IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 2, APRIL 1997 187

Multimodality Image Registration by
Maximization of Mutual Information

Frederik Maes,* Ande”Collignon, Dirk Vandermeulen, Guy Marchal, and Paul Suetelesber, IEEE

Abstract—A new approach to the problem of multimodality obtained from positron emission tomography (PET) images,
medic_al imag_e registration is prpposed,_using a basic concept etc.
from information theory, mutual information (MI), or relative The bulk of registration algorithms in medical imaging (see

entropy, as a new matching criterion. The method presented . o .
in this paper applies Ml to measure the statistical dependence [3]; [16], and [23] for an overview) can be classified as being

or information redundancy between the image intensities of either frame based, point landmark based, surface based, or
corresponding voxels in both images, which is assumed to bevoxel basedStereotactic frame-baseggistration is very ac-
maximal if the images are geometrically aligned. Maximization  cyrate, but inconvenient, and cannot be applied retrospectively,
of Ml is a very general and powerful criterion, because no as with anvexternal point landmark-basechethod. while
assumptions are made regarding the nature of this dependence . y : P '
and no limiting constraints are imposed on the image content anatomical point landmark-baseaethods are usually labor-

of the modalities involved. The accuracy of the MI criterion intensive and their accuracy depends on the accurate indication
is validated for rigid body registration of computed tomog- of corresponding landmarks in all modalitieSurface-based
raphy (CT), magnetic resonance (MR), and photon emission o istration requires delineation of corresponding surfaces

tomography (PET) images by comparison with the stereotactic . h of the i | f .
registration solution, while robustness is evaluated with respect N €ach of the images separately. But surface segmentation

to implementation issues, such as interpolation and optimization, algorithms are generally highly data and application dependent
and image content, including partial overlap and image degra- and surfaces are not easily identified in functional modalities

dation. Our results demonstrate that subvoxel accuracy with g\ ch as PETVoxel-baseqVSB) registration methods optimize

respect to the stereotactic reference solution can be achieved . . ST .
completely automatically and without any prior segmentation, a functional measuring the similarity of all geometrically cor

feature extraction, or other preprocessing steps which makes this responding voxel pairs for some feature. The main advantage

method very well suited for clinical applications. of VSB methods is that feature calculation is straightforward
Index Terms—Matching criterion, multimodality images, mu-  OF €ven absent when only grey-values are used, such that
tual information, registration. the accuracy of these methods is not limited by segmentation

errors as in surface based methods.
For intramodality registrationmultiple VSB methods have
been proposed that optimize some global measure of the
HE geometric alignment or registration of multimodalityabsolute difference between image intensities of corresponding
images is a fundamental task in numerous applicationsyigxels within overlapping parts or in a region of interest (ROI)
three-dimensional (3-D) medical image processing. Medic@], [11], [19], [26]. These criteria all rely on the assumption
diagnosis, for instance, often benefits from the complemetfrat the intensities of the two images are linearly correlated,
tarity of the information in images of different modalitieswhich is generally not satisfied in the caseinfermodality
In radiotherapy planning, dose calculation is based on thgjistration Crosscorrelation of feature images derived from
computed tomography (CT) data, while tumor outlining is ofhe original image data has been applied to CT/MR matching
ten better performed in the corresponding magnetic resonap@hg geometrical features such as edges [15] and ridges [24]
(MR) scan. For brain function analysis, MR images providg, ysing especially designed intensity transformations [25].
anatomical information while functional information may bt feature extraction may introduce new geometrical errors
and requires extra calculation time. Furthermore, correlation of
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propose are largely heuristic. Hill's criterion requires seg- TABLE |
mentation of the images or delineation of specific histogram SOME PROPERTIES OFMUTUAL INFORMATION
regions to make_t_he method quk [20], whlle_ Woods’ cr|t_er|on_ Non-negativity:  I(A, 13) > 0
is based on additional assumptions concerning the relationship Independence:  [(A, B) = 0 & pay(a, b) = pala).pn(b)
between the grey-values in the different modalities, which Sl Sfymmetry: lgA,Bg :1((137)/4)
: : o e : : Self information:  T(A, A) = IT(/

reducgs |.ts applicability to some very specific multimodality Boundedness:  [(A.B) < wmin(7I(A), H(B))
combln.at|ons (PET/MR). < (H(A)+ H(B))/2

In this paper, we propose to use the much more general < max(H(A), (1))
notion of mutual information(MI) or relative entropy [8], 2 Z’Eqsﬁ)n(l?)
[22] to describe the dispersive behavior of the 2-D histogram. pata processing:  1(4,B) > 104, 7(BY)

Ml is a basic concept from information theory, measuring
the statistical dependence between two random variables™or
the amount of information that one variable contains about
the other. The MI registration criterion presented here states
that the MI of the image intensity values of correspondin . .

voxel pairs is maximal if the images are geometrically aIigne%.(B | 4) the cqndltlonal entropy ofi given I and of B
Because no assumptions are made regarding the nature of &N A, respectively

relation between the image intensities in both modalities, this

criterion is very general and powerful and can be applied H(A) = _ZPA(G) logpa(a) (5)

automatically without prior segmentation on a large variety e

of applications. H(A,B) == pap(a,b)logpan(a,b) (6)
This paper expands on the ideas first presented by Collignon ab

et al [7]. Related work in this area includes the work by Viola H(A|B)=— ZPAB(C% b)logpajs(a | b). )

and Wellset al. [27], [28] and by Studholmet al. [21]. The
theoretical concept of Ml is presented in Section Il, while the
implementation of the registration algorithm is described in The entropyH(A) is known to be a measure of the amount
Section III. In Sections 1V, V, and VI we evaluate the accuracyf uncertainty about the random variable while H(A|B)
and the robustness of the MI matching criterion for rigid bod§ the amount of uncertainty left it when knowing B.
CT/MR and PET/MR registration. Section VIl summarizes oyjence, from (3)1(A, B) is the reduction in the uncertainty of
current findings, while Section VIII gives some directions fofhe random variablet by the knowledge of another random
further work. In the Appendexes, we discuss the relationshjriable B, or, equivalently, the amount of information that
of the MI registration criterion to other multlmodallty VSBcontainS aboutd. Some properties of M| are summarized in
criteria. Table | (see [22] for their proof).

