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Multimodality Image Registration by
Maximization of Mutual Information

Frederik Maes,* Andr´e Collignon, Dirk Vandermeulen, Guy Marchal, and Paul Suetens,Member, IEEE

Abstract—A new approach to the problem of multimodality
medical image registration is proposed, using a basic concept
from information theory, mutual information (MI), or relative
entropy, as a new matching criterion. The method presented
in this paper applies MI to measure the statistical dependence
or information redundancy between the image intensities of
corresponding voxels in both images, which is assumed to be
maximal if the images are geometrically aligned. Maximization
of MI is a very general and powerful criterion, because no
assumptions are made regarding the nature of this dependence
and no limiting constraints are imposed on the image content
of the modalities involved. The accuracy of the MI criterion
is validated for rigid body registration of computed tomog-
raphy (CT), magnetic resonance (MR), and photon emission
tomography (PET) images by comparison with the stereotactic
registration solution, while robustness is evaluated with respect
to implementation issues, such as interpolation and optimization,
and image content, including partial overlap and image degra-
dation. Our results demonstrate that subvoxel accuracy with
respect to the stereotactic reference solution can be achieved
completely automatically and without any prior segmentation,
feature extraction, or other preprocessing steps which makes this
method very well suited for clinical applications.

Index Terms—Matching criterion, multimodality images, mu-
tual information, registration.

I. INTRODUCTION

T HE geometric alignment or registration of multimodality
images is a fundamental task in numerous applications in

three-dimensional (3-D) medical image processing. Medical
diagnosis, for instance, often benefits from the complemen-
tarity of the information in images of different modalities.
In radiotherapy planning, dose calculation is based on the
computed tomography (CT) data, while tumor outlining is of-
ten better performed in the corresponding magnetic resonance
(MR) scan. For brain function analysis, MR images provide
anatomical information while functional information may be

Manuscript received February 21, 1996; revised July 23, 1996. This work
was supported in part by IBM Belgium (Academic Joint Study) and by the
Belgian National Fund for Scientific Research (NFWO) under Grants FGWO
3.0115.92, 9.0033.93 and G.3115.92. The Associate Editor responsible for
coordinating the review of this paper and recommending its publication was
N. Ayache.Asterisk indicates corresponding author.

*F. Maes is with the Laboratory for Medical Imaging Research,
Katholieke Universiteit Leuven, ESAT/ Radiologie, Universitair Ziekenhuis
Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium. He is an Aspirant
of the Belgian National Fund for Scientific Research (NFWO) (e-mail:
Frederik.Maes@uz.kuleuven.ac.be).

A. Collingnon, D. Vandermeulen, G. Marchal, and P. Suetens are with the
Laboratory for Medical Imaging Research, Katholieke Universiteit Leuven,
ESAT/Radiologie, Universitair Ziekenhuis Gasthuisberg, Herestraat 49, B-
3000 Leuven, Belgium.

Publisher Item Identifier S 0278-0062(97)02397-5.

obtained from positron emission tomography (PET) images,
etc.

The bulk of registration algorithms in medical imaging (see
[3], [16], and [23] for an overview) can be classified as being
either frame based, point landmark based, surface based, or
voxel based.Stereotactic frame-basedregistration is very ac-
curate, but inconvenient, and cannot be applied retrospectively,
as with any external point landmark-basedmethod, while
anatomical point landmark-basedmethods are usually labor-
intensive and their accuracy depends on the accurate indication
of corresponding landmarks in all modalities.Surface-based
registration requires delineation of corresponding surfaces
in each of the images separately. But surface segmentation
algorithms are generally highly data and application dependent
and surfaces are not easily identified in functional modalities
such as PET.Voxel-based(VSB) registration methods optimize
a functional measuring the similarity of all geometrically cor-
responding voxel pairs for some feature. The main advantage
of VSB methods is that feature calculation is straightforward
or even absent when only grey-values are used, such that
the accuracy of these methods is not limited by segmentation
errors as in surface based methods.

For intramodality registrationmultiple VSB methods have
been proposed that optimize some global measure of the
absolute difference between image intensities of corresponding
voxels within overlapping parts or in a region of interest (ROI)
[5], [11], [19], [26]. These criteria all rely on the assumption
that the intensities of the two images are linearly correlated,
which is generally not satisfied in the case ofintermodality
registration. Crosscorrelation of feature images derived from
the original image data has been applied to CT/MR matching
using geometrical features such as edges [15] and ridges [24]
or using especially designed intensity transformations [25].
But feature extraction may introduce new geometrical errors
and requires extra calculation time. Furthermore, correlation of
sparse features like edges and ridges may have a very peaked
optimum at the registration solution, but at the same time be
rather insensitive to misregistration at larger distances, as all
nonedge or nonridge voxels correlate equally well. A mul-
tiresolution optimization strategy is therefore required, which
is not necessarily a disadvantage, as it can be computationally
attractive.

In the approach of Woodset al. [30] and Hill et al. [12],
[13], misregistration is measured by the dispersion of the
two-dimensional (2-D) histogram of the image intensities of
corresponding voxel pairs, which is assumed to be minimal
in the registered position. But the dispersion measures they
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propose are largely heuristic. Hill’s criterion requires seg-
mentation of the images or delineation of specific histogram
regions to make the method work [20], while Woods’ criterion
is based on additional assumptions concerning the relationship
between the grey-values in the different modalities, which
reduces its applicability to some very specific multimodality
combinations (PET/MR).

