
Simple Schemas for Unordered XML

Iovka Boneva
University of Lille & INRIA,

France
iovka.boneva@inria.fr

Radu Ciucanu
University of Lille & INRIA,

France
radu.ciucanu@inria.fr

Sławek Staworko
University of Lille & INRIA,

France
slawomir.staworko@inria.fr

ABSTRACT
We consider unordered XML, where the relative order among
siblings is ignored, and propose two simple yet practical
schema formalisms: disjunctive multiplicity schemas (DMS),
and its restriction, disjunction-free multiplicity schemas (MS).
We investigate their computational properties and character-
ize the complexity of the following static analysis problems:
schema satisfiability, membership of a tree to the language
of a schema, schema containment, twig query satisfiability,
implication, and containment in the presence of schema.
Our research indicates that the proposed formalisms retain
much of the expressiveness of DTDs without an increase in
computational complexity.

1. INTRODUCTION
When XML is used for document-centric applications, the
relative order among the elements is typically important e.g.,
the relative order of paragraphs and chapters in a book. On
the other hand, in case of data-centric XML applications, the
order among the elements may be unimportant [1]. In this
paper we focus on the latter use case. As an example, take
a trivialized fragment of an XML document containing the
DBLP repository in Figure 1. While the order of the elements
title, author, and year may differ from one publication to
another, it has no impact on the semantics of the data stored
in this semi-structured database.

A schema for XML is a description of the type of admissible
documents, typically defining for every node its content model
i.e., the children nodes it must, may or cannot contain. For
instance, in the DBLP example, we shall require every article
to have exactly one title, one year, and one or more author’s.
A book may additionally contain one publisher and may also
have one or more editor’s instead of author’s. A schema has
numerous important uses. For instance, it allows to validate
a document against a schema and identify potential errors.
A schema also serves as a reference for any user who does not
know yet the structure of the XML document and attempts
to query or modify its contents.

The Document Type Definition (DTD), the most widespread
XML schema formalism for (ordered) XML [6, 13], is essen-
tially a set of rules associating with each label a regular
expression that defines the admissible sequences of children.
The DTDs are best fitted towards ordered content because
they use regular expressions, a formalism that defines se-

Copyright is held by the author/owner. Sixteenth International Workshop
on the Web and Databases (WebDB 2013),
June 23, 2013 - New York, NY, USA.

dblp

book

year title author publisher

“1994”

“Computational
complexity”

“C .Papadimitriou”

“Addison-Wesley”

article

author year title

“L.Valiant”

“1984”
“A theory

of the learnable”

Figure 1: A trivialized DBLP repository.

quences of labels. However, when unordered content model
needs to be defined, there is a tendency to use over-permissive
regular expressions. For instance, the DTD below corre-
sponds to the one used in practice for the DBLP repository:

dblp Ñ (article | book)�

article Ñ (title | year | author)�

book Ñ (title | year | author | editor | publisher)�

This DTD allows an article to contain any number of title,
year, and author elements. A book may also have any number
of title, year, author, editor, and publisher elements. These
regular expressions are clearly over-permissive because they
allow documents that do not follow the intuitive guidelines
set out earlier e.g., a document containing an article with
two title’s and no author should not be admissible.

While it is possible to capture unordered content models
with regular expressions, a simple pumping argument shows
that their size may need to be exponential in the number of
possible labels of the children. In case of the DBLP repository,
this number reaches values up to 12, which basically precludes
any practical use of such regular expressions. This suggests
that over-permissive regular expressions may be employed
for the reasons of conciseness and readability.

The use of over-permissive regular expressions, apart from
allowing documents that do not follow the guidelines, has
other negative consequences e.g., in static analysis tasks that
involve the schema. Take for example the following two twig
queries [2, 23]:

{dblp{bookrauthor � “C .Papadimitriou”s

{dblp{bookrauthor � “C .Papadimitriou”srtitles

The first query selects the elements labeled book, children
of dblp and having an author containing the text “C. Pa-
padimitriou.” The second query additionally requires that
book has a title. Naturally, these two queries should be

Problem of interest DTD DMS disjunction-free DTD MS
Schema satisfiability PTIME [9, 21] PTIME (Prop. 4.3) PTIME [9, 21] PTIME (Prop. 4.3)
Membership PTIME [9, 21] PTIME (Prop. 4.3) PTIME [9, 21] PTIME (Prop. 4.3)

