
Realising A Read-Write Web of Data

v2009-06-11

Tim Berners-Lee1, Richard Cyganiak2, Michael Hausenblas2, Joe Presbrey1,
Oshani Seneviratne1, and Oana-Elena Ureche2

1 MIT CSAIL, Cambridge
Massachusetts, USA

(timbl | presbrey | oshani)@csail.mit.edu
2 DERI, National University of Ireland, Galway

IDA Business Park, Lower Dangan, Galway, Ireland
firstname.lastname@deri.org

Abstract. The current Web of Data, including linked datasets, RDFa
content, and GRDDL-enabled microformats is a read-only Web. Al-
though this read-only Web of Data enables data integration, faceted
browsing and structured queries over large datasets, we lack a general
concept for a read-write Web of Data. That is, we need to understand
how to create, update and delete RDF data in a secure, reliable, trust-
worthy and scalable way. Attempting to change this situation, this paper
reviews available components, presents our vision of a uniform architec-
ture for a read-write Web of Data as well as a proof of concept. The paper
exposes issues and challenges of the proposed architecture and discusses
the next necessary steps.

1 Introduction

With the recent uptake of the linked data movement, as well as RDFa con-
tent and GRDDL-enabled microformats being used widely, we are witnessing
the publication of huge amounts of valuable structured data on the Web. Addi-
tionally, major search engines (Google and Yahoo!) started to support indexing
structured data such as RDFa. Hence, the incentive to publish these formats has
increased dramatically. This in itself is a valuable development; the read-only
Web of Data allows data integration, faceted browsing and structured queries
over large datasets. Additionally, it drives the development of applications on top
of structured and interlinked data [8]. However, these applications will sooner or
later not only want to consume data, but also perform changes to the state of
the resources they are operating on.

The current read-only Web of Data is the starting point of our work, its
baseline. The contribution of this paper is on the one hand a general concept
how to create, update and delete RDF data in a secure, reliable, trustworthy
and scalable way. On the other hand, based on our proof of concept, we expose
issues and challenges for realising a read-write Web of Data.

In order to put our contribution in a context, we will elaborate the back-
ground for this work in the next section. Section 3 presents use cases and states
requirements for solutions to enable a read-write Web of Data. Section 4 then lists
core components of our vision of a read-write Web of Data, reviewing existing
and related work for each components. In Section 5, we propose the overall con-
cept, show how the core components fit in and discuss issues in terms of existing
non-semantic technologies and integration. Finally we conclude our contribution
in section 6 and outline the next steps.

2 Background

The Web of Documents featured editable pages from the very beginning on,
which happened to be continued in Wiki environments. The current Web of Data,
however, is a read-only Web allowing for data integration, faceted browsing and
structured queries over large datasets. However, we are still lacking a general
concept for a read-write Web of Data. When we talk about the Web of Data,
we mean structured and possibly interlinked data in RDF, such as hinted in
Figure 1.

We mainly focus on the linked data part of the Web of Data in this paper.
Linked data [1] has changed the way RDF is deployed nowadays. Linked data
is essential RDF technology that uses HTTP URIs to denote things, and pro-
vides useful information about a thing at the thing’s URI. Additionally, links
to other RDF datasets are included, allowing machines to traverse the Web of
Data similar to what humans can do in the Web of Documents.

To the best of our knowledge only few attempts to realise a true read-write
Web of Data can be identified, nowadays. In the following we will review them
as well as contrast them to solutions from the Web 2.0.

Fig. 1. The Web of Data—structured and interlinked data in RDF.

2.1 Existing Work in the Web of Data realm

In [2] we have described Tabulator Redux, one of the first read-write Web of
Data implementations. We extended Tabulator to write back changes on a per-
triple bases in a Wiki environment. About the same time, the authors of [3]
described a method based on an extension of another Wiki, using RDFa to
establish in-place edits. In early 2009, a RESTful method to contribute triples
to an RDF file has been proposed [10], and only recently Gray et. al. [7] presented
a RESTful read-write Web of Data service, giving application authors access to
simple persistence, simple (social) sharing, and lightweight semantics, based on
the Changesets specification3.

One influential activity can be detected around SPARQL. The respective
W3C Working Group has recently been chartered4 to standardise the dialects—
Jena’s SPARUL, ARC2’s SPARQL+, etc.—to define a uniform SPARQL Update
interface. In the following, we will refer to the currently different implementa-
tions as SPARQL Update (neglecting the minor differences between them and
assuming that we will soon have a standard language, here). Currently only view
secure SPARQL endpoint implementations are known. One example is Open-
Link’s Data Space5.

