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ABSTRACT

We describe Wireless Network Utility Maximization,
WNUM, and compare its performance to traditional NUM
along the dimensions of rate, delay and reliability under flat
fading. Both coded and uncoded links are considered as
are networks with interfering links. In each case, WNUM
is shown to offer superior performance in simulations op-
erating under Rayleigh fading due to its ability to adapt to
changing channel conditions. A general method for find-
ing adaptive optimal policies is presented that is sample-
based and that makes no assumptions about the distribution
of channel states.

INTRODUCTION

The network centric battlefield interconnects many different
tactical elements with different data rate requirements, pri-
orities, bandwidth allocations, and radio capabilities. Man-
aging and controlling mobile ad-hoc networks (MANET’s)
with such diverse elements presents many new technical
challenges, resulting in much research on optimizing the
performance of these networks. In particular, much recent
research has investigated the application of Network Utility
Maximization (NUM) [1, 2] to optimize MANETs. While
NUM has been shown to be a powerful optimization tool in
complex wired networks, recent results have shown NUM
performance to be disappointing when applied to MANETs.

We conjecture that this disappointing performance results
from several fundamental limitations of the existing NUM
framework in the dynamic lossy environments inherent to
MANETs. In particular, NUM does not capture the effects
of lossy randomly-varying RF channels nor does it include
explicit reliability mechanisms to address this fundamental
wireless issue. In addition, NUM does not readily capture
(physical) time dynamics such as changes in the RF envi-
ronment or traffic on the network. This is particularly acute

1This work was supported in part from the DARPA ITMANET pro-
gram under grant 1105741-1-TFIND and the DARPA WNUM Grant
N660010812066

in tactical environments where interference and mobility are
important or where short-lived time critical traffic shares the
network with long lived elastic flows. To address these lim-
itations, we extend NUM to dynamic wireless environments
by explicitly incorporating assumptions about the physical
channel such as time varying fading, noise, node mobility,
and link reliability and traffic characterization. We term this
framework Wireless NUM (WNUM.)

In this paper we specialize Wireless NUM to networks
with random channel variations and network time dynam-
ics. WNUM yields adaptive policies that optimally manage
the network. Our results show that WNUM offers signifi-
cant performance improvements for MANETs over that ob-
tained with traditional NUM techniques. We characterize
performance by comparing the inherent trade-offs between
throughput, delay and reliability in wireless networks using
NUM and WNUM. WNUM policies are sample-based and
make no parametric assumptions about the distribution of
channel states. We describe a method to find optimal poli-
cies and extend our work described in [3, 4] to networks of
interfering links using convolutional codes.

SYSTEM MODEL

There are M logical source/destination pairs and L links in
the network. Each source and destination pair is associated
with an upper layer protocol stack. The flow of information
over the network from a logical source to a logical destina-
tion, possibly over multiple links, is termed an information
flow. Flows from different sources m may traverse the same
link l. The routing of information flows over links is de-
scribed by the routing matrix A, where Alm = 1 if informa-
tion on flow m traverses link l and is otherwise zero.

A single link is modeled in Figure 1. Packets are injected
into the link buffer by the upper layer protocol stack at infor-
mation rate rm and are removed and transmitted by the wire-
less link at rate (1− BER)θlRl , where Rl is the link rate,
0 < θl ≤ 1 is the code rate, BER is the bit error rate. The
code rate is the ratio of information bits sent over the link
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to the total number of bits (coded bits) sent over the link.
Because (1−BER)≈ 1 we suppress this term.

The channel is modeled by a channel state (gain) matrix
G ∈ RL×L, where Gi j is the power gain from the transmitter
on link j to the receiver on link i. The vector of transmitter
powers is given by S ∈ RL. Each transmitter has an average
power budget S̄. For concreteness the link rate function is
assumed to be of the form [5]

Rl(S,G) = log
(
1+ φKGiiSl

∑ j �=l Gl jS j+N

)
l = 1, . . . ,L (1)

where K = −1.5/ log(5BER) scales the received power to
meet an instantaneous BER ceiling, φ is the coding gain as-
sociated with a choice of convolutional code and N is re-
ceiver noise.

The distribution of G∼ p(G) is stationary and ergodic and
is unknown to the network. We assume the channel state is
estimated without error and is known at the set of transmit-
ters. Because the channel is randomly varying, the link rates
can also vary, resulting in congestion and queuing delay at
the link buffers.

