
Generation of Rooted Trees and Free Trees

by

Gang Li
B.S., People’s University of China, 1990

M.S., University of Calgary, 1994

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

We accept this thesis as conforming
to the required standard

Dr. Frank Ruskey, Co-supervisor (Department of Computer Science)

Dr. Dominique Roelants, Co-supervisor (Department of Computer Science)

Dr. John Ellis, Department Member (Department of Computer Science)

Dr. G. MacGillivray, External Examiner (Department of Mathematics and Statistics)

c©Gang Li, 1996
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by
photocopy or other means, without the permission of the author.

ii

Supervisor: Dr. Frank Ruskey

ABSTRACT

In this thesis we present two new recursive algorithms for generating unlabeled

rooted trees and unlabeled free trees. We first simplify Beyer-Hedetniemi’s [5] iter-

ative algorithm for generating rooted trees by using the more natural parent array

representation. We then develop a new recursive algorithm which is much simpler,

more flexible and easier to analyze. With some simple modifications, our algorithm

will generate rooted trees of size n with height lying in a given range and/or with

the number of children of each node bounded by a given integer. Our recursive al-

gorithm for generating rooted trees is then extended to generate free trees. We also

show how to make some simple modifications to generate free trees with some height

constraints and/or with a degree restriction. Both algorithms and their modifications

run in constant amortized time which is the best possible.

Examiners:

Dr. Frank Ruskey, Co-supervisor (Department of Computer Science)

Dr. Dominique Roelants, Co-supervisor (Department of Computer Science)

Dr. John Ellis, Department Member (Department of Computer Science)

Dr. G. MacGillivray, External Examiner(Department of Mathematics and Statistics)

iii

Contents

Abstract ii

Contents iii

List of Tables v

List of Figures vi

List of Symbols viii

Acknowledgements xi

1 Introduction 1

1.1 What are Trees and What is Tree Generation? 1

1.2 Representations of Trees . 2

1.2.1 Rooted Trees . 3

1.2.2 Free Trees . 4

1.3 About the Generation of Trees . 6

2 Previous Algorithms for Generating Rooted Trees 8

2.1 An Introduction . 8

2.2 Counting the unlabeled rooted trees 8

2.3 Previous Algorithms for Generating Rooted Trees 9

2.4 The Beyer-Hedetniemi Iterative Algorithm 10

iv

3 A New Recursive Algorithm for Generating Rooted Trees 14

3.1 A Recursive Algorithm . 14

3.2 Proof of Correctness . 16

3.3 Complexity Analysis . 22

3.4 Generating Rooted Trees with Height Restrictions 23

3.5 Generating Rooted Trees with Parenthood Restrictions 24

3.6 Final Remarks . 27

4 Previous Algorithms for Generating Free Trees 29

4.1 An Introduction . 29

4.2 Counting the Free Trees . 29

4.3 Generating Free Trees . 32

4.4 An Iterative Algorithm . 34

5 A New Recursive Algorithm for Generating Free Trees 40

5.1 An Introduction . 40

5.2 The Recursive Algorithm . 40

5.2.1 How to approach the problem 40

5.2.2 How to generate LT ’s in relex order 44

5.2.3 How to generate RT ’s in relex order 49

5.2.4 Generating free trees in relex order 55

5.3 Proof of Correctness . 58

5.4 Complexity Analysis . 61

5.5 Generating Free Trees with Diameter Restrictions 68

5.6 Generating Free Trees with Bounded Degree 69

6 Conclusions 71

Bibliography 72

Appendix 75

v

A Wright,Richmond,Odlyzko and McKay’s Free Tree Program 75

B Implementation of Jump[] 78

C Pascal code for recursive generation of free trees 80

vi

List of Tables

2.1 The number rn of rooted trees with n nodes 9

3.1 The numbers of rooted trees of various heights. 24

3.2 Number bn,m of rooted trees of size n with at most m children. 26

3.3 The running time(in microseconds) comparison of BH’s iterative and

our new recursive algorithm. 28

4.1 The number fn of free trees with n nodes 32

4.2 Average number of positions accessed by the WROM algorithm. . . . 38

5.1 Average number of recursive calls for generating free trees 62

5.2 The running time (in seconds) comparison of our algorithm with the

WROMalgorithm. 68

5.3 The number of free trees with height restrictions 69

5.4 The number of Cayley m-free trees with n nodes 70

vii

List of Figures

1.1 A preorder labeled rooted tree with root 1. 2

1.2 Two equivalent rooted trees with their level sequences and parent ar-

rays. The tree and its representations on the right are canonic. 3

1.3 A free tree with two centers a and b. The tree on the right is its

corresponding rooted version. 4

1.4 Free trees with 7 nodes and their canonic representation in level se-

quences . 5

1.5 The same set of strings (all well formed parenthesis of length 8) listed

in different orders. 7

2.1 All unlabeled rooted trees of size 4. 9

2.2 Copy Strategy: The tree on the right is the successor of the tree on

the left. 11

2.3 (a) The parent arrays of canonic rooted trees of size 6 in relex order.

