
The DCH Hash Function

David A. Wilson
dwilson@alum.mit.edu

October 23, 2008

This document provides a definition of the DCH cryptographic hash
function, a candidate for the NIST SHA-3 specification. It is organized
following section 2.B of the Federal Register notice, Docket No. 070911510-
7512-01.

1 The DCH Algorithm

1.1 Overview

The DCH algorithm is a byte-oriented, endian-neutral, block-cipher-based
hash function. It generally follows the Merkle-Damg̊ard structure [4] [11],
and compression is performed via Miyaguchi-Preneel iteration [13] on suc-
cessive message blocks.

Each message block consists of 504 bits (63 bytes); the block is then
preprocessed to form a 512-bit input to the compression function. The
algorithm uses standard MD-strengthening; the final block is padded to 504
bits and one additional block is added containing the length.

The compression function consists of several rounds, each of which in-
cludes a nonlinear substitution, a diffusive linear transform, and a round key
addition. The message itself and the previous compression function output
are then added together to generate the output.

After all message blocks have been processed, the final hash function
output is simply the last compression function output, truncated if necessary
to meet the desired digest length. A full definition of DCH follows.

Note. DCH frequently treats data bytes as elements of the Galois field
GF (28); thus, additions and other operations on data bytes should be con-
sidered to be over GF (28) unless otherwise specified. This extends to text
descriptions; for example, we will frequently use the term “added” to refer

1

to addition over GF (28) (that is, the binary xor). We use the primitive
polynomial α8 + α4 + α3 + α2 + α0, or 0x11D in standard hexadecimal vec-
tor notation. This paper assumes that the reader has a basic knowledge of
operations in GF (28).

1.2 Input Processing

In order to combat certain cryptographic attacks, DCH pads each message
block with a square-free sequence, as suggested by Rivest [15]. This consists
of prepending an 8-bit data-independent value to each 504-bit message block,
generating the input to the compression function. This “sequence byte” is
reused in the last message block to indicate the termination, as described
below.

1.2.1 Square-free Sequence

A square-free sequence is a sequence of characters over some alphabet in
which no subsequence is repeated. Thus, given the English alphabet, “aa”,
“banana”, and “abcdefghijklmnopqrstuvwxyzopqrstuvwxyz” are not square-
free, since they contain the repeated substrings “a”, “an”, and “opqrstu-
vwxyz” respectively. “abcabdabeabf” and “nationalinstituteofstandardsandtech-
nology” are square-free.

We wish to ensure that the sequence of 512-bit blocks is square-free.
In order to do this, it suffices to ensure that the first byte of each block is
square-free; this in turn can be achieved by combining a square-free sequence
of three-bit values with a five-bit counter.

We use the well-known Towers of Hanoi problem to generate our square-
free sequence. We define the sequence as follows:

Given three pegs labeled 0, 1, and 2, let peg 0 contain an infinite1 number
of successively larger disks, and pegs 1 and 2 begin empty. The first move
consists of moving the smallest disk from peg 0 to 1. Following that, each
successive move consists of the next move in the optimal solution to the
Towers of Hanoi problem, moving the disks such that a larger disk is never
on top of a smaller disk. On each move, the output value of the function is
a + 3b where a is the number of the peg the disk moved from and b is the
number of the peg the disk moved to. This sequence is square-free [8], and
can be computed efficiently in constant time.

1In DCH implementations, of course, this number will not be infinite; the reference
implementation uses 63 disks, which is sufficient for 263 − 1 message blocks or almost 277

message bits. For the idealized definition of DCH, however, this number is unbounded.

2

Move Value
0→ 1 3 (011)
0→ 2 6 (110)
1→ 0 1 (001)
1→ 2 7 (111)
2→ 0 2 (010)
2→ 1 5 (101)

Table 1: Correspondence between Towers of Hanoi moves and square-free
sequence values.

The move value forms the high-order three bits of the sequence byte.
The low-order five bits form a counter; the high-order square-free sequence
starts with the initial move 0 → 1 and advances each time the counter
overflows. Thus, if mi is the ith message block, we have m0 = 01100000,
m1 = 01100001, ...m31 = 01111111, m32 = 11000000 (since the second move
is to move the size-2 disk from peg 0 to peg 2), and so on.

1.2.2 Final Block Padding

DCH uses standard MD-strengthening on the input messages. A single 1 bit
is appended to the end of the message. Then, enough 0 bits are appended to
the message to reach 64 bits less than a multiple of 504. Finally, the length
of the message in bits is appended as a 64-bit value.

The sequence byte in the last block is treated specially. The five-bit
counter increments normally; however, the three high-order bits are defined
to be 000. Since 000 is never used as a “move” in the square-free sequence
defined above, this unambiguously demarks the final message block.

1.3 Compression Function

As a block-cipher-based hash function, the compression in DCH comes from
iterative application of a cipher transform to successive blocks of input. The
output of the block cipher is then added to the previous cipher state and the
message block itself to generate the new cipher state, a design of Miyaguchi
and Preneel[13].