Considering the image intensity valuesandb, of a pair
of corresponding voxels in the two images that are to be reg-

) ] . __ istered to be random variablesand B, respectively, estima-
Two random variablesd and B, with marginal probability tions for the joint and marginal distributiops, s (a, ), p.(a),

distributions,p 4 (a) andpg(b), and joint probability distribu- 4 ps(b) can be obtained by simple normalization of the

a,b

Il. THEORY

tion, pap(a,b), are statistically independent ifs5(a,b) = jgint and marginal histograms of the overlapping parts of both
pa(a).pp(b), while they are maximally dependent if they argmages. Intensities: and b are related through the geomet-
related by a one-to-one mapping p.a(e) = pp(T(a)) = yic transformation?,, defined by the registration parameter

pag(a,T(a)). MI, I(A, B), measures the degree of depen; The M registration criterion states that the images are
dence ofA and B by measuring the distance between thgaometrically aligned by the transformatich,- for which
joint dlstrlbutlonpAB(q, b) and the distribution associated t07( 4, B) is maximal. This is illustrated in Fig. 1 for a CT and
the case of complete independencg(a).ps(b), by means of 4, MR image of the brain, showing the 2-D histogram of the

the Kullback-Leibler measure [22], i.e., image intensity values in a nonregistered and in the registered
pas(a,b) position. The high-intensity values in the histogram of the CT
I(A,B) = ZPAB(a,b) log ———"— (1) image originating from the bone of the skull are most likely

a,b pa(@)ps(b) to be mapped on low-intensity values in the histogram of the
MR image if the images are properly aligned, resulting in
a peak in the 2-D histogram. The uncertainty about the MR

voxel intensity is thus largely reduced if the corresponding CT

Ml is related to entropy by the equations

I(4,B) = H(A) + H(B) - H(A, B) (2) voxel is known to be of high intensity. This correspondence is
=H(A)-H(A| B) (3) lostin case of misregistration. However, the Ml criterion does
=H(B)-H(B|A) (4) not make limiting assumptions regarding the relation between

image intensities of corresponding voxels in the different
with H(A) and H(B) being the entropy ofd and B, re- modalities, which is highly data dependent, and no constraints
spectively, H(A, B) their joint entropy, andH(A | B) and are imposed on the image content of the modalities involved.
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Fig. 1. Joint histogram of the overlapping volume of the CT and MR- J
brain images of dataset A in Tables Il and Ill: (a) Initial position: i ]
I(CT,MR) = 0.46, (b) registered positionZ(CT, MR) = 0.89. = >1 {
Misregistration was about 20 mm and®1(see the parameters in Table 1lI). * b j

/

If both marginal distributionsp,(a) and pg(b) can be T~ I {
considered to be independent of the registration parameters ™ = = __& 5 %W T & b s i 6w 5
«, the MI criterion reduces to minimizing the joint entropy @ ®)
HA.B (A’ B) [6] I el.ther pA(a) or .pB(b) IS _mdependent Od, Fig. 2. Spatial correlation of image intensity values increases Ml registration
which is the case if one of the images is always Complete@gustness. Top: (a) original 256256 2-D MR image and (b) image of (a)
contained in the other, the MI criterion reduces to minimizinghuffled by swapping 30 000 randomly selected pixel pairs. Both images have
the conditional entropﬂ(A | B) or H(B | A). However, if the same_im_age_content. I_30ttom: MI registr_’ation traces thained usin_g partial
. . v . . volume distribution (PV) interpolation for in-plane rotation of each image
both images only partially overlap, which is very likely during,yer itself. Local maxima are marked with “*".
optimization, the volume of overlap will change whenis
varied andp4(a) andpg(b) and alsoH(A) and H(B) will . o _
generally depend on. The MI criterion takes this into account® @xis along the row direction, thg axis along the column
explicitly, as becomes clear in (2), which can be interpretétrection, and the: axis along the plane direction.
as follows [27]: “maximizing Ml will tend to find as much ©One of the images is selected to be fraating image, F,
as possible of the complexity that is in the separate datasé®n Which sampless € S are taken and transformed into
(maximizing the first two terms) so that at the same time thdgje referenceimage, R. S can be the set of grid points of
explain each other well (minimizing the last term).” Fora SL_Jb- or superset thereof. Subsampling of the floatm_g
For I(A, B) to be useful as a registration criterion andM2ge might be used to increase speed performance, while
well behaved with respect to optimizatiofi( 4, B) should supersamplmg.ams at increasing accuracy. For each value
vary smoothly as a function of misregistratiom— o*|. This Of the registration parameter only those values ¢ S. C
requiresp+(a), ps(b) andp.45(a, b) to change smoothly when S are retained for whichl,s falls inside the volume of
« is varied, which will be the case if the image intensit)R- ] ]
values are spatially correlated. This is illustrated by the graphd this paper, we have restricted the transformafignto
in Fig. 2, showing the behavior af(A4, B) as a function of r|g|d—_l30(jy transformatlo_ns only, although it is clear th_at the
misregistration between an image and itself rotated around & criterion can be applied to more general transformations as
image center. The trace on the left is obtained from an origindf!l- The rigid-body transformation is a superposition of a 3-
MR image and shows a single sharp optimum with a rather_otatlon_and a 3-D translation and t_he_ registration param_eter
broad attraction basin. The trace on the right is obtained frdfn IS @ Six-component vector consisting of three rotation
the same image after having reduced the spatial correlatior?991€8¢z, ¢y, ¢ (measured in degrees) and three translation
the image intensity by repeatedly swapping pairs of randonfiiStances,, t,,t. (measured in millimeters). Transformation
selected pixels. This curve shows many local maxima af image coordinated’r to P from the imageF to image
the attraction basin of the global maximum is also much iS given by
smaller, which deteriorates the optimization robustness. Thus,
althqugh the formulatpn of t_he MI_ criterion suggests th_at Vi - (Pr — CR) = Ro(ds) - Ry(¢y) - Ra(2)
spatial dependence of image intensity values is not taken into
account, such dependence is in fact essential for the criterion Ve (Pp = Op) +1(tas ty,12) - (8)
to be well behaved around the registration solution.

