weibull tail (power-law tail) is grafted from the
left at a probability of about 10−4 to 10−3 [14]

for σN < σN,gr P1(σN) = 1 − e−(σN/s0)
m

, (20)

for σN � σN,gr

P1(σN) = Pgr +
rf

δG

√
2π

∫ σN

σN,gr

e−(σ ′−µG)2/2δ2
G dσ ′. (21)

Here σN = nominal strength, which is a maximum load
parameter of the dimension of stress. In general, σN =
Pmax/bD or Pmax/D

2
s for two- or three-dimensional scaling

(Pmax = maximum load of the structure or parameter
of load system, b = structure thickness in the third
dimension, Ds = characteristic structure dimension or size).
Furthermore, m (Weibull modulus) and s0 are the shape
and scale parameters of the Weibull tail, and µG and δG

are the mean and standard deviation of the Gaussian core
if considered extended to −∞; rf is a scaling parameter
required to normalize the grafted cdf such that P1(∞) = 1 and
Pgr = grafting probability = 1 − exp[−(σN,gr/s0)

m]. Finally,
continuity of the probability density function at the grafting
point requires that (dP1/dσN)|σ +

N
= (dP1/dσN)|σ−

N
.

Substituting equation (19) into equations (20) and (21),
one obtains the lifetime distribution of an RVE:

for λ < λgr P1(λ) = 1 − exp[−(λ/sλ)
m/(n+1)] (22)

for λ � λgr

P1(λ) = Pgr +
rf

δG

√
2π

∫ γ λ1/(n+1)

γ λ
1/(n+1)
gr

e−(λ′−µG)2/2δ2
Gdλ′ (23)

where γ = βσ
n/(n+1)

0 λgr = β−1σ−n
0 σn+1

N,gr and sλ =
sn+1

0 β−(n+1)σ−n
0 . Clearly, similar to the cdf of strength, the cdf

of lifetime of one RVE has a Weibull tail. The Weibull modulus
of this tail is much lower than that of strength distribution. For
the same RVE, equations (21) and (23) imply that the grafted
probability Pgr is the same for the cdfs of both the strength and
the lifetime.

For a structure of any size, the RVE must be defined as the
smallest material volume whose failure triggers the failure of
the structure (of positive geometry). Therefore, the structure
may be statistically modelled by a chain of RVEs (weakest link
model). It is essential to note that, for quasibrittle materials,
the chain must be finite rather than infinite since the RVE size
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Figure 4. Optimum fits of lifetime histogram of various ceramics and fiber composites (test data from [17, 32]).

is not negligible compared with the structure size. By virtue
of the joint probability theorem, the lifetime distribution of a
structure subjected to a nominal stress σ0 can be calculated as

Pf(σ0, λ) = 1 −
N∏

i=1

{1 − P1[〈σ0s(xi )〉, λ]}, (24)

where σ0s(xi ) = maximum principal stress at the centre
of the ith RVE, s(xi ) = the dimensionless stress ratio
which represents the stress distribution, 〈x〉 = max(x, 0) and
σ0 = nominal stress, which is a parameter of the applied
load P having the dimension of stress (σ0 = cgP/bD for
two-dimensional scaling, or =cgP/D2 for three-dimensional
scaling).

For general structures, subdividing the structure into
RVEs is to some extent subjective, which may cause some
differences in Pf . To avoid such subjective differences, a non-
local boundary layer approach has been proposed to evaluate
Pf(σ0, λ) [10]. As the structure size increases, what matters
for the structural failure is the tail of the cdf of lifetime of each
RVE: P1(λ) = (λ/sλ)

m̄. Therefore, the lifetime cdf for very
large structures must approach the Weibull distribution.

The present analysis (equation (22)) yields a simple
general relation between the Weibull moduli of the strength
and lifetime distributions, involving the exponent of power
law for crack growth rate:

m̄ = m

n + 1
. (25)

Identifying Weibull modulus m̄ of lifetime distribution by
histogram testing is time consuming and costly. Equation (25)
makes possible a much more effective determination of m̄. To
identify m̄, one needs only the Weibull modulus of strength
distribution, which is best determined by testing the size effect
on the mean strength [34], and the exponent of the power law
for crack growth rate. The latter can be obtained by standard
tests that measure the subcritical crack growth velocity.