The transform itself consists of four rounds. Each round consists of a
nonlinear substitution (S-box), a linear transform (similar to the Fourier
transform), and the addition of a round key.

In the following sections, mi refers to the 512-bit input message block

3

after padding. mi,0,mi,1, . . .mi,63 refer to the individual bytes of m in order;
mi,0 is the sequence byte. Hi refers to the 512-bit state of the hash function
after processing block mi. Thus, the compression function maps (Hi−1,mi)
to Hi. The initial cipher state H−1 is defined to be the zero vector.

1.3.1 Nonlinear Substitution

Each byte of the input block is first processed through a highly non-linear
substitution function (S-box), S : GF (28) → GF (28). The S-box is defined
as follows:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00 03 02 8D F7 44 A4 79 B9 AE 9E DE 9B 3E A9 5E 95
10 DB 71 C3 5B E3 3D 4F 65 93 DD 56 83 A3 80 48 29
20 6F EE 3A 52 63 55 2F 89 73 D3 1C 49 25 88 30 6D
30 4B 8A 6C 2D A7 C0 43 5D 53 21 CC AA A8 0F 16 E2
40 35 5C FB D6 91 4D A5 07 33 8B 28 1D 15 64 46 90
50 3B 20 6B 8F 82 19 26 62 10 C2 C8 60 94 0D 34 42
60 27 54 C9 58 BA C7 14 4E 51 8E EC B0 23 EF 2C 31
70 2B D2 12 DA EA F8 D9 7A D8 74 05 B8 87 CE FD FF
80 18 57 A2 1E 7F CF E7 B3 4A 32 24 2E 50 6A 01 F6
90 1B DC 47 4C 98 BF 0C 5F 08 DF BE 97 AF 0A C4 A1
A0 1F 81 9C C5 37 C1 45 06 CD 38 0E 3F 9F 0B BD B4
B0 84 E6 ED 68 E8 F1 BC AC C6 67 04 78 96 99 AD B5
C0 11 5A A6 36 66 BB A0 9D D1 F4 61 59 86 7E AB 39
D0 2A 72 CB F5 FA 40 D4 D5 13 70 75 7B 9A 09 1A 92
E0 17 3C E5 F3 85 B2 E1 F2 F9 77 F0 B7 6E 22 B1 69
F0 E0 E4 B6 E9 00 8C D0 CA 41 D7 EB 76 7C FC 7D FE

Table 2: Nonlinear substitution (S-box) values for DCH.

This S-box comes from the function S[x] = x−1 +0x03, where the inver-
sion and addition occur over GF (28). (The zero element is defined to be its
own inverse for the purposes of this S-box.)

This formulation was specifically chosen due to the high nonlinear degree
of the inverse transform; the addition of the constant 0x03 eliminates fixed
points. Unlike the substitution boxes used by other algorithms (such as
AES [6] and Whirlpool [14]), we do not require a large amount of diffusion
from the substitution box itself; thus, the S-box definition was kept as simple
as possible.

4

We define m′i,j = S[mi,j].

1.3.2 Linear Transform

To perform diffusion, a linear transform (effectively, a partial Fourier trans-
form) is calculated of the outputs of the S-box as follows:

m′′i,j =
63∑

k=0

m′i,k(βj)k

Here αj are elements of GF (28) and the m′i,k values are treates as coef-
ficients of the transform. The βj values for j = 0...63 are defined as follows
(reading across):

0x01 0x02 0x04 0x08 0x99 0x2F 0x5E 0xBC
0x4F 0x9E 0x21 0x42 0xDD 0xA7 0x53 0xA6
0x4C 0x98 0x2D 0x5A 0xB4 0xD6 0xB1 0x7F
0xFE 0x92 0x39 0x72 0xE4 0x45 0x8A 0x09
0x12 0x22 0x4E 0x9C 0x25 0x4A 0x44 0x88
0x0D 0x1A 0xD7 0xB3 0x7B 0xF6 0x0B 0x16
0x2C 0x58 0x6E 0x0A 0x14 0x28 0x50 0x93
0x3B 0x76 0xEC 0xDC 0xA5 0x57 0xAE 0xA1

Table 3: Bases βj for the DCH linear transform. Within one block, the jth
output byte is equal to

∑
imi(βj)i.

0x00 0x01 0x02 0x03 0x44 0x45 0x46 0x47
0x88 0x89 0x8A 0x8B 0xCC 0xCD 0xCE 0xCF
0x10 0x11 0x12 0x13 0x14 0x55 0x56 0x57
0x58 0x99 0x9A 0x9B 0x9C 0xDD 0xDE 0xDF
0xE0 0x65 0x22 0x23 0x24 0x25 0x66 0x67
0x68 0x69 0xAA 0xAB 0xAC 0xAD 0xEE 0xEF
0xF0 0xF1 0xBA 0x33 0x34 0x35 0x36 0x77
0x78 0x79 0x7A 0xBB 0xBC 0xBD 0xBE 0x3F

Table 4: βj expressed as powers of α in GF (28).

