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slow cage breaking. Here, we analyze large-scale three-dimensional discrete-element
method (DEM) simulations of different granular flows and show that an approximate
Keywords: “granular element” defined at the scale of observed dynamical correlations (roughly
Granular materials three to five particle diameters) has a reasonable continuum interpretation. By viewing
Numerical methods all the simulations as an ensemble of granular elements which deform and move with
the flow, we can track material evolution at a local level. Our results confirm some of the
hypotheses of classical plasticity theory while contradicting others and suggest a subtle
physical picture of granular failure, combining liquid-like dependence on deformation
rate and solid-like dependence on strain. Our computational methods and results can
be used to guide the development of more realistic continuum models, based on
observed local relationships between average variables.

Published by Elsevier Ltd.

1. Introduction

Granular materials exhibit many interesting collective phenomena and have attracted growing interest from the physics
community (Jaeger and Nagel, 1992; Jaeger et al., 1996; de Gennes, 1999; Halsey and Mehta, 2002), but many of the central
challenges remain unanswered. In particular, there is still no general continuum model that can describe the many
phenomena of dense granular flow, such as parabolic flow (Medina et al., 1998; Nedderman and Tiiziin, 1979; Choi et al.,
2004) transitioning to plug flow (Rycroft et al., 2006) in a draining silo, wide shear zones (Fenistein and van Hecke, 2003)
and localized shear bands (Mueth, 2003) in Couette cells, and Bagnold scaling for inclined plane flows (Silbert et al., 2001;
Pouliquen, 1999). This is in contrast to the hydrodynamics of dilute granular materials and molecular fluids, for which
accurate continuum models can be systematically derived by averaging over particle collisions in an idealized element
(Jenkins and Savage, 1983).

Recent work has revealed microscopic features of dense granular materials, which seem to defy a simple continuum
description. These include (i) complex, fractal networks of force chains, which are inhomogeneous down to the particle
level (Mueth et al., 1998; Blair et al., 2001; Edwards, 1998; Liu et al., 1995; Majumdar and Behringer, 2005; Goldenberg and
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Goldhirsch, 2002, 2004; Goldenberg et al., 2006); (ii) anomalous, non-collisional particle dynamics with very slow cage
breaking (Choi et al., 2004; Bazant, 2006; Rycroft et al., 2006); (iii) proximity to the jamming transition, where geometrical
packing constraints suppress any dynamics (O’Hern et al., 2003; Donev et al., 2004); (iv) a lack of thermal equilibrium in
the conventional sense, since particles only move in response to external forces, motivating new definitions of temperature
(Henkes et al., 2007; Edwards and Grinev, 1998; Makse and Kurchan, 2002; Serero et al., 2008); and (v) a wide range of
dynamical response, from liquid-like to solid-like (Jaeger et al., 1996; Aranson and Tsimring, 2001, 2002). The first four
points cast serious doubt on the prospects of a continuum law. The fifth means that the full stress tensor must be described,
and it may depend on strain, deformation rate, and material variables that can evolve during the process.

We thus arrive at the fundamental question: Can a “granular element” be meaningfully defined, and if so, what is its
rheology? The oldest definition corresponds to the two-dimensional “Ideal Coulomb Material”, in which the granular
element behaves like a rigid solid, which undergoes failure if the ratio of shear stress to normal stress on any plane reaches
a critical value p, the Coulomb internal friction coefficient (Nedderman, 1991). The stress tensor is determined by
mechanical equilibrium along with the hypothesis of incipient yield, which asserts that the yield criterion is attained
everywhere at all times (in a “limit-state”). In limit-state Mohr-Coulomb plasticity, these conditions are assumed to hold
even if boundary conditions allow for plastic yielding. In that case, the velocity follows from the assumption of coaxiality,
which asserts that the stress and deformation rate have the same eigendirections. The resulting equations of limit-state
Mohr-Coulomb plasticity have been used extensively in engineering applications (Nedderman, 1991; Drescher, 1991),
but their general solution requires sophisticated numerical techniques to capture shock-like discontinuities in stress and
velocity, which arise even in relatively simple geometries (Gremaud and Matthews, 2001; Gremaud et al., 2004, 2006).
Besides the questionable physical basis of such discontinuities, the model is incapable of describing most of the flows listed
above, even qualitatively. This has led to the development of more realistic elasto-plastic continuum models. A notable
example is critical state soil mechanics (CSSM) (Schofield and Wroth, 1968), which has much success in the geophysical
modeling of soils, although this has tended to focus on the quasi-static limit and has no rate-dependent effects that are
associated with faster flow.