Schema containment PSPACE-c:/PTIME [9, 21] PTIME (Th. 4.2) coNP-h:/PTIME [9, 16] PTIME (Th. 4.2)

Query satisfiability; NP-c [4] NP-c (Prop. 4.4) PTIME [4] PTIME (Th. 4.7)

Query implication; EXPTIME-c [19] EXPTIME-c (Prop. 4.4) PTIME (Cor. 4.9) PTIME (Th. 4.7)

Query containment; EXPTIME-c [19] EXPTIME-c (Prop. 4.4) coNP-c (Cor. 4.9) coNP-c (Th. 4.8)
: when non-deterministic regular expressions are used. ; for twig queries.

Table 1: Summary of complexity results.

equivalent because every book element should have a title
child. However, the DTD above does not capture properly
this requirement, and, consequently, the two queries are not
equivalent w.r.t. this DTD.

In this paper, we study two new schema formalisms: the
disjunctive multiplicity schema (DMS) and its restriction, the
disjunction-free multiplicity schema (MS). While they use a
user-friendly syntax inspired by DTDs, they define unordered
content model only, and, therefore, they are better suited
for unordered XML. A DMS is a set of rules associating
with each label the possible number of occurrences for all
the allowed children labels by using multiplicities: “�” (0 or
more occurrences), “�” (1 or more), “?” (0 or 1), “1” (exactly
1 occurrence; often omitted for brevity). Additionally, alter-
natives can be specified using restricted disjunction (“|”) and
all the conditions are gathered with unordered concatenation
(“||”). For instance, the following DMS captures precisely the
intuitive requirements for the DBLP repository:

dblp Ñ article�|| book�

article Ñ title || year || author�

book Ñ title || year || publisher?|| (author� | editor�)

In particular, an article must have exactly one title, exactly
one year, and at least one author. A book may additionally
have a publisher and may have one or more editor’s instead
of author’s. Note that, unlike the DTD defined earlier, this
DMS does not allow documents having an article with several
title’s or without any author.

There has been an attempt to use DTD-like rule based
schemas to define unordered content models by interpret-
ing the regular expressions under commutative closure [3]:
essentially, an unordered collection of children matches a
regular expression if there exists an ordering that matches
the regular expression in the standard way. However, testing
whether there exists a permutation of a word that matches
a regular expression is NP-complete [15], which implies a
significant increase in computational complexity of the mem-
bership problem i.e., validating an XML document against
the schema. The schema formalisms proposed in this pa-
per, DMS and MS, can be seen as DTDs interpreted under
commutative closure using restricted classes of regular ex-
pressions. Two natural questions arise: do these restrictions
allow us to avoid the increase in computational complexity,
and how much of the expressiveness of DTDs is retained.
The answers are generally positive. There is no increase in
computational complexity but also no decrease (cf. Table 1).
In particular, similarly to DTDs, the membership test can be
performed in streaming manner (Section 4.1). Furthermore,
the proposed schema formalisms seem to capture a signif-
icant part of the expressiveness of DTDs used in practice
(Section 5).

We study the complexity of several basic decision problems:
schema satisfiability, membership of a tree to the language of
a schema, containment of two schemas, twig query satisfiabil-
ity, implication, and containment in the presence of schema.
Table 1 contains the summary of complexity results compared
with general DTDs and disjunction-free DTDs. The lower
bounds for the decision problems for DMS and MS are gen-
erally obtained with easy adaptations of their counterparts
for general DTDs and disjunction-free DTDs. To obtain
upper bounds we develop several new tools. Dependency
graphs for MS and a generalized definition of an embedding
of a query help us to reason about query satisfiability, query
implication, and query containment in the presence of MS.
An alternative characterization of DMS with characterizing
triples of sets is used to reduce the containment of DMS
to the containment of the sets of their triples, which can
be tested in PTIME. We add that our constructions and
results for MS extend easily to disjunction-free DTDs and
allow to solve the problems of query implication and query
containment, which, to the best of our knowledge, have not
been previously studied for disjunction-free DTDs.

Because of space restriction, the proofs of all claims are
omitted, they can be found in the appendix of the full version
of the paper available at http://arxiv.org/abs/1303.4277.