with V& andVg being 3x 3 diagonal matrixes representing the
. ALGORITHM voxel sizes of image¥ andR, respectively (in millimeters),
. Cr andCpg the image coordinates of the centers of the images,
A. Transformation R =R, R, R. the 3x 3 rotation matrix, with the matrixes
Each of the images is associated an image coordinate frafig R,, and R representing rotations around the y-, and
with its origin positioned in a corner of the image, with the-axis, respectively, and the translation vector.
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N4 na Estimations for the marginal and joint image intensity
distributionspr o(s), Pr,(7), andprr.«(f,r) are obtained
arg min,, d(Tas,n;) = n3 by normalization ofh.(f,r)
NN: Tas r{1as) = r(n3)
ho(f(s),7(Tas)) +=1 holf,7
prra(fr) = % 9)
ni (23} fortra\d o
4 n3 pF,a(f) = ZpFR,oz(fv T) (10)
w2 wi Z r
jwilTas) =1 PRa(r) = PFR,a(f,7)- (11)
TRI: Tas r{Tas) = 21 w; . r(ng) zf:
R ha(f(8)s1(Tas)) += 1
- - The MI registration criterion/(«) is then evaluated by
i ' ' prro(f,r)
I(@) = o(f,7) log, —Efbelln ) 12
w2 un ( ) ; DFR, (f ) 22 pF,a(f) pR,oz(T) ( )
PV: Tos 2 wilTas) =1 ’
Yi:ha ), r(ng)) = w;
A PTG rn) v and the optimal registration parametet is found from
ni 79

o =arg max I(o). (13)
Fig. 3. Graphical illustration of NN, TRI, and PV interpolation in 2-D. NN *
and TR interpolation find the reference image intensity value at posftion
and update the corresponding joint histogram entry, while PV interpolatiqd, Search
distributes the contribution of this sample over multiple histogram entries . o o )
defined by its NN intensities, using the same weights as for TRI interpolation. The images are initially positioned such that their centers

coincide and that the corresponding scan axes of both images
o are aligned and have the same orientation. Powell’'s multidi-
B. Criterion mensional direction set method is then used to maxim{ze,

Let f(s) denote the image intensity in the floating imag#sing Brent's one-dimensional optimization algorithm for the
F at positions and 7(Z,s) the intensity at the transformed!ine minimizations [18]. The direction matrix is initialized with
position in the reference imagR. The joint image intensity Uit vectors in each of the parameter directions. An appropriate
histogramh (f, ) of the overlapping volume of both imagesChO'C9 for the orde_r_ in which _the para_meters are o_pt|_m|;ed
at positiona is computed by binning the image intensity pair€€ds to be specified, as this may influence optimization
(f(s),7(Tas)) for all s € S,. In order to do this efficiently robustness. For instance, when matching images of the brain,

the floating and the reference image intensities are first linealf{f horizontal translation and the rotation around the vertical
rescaled to the rande, ny — 1] and[0, ny — 1], respectively, axis are more constrained by the shape of the head than the

nr X ng being the total number of bins in the joint histogrampimhing rotation around the left-to-right horizontal axis. There-
Typically, we useny = np = 256. fore, first aligning the images in the horizontal plane by first

In general, 7, s will not coincide with a grid point of optimiz!ng_ th? in-plane paramete(t;, ¢, 4.) may facilitate
R and interpolation of the reference image is needed e optimization of t_he_ ou_t-of-plane parametér@,%,tz)._
obtain the image intensity value(T,s). Nearest neighbor OWever, as the optimization proce_eds,_the Powell algorithm
(NN) interpolation ofR is generally insufficient to guaranteemay mtrodu_ce other opt|m|zat!on directions and change the
subvoxel accuracy, as it is insensitive to translations up %der in which these are considered.
one voxel. Other interpolation methods, such tafnear
(TRI) interpolation, may introduce new intensity values whic®. Complexity
are originally not present in the reference image, leading toThe algorithm was implemented on an IBM RS/6000 work-
unpredictable changes in the marginal distribution.(r) of station (AIX 4.1.3, 58 MHz, 185 SPECfp92; source code
the reference image for small variations @f To avoid this s available on request). The computation time required for
problem, we propose to use trilinear partial volume distributiofne evaluation of the MI criterion varies linearly with the
(PV) interpolation to update the joint histogram for each voxelumber of samples taken from the floating image. While TRI
pair (s, T, s). Instead of interpolating new intensity values irand PV interpolation have nearly the same complexity (1.4 s
R, the contribution of the image intensiffy(s) of the sample per million samples), NN interpolation is about three times as
s of F to the joint histogram is distributed over the intensitgfficient (0.5 s per million samples). The number of criterion
values of all eight NN's of/,,s on the grid ofR, using the evaluations performed during optimization typically varies
same weights as for TRI interpolation (Fig. 3). Each enttyetween 200 and 600, depending on the initial position of the
in the joint histogram is then the sum of smoothly varyingmages, on the order in which the parameters are optimized,
fractions of one, such that the histogram changes smoothlyaasl on the convergence parameters specified for the Brent and
« is varied. Powell algorithm.
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TABLE I
DATASETS USED IN THE EXPERIMENTS DISCUSSED INSECTIONS V AND VI