In this paper, we propose to use the much more general
notion of mutual information(MI) or relative entropy [8],
[22] to describe the dispersive behavior of the 2-D histogram.
MI is a basic concept from information theory, measuring
the statistical dependence between two random variables or
the amount of information that one variable contains about
the other. The MI registration criterion presented here states
that the MI of the image intensity values of corresponding
voxel pairs is maximal if the images are geometrically aligned.
Because no assumptions are made regarding the nature of the
relation between the image intensities in both modalities, this
criterion is very general and powerful and can be applied
automatically without prior segmentation on a large variety
of applications.

This paper expands on the ideas first presented by Collignon
et al. [7]. Related work in this area includes the work by Viola
and Wellset al. [27], [28] and by Studholmeet al. [21]. The
theoretical concept of MI is presented in Section II, while the
implementation of the registration algorithm is described in
Section III. In Sections IV, V, and VI we evaluate the accuracy
and the robustness of the MI matching criterion for rigid body
CT/MR and PET/MR registration. Section VII summarizes our
current findings, while Section VIII gives some directions for
further work. In the Appendexes, we discuss the relationship
of the MI registration criterion to other multimodality VSB
criteria.

II. THEORY

Two random variables, and , with marginal probability
distributions, and , and joint probability distribu-
tion, , are statistically independent if

, while they are maximally dependent if they are
related by a one-to-one mapping:

. MI, , measures the degree of depen-
dence of and by measuring the distance between the
joint distribution and the distribution associated to
the case of complete independence , by means of
the Kullback–Leibler measure [22], i.e.,

(1)

MI is related to entropy by the equations

(2)

(3)

(4)

with and being the entropy of and , re-
spectively, their joint entropy, and and

TABLE I
SOME PROPERTIES OFMUTUAL INFORMATION

the conditional entropy of given and of
given , respectively

(5)

(6)

(7)

The entropy is known to be a measure of the amount
of uncertainty about the random variable, while
is the amount of uncertainty left in when knowing .
Hence, from (3), is the reduction in the uncertainty of
the random variable by the knowledge of another random
variable , or, equivalently, the amount of information that
contains about . Some properties of MI are summarized in
Table I (see [22] for their proof).

Considering the image intensity values,and , of a pair
of corresponding voxels in the two images that are to be reg-
istered to be random variablesand , respectively, estima-
tions for the joint and marginal distributions
and can be obtained by simple normalization of the
joint and marginal histograms of the overlapping parts of both
images. Intensities and are related through the geomet-
ric transformation defined by the registration parameter

. The MI registration criterion states that the images are
geometrically aligned by the transformation for which

is maximal. This is illustrated in Fig. 1 for a CT and
an MR image of the brain, showing the 2-D histogram of the
image intensity values in a nonregistered and in the registered
position. The high-intensity values in the histogram of the CT
image originating from the bone of the skull are most likely
to be mapped on low-intensity values in the histogram of the
MR image if the images are properly aligned, resulting in
a peak in the 2-D histogram. The uncertainty about the MR
voxel intensity is thus largely reduced if the corresponding CT
voxel is known to be of high intensity. This correspondence is
lost in case of misregistration. However, the MI criterion does
not make limiting assumptions regarding the relation between
image intensities of corresponding voxels in the different
modalities, which is highly data dependent, and no constraints
are imposed on the image content of the modalities involved.
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(a) (b)

Fig. 1. Joint histogram of the overlapping volume of the CT and MR
brain images of dataset A in Tables II and III: (a) Initial position:
I(CT;MR) = 0:46, (b) registered position:I(CT;MR) = 0:89.
Misregistration was about 20 mm and 10� (see the parameters in Table III).

If both marginal distributions and can be
considered to be independent of the registration parameters

, the MI criterion reduces to minimizing the joint entropy
[6]. If either or is independent of ,

which is the case if one of the images is always completely
contained in the other, the MI criterion reduces to minimizing
the conditional entropy or . However, if
both images only partially overlap, which is very likely during
optimization, the volume of overlap will change whenis
varied and and and also and will
generally depend on. The MI criterion takes this into account
explicitly, as becomes clear in (2), which can be interpreted
as follows [27]: “maximizing MI will tend to find as much
as possible of the complexity that is in the separate datasets
(maximizing the first two terms) so that at the same time they
explain each other well (minimizing the last term).”

For to be useful as a registration criterion and
well behaved with respect to optimization, should
vary smoothly as a function of misregistration . This
requires and to change smoothly when

is varied, which will be the case if the image intensity
values are spatially correlated. This is illustrated by the graphs
in Fig. 2, showing the behavior of as a function of
misregistration between an image and itself rotated around the
image center. The trace on the left is obtained from an original
MR image and shows a single sharp optimum with a rather
broad attraction basin. The trace on the right is obtained from
the same image after having reduced the spatial correlation of
the image intensity by repeatedly swapping pairs of randomly
selected pixels. This curve shows many local maxima and
the attraction basin of the global maximum is also much
smaller, which deteriorates the optimization robustness. Thus,
although the formulation of the MI criterion suggests that
spatial dependence of image intensity values is not taken into
account, such dependence is in fact essential for the criterion
to be well behaved around the registration solution.