Related work. Languages of unordered trees can be ex-
pressed by logic formalisms or by tree automata. Boneva
et al. [7, 8] make a survey on such formalisms and compare
their expressiveness. The fundamental difference resides in
the kind of constraints that can be expressed for the allowed
collections of children for some node. We mention here only
formalisms introduced in the context of XML. Presburger
automata [22], sheaves automata [11], and the TQL logic [10]
allow to express Presburger constraints on the numbers of oc-
currences of the different symbols among the children of some
node. This is also equivalent to considering DTDs under
commutative closure, similarly to [3]. The consequence of the
high expressive power is that the membership problem is NP-
complete for an unbounded alphabet [15]. Therefore, these
formalisms were not extensively used in practice. Suitable
restrictions on Presburger automata and on the TQL logic
allow to obtain the same expressiveness as the MSO logic on
unordered trees [7, 8]. DMS are strictly less expressive than
these MSO-equivalent languages. Static analysis problems
involving twig queries were not studied for these languages.
Additionally, we believe that DMS are more appropriate
to be used as schema languages, as they were designed as
such, in particular regarding the more user-friendly DTD-like
syntax. As mentioned earlier, unordered content model can
also be defined by DTDs defining commutatively-closed sets
of ordered trees. An (ordered) tree matches such a DTD iff

all tree obtained by reordering of sibling nodes also matches
the DTD. This also turns out to be equally expressive as
MSO on unordered trees [7, 8]. However, such a DTD may
be of exponential size w.r.t. the size of the alphabet and,
moreover, it is PSPACE-complete to test whether a DTD
defines a commutatively-closed set of trees [18], which makes
such DTDs unusable in practice. XML Schema allow for a
bounded number of symbols to appear in arbitrary order,
and RELAX NG allows to interleave sequences of symbols of
bounded length. In contrast, the Kleene star in DMS allows
for unbounded unordered collections of children. Schematron
allows to specify very general constraints on the number of
occurrences of symbols among the children of a node, in
particular Presburger constraints are expressible. Schema
languages using regular expressions with unbounded inter-
leaving were studied in [12]. These are more expressive than
DMS but exhibit high computational complexity of inclusion
[12] and membership [5]. To the best of our knowledge, the
static analysis problems involving queries were not studied
for these languages when unordered content is allowed.

2. PRELIMINARIES
Throughout this paper we assume an alphabet Σ which is a
finite set of symbols.
Trees. We model XML documents with unordered labeled
trees. Formally, a tree t is a tuple pNt, roott, labt, child tq,
where Nt is a finite set of nodes, roott P Nt is a distinguished
root node, labt : Nt Ñ Σ is a labeling function, and child t �
Nt � Nt is the parent-child relation. We assume that the
relation child t is acyclic and require every non-root node to
have exactly one predecessor in this relation. By Tree we
denote the set of all finite trees.

r

a b

a

c

b

a

b

(a) Tree t0.

r

�

a�

(b) Twig query q0.

Figure 2: A tree and a twig query.

Queries. We work with the class of twig queries, which are
essentially unordered trees whose nodes may be additionally
labeled with a distinguished wildcard symbol � R Σ and
that use two types of edges, child ({) and descendant ({{),
corresponding to the standard XPath axes. Note that the
semantics of {{-edge is that of a proper descendant (and not
that of descendant-or-self). Formally, a twig query q is a
tuple pNq, rootq, labq, childq, descqq, where Nq is a finite set
of nodes, rootq P Nq is the root node, labq : Nq Ñ Σ Y t�u
is a labeling function, childq � Nq � Nq is a set of child
edges, and descq � Nq � Nq is a set of descendant edges.
We assume that childq X descq � H and that the relation
childq Y descq is acyclic and we require every non-root node
to have exactly one predecessor in this relation. By Twig
we denote the set of all twig queries. Twig queries are often
presented using the abbreviated XPath syntax [23] e.g., the
query q0 in Figure 2(b) can be written as r{�r�s{{a.
Embeddings. We define the semantics of twig queries using
the notion of embedding which is essentially a mapping of

nodes of a query to the nodes of a tree that respects the
semantics of the edges of the query. Formally, for a query
q P Twig and a tree t P Tree, an embedding of q in t is a
function λ : Nq Ñ Nt such that:

1. λprootqq � roott,

2. for every pn, n1q P childq, pλpnq, λpn1qq P child t,

3. for every pn, n1q P descq, pλpnq, λpn1qq P pchild tq
� (the

transitive closure of child t),

4. for every n P Nq, labqpnq � � or labqpnq � labtpλpnqq.

