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Abstract—Loop closure detection systems for monocular  First, we briefly describe the underlying monocular SLAM
SLAM come in three broad categories: i) map-to—map, ii) image— system used during the experiments. Then, we describe in
to-image and iii) image-to-map. In this paper, we have chosen 516 getail the chosen implementation of each of the diffiere
an implementation of each and performed experiments allowing .
the three approaches to be compared. Using these insights Weapproaches to loop clogure. Resul?s are then given on thg per
go on to describe an extension to the image—to—-map matching formance of each algorithm at closing a loop and comparisons
approach which makes more use of the available information to are made between the methods. The bulk of this work on
improve the algorithm. comparing the methods is covered in [12] where the image—to—

map method is introduced. Finally, we describe an extension
. INTRODUCTION to the image—to—map method which makes use of more of the

. i available image information.
Loop closure detection is an important problem for any

SLAM system and, since cameras have become a common I[I. THE MONOCULAR SLAM SYSTEM

sensor in robotics applications, more people are turning to The monocular SLAM system used is derived from Davi-
wards vision based methods to achieve it. In this pap@pn's original system [5] where the pose of a handheld camera
we compare three quite different approaches to loop cloSygeracked, while simultaneously building a map of point
detection for a monocular SLAM system. The approach@syyres in 3D using the EKF. The underlying system is
essentially differ in where the data association for datgct essentially the same as the system described in [2], but with

the loop closure is done — in the metric map space or in th&e|ocalisation module [13] to recover from situations wehe
image space. The three approaches are as follows: the system becomes lost.

o Map-to—map — Correspondences are sought betweenThe Hierarchical SLAM [6] submapping technique is used
features in two submaps taking into account both thdip both reduce linearisation errors and to allow the system t
appearance and their relative positions. In this paper weake larger maps in real time. The system creates a series
look at the method of Clementet al. [2], who applied of submaps while determining the relative scale difference
the variable scale geometric compatibility branch argetween the maps which result from using a bearing only
bound (GCBB) algorithm to loop closing in monoculasensor. For more details of this Hierarchical SLAM techeiqu
SLAM. The method looks for the largest compatible seh monocular SLAM see [2]. The scale correction can be seen
of features common to both maps, taking into accouirt Fig. 1(a) and (b).
both the appearance of the features and their relativeWhen loop closure is detected, the global hierarchical map
geometric location. can be updated by adjusting the transformations between

« Image—to—image— Correspondences are sought betweeubmaps in a non-linear constrained optimisation. Theltresu
the latest image from the camera and the previously seafithe optimisation after the loop closure has been detested
images. Here, we discuss the method of Cummehs shown in Fig. 1(c). This loop closure can be detected in many
al. [4] [3]. Their method uses the occurrences of imageays though as will be discussed in the next section.
features from a standard library to detect that two images
are of the same part of the world. Careful consideration
is given to the distinctiveness of the features — identical In order to close loops in a map, the system must recognise
but indistinctive observations receive a low probabilify owhen it has returned to a previously mapped region of the
having come from the same place. This minimises falseorld. Essentially, at this point two regions in the map are
loop closures. found to be the same region in the world even though their

« Image-to—-map— Correspondences are sought betwegiosition is incompatible given the uncertainty estimatehie
the latest frame from the camera and the features in thrap — the classic loop closure problem. The system must then
map. We examine the method of Willianet al. [12] be able to calculate the transformation needed to aligrethes
who find potential correspondences to map features in ttveo regions to ‘close the loop’.
current image and then useaARsAc with a three—point—  In the following sections, we describe three methods for de-
pose algorithm to determine the camera pose relative texting loop closure based on three quite different appresi.c
the map. We will later test the performance of all three algorithms.

I[1l. DETECTINGLOOPCLOSURE



(@) Local maps obtained with pure monocular (b) Local maps auto-scaled (c) After loop closing
SLAM

Fig. 1. Map made of a university courtyard. Twelve submaps aittotal of 848 features were made during the 70m trajectorg [Bbp closure was
detected using the image—to—map method [12].

