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Chapter 10 - RANDOM VARIABLES AND PROBABILITY

DENSITY FUNCTIONS

c©Bertrand Delgutte 1999,2000

Introduction

In this chapter we introduce probability density functions for single random variables, and extend
them to multiple, jointly-distributed variables. Particular emphasis is placed on conditional
probabilities and density functions, which play a key role in Bayesian detection theory.

10.1 Random variables and probability density functions

10.1.1 Random variables, events and probability

A random variable is a number assigned to every outcome of an experiment. For example, the
result 1 ≤ n ≤ 6 of rolling a die once, or a temperature measurement x from a patient are
random variables. If the experiment is repeated, the random variable may take a different value
on each trial. A random variable can take either discrete values (within the set of integers)
as in the die example, or continuous values (any real number) as in the temperature example.
In many cases, one is interested in whether a random variable lies within a particular range of
values, for example, that the result of rolling a die is a 3, or that it is between 2 and 5. Such sets
of values of random variables are called events. When an experiment is repeated, the probability
of an event is defined as the limit of the frequency of occurrence of that event when the number
of trials becomes large:

Pr(ε) �= lim
Nt→∞

Nε

Nt
, (10.1)

where Nε is the the number of trials in which the event occurs, and Nt is the total number of
trials. It is clear from this definition that the probability of an event must always be between 0
and 1:

0 ≤ Pr(ε) ≤ 1 (10.2)

Two events are said to be disjoint if the sets of values of the random variable that they represent
are nonoverlapping. For example, in the die experiment, the events n = 2 and n > 3 are disjoint.
If ε1 and ε2 are two disjoint events, then the probability of their union is:

Pr(ε1 ∪ ε2) = Pr(ε1) + Pr(ε2) if ε1 ∩ ε2 = ∅ (10.3)

If ε1, ε2, . . . εN are disjoint events and their union is the certain event (the set of all possible



values of a random variable), then their probabilities sum to 1:

N∑
i=1

Pr(εi) = 1 (10.4)

For example, in the die experiment, the events n = 1, n = 2, . . . , n = 6 are disjoint and represent
all possible values of n, so their probabilities sum to 1. In the simplest case of a fair die, all 6
probabilities are equal to 1/6.

10.1.2 Probability density function

Given a continuous random variable x, the probability of any event can be derived from the
probability density function (pdf). The pdf evaluated atX is a limit of the normalized probability
that x lies in the small interval [X, X +∆X]:

fx(X)
�= lim

∆X→0

1
∆X

Pr(X ≤ x ≤ X +∆) (10.5)

In this expression, the lower-case x denotes the random variable, while the upper-case X refers
to a particular value of this variable. The probability of an arbitrary event ε defined by a random
variable x is obtained by integrating the pdf over the set of values of x defining the event:

Pr(ε) =
∫

ε
fx(X)dX (10.6)

For example, the probability that x is between two numbers X1 and X2 is:

Pr(X1 ≤ x ≤ X2) =
∫ X2

X1

fx(X)dX (10.7)

Specializing (10.7) to X1 = X and X2 = X + ∆X, and taking the limit when ∆X becomes
small gives the definition of the pdf (10.5), as expected.

For continuous-valued random variables, the pdf is usually (but not always) a continuous function
of X. However, for a discrete-valued random variable n, the pdf is a weighted sum of impulses
located at integer values of X:

fn(X) =
∞∑

i=−∞
Pi δ(X − i), with Pi

�
= Pr(n = i) (10.8a)

In that case, the integral in (10.7) can be replaced by a sum:

Pr(N1 ≤ n ≤ N2) =
N2∑

i=N1

Pi (10.8b)

For both discrete and continuous-valued random variables, the pdf must have the following
properties:

fx(X) ≥ 0 for all X (10.9a)∫ ∞

−∞
fx(X)dX = 1 (10.9b)

Examples of pdfs are given in Chapter 11. Two important ones are:
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1. The Gaussian pdf, which is continuous-valued:

fx(X) =
1√
2πσ

exp

(
− (X − µ)2

2σ2

)
(10.10)