Figure 4 presents the optimum fits of some observed
lifetime histograms of fibre composites and ceramics by the
present theory and by the two-parameter Weibull distribution.
Munz and Fett [32] conducted four-point-bend tests of the
lifetime histograms of MgO-doped HPSN (hot-pressed silicon
nitride) under constant stress at the temperature of 1100 ◦C
and of 99.6% Al2O3 subjected to constant stress. The
applied stress was about 50% of the mean short-time strength.
Chiao et al [17] studied the lifetime distribution of organic
fibre (Kevlar 49) composites. Bar-shaped specimens were
subjected to constant uniform uniaxial tensile stress at elevated
temperatures from 100 ◦C to 120 ◦C.

As seen in figure 4, the observed lifetime histograms
plotted in Weibull scale do not appear as straight lines.
Instead, there is a kink separating the entire histogram into
two segments, of which the lower one is a straight line
and the upper one deviates from it to the right. Similar
deviations have also been found in the strength histograms
of many other quasibrittle materials, such as concrete [45],
fibre composite [40, 43] and ceramics [30, 34]. Clearly, the
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two-parameter Weibull distribution cannot give optimum fits
and the existence of the kink cannot be explained by it. In
contrast, the present model gives an excellent fit of the entire
lifetime histogram. In the present theory, the kink is caused
by the finiteness of the number of links in the weakest link
model and corresponds to the grafting point of the distribution,
which reflects the quasibrittleness of the structure (and the non-
locality of fracturing damage).

5. Size effect on lifetime distribution

From the finite weakest link model and the grafted cdf of
lifetime for one RVE, it is clear that the type of lifetime cdf of
structure must depend on the structure size and geometry. The
mean lifetime can be easily evaluated as

λ̄ =
∫ ∞

0
[1 − Pf(λ)]dλ. (26)

Although a closed-form exact expression for λ̄ is impossible, a
good approximation can be obtained through the technique of
asymptotic matching. This technique has been effectively used
to describe the deterministic (or mean) size effect [6, 7, 12].
Since the random strength is related to the random lifetime
through equation (19), the mean strength and lifetime must be
related by an equation of the same form. Therefore, based
on the approximate form of the deterministic size effect on
structural strength [6, 13], the size effect on the mean structural
lifetime can be written as [10]

λ̄ =
[

Ca

Ds
+

(
Cb

Ds

)r/m
](n+1)/r

, (27)

where m = Weibull modulus of strength distribution and
n = exponent of crack growth law; m/(n+ 1) = m̄ = Weibull
modulus of lifetime distribution. Parameters Ca, Cb, r can
be determined from three known asymptotic conditions for
[λ̄]Ds→l0 , [dλ̄/dDs]Ds→l0 , and [λ̄D

1/m̄
s ]Ds→∞. Figure 5 shows

a typical size effect curve of structural lifetime. As seen, this
size effect approaches, for large structure sizes, the power-law
size effect of Weibull theory, but deviates from it upwards for
small sizes, because of the finiteness of the FPZ.

6. Conclusions

This paper extends the previous work on the size (and shape)
dependence of the probability distribution of structural strength
[9, 11, 13, 14, 34] to the distribution of structural lifetime under
constant load. The results may be summarized as follows

1. Fracture mechanics of random crack jumps in atomic
lattice requires the subcritical crack growth rate to be
proportional to the square of the stress intensity factor
K (and to the Arrhenius temperature factor).

2. Based on the condition that the cumulative energy
dissipation rate of all the nano-cracks must be equal to
the macro-crack dissipation rate, the rise of the exponent
of K from 2 to n ≈ 10–30 during the nano–macro
transition can be explained by considering that the number
of active nano-cracks contained in the macro-scale FPZ
must steeply increase with the applied macro-stress.

Figure 5. Curve of size effect on mean structural lifetime.

3. The crack growth rate law permits relating the probability
distributions of strength and lifetime. This leads to a
simple relation between the Weibull moduli of strength
and lifetime (equation (25)), and permits deducing the
lifetime distribution solely from the tests of (1) subcritical
crack growth rate, and (2) strength histogram tests or the
tests of size effect on structure strength (the latter being
more efficient).

4. Like the strength distribution, the lifetime distribution of
quasibrittle structures is found to vary with the structure
size and geometry. A Weibull tail expands into the
distribution core as the size increases. This is important for
extrapolating small-scale or accelerated laboratory tests of
lifetime to full-size real structures.
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[6] Bažant Z P 2004 Scaling theory of quasibrittle structural
failure Proc. Natl Acad. Sci. USA 101 13397–9
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