Away from continuum plasticity, a number of theories have been developed to more precisely capture the underlying
physics of a granular element. The shear transformation zone theory (Falk and Langer, 1998; Lemaitre, 2002) provides
a mechanism for the element to retain a memory of its shearing history, through an auxiliary continuum variable, the
STZ density. The partial fluidization model of Aranson and Tsimring (2001, 2002) introduces another auxiliary “order
parameter” for the granular element, which controls the size of the viscous-like contribution to the stress tensor. From
extensive experimental studies of inclined-plane flows, Jop et al. (2006) have proposed a 3D flow rule for a granular
element at yield. Although each of these models has had successes, none constitutes a complete continuum description of
granular flow, which can be applied to more than one of the geometries listed above under arbitrary traction/kinematic
boundary conditions.

Our group has developed a different, multiscale theoretical framework (Bazant, 2006; Rycroft et al., 2006; Kamrin and
Bazant, 2007; Kamrin et al., 2007), which was initially motivated by the search for a mechanism to describe microscopic
particle motion and rearrangement within a granular flow. Granular materials form amorphous random packings, and an
individual particle within this structure typically cannot move by itself, as it is strongly geometrically constrained by its
neighbors; in order for the flow to occur, particle motion must take place co-operatively. This led to the postulation of a spot
(Bazant, 2006) that would mediate a correlated motion of particles on a mesoscopic scale. The diameter of a spot can be
inferred from tracer-diffusion measurements in silo drainage (Choi et al., 2004, 2005), and typically our group has found a
scale on the order of three to five particle diameters. Independently, the same length scale also emerges from direct
measurements of spatial velocity correlations in drainage experiments (Choi, 2005) and discrete-element method (DEM)
simulations (Rycroft et al., 2006). Using this scale in spot-based drainage simulations also produces incredibly realistic
flowing random packings (Rycroft et al., 2006). These ideas have also been incorporated into a general theory, which can
predict a variety of experimental flow profiles, again using the same length scale (and no other fitting parameters) (Kamrin
and Bazant, 2007). Assuming stresses at incipient yield, the coaxial flow rule is replaced by a “stochastic flow rule” (SFR) in
which spots of mobilized material perform random walks along slip lines, biased by local stress imbalances. The resulting
theory is the first to predict both gravity-driven flow in a silo and shear flow in a Couette cell (Kamrin and Bazant, 2007;
Kamrin et al., 2007), so a major motivation for this work is to directly test its basic assumptions.

This prompts us to study rheological properties of granular media over volume elements of size comparable to the
width of dynamical correlations, 3d-5d. By “element”, we are referring to an approximate representative volume element
(RVE) (Hashin, 1983). A uniform stress state expressed at the boundaries of an RVE should couple to a predictable
homogeneous boundary deformation. But to be technically precise, full determinism of this coupling is deducible only for
an element containing infinitely many microconstituents, so that the average behavior over all microevents approaches a
Dirac-delta function about the mean. Realistically, all materials possess a finite micro-length, so any RVE behavior must be
interpreted within some acceptable noise tolerance. Hierarchical relationships for such noise bounds have been deduced
by Ostoja-Starzewski (2005) in terms of the ratio 6 = Lmeso/Lmicro» Where averaging is over random realizations of a
heterogeneous continuum material. For finite ¢, the element is more aptly referred to as a statistical volume element (SVE),
which approaches RVE in the limit 6 — oco. While we use the term RVE throughout this work, in some sense we mean a
granular SVE with some acceptably small, and quantifiable, level of noise. However, we stress that randomness in our
simulations comes from packing constraints and discrete rearrangements of a homogeneous model material consisting of
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frictional, viscoelastic spheres; as in molecular materials which are routinely described by continuum mechanics, we will
show that meaningful continuum averages, satisfying predictable relations with controlled fluctuations, can be defined at
the scale of observed dynamical correlations.