This structure organizes the values by differences of 0x11 (17), the
largest prime factor of 255 (the number of unique values of αi in GF (28)),

5

in order to compute the transform efficiently. Sixty of the values are com-
puted in this fashion; three (β16, β33, and β51 differ by 0x55 (85) for similar
reasons. The last value (β64) is arbitrarily set.

1.3.3 Key Addition

In order to introduce byte-level variations, as well as to create differentiation
between rounds of the compression function, a round key is added to the
message block on each round.

m′′′i = Kr +m′′i

Aside from pathological cases (such as the zero vector), it is not expected
that certain keys are provably stronger than others. Thus, to save on mem-
ory footprint, the round keys are taken directly from the definition of the
S-box. If Kr(i) denotes the ith byte of the key for the rth (zero-indexed)
round, we define Kr(i) = S[64r + i] for 0 ≤ r < 4. Since the original in-
vocation of the S-box is keyed on byte value and the round key addition
depends on byte position, it is not expected that the reuse of the S-box in
this manner will lead to any vulnerabilities.2

1.3.4 Round and Block Chaining

The output of the key addition is used as the input to the next round of the
compression function. The compression function operates for four rounds.
At that point, if m∗i is the output of the final key addition, then we set

Hi = Hi−1 +m∗i +mi

and move on to process block i+ 1.

1.4 Output

After processing the final message block mi as described above, the output
of the DCH function is simply the final compression output Hi, truncated
to the desired digest length. DCH thus supports any digest length up to 512
bits.

2In the version of DCH presented in this paper, the four 64-byte round keys can be
exactly provided by the 256-byte S-box. If, however, the block size and/or number of
rounds are changed (see “Tunable Parameters”, Sec. 1.6), additional round keys may be
either taken from alternate sections of the S-box (e.g. K4(i) = S[32 + i]) or the round
keys may be replaced with arbitrary constants.

6

1.5 Security Argument

Here we provide security rationales for the design choices detailed above.
Further analysis can be found in section 5.

1.5.1 Message Padding

Overall, the message padding works to combat various multiple-block at-
tacks. The well-known MD-strengthening unambiguously pads the message
to a multiple of the block size and, by incorporating the length, prevents
prefixing attacks in which any collision in the intermediate state of a hash
function yields a collision in the function itself–the length itself must be
matched as well.

The message padding incorporates a square-free sequence3 in order to foil
additional message-extension attacks, such as those proposed by Dean [5]
and Kelsey and Schneier [9]. In particular, the sequence prevents creation of
a fixed point of the hash function, in which the state of the hash computation
is not affected by the insertion of one or several message blocks, allowing an
attacker to defeat MD-strengthening by arbitrarily adding message blocks.

The addition of a sequence byte also allows unambiguous demarcation of
the final message block. This prevents extension attacks where the attacker
uses a hash value as a chaining input to additional iterations of the com-
pression function, without requiring additional postprocessing (frequently
involving inefficient dropping of output bits or additional computation, such
as the methods proposed by Coron et al. [2]).

1.5.2 Compression Function

The first section of the compression function is the nonlinear substitution.
The S-box has been designed to provide a very simple, highly nonlinear [12]
function with no fixed points. The simplicity of the S-box means that in
itself it does not provide optimal diffusion of a single bit difference into its
byte; however, it is immediately followed by a linear transform which is
designed with optimal diffusion in mind.

The Fourier-based linear transform ensures that every input byte affects
3The use of a square-free sequence in this manner was proposed by Rivest [15], who

suggests using an abelian square-free sequence rather than a simple square-free sequence.
We opt for a simpler sequence since it is not at all clear that the security of the algorithm
would be enhanced by using an abelian square-free sequence instead; for known attacks it
appears that any square-free sequence is sufficient.

7

every output byte in every round of the compression function.4 In addition,
as a mathematical transform rather than a logical combination of bits, a
one-bit input difference can yield a variable amount of output differences
within each byte of output. Given the large number of bit variations caused
by a single input bit change, this is expected to make attempts differential
cryptanalysis very computationally intensive.

To emphasize the strength of the diffusion properties, a reduced-round
version of DCH was subjected to Strict Avalanche Criterion [19] testing.
After only two5 rounds of the compression function, the results of the SAC
testing were virtually indistinguishable from random. No systematic bias
was detected in any particular output bit with the change of any particular
input bit. The full results, being a 504x512 table, are too large to reproduce
in this paper; however, the results were consistent with a standard binomial
distribution for each output bit with each input bit flip. The overall calcu-
lated variance of the distribution over a large sample of inputs was within
0.07% of the mathematically predicted value.