@@TODO: WebDAV
Finally, we started to investigated and implement a form-oriented update

mechanism called pushback/RDForms6 only recently. The insights we gained
from this straw men proposal influenced the herein presented work.

To this end, we tried to highlight the fact that, though there exist partial
attempts to enable a true read-write Web of Data, we lack a general concept for
a true read-write Web of Data, addressing security, privacy, trust, reliability and
scalability.

2.2 Existing Work in the Web 2.0

While the above discussed approaches and technologies target RDF environ-
ments, the majority of write-interfaces reside in Web 2.0 environments. Exam-
ples of so called site-specific APIs range from photo sites7 over bookmarks8, to
the wide range of Google products9. A leading API directory lists more than
1300 APIs at time of writing10.

An additional question arises, now: until the wide availability of RDF-based
back-ends (such as SPARQL endpoints), how can the majority of the site-specific
APIs be accessed and hence integrated in the Web of Data.
3 http://n2.talis.com/wiki/Changesets
4 http://www.w3.org/2009/01/sparql-charter
5 http://www.openlinksw.com/OdbcRails/main/ODS/VirtODSFOAFSSL
6 http://esw.w3.org/topic/PushBackDataToLegacySources
7 http://www.flickr.com/services/api/
8 http://delicious.com/help/api
9 http://code.google.com/apis/

10 http://www.programmableweb.com/apis

3 Use Cases and Requirements

We have seen so far that, though there are certain attempts around partial
addressing the realisation of a read-write Web of Data, no general concept is
available. In the following we will have a closer look into use cases for a read-
write Web of Data and state our requirements.

3.1 Use Cases

The use cases described below have in common that they happen in the semantic
space. By semantic space we mean that an agent (human or machine alike)
consumes some linked data in RDF. Most likely the agent would operate on
linked data, but also data mashups may be the source of the RDF data. A human
agent would typically navigate through linked datasets using Tabulator11 or the
OpenLink Data Explorer12, while a machine agent (a crawler, aggregator, etc.)
would use some HTTP library such as Ruby’s net/http.rb13 or PHP’s curl14.

While operating in the semantic space, at some point in time the agent
might have gathered some information and wants to perform an action on it.
This can be adding a bookmark, annotating a photo, ordering a book, updating
a calendar, or posting a comment to a blog. This write operation should cause
the original resource to be changed or some effects to take place, such as the
event appearing in the calendar or the book to be shipped.

UC1: Event Synchronisation Calendar data of individuals along with event
data from sites such as upcoming.org (IMPLEMENTED)

UC2: Link Management Jim browses DBpedia (http://dbpedia.org/resource/
Fixed-wing_aircraft) and detects a broken link in this resource15. He is a good
Web citizen and wants to fix this link.

UC3: Microblogging . Twitter, identi.ca, etc. provide base for exchange, dis-
cussion. Lara, browsing a SIOCified blog post want to post a twit from it (IM-
PLEMENTED) or wants to bookmark for example a URI in a microblogging
post from Twitter in delicious.

UC4: Software Development . Bob, a software project manager has three
developers (and their calendars), and an issue tracker. Based on an urgent feature
request he wants to change the assignments of bugs to certain developers, based
on their availability (IMPLEMENTED).
11 http://www.w3.org/2005/ajar/tab
12 http://linkeddata.uriburner.com/ode/
13 http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/
14 http://ie2.php.net/curl
15 http://upload.wikimedia.org/wikipedia/commons/6/6f/air_india_b747-400_

vt-esn_arp.jpg

UC5: Profile Information Reuse . In FOAF profiles we have data such as
name or address readily available. Joe wants to, rather than re-entering the data
always in each HTML form (booking flight, order book, etc.) to use it from his
FOAF profile directly (IMPLEMENTED - pac - but note that this is actually
RDForms-specific, as currently no actual update happens there).

UC6: Photo Annotation . Sarah consumes an RDF graph where data from
both the flickr-wrapper and Geonames is present and wants to update the geo
location data (as it is for example taken on wrong position or inaccurate).