The system can adapt to changing channel conditions
by estimating G and adapting parameters such as transmit
power S = S(G), transmitter link rate R = R(S(G),G) and
the upper layer information rate r = r(G).
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Figure 1: Single Link Model

The performance of upper layer protocols are modeled as
utility functions. Utility functions are strictly concave in-
creasing functions of the information rate. We consider the
following parameterized family of utility functions [6, 7] of-
ten used in the literature:

U(r) =

{
r1−α
1−α α > 0 α �= 1
ln(r) α = 1.

(2)

NUM PERFORMANCE

In this section we briefly describe NUM. The canonical
NUM problem is to find the optimal source rate r that max-
imizes overall network utility of a network of links. Each

link is assumed to have an associated buffer. Formally the
NUM problem can be expressed as

maximize
r≥0

∑mUm(rm)

subject to Ar ≤ R̄
(3)

where A describes the fixed typology of the network. The
operation of the network is described as an optimization al-
gorithm seeking to solve this problem.

The links are assumed to have fixed, error free link rates,
R̄. This ignores the effects of the randomly time varying
wireless channel. In a fading context, this implies that the
fading can be inverted via power control or that the network
will experience outages when channel conditions fall below
those necessary to support this fixed transmission rate. Such
outages reduce throughput and increase average delay.

Figure 2 shows the effect of outages on NUM network
throughput as a function of average SNR and under Rayleigh
fading. At 10% outage probability and an average SNR=20
dB, the effective throughput is only 30% of what is antici-
pated at this SNR. At moderate to low SNR’s the effective
throughput is further reduced. This reduction also increases
the average backlog at link buffers.
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Figure 2: NUM Effective Rate vs. Ave SNR

WNUM

In this section we describe WNUM and the method for find-
ing optimal control policies when the channel is randomly
time varying and where the distribution of channel states
is unknown. WNUM extends NUM (3) by formally intro-
ducing random channel (or other network component) varia-
tions and modifying the performance metrics and constraints
to be averages. The idea is to find adaptive rate and power
policies that maximize the average utility of the network,
under constraints on information rates, link rates and aver-
age power transmitted and to explore the delay, code rate
and throughput trade offs of these optimal policies. By poli-
cies we mean rate and power functions that optimally adapt
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to changes in the channel state, and we write S(Gt), r(Gt),
R(S(Gt),Gt) for the respective transmitter power, source
rate and link rate policies.

Conceptually the problem can be stated as

maximize
r(Gt),S(Gt)

lim 1
T

∫
T ∑lUl(rl(Gt))dt

subject to
lim 1

T

∫
T Ar(Gt)dt ≤ lim 1

T

∫
T R(S(Gt),Gt)dt

lim 1
T

∫
T Sl(Gt)dt = S̄l

(4)
where A is an incidence matrix routing information flows r
across links. The objective function is the time average of
the instantaneous utility of the network. The utility is as-
sumed to be a function of the information rate r(Gt), the
rate at which the upper layers of the protocol stack inject
packets or bits into the network. The first constraint is a
buffer constraint, which requires that the average arrival rate
to the buffer r(Gt) must be less than the departure rate from
that buffer φR(S(Gt),Gt). The second constraint requires
that averaged transmitter power S(Gt) cannot exceed a max-
imum.

Under conditions of stationarity and ergodicity we can re-
express (4) as the following formal WNUM problem:

maximize
r(G),S(G)≥0

E[∑lUl(rl(G))]

subject to
E[Sl(G)] = S̄l l = 1, . . . ,L
E[Ar] ≤ E[R(S(G),G)]

(5)

The optimization is over the policies r(G) and S(G) and in-
directly the link rate R(S(G),G).

Method of Solution

Full Recourse Optimization with Expected Constraints
(FROEC) is used to solve (5). FROEC is an on line discrete
time approach to optimization. It takes as its input the se-
quence of channel states seen by the network and produces
as its output estimates of the optimal Lagrange multipliers
and optimal policy values. The time index is k, and we indi-
cate the estimates of optimal Lagrange multiplier λ ∗ by λ k.
Policy values are denoted by rk = r(Gk,λ k), Sk = S(Gk,λ k),
and Rk = R((Gk,λ k),Gk), e.g. Sk is the value of the power
policy at channel state Gk and λ k. FROEC does not assume
knowledge of p(G) and under suitable conditions adjusts to
changes in the channels empirical distribution.