A. Map-to—Map Matching: Clementt al. the pose of the camera relative to a map of point features by
Clementeet al. [2] presented a method to close loops irﬁinding correspondences between the image and the features

monocular SLAM maps based on finding correspondenc&the map. The pose is then determined from the correspon-

between common features in different submaps. The algoritfl€NCes using RSAC and the three—point-pose algorithm [7].
used is a variable scale version of the original geometricThe relocalisation module is able to run faster than fram-

compatibility branch and bound algorithm (GCBB) [10]_erate through the use of a fast matching algorithm [13] based

The system uses both similarity in visual appearance (un&?g_ the randomised fern classifier [9]. V\/.hile. the features. are
constraints) and relative distances between featuresargbin® 'anFraCki(,j’ e;ach .?ucgesfsful obs_erk\]/atmnhl_s Esﬁj tottrain
constraints) to find the largest compatible set of commdi@Ssifier. This classifier is fast but it has a high false fasi
features between two submaps. Once a consistent set has 58 Incorrect classifications are handled usimguBAC.

found, the relative scale, rotation, and translation ndete To detect Io_op _clos_ure_s, the sy_stem uses the quule 0
align the two submaps can easily be determined attempt relocalisation in distant regions of the map adogrd

The system was shown to work in [2] where it found a sj? tI'_1te f_eature COVISIbI|ItI§S. Wht;ar}[ a relotiallsatlon tls ME:—b .
of five common features between the first and last submaps i It gIVEs & correspondence between he current posgbein
tracked, and the pose given by the relocalisation elsewihere
a large loop. L . i
the map. This gives the translation and rotation neededdo al
B. Image—to—Image Matching: Cummiasal. the two regions, but a single pose is not enough to determine
the scale difference. To achieve this, the camera is trafiked
- . - '9%5me time in both regions (while freezing one of the maps so
closures based on recognising the visual appearance df prey, o : ) .
S . mformation is not counted twice), and this common trajgcto
ously seen places. The matching is performed by detecting in ' . X
; San be used to find the transformation between the two regions
each image the presence or absence of features from a vislgl 1o the relative scale difference (Fig. 2)
vocabulary [11] based on SURF features [1], which is Iearnedp 9 g £)-

off-line from training data. Note that the training data sisis IV. RESULTS

of generic images not collected in the environment wherp 100 We have used the monocular SLAM system to build a map
closure detection is performed. The system takes into atcodf a university courtyard. Due to the size of the environment
the probabilities of features appearing together, andls @b the system built twelve submaps as the camera was moved
work out the probability that two images show the same regiefiound the 70m trajectory facing the wall. Each new submap
of the world. This method does not depend on a metric mggs begun by initialising new features in the same image
being created since it only compares images directly. Hewevigcations as those just observed as the last submap finished.
it can be used with a metric map if the camera pose relatiffese common features can then be used to fix the relative
to such a map can be found for each image as well as #ale between submaps as shown in Fig. 1.
relative pose between two images for the loop closure. MuchEven after the scale between submaps has been corrected,
work has been done on this problem in the field of computgfe map still exhibits a common problem, that although it has
vision [8]. returned to the same region in the world, this is not reflected
in the map. A loop closure detection system is needed to
recognise that the system has traversed a loop so the map
In [12] a loop closure detection method is proposed whiatan be corrected accordingly.
is based on a relocalisation technique used to recover from\WWe have used all three algorithms to try to detect the
tracking failures [13]. This relocalisation module detares loop closure in this sequence. We have also evaluated the

C. Image—-to—Map Matching: Williamest al.



Fig. 2. While tracking in the twelfth map (left), the systemoelises in
the first submap (right) using our image—to—map algorithm. Treeswpmaps
are merged by first aligning the common trajectories, and thémr@ng the
constraint that the two sets of corresponding camera posé®dl by green
lines) are equal.

performance of the algorithms further by checking their-sus
ceptibility to false positives and their run time.

A. Map-to—Map Matching: Clementd al.

When the system comes to close a loop using the map-to-
map method, it is able to find the common features between
the two maps as shown in Fig. 4(a). Unfortunately, during the
loop closure, there is no guarantee that the system will have
initialised features in the exact same place in two differen
maps. In fact, in our experiments to date, we have four- 3. During the overlap in the sequence, the system trétuksamera

. .. in two submaps. The colours indicate if an observation wasessful (red),
submaps with sufficient common features to detect the 10QRccesstul (blue), rejected by JCBB (purple), or notnatted, (yellow).
closure to be rare. Fig. 3 shows an example of the same fraomdy two of the features are actually common to both submaps aikes
being tracked in two different maps. Despite the large numbleimpossible for the map-to—map method to detect the loop close.
of features visible, only two features are common to both
maps. The algorithm correctly gave high probability that each gma