3.2 Requirements

Based on the use cases outlined above and taking into account our experience
with earlier systems, we require that a read-write Web of Data must:

– Be based on the Web of Data core standards: URIs, HTTP and RDF;
– Provide for a uniform interface, that is, treat RDF and non-RDF back-ends

the same way;
– Scale and provide for high-performing operations;
– Support the social constraints and expectations human users have regarding

the update of the underlying data in terms of trust, provenance, etc.

Additionally, the solution should be representation agnostic, meaning whatever
RDF serialisation is supplied (RDF/XML, Turtle, RDFa, microformats+GRDDL),
the system should be able to handle it. Finally, the solution should be usable in
currently deployed Web environments, such as xAMP, JavaScript. Ideally, it re-
quires little configuration effort and provides for a framework defining interfaces
and terms on an abstract level along with a reference implementation.

4 Core Components

In order to realise a read-write Web of Data, several components are necessary. In
the following we discuss these components and highlight their interdependencies.

4.1 Authentication

The first step in the process of allowing a write operation is to learn who the
party that requests it is. This is called authentication.

Identity In order to perform authentication, one needs to know about the
identity of an agent. In the context of the Web of Data we speak of a Web ID16,
a URI which identifies an agent and typically exposes a description of that agent
when dereferenced.
16 http://esw.w3.org/topic/WebID

Existing Solutions In [5] the HTTP Authentication is defined. It includes the
specification for a Basic Access Authentication scheme not considered to be a
secure method of user authentication—unless used along with an external secure
system, such as SSL—as the credentials are send over the network in clear text.

OpenID Authenticaion17 provides a way to prove that an agent owns a Web
ID without passing around the agent’s credentials. It is a completely decentral-
ized system in the sense that anyone can choose to be a consumer or identity
provider without having to register or be approved by any central authority.

@@TODO: API keys

Web of Data As described in [12], FOAF+SSL, is an authentication protocol
that links a Web ID to a public key, thereby enabling a global, decentralized
and open yet secure social network. It uses X.509 Public Key Infrastructure [9]
standards where the “Web of Trust” is built using FOAF profile data. There
exist already many implementations ranging from Apache 18 to iPhone mobile
phones.

4.2 Authorisation

Along or after the authentication of an agent, the authorisation takes place.
Given a resource R and an agent’s Web ID URIWebID the question is if the
agent is allowed to access the resource and if so, which operations the agent is
allowed to perform on it.

Existing Solutions In [13] existing access control models as applied to collab-
oration are examined. In a similar vain in [14] three access control models for
collaborative environment are introduced and compared using several evaluating
criteria.

Web of Data WebAccessControl (WAC) 19 is a decentralized system for allow-
ing different users and groups various forms of access to resources, where users
and groups are identified by HTTP URIs.

Figure 2 shows the WAC vocabulary20

Note that the following prefix assignments have been used: acl: ... <http:
//www.w3.org/ns/auth/acl#> and gen: ... <http://www.w3.org/2006/gen/
ont#>21

@@TODO: Describe Joe’s Apache module here
Similar to WAC, Giunchiglia et. al. [6] have recently presented an ontology-

driven community access control mechanism.
17 http://openid.net/specs/openid-authentication-1_1.html
18 http://foaf.me/Enabling_SSL_Client_Certificates_on_Apache.php
19 http://esw.w3.org/topic/WebAccessControl
20 http://www.w3.org/ns/auth/acl
21 http://www.w3.org/DesignIssues/Generic.html

Fig. 2. The WAC vocabulary.

4.3 Update Protocols

Existing Solutions WebDAV, proprietary REST/POST interface etc.,

Web of Data SPARQL Update, changesets (?)

4.4 Wrapper

Reason: most data out there to-date is non-RDF, hence we need to wrap it.

Read-Wrapper Read: linked data publishing process

Write-Wrapper A pushback is a possible realisation of a RDF write-wrapper.

4.5 Client-side mechanisms

possible approaches, such as single-triple update, form-based, visual (?), etc.

RDForms An RDForm is a way for a User Agent to solicit and communicate
structured updates to a SPARQL endpoint that supports SPARQL Update. It
consists of:

– An (X)HTML form, decorated with RDFa, using the RDForms vocabulary22;
– An RDForms processor, gleaning the RDF from the form and turning it into

a SPARQL Update statement.

22 http://rdfs.org/ns/rdforms

We note that the main reason for introducing a dedicated vocabulary to
capture the values is that this allows us to write a generic RDForms processor
which only needs to understand this vocabulary. However, this requires knowl-
edge about how the original terms map to the terms in the RDForm vocabulary.
The RDForms vocabulary (Figure 3) defines the semantics of a key-value pair
set of fields in an HTML form along with allowed operations on them.