The addition of a round key introduces byte-level variability into the
function, and prevents successful cryptanalysis of a single round of the com-
pression function (e.g. finding a fixed point of the (S-box + linear transform)
operation) from directly breaking the security of the entire function.

The actual compression occurs by adding the processed message block,
the message block itself, and the previous hash state together. This is a com-
mon design developed by Miyaguchi and Preneel [13]; the combination of the
previous hash value and the processed value provides compression, while the
addition of the original message block prevents an attacker from performing
a simple inversion (since the round key addition, the linear transform, and
the nonlinear substitution are all easily invertible).

1.6 Tunable Parameters

The most obvious tunable parameter of DCH is the number of rounds in
the compression function. As with most round-based hash functions, the

4By comparison, in the Whirlpool hash function [14], a single input byte only affects
eight output bytes in a single round; multiple rounds are required in order for a small
change to diffuse through to the entire output. It is therefore expected that DCH will
require fewer rounds than Whirlpool to achieve the same level of diffusion.

5Since the nonlinear substitution occurs before the diffusion step, after a single round a
one-bit difference in messages will correspond to a somewhat predictable output variation.
Though the differences will propagate to every output byte, the differences between the
output bytes will be related. Thus, two rounds were used for the statistical tests despite
the diffusive power of a single round.

8

number of rounds can be increased or decreased with a corresponding linear
difference in performance. It is expected that an increase in the number
of rounds will also have a direct correlation with the security of the hash
function; the addition of unique round constants ensures that cryptanalytic
attention must be paid to each individual round, and the Miyaguchi-Preneel
iteration ensures that a collision in the compression function cannot result
from a collision in any of the individual rounds.

Additionally, the block size of DCH can be tuned. Although in this
document (and the reference implementation) the compression function is
defined to handle blocks of 64 bytes (yielding a message block size of 504
bits), and the round keys and other constants are defined with such in
mind, nothing about the essential design of DCH necessitates any particular
block size. The advantage of a larger block size can be seen in the diffusion
step; the transform by its nature diffuses each byte over an entire block, so
a larger block size will generate a higher amount of diffusion within each
block processing. The disadvantage is, again, performance–even in the ideal
case the Fast Fourier transform algorithm operates in O(nlgn) time, and
since we operate in the field GF (28) the linear transform is less efficient.
Thus, doubling the size of the input and output will more than double the
time taken, yielding a net efficiency loss in time per byte processed. Since
we perform the transform over bytes in GF (28), the maximum block size
for the compression function is 28− 1 bytes or 2040 bits, yielding a 2032-bit
message block size.

It should also be noted that for digest lengths less than 512 bits, it is
possible to reduce the block length, resulting in performance gains. The
obvious choice would be to operate on 256-bit blocks for digest lengths less
than or equal to 256 bits (somewhat analogously to SHA-256 operating
separately from SHA-512); however, any block length can be used if the
linear transform for that block length is properly defined. For simplicity,
however, in this initial submission only the 512-bit block size is used so that
a single algorithm can satisfy all required output lengths.

2 Computational Efficiency

Since DCH as defined in this paper performs the same operations for all
digest lengths (only truncating the final result if shorter outputs are neces-
sary), all digest lengths have the same performance.

For 32- and 64-bit performance testing, the following PC was used:

• Processor: Intel Core 2 Duo E7200 (2.53 GHz)

9

• Memory: 2GB PC5300 DDR2

• Operating systems: Ubuntu 8.04 (32-bit), Ubuntu 8.04 (x86-64)

• Compiler: gcc 4.2.3

• Compiler flags: -O4 -funroll-loops

To estimate performance on the NIST SHA-3 reference platform, the
performance results were linearly scaled by a factor of 18/19 to account for
the difference in processor speed. Note that all of the below numbers give
performance running on a single core.

2.1 32-bit Performance

The estimated performance on the 32-bit reference platform is 10.6 MB/s
on a single core. This corresponds to approximately 14200 clock cycles per
message block, or 230 cycles per input byte.

The first time DCH is run, it sets up a multiplication table over GF (28),
taking approximately 530000 processor cycles; once this table is set up,
subsequent calls to Init() each take approximately 1150 cycles.

2.2 64-bit Performance

The estimated performance on the 64-bit reference platform is 14.0 MB/s
on a single core. This corresponds to approximately 10900 clock cycles per
message block, or 170 cycles per input byte.

Setting up the initial table takes approximately 530000 processor cycles;
subsequent calls to Init() each take approximately 1100 cycles.

2.3 8-bit Performance

To estimate the performance on 8-bit processors, the µcSim (s51) microcon-
troller simulator was used to simulate an MCS51-compatible processor. The
code was compiled using sdcc 2.7.0.

The DCH implementation used takes approximately 10kB of ROM and
500 bytes of temporary storage, in addition to the memory required for the
message itself. The algorithm takes approximately 110000 clock cycles per
message block (1800 cycles per byte) for long messages. In addition, each
Init() takes approximately 10000 cycles. It is likely that these figure can be
reduced significantly through dedicated 8-bit assembly programming.