III. A LGORITHM

A. Transformation

Each of the images is associated an image coordinate frame
with its origin positioned in a corner of the image, with the

(a) (b)

Fig. 2. Spatial correlation of image intensity values increases MI registration
robustness. Top: (a) original 256�256 2-D MR image and (b) image of (a)
shuffled by swapping 30 000 randomly selected pixel pairs. Both images have
the same image content. Bottom: MI registration traces obtained using partial
volume distribution (PV) interpolation for in-plane rotation of each image
over itself. Local maxima are marked with “*”.

axis along the row direction, the axis along the column
direction, and the axis along the plane direction.

One of the images is selected to be thefloating image, ,
from which samples are taken and transformed into
the referenceimage, . can be the set of grid points of

or a sub- or superset thereof. Subsampling of the floating
image might be used to increase speed performance, while
supersampling aims at increasing accuracy. For each value
of the registration parameter only those values

are retained for which falls inside the volume of
.
In this paper, we have restricted the transformationto

rigid-body transformations only, although it is clear that the
MI criterion can be applied to more general transformations as
well. The rigid-body transformation is a superposition of a 3-
D rotation and a 3-D translation and the registration parameter

is a six-component vector consisting of three rotation
angles (measured in degrees) and three translation
distances (measured in millimeters). Transformation
of image coordinates to from the image to image

is given by

(8)

with and being 3 3 diagonal matrixes representing the
voxel sizes of images and , respectively (in millimeters),

and the image coordinates of the centers of the images,
the 3 3 rotation matrix, with the matrixes

and representing rotations around the-, -, and
-axis, respectively, and the translation vector.
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Fig. 3. Graphical illustration of NN, TRI, and PV interpolation in 2-D. NN
and TRI interpolation find the reference image intensity value at positionT�s

and update the corresponding joint histogram entry, while PV interpolation
distributes the contribution of this sample over multiple histogram entries
defined by its NN intensities, using the same weights as for TRI interpolation.

B. Criterion

Let denote the image intensity in the floating image
at position and the intensity at the transformed

position in the reference image. The joint image intensity
histogram of the overlapping volume of both images
at position is computed by binning the image intensity pairs

for all . In order to do this efficiently,
the floating and the reference image intensities are first linearly
rescaled to the range and , respectively,

being the total number of bins in the joint histogram.
Typically, we use .

In general, will not coincide with a grid point of
and interpolation of the reference image is needed to

obtain the image intensity value . Nearest neighbor
(NN) interpolation of is generally insufficient to guarantee
subvoxel accuracy, as it is insensitive to translations up to
one voxel. Other interpolation methods, such astrilinear
(TRI) interpolation, may introduce new intensity values which
are originally not present in the reference image, leading to
unpredictable changes in the marginal distribution of
the reference image for small variations of. To avoid this
problem, we propose to use trilinear partial volume distribution
(PV) interpolation to update the joint histogram for each voxel
pair . Instead of interpolating new intensity values in

, the contribution of the image intensity of the sample
of to the joint histogram is distributed over the intensity

values of all eight NN’s of on the grid of , using the
same weights as for TRI interpolation (Fig. 3). Each entry
in the joint histogram is then the sum of smoothly varying
fractions of one, such that the histogram changes smoothly as

is varied.

Estimations for the marginal and joint image intensity
distributions and are obtained
by normalization of

(9)

(10)

(11)

The MI registration criterion is then evaluated by

(12)

and the optimal registration parameter is found from

arg (13)

C. Search

The images are initially positioned such that their centers
coincide and that the corresponding scan axes of both images
are aligned and have the same orientation. Powell’s multidi-
mensional direction set method is then used to maximize,
using Brent’s one-dimensional optimization algorithm for the
line minimizations [18]. The direction matrix is initialized with
unit vectors in each of the parameter directions. An appropriate
choice for the order in which the parameters are optimized
needs to be specified, as this may influence optimization
robustness. For instance, when matching images of the brain,
the horizontal translation and the rotation around the vertical
axis are more constrained by the shape of the head than the
pitching rotation around the left-to-right horizontal axis. There-
fore, first aligning the images in the horizontal plane by first
optimizing the in-plane parameters may facilitate
the optimization of the out-of-plane parameters .
However, as the optimization proceeds, the Powell algorithm
may introduce other optimization directions and change the
order in which these are considered.

D. Complexity

The algorithm was implemented on an IBM RS/6000 work-
station (AIX 4.1.3, 58 MHz, 185 SPECfp92; source code
is available on request). The computation time required for
one evaluation of the MI criterion varies linearly with the
number of samples taken from the floating image. While TRI
and PV interpolation have nearly the same complexity (1.4 s
per million samples), NN interpolation is about three times as
efficient (0.5 s per million samples). The number of criterion
evaluations performed during optimization typically varies
between 200 and 600, depending on the initial position of the
images, on the order in which the parameters are optimized,
and on the convergence parameters specified for the Brent and
Powell algorithm.