(b) The corresponding level sequences. 12

2.4 Beyer and Hedetniemi’s algorithm . 12

2.5 Simplified Pascal implementation of the Beyer-Hedetmieni algorithm. 13

3.1 The tree of rooted trees(up to 5 nodes) R5 14

3.2 Pseudocode of the recursive algorithm for generating rooted trees . . 15

3.3 Recursive CAT algorithm for generating rooted trees. 17

3.4 The tree of rooted “binary” trees (up to 6 nodes). 25

4.1 Weights of the nodes in a free tree. 30

viii

4.2 Two different ways to select the root. 35

4.3 Primary canonical level sequences with n = 8. 35

4.4 (R1) fails: NEXT() generate (b) from (a). 36

4.5 (R2.1) fails: NEXT() generate (b) from (a). 37

4.6 (R2.2) fails: NEXT() generate (b) from (a). 37

4.7 The WROM algorithm . 37

4.8 Free trees generated by the WROM algorithm. 39

5.1 The Hasse diagram of the poset of free trees with at most 7 nodes. . . 41

5.2 Two subtrees of unicentral and bicentral free trees. 43

5.3 For N = 10, h = 3, (a) Biggest LT for unicentral case, (b) Biggest LT

for bicentral case, (c) Smallest LT for unicentral case, (d) Smallest LT

for bicentral case. 45

5.4 The successor of the smallest free tree of height h. 47

5.5 The code to modify Gen(p, s, cL) to make the successor of LT 54

5.6 An algorithm for generating RT . 56

5.7 A recursive algorithm for generating unlabeled free trees 57

5.8 Output of our free tree recursive algorithm for N = 8. 59

5.9 Two forms of the lexicographically smallest RT 60

5.10 The computation tree Fn of our recursive free tree generation algorithm. 63

5.11 Free trees in G2 and G3. 64

ix

List of Symbols

Bn . The set of all binary rooted trees with n nodes

bn . The number of binary rooted trees with n nodes

Rn The computation tree of our recursive rooted tree algorithm with n nodes

R<h . The computation tree of our recursive rooted tree algorithm with heights less

than h

R=h The computation tree of our recursive rooted tree algorithm with heights

exactly h

R>h The computation tree of our recursive rooted tree algorithm with heights

greater than h

Rn . The set of all unlabeled rooted trees with n nodes

rn . The number of unlabeled rooted trees with n nodes

FnThe computation tree of our recursive free tree algorithm with n nodes

Fn . The set of all unlabeled free trees with n nodes

fn .The number of all unlabeled free trees with n nodes

Tr . The rooted version of free tree T rooted at r

Ln . The set of all labeled free trees with n nodes

levT . The level sequence of the rooted tree T

parT . The parent array of the rooted tree T

〈levT [1..n]〉 The level sequence of the rooted tree T with n nodes

〈parT [1..n]〉 The parent array of the rooted tree T with n nodes

par[p] .Parent of node p

≺ . Lexicographically smaller than

x

¹ .Lexicographically smaller than or equal to

Â . Lexicographically larger than

º . Lexicographically larger than or equal to

|T | .The number of nodes in the tree T

T (r) .The subtree of tree T rooted at r

succ(T) .The successor of the rooted tree T in relex order

xi

Acknowledgements

My deepest thanks to my supervisor Dr. Frank Ruskey and Dr. Dominique Roelants

for their academic supervision and financial support. Without them, this thesis will

not be possible.

My thanks to Department of Computer Science for providing the computing fa-

cilities and financial support.

I also thank my wife, my parents for every thing they did to help me and encourage

me to complete my graduate program here in University of Victoria.

Chapter 1

Introduction

1.1 What are Trees and What is Tree Genera-

tion?

A (free) tree is a undirected, acyclic, connected graph. A rooted tree is a free tree in

which one of the vertices is distinguished from the others. The distinguished node is

called the root of the tree (we always draw the root at the top, see Figure 1.1). An

ordered tree is a rooted tree in which the children of each node are ordered. A labeled

rooted tree is an ordered tree in which every node is uniquely labeled by an integer

from {1, 2, . . . , n}, where n is the size of the tree (see Figure 1.1). For a tree T , by

|T | we denote the size of the tree T , i.e., the number of nodes in T . There are many

different labeling schemes. A preorder labeling is obtained by labeling the nodes in

the order that they are encountered in a preorder traversal of the tree. We will be

using this labeling scheme throughout the thesis.