FROEC solves the dual problem to (5). The dual function
is first defined as

g(λ ) = argmax
r(G)≥0,S(G)≥0

L(r(G),S(G),λ ) (6)

where

L(r(G),S(G),λ ) = E[U(r(G))
−λq(r(G)−R(S(G),G))
−λs(S(G)− S̄))]

(7)

and λ = [λ T
q ,λ T

s ]T is the vector of Lagrange multipliers.
The dual problem is

minimize
λ≥0

g(λ ). (8)

The FROEC approach samples the channel and generates
a sequence of stochastic subgradients to g(λ ). These in turn
are used to optimize (8). The FROEC algorithm has three
steps. In the first step, the channel is estimated at time k and
policy values calculated:

[rk,Sk] = argmax
r≥0,S≥0

[
U(r)−λ k

q (r−R(S,Gk))−λ k
s (S− S̄))

]
.

(9)
The second step calculates stochastic subgradients:

δg = −
[ (

rk −θRk
)(

Sk − S̄
) ]

(10)

which is a vector composed of the “slack” in the constraints
evaluated at the current policy estimates. In the third step,
the λ k are updated using the subgradient recursion

λ k+1 =
[
λ k +Δkδg

]+
(11)

where []+ is the positivity operator and the step size Δk is a
sequence of positive constants.

The top portion of equation (11) can be rewritten as

λ k+1
q = [λ k

q +Δk
(
r(Gk,λ k)−θR(S(Gk,λ k),Gk

)
]+

= [λ 0
q +∑k

l=1 T l
(
r(Gl,λ l)−θR(S(Gl,λ l),Gl)

)
]+

= [λ 0
q +∑k

l=1

(
Al −Dl

)
]+

(12)
where we interpret Al as the packet workload injected into
the buffer and Dl as the packet workload (information) trans-
mitted by the link, T l as the time duration of the lth time pe-
riod and λ 0

q as the initial value of the the estimated Lagrange
multiplier. When T l = T and the step size is fixed Δk = Δ,
then λ k

q can be interpreted as proportional to the number of
packets queued at the buffer. The initial buffer workload is
λ 0

q . A packet arriving at the buffer will be delayed by the
packet workload in front of it.

Similarly the lower portion of (11) can be rewritten as

λ k+1
s =

[
λ k

s +Δk(S(Gk)− S̄)
]+

=
[
λ 0

s +∑k
l=1(E(Gl)− Ē)

]+ (13)
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where E(Gk) is the energy used by the transmitter at time k
when the channel is in state Gk, and Ē is the average energy
spent by the transmitter per transmission. When Δk = Δ, the
Lagrange multiplier λ k

s is proportional to the total deviation
from Ē spent by the transmitter up to time k. If on average
the transmitter has exceeded its energy budget λ k

s will be
large and conversely.

The ratio
λ k

q

λ k
s

measures the relative cost of queue backlog
to energy spent at time k. We term this ratio energy normal-
ized backlog and it is the estimated energy cost per packet
to transmit data at time k+1.

Convergence

The convergence properties of (11) depends on the sequence
{Δk}. When Δk = Δ, the estimated Lagrange multiplier
probabilistically converges to a region centered around the
optimal value [8]. If we define e(k) = ||λ k −λ ∗|| then

P[e(k) ≥ ε |λ 0] ≤ A1(Δ)+A2(λ 0)exp(−h(Δ)k) (14)

where λ 0 is the initial guess for λ , and A1 → 0, h(Δ) → 0,
as Δ ↓ 0. In steady state, the fixed step size approach only
approximately meets the constraints, but the approximation
can be made very tight for small enough Δ.

With a fixed Δ the queue length converges to a region cen-
tered on the average queue length λ ∗

q associated with the
optimal policy. As channel samples vary and the system re-
sponds, the queue lengths will randomly drift within this re-
gion. Similarly, λ k

s will converge to a region centered about
the optimal value of the Lagrange multiplier λ ∗

s , and also
will drift within this region as channel conditions vary.

COMPARING WNUM TO NUM

In this section we compare WNUM and NUM performance
for single links. We compare performance for a range of
instantaneous BER requirements when a convolutional code
is not used. In the next section we compare WNUM and
NUM when codes of varying rate are used. The focus is
on comparing the average rate, delay, and reliability trade
offs. In all cases WNUM yields substantially improved per-
formance, since it adapts to changes in the wireless environ-
ment.

Figures 3-5 show the rate and delay performance of NUM
under different BER targets and compares them to the per-
formance of WNUM.