10

2.4 Speed/Memory Tradeoffs

The most relevant speed/memory tradeoff is the manner in which multipli-
cation is performed in GF (28). First of all, it is convenient to construct
lookup tables to hold both the i → αi mapping and its inverse. Multipli-
cation can then be performed with a few operations (through logarithmic
addition). Such tables require only 512 bytes each (256 bytes for each table).
The optimized implementations, however, precompute a full multiplication
table over GF (28). This table greatly speeds up multiplication (since it re-
sults in one table lookup rather than several); however, it requires a 256x256
table, using 64kB of extra memory (as well as an up-front performance cost
to compute the table).

3 Test Outputs

A few selected outputs are given below. For the full range of test outputs,
please refer to the files in the KAT MCT directory accompanying this paper.

Note: The following values are for 512-bit DCH. For shorter digest
lengths, truncate the output.

Message: “” (zero-length message)
Digest: 49432EF52B4B024E 44317DA3D021E9A6

AF1096B83D5C3019 289FD037A00C1C21
E119FF032FF9E017 E20C268FC272CD96
9F5F72C3927EA35D 94E3C1FC97E8E4D7

Message: 0xCC (one byte)
Digest: 9D4C87F1B9A6DCB4 1E60AE3526DAF54A

E0CE624C102C7425 13A23CB6CFA227A2
A20F88403EFE844D 00E44FA1B7510789
50E3C480E4B03329 E3CA9C022081531D

Message: 16777216 repetitions of the ASCII text
abcdefghbcdefghicdefghijdefghijk
efghijklfghijklmghijklmnhijklmno

(1GiB)
Digest: 4032F50185CD9B28 C787540CB41CC179

9807A603BA54E21A C8A85C3F2FF8BEB6
E9A280BE7CE1CB40 74BB3B2C0144F108
3B95CCF5894836AF 482551D73FF1043B

11

4 Expected Strength

Given the high diffusion, nonlinearity, and relatively simple structure of
DCH, we expect it to provide a level of security consistent with an ideal
cryptographic hash function. Specifically,

• We expect that given an n-bit output of DCH, when used with HMAC
to construct a PRF, that PRF resists any distinguishing attack requir-
ing much less than 2n/2 queries.

• We expect DCH to be collision-resistant : It should take at least 2n/2

work to find two messages that have the same n-bit DCH hash value.

• We expect DCH to be preimage-resistant : Given an n-bit output of
DCH, finding an input message that hashes to the given output should
require at least 2n work.

• We expect DCH to be second-preimage-resistant : Given an n-bit out-
put of DCH and a message that hashes to that output, generating a
second message that hashes to the same output should require at least
2n work.

• Given the MD-strengthening and sequence byte, DCH is fully resistant
to length-extension attacks (that is, such attacks do no better than the
work factors above).

• Given any fixed m-bit subset of the output of DCH, we expect the
above conditions to hold with m replacing n (apart from trivial attacks
in which an attacker computes hash values before fixing the m-bit
subset).

5 Analysis

5.1 Known Attacks

5.1.1 Prefixing, Fixed-Point Insertion, Appending, and Other
Block-Level Attacks

Due to the combination of MD-strengthening and the sequence byte, DCH
is impervious to a large number of block-level attacks.

• The addition of the message block length prevents arbitrary prefix
collisions from resulting in a hash-function collision; the length of the
input messages must match as well.

12

• Should an attacker attempt to find a fixed point of the hash function in
order to obtain a set of varying-length messages with similar internal
state until the message length is hashed (in an attempt to evade the
previous point), the square-free sequence will not match, causing the
hash values to be entirely different.

• The sequence byte is used to specially flag the last block of a hash
computation; thus, the final output of the hash function does not
match what the internal state of the hash function would be when
processing a message consisting of the original message plus the MD
padding. Thus, an attacker cannot perform an extension attack in
which he uses one hash value to compute another hash of a related
message by simply adding extra message blocks to the end.

While an attacker can certainly precompute a “rainbow table” of many
possible message blocks, the above factors prevent the table values from be-
ing used except by messages with the exact same length and block positions.
This results in such attacks being no better than brute force.

5.1.2 Differential Cryptanalysis and Message Modification

Recent attacks on MD5 [18] and SHA-1 [17] have relied heavily on differen-
tial cryptanalysis, using message modification to derive constraints on the
internal state of the hash function and, thus, on the original message. DCH
has an entirely different structure from the MD4 family of hash functions,
so it is unlikely that the techniques used in the cryptanalysis of SHA-1 will
be effective against DCH.