Fig. 3. The RDForms vocabulary.

For each RDForm field a CUD23 operation, such as “add” a field or “update
the field’s value”, may be permitted. In order to understand which CUD opera-
tion is allowed and intended on which RDForm field, we must flag it somehow.
The process of defining which CUD operation should be applied on which field(s)
is called “binding” in RDForms. A CUD operation in RDForms is a declaration
of an intended operation on an RDForm field. An intended operation can be one
of the following: CREATE, UPDATE or DELETE, along with a binding to an
RDForm field, defineing to which field the operation applies.

RDForms can be dynamically generated from an RDF graph along with an
existing (X)HTML form for the data present in the graph. The process of gen-
erating an RDForm on-the-fly is called “fusion”. The RDForms generator that
implements the fusion is online available24. To this end, we have implemented
a client-side, JavaScript based RDForms processor using jQuery/rdfquery and
several RDForms (Twitter, Jira issue tracker, etc.) 25. Parts of the source code
of the exemplary Jira RDForm are shown in Listing 1.1. Note that the usage of
@resource and @id in the case (within RDForms) is actually desired and fully
23 http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
24 http://ld2sd.deri.org/pushback/fusion/
25 http://esw.w3.org/topic/PushBackDataToLegacySourcesRDForms

1 <form id="fo1" action="" about="#fo1" typeof="pb:RDForm">
2 <div rel="pb:operation">
3 <div about="#crud -op1" typeof="pb:CRUDOperationUPDATE">
4
5 </div >
6 ...
7 <fieldset >
8 <legend >Issue </legend >
9 <div rel="pb:field">

10 <div typeof="pb:UpdateableField" about="#fo1.f1" >
11 <label for="fo1.f1" rel="pb:key" resource="#bug -id"

property="dcterms:title">Bug ID*</label >:
12 <div rel="pb:value">
13 <div about="#fo1.f1.val" typeof="pb:FieldValue">
14 <input id="fo1.f1.val" type="text" property="rdf:value" content=""

value="" size="40" />
15 </div >
16 </div >
17 </div >
18 </div >
19 ...
20 </fieldset >
21 </form >

Listing 1.1. Jira RDForm source code.

in-line with the semantics; we are actually talking about the elements of the
HTML form.

5 Concept

After introducing the different components above, we now discuss how they play
together from an architectural point of view.

We propose a three-tiered architecture: an agent (top) has a Web ID as-
sociated with it, same as resources have access control information attached
(bottom). The read path to the right is realised through linked data, the write
path to the left relies on SPARQL Update. Wherever necessary, wrapper allow
non-RDF sources or sinks to participate, offering the same interfaces as native
RDF systems.

Fig. 4. Concept of a Read-Write Web of Data.

Fig. 4 shows the read-write Web of Data concept comprising the following
components:

– Agent identifier (Web ID)
– An authentication scheme and protocol (FOAF+SSL)
– An authorization scheme and protocol (WAC)
– An update protocol (SPARQL Update)
– Read-wrappers around Web 2.0 sites (linked data)
– Write-wrappers around Web 2.0 sites/data (pushback)
– Client-side mechanism to send updates (RDForms)

5.1 Proof of Concept

In order to demonstrate how our concept of a read-write Web of Data works,
we have implemented one of our use cases where calendar data is updated using
the Goolge calendar API.

@@TODO: Oana to describe setup on the server side (ARC2, Google API)
@@TODO: Oshani to describe setup on the client side (invoke of RDForm

in Tabulator, update creation)

5.2 Evaluation

We have in total implemented the following three interfaces:

HTTP POST RDFa processor parses RDForm on client-side, key-value pairs
are extracted, proprietary HTTP POST sent to pushback that calls according
site-specific APIs functions.

SPARQL Update with RDForms RDFa processor parses RDForm on client-
side, an INSERT operation is with the gleaned triples from the RDForm is used
throughout all operations, the operations semantics are conveyed in the RD-
Forms, pushback acts as a SPARQL endpoint, has to poll and interpret RDForm
semantics to call according site-specific APIs functions.

RDForms to SPARQL Update RDForms processor on client-site creates ac-
cording SPARQL Update operations from the RDForm and sends the pushback
the SPARQL Update operations which has again to interpret RDForm semantics
to call according site-specific APIs functions.