If there exists an embedding from q to t we say that t satisfies
q and we write t |ù q. By Lpqq we denote the set of all the
trees satisfying q. Note that we do not require the embedding
to be injective i.e., two nodes of the query may be mapped to
the same node of the tree. Figure 3 presents all embeddings
of the query q0 in the tree t0 from Figure 2.

r

a b

a

c

b

a

b

r

�

a�

r

�

a�

Figure 3: Embeddings of q0 in t0.

Unordered words. An unordered word is essentially a
multiset of symbols i.e., a function w : Σ Ñ N0 mapping
symbols from the alphabet to natural numbers, and we call
the number wpaq the number of occurrences of the symbol a
in w. We also write a P w as a shorthand for wpaq � 0. An
empty word ε is an unordered word that has 0 occurrences
of every symbol i.e., εpaq � 0 for every a P Σ. We often
use a simple representation of unordered words, writing each
symbol in the alphabet the number of times it occurs in
the unordered word. For example, when the alphabet is
Σ � ta, b, cu, w0 � aaacc stands for the function w0paq � 3,
w0pbq � 0, and w0pcq � 2.

The (unordered) concatenation of two unordered words
w1 and w2 is defined as the multiset union w1 Z w2 i.e.,
the function defined as pw1 Z w2qpaq � w1paq � w2paq for
all a P Σ. For instance, aaacc Z abbc � aaaabbccc. Note
that ε is the identity element of the unordered concatenation
ε Z w � w Z ε � w for all unordered word w. Also, given
an unordered word w, by wi we denote the concatenation
w Z . . .Z w (i times).

A language is a set of unordered words. The unordered con-
catenation of two languages L1 and L2 is a language L1ZL2 �
tw1 Z w2 | w1 P L1, w2 P L2u. For instance, if L1 � ta, aacu
and L2 � tac, b, εu, then L1 Z L2 � ta, ab, aac, aabc, aaaccu.

3. MULTIPLICITY SCHEMAS
A multiplicity is an element from the set t�,�, ?, 0, 1u. We de-
fine the function J�K mapping multiplicities to sets of natural
numbers. More precisely:

J�K � ti P N | i ¥ 0u, J�K � ti P N | i ¥ 1u, J?K � t0, 1u,
J1K � t1u, J0K � t0u.

Given a symbol a P Σ and a multiplicity M , the language
of aM , denoted LpaM q, is tai | i P JMKu. For example,
Lpa�q � ta, aa, . . .u, Lpb0q � tεu, and Lpc?q � tε, cu.

A disjunctive multiplicity expression E is:

E :� DM1
1 || . . . ||DMn

n ,

where for all 1 ¤ i ¤ n, Mi is a multiplicity and each Di is:

Di :� a
M 1

1
1 | . . . | a

M 1

k
k ,

where for all 1 ¤ j ¤ k, M 1
j is a multiplicity and aj P Σ.

Moreover, we require that every symbol a P Σ is present
at most once in a disjunctive multiplicity expression. For
instance, pa | bq||pc | dq is a disjunctive multiplicity expression,
but pa | bq || c || pa | dq is not because a appears twice.
A disjunction-free multiplicity expression is an expression
which uses no disjunction symbol “|” i.e., an expression of

the form aM1
1 || . . . || aMk

k , where for all 1 ¤ i ¤ k, the ai’s are
pairwise distinct symbols in the alphabet and the Mi’s are
multiplicities.

The language of a disjunctive multiplicity expression is:

LpaM1
1 | . . . | aMk

k q � LpaM1
1 q Y . . .Y LpaMk

k q,

LpDM q � tw1 Z . . .Z wi | w1, . . . , wi P LpDq ^ i P JMKu,

LpDM1
1 || . . . ||DMn

n q � LpDM1
1 q Z . . .Z LpDMn

n q.

When a symbol a (resp. a disjunctive multiplicity expression
E) has multiplicity 1, we often write a (resp. E) instead
of a1 (resp. E1). Moreover, we omit writing symbols and
disjunctive multiplicity expressions with multiplicity 0. Take
for instance, E0 � a� || pb | cq || d? and note that both the
symbols b and c as well as the disjunction pb | cq have an
implicit multiplicity 1. The language of E0 is:

LpE0q � taibjckd` | i, j, k, ` P N, i ¥ 1, j � k � 1, ` ¤ 1u.