Even getting a corresponding set of features does ng&s a new place until the camera had traversed the loop
guarantee a true correspondence between the two submaps. returned to the start of the loop. At this point, the
Fig. 4(b) shows that the GCBB algorithm also found sets gf)stem gave high probability (99.9%) that the most recent
five “common” features between eight other pairs of submapsage corresponded to an image at the start of the sequence
We were unable to find a threshold able to reliably distinguigFig. 4(c)).
between true positives and false positives for the mapsemtea Tq test the reliability of the loop closure detection, we

by our SLAM system. _ _ computed loop closures for every frame from a second lap of
During our tests, the variable scale GCBB algorithm t00je courtyard, against the set of images from the first lags Th
around 100mSs to compare two maps. When the SLAMsimylates the ‘kidnapped robot situation’, a sudden ttrsi
system finishes one submap, there is easily time to COMP&Gin the end of the first loop to a random part of the courtyard.
this submap to all previous submaps before the next oneyiss 5 way to test if the algorithm would be able to detect
completed. a loop closure at each position. The results are shown in
B. Image—to—Image Matching: Cummiasal. Fig. 4(d) where frames that matched an image in the previous
loop are marked. A threshold was chosen that removes &l fals

is desianed to work with non-overlanping kev frames. Wh eoﬂ:sitives to allow comparison with the image—to—map method
9 /eriapping key ) e system found matches that met this probability threshol
run on a robot, the odometry is used to trigger key frame

. ; % of indicating that th I I
capture. Without odometry, we simply used every 40th frarrlln 8% of attempts indicating t : atthe system wou d be able to
ose the loop at these positions. The precision—recallecur

of the video fo test the system. Ideally though, an automaflnc Fig. 5 shows the effect of the probability threshold on the
key frame detector should be used.

. . re*iability of the system.
The loop closure detection system determines for each o ) .
these input images if it is a new place or a loop closure, O €ach image, the algorithm takes on average 283ms to
run. Much of this time (73ms) is taken up by SURF feature

1Tests were done on a Dual Core 3GHz machine. detection. This method relies on this descriptor whichdber

The image—-to—image matching method of Cummeénsl.,



(a) Map-To—Map: Loop closure detected using the method of Clemestte (b) Map-to—Map Reliability: Matching was attempted between every

al. [2]. The system finds a set of features consistent in both gegnad pair of non-consecutive submaps. Shown here are the eigbe fal

appearance between the first and last submaps. It is onlyssiatd the SLAM  positives sets with five correspondences. The true posi@asenot found

system has initialised common features in the two submaps. in this run since only two features were shared between thke dird
final submaps (See Fig. 3).

Image-to—Image Method

3000

Frame in 1st Lap
N
o
o
o

1000

0 1000 2000 3000
Frame in 2nd Lap

(c) Image-To—-Image: Loop closure detected using the method of Cumnehs (d) Image-To-Image Reliability: Correspondences were found be-
al. [4]. The system detects visual words in each image and thecooercce of tween every frame in a second lap and every 40th frame in thddpst
these words is used to calculate the probability of loopuriesThe system finds A threshold was chosen to remove all false positives. At tiigshold,

a high probability that the most recent image matches one sedierda the the system was successful in 8% of attempts. To see the eff¢beo
sequence. Visual words are detected in the two images areatedi in green if threshold on performance see Fig. 5. Gaps are in regions ofrohiel
they match in the other image. Note that interest point geonieimpt considered. with lots of foliage (where the image—to—map method also stasyg
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(e) Image—To—Map: Loop closure detected using the method of Williaets (f) Image—to—Map Reliability: Relocalisation was attempted on every

al. [13]. While tracking in the last submap, the system finds a carpese frame of a second lap. The light dots show the camera pose mecbve

consistent with the features in the first submap. The commoectay is used to  relative to the map and trajectory created on the first lapck)la

determine the relative rotation translation and scale rbéglalign the submaps. This indicates that loop close would be successful for tHemmes.
Successful in 20% of frames. No false positives.

Fig. 4. The results of experiments on all three loop closinghods. The left column shows a successful loop closure for esthod. The right column
shows tests on the reliability of each method.
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Fig. 5. This precision—-recall curve for the image—to—imagehoe{4] shows
the algorithm performs well. Quite a high number of true loopsare are
detected with few false positives.

yet slower than the randomised fern classifier. The overall
speed is slower than the framerate, however, the loop gosin
algorithm does not need to be run on every frame.

This method was also tested on the benchmark dataset for
this workshop and successfully detected the loop closures
(Fig. 7 and 8).