The RVE must be small compared to the macroscopic length of the flow, allowing the granular domain to deform as a
network of RVEs, each one experiencing close to uniform boundary conditions. If gradients in the stress or deformation
fields become too sharp, the noise in the element response must inevitably increase. This may pose an issue for materials
that can form shear bands. Granular media are known to exhibit shear-banding phenomena in certain circumstances,
though it should be noted that 3D bands tend to have a width of 10d-15d (Midi, 2004), suggesting a 3d-5d wide element
may still suffice. This also supports our major belief that unless conditions are exotic enough to change the dynamical
correlation length (e.g. large applied gradients in loading or shear), an element at this 3d-5d length scale should be small
enough to describe a “standard” set of dense flows.

Although this scale may seem somewhat arbitrary, its validity could be verified by systematic coarse graining
procedures, such as those used by Goldenberg et al. to construct continuum elasticity at a given length scale (Goldhirsch
and Goldenberg, 2002) from discrete simulations of granular materials (Goldenberg and Goldhirsch, 2002, 2004;
Goldenberg et al., 2006), but it is beyond the scope of this work to extend such methods to situations of plastic flow.
Instead, we fix a length scale for the RVE, motivated by dynamical correlations observed in the same model material, and
focus on testing relationships between a variety of continuum variables at that particular scale.

2. Methods

In this paper, we present the results of several large-scale DEM simulations carried out using the large-scale atomic/
molecular massively parallel simulator (LAMMPS) developed by Sandia National Laboratories (http://lammps.sandia.gov/).
The contact model is based on that developed by Cundall and Strack (1979), and has been well-tested and used in many
other studies (Landry et al., 2003; Silbert et al., 2001, 2002; Brewster et al., 2005). In the simulations, frictional particles of
mass m and diameter d experience gravity g in the negative z direction, which can be used to define a natural time unit
T =+/d/g. For the simulations considered here, we restrict attention to cases which are periodic in the horizontal y
direction with period 8d, although this still allows us to consider fully three-dimensional stresses.

Particles interact according to Hookean, history dependent contact forces. If a particle and its neighbor have a separation
vector r, and the two particles are in contact, so that 6 =d — |r|>0, then they experience a force F = F, + F;, where the
normal and tangential components are given by

Fp, = (knén - V";").

)
F: = (—k[AS[ — "/tzvr>.
Here, n =r/|r|. v, and v; are the normal and tangential components of the relative surface velocity, and k,; and V¢ are
the elastic and viscoelastic constants, respectively. As; is the elastic tangential displacement between spheres, obtained
by integrating tangential relative velocities during elastic deformation for the lifetime of the contact, and is truncated
as necessary to satisfy a local Coulomb yield criterion |F¢| < g|Fy|. Particle-wall interactions are treated identically using
the same contact model parameters. For the current simulations we make use of u; = 0.5, we set ks = 27k5, and we choose
k. = 2 x 10°mg/d. While this is significantly less than would be realistic for glass spheres, where we expect k,~10' mg/d,
such a spring constant would be prohibitively computationally expensive, as the time step must have the form ot o k;]/z
for collisions to be modeled effectively. Previous simulations have shown that increasing k, does not significantly
alter physical results (Landry et al., 2003). We make use of a time step of 6t =10"%t, and damping coefficients

Yn="7:=50y/g/d.

3. Computation of material variables

Since our overall aim is to extract information about the inherent properties of a granular material, and not its behavior
in a particular situation, we consider a variety of granular flows in different geometries. We consider a tall silo with base at
z = 0 and walls at x = £25d, and create an initial packing by pouring in 55,000 particles from z = 160d at a constant rate of
1237 to fill the silo to an approximate height of z = 114d. We also consider a wide silo, with a base at z= 0 and walls
at x+75d, and pour in 100,000 particles from z = 160d at a constant rate of 3797, to fill the silo to a height of
approximately z = 69d. For both situations, the initial packing fraction is approximately 63.5%.

For both packings, a drainage simulation is then carried out, by opening a 6d-wide slit in the center of the container
base. In addition, a pushing simulation is carried out in the wide silo, by freezing all particles whose centers initially satisfy
z<7.5d, and then moving those with x>0 upwards at a constant speed of 0.2dz~!. All three of these simulations are quite
different in form. The tall silo drainage simulation is different from the wide silo since the velocity profile is strongly
affected by the presence of the vertical walls. The pushing simulation corresponds to an active forcing of the material, while
the drainage simulations are generated by a passive response to gravity.
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Fig. 1. A typical 2.5d x 8d x 2.5d cell of particles from a DEM simulation, which forms the basis of the approximate granular element considered in this
paper.