MAES et al.: MULTIMODALITY IMAGE REGISTRATION BY MAXIMIZATION OF MUTUAL INFORMATION 191

TABLE II
DATASETS USED IN THE EXPERIMENTS DISCUSSED INSECTIONS V AND VI

IV. EXPERIMENTS

The performance of the MI registration criterion was eval-
uated for rigid-body registration of MR, CT, and PET images
of the brain of the same patient. The rigid-body assumption
is well satisfied inside the skull in 3-D scans of the head
if patient related changes (due to for instance interscanning
operations) can be neglected, provided that scanner calibration
problems and problems of geometric distortions have been
minimized by careful calibration and scan parameter selection,
respectively. Registration accuracy is evaluated in Section V
by comparison with external marker-based registration results
and other retrospective registration methods, while the robust-
ness of the method is evaluated in Section VI with respect to
implementation issues, such as sampling, interpolation and op-
timization, and image content, including image degradations,
such as noise, intensity inhomogeneities and distortion, and
partial image overlap. Four different datasets are used in the
experiments described below (Table II). Dataset A1 contains
high-resolution MR and CT images, while dataset B was
obtained by smoothing and subsampling the images of dataset
A to simulate lower resolution data. Dataset C2 contains
stereotactically acquired MR, CT, and PET images, which
have been edited to remove stereotactic markers. Dataset D
contains an MR image only and is used to illustrate the effect
of various image degradations on the registration criterion.
All images consist of axial slices and in all cases theaxis
is directed horizontally right to left, the axis is directed
horizontally front to back, and theaxis is directed vertically
up, such that the image resolution is lowest in thedirection.
In all experiments, the joint histogram size is 256256, while
the fractional precision convergence parameters for the Brent
and Powell optimization algorithm are set to 10and 10 ,
respectively [18].

V. ACCURACY

The images of datasets A, B, and C were registered using the
MI registration criterion with different choices of the floating
image and using different interpolation schemes. In each case
the same optimization strategy was used, starting from all pa-
rameters initially equal to zero and optimizing the parameters
in the order ( , ). The results are summarized
in Table III by the parameters of the transformation that

1Data provided by van den Elsen [25].
2Data provided by Fitzpatrick [10].

Fig. 4. The bounding box of the central eighth of the floating image defines
eight points near the brain surface at which the difference between different
registration transforms is evaluated.

takes the MR image as the reference image. Optimization
required 300 to 500 evaluations of the MI criterion, which
was performed on an IBM RS6000/3AT workstation using
PV interpolation in about 20 min for CT to MR matching
of dataset A (40 min for MR to CT matching) and in less than
2 min for PET to MR matching of dataset C.

The images of dataset A have been registered by van den
Elsen [25] using a correlation-based VSB registration method.
Visual inspection showed this result to be more accurate than
skin marker-based registration and we use it as a reference to
validate registration accuracy of the MI criterion for datasets
A and B. For dataset C, we compare our results with the
stereotactic registration solution provided by Fitzpatrick [10].
The difference between the reference and each of the MI
registration solutions was evaluated at eight points near the
brain surface (Fig. 4). The reference solutions and the mean
and the maximal absolute transformed coordinate differences
measured at these points are included in Table III.

The solutions obtained for dataset A and for dataset B using
different interpolation schemes or for a different choice of the
floating image are all very similar. For dataset A the largest
differences with the reference solutions occur for rotation
around the axis (0.7 ), but these are all subvoxel. For dataset
B the differences are somewhat larger, especially in the
direction due to an offset in the translation parameter (0.8
mm). However, these translational differences may have been
caused by interpolation and subsampling artifacts introduced
when creating the images of dataset B.

For dataset C, CT to MR registration using TRI interpolation
did not converge to the reference solution. In this case, CT
to MR registration performs clearly worse than MR to CT
registration, for which all differences are subvoxel, the largest
being 1.2 mm in the direction for the solution obtained
using PV interpolation due to a 1offset for the rotation
parameter. For MR to PET as well as for PET to MR
registration, PV interpolation yields the smallest differences
with the stereotactic reference solution, especially in the
direction, which are all subvoxel with respect to the voxelsizes
of the PET image in case of MR to PET registration. Relatively
large differences occur in thedirection due to offsets in the

translation parameter of about 1 to 2 mm.

VI. ROBUSTNESS

A. Interpolation and Optimization

The robustness of the MI registration criterion with respect
to interpolation and optimization was evaluated for dataset A.
The images were registered using either the CT or the MR
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TABLE III
REFERENCE AND MI REGISTRATION PARAMETERS FORDATASETS A, B, AND C AND THE MEAN

AND MAXIMAL ABSOLUTE DIFFERENCE EVALUATED AT EIGHT POINTS NEAR THE BRAIN SURFACE

volume as the floating image and using different interpolation
methods. For each combination, various optimization strate-
gies were tried by changing the order in which the parameters
were optimized, each starting from the same initial position
with all parameters set to zero.