Set  Image Size Voxels (mm) | Range

A MR | 2562x180 | 0.982x1.00 0x4094
CT 2562100 | 0.94%2x1.55 0x4093

B MR 2002 x45 1.25%2x4.00 38x%2940

CT 1922% 39 1.252x4.00 0%x2713 Fig. 4. The bounding box of the central eighth of the floating image defines
— - > - eight points near the brain surface at which the difference between different
C MR 256~ x 24 1.25°x4.00 2x2087 registration transforms is evaluated.

CcT 5122x29 | 0.65%x4.00 0x2960
PET | 1282x15 | 2.592x8.00 0x683
D MR | 2562x30 | 1.33%x4.00 2x3359

takes the MR image as the reference image. Optimization
required 300 to 500 evaluations of the MI criterion, which
was performed on an IBM RS6000/3AT workstation using
PV interpolation in about 20 min for CT to MR matching
of dataset A (40 min for MR to CT matching) and in less than
The performance of the MI registration criterion was evab min for PET to MR matching of dataset C.
uated for rigid-body registration of MR, CT, and PET images The images of dataset A have been registered by van den
of the brain of the same patient. The rigid-body assumptigt)sen [25] using a correlation-based VSB registration method.
is well satisfied inside the skull in 3-D scans of the heagisyal inspection showed this result to be more accurate than
if patient related changes (due to for instance interscanniggn marker-based registration and we use it as a reference to
operations) can be neglected, provided that scanner calibrajigfiqate registration accuracy of the M criterion for datasets
problems and problems of geometric distortions have begnand B. For dataset C, we compare our results with the
minimized by careful calibration and scan parameter selectiQfiereotactic registration solution provided by Fitzpatrick [10].
respectively. Registration accuracy is evaluated in SectionMie difference between the reference and each of the Ml
by comparison with external marker-based registration resulfgyistration solutions was evaluated at eight points near the
and other retrospective registration methods, while the robugzin surface (Fig. 4). The reference solutions and the mean
ness of the method is evaluated in Section VI with respect §q the maximal absolute transformed coordinate differences
implementation issues, such as sampling, interpolation and @psasured at these points are included in Table III.
timization, and image content, including image degradations,The solutions obtained for dataset A and for dataset B using
such as noise, intensity inhomogeneities and distortion, 2erent interpolation schemes or for a different choice of the
partial image overlap. Four different datasets are used in W@ating image are all very similar. For dataset A the largest
experiments described below (Table Il). Dataséto@ntains gifferences with the reference solutions occur for rotation
high-resolution MR and CT images, while dataset B wagound ther axis (0.7), but these are all subvoxel. For dataset
obtaine_d by smoothing and Sl_JbsampIing the images of_datagefhe differences are somewhat larger, especially in ghe
A to simulate lower resolution data. Dataset €ontains girection due to an offset in the translation parameter (0.8
stereotactically acquired MR, CT, and PET images, whiGim). However, these translational differences may have been
have been edited to remove stereotactic markers. Datasegddsed by interpolation and subsampling artifacts introduced
contains an MR image only and is used to illustrate the effeghen creating the images of dataset B.
of various image degradations on the registration criterion. or dataset C, CT to MR registration using TRI interpolation
All images consist of axial slices and in all cases ihexis gid not converge to the reference solution. In this case, CT
is directed horizontally right to left, thg axis is directed ;5 MR registration performs clearly worse than MR to CT
horizontally front to back, and the axis is directed vertically registration, for which all differences are subvoxel, the largest
up, such that the image resolution is lowest in thdirection. being 1.2 mm in they direction for the solution obtained
In all experiments, the joint histogram size is 26856, while using PV interpolation due to a° Ioffset for thez rotation
the fractional precision convergence parameters for the Breframeter. For MR to PET as well as for PET to MR
and Powell optimization algorithm are set tof0and 10,  registration, PV interpolation yields the smallest differences
respectively [18]. with the stereotactic reference solution, especially in the
direction, which are all subvoxel with respect to the voxelsizes
V. ACCURACY of the PET image in case of MR to PET registration. Relatively

The images of datasets A, B, and C were registered using laege differences occur in the direction due to offsets in the
MI registration criterion with different choices of the floatingy translation parameter of about 1 to 2 mm.
image and using different interpolation schemes. In each case
the same optimization strategy was used, starting from all pa- VI. ROBUSTNESS
rameters initially equal to zero and optimizing the parameters
in the order €., ty, ¢, ¢z, ¢y, t-). The results are summarizedA. Interpolation and Optimization

in Table Ill by the parameters of the transformation that The robustness of the MI registration criterion with respect
1Data provided by van den Elsen [25]. to interpolation and optimization was evaluated for dataset A.
2Data provided by Fitzpatrick [10]. The images were registered using either the CT or the MR

IV. EXPERIMENTS
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TABLE I
REFERENCE AND M| REGISTRATION PARAMETERS FORDATASETS A, B, AND C AND THE MEAN
AND MAXIMAL ABSOLUTE DIFFERENCE EVALUATED AT EIGHT POINTS NEAR THE BRAIN SURFACE