For each simulation, a snapshot of all particle positions is recorded at fixed intervals of 0.2t. In addition to this
information, numerous material quantities are calculated in a grid of cells of size 2.5d x 8d x 2.5d, at the scale of the
granular element (Fig. 1). The local packing fraction ¢ is computed in each cell of interest by evaluating the precise fraction
of the cuboidal cell volume which is occupied by the particles. The stress tensor in each cell is calculated by looking at the
forces between particles on contact. If there are N particles in the cell, and particle | has a total of N, contacts, then an
approximate stress tensor can be defined as in Christoffersen et al. (1981) and simplified for spherical grains to give

T — li % AxkDEkD
i<y i i
I=1 k=1
where F® is the force of the kth contact on particle I, and Ax*) is the separation vector from the center of particle I to its
kth contact.

From this, we can define a pressure p = —1trT and a deviatoric stress tensor To = T + 1p1. The ideal Mohr-Coulomb
material has a certain available strength that is characterized by the value of y, and failure occurs when the ratio of shear
stress to normal stress at any location in the material first becomes equal to ;. Even when the material is not at failure, a
multiaxial stress state will use up or mobilize a certain amount of this available strength, the amount denoted by y, which
is equal to the mobilized ratio of shear stress to normal stress. Algebraically, if T has eigenvalues 4; </, <13, then

s =y
_/AL3+;V].

u

We also considered the alternative Drucker-Prager definition of the yield parameter (Prager and Drucker, 1952), which is
defined as the ratio of the pressure p to the equivalent shear stress [To|/~/2, so that upp = |To|/p+/2 represents the
mobilized Drucker-Prager strength. A plot of u against upp using data from the three simulations appears linear, with a
correlation coefficient of 0.96. Due to this high level of agreement in all our simulations, we present results using
the Mohr-Coulomb definition only, and we leave an in-depth study of the different definitions for later work. Since the
Drucker-Prager definition includes a dependence on the intermediate stress eigenvalue 4, the differences between the ppp
and the Mohr-Coulomb p may be more apparent in non-periodic, fully three-dimensional situations, which are beyond the
scope of this paper.
To calculate the velocity gradient L in a cell, we consider the least squares regression problem

v=Lx+Vv0

Here x and v are the instantaneous positions and velocities of all particles within the cell. The average cell velocity v° and
the velocity gradient are found by minimizing the sum of squares of residuals. The deformation rate tensor! is then defined
as the symmetric part of L, namely

L+L"

D:2.

1 This tensor is sometimes called the “strain rate”, but for large deformations this is misleading since it is not the rate-of-change of any finite strain
tensor.
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From this, the deviatoric deformation rate tensor is defined as Dg = D — 1(tr D)1. For some of the analysis, we made use of a
normalized deformation rate |Ig| = |Dg|d+/p,/p Where p; is the particle density; this has been studied by others (Jop et al.,
2006; da Cruz et al., 2005; Lois et al., 2005) and is well suited for use in rate sensitive granular constitutive laws.

It is possible that the instantaneous velocities used in the computation of D may be subject to simulation artifacts, such
as particle rattling, or elastic behavior arising from the spring-dashpot contact model. We therefore carried out the same
analysis based on velocities computed by interpolating particle positions between successive snapshots, effectively giving
an averaged velocity on a scale of 0.27, an order of magnitude larger than the timescale of a typical particle-particle
interaction. A plot of log|Dy| for the two different computation methods appears linear, with a correlation coefficient of
0.98. Due to the high level agreement, all our results are presented using the instantaneous velocities in the deformation
rate calculation.

4. Stress, deformation rate, and packing fraction

Fig. 2 shows the plots of y, ¢, and |Dy| for the tall silo drainage simulation. Near the orifice, there is a converging region
of flow, which has roughly parabolic streamlines. Higher in the container, there is a transition to uniform flow, where the
particles drop like a plug, behave like a solid, and experience little rearrangement, as has been seen in similar situations
(Rycroft et al., 2006). The plot of |Dg| supports these results. High in the container, very little rearrangement is seen, while
there is a sharp transition to high values when the packing must undergo deformation to pass through the orifice.