The tree is a widely used data structure in computer science. Various kinds of

trees have been developed for different purposes. For example, quadtrees and octrees

are hierarchical data structures for efficiently storing image data (see [31]); AVL trees

are height balanced trees used for fast key searching in database systems.

Early mathematical research on tree was done by Cayley in the 1850’s [20]. He

found recursive formulas for counting the number of trees , or rooted trees, of finitely

many nodes, where the degree of each node was not limited. An illustration of these

2

1

62 7

4 8

109

3

5

Figure 1.1: A preorder labeled rooted tree with root 1.

formulas can be also found in Knuth’s book[6] and Otter’s paper [12].

Tree enumeration was possibly first found useful by chemists in the study of struc-

turally isomeric, aliphatic hydrocarbons. Cayley was the first to introduce quartic

trees (every node has degree one or four) which represents the structure of the hy-

drocarbons CnH2n+2[4].

1.2 Representations of Trees

There are many different ways to represent a tree. One of the very popular ways is

label representation sequences. We first label the tree, and then form a sequence of

the nodes using the labels assigned to them, which defines the structure of the tree.

For some trees, additional information has to be put into the sequence, such as the

color of each node in red-black trees. Usually, for rooted trees and free trees, we use

positive numbers 1, 2 . . . , n as labels, so the sequences which represent these trees are

of positive integers.

Let s = 〈s1, s2, . . . , sm〉 be a sequence of positive integers, and t = 〈t1, t2, . . . , tn〉
be another sequence of positive integers. Let k = min(m,n). We say s is lexico-

graphically smaller than t, or s ≺ t, if the following conditions are satisfied:

1) there exists an integer j > 0 and j ≤ k so that si = ti for 0 < i < j, and

sj < tj, or

3

0121455188 par: 0123316619
0123312212lev: lev: 0121233122

par:

4 5

3 7 8 10

96

1

2

6

3

2 4

5

1

8

109

7

Figure 1.2: Two equivalent rooted trees with their level sequences and parent arrays.
The tree and its representations on the right are canonic.

2) si = ti for 0 < i ≤ k and n > m.

If sequence s is the representation of tree S and t is the representation of tree T ,

then we say S is lexicographically smaller than T , written S ≺ T , if s ≺ t.

1.2.1 Rooted Trees

Among all of the representations for rooted trees, the level sequence and the parent

array will be the most frequently used in this thesis.

Let Rn be the set of all unlabeled rooted trees with n vertices. Let tree T ∈ Rn be

arbitrarily ordered and then preorder labeled. The encoding sequence 〈l1, l2, . . . , ln〉
is the level sequence of T if li is the level of node i in T . The encoding sequence

〈p1, p2, . . . , pn〉 is the parent array of T if pi is the parent of node i in T . The parent

of node 1 is 0. By level, we mean the length of the path from the node to the root of

the tree. We also use 〈levT [1..n]〉, levT for short, to represent the level sequence of T

of size n, and 〈parT [1..n]〉, or parT , to represent the parent array of T .

Given a rooted tree T , we use T (r) to denote a subtree rooted at r which includes

r and all descendants of r in T . A node d in a rooted tree T is a descendant of a

node e in T if and only if e is on the path from d to the root of T (A node is not

descendant of itself).

For the rooted tree shown in Figure 1.1, its level sequence is 0122311233 and its

parent array is 0122411788. See also Figure 1.2 for some other examples.

Two ordered trees are equivalent if one can be transformed to the other by recur-

4

c

e h j

g

b

a

f d

ik

i

f k

bad

g

c

h

j

e

Figure 1.3: A free tree with two centers a and b. The tree on the right is its corre-
sponding rooted version.

sively reordering the subtrees. The two trees shown in Figure 1.2 are equivalent. This

equivalence relation partitions the set On of ordered trees into equivalence classes,

and Rn is the set of the representatives of these equivalence classes. Now the problem

is to pick a representative for each class. We say an ordered tree T in On is canonic

if its level sequence levT is lexicographically greatest in its class. In Figure 1.2, the

tree on the right is canonic. If an ordered tree is canonic, we also say that its level

sequence and parent array are canonic. If the level sequence of a canonic rooted tree

T is lexicographiclly greater than that for another canonic rooted tree T ′, then we

also say T is (lexicographically) greater than T ′. In this thesis, unlabeled rooted trees

will be represented by their canonic level sequences or their canonic parent arrays,

unless otherwise indicated.