2. The Bernoulli pdf, which is discrete-valued:

Pr(n = i) =
{

p
1− p

if i = 1
if i = 0

(10.11a)

The random variable n can only take the two values 0 or 1. The Bernoulli pdf
can be conveniently rewritten as:

fn(X) = pX (1− p)(1−X), with X = 0 or 1. (10.11b)

10.1.3 Expected value

The expected value, or mean of a random variable is defined by the integral:

E(x) = µx
�
=
∫ ∞

−∞
X fx(X) dX (10.12)

It can be shown that, if an experiment is repeated many times, and the value Xi of the random
variable x is measured on each trial i, then the mean is the limit of the average value of the Xi

when the number of trials becomes large:

E(x) = lim
N→∞

1
N

N∑
i=1

Xi (10.13)

This is a direct consequence of the definition of probability (10.1).

The pdf can be used to obtain the means of arbitrary functions of random variables:

E (g(x)) =
∫ ∞

−∞
g(X) fx(X) dX (10.14)

In particular, the variance of a random variable is defined by:

σ2
x

�
= E

(
(x− µx)2

)
=

∫ ∞

−∞
(x− µx)2 fx(X) dX = E(x2) − µ2

x (10.15)

As the notation indicates, the mean of a Gaussian random variable (10.10) is µ and its variance
σ2. The mean of a Bernoulli variable (10.10) if p and its variance p (1− p).

10.2 Multiple random variables and joint probability density
functions

Often, the outcome of an experiment is not a single random variable, but two or more random
variables. For example, one can simultaneously roll two dice, or measure both the temperature
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and the heart rate of a patient. Here, we only consider the case of two random variables x and
y; generalization to an arbitrary number of variables is trivial except for cumbersome notation.

Together, two random variables define joint events representing the outcome that x and y occupy
a specific region R(X,Y ) of the X − Y plane. For example, a simple event is defined by the
rectangular region:

ε
�
= [X1 ≤ x ≤ X2 and Y1 ≤ y ≤ X2] (10.16)

In general, it is not possible to derive the probabilities of joint events on x and y from the
first-order pdfs fx(X) and fy(Y ) because the two variables may not be independent. Instead,
we need to know the joint probability density function fxy(X,Y ). The joint pdf evaluated at
(X,Y ) is the limit of the normalized probability that x and y lie in a small rectangle of area
∆X∆Y located at the coordinates (X,Y ):

fxy(X,Y )
�
= lim

∆X→0,∆Y →0

1
∆X∆Y

Pr(X ≤ x ≤ X +∆X and Y ≤ y ≤ Y +∆Y ) (10.17)

As the pdf for a single random variable, the joint pdf is non negative

fxy(X) ≥ 0 for all X, Y (10.18a)

and integrates to unity ∫ ∞

−∞

∫ ∞

−∞
fxy(X) dX dY = 1 (10.18b)

Moreover, the first-order or “marginal” p.d.f’s for x and y can are generated from the joint pdf
by integrating over the other variable:

fx(X) =
∫ ∞

−∞
fxy(X, Y ) dY (10.19a)

fy(Y ) =
∫ ∞

−∞
fxy(X, Y ) dX (10.19b)

More generally, the probability that x and y lie in an arbitrary region R of the X − Y plane is
obtained by integrating the joint pdf over that region:

Pr([x, y] ∈ R) =
∫ ∫

R
fxy(X,Y ) dX dY (10.20)

For example,

Pr(X1 ≤ x ≤ X2 and Y1 ≤ y ≤ X2) =
∫ X2

X1

∫ Y2

Y1

fxy(X,Y ) dX dY (10.21)

10.2.1 Mean of a function of two random variables

The joint pdf is used for computing expressions of the form E (g(x, y)), where g(X, Y ) is an
arbitrary function of two variables:

E (g(x, y)) =
∫ ∞

−∞

∫ ∞

−∞
g(X,Y ) fxy(X,Y ) dX dY (10.22)
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For example, the correlation rxy between two random variables is the expected value of their
product. It can be obtained by specializing (10.22) to the function g(X, Y ) = XY :

rxy
�= E(xy) =

∫ ∞

−∞

∫ ∞

−∞
XY fxy(X, Y ) dX dY (10.23)

Similarly, the covariance cxy is the correlation of the variables with the means subtracted out:

cxy
�
= E ((x− µx) (y − µy)) = rxy − µxµy (10.24)

Two random variables are said to be uncorrelated if their correlation is the product of their
means, i.e. if

E(xy) = E(x)E(y) (10.25)

An equivalent statement is that the covariance cxy is zero.