It is clear from the plots that ¢ and |Dyg| are closely correlated. In the upper region, where particles are falling like a plug,
the packing fraction remains constant. In the converging region, the packing fraction decreases, as the particles must have
more free space in order to geometrically rearrange; this is studied quantitatively later.

Of the three plots, u exhibits the largest fluctuations, which we attribute to the fact that it is a ratio between two
computed quantities. However, large variations over the range 0.2-0.6 can be clearly seen. This indicates that the granular
material considered here is not an ideal Mohr-Coulomb material, because if it was, u would be constant everywhere.

0084 0434 0784 L1134 1484
¢ T 0
0534 0574 0614 0654 0694

o) ST |
341107 2.56x107  1.92x1072  1.44x107! 1.08
Fig. 2. Three computed material quantities (u, left; packing fraction ¢, center; magnitude of deviatoric deformation rate |Dyl, right) in the tall silo

drainage simulation, shown at t = 257. All the particles in each computational cell are colored according to the computed material variables for that cell.
and ¢ are dimensionless, while |Dg| has units of 7!, A movie of this simulation is available in the supplementary information.
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Fig. 3. Three computed material quantities (4, top; packing fraction ¢, middle; magnitude of deviatoric deformation rate |Dg|, bottom) in the wide silo for
the drainage simulation at t = 407 (left) and the pushing simulation at t = 257 (right). The color scheme used is the same as that in Fig. 2. Movies of these
two simulations are available in the supplementary information.

At first sight, the spatial differences in u appear not directly correlated with the other two. However, the regions of higher y
exist at the interface between the plug-like region and the converging flow region; this will be expanded on later. Fig. 3
shows the same three plots for the wide drainage and wide pushing simulations, and the same relationships between the
three quantities can be observed.

Fig. 4 shows the directions and magnitudes of the eigenvectors of the deviatoric stress tensor for three different
situations. For these images, the stress tensor was calculated on a 5d x 8d x 5d grid, by averaging the computed stress
tensor in 2 x 2 blocks of cells. Even though they were computed using local, instantaneous data, we can see that in all
situations, the stress tensors are smooth, and exhibit none of the shocks predicted by limit-state plasticity theory. For
regions undergoing deformation, the eigenvectors of Dy are also shown in Fig. 4. We see that in all areas where there is
appreciable deformation rate, there is a strong alignment between the two sets of eigenvectors, which is surprising given
that the individual forces, as shown for a small region in Fig. 5, exhibit large inhomogeneities.

For the plots of Fig. 4, the average angular differential between the maximal eigenvectors is approximately 12°. If the
plots are time-averaged over a window of twenty frames, then the mean angular differential drops to 6.7°. Averaging over
progressively larger time windows also allows us to verify coaxiality as far into the granular packing as one can reasonably
define a deformation rate tensor. Coaxiality is a consequence of material isotropy at the scale of a continuum element, so it
appears that increasing the time window increases the extent to which the liquid-like material flows approximately like a
true continuous fluid.

In light of the successes of the SFR (Kamrin and Bazant, 2007; Kamrin et al., 2007) it is interesting to note that
our results are the opposite to its hypotheses: incipient Mohr-Coulomb yield does not hold, while coaxiality approxi-
mately does, especially over longer time scales in the flowing region. It may be that the basic SFR concept of random
spot-based propagation of fluidization holds at small time scales, only with different stress models or spot dynamics.
However, our results constrain any statistical theory to uphold coaxiality after time averaging, and even instantaneously
to some degree in steady flows. On the other hand, the data do not rule out departures from coaxiality in regions
of very slow or intermittent flow at the onset of yielding, where the arguments behind the SFR should have the most
validity.

Using these data, we tested the co-directionality hypothesis Ty o« Dg. This assertion is stronger than just coaxiality and
has been presumed by some (Jop et al., 2006) while challenged by others (Depken et al., 2007). Our data reveal reasonably
large variations from purely co-directional flow. It is possible that double-shearing (Spencer, 1964) may be a more
appropriate hypothesis, but more testing is necessary.