Next, we formally define the proposed schema formalisms.

Definition 3.1 A disjunctive multiplicity schema (DMS) is
a tuple S � prootS , RSq, where rootS P Σ is a designated root
label and RS maps symbols in Σ to disjunctive multiplicity
expressions. By DMS we denote the set of all disjunctive
multiplicity schemas. A disjunction-free multiplicity schema
(MS) S � prootS , RSq is a restriction of the DMS, where RS

maps symbols in Σ to disjunction-free multiplicity expressions.
By MS we denote the set of all disjunction-free multiplicity
schemas.

To define satisfiability of a DMS (or MS) S by a tree t we first
define the unordered word chn

t of children of a node n P Nt

of t i.e., chn
t paq � |tm P Nt | pn,mq P child t ^ labtpmq � au|.

Now, a tree t satisfies S, in symbols t |ù S, if labtproottq �
rootS and for any node n P Nt, chn

t P LpRSplabtpnqqq. By
LpSq � Tree we denote the set of all the trees satisfying S.

In the sequel, we represent a schema S � prootS , RSq
as a set of rules of the form a Ñ RSpaq, for any a P Σ. If
LpRSpaqq � ε, then we write aÑ ε or we simply omit writing
such a rule.

Example 3.2 We present schemas S1, S2, S3, S4 illustrating
the formalisms defined above. They have the root label r and
the rules:

S1 : r Ñ a || b� || c? aÑ b? bÑ a? cÑ b

S2 : r Ñ c || b || a aÑ b? bÑ a cÑ b

S3 : r Ñ pa | bq� || c aÑ b? bÑ a? cÑ b

S4 : r Ñ pa | b | cq� aÑ ε bÑ a? cÑ b

S1 and S2 are MS, while S3 and S4 are DMS. The tree t0
from Figure 2(a) satisfies only S1 and S3.

4. STATIC ANALYSIS
We first define the problems of interest and we formally state
the corresponding decision problems parameterized by the
class of schema and, when appropriate, by a class of queries.

Schema satisfiability – checking if there exists a tree sat-
isfying the given schema:

SATS � tS P S | Dt P Tree. t |ù Su.

Membership – checking if the given tree satisfies the given
schema:

MEMBS � tpS, tq P S � Tree | t |ù Su.

Schema containment – checking if every tree satisfying
one given schema satisfies another given schema:

CNTS � tpS1, S2q P S � S | LpS1q � LpS2qu.

Query satisfiability by schema – checking if there exists
a tree that satisfies the given schema and the given query:

SATS,Q � tpS, qq P S �Q | Dt P LpSq. t |ù qu.

Query implication by schema – checking if every tree
satisfying the given schema satisfies also the given query:

IMPLS,Q � tpS, qq P S �Q | @t P LpSq. t |ù qu.

Query containment in the presence of schema – check-
ing if every tree satisfying the given schema and one given
query also satisfies another given query:

CNTS,Q � tpp, q, Sq P Q�Q�S | @t P LpSq. t |ù pñ t |ù qu.

We next study these decision problems for DMS an MS.

4.1 Disjunctive multiplicity schema
In this section we present the complexity results for DMS.
We first introduce an alternative representation of schemas
used to establish the complexity of schema containment.
Recall that a P w means that wpaq � 0. Given a disjunctive
multiplicity expression E, we define the (characterizing)
triple pCE , NE , PEq of E consisting of the following sets:

 The conflicting pairs of siblings CE consisting of pairs
of symbols in Σ such that E defines no word using both
symbols simultaneously:

CE � tpa1, a2q P Σ�Σ | � Dw P LpEq. a1 P w^ a2 P wu.

 The extended cardinality map NE captures for each
symbol in the alphabet the possible numbers of its
occurrences in the unordered words defined by E:

NE � tpa,wpaqq P Σ� N | w P LpEqu.

 The sets of required symbols PE which captures symbols
that must be present in every word; essentially, a set
of symbols X belongs to PE if every word defined by
E contains at least one element from X:

PE � tX � Σ | @w P LpEq. Da P X. a P wu.