1.2.2 Free Trees

It is easy to represent a rooted tree because of its distinguishable root. For free trees,

things are different.

Let Ln be the set of all labeled free trees of size n, and Fn be the set of all

unlabeled free trees of size n. A center of a free tree is a node whose maximal

distance to all other nodes in the tree is minimal. It is well known [32] that every

free tree has either one or two adjacent centers (see Figure 1.3). Let T be a labeled

free tree in Ln. If T has one center r, then Tr is the rooted version of T by rooting T

at node r. If T has two centers, q and r, then they must be adjacent. By removing

5

the edge between these two nodes, we obtain two rooted subtrees Q(q) and R(r). Let

Q be the canonic rooted tree equivalent to Q(q) and R be the canonic rooted tree

for R(r). If levQ is lexicographically less than or equal to levR, then we pick q as

the root for T which gives the rooted version Tq of free tree T ; otherwise we pick r

which gives the rooted version Tr of T . In either case (one center or two), this root

in the rooted version of a free tree is called the canonic center of the free tree, and

the canonic parent array or level sequence of this rooted version is called the canonic

representation of the free tree T .

As long as we transform a free tree into its corresponding rooted tree, we can

represent the free tree by the level sequence or the parent array of the corresponding

canonic rooted tree. And clearly, the above mapping between unlabeled free trees

and unlabeled rooted trees is one to one. Now, we can generate all unlabeled free

trees in Fn by listing all the canonic representations of corresponding rooted trees of

length n (see Figure 1.4).

0122212

011111101212110121212

012212101221220122211

0122221012312301232120123312

Figure 1.4: Free trees with 7 nodes and their canonic representation in level sequences

Similarly to the rooted tree case, when we say free tree T is greater than free tree

T ′, we mean that the representation, either in level sequence or in parent array, of T

is lexicographically greater than that of T ′.

6

1.3 About the Generation of Trees

There are two different ways of generating trees: random generation and listing.

Random generation is also called random selection which one constructs or chooses

a tree of a given size uniformly at random (see Wilf [17]). By listing, we mean that

all trees of a certain size will be produced in some designated order.

In this thesis, we will only discuss problems on listing trees. Hence generating

means listing in this thesis.

Usually, algorithms for generating trees will produce the trees in some specific

order. There are two kinds of orderings that are commonly used: lexicographic

order, and Gray code order. As for lexicographic order, there are some variants (see

Figure 1.5 for examples): relex order which is reversed lexicographical order, and

colex order which is lex order if we reverse each sequence. Gray code is an ordering

in which two consecutive sequences are very close in terms of a certain closeness

relation. For example, two sequences differ only in one position.

If the cost of generating a tree by an algorithm is bounded by a constant, amor-

tized over all trees, we say the algorithm is CAT(Constant Amortized Time).

Generation algorithms fall into one of two classes: iterative or recursive. By

iterative generation, we mean the next tree is generated by a function call which

works on the currently generated or initialized tree. By recursive generation, we

mean the main generation function is recursive and each tree is generated by a series

of recursive calls instead of only one function call as in iterative algorithms.

In Chapter 2 of this thesis, you will be introduced to some previously known al-

gorithms for generating rooted trees. Among those, the Beyer-Hedetniemi algorithm

will be given detailed attention. Chapter 3 will present a new recursive algorithm

for generating unlabeled rooted trees, and show that, compared with the Beyer-

Hedetmieni algorithm, this new algorithm is much simpler, flexible, more efficient,

and easier to analyze. We will then extend this algorithm to unlabeled free trees by

first introducing some previous algorithms for generating free trees, in Chapter 4,

and then presenting the new recursive algorithm, in Chapter 5, for generating free

7

11110000 11001010 10101010 11110000
11101000 11001100 10101100 11101000
11100100 11011000 10110010 11011000
11100010 11010100 10110100 10111000
11011000 11010010 10111000 11100100
11010100 11110000 11001010 11010100
11010010 11101000 11001100 10110100
11001100 11100100 11010010 11001100
11001010 11100010 11010100 10101100
10111000 10110010 11011000 11100010
10110100 10110100 11100010 11010010
10110010 10111000 11100100 10110010
10101100 10101100 11101000 11001010
10101010 10101010 11110000 10101010

relex order Gray code lex order colex order

Figure 1.5: The same set of strings (all well formed parenthesis of length 8) listed in
different orders.

trees. The new recursive algorithm for free trees is CAT, uses linear space, and is

more efficient (even though it is recursive) than the old algorithms.

It is our convention that we use Propositions to describe straightforward facts

which will help to understand the following discussion, or to assist the proof of a

lemma or a theorem. A Lemma is a statement which is not trivial and hence needs

a proof. A Theorem is a major result which either comes from a reference paper or

needs a proof.