Set  F/R Rotation (degrees) Translation (mm) Differcnce (mmn)
x y z X y z x y %
A Reference [25] 9.62 -3.13 201 7.00 1.14 18.15

CT/MR NN | 1023 -3.23 210 6.98 1.00 18.24 0.09 (0.18)  0.40 (0.79) 0.63 (0.81
TRI | 10.24 -3.21 2.08 6.97 1.05 18.22 0.08 (0.16)  0.40 (0.72)  0.63 (0.80)
Pv 11036 -3.17 2.09 6.94 1.15 18.20 0.08 (0.17)  0.48 (0.76)  0.76 (0.89)
MR/CT NN | 10.24 -3.17 2.09 6.95 1.04 18.18 0.08 (0.16) 0.41 (0.74)  0.61 (0-74)
TRI | 10.24 -3.15 2.07 6.92 1.00 18.23 0.08 (0.15)  0.41 (0.76)  0.64 (0.80)
PV | 1039 -3.14 2.09 6.90 1.15 18.18 0.10 (0.18)  0.51 (0.77)  0.79 (0.94)

B Reference [25] 9.62 -3.13  2.01 7.00 1.14 18.15

CT/MR NN | 10.02 342 225 | 663 034  18.28 || 0.40 (0.83) 0.80 (1.45) 0.43 (0.84)
TRI | 10.27 -3.11 2.05 | 6.53  0.54  18.34 || 0.48 (0.54)  0.61 (1.22)  0.67 (0.99)
PV | 1057 -3.17 211 | 660 062 1836 |l 0.40 (0.53) 0.68 (1.47) 0.97 (1.32)
MR/CT NN | 10.17 -3.06 225 | 6.47 030  17.90 || 054 (0.84) 0.84 (1.57) 0.57 (1.03
TRI | 10.03 -3.05 2.22 | 6.44  0.37  18.19 || 0.56 (0.84) 0.77 (1.34)  0.42 (0.64)
PV | 1029 -3.16 208 | 648 033  17.95 || 0.52 (0.61) 0.81 (1.48)  0.69 (0.98)

C  Reference [10] | -0.63  0.05 4.74 | 26.15 -41.08 -12.35

CT/MR NN | 0.87 0.05 481 | 26.70 -40.67 -9.92 || 0.54 (0.70) 0.74 (1.33)  2.13 (4.80)
TRI | 121  -1.94 3.67 | 29.51 -39.78  43.61 - - -
PV | -0.00  0.00  4.95 | 26.57 -40.72  -10.00 || 0.41 (0.77)  0.49 (1.00)  2.35 (3.28)

MR/CT NN | 0.21 0.00 495 | 2656 -41.27 -12.01 || 0.41 (0.76) 0.35 (0.71)  0.62 (0.98)
TRI| -0.51 0.25 5.03 | 26.35 -40.80 -11.84 || 0.42 (0.75)  0.43 (0.79)  0.51 (0.95)
PV | -1.58  0.13 497 | 2648 -41.39 -12.18 || 0.35 (0.73)  0.36 (1.18)  1.38 (1.57)

C  Reference [10] | 152 -1.17 4.22 | 27.62 -2.60  -4.46

PET/MR NN | 070 0.26 5.20 | 27.57 -0.74  -5.08 || 1.40 (2.28) 1.82 (366)  1.97 (3.01)
TRI| 038 001 525 | 27.50  -1.29  -1.37 || 147 (2.31) 162 (3.34)  3.22 (6.46)
PV | 1.63 018 4.98 | 27.65 -0.46  -4.94 || 1.09 (1.83) 214 (3.32)  1.97 (2.46)

MR/PET NN [ 042  0.14  5.04 | 27.93 -1.28  -5.03 || 1.17 (2.16) _1.47 (3.00) 2.00 (1.03)
TRI| 0.16 -0.11 4.90 | 27.99  -1.60  -4.27 || 0.98 (1.90) 1.27 (2.59)  2.05 (3.66)
PV | 146  -0.31 471 | 27.94  -0.85  -4.49 || 0.72 (1.44) 174 (2.49) 1.19 (1.37)

volume as the floating image and using different interpolatidacal maxima, while traces obtained with PV interpolation
methods. For each combination, various optimization stratere almost quadratic around the optimum. Remark that the
gies were tried by changing the order in which the parametdvd values obtained using TRI interpolation are larger than
were optimized, each starting from the same initial positidhose obtained using NN or PV interpolation, which can be
with all parameters set to zero. interpreted according to (2): The TRI averaging and noise
The results are summarized in Fig. 5. These scatter plégsluction of the reference image intensities resulted in a larger
compare each of the solutions found (represented by theggluction of the complexity of the joint histogram than the
registration parameters) with the one for which the MI corresponding reduction in the complexity of the reference
registration measure was maximal (denoteddy for each image histogram itself.
of the interpolation methods separately, using either the CT or
the MR image as the floating image. Different solutions am. Subsampling
classified by the norm of _the regist_ration_ parameter dil‘ference.l.he computational complexity of the MI criterion is pro-
vector|a — | on the honzo_ntal axis (using mm and_degreeﬁortional to the number of samples that is taken from the
for the tr'anslauon.and rotation parameter;, rgspectlvely) afl‘&‘ating image to compute the joint histogram. Subsampling
by the difference in the value of the MI criterion (MI")— 4t the floating image can be applied to increase speed perfor-
MI(c)) on the vertical axis. Although the differences arg,ance, as long as this does not deteriorate the optimization
small for each of the interpolation methods used, MR fgehavior. This was investigated for dataset A by registration
CT registration seems to be somewhat more robust than Gl the subsampled MR image with the original CT image
to MR registration. More importantly, the solutions obtainegsing PV interpolation. Subsampling was performed by taking
using PV interpolation are much more clustered than thoggmples on a regular grid at sample intervalsfoff,, and
obtained using NN or TRI interpolation, indicating that ther, voxels in thez, v, andz direction, respectively, using NN
use of PV interpolation results in a much smoother behavipiterpolation. No averaging or smoothing of the MR image
of the registration criterion. This is also apparent from tracggfore subsampling was applied. We uskd= fy=1,2,3,
in registration space computed around the optimal solution 4, and f. = 1,2,3, or 4. The same optimization strategy
for NN, TRI, and PV interpolation (Fig. 6). These traces loolas used in each case. Registration solutiembtained using
very similar when a large parameter range is considered, bukimbsampling were compared with the solutighfound when
the neighborhood of the registration solution, traces obtainaed subsampling was applied (Fig. 7). For subsampling factors
with NN and TRI interpolation are noisy and show many = f. x f, x f. up to 48 (four in ther andy direction, three
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Fig. 5. Evaluation of the MI registration robustness for dataset A. Horizontal axis: norm of the difference |veeton™*| for different optimization
strategies, using NN, TRI, and PV interpolatier: corresponds to the registration solution with the best value for the registration criterion for each of the
interpolation schemes applied. Vertical axis: difference in the registration criterion between each solution and the optimal one. (a) Usinthdlge CT i
as the floating image. (b) Using the MR image as the floating image.
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Fig. 6. MI traces around the optimal registration position for dataset A: Rotation around thés in the range from-180 to +18C° (a) and from
—0.5 to +0.5° (bottom row), using NN (b), TRI (c), and PV (d) interpolation.