The results are summarized in Fig. 5. These scatter plots
compare each of the solutions found (represented by their
registration parameters) with the one for which the MI
registration measure was maximal (denoted by) for each
of the interpolation methods separately, using either the CT or
the MR image as the floating image. Different solutions are
classified by the norm of the registration parameter difference
vector on the horizontal axis (using mm and degrees
for the translation and rotation parameters, respectively) and
by the difference in the value of the MI criterion (MI
MI ) on the vertical axis. Although the differences are
small for each of the interpolation methods used, MR to
CT registration seems to be somewhat more robust than CT
to MR registration. More importantly, the solutions obtained
using PV interpolation are much more clustered than those
obtained using NN or TRI interpolation, indicating that the
use of PV interpolation results in a much smoother behavior
of the registration criterion. This is also apparent from traces
in registration space computed around the optimal solution
for NN, TRI, and PV interpolation (Fig. 6). These traces look
very similar when a large parameter range is considered, but in
the neighborhood of the registration solution, traces obtained
with NN and TRI interpolation are noisy and show many

local maxima, while traces obtained with PV interpolation
are almost quadratic around the optimum. Remark that the
MI values obtained using TRI interpolation are larger than
those obtained using NN or PV interpolation, which can be
interpreted according to (2): The TRI averaging and noise
reduction of the reference image intensities resulted in a larger
reduction of the complexity of the joint histogram than the
corresponding reduction in the complexity of the reference
image histogram itself.

B. Subsampling

The computational complexity of the MI criterion is pro-
portional to the number of samples that is taken from the
floating image to compute the joint histogram. Subsampling
of the floating image can be applied to increase speed perfor-
mance, as long as this does not deteriorate the optimization
behavior. This was investigated for dataset A by registration
of the subsampled MR image with the original CT image
using PV interpolation. Subsampling was performed by taking
samples on a regular grid at sample intervals of and

voxels in the and direction, respectively, using NN
interpolation. No averaging or smoothing of the MR image
before subsampling was applied. We used
or , and or . The same optimization strategy
was used in each case. Registration solutionsobtained using
subsampling were compared with the solutionfound when
no subsampling was applied (Fig. 7). For subsampling factors

up to 48 (four in the and direction, three
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(a) (b)

Fig. 5. Evaluation of the MI registration robustness for dataset A. Horizontal axis: norm of the difference vectorj� � �
�j for different optimization

strategies, using NN, TRI, and PV interpolation.�� corresponds to the registration solution with the best value for the registration criterion for each of the
interpolation schemes applied. Vertical axis: difference in the registration criterion between each solution and the optimal one. (a) Using the CT image
as the floating image. (b) Using the MR image as the floating image.

(a)

(b) (c) (d)

Fig. 6. MI traces around the optimal registration position for dataset A: Rotation around thex axis in the range from�180 to+180� (a) and from
�0.5 to +0.5� (bottom row), using NN (b), TRI (c), and PV (d) interpolation.

in the direction) the optimization converged in about 4 min
to a solution less than 0.2and 0.2 mm off from the solution
found without subsampling.

C. Partial Overlap

Clinically acquired images typically only partially overlap,
as CT scanning is often confined to a specific region to
minimize the radiation dose while MR protocols frequently
image larger volumes. The influence of partial overlap on the

registration robustness was evaluated for dataset A for CT
to MR registration using PV interpolation. The images were
initially aligned as in the experiment in Section V and the
same optimization strategy was applied, but only part of the
CT data was considered when computing the MI criterion.
More specifically, three 50-slice slabs were selected at the
bottom (the skull basis), the middle, and the top part of the
dataset. The results are summarized in Table IV and compared
with the solution found using the full dataset by the mean and
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TABLE IV
INFLUENCE OF PARTIAL OVERLAP ON THE REGISTRATION ROBUSTNESS FORCT TO MR REGISTRATION OF DATASET A

Fig. 7. Effect of subsampling the MR floating image of dataset A on the
registration solution. Horizontal axis: subsampling factorf , indicating that
only one out off voxels was considered when evaluating the MI criterion.
Vertical axis: norm of the difference vectorj�� ��j. �� corresponds to the
registration solution obtained when no subsampling is applied.

maximal absolute difference evaluated over the full image at
the same eight points as in Section V. The largest parameter
differences occur for rotation around theaxis and translation
in the direction, resulting in maximal coordinate differences
up to 1.5 CT voxel in the and direction, but on average
all differences are subvoxel with respect to the CT voxel
sizes.

D. Image Degradation

Various MR image degradation effects, such as noise, in-
tensity inhomogeneity, and geometric distortion, alter the
intensity distribution of the image which may affect the MI
registration criterion. This was evaluated for the MR image of
dataset D by comparing MI registration traces obtained for the
original image and itself with similar traces obtained for the
original image and its degraded version (Fig. 8). Such traces
computed for translation in thedirection are shown in Fig. 9.

1) Noise: The original MR data ranges from 2 to 3359 with
mean 160. White zero-mean Gaussian noise with variance of
50, 100, and 500 was superimposed onto the original image.
Fig. 9(b) shows that increasing the noise level decreases the
MI between the two images, but this does not affect the MI
criterion, as the position of maximal MI in traces computed
for all six registration parameters is not changed when the
amount of noise is increased.

2) Intensity Inhomogeneity:To simulate the effect of MR
intensity inhomogeneities on the registration criterion, the
original MR image intensity was altered into using a
slice-by-slice planar quadratic inhomogeneity factor

(14)

(15)

(a) (b)

(c) (d)

Fig. 8. (a) Slice 15 of the original MR image of dataset D, (b) zero
mean noise added with variance of 500 grey-value units, (c) quadratic
inhomogeneity (k = 0:004), and (d) geometric distortion (k = 0:00075).

with being the image coordinates of the point around
which the inhomogeneity is centered anda scale factor.
Fig. 9(c) shows MI traces for different values of

. All traces for all param-
eters reach their maximum at the same position and the MI
criterion is not affected by the presence of the inhomogeneity.