The optimal WNUM policies for single links can be found
analytically using FROEC from (9). The optimal adaptive
policies are the following:

S(Gk,λ k) =

{ (
λ k

q

λ k
s
− N

Gk

)
λ k

s
λ k

q
< Gk

N λq,λ k
s > 0

0 otherwise
(15)
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Figure 3: Rate vs. BER Threshold
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Figure 4: Delay vs. BER Threshold
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Figure 5: Delay vs. Information Rate
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R(Gk,λ k) =

{
log

(
1+K

λ k
q

λ k
s

Gk

N

)
λ k

s
λ k

q
< KGk

N λ k
s > 0

0 otherwise
(16)

r(Gk,λ k
q ) = r(λ k

q ) = [U̇ ]−1(λ k
q ). (17)

The optimal power and link rate policies are functions of
the energy normalized backlog, balancing the energy cost
per packet to send the next packet with the noise normalized
channel gain. The transmitter stops transmitting if noise nor-
malized channel conditions are poor enough. This threshold,
however, changes over time and is determined by the the cur-
rent value of the energy normalized backlog. Together these
policies control the rate at which packets are removed from
the queue. The upper layer protocols inject packets at an
instantaneous rate determined by the backlog of the queue.
This rate is independent of the current channel state. Since
the arrival and service rates of the links’ queue are randomly
time varying through the Gk, link congestion will occur.

Average rate and delay are functions of the distribution of
the channel states and cannot be readily expressed in closed
form, so numerical techniques are used. Figures 3-5 show
the performance of WNUM and NUM under Rayleigh fad-
ing with an average SNR=20 dB.

WNUM rate performance is twice NUM rate performance
at BER = 10−6. Figures 3 and 4 show the average link rate
and delay for a range of instantaneous BER (reliability) re-
quirements. As intuition would suggest, the average link
rate increases for both WNUM and NUM with decreasing
reliability, since K is an increasing function of the BER tar-
get. WNUM delay performance is approximately 30% bet-
ter than NUM delay performance. The average queuing de-
lay decreases for both WNUM and NUM with decreasing
reliability since the (net of errors) link transmission rate in-
creases.

As shown in Figure 5, WNUM’s rate and delay trade off
curve is superior to NUM’s. Not surprisingly both curves
are convex [] in the information rate, since packet arrivals
to the queue buffer and their departures are functions of the
random channel gain G.

As shown in Figure 6 the average power cost, λ k
s , de-

clines with less stringent reliability requirements. The rea-
son is intuitive; a less stringent BER requirement is equiva-
lent to a greater power budget, S̄, which in turn decreases the
power cost. Figure 7 displays the energy normalized back-
log, ENB. The ENB remains essentially constant(+/- 2%)
over the BER range considered. There are no NUM equiva-
lents and so are not compared.

WNUM CODED LINKS

In this section we investigate the performance of WNUM
wireless networks using convolutional codes with a range of
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Figure 6: Power Cost vs. BER Threshold
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Figure 7: Energy Normalized Backlog vs. BER Threshold

different coding gains φ and coding rates θ . At a given BER
threshold, WNUM uses any excess available power to in-
crease the link transmission rate, thus an increase in coding
gain can translate into an increase in link rate.

Single Link Case

The optimal WNUM policies can be found analytically us-
ing FROEC and are similar to the uncoded case:

S(Gk,λ k) =

{ (
θλ k

q

λ k
s
− N

φKGk

)
λ k

s
θλ k

q
< φKGk

N λq,λ k
s > 0

0 otherwise
(18)

R(Gk,λ k)=

{
log

(
1+K

θλ k
q

λ k
s
φ Gk

N

)
λ k

s
θλ k

q
N < φKGk

N λ k
s > 0

0 otherwise
(19)

r(Gk,λ k
q ) = r(λ k

q ) = [U̇ ]−1(λ k
q ). (20)

At a given BER target, equation (19) increases the link rate
with increasing coding gain or coding rate. The transmission
cut-off threshold is shifted by the product of the coding gain
and coding rate.