10.3 Conditional probability density functions

10.3.1 Conditional probability and statistical independence

The conditional probability of an event εA given another event εB is defined as the ratio of the
joint probability of the two events to the probability of εB :

Pr(εA|εB)
�=

Pr(εA and εB)
Pr(εB)

(10.26)

For example, assume we have an unbiased die in which the probabilities of all 6 faces showing
are equal Pr(n = i) = 1/6, 1 ≤ i ≤ 6. We will evaluate the conditional probability that
n = 5 given that n > 3. ¿From the definition (10.26), this is

Pr(n = 5|n > 3) =
Pr(n = 5 and n > 3)

Pr(n > 3)
=

Pr(n = 5)
Pr(n > 3)

=
1/6
1/2

= 1/3 (10.27)

Thus, in the absence of any knowledge about the value of n, the probability Pr(n = 5) is 1/6.
If, however, we are told that n > 3, then Pr(n = 5) increases to 1/3.

Two events εA and εB are said to be statistically independent if the conditional probability of
one event given the other one is equal to its unconditioned probability:

Pr(εA|εB) = Pr(εA) (10.28a)

This definition means that knowledge that εB has occurred does not alter the probability of εA.
This corresponds well with the intuitive notion of independent events.

¿From the definition of the conditional probability (10.26), an alternative statement of statistical
independence is that the joint probability of the two events is the product of the probabilities
of the two separate events:

Pr(εA and εB) = Pr(εA) Pr(εB) (10.28b)
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In the above die example, the two events n = 5 and n > 3 were obviously not independent.
However, if we roll two dice and measure the numbers n and m showing on each die, then it
makes sense that the two events n = 5 and m = 3 are independent. In fact, any pairs of events
defined on n and m respectively are independent:

Pr(n = i and m = j) = Pr(n = i) Pr(n = j) for all i, j (10.29)

The two random variables n and m are said to be independent.

10.3.2 Conditional density function

The notion of conditional probability is easily extended to probability density functions. Specif-
ically, given two random variables x and y, the conditional pdf fx|y(X|Y ) is defined as a limit:

fx|y(X|Y ) �= lim
∆X→0,∆Y →0

1
∆X

Pr(X ≤ x ≤ X +∆X and Y ≤ y ≤ Y +∆Y )
Pr(Y ≤ y ≤ Y +∆Y )

(10.30)

Applying the definitions of fxy(X,Y ) and fy(Y ), this becomes:

fx|y(X|Y ) =
fxy(X,Y )
fy(Y )

(10.31)

Because the denominator fy(Y ) can be obtained by integrating the joint pdf fxy(X,Y ) over X,
the conditional pdf is entirely specified by the joint pdf. In other words, a conditional pdf gives
no additional information over the joint pdf. In many cases, however, it is much easier to work
with conditional pdf’s rather than joint pdf’s, which can be hard to specify.

The conditional pdf of x given Y behaves in every respect like an ordinary pdf. It is nonnegative:

fx|y(X|Y ) ≥ 0 for all X, Y (10.32a)

It integrates to unity:

∫ ∞

−∞
fx|y(X|Y ) dX =

∫∞
−∞ fxy(X,Y ) dX

fy(Y )
=

fy(Y )
fy(Y )

= 1 (10.32b)

It generates the conditional probabilities of all events defined by the random variable x given
that y = Y . For example:

Pr(X1 ≤ x ≤ X2 | y = Y ) =
∫ X2

X1

fx|y(X|Y ) dX (10.32c)

Moreover, the unconditioned pdf fx(X) can be obtained from the conditional pdf and the
marginal pdf for the conditioning variable y:

fx(X) =
∫ ∞

−∞
fxy(X,Y ) dY =

∫ ∞

−∞
fx|y(X|Y ) fy(Y ) dY (10.33)
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10.3.3 Independent random variables