3) Geometric Distortion:Geometric distortions
and were applied to the original MR image according to
a slice-by-slice planar quadratic model of the magnetic field
inhomogeneity [17]

(16)

(17)

(18)

with the image coordinates of the center of each
image plane and a scale parameter. Fig. 9(d) shows traces
of the registration criterion for various amounts of distortion

. As expected, the distortion
shifts the optimum of the translation parameter proportional
to the average distortion . No such shift occurred for traces
obtained for all other registration parameters.
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(a)

(b) (c) (d)

Fig. 9. MI traces using PV interpolation for translation in thex direction of the original MR image of dataset D over its degraded version in the range
from �10 to +10 mm: (a) original, (b) noise, (c) intensity inhomogeneity, and (d) geometric distortion.

VII. D ISCUSSION

The MI registration criterion presented in this paper assumes
that the statistical dependence between corresponding voxel
intensities is maximal if both images are geometrically aligned.
Because no assumptions are made regarding the nature of
this dependence, the MI criterion is highly data independent
and allows for robust and completely automatic registration
of multimodality images in various applications with min-
imal tuning and without any prior segmentation or other
preprocessing steps. The results of Section V demonstrate that
subvoxel registration differences with respect to the stereo-
tactic registration solution can be obtained for CT/MR and
PET/MR matching without using any prior knowledge about
the grey-value content of both images and the correspondence
between them. Additional experiments on nine other datasets
similar to dataset C within the Retrospective Registration
Evaluation Project by Fitzpatricket al. [10] have verified
these results [29], [14]. Moreover, Section VI-C demonstrated
the robustness of the method with respect to partial over-
lap, while it was shown in Section VI-D that large image
degradations, such as noise and intensity inhomogeneities,
have no significant influence on the MI registration crite-
rion.

Estimations of the image intensity distributions were ob-
tained by simple normalization of the joint histogram. In all
experiments discussed in this paper, the joint histogram was
computed from the entire overlapping part of both images,
using the original image data and a fixed number of bins of

256 256. We have not evaluated the influence of the bin
size, the choice of a ROI, or the application of nonlinear
image intensity transformations on the behavior of the MI
registration criterion. Other schemes can be used to estimate
the image intensity distributions, for instance by using Parzen
windowing [9] on a set of samples taken from the overlapping
part of both images. This approach was used by Violaet al.
[27], who also use stochastic sampling of the floating image
to increase speed performance.

PV interpolation was introduced to make the joint and
marginal distributions and their MI vary smoothly for
small changes in the registration parameters. The results
of Section VI-A indicate that PV interpolation indeed
improves optimization robustness compared to NN and TRI
interpolation. More experiments are needed to compare this
approach to the Parzen windowing method as used by Viola
et al. [27] and the multiresolution cubic resampling approach
as used by Studholmeet al. [20].

The optimization of the MI registration criterion is per-
formed using Powell’s method. We noticed that for low-
resolution images the initial order in which the parameters
are optimized strongly influences optimization robustness.
Generally, we obtained the best results when first optimizing
the in-plane parameters and , before optimizing the
out-of-plane parameters and . For low-resolution
images, the optimization often did not converge to the global
optimum if a different parameter order was specified, due to
the occurrence of local optima especially for the-rotation and
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the –translation parameters. In the experiments discussed in
this paper the amount of misregistration that was recovered
was as large as 10and 40 mm, but we have not extensively
investigated the robustness of the method with respect to the
initial positioning of the images, for instance by using multiple
randomised starting estimates. The choice of the floating image
may also influence the behavior of the registration criterion.
In the experiment of Section VI-A, MR to CT matching was
found to be more robust than CT to MR matching. However,
it is not clear whether this was caused by sampling and
interpolation issues or by the fact that the MR image is more
complex than the CT image and that the spatial correlation of
image intensity values is higher in the CT image than in the
MR image.

We have not tuned the design of the search strategy toward
specific applications. For instance, the number of criterion
evaluations required may be decreased by taking the limited
image resolution into account when determining convergence.
Moreover, the results of Section VI-B demonstrate that for
high-resolution images subsampling of the floating image
can be applied without deteriorating optimization robustness.
Important speed-ups can, thus, be realized by using a mul-
tiresolution optimization strategy, starting with a coarsely
sampled image for efficiency and increasing the resolution as
the optimization proceeds for accuracy [20]. Furthermore, the
smooth behavior of the MI criterion, especially when using
PV interpolation, may be exploited by using gradient-based
optimization methods, as explicit formulas for the derivatives
of the MI function with respect to the registration parameters
can be obtained [27].

All the experiments discussed in this paper were for rigid-
body registration of CT, MR, and PET images of the brain
of the same patient. However, it is clear that the MI criterion
can equally well be applied to other applications, using more
general geometric transformations. We have used the same
method successfully for patient-to-patient matching of MR
brain images for correlation of functional MR data and for
the registration of CT images of a hardware phantom to its
geometrical description to assess the accuracy of spiral CT
imaging [14].