8

Chapter 2

Previous Algorithms for

Generating Rooted Trees

2.1 An Introduction

Rooted trees occur throughout computer science. For example, they are used in data

structures for disjoint sets, and in mathematics, where they are studied in conjunction

with bracketing systems, and even in biology, where they are used for the evolutionary

classification of species. This chapter first discusses how to count the number of

rooted trees, then briefly introduces some previous algorithms for generating rooted

trees. The algorithm due to Beyer and Hedetniemi will be presented in detail.

2.2 Counting the unlabeled rooted trees

In order to design algorithms to generate all unlabeled rooted trees, it is useful to

know the number of them with fixed size n. We follow Knuth’s [6] discussion on

counting rooted trees.

For small trees, we can just draw them to figure out this number. Figure 2.1 gives

all possible unlabeled rooted trees of size 4.

For any given size n, let rn = |Rn| be the number of unlabeled rooted trees.

Obviously r1 = 1. If n > 1, the tree has a root and various subtrees. Let jk be the

9

Figure 2.1: All unlabeled rooted trees of size 4.

number of subtrees with k nodes. Then we have
(
rk + jk − 1

jk

)

ways to choose (with repetition) jk of the rk possible k−vertex rooted trees, which

gives us

rn =
∑

j1+2j2+···+(n−1)jn−1=n−1

n−1∏

k=1

(
rk + jk − 1

jk

)
(2.1)

Cayley[20] further found that the generating function for rn satisfies:

A(x) = x/(1− x)r1(1− x2)r2(1− x3)r3 · · · .

Using equation 2.1, we can compute a table of rn for n = 1 . . . 14 (see Table 2.1).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
rn 1 1 2 4 9 20 48 115 286 719 1842 4766 12486 32973

Table 2.1: The number rn of rooted trees with n nodes

2.3 Previous Algorithms for Generating Rooted

Trees

Several algorithms have been developed for generating (i.e., listing) rooted trees.

The earliest algorithm seems to be that of Scions [16]. He introduced the level

sequence representation of the rooted trees. Both recursive and iterative approaches

were applied in his algorithm. He claimed his algorithm was CAT (no proof was

given).

10

Another method of generating rooted trees was developed by Kozina [19] whose

algorithm ran in time O(n) per tree (not CAT).

Pallo [15] introduced a new encoding, called the weight sequences, of binary rooted

trees, and algorithms for generating, ranking and unranking binary rooted trees were

given. His algorithm for generating binary rooted trees is CAT.

An algorithm for generating binary trees in lexicographic order was presented by

Ruskey and Hu [9]. Ruskey [7] later extended this algorithm to k-ary trees which

generate k-ary trees in O(k) per tree.

Very recently, Vajnovszki [25] presented a new encoding for binary unordered

trees and used this coding scheme to generate binary unordered rooted trees. This

algorithm is CAT.

However, the most wellknown algorithm is due to Beyer and Hedetniemi [5] (It

is also described in the book of Wilf [17]). They generalized Ruskey’s [7] result by

presenting a very simple iterative CAT algorithm for generating unlabeled rooted

trees.

Kubicka and Kubicki[14] later extended Beyer and Hederniemi’s [5] algorithm to

generate binary rooted trees in constant amortized time.

We will discuss Beyer and Hedetniemi’s algorithm in detail because it is related

to our new recursive algorithm which will be presented in Chapter 3.

2.4 The Beyer-Hedetniemi Iterative Algorithm

Beyer and Hedetniemi’s algorithm iteratively generates all canonic rooted trees rep-

resented by level sequences. They were the first to show an algorithm for generating

rooted trees in constant time per tree, amortized over all trees, i.e., a CAT algorithm.

The algorithm lists these canonic level sequences in relex (reversed lexicographic)

order. Let levT = 〈l1, l2, . . . , ln〉 be the level sequence of a rooted tree T , let succT =

〈s1, s2, . . . , sn〉 denote the relex successor of levT and let

p = max{i : li > 1} and q = max{i : i < p, li = lp − 1}.
In other words, p is the position of the rightmost element larger than 1, and q is

11

the position of the parent of node p. For example, in the level sequence 〈01233211〉,
p = 6 and q = 2. Note that p must be a leaf. Then si is determined by

si =





li for 1 ≤ i < p

si−p+q for p ≤ i ≤ n.
(2.2)

q

p

q p

Figure 2.2: Copy Strategy: The tree on the right is the successor of the tree on the
left.