Two random variables x and y are said to be statistically independent if every event defined by
x is independent of every event defined by y. It is easily shown that this will be the case if and
only if:

fxy(X,Y ) = fx(X) fy(Y ) for all X, Y (10.34a)

This independence condition can also be stated in terms of the conditional pdf:

fx|y(X|Y ) = fx(X) for all X, Y (10.34b)

Again, this fits with the intuitive notion of independence that knowing the value of y gives no
information about the value of x.

If two random variables are independent, they are also uncorrelated:

E(xy) =
∫ ∞

−∞

∫ ∞

−∞
XY fxy(X,Y ) dX dY

=
(∫ ∞

−∞
X fx(X) dX

) (∫ ∞

−∞
Y fx(Y ) dY

)
= E(x) E(y)

(10.35)

However, the converse is not true: Statistical independence is a much stronger condition on
random variables than being uncorrelated. As a counter example, if x has a symmetric pdf with
respect to x = 0, then x and x2 are uncorrelated random variables, but they are obviously not
independent. We will see however that, if x and y are uncorrelated Gaussian random variables,
then they are also independent.

10.3.4 Bayes’ rule

Consider two jointly-distributed random variables x and y. ¿From the definition of the condi-
tional pdf (10.31), we have:

fxy(X,Y ) = fx|y(X|Y ) fy(Y ) (10.36a)

By exchanging the roles of x and y, we can also write:

fxy(X,Y ) = fy|x(Y |X) fx(X) (10.36b)

Since the two expressions are equal, we get:

fy|x(Y |X) =
fy(Y ) fx|y(X|Y )

fx(X)
(10.37a)

Further making use of (10.33), we can express fy|x(Y |X) in terms of fx|y(X|Y ) and fy(Y ):

fy|x(Y |X) =
fy(Y ) fx|y(X|Y )∫∞

−∞ fy(Y ) fx|y(X|Y ) dY (10.37b)

Either form of (10.37) is known as Bayes’ rule.
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While, at first sight it might seem somewhat arbitrary, Bayes’ rule is of fundamental importance
in statistical applications such as pattern classification, hypothesis testing, signal detection and
estimation. Specifically, assume that the values of the random variable y represent different
states of nature, while x is the result of a measurement intended to inform us about the state of
nature. Prior to any measurement, we may have some information about which states of nature
are the most likely. This information is represented by the a priori density fy(Y ). We also have
a probabilistic model relating the states of nature Y to our measurement x. This measurement
model is represented by the conditional pdf fx|y(X|Y ). After making a measurement, and finding
that x = X, our knowledge of the state of nature is (hopefully) improved. This knowledge is
represented by the a posteriori density fy|x(Y |X). For example, we might want to pick the
value of Y that maximizes the a posteriori probability to estimate the state of nature given
the observation that x = X. Bayes’ rule allows us to compute the a posteriori probability in
terms of the two known distributions fy(Y ) and fx|y(X|Y ). This is useful because a posteriori
probabilities are often exceedingly difficult to directly estimate.

10.3.5 Probability density function for the sum of two random variables

To further illustrate the usefulness of conditional pdf’s we will derive the pdf for the sum s of
two random variables x and y. We temporarily assume that y takes a particular value Y . The
conditional pdf for s given y = Y can expressed as a function of the conditional pdf for x:

fs|y(S|Y ) = fx|y(S − Y |Y ) (10.38)

This just states that, if x + y = S, and y = Y , then x must be equal to S−Y . Using (10.33),
the unconditioned pdf fs(S) can then be obtained by summing the conditional pdf over all Y :

fs(S) =
∫ ∞

−∞
fs|y(S|Y ) fy(Y ) dY =

∫ ∞

−∞
fx|y(S−Y |Y ) fy(Y ) dY =

∫ ∞

−∞
fxy(S−Y, Y ) dY

(10.39)
This is the desired result in the general case.