MI measures statistical dependence by comparing the com-
plexity of the joint distribution with that of the marginals. Both
marginal distributions are taken into account explicitly, which
is an important difference with the measures proposed by Hill
et al. [13] (third-order moment of the joint histogram) and
Collignon et al. [6] (entropy of the joint histogram), which
focus on the joint histogram only. In Appendexes A and B we
discuss the relationship of these criteria and of the measure
of Woodset al. [30] (variance of intensity ratios) to the MI
criterion.

MI is only one of a family of measures of statistical
dependence or information redundancy (see Appendix C).
We have experimented with ,
which can be shown to be a metric [8], and

, theentropy correlation coefficient
[1]. In some cases these measures performed better than
the original MI criterion, but we could not establish a clear
preference for either of these. Furthermore, the use of MI

for multimodality image registration is not restricted to the
original image intensities only: other derived features such as
edges or ridges can be used as well. Selection of appropriate
features is an area for further research.

VIII. C ONCLUSION

The MI registration criterion presented in this paper allows
for subvoxel accurate, highly robust, and completely automatic
registration of multimodality medical images. Because the
method is largely data independent and requires no user
interaction or preprocessing, the method is well suited to be
used in clinical practice.

Further research is needed to better understand the influence
of implementation issues, such as sampling and interpolation,
on the registration criterion. Furthermore, the performance of
the registration method on clinical data can be improved by
tuning the optimization method to specific applications, while
alternative search strategies, including multiresolution and
gradient-based methods, have to be investigated. Finally, other
registration criteria can be derived from the one presented here,
using alternative information measures applied on different
features.

APPENDIX A

We show the relationship between the multimodality reg-
istration criterion devised by Hillet al. [12] and the joint
entropy . Hill et al. used the th-order moment of the
scatter-plot as a measure of dispersion

(19)

with the histogram entries and
the common volume of overlap. Approximating the joint
probability distribution by , we get

It turns out that is one-to-one related to the joint Rényi
entropy of order [22]

with the following properties.

1) , which is the Shannon
entropy.

2)

Hence, the normalized second- or third-order moment criteria
defined by Hill et al. are equivalent to a generalized version
of the joint entropy .

APPENDIX B

We show how the multimodality registration criterion de-
vised by Woodset al. [30] relates to the conditional entropy

. Denote by and the set of possible intensities
in the two images. Denote by and the intensities of
and at the common voxel position. For each voxel with
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value in image , let be the value at voxel in
the corresponding image. Let be the mean and
be the standard deviation of the set . Let

and . The registration criterion
that Woodset al. minimize is then defined as follows:

(20)

(21)

with the marginal distribution function of image intensities
.
It can be shown [8] that for a given mean and standard

deviation

(22)

(23)

(24)

with equality if the conditional distribution of
image intensities given is the normal distribution

.
Using Jensen’s inequality for concave functions [8] we get

(25)

(26)

(27)

with the mean intensity of image.
If is constant and can be assumed to be

normally distributed, minimization of then amounts to
optimizing the conditional entropy . In the approach
of Woods, this assumption is approximately accomplished by
editing away parts in one dataset (namely the skin in MR) for
which otherwise additional modes might occur in ,
while Hill et al. have proposed to take only specifically
selected regions in the joint histogram into account.

APPENDIX C

MI is only one example of the more generalf-
informationmeasures of dependence [22] with

the set of joint probability distributions and
the set of joint probability distributions assuming

and to be independent.

-information is derived from the concept off-divergence,
which is defined as

with and with suitable
definitions when .

Some examples of -divergence are:

• -divergence

• -divergence

with corresponding -informations

• -information

with and and
• -information

Note that is the information-measure coun-
terpart of the th-order moment used by Hillet al. for

. Furthermore,
which is the definition of MI used in this paper.

REFERENCES

[1] J. Astola and I. Virtanen, “Entropy correlation coefficient, a measure
of statistical dependence for categorized data,” inProc. Univ. Vaasa,
Discussion Papers, Finland, 1982, no. 44.

[2] J. A. Baddeley, “An error metric for binary images,” inProc. IEEE
Workshop on Robust Computer Vision, Bonn, 1992, pp. 59–78.

[3] L. G. Brown, “A survey of image registration techniques,”ACM
Computing Surveys, vol. 24, no. 4, pp. 325–376, Dec. 1992.

[4] C-H. Chen,Statistical Pattern Recognition. Rochelle Park, N.J.: Spar-
tan, Hayden, 1973.

[5] J. Y. Chiang and B. J. Sullivan, “Coincident bit counting—A new
criterion for image registration,”IEEE Trans. Med. Imag., vol. 12, no.
1, pp. 30–38, Mar. 1993.

[6] A. Collignon, D. Vandermeulen, P. Suetens, and G. Marchal, “3D multi-
modality medical image registration using feature space clustering,”
in Proc. 1st Int. Conf. Computer Vision, Virtual Reality and Robotics
in Medicine; Lecture Notes in Computer Science 905, N. Ayache, Ed.
New York: Springer-Verlag, Apr. 1995, pp. 195–204.

[7] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G.
Marchal, “Automated multimodality medical image registration using
information theory,” inProc. 14th Int. Conf. Information Processing
in Medical Imaging; Computational Imaging and Vision 3, Y. Bizais,
C. Barillot, and R. Di Paola, Eds. Boston: Kluwer, June 1995, pp.
263–274.

[8] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[9] R. O. Duda and P. E. Hart,Pattern Classification and Scene Analysis.
New York: Wiley, 1973.