in the z direction) the optimization converged in about 4 mimegistration robustness was evaluated for dataset A for CT
to a solution less than (¢2and 0.2 mm off from the solution to MR registration using PV interpolation. The images were

found without subsampling. initially aligned as in the experiment in Section V and the
same optimization strategy was applied, but only part of the
C. Partial Overlap CT data was considered when computing the MI criterion.

Clinically acquired images typically only partially overlap More specifically, three 50-slice slabs were selected at the
as CT scanning is often confined to a specific region &pttom (the skull basis), the middle, and the top part of the
minimize the radiation dose while MR protocols frequentlglataset. The results are summarized in Table IV and compared
image larger volumes. The influence of partial overlap on theth the solution found using the full dataset by the mean and
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TABLE IV
INFLUENCE OF PARTIAL OVERLAP ON THE REGISTRATION ROBUSTNESS FORCT TO MR REGISTRATION OF DATASET A
ROIT Slices Rotation (degrees) Translation (rnmn) Difference (mm)
X y Z X y z X y 4
Full 0-99 10.36  -3.17 2.09 | 6.94 1.15 18.20

Bottom 0-49 | 10.14 -2.91 2.03 | 6.67 1.30 19.46 |{ 0.28 (0.54) 0.21 (0.46) 1.26 (1.78)
Middle 25-74 | 9.46 -2.53 213 | 6.67 0.71 17.75 || 0.43 (0.79)  0.62 (1.31)  1.01 (2.14)
Top 50-99 | 9.74 -3.05 243 | 6.86 0.82 17.59 || 0.35 (0.52) 0.52 (1.13)  0.69 (1.46)

Subsampled MR fo CT (PV interpolation)
0. x
*

] 5 10 15 0 35 40 45 50

2‘0 25

Subsampling factor (a) (b)
Fig. 7. Effect of subsampling the MR floating image of dataset A on the
registration solution. Horizontal axis: subsampling facfgrindicating that
only one out off voxels was considered when evaluating the MI criterion.
Vertical axis: norm of the difference vectpt — a*|. a* corresponds to the
registration solution obtained when no subsampling is applied.

maximal absolute difference evaluated over the full image 3
the same eight points as in Section V. The largest paramet
differences occur for rotation around thexis and translation
in the z direction, resulting in maximal coordinate differences
up to 1.5 CT voxel in they and z direction, but on average

all differences are subvoxel with respect to the CT voxel ©

sizes. Fig. 8. (a) Slice 15 of the original MR image of dataset D, (b) zero
mean noise added with variance of 500 grey-value units, (c) quadratic
inhomogeneity £ = 0.004), and (d) geometric distortiork(= 0.00075).

(d)

D. Image Degradation

Various MR image degradation effects, such as noise, in-
tensity inhomogeneity, and geometric distortion, alter thaith (z.,y.) being the image coordinates of the point around
intensity distribution of the image which may affect the Mwhich the inhomogeneity is centered akda scale factor.
registration criterion. This was evaluated for the MR image &fig. 9(c) shows Ml traces for different values &f (k¢ =
dataset D by comparing Ml registration traces obtained for thed01, 0.002, 0.004; =, = y. = 100). All traces for all param-
original image and itself with similar traces obtained for theters reach their maximum at the same position and the Ml
original image and its degraded version (Fig. 8). Such tracesiterion is not affected by the presence of the inhomogeneity.
computed for translation in thedirection are shown in Fig. 9.  3) Geometric Distortion: Geometric distortionsAz, Ay,

1) Noise: The original MR data ranges from 2 to 3359 withrand Az were applied to the original MR image according to
mean 160. White zero-mean Gaussian noise with varianceao$lice-by-slice planar quadratic model of the magnetic field
50, 100, and 500 was superimposed onto the original imagghomogeneity [17]