As an example we take E0 � a� || pb | cq || d?. Because PE is
closed under supersets, we list only its minimal elements:

CE0 � tpb, cq, pc, bqu, PE0 � ttau, tb, cu, . . .u,

NE0 � tpb, 0q, pb, 1q, pc, 0q, pc, 1q, pd, 0q, pd, 1q, pa, 1q, pa, 2q, . . .u.

The triples allow us to capture the containment of disjunctive
multiplicity expressions:

Lemma 4.1 For all disjunctive multiplicity expressions E1

and E2, LpE2q � LpE1q iff CE1 � CE2 , NE2 � NE1 , and
PE1 � PE2 .

The above lemma also shows that two equivalent DMS yield
the same triples and hence the triple pCE , NE , PEq can be
viewed as the normal form of a given expression E. We point
out that NE may be infinite but it can be represented in
a compact manner using multiplicities: for all letter a, the
set tx P N | pa, xq P NEu is representable by a multiplicity.
Also, PE may be exponential in the size of Σ but it can be
represented with its �-minimal elements. Note that CE has
a number of elements quadratic in the number of letters, but
allows for a representation linear in the size of Σ. These
compact representations allow to easily test inclusion. Using
Lemma 4.1, this allows us to establish one of our main results:

Theorem 4.2 CNTDMS is in PTIME.

Next we present complexity results for satisfiability and
membership. A streaming algorithm processes an XML
document in a single pass, and it is earliest since it outputs
its result at the earliest point. For a tree t, heightptq is the
height of t defined in the usual way. We employ the standard
RAM model and assume that subsequent natural numbers
are used as labels in Σ.

Proposition 4.3 Checking satisfiability of a DMS S can be
done in time Op|Σ|2q. There exists an earliest streaming
algorithm that checks membership of a tree t in a DMS S in
time Op|Σ| � |t| � |Σ|2q and using space Opheightptq � |Σ| �
|Σ|2q.

For satisfiability, the algorithm performs a preprocessing in
time Op|Σ|2q, and then performs a simple process based on
dynamic programming to check that S is satisfiable. For
checking the membership of a tree t to the language of S, the
input tree t is given in XML format. The algorithm works for
any arbitrary ordering of sibling nodes. In a preprocessing
stage, the algorithm constructs (compact representations
of) the triples of expressions used by the schema S and
requires Op|Σ|2q space. 1 During the execution the algorithm
maintains a stack whose height is the depth of the currently
visited node. The algorithm stores on the stack a vector
mapping a P Σ to a value among 0, 1, or 2� indicating
that the current node has none, one or more occurrences of
the symbol a among its children. Naturally, the bound on
space required for stack operations is Opheightptq�|Σ|q. The
algorithm is earliest and rejects a tree as soon as the opening
tag is read for nodes that violate either some conflicting pair
or the allowed cardinality.

We end the section with three complexity results that
follow from known facts.

Proposition 4.4 SATDMS,Twig is NP-complete.
IMPLDMS,Twig and CNTDMS,Twig are EXPTIME-complete.

Proof sketch. Query satisfiability for DTDs is NP-complete
[4] and can be adapted to DMS. Complexity of query impli-
cation and query containment follow from the EXPTIME-
completeness of twig query containment in presence of DTDs
[19].
1Remark that, as DMS forbids repetition of symbols, the
size of the representation of any expression is linear in |Σ|.

4.2 Disjunction-free multiplicity schema
In this section we present the complexity results for MS.
Although query satisfiability and query implication are in-
tractable for DMS, these problems become tractable for MS
because they can be reduced to testing embedding of queries
in some dependency graphs that we define in the sequel.
Recall that MS use expressions of the form aM1

1 || . . . || aMn
n .

Definition 4.5 Given an MS S � prootS , RSq, the depen-
dency graph of S is a directed rooted graph GS � pΣ, rootS , ESq
with the node set Σ, where rootS is the distinguished root node
and pa, bq P ES if RSpaq � . . . || bM || . . . and M P t�,�, ?, 1u.
Furthermore, the edge pa, bq is called nullable if 0 P JMK (i.e.,
M is � or ?), otherwise pa, bq is called non-nullable (i.e., M
is � or 1). The universal dependency graph of an MS S is
the subgraph Gu

S containing only the non-nullable edges.