The subsequence lq, lq+1, . . . , lp−1 represents the subtree rooted at q. The update

of si’s repeatedly copies this subsequence (or this subtree rooted at q). For example,

the successor of the level sequence 〈01233221111111〉 is 〈01233212332123〉. See Figure

2.2.

We will extend this idea later to recursively generating rooted trees, and we call

it the Copy Strategy (see Chapter 3).

The algorithm starts with the lexicographically largest canonic level sequence of

length n, which is 〈012 . . . n − 1〉. It then repeatedly applies the successor function

(2.2) to the current canonic level sequence to obtain its successor, until the lexico-

graphically smallest canonic level sequence, 〈0111 . . . 1〉, is obtained. The output of

the Beyer-Hedetniemi’s algorithm for n = 6 is shown in Figure 2.3.

Given a canonic level sequence 〈l1, l2, . . . , ln〉, the procedure in Figure 2.4 will find

the successor of the level sequence:

The direct implementation of the above algorithm will not be CAT, since Step

1, to find p will take n − p + 1 actions (an action is a comparison or an assignment

which takes constant amount of time independent of n) , and Step 2, to find q will

take another p− q actions. Together with Step 3, there will be 2 ∗ (n− p + 1) + p− q

12

012345 012321 012345 012321
012344 012315 012344 012312
012343 012311 012343 012311
012342 012222 012342 012222
012341 012221 012341 012221
012333 012215 012333 012212
012332 012211 012332 012211
012331 012141 012331 012121
012325 012111 012323 012111
012322 011111 012322 011111

(a) (b)

Figure 2.3: (a) The parent arrays of canonic rooted trees of size 6 in relex order. (b)
The corresponding level sequences.

procedure NEXT();
Step 1: find the biggest index p so that lp > 1.
Step 2: find the parent position q of node p.
Step 3: copy the subsequence lq, . . . , lp−1 repeatedly into subsequence lp, . . . , ln.

end; {of NEXT}
Figure 2.4: Beyer and Hedetniemi’s algorithm

actions. A clever implementation of the algorithm will reduce p− q to 1, so that the

total actions taken by NEXT() will only be 2(n− p + 1) + 1.

We use an array L[1..n] to store the level sequences of rooted trees, and par[1..n]

to store the position of the parent of each node i. So, q = par[p]. By updating array

par[] when updating array L[], we can reduce p− q to 1. So we only need to amortize

n− p + 1 over all rooted trees.

The simplified Pascal implementation of the Beyer-Hedetniemi algorithm is shown

in Figure 2.5.

The average number of steps s required to generate single tree is given by the

following formula:

s =
1

rn

∑

T∈Rn

(n− p(T) + 1) (2.3)

where p(T) is the p, defined above, associated with rooted tree T .

In [5], it was shown that s ≤ 2. But Kubicka[11] refined the bound to 1.5113.

13

procedure NEXT
var
i,q : integer

begin
{r1} while L[p] = 1 do p:= p-1
{r2} if p = 1 then done:= true else
{r3} if (L[p] = 2) and (L[p-1] = 1) then begin
{r4} L[p] := 1; par[p] := par[p-1]; printit
{r5} end else begin
{r6} q := p - par[p]
{r7} for i:=p to n do begin
{r8} L[i] := L[i-q]
{r9} if par[i-q] < p-q then
{r10} par[i] := par[i-q]
{r11} else
{r12} par[i] := q + par[i-q]
{r13} end
{r14} p := n
{r15} printit { print out the tree }
{r16} end
end;

Figure 2.5: Simplified Pascal implementation of the Beyer-Hedetmieni algorithm.

14

Chapter 3

A New Recursive Algorithm for

Generating Rooted Trees

3.1 A Recursive Algorithm

Figure 3.1: The tree of rooted trees(up to 5 nodes) R5

Before we present our recursive algorithm, let us first consider Figure 3.1. Figure 3.1

is a tree, we call it R5, formed by all unlabeled rooted trees of at most 5 nodes. The

15

rooted trees at the same level in R5 are of the same size, and organized in relex order

(if represented by their canonic level sequences). Let Rn be such tree of rooted trees

with at most n nodes. In such a tree-of-trees Rn, the rooted tree T of size m < n

is a parent of rooted tree T ′ of size m + 1 if and only if T is obtained by removing

node m + 1 from T ′. So, the only rooted tree of size 1 will be the root of Rn.

Observe that, given any canonic rooted tree T of size m, we can obtain its parent

by removing the last node m, and obtain its children by adding node m + 1 as the

rightmost child of some node on the rightmost path of T . We call these node in

T parent candidates of new node m + 1. We call children of T in Rn the canonic

extensions of T . It seems that some nodes on the rightmost path of T can not be

the parent candidates of node m + 1. For example, the node 4 in the second rooted

tree at the fourth level of R5 in Figure 3.1 can not be the parent candidate of node

5. To generate children of T in relex order, we can simply add node m + 1 as the

rightmost child of the lower level parent candidates first.