Fig. 9(b) shows that increasing the noise level decreases the

_ RY 2
MI between the two images, but this does not affect the MI Az = k((z —zc)” + (¥ — ¥e)) (16)
criterion, as the position of maximal Ml in traces computed Ay=Az =0 17)
for all six registration parameters is not changed when the Ai(z,y) = |2k(x — z.)| i(x + Az, y + Ay)  (18)

amount of noise is increased. _ . _

2) Intensity InhomogeneityTo simulate the effect of MR With (zc,y.) the image coordinates of the center of each
intensity inhomogeneities on the registration criterion, thEage plane and a scale parameter. Fig. 9(d) shows traces
original MR image intensity/ was altered into/’ using a ©f the registration criterion for various amounts of distortion

slice-by-slice planar quadratic inhomogeneity factor (k = 0.0001,0.0005,0.00075). As expected, the distortion
shifts the optimum of the: translation parameter proportional

log I'(z,y) = log I(z,y) + Alog I(z,y) (14)  to the average distortioAz. No such shift occurred for traces
AlogI(z,y) = =k((z — z)* + (y — y.)?) (15) obtained for all other registration parameters.
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Noise intensity inhamogeneity Geometric distortion
Py -

— k=0.001
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Fig. 9. MI traces using PV interpolation for translation in thelirection of the original MR image of dataset D over its degraded version in the range
from —10 to +10 mm: (a) original, (b) noise, (c) intensity inhomogeneity, and (d) geometric distortion.

VIl. DISCUSSION 256x 256. We have not evaluated the influence of the bin

The MI registration criterion presented in this paper assum@é®: the choice of a RO, or the application of nonlinear
that the statistical dependence between corresponding voR@fge intensity transformations on the behavior of the MI
intensities is maximal if both images are geometrically aligneffgistration criterion. Other schemes can be used to estimate
Because no assumptions are made regarding the naturdhgfimage intensity distributions, for instance by using Parzen
this dependence, the MI criterion is highly data independefindowing [9] on a set of samples taken from the overlapping
and allows for robust and completely automatic registratidifilt Of both images. This approach was used by Veilal
of multimodality images in various applications with min{27], who also use stochastic sampling of the floating image
imal tuning and without any prior segmentation or othdf increase speed performance.
preprocessing steps. The results of Section V demonstrate thdtV interpolation was introduced to make the joint and
subvoxel registration differences with respect to the steregarginal distributions and their Ml vary smoothly for
tactic registration solution can be obtained for CT/MR an®mall changes in the registration parameters. The results
PET/MR matching without using any prior knowledge abof Section VI-A indicate that PV interpolation indeed
the grey-value content of both images and the correspondeiBgroves optimization robustness compared to NN and TRI
between them. Additional experiments on nine other datas#tterpolation. More experiments are needed to compare this
similar to dataset C within the Retrospective Registratictpproach to the Parzen windowing method as used by Viola
Evaluation Project by Fitzpatriclet al. [10] have verified €t al [27] and the multiresolution cubic resampling approach
these results [29], [14]. Moreover, Section VI-C demonstraté$ used by Studholmet al. [20].
the robustness of the method with respect to partial over-The optimization of the MI registration criterion is per-
lap, while it was shown in Section VI-D that large imagdormed using Powell's method. We noticed that for low-
degradations, such as noise and intensity inhomogeneitiggsolution images the initial order in which the parameters
have no significant influence on the MI registration criteare optimized strongly influences optimization robustness.
rion. Generally, we obtained the best results when first optimizing

Estimations of the image intensity distributions were olihe in-plane parametes, ¢, and ¢., before optimizing the
tained by simple normalization of the joint histogram. In albut-of-plane parameterg,, ¢,, andt.. For low-resolution
experiments discussed in this paper, the joint histogram wiagages, the optimization often did not converge to the global
computed from the entire overlapping part of both imagesptimum if a different parameter order was specified, due to
using the original image data and a fixed number of bins tfe occurrence of local optima especially for theotation and
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the z—translation parameters. In the experiments discussedfdn multimodality image registration is not restricted to the
this paper the amount of misregistration that was recoveredginal image intensities only: other derived features such as
was as large as 2and 40 mm, but we have not extensivelyedges or ridges can be used as well. Selection of appropriate
investigated the robustness of the method with respect to features is an area for further research.

initial positioning of the images, for instance by using multiple

randomised starting estimates. The choice of the floating image VIIl. CONCLUSION

may also influence the behavior of the registration criterion.

. ; . The MI registration criterion presented in this paper allows

In the experiment of Section VI-A, MR to CT matching wag . :
’ . r voxel r highly r n mpletel mati

found to be more robust than CT to MR matching. Howevel. subvoxel accurate, highly robust, and completely automatic

L . ; régistration of multimodality medical images. Because the
it is not clear whether this was caused by sampling a 9 y 9

. o . . ethod is largely data independent and requires no user
interpolation issues or by the fact that the MR image is mor gely P g

. ) . @eraction or preprocessing, the method is well suited to be
complex than the CT image and that the spatial correlation Qled in clinical practice.

image intensity values is higher in the CT image than in the Further research is needed to better understand the influence

. of jmplementation issues, such as sampling and interpolation,
We have not tuned the design of the search strategy tow%r the registration criterion. Furthermore, the performance of

specific_ applicati_ons. For instance, the numbe_r of crit_eri_qﬂ registration method on clinical data can be improved by
evaluations required may be decreased by taking the limi ing the optimization method to specific applications, while

image resolution into account when determining convergence,

M h its of Section VI-B d irate that f ernative search strategies, including multiresolution and
loreover, the Tesults of section Vi-b demonstrate that 10f, jient-based methods, have to be investigated. Finally, other
high-resolution images subsampling of the floating ima