What follows in the Table 5.2 is a comparison of the three different imple-
mented approaches described above with the following keys:

1. Architectural Properties
1.1 AWWW ... compliant to the Architecture of the World Wide Web [11];
1.2 RESTful ... compliant to the REST architectural style as of [4];
1.3 Semantics ... compliant to SPARQL semantics;

2. Complexity
2.1 Client ... effort to develop and maintain the client side of the implemen-

tation;
2.2 Server ... effort to develop and maintain the server side of the implemen-

tation;
3. Implementation Issues

3.1 Uniform Interface ... treating RDF and non-RDF back-ends uniformly;
3.2 Scalability ... expected scalability w.r.t. the Web;
3.3 Performance ... collective measure for HTTP round-trips, cache-ability,

etc.

HTTP POST SPARQL with RDForms RDForms to SPARQL

Architectural Properties

1.1 AWWW yes yes yes
1.2 RESTful yes no no
1.3 Semantics N.A. no yes

Complexity

2.1 Client low middle high
2.2 Server low high high

Implementation Issues

3.1 Uniform Interface no yes yes
3.2 Scalability good unknown unknown
3.3 Performance good good good

Table 1. Comparison of the three implemented update interfaces.

5.3 Issues

While working on the proof of concept as described above, we have identified
certain issues: authentication, simple vs. uniform interface, etc.

5.4 Challenges

We are not able to handle transactions, only one shots. Error handling not
addressed. Further we need to clarify how to handle concurrency edits.

6 Conclusion & Outlook

Proof of concept there, improve details, implement more UC, extend support for
authentication, etc.

Acknowledgements

Our work has partly been supported by the European Commission under Grant
No. 217031, FP7/ICT-2007.1.2, project “Domain Driven Design and Mashup
Oriented Development based on Open Source Java Metaframework for Prag-
matic, Reliable and Secure Web Development” (Romulus).

References

1. T. Berners-Lee. Linked Data, Design Issues. http://www.w3.org/DesignIssues/

LinkedData.html.
2. T. Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey, E. Prud’hommeaux, and

mc schraefel. Tabulator Redux: Browsing and Writing Linked Data. In WWW
2008 Workshop: Linked Data on the Web (LDOW2008), Beijing, China, 2008.

3. S. Dietzold, S. Hellmann, and M. Peklo. Using JavaScript RDFa Widgets for
Model/View Separation inside Read/Write Websites. In Proceedings of the 4th
Workshop on Scripting for the Semantic Web, Tenerife, Spain, 2008.

4. R. T. Fielding and R. N. Taylor. Principled design of the modern Web architecture.
ACM Trans. Internet Technol., 2(2):115–150, 2002.

5. J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen,
and L. Stewart. HTTP Authentication: Basic and Digest Access Authentication.
Request for Comments: 2617, June 1999, IETF Network Working Group, 1999.

6. F. Giunchiglia, R. Zhang, and B. Crispo. Ontology Driven Community Access
Control. In Proceedings of the First Workshop on Trust and Privacy on the Social
and Semantic Web (SPOT2009), 2009.

7. N. Gray, T. Linde, and K. Andrews. SKUA retrofitting semantics. In Proceedings
of the 5th Workshop on Scripting for the Semantic Web, Heraklion, Greece, 2009.

8. M. Hausenblas. Exploiting Linked Data For Building Web Applications. IEEE
Internet Computing, 13(4):NN, 2009.

9. R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infras-
tructure Certificate and CRL Profile. Request for Comments: 2459, January 1999,
IETF Network Working Group, 1999.

10. T. Inkster. Inav the Terrible. Buzzword.org.uk Draft 7 February 2009, buz-
zword.org.uk, 2009.

11. I. Jacobs and N. Walsh. Architecture of the World Wide Web, Volume One. W3C
Recommendation 15 December 2004, W3C Technical Architecture Group (TAG),
2004.

12. H. Story, B. Harbulot, I. Jacobi, and M. Jones. FOAF+TLS: RESTful Authen-
tication for the Social Web. In Proceedings of the First Workshop on Trust and
Privacy on the Social and Semantic Web, 2009.

13. W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access control in collaborative
systems. ACM Comput. Surv., 37(1):29–41, 2005.

14. B. Zhao. Collaborative Access Control. Telecommunications Software and Multi-
media, 2008.