[10] J. M. Fitzpatrick, “Evaluation of retrospective image registration,”
Vanderbilt Univ., Nashville, TN, National Institutes of Health, Project
Number 1 R01 NS33926-01, 1994.



198 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 2, APRIL 1997

[11] P. Gerlot-Chiron and Y. Bizais, “Registration of multimodality medical
images using region overlap criterion,”CVGIP: Graphical Models and
Image Processing, vol. 54, no. 5, pp. 396–406, Sept. 1992.

[12] D. L. G. Hill, D. J. Hawkes, N. A. Harrison, and C. F. Ruff, “A
strategy for automated multimodality image registration incorporating
anatomical knowledge and imager characteristics,” inProc. 13th Int.
Conf. Information Processing in Medical Imaging; Lecture Notes in
Computer Science 687, H. H. Barrett and A. F. Gmitro, Eds. New
York: Springer-Verlag, June 1993, pp. 182–196.

[13] D. L. G. Hill, C. Studholme, and D. J. Hawkes, “Voxel similarity
measures for automated image registration,” inProc. Visualization in
Biomedical Computing 1994, SPIE, 1994, vol. 2359, pp. 205–216.

[14] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multi-modality image registration by maximization of mutual infor-
mation,” in Proc. IEEE Workshop Mathematical Methods in Biomedical
Image Analysis, June 1996, pp. 14–22.

[15] J. B. A. Maintz, P. A. van den Elsen, and M. A. Viergever, “Comparison
of feature-based matching of CT and MR brain images,” inProc. 1st
Int. Conf. Computer Vision, Virtual Reality and Robotics in Medicine;
Lecture Notes in Computer Science 905, N. Ayache, Ed. New York:
Springer-Verlag, Apr. 1995, pp. 219–228.

[16] C. R. Maurer and J. M. Fitzpatrick, “A review of medical image
registration,” inInteractive Image-Guided Neurosurgery, R. J. Maciunas,
Ed. Park Ridge, IL: Amer. Association of Neurological Surgeons,
1993, pp. 17–44.

[17] J. Michiels, P. Pelgrims, H. Bosmans, D. Vandermeulen, J. Gybels, G.
Marchal, and P. Suetens, “On the problem of geometric distortion in
magnetic resonance images for stereotactic neurosurgery,”Magn. Reson.
Imag., vol. 12, no. 5, pp. 749–765, 1994.

[18] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C, 2nd ed. Cambridge, U. K.: Cambridge Univ.
Press, 1992, ch. 10, pp. 412–419.

[19] T. Radcliffe, R. Rajapakshe, and S. Shalev, “Pseudocorrelation: A fast,
robust, absolute, grey-level image alignment algorithm,”Med. Phys.,
vol. 21, no. 6, pp. 761–769, June 1994.

[20] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “Multiresolution voxel
similarity measures for MR-PET registration,” inProc. 14th Int. Conf.

Information Processing in Medical Imaging; Computational Imaging and
Vision 3, Y. Bizais, C. Barillot, and R. Di Paola, Eds. Boston: Kluwer,
June 1995, pp. 287–298.

[21] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “Automated 3D
registration of truncated MR and CT images of the head,” inProc.
British Machine Vision Conf., 1995, pp. 27–36.

[22] I. Vajda, Theory of Statistical Inference and Information. Dordrecht,
The Netherlands: Kluwer, 1989.

[23] P. A. van den Elsen, E-J. D. Pol, and M. A. Viergever, “Medical image
matching—A review with classification,”IEEE Eng. Med. Biol., pp.
26–38, Mar. 1993.

[24] P. A. van den Elsen, J. B. A. Maintz, E-J. D. Pol, and M. A. Viergever,
“Automatic registration of CT and MR brain images using correlation
of geometrical features,”IEEE Trans. Med. Imag., vol. 14, no. 2, June
1995.

[25] P. A. van den Elsen, E-J. D. Pol, T. S. Sumanaweera, P. F. Hem-
ler, S. Napel, and J. Adler, “Grey value correlation techniques used
for automatic matching of CT and MR brain and spine images,” in
Proc. Visualization in Biomedical Computing, Oct. 1994, vol. 2359, pp.
227–237.

[26] A. Venot, J. F. Lebruchec, and J. C. Roucayrol, “A new class of
similarity measures for robust image registration,”Comput. Vision,
Graphics, Image Processing, vol. 28, no. 2, pp. 176–184, Nov. 1984.

[27] P. Viola and W. M. Wells, III, “Alignment by maximization of mutual
information,” in Proc. 5th Int. Conf. Computer Vision, June 1995, pp.
16–23.

[28] W. M. Wells, III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis,
“Multi-modal volume registration by maximization of mutual informa-
tion,” Med. Image Anal., vol. 1, no. 1, pp. 35–51, Mar. 1996.

[29] J. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. Maurer, Jr.,
R. M. Kessler, and R. J. Maciunas,et al., “Comparison and evaluation
of retrospective intermodality image registration techniques,” inProc.
Image Processing, Feb. 1996, vol. 2710, pp. 332–347.

[30] R. P. Woods, J. C. Mazziotta, and S. R. Cherry, “MRI-PET registration
with automated algorithm,”J. Comput. Assist. Tomogr., vol. 17, no. 4,
pp. 536–546, July/Aug. 1993.