: . o L gistration criteria can be derived from the one presented here,
can be applied without deteriorating optl_mlzanon ro_bustnes& ing alternative information measures applied on different
Important speed-ups can, thus, be realized by using a atures.
tiresolution optimization strategy, starting with a coarsely
sampled image for efficiency and increasing the resolution as
the optimization proceeds for accuracy [20]. Furthermore, the
smooth behavior of the MI criterion, especially when using We show the relationship between the multimodality reg-
PV interpolation, may be exploited by using gradient-baségfration criterion devised by Hilet al [12] and the joint
optimization methods, as explicit formulas for the derivativegntropy H(a, b). Hill et al. used thenth-order moment of the
of the MI function with respect to the registration parametegsatter-ploth as a measure of dispersion

APPENDIX A

can be obtained [27]. h(a,b)\"
All the experiments discussed in this paper were for rigid- I, = Z <T’> (19)
body registration of CT, MR, and PET images of the brain ab

of the same patient. However, it is clear that the Ml criterio%i,[h h(a,b) the histogram entries antt = 3", h(a,b)
can equally well be applied to other applications, using Mofg. common volume of overlap. Approximatiﬁé the joint

general geometric transformations. We have used the samg, - it distributionn(a. b) b b = hia. b)/V. we get
method successfully for patient-to-patient matching of Maélp y p(a,b) by pla,b) = ha,L)/V, we g

brain images for correlation of functional MR data and for T, = Zp(a,b)".
the registration of CT images of a hardware phantom to its ab

geometrical description to assess the accuracy of spiral ﬁTturns out thatT, is one-to-one related to the jointéRyi

imaging [14].

MI measures statistical dependence by comparing the co%"rn]—tmpyH" of ordern [22]
plexity of the joint distribution with that of the marginals. Both H. — log(T},)
marginal distributions are taken into account explicitly, which " l-n "

is an important difference with the measures proposed by Hiith the following properties.
et al. [13] (third-order moment of the joint histogram) and 1) lim H
. .. . . n—1 4in
Collignon et al. [6] (entropy of the joint histogram), which entropy.
focus on the joint histogram only. In Appendexes A and B we 2) s > n1 — Ho,(p) < H (p).
discuss the relationship of these criteria and of the measmil_\' " -
of Woodset al. [30] (variance of intensity ratios) to the Mi
criterion. .
Ml is only one of a family of measures of statistican the joint entropyH (a, b).
dependence or information redundancy (see Appendix C).
We have experimented with(A, B) = H(A, B) — I(A, B), APPENDIX B
which can be shown to be a metric [8], aBti’C(A, B) = We show how the multimodality registration criterion de-
2I(A,B)/(H(A)+ H(B)), theentropy correlation coefficient vised by Woodset al. [30] relates to the conditional entropy
[1]. In some cases these measures performed better tiiafu | ). Denote byA and B the set of possible intensities
the original MI criterion, but we could not establish a cleain the two images. Denote by; and b; the intensities of4
preference for either of these. Furthermore, the use of MhdB at the common voxel positioh For each voxet with

(p) = —>_, pilogp;, which is the Shannon

e . . L
ence, the normalized second- or third-order moment criteria
defined by Hillet al. are equivalent to a generalized version
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valueb; = b in image B, let a;(b) be the value at voxel in
the corresponding imagé. Let 1, (b) be the mean and,(b)
be the standard deviation of the de#;(b) | Vi : b, = b}. Let
ny = #{i | by = b} andN = }~, ny. The registration criterion
that Woodset al. minimize is then defined as follows:

(21)

with p, the marginal distribution function of image intensities
B.

It can be shown [8] that for a given meag(b) and standard
deviation o, (b)

H(A|B) =

Zp
__ Z (b
< 3 p0) log(oa(d)) +

b

H(A|B=b) (22)

Zpalb logp(a | ) (23)

% log(2me)  (24)

with equality if the conditional distributiorp(a | b) of
image intensitiesA given B is the normal distribution

N(pta(b), 0a(b))-
Using Jensen’s inequality for concave functions [8] we get

o ca(b)
Ha B < Y p0es 72 )
+ > p(b)log(ia (b))
b

oo (b
< log <§b: p(b) ol

(b)
)

+log <Z p(b)ua(b)>

b

[
(26)

[2]
= log(0”) + log(p(a)) (3]

with i(a) = 37, p(b)pa(b) the mean intensity of imagd. 4]

If p(a) is constant andb(a | b) can be assumed to be g
normally distributed, minimization ot” then amounts to
optimizing the conditional entropf (A | B). In the approach (6]
of Woods, this assumption is approximately accomplished by
editing away parts in one dataset (namely the skin in MR) for
which otherwise additional modes might occur jita | b),
while Hill et al have proposed to take only specifically [7]
selected regions in the joint histogram into account.

(27)

APPENDIX C
(8]

El
(10]

Ml I(A,B) is only one example of the more genefal
informationmeasures of dependeng€P|| P, x P>) [22] with
P the set of joint probability distribution®( A, B) and Py x P,
the set of joint probability distribution®(A)- P(B) assuming
A and B to be independent.

with P = {p17p27..
(20) definitions wheng; = 0.
Some examples of-divergence are:
e [,-divergence

197

f-information is derived from the concept éflivergence
which is defined as

fPIQ) = Zqz

} andQ = {q17QQ7"

fpi/a)

-} with suitable

« y2Z-divergence

X2 _ Z (pi _‘Qi)Q

i 2

with correspondingf-informations

e [,-information

(e
bi;

-1
pi.p.j )2t

(PP x P = s 57

with p;; = P(i,j) andp;. = 3, pi; andp.; = >, pi;

+ x2-information

o pep)?
XQ(PHPI « PQ) _ Z (pzj p‘I; pJ)
i D

(]

Note thatl,,(P|| P, x P) is the information-measure coun-

terpart of thenth-order moment used by Hibt al. for n =
(25) « =2,3. Furthermore[,(P|| P, x ) =
which is the definition of MI used in this paper.

i Pig

log(3.57)
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