834 C.H. Rycroft et al. / J. Mech. Phys. Solids 57 (2009) 828-839

" . o i '
3 e de Ao o R el EE 2 d
x i d el Nofdodo b 4 + + 4 i 7.8
W &£ X & & = % %N XN SRR I R e m S I g RO T S S R A A s ¥
- A S S~ S SN € R < R R, © s r e trridNMNNY,+ P, I PR rrrs
” . 2 . & iy WA TR ETYS
b " e A T O 4 # g u gt 8 ¥ XXX+ d -t Rr R /
# S e o o ol W < L e > 2 RNNXNNXNYF L RAARER XK
P ol R ¢ I o - ww%NX \‘ \‘ b AA R KX X e ’I
- e e w .. § < o ’ 5
W e e e v WY PO O N ’ r %N X \‘ I| A RAALE K I’
Wik b dd AN KtFF R LA BRSSP
" vt + 4+ 4 bR e NN (.| ;' g R KR KA H A ’I
o e we v e W XN . ' ¥
Lot Rl ¢ oAy TR T i ] i F o4 RS AAAS, 1
3 \. 2wt ATETTY rTrTeTAATTTTrY? AAANT I
AT A A S S L of o e g e s 1
s s e R R S o e e o S o S R S
r A 4 O R o R R S * 4+ 44 b 2 S 4o b o o G S
i 4 i) i A
A e we, Wl N % -+ u! 1 ol e s o o
P e e e Y
P O AP o e i e SN
AP R e
e 5 e : . T v 08
RARARATNT TN R SRk e X e } ' .
Z 5 W e oo SN N M PR R N o " T I L I ¥ T I b
AA AKX O R TR RS F R S LR U
,’ ,/ H o N \\ \‘ t AP REA LS ERXXX|Y S i Ak
5ok e B ks FPHEEE AL ARREFERXXX L+t
ARTTAN ) o
”” ARATE S Bt il ot T o B Lot o S i .
L - Ny % L e ol ok ' I
o B 5% M =T N oY EEEEEEESS LS Pl b bt -4+ 4
'l,-',a_o.-..-.\l'\ RN FRFREIE IR b o G I L G g B Ny vy 6 o VO VO A S S R St M g
bl ok A o ly VMRV I T SV 033 o R A S ST NP
T i g g
il vy PR Y N R G L g | A e X4+ 4+ & ¥ A
ool 88 doal. 3 A=l 5 s kSR Ll oL X AT F*+ ¥
I 5~ il S 1 £ 4 4 & bt W hdSw il l-4-1-1L-4 2 4 L A& & o
l ' A N o R o o B el el ol e ol o1 R T, T T T TN
doof SPed. S doad PR T T I I I I S 10 O VO L R R R A S S
I ol e I | I Lol it e o P o et e (o e a, s o aBon T i [ Ky T | i e e
IR TR S T R [ [ At Wt (e e vl | e A
1 lI : fo ¢ o <} l‘ J’ | LA O A o ol o i o e B e i e A X4+t +++ 4 r x
. 4 I I | f J { R W T 7 oy [ [ NN T W TN VAR U A B
L 7 1 | (e Pt Siet MO ol e i o el e e s S B R B R

Fig. 4. Plots of the directions and magnitudes of the eigenvectors of the deviatoric stress and deformation rate tensors, calculated instantaneously in
5d x 8d x 5d boxes with no time-averaging. The maximal stress eigenvector is shown in purple, with the other two eigenvectors being shown in blue. In
the regions where deformation is occurring, the maximal and minimal eigenvectors of the deformation rate tensors are plotted in orange. In all cases, a
high degree of alignment between the two tensors can be seen. Additional plots are available in the supplementary information. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Left: a detail of the computed stresses and deformation rates for region enclosed by the black rectangle in Fig. 4. Right: the individual forces in the
same region.

5. Evolution of material variables

We now investigate quantitatively the connections seen above, by viewing all the material cells from the different
simulations as an ensemble of approximate “granular elements”, and seeking statistical relationships between them. As a
first example, consider Fig. 6, showing a plot of |Ip| against ¢. Each point on the graph corresponds to the instantaneous
computed values of a material element from one of the simulations, during a period when steady flow has developed. We
see an approximate collapse of the points from the three simulations, suggesting that the correlation we are viewing is a
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Fig. 6. A plot of packing fraction ¢ versus normalized deformation rate |Ip|. Each point corresponds to the computed material quantities for a granular
element from one of the three DEM simulations.

property inherent to the granular material, and not tied to any particular simulation configuration. Also shown is a fit line
[To| = 0.123(0.635 — ¢), The linear relationship is consistent with the two-dimensional results of da Cruz (da Cruz et al.,
2005).