In Figure 4 we present the dependency graphs for the schema
S5 containing the rules r Ñ a� || b�, aÑ b?, bÑ ε.

r

ab

r

ab

Figure 4: Dependency graph GS5 and universal de-
pendency graph Gu

S5
for schema S5.

An MS S is pruned if Gu
S is acyclic. We observe that any MS

has an equivalent pruned version which can be constructed
in PTIME by removing the rules for the labels from which
a cycle can be reached in the universal dependency graph.
Note that a schema is satisfiable iff no cycle can be reached
from its root in the universal dependency graph. From now
on, we assume w.l.o.g. that all the MS that we manipulate
are pruned.

We generalize the notion of embedding as a mapping of
the nodes of a query q to the nodes of a rooted graph G �
pΣ, root , Eq, which can be either a dependency graph or a
universal dependency graph. Formally, an embedding of q in
G is a function λ : Nq Ñ Σ such that:

1. λprootqq � root ,

2. for every pn, n1q P childq, pλpnq, λpn1qq P E,

3. for every pn, n1q P descq, pλpnq, λpn1qq P E� (the tran-
sitive closure of E),

4. for every n P Nq, labqpnq � � or labqpnq � λpnq.

If there exists an embedding from q to G, we write G ¤ q.
The dependency graphs and embeddings capture satisfiability
and implication of queries by MS.

Lemma 4.6 For a twig query q and an MS S we have: 1) q
is satisfiable by S iff GS ¤ q, 2) q is implied by S iff Gu

S ¤ q.

Furthermore, testing the embedding of a query in a graph
can be done in polynomial time with a simple bottom-up
algorithm. Hence,

Theorem 4.7 SATMS,Twig and IMPLMS,Twig are in PTIME.

The intractability of the containment of twig queries [17]
implies the coNP-hardness of the containment of twig queries
in the presence of MS. Proving the membership of the prob-
lem to coNP is, however, not trivial. Given an instance
pp, q, Sq, the set of all the trees satisfying p and S can be

characterized with a set Gpp, Sq containing an exponential
number of polynomially-sized graphs and p is contained in q
in the presence of S iff the query q can be embedded into all
the graphs in Gpp, Sq. This condition is easily checked by a
non-deterministic Turing machine.

Theorem 4.8 CNTMS,Twig is coNP-complete.

We also point out that the results are easily adapted to
disjunction-free DTDs, which allows us to state results which,
to the best of our knowledge, are novel.

Corollary 4.9 IMPLdisj -free-DTD,Twig is in PTIME and
CNTdisj -free-DTD,Twig is coNP-complete.

5. EXPRESSIVENESS OF DMS
We compare the expressive power of DMS and DTDs with
focus on schemas used in real-life applications. First, we in-
troduce a simple tool for comparing regular expressions with
disjunctive multiplicity expressions, and by extension, DTDs
with DMS. For a regular expression R, the language LpRq of
unordered words is obtained by removing the relative order
of symbols from every ordered word defined by R. A disjunc-
tive multiplicity expression E captures R if LpEq � LpRq. A
DMS S captures a DTD D if for every symbol the disjunctive
multiplicity expression on the rhs of a rule in S captures
the regular expression on the rhs of the corresponding rule
in D. We believe that this simple comparison is adequate
because if a DTD is to be used in a data-centric application,
then supposedly the order between siblings is not impor-
tant. Therefore, a DMS that captures a given DTD defines
basically the same type of admissible documents, without
imposing any order among siblings. Naturally, if we use the
above notion to compare the expressive powers of DTDs and
DMS, DTDs are strictly more expressive than DMS.

We use the comparison on the XMark [20] benchmark and
the University of Amsterdam XML Web Collection [13]. We
find that all 77 regular expressions of the XMark benchmark
are captured by DMS rules, and among them 76 by MS rules.
As for the DTDs found in the University of Amsterdam XML
Web Collection, 84% of regular expressions (with repetitions
discarded) are captured by DMS rules and among them 74.6%
by MS rules. Moreover, 55.5% of full DTDs in the collection
are captured by DMS and among them 45.8% by MS. Note
that these figures should be interpreted with caution, as we
do not know which of the considered DTDs were indeed
intended for data-centric applications. We believe, however,
that these numbers give a generally positive answer to the
question of how much of the expressive power of DTDs the
proposed schema formalisms, DMS and MS, retain.