In particular, a difference in a single message bit corresponds to a differ-
ence in only a few expanded message bits in SHA-1, meaning that different
message bits were only introduced in a few of the 80 rounds. This enables a
message modification attack in which constraints placed on the input mes-
sage can increase the probability that a second preimage can be generated.
By contrast, in each round of DCH, every byte of the input affects every
byte of the output of that particular round. Thus, a cryptanalyst attempt-
ing to perform message modification (or, in general, any sort of differential
cryptanalysis) must engineer a collision in not simply a few differing bits at
a time, but in an entire message block.

13

5.1.3 Side-Channel Attacks

Certain recent attacks have exploited side-channels; rather than cryptan-
alyzing the algorithm in the abstract, they detect information during the
processing of an algorithm through analysis of the process of computation
itself; for example, through timing or power usage.

Data-dependent algorithm operation. Certain algorithms operate
in different manners based on the input data. If the time of execution
depends on the input data, for example, then timing analysis of the execution
of the algorithm may lead to information leakage about the original message
(or, in the case of encryption functions, the secret key). For example, the
RC5 block cipher uses data-dependent rotations, making it vulnerable to
this type of attack [7].

DCH is not generally vulnerable to this manner of attack; no aspect of
the algorithm definition is data-dependent. In the reference implementation,
the only data-dependent operation occurs during multiplication of the zero
element in GF (28); however, in the optimized implementation both the zero
and nonzero multiplication is performed identically (by table lookup).

Cache timing attacks. Recently, online attacks have been mounted
against the AES block cipher [1]. Briefly, they exploit not the cipher itself,
but the fact that the cipher is often run on a general-purpose computer
with shared memory; by strategically making memory requests while AES
is running, another program on the same machine can cause parts of the
AES table to be replaced in the processor’s cache. By timing analysis, the
program can then determine when a cache miss occurs in the execution
of AES, and thus gain information about the internal processing of the
algorithm (including the secret key).

Since the DCH implementation similarly uses lookup tables for the S-
box as well as for multiplication in GF (28), it is in principle vulnerable to
the same timing attacks. While the “key” in DCH is fixed and public, it is
possible that online cache timing analysis may yield information about the
input message block.

We make no effort to directly combat these timing attacks; the problem
is not algorithmic but implementational. Implementations of DCH (specifi-
cally, those running on a shared cache) may take steps to combat this attack,
include delaying features in order to obfuscate the running time or OS-level
controls on viewing process resource consumption. These attacks, and the
defense against them, are tangential to the hash function definition itself.

14

5.2 Constants

5.2.1 S-box

The nonlinear substitution, as defined in section 1.3.1, was created via the
transformation

S[x] = x−1 + 0x03

where all operations occur in GF (28) and the inverse of 0 is defined to be
0. The inverse transform was chosen due to its simplicity and high degree
of nonlinearity [12]; the constant 0x03 was chosen as the smallest additive
constant that would cause the S-box to have no fixed points.

There are a number of transforms with a similarly high nonlinearity and
lack of fixed points; NIST may choose to replace the S-box with another if
desired.

5.2.2 Linear Transformation

The overall structure of the linear transform was chosen to ensure that all
rows were linearly independent. The exact values for the bases βj were
chosen specifically in order to compute efficiently using an analogue to the
recursive algorithm for the Fast Fourier Transform.

Standard O(nlgn) algorithms for the Fourier transform do not work in
general over Galois fields since they rely on the fact that two distinct el-
ements in the field have the same square. Since the nonzero elements of
GF (28) are αi for 0 ≤ i ≤ 254 and αi+255 = αi, every element has a unique
square root (αi/2 for i even, α(i+255)/2 for i odd) and, consequently, no two
elements have the same square.

However, since 255 = 3 · 5 · 17, multiple elements have the same cube
((αi)3 = (αi+85)3 = (αi+170)3), and similarly for the fifth power. Thus, an
analogue to the recursive calculation of the FFT can be performed two levels
down, effectively calculating 15 transformed values simultaneously.

The βj values in the linear transform therefore start with αi for i = 0, 1,
2, 3 and, for each of these, also calculate i+17, i+34, i+51, ... i+238. This
provides sixty of the sixty-four required βj values; three of the others can be
computed by one level of FFT-analogous recursion (i = 16 was arbitrarily
chosen as the starting point, also yielding 101 and 186), and the final βj

value was arbitrarily chosen to be 63.
NIST may choose other constants for the βj values if desired. So long

as they are all distinct, the resulting system will be linearly independent; if
values differing by 17 are chosen it is possible to greatly speed computation.

15

5.2.3 Round Keys

The round keys of DCH were chosen to coincide with the S-box based on
ease of implementation (particularly in low-memory environments).

Should NIST desire, other constants may be substituted for the round
keys (whether related to the S-box or not).

5.2.4 Other Constants

Although the main constants used in the operation of DCH are the S-box,
linear transform bases, and round keys, technically a choice has been made
on certain other “incidental” constants. These choices have been summa-
rized as follows:

1. Block size and number of rounds: These are explicitly listed as
tunable parameters of the hash function (see section 1.6); the default
values were selected to provide an acceptable level of security with a
reasonable performance.