While instructive, the above approach will only allow us to search for direct correlations between variables. In reality,
we expect that these are related in a more complicated way, and that differential relationships may exist; there may also be
internal state variables which we are not measuring that relate to an element’s history of deformation and stress. Because
of these complications, it is natural to switch from a Eulerian to a Lagrangian approach: rather than viewing our data set as
an ensemble over fixed spatial positions, we treat it as an ensemble of material elements which deform and move with the
flow. Each granular element corresponds to an approximate trace in the phase space of material variables over its history
during the simulation.

To correctly implement this, we must also take into account that a granular cell may move during the simulation. We
therefore initially introduced a number of tracer positions on a 5d x 5d lattice. During the simulation, the tracer positions
are advected according to the average background velocity of the particles. For each tracer, a history of a granular element is
created by linearly interpolating all the material variables from the underlying raw simulation data on the 2.5d x 2.5d
lattice.

Fig. 7 shows material tracers in a plot of u versus ¢ for the three different simulations. The plot shows us that, while p is
not directly correlated to ¢, it plays an important role in the failure of a granular element. The majority of tracers start off
on the right side of the graph, at the initial packing fraction of 63.5%. Those tracers corresponding to failing elements take a
path in an inverted U-shape, first attaining a value of u of approximately 0.6 before starting to decrease in packing fraction.
A material element will dilate only if a critical value of y is first attained. This directly relates to the behavior seen in Figs. 2
and 3, where it was noted that the areas of larger ¢ were located at the interface between solid-like and liquid-like regions.
Also visible in Fig. 7 is a tendency for dilated elements which experience a low value of u to recompact slightly. An
alternative viewpoint on this behavior is shown in a stress-dilatancy plot in the manner of Rowe (1962), shown in Fig. 8.
Since the dilatancy is computed as the ratio of two rates of strain, it exhibits a significant amount of noise when computed
locally. However, the results are consistent with a regime of zero dilatancy for small values of u, coupled with a regime
showing an approximately linear relationship between u and dilatancy.

Some of these results are in agreement with past granular plasticity models. In CSSM (Schofield and Wroth, 1968), an
initially overconsolidated (or dense) granular soil at a fixed confining pressure p undergoes a decrease in both u and
packing fraction ¢ upon plastic failure by shearing. After sufficient shearing, ¢ approaches a constant-volume value that
depends solely on the confining pressure, and p approaches a material constant y,. The left-hand side of Fig. 7 displays a
similar decrease in u over decreasing ¢, and the paths of Lagrangian tracers appear to approach a roughly constant .
However, it is difficult to discern from this conglomerated data whether the final y state is truly constant, or if the spread in
final packing fraction could be accounted for solely by pressure variations among trajectories, or if the shear strains were
not sufficiently large for the critical state limiting condition to be reached. Homogeneous shear tests, which are outside our
current interest, are clearly better-suited for expounding these particular behaviors. Turning attention to the right-hand
side of Fig. 7, the initial upshoot in u to its peak value appears to happen over a relatively small change in ¢. It is not at the
moment clear whether this A¢ accounts solely for elastic mechanisms (as in the Cam-Clay and modified Cam-Clay models
of CSSM), or whether some plastic evolution of u also takes place in this zone (as per the Anand and Gu, 2000 model).
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But despite these details, we are content that the general trend displayed in Fig. 7 is in concert with the past theoretical
development from the plasticity vantage point and observations of overconsolidated granular soil.

The Lagrangian approach also allows us to get a clearer insight into shear dilation, the precise mechanics of which
remains an open study. Our results show correlations between packing fraction and deformation rate, in agreement with
other authors. However, several models for granular plasticity presume “rate-independence”, which asserts that dilation
evolves with total plastic strain (Schofield and Wroth, 1968; Rudnicki and Rice, 1975; Anand and Gu, 2000). These models
are typically used under quasi-static flow conditions, where the effect of shear-rate should be minimal. Since one would
expect for a single snapshot, the regions of high strain could roughly be correlated with the regions of high deformation
rate, we defer to a quantitative analysis for improved resolution of this interdependence.