In the special case when x and y are statistically independent, the pdf of s takes on a particularly
simple form. Specifically, if x and y are independent, then

fx|y(X|Y ) = fx(X), (10.40)

so that

fs(S) =
∫ ∞

−∞
fx|y(S−Y |Y ) fy(Y ) dY =

∫ ∞

−∞
fx(S−Y ) fy(Y ) dY = fx(S) ∗ fy(S) (10.41)

Thus, the pdf for the sum of two statistically independent random variables is the convolution
of the pdf’s of the two random variables.

This result is the basis for the central limit theorem, which states that the pdf for the sum of a
large number of independent random variables approaches a Gaussian pdf. This theorem follows
from the fact that the convolution of many functions approaches a Gaussian regardless of the
shapes of the convolved functions.
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10.3.6 Conditional mean and variance

We have seen that the conditional pdf fx|y(X|Y ) behaves in every respect like an ordinary pdf.
Therefore, using is (10.12), it can be used to obtain the mean of x given that y = Y :

µx|y(Y )
�=
∫ ∞

−∞
X fx|y(X|Y ) dX (10.42)

Thus quantity is known as the conditional mean. As the notation indicates, it depends on
the value Y of the conditioning variable y. The conditional mean plays an important role in
nonlinear least-squares estimation.

More generally, given an arbitrary function g(X), the conditional mean of g(x) given y = Y can
also be derived from the conditional pdf:

E (g(x)|y = Y ) =
∫ ∞

−∞
g(X) fx|y(X|Y ) dX (10.43)

For example, the conditional variance is obtained by specializing (10.43) to g(x) = (x−µx|y)2:

σ2
x|y(Y ) =

∫ ∞

−∞

(
X − µx|y(Y )

)2
fx|y(X|Y ) dX (10.44)

Because the conditional mean µx|y depends on the value Y of the random variable y, it is a
random variable, specifically one that is solely a function of y. Therefore, its expected value can
be obtained as a special case of (10.14):

E(µx|y) =
∫ ∞

−∞
µx|y(Y ) fy(Y ) dY (10.45a)

Inserting the definition (10.43) of the conditional mean, we get:

E(µx|y) =
∫ ∞

−∞

∫ ∞

−∞
X fx|y(X|Y ) fy(Y ) dX dY (10.45b)

Further making use of the definition of the conditional pdf (10.31), this becomes:

E(µx|y) =
∫ ∞

−∞

∫ ∞

−∞
X fxy(X,Y ) dX dY =

∫ ∞

−∞
X fx(X) dX = µx (10.46)

Thus, the mean of the conditional mean µx|y over all values of the conditioning variable y is the
unconditioned mean µx.

10.4 Gaussian random variables

10.4.1 Joint pdf of a Gaussian random vector

Given a large number of random variables, it is rarely possible to specify their joint pdf, except
in the trivial case of independent variables. An important exception is that of Gaussian random
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variables which are entirely specified from their means and covariances. Specifically, let

x
�=




x1

x2
...

xN


 (10.47)

be an N -dimensional vector of random variables, a.k.a. a random vector. This random vector
is said to be Gaussian if its joint pdf is of the form:

fx(X)
�=
(
(2π)N |C|

)− 1
2 exp

(
−1
2
(X − M)T C−1 (X − M)

)
, (10.48a)

where X and M are N -dimensional column vectors defined by

X
�=



X1

X2
...

XN


 and M

�= E(x) =



µx1

µx2

...
µxN


 , (10.48b)

and
C

�= E
(
(x − M) (x − M)T

)
(10.48c)

is the covariance matrix. C is an N ×N symmetric, positive-definite matrix whose elements cij
are the covariances of the vector elements:

cij
�
= = E

(
(xi − µxi) (xj − µxj)

)
= cji, 1 ≤ i, j ≤ N (10.48d)

|C| denotes the determinant of C, and C−1 its inverse.