Figures 8-12 display the rate, delay, reliability trade offs
for a coded link using the optimal policies. In all cases
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WNUM performance significantly exceeds NUM perfor-
mance. As shown in Figure 8, average link rates are essen-
tially constant with increasing coding rate, but information
rates increase, since the coding rate scales the link rate. The
link rates are almost constant since φ does not vary greatly
in this example. The average queuing delay shown in Figure
9 also decreases with increasing code rate as in the uncoded
link case. The power cost, Figure 11, increases with increas-
ing code rate. This is an indirect result of the code rate scal-
ing the link rate function. The ENB grows with the coding
rate, reflecting the queuing delay curve. As in the uncoded
case, ENB is relatively constant for each BER target.
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Figure 8: Rates vs. Code Rate
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Figure 9: Delay vs. Code Rate
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Figure 10: Delay vs. Information Rate
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Figure 11: Power Cost vs. Code Rate
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Figure 12: Energy Normalized Backlog vs. Information
Rate

Multiple Interfering Links

In this section we investigate the rate, delay and reliabil-
ity trade offs for networks of interfering links. The relative
performance between WNUM and NUM is similar to the
single link case and for brevity is not discussed here. For
simplicity we assume the number of links is equal to the
number of sources, L = M, and that each flow traverses ex-
actly one link. The multi-hop case is solved in a similar
fashion. Equation (5) is not a convex function for L ≥ 2 and
globally optimal policies may not exist. It can be made con-
vex by assuming SIRl >> 1 and transforming the variables
Sl = exp(xl), Gi j = exp(gi j), N = exp(n), θ = exp(γ) where
xl gi j and n are proportional to transmitter power, channel
gain, and noise in dB. The link rate model can now be ex-
pressed as

Ri(G,S(G)) = − ln(e(−xi−gii−γ)(∑ j �=i e
(x j+gi j) + en)).

(21)
The set of possible (positive) link rates is bounded and con-
vex. As the transmitter power levels in the system grow,
the vector of link rates asymptotically approaches the rate
surface. In this situation, due to inter-link interference the
coding gain may not result in a significant improvement in
link performance at a fixed BER target.
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Analytical expressions for the optimal policies are diffi-
cult to find but can be expressed algorithmically. In this
setting it is useful to describe the behavior of these poli-
cies. Optimal power policies can be thought of as allocat-
ing power across channel states such that the average per-
formance of the network is maximized. For each state, the
rate policy maximizes the link rate performance of the in-
terfering network, arriving at an operating point inside the
rate region. For large SINR the operating point will lie near
the rate surface. Changes in convolutional codes will shift
this operating point. As a consequence of the mapping from
power to rate, changes in coding gain may not significantly
effect the the operating point of the network.

Figures 14-17 depict an example network’s performance
as a function of different convolutional codes. Each link op-
erates using identical codes in this example. We consider
the case of L = M = 6 links and sources and S̄l = 1. The
channel state matrix is drawn iid Rayleigh, with diagonal el-
ements scaled to yield an average SINR of 20 dB over the
set of links. Figure 13 shows the link rates (upper curves)
and information throughput (lower curves) for each of the
six links for a variety of coding rates. The link rates remain
relatively constant indicating the that the the network may
be operating operating near its rate surface. The informa-
tion rates increase with the coding rate since they are scaled
versions of the link rates θR.

Figure 14 shows the average delay vs. code rate for each
of the six flows. As in the single link case the average queu-
ing delay of packets decreases with increasing code rate. As
the rate increases so does the information transfer rate of the
link, reducing average delay. Figure 15 shows the trade off
between average information rate and average queuing de-
lay for each of the six links. Because the links interfere with
each other, the transmission rates of the links are entangled,
thereby entangling the queuing delays of the links. As ex-
pected for queues of this type with random service rates, the
trade off is convex. The individual link curves overlap due
the symmetry of this example.

Figure 16 and 17 display the average power cost and ENB
for the links. As in the single link case, the average power
cost increases with the coding rate and is an indirect result
of the code rate scaling the link rate function. The ENB
decreases with increasing code rate, since more packets can
be sent for a given energy cost.

CONCLUSIONS

We describe WNUM and compare its performance to NUM
along the dimensions of rate, delay and reliability under flat
fading. At typical SINR’s simulations indicate that rate per-
formance is improved by greater than 50% and average de-
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Figure 13: Rates vs. Code Rate
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Figure 14: Delay vs. Code Rate
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Figure 16: Power Cost vs. Code Rate
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Figure 17: Energy Normalized Backlog vs. Code Rate

lay by 30%. We consider simple uncoded links and networks
using convolutional codes. WNUM uses optimal policies to
adapt to changing channel conditions by adjusting network
resources. We present the optimal adaptive control policies
for WNUM in the single link case and describe a FROEC
based algorithm for the multiple interfering link case. These
policies are sample-based and make no assumptions about
the distribution of channel states. NUM does not model the
physical layer and consequently is unable to exploit good
channel conditions or respond to poor channel conditions,
resulting in relatively inferior performance.

Future research work includes extending this formulation
to broader types of reliability mechanisms and extending the
formulation to traffic with QoS requirements
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