Strain is calculated from the simulation data by using the snapshots of all particle positions. At t = 0, a 5d x 8d x 5d box
of particles is labeled, centered on each material tracer. Let x! be the initial particle positions in a particular box. A
deformation gradient tensor F and an overall translation x° can then be found by solving the least squares regression
problem

X =Fx +x°,
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where x are the current particle positions. We then compute the polar decomposition F = RU where R is a rotation matrix,
and the stretch U is a symmetric positive definite matrix. Unlike infinitesimal theory, there are many valid ways to define
the strain tensor for large deformations, though each way must be a function of U which asymptotes under small stretches
to the well-known infinitesimal definition. Here, we choose the Hencky strain measure E = log U, which has the additional
property that strains are additive in the absence of rotation.

Fig. 9 shows a plot of packing fraction versus strain, with a sharp collapse of the trajectories across several simulations.
This suggests that strain is instrumental in the process by which the material dilates. This result, taken together with
previous discussion of Fig. 6, suggests that a complete description of the granular material must incorporate effects based
upon total strain to describe the initial onset of dilation, and deformation rate to describe the packing fraction of the final
state. This appears to be the only reasonable way in which the two results are consistent with each other and the literature.
Given this conclusion, we would expect that at high strains shown in Fig. 9, some trajectories in areas of lower deformation
rate would begin to separate off the downward slope, once they had reached their steady state packing fraction. However,
this is complicated by the fact that the simulations presented here are of finite duration, so trajectories in areas of low
deformation rate may not have undergone enough total strain to have reached a steady state. A more significant problem
is that trajectories pass through regions of differing deformation rate, so they will not be continually driven toward a
particular packing fraction. The majority of tracers at high strains shown in Fig. 9 are from the two drainage simulations,
where all trajectories ultimately head in to regions of high deformation rate near the container orifice, which may explain
why the majority of tracers are in a relatively small range of packing fractions around 58.5%. We believe a careful study of
this issue, employing geometries where strain and deformation rate can be more readily separated, making use of a wider
range of values for I, may be useful in more carefully quantifying this mechanism.

6. Conclusion

The results show that it is possible to make an approximate connection between continuum theories and particle-based
simulations of dense granular flow at the local level. We have demonstrated that in three dimensions, an approximate
granular element defined at the scale of the dynamical correlations exhibits a small enough amount of statistical noise to
make many inferences about the rheology of granular materials. Consistent with the results of da Cruz et al. (2005) and Lois
et al. (2005), we have shown a direct link between normalized deformation rate and packing fraction and, in agreement
with da Cruz et al. (2005), have observed that this relationship is approximately linear. However, while previous work was
carried out in 2D, we have shown this result locally in 3D using multiple geometries with far less symmetry. Our results
also show that while deformation rate is important in determining the steady state which a packing will reach, the
total strain plays an important role in determining the transient process by which the deformation takes place. Together
these results suggest a complex picture of granular failure, suggesting that a continuum model should incorporate both
deformation rate and total deformation.

The numerical techniques presented here have several advantages over more traditional approaches, such as
simulations within a periodic cell. Our approach allows for continuum hypotheses to be evaluated locally and
instantaneously within the context of real flows. By breaking up several different simulations into a large ensemble of
granular elements we are able to test continuum hypotheses across a wide variety of potential configurations, giving
us more confidence that the properties we observe are inherent in the material, and not tied to one particular situation.
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By making use of a Lagrangian perspective, and tracing elements with the flow, we are able to search for more complex
differential relationships. These techniques could easily be extended to other situations, and in the future we hope to
directly evaluate some of the recently proposed theories for granular materials (Kamrin and Bazant, 2007; Jop et al., 2006;
Aranson and Tsimring, 2001; Falk and Langer, 1998). These are frequently characterized by having a microscopic continuum
quantity, such as STZ populations n., SFR spot density p,, or partial fluidization parameter p, and part of the challenge in
investigating these quantities will be to understand how they directly relate to the microscopic packing structure. Another
promising avenue to pursue is to better understand the role of total strain. While strain appeared to play a crucial role in
interpreting our data, it is an undesirable quantity to use in an eventual continuum theory of granular materials, since it is
always tied to an initial reference state. Examining fully three-dimensional situations may also provide useful clues, since it
would provide greater variation in the stress tensor, allowing for an in-depth analysis of the relative merits of the different
proposed granular yield criteria and the role, if any, played by the intermediate stress eigenvalue, a question which is
currently unresolved.
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