10.4.2 Uncorrelated Gaussian variables

In the special case when the random variables xi are uncorrelated, the expression for the joint
pdf is greatly simplified because the covariance matrix is diagonal:

cij = σ2
xi

δij , 1 ≤ i, j ≤ N (10.49)

The inverse covariance matrix C−1 is also diagonal, and the determinant |C| is the product of
the variances. Thus, the joint pdf can be factored out into:

fx(X) =
N∏

i=1

1√
2πσxi

exp

(
− (Xi − µxi)

2

2σ2
xi

)
(10.50)

This is the product of the N first-order Gaussian pdf’s for each of the component variables xi:

fx(X) =
N∏

i=1

fxi(Xi) (10.51)

This shows that the N random variables xi are independent. Thus, we have shown that uncor-
related Gaussian random variables are independent. Key to this result is that the joint pdf of a
Gaussian vector depends only on the mean vector and covariance matrix.
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10.4.3 Joint pdf for N = 2

Most properties of the joint pdf of Gaussian random vector can be understood from the two-
dimensional case (N = 2). Specifically, let x and y be two jointly Gaussian random variables.
Their covariance matrix can be written as:

C =
[

σ2
x

ρσxσy

ρσxσy

σ2
y

]
, (10.52a)

where ρ
�
= cxy/σxσy is the correlation coefficient, which is always between -1 and 1 (Cauchy-

Schwarz inequality). The determinant |C| is σ2
xσ

2
y (1− ρ2), and the inverse matrix is

C−1 =
1

1 − ρ2

[ 1
σ2

x−ρ
σxσy

−ρ
σxσy

1
σ2

y

]
(10.52b)

Inserting these values into (10.48a), we obtain

fxy(X,Y ) =
1

2πσxσy

√
1− ρ2

exp

(
− 1
2 (1− ρ2)

[
(X − µx)2

σ2
x

− 2ρ
(X − µx)(Y − µy)

σxσy
+

(Y − µy)2

σ2
y

])

(10.53)

Figure 10.1 shows second-order Gaussian pdf’s for four different values of ρ. For ρ = 0, iso-
probability contours are ellipses centered at [µx, µy], with principal axes parallel to the coordi-
nates. If, in addition, σx = σy, then the ellipses become circles. As ρ increases from 0 to 1,
the iso-probability contours become increasingly elongated ellipses along the line defined by the
equation (X − µx)/σx = (Y − µy)/σy.

It is easily shown that the conditional pdf for x given y = Y is also Gaussian with mean

µx|y(Y ) = µx + ρ σx
Y − µy

σy
(10.54a)

and variance
σ2

x|y = (1− ρ)2 σ2
x (10.54b)

Thus, the conditional pdf can be expressed as

fx|y(X) =
1√

2π(1 − ρ)2σx
exp

(
− [X − µx − ρσx(Y − µy)/σy ]2

2 (1− ρ)2 σ2
x

)
(10.54c)

Note that, the larger |ρ|, the smaller the conditioned variance σ2
x|y, so that x becomes increasingly

concentrated near its conditional mean µx|y(Y ). This makes sense because, if x and y are highly
correlated, and we know that y = Y , then X can only take a narrow range of values defined by
Y .
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10.4.4 Properties of Gaussian random vectors

In Chapter 11, we will discuss the importance of Gaussian random variables as models for many
physical and biological processes. In addition, Gaussian variables play a fundamental role in
probability theory because their properties make them particularly simple to analyze:

1. The result of an arbitrary linear operation on a Gaussian vector is a Gaussian random
variable. In fact, this property can be used to define Gaussian vectors.

2. Higher-order moments of Gaussian random variables can be computed from the mean and
covariance matrix by means of the moment factorization theorem. This theorem states
that, if x1, x2, x3 and x4 are jointly Gaussian random variables, then the mean of their
product is formed from the following formula:

E(x1x2x3x4) = E(x1x2)E(x3x4) + E(x1x3)E(x2x4) + E(x1x4)E(x2x3)
− 2E(x1)E(x2)E(x3)E(x4)

(10.55)

Thus, for example:
E(x4) = 3 E(x2)2 − 2 µ4

x (10.56a)

E(x2 y2) = E(x2) E(y2) + 2 E(xy)2 − 2 µ2
x µ2

y (10.56b)
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Figure 10.1: 2D Joint Gaussian PDF - mx = my = 4, sx = 1, sy = 1.6
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