C. Image-to-Map Matching: Williamet al. Fig. 6. Image-to-image method: False positive with matchindggiodity of
At every frame, there is usually enough remaining tim@9.9935%. The detected visual words are indicated in eacherragreen if
. o . they match the other image. This false positive could easilgibearded if
after tracking to attempt relocalisation in One other s"*_h’m‘r_"the geometric information were known for the detected visuatds.
The system cycles through submaps until a relocalisation

is successful, indicating a loop closure. For the universit
courtyard sequence, the system successfully detecteddpe kg4t res being initialised by the system. The image—togéma
closure as the features in the original map came back into Vi?natching technique of Cumminst al. works well since it

(Fig. 4(e)). Note that for this method, no common featurgsy pe tuned to remove all false positive while still detegti
are needed between submaps as they are for the map—to—gaPof true positive for this sequence but the image—to-map

method. matching technique of Williamst al. was able to achieve a

The reliabi!ity of this loop clogure 'method was tested USir\Sﬁgher true positive rate of 20%. The image—to—map is able to
the same ‘kidnapped robot' situation we used to test He ne more false positives than the image—to—image method
image-to-image method. The system was allowed to continge making use of the geometry information of the features
searching for loop closures as the camera continued ardend jotected in the image (see Fig. 6). In general, it is bestk® ta

courtyard for a second lap. For the test, the system attempism ,ch information as is feasible into account when detgcti
relocalisation in every submap for every frame. The resufits |50 closures. In the next section, we discuss recent work to

this test can be seen in Fig. 4(f). _ extend the image—to—map method to allow more of the image
The method takes 10-15ms to find potential matches to Mag,rmation to be used.

features in each image. The remaining time is used to run
RANsAC on the matches to determine the pose. This is usually ;|
found within a few milliseconds if a valid pose exists for seo
matches. This is fast enough to allow the algorithm to run onIn the results presented so far, the image-to—map method
a single submap after the system has finished tracking in earsed a separate randomised ferns classifier for each submap
frame. and had to cycle through submaps when attempting loop
closure. We have recently been exploring a way of using
a single classifier which can attempt loop closure with all
We have tested three quite different approaches to degectsubmaps simultaneously. However, as the number of features
loop closure for monocular SLAM systems. We found tha the map increases, the randomised ferns classifier geturn
map—to—map matching technique of Clemeeteal. to be a greater number of possible correspondences for the corner
unsuitable for these sparse maps since it relies on comnmoints in each image. ASAC has to work harder to find a

EXTENSION TO THEIMAGE-TO—MAP METHOD

V. DISCUSSION



set of true correspondences amongst the much larger number
of combinations.

To guide RNSAC into favouring more likely correspon-
dences, we look at the image context surrounding the feature
as well as their classification. This context is describedhay
presence of features from a standard vocabulary in the whole
image in a method similar to the method of Cummaétsal.
However, here we use a faster but less rich vocabulary from
a second randomised ferns classifier.

Every time a map feature is observed by the SLAM system,
the frequency of standard features from the vocabulary is
noted. Later, for loop closure or relocalisatiomNSAC gives
higher weight to correspondences where the current frexyuen
of standard features in the image closely matches the dis-
tribution observed when that map feature was visible during
tracking. The initial results for this method are promising
more work remains to be done to choose the best dista
metric for measuring which features best match the curre b
context.

Map for this Workshop’s benchmark dataset. Regionpaténtial
ure where the robot faced the same direction artedim blue. The

7.
clos

image—to—image method [4] was able to detect loop closuresl ifow of

these regions.

VII. CONCLUSION

We have tested three quite different approaches to degectin
loop closure for monocular SLAM systems. Experiments were
performed in a university courtyard using the Hierarchcal
SLAM technique to build a sequence of submaps of the
environment.

We found the map-to—map matching technique to be unsuit-
able for monocular SLAM because the sparse maps contain
too little information to reliably detect true correspondes.

The image—to—image method was shown to work well in this
sequence. However, the method is not complete if the relativ
pose between corresponding images is needed for correcting
the metric map. The method would benefit from making some

Image—-to—-Image Method: Benchmark Dataset
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use of the relative positions of the detected visual words tOgig g precision-recall curve for this workshop's benchirdataset.

remove some obvious false positives.

The image-to—-map method works well and returned th&]
highest number of true positives with no false positives. We
predict even better performance can be achieved by taking)
more of the image into account as outlined in our proposed
extension to the method. 7]
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