Based on above observations, we have the recursive algorithm GenRooted() (see

Figure 3.2).

procedure GenRooted(T)
{L1}if |T | ≥ n then output the tree
{L2}else
{L3} for each parent candidate p of node |T | in T do begin
{L4} T := T by adding node |T |+ 1 as the child of p;
{L5} GenRooted(T)
{L6} end
end; { of GenRooted}

Figure 3.2: Pseudocode of the recursive algorithm for generating rooted trees

The algorithm GenRooted() starts from the smallest rooted tree with only one

node. It can generate rooted trees in lexicographic order or relex order depending on

the order of parent candidates in line {L3}. We choose to follow the Beyer-Hedetniemi

algorithm to generate rooted trees in relex order. R5 becomes the computation tree

of the algorithm GenRooted() when n = 5. GenRooted() actually traverses the

16

computation tree Rn in preorder.

Now, the problem becomes how to choose those parent candidates so that the re-

sulting rooted tree after adding the new node preserves the canonic property. Observe

that if p is a parent candidate, then the parent of p is also a parent candidate (see

the next section for more details). Then we only need to know, for a canonic rooted

tree T with n nodes, how to add a new node to get its biggest canonic extension.

To solve this problem, we adopt the idea from [5] (see also Chapter 2 and 4) – we

apply the so called copy strategy (see next section for more details) to help find such

a parent candidate which leads to the biggest canonic extension of the rooted tree

T . To implement the copy strategy, we have to know which subtree to copy, i.e., the

root and the size of that subtree.

Let s be the root of the subtree to copy, and cL be the size of the subtree. The

algorithm Gen() in Figure 3.3 implements the copy strategy: initially, s and cL are

set to 0. This helps us to initialize the biggest canonic rooted tree of size n, which is

a chain of length n− 1: when s = 0, we add a new node to the very end of the chain

(see line {R3}). After the chain of length n− 1 is built, s and cL will get their first

non-zero values in lines {R9} and {R11}, respectively.

Given any rooted tree T of size p− 1, to generate the biggest extension of T , we

follow the current s and cL to continue copying the previously chosen subtree (see

line {R4-R7}), s and cL will not be changed. To generate all other extensions of T ,

we add node p as a child of its current grandparent par[par[p]] (see line {R10}). we

set s = par[p] and cL = p− par[par[p]] (see lines {R9} and {R11}, respectively) for

further use.

3.2 Proof of Correctness

First, we define some terms. Nodes with the same parent are siblings. If c1 < c2 <

· · · < cm are all the siblings of node p, and i is the largest index for which ci < p, we

say the c1 is the leftmost sibling of p, and ci the rightmost younger sibling of p. We

say tree T is a prefix of tree T ′ if levT is a prefix of levT ′ .

17

procedure Gen(p, s, cL : integer);

begin

{R1} if p>n (*or ((par[p-1] = 1) and (par[p-2] = 1))*) then PrintIt

{R2} else begin

{R3} if cL = 0 then par[p] := p-1 else <- initialize first tree

{R4} if par[p-cL] < s <- gen biggest extension

{R5} then par[p] := par[s]

{R6} else par[p] := cL + par[p-cL];

{R7} Gen(p+1, s, cL);

{R8} while par[p] > 1 do begin <- gen other extensions

{R9} s := par[p]; <- find new subtree to copy

{R10} par[p] := par[s];

{R11} Gen(p+1, s, p-s)

{R12} end

{R13} end

end; {of Gen}

Figure 3.3: Recursive CAT algorithm for generating rooted trees.

Given two sequences T1 and T2, we write T1 ≺ T2 if and only if T1 is lexicograph-

ically less than T2. We show in Lemma 3.2.1 that the level sequence and the parent

array are equivalent in terms of lexicographic ordering. For canonic rooted trees T

and S, we write T ≺ S if parT ≺ parS; we write T ≡ S if parT = parS.

Lemma 3.2.1 For canonic trees T and S of the same size, parT ¹ parS if and only

if levT ¹ levS.

Proof:By induction on the size. It is trivial to check the lemma holds for trees of

size 1.