2. Square-free sequence: The use of the Towers of Hanoi problem
was selected as an easy-to-describe method of generating a square-free
sequence; moreover, it can be easily calculated in constant time. The
structure of the sequence byte is a modified form of that suggested by
Rivest [15]; the exact mapping between Towers of Hanoi moves and
three-bit values was selected to be easy to calculate.

3. Primitive polynomial: The choice of 0x11D as a primitive polyno-
mial over GF (28) was arbitrary.

5.3 Third-Party Analysis of DCH

As of the date of this submission, there are no known published materials
analyzing the security of the DCH hash function.

6 Advantages and Limitations

6.1 Diffusion Properties

DCH was created with strong diffusion properties in mind. The centerpiece
of this diffusion is the Fourier-based transform in the compression function,
which ensures that differences in each input byte result in differences in
every output byte of the message block. Also, the mathematical nature of

16

the transform means that the relationships between individual bits of input
and output within each round are extremely complicated (unlike e.g. SHA-
1). By alternating this transform with nonlinear and key-additive steps,
the compression function can achieve near-optimal diffusion in only a few
rounds–the results after two rounds were essentially identical to random.

Using the Fourier transform in a cryptographic hash function is not a
new idea; Schnorr [16] and more recently Lyubashevsky et al [10] have also
used it in order to achieve strong diffusion (among other properties). DCH
takes this idea and uses it to provide diffusion within a robust cryptographic
structure, as discussed in the next section.

6.2 Cryptanalytic Basis of the DCH Structure

DCH is a block-cipher-based hash function and therefore bears some crypt-
analytic similarities to ciphers such as Rijndael/AES and hash functions
such as Whirlpool. In particular, unlike the descendents of MD4 (including
SHA-1 and the SHA-2 algorithms), DCH is transformative–it relies not on
a complicated series of bit-shifts but rather on explicit substitution, math-
ematical operations for diffusion, and constant addition.

DCH uses well-known and generally-accepted techniques such as the
Miyaguchi-Preneel design for block iteration [13] and the inverse mapping
over GF (28) for nonlinearity [12].

Furthermore, DCH is similar in overall structure to Whirlpool [14], which
has undergone extensive cryptanalysis. DCH improves upon the diffusion
properties present in Whirlpool by providing a more thorough transform
operation, and adds the sequence byte in order to thwart attacks upon
multi-block messages.

6.3 Implementation on Different Architectures

The DCH algorithm is flexible enough to be implemented on a wide range
of architectures. Two key use cases are analyzed here: 8-bit processors
for embedded applications, and parallelizability for multi-core or dedicated-
hardware implementations.

6.3.1 8-bit architectures

All operations in DCH are byte-oriented; DCH can thus be implemented on
an 8-bit processor in a straightforward manner. Given sufficient memory,
an 8-bit implementation of DCH is virtually identical to the 32-bit imple-
mentation.

17

DCH does require several hundred bytes of working memory in order
to store the hashState object as well as temporary storage. The most sig-
nificant contributor to this memory requirement is the state of the square-
free sequence, which requires approximately 200 bytes in order to generate
a sequence for messages up to 264 − 1 bits. If the length requirement is
relaxed–that is, if the processor is only used to hash much shorter messages
(a reasonable assumption, given the computationally limited nature)–then
this value can be reduced significantly.6

6.3.2 Parallel computation

DCH is efficiently parallelizable in a number of different ways. Most ob-
viously, the compression function–where DCH spends the vast majority of
its time–operates independently for each message block. Once the sequence
bytes are calculated, each message block can be processed in parallel, and
the results XORed together. DCH thus scales virtually linearly with the
number of independent processors for long messages.

Additionally (particularly in dedicated hardware implementations), par-
allelism can be used within each message block computation. The lin-
ear transform–again, the performance bottleneck–can be parallelized using
known techniques for FFT parallelization, yielding a severalfold increase in
throughput.

6.3.3 Dedicated hardware implementations

A large factor in the relatively slow performance of DCH is slowness of mul-
tiplication in GF (28) on a general-purpose computer. Each multiplication
takes several clock cycles even when a large (216) amount of memory is de-
voted to a full lookup table (such a table takes a significant amount of time
to initially construct as well). The linear transform involves a large number
of such multiplications and is by far the performance bottleneck.

Given dedicated hardware, multiplication in GF (28) can be optimized
and pipelined. It is thus expected that DCH will benefit greatly from hard-
ware implementation (perhaps even moreso than other algorithms) since it
has a specific bottleneck that can be addressed in hardware.

6Specifically, an implementation using n “disks” will require 3(n + 1) bytes for the
“pegs” and will support messages up to 32 · (2n − 1) blocks, or slightly less than 2n+14

bits.

18

6.4 Algorithmic Flexibility

DCH provides a number of general areas of flexibility beyond the SHA-3
requirements set out by NIST.