6. CONCLUSIONS AND FUTURE WORK
We have studied the computational properties and the expres-
sive power of new schema formalisms, designed for unordered
XML: the disjunctive multiplicity schema (DMS) and its
restriction, the disjunction-free multiplicity schema (MS).
DMS and MS can be seen as DTDs using restricted classes of
regular expressions and interpreted under commutative clo-
sure to define unordered content models. These restrictions
allow on the one hand to maintain a relatively low compu-
tational complexity of basic static analysis problems while
retaining a significant part of expressive power of DTDs.

An interesting question remains open: are these the most
general restrictions that allow to maintain a low complexity

profile? We believe that the answer to this question is nega-
tive and intend to identify new practical features that could
be added to DMS and MS. One such feature are numeric
occurrences [14] of the form arn,ms that generalize multiplici-
ties by requiring the presence of at least n and no more than
m elements a. It would also be interesting to see to what
extent our results can be used to propose hybrid schemas
that allow to define ordered content for some elements and
unordered model for others.

7. REFERENCES
[1] S. Abiteboul, P. Bourhis, and V. Vianu. Highly

expressive query languages for unordered data trees. In
ICDT, pages 46–60, 2012.

[2] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and
D. Srivastava. Tree pattern query minimization. VLDB
J., 11(4):315–331, 2002.

[3] C. Beeri and T. Milo. Schemas for integration and
translation of structured and semi-structured data. In
ICDT, pages 296–313, 1999.

[4] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability
in the presence of DTDs. J. ACM, 55(2), 2008.

[5] M. Berglund, H. Björklund, and J. Högberg. Recognizing
shuffled languages. In LATA, pages 142–154, 2011.

[6] G. Bex, F. Neven, and J. Van den Bussche. DTDs versus
XML Schema: A practical study. In WebDB, pages
79–84, 2004.

[7] I. Boneva and J. Talbot. Automata and logics for
unranked and unordered trees. In RTA, pages 500–515,
2005.

[8] I. Boneva, J. Talbot, and S. Tison. Expressiveness of a
spatial logic for trees. In LICS, pages 280–289, 2005.

[9] A. Brüggemann-Klein and D. Wood. One-unambiguous
regular languages. Inf. Comput., 142(2):182–206, 1998.

[10] L. Cardelli and G. Ghelli. TQL: a query language for
semistructured data based on the ambient logic.
Mathematical Structures in Computer Science,
14(3):285–327, 2004.

[11] S. Dal-Zilio and D. Lugiez. XML schema, tree logic and
sheaves automata. In RTA, pages 246–263, 2003.

[12] W. Gelade, W. Martens, and F. Neven. Optimizing
schema languages for XML: Numerical constraints and
interleaving. SIAM J. Comput., 38(5):2021–2043, 2009.

[13] S. Grijzenhout and M. Marx. The quality of the XML
web. In CIKM, pages 1719–1724, 2011.

[14] P. Kilpeläinen and R. Tuhkanen. One-unambiguity of
regular expressions with numeric occurrence indicators.
Inf. Comput., 205(6):890–916, 2007.

[15] E. Kopczynski and A. To. Parikh images of grammars:
Complexity and applications. In LICS, pages 80–89,
2010.

[16] W. Martens, F. Neven, and T. Schwentick. Complexity
of decision problems for XML schemas and chain regular
expressions. SIAM J. Comput., 39(4):1486–1530, 2009.

[17] G. Miklau and D. Suciu. Containment and equivalence
for a fragment of XPath. J. ACM, 51(1):2–45, 2004.

[18] F. Neven and T. Schwentick. XML schemas without
order. 1999.

[19] F. Neven and T. Schwentick. On the complexity of
XPath containment in the presence of disjunction,
DTDs, and variables. Logical Methods in Computer
Science, 2(3), 2006.

[20] A. Schmidt, F. Waas, M. Kersten, M. Carey,
I. Manolescu, and R. Busse. XMark: A benchmark for
XML data management. In VLDB, pages 974–985, 2002.

[21] T. Schwentick. Trees, automata and XML. In PODS,
page 222, 2004.

[22] H. Seidl, T. Schwentick, and A. Muscholl. Numerical
document queries. In PODS, pages 155–166, 2003.

[23] W3C. XML Path language (XPath) 1.0, 1999.