6.4.1 Tunable Parameters

As noted in Section 1.6, DCH is tunable not just in the number of rounds, but
also in its block size, providing an additional level of security/performance
tradeoffs. While upon official release these parameters will be fixed, they
provide additional options during the analysis period, both to study weak-
ened versions from a cryptanalytic standpoint and to give NIST additional
flexibility in selecting security parameters of the algorithm.

6.4.2 Message Digest Size

Since DCH simply truncates its final output to the desired length, it can
support any digest size up to its block length.

6.4.3 Long Message Support

Currently, the definition and implementation of DCH support any message
up to 264 − 1 bits long. However, the only length limit in the definition is
the addition of length during MD-strengthening (section 1.2.2); if desired,
this value can easily be expanded to up to an entire message block. Thus,
by modifying this parameter, DCH can in principle support messages up
to 2504 − 1 bits (not that computing the hash of such a message would be
feasible). Implementation-wise, the only caveat is the square-free sequence,
which requires O(lgn) bits of internal storage to support messages up to
length n.

6.5 Performance

The major weakness of DCH is its performance; it is significantly slower than
current hash algorithms such as SHA-512. To some extent this is expected;
by construction, every byte of a 512-bit block affects every other byte in
every round of the compression function. In addition, the byte-oriented
nature of DCH will result in a comparative performance loss against word-
oriented algorithms on general-purpose processors.

However, given the attacks on MD5 and SHA-1, and the structural sim-
ilarities of SHA-256 and SHA-512 to these earlier descendents of MD4, a

19

performance degradation for moving to a new hash function is perhaps to
be expected. Through its different architecture as well as the arguments
presented above, DCH provides numerous security benefits in exchange for
the decrease in performance.

References

[1] Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf, 2004.

[2] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle–Damg̊ard revisited: How to construct a hash function.
In Victor Shoup, editor, Advances in cryptology: CRYPTO 2005: 25th
Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 14–18, 2005: proceedings, volume 3621, pages 430–??,
2005.

[3] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Pro-
ceedings, volume 3494 of Lecture Notes in Computer Science. Springer,
2005.

[4] Ivan Damg̊ard. A design principle for hash functions. In G. Brassard,
editor, Proc. CRYPTO 89, pages 416–427. Springer-Verlag, 1990. Lec-
ture Notes in Computer Science No. 435.

[5] Richard Drews Dean. Formal aspects of mobile code security. PhD
thesis, Princeton, NJ, USA, 1999.

[6] FIPS. Advanced Encryption Standard (AES), November 2001.

[7] Helena Handschuh and Howard M. Heys. A timing attack on rc5. In
SAC ’98: Proceedings of the Selected Areas in Cryptography, pages 306–
318, London, UK, 1999. Springer-Verlag.

[8] Jim Randall Jean-Paul Allouche, Dan Astoorian and Jeffrey Shallit.
Morphisms, squarefree strings, and the tower of hanoi puzzle. The
American Mathematical Monthly, 101(7):651–658, Aug-Sep 1994.

[9] John Kelsey and Bruce Schneier. Second preimages on n-bit hash func-
tions for much less than 2n work. In Cramer [3], pages 474–490.

20

[10] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon
Rosen. Provably secure fft hashing. NIST 2nd Cryptographic Hash
Workshop, August 2006. Available on-line at URL http://www.csrc.
nist.gov/pki/HashWorkshop/2006/program_2006.htm.

[11] R. C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD
thesis, Stanford University, June 1979.

[12] K. Nyberg. Differentially uniform mappings for cryptography. In
T. Helleseth, editor, Advances in Cryptology — Eurocrypt ’93, volume
765 of Lecture Notes in Computer Science, pages 55–64, Berlin, 1994.
Springer-Verlag.

[13] B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD
thesis, K. U. Leuven, Leuven, Belgium, January 1993.

[14] Vincent Rijmen and Paulo S. L. M. Barreto. The WHIRLPOOL
hash function. http://paginas.terra.com.br/informatica/
paulobarreto/WhirlpoolPage.html; http://planeta.terra.com.
br/informatica/paulobarreto/whirlpool.zip, 2001.

[15] Ronald L. Rivest. Abelian square-free dithering for iter-
ated hash functions. http://people.csail.mit.edu/rivest/
Rivest-AbelianSquareFreeDitheringForIteratedHashFunctions.
pdf, 2005.

[16] Claus-Peter Schnorr. Fft-hash ii, efficient cryptographic hashing. In
EUROCRYPT, pages 45–54, 1992.

[17] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Collision search
attacks on SHA1. Technical report, Shandong University, Shandong,
China, 2005.

[18] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash
functions. In Cramer [3], pages 19–35.

[19] A. F. Webster and S. E. Tavares. On the design of s-boxes. In Lecture
notes in computer sciences; 218 on Advances in cryptology—CRYPTO
85, pages 523–534, New York, NY, USA, 1986. Springer-Verlag New
York, Inc.

21