Assume that the lemma holds for all canonic rooted trees of size n− 1. Suppose

T and S are canonic rooted trees of size n. Let 〈parT [1..n]〉 and 〈parS[1..n]〉 be the

parent arrays of trees T and S respectively; 〈levT [1..n]〉 and 〈levS[1..n]〉 be the level

sequences of T and S respectively. If parT ≺ parS then either 〈parT [1..n − 1]〉 ≺
〈parS[1..n− 1]〉 or 〈parT [1..n− 1]〉 = 〈parS[1..n− 1]〉 and parT [n] < parS[n]. In the

first case, we have 〈levT [1..n− 1]〉 ≺ 〈levS[1..n− 1]〉 which implies that levT ≺ levS

by definition of lexicographic order. The second case implies that T and S are the

18

same if node n is removed from both trees, and the parent of node n in T is a proper

ancestor of the parent of n in S. So, we have levT [n] < levS[n] which implies that

levT ≺ levS. Similarly, we can prove that if levT [n] ¹ levS[n] then parT [n] ¹ parS[n].

2

We say that subtrees, T1 and T2, of T are comparable subtrees if the roots of these

two trees are siblings. Recall that T (p) denotes the subtree of T rooted at node p.

Since the trees will be generated in relex order, we shall produce the lexicograph-

ically biggest tree first in the process of constructing a tree with n nodes based on a

tree with n− 1 nodes already generated.

Proposition 3.2.1 Given a canonic tree T , if p1 < p2 < . . . < pk is a sequence of

consecutive children of a node p in T , then T (pi) º T (pi+1) for 1 ≤ i ≤ k.

Now suppose that we have a tree T with n−1 nodes and want to extend to a tree

with n nodes. Because of the preorder labeling, node n must be the child of some

ancestor of node n− 1 (a node is considered to be an ancestor of itself). That is to

say, node n should be added as a rightmost child of some node on the rightmost path

of the current tree.

Proposition 3.2.2 If 〈par[1..n− 1], par[n]〉 is canonic and par[n] 6= 1, then

〈par[1..n− 1], par[par[n]]〉 is also canonic.

Suppose root = p1, p2, . . . , pk = n− 1 is the rightmost path of a canonic tree T of

size n− 1. We say that pi is a valid position if we add a child to pi, and the new tree

is still canonic. If p is a valid position, then by Proposition 3.2.2, all the ancestors

are valid positions too.

Lemma 3.2.2 If T is a canonic tree with n− 1 nodes, then the valid positions of T

will produce all possible canonic trees with n nodes and T as their prefix

Proof:Any canonic tree of size n with T as its prefix must have its node n added

as the child of an ancestor p of node n− 1. Hence p is a valid position because it is

on the rightmost path of T , and the new tree with n nodes is canonic. 2

19

Obviously, the lexicographically largest extension of a tree T is created by adding

a child to the valid position with biggest level(farthest from the root). Now, we

wish to know how to determine this position. As a matter of fact, all nodes on the

rightmost path are candidates for valid positions, and if node n− 1 is valid, then it

is the one with the greatest level.

Let pi be as defined above, and ci is rightmost younger sibling of pi (a node is not

a sibling of itself), then by Proposition 3.2.1, T (ci) º T (pi).

Proposition 3.2.3 T ′ is a canonic extension of T by adding node n as par[n] = pi

if and only if T ′(pj) ¹ T ′(cj) for all j ≥ i.

Proposition 3.2.4 Let T be a canonic tree, and let a1, a2, . . . , am be consecutive

children of the root of T . Suppose i is the smallest index such that T (ai) = T (ai+1) =

· · · = T (am−1) and T (am) is a prefix of T (am−1). Let Lj be the subsequence in levT

associating with T (aj) for 1 ≤ j < i, L for T (ak) where i ≤ k < m, and L′ for T (am).

An extension T ′ of T , 〈0, L1, . . . , Li−1, L, . . . , L, L′, b〉, is canonic and lexicographically

largest if 〈L′, b〉 is a prefix of L when T (am−1) is bigger in size than T (am), or 〈b〉 is

a prefix of L when T (am−1) = T (am).

The above proposition tells that we can copy the rightmost comparable subtree

to expand to a greatest tree in lex order if the subtree that contains node n − 1 is

a prefix of its rightmost comparable subtree. But such expansion will not always

preserve the canonicity if there is more than one subtree containing n− 1 which are

prefixes of their rightmost comparable subtrees. The following definition is important

in finding the right comparable subtree (if this tree has been repeatedly copied more

than once, we choose the first one) to produce the greatest in lex order and preserve

the canonicity. We call the root of this subtree the critical node.

Definition 3.2.1 Let q be the smallest ancestor (a node is an ancestor of itself)

of n − 1 such that T (q) is a prefix of T (c), where c is the rightmost proper sibling

of q. Then the critical node s is the leftmost sibling of c such that T (s) ≡ T (c).

cL = |T (s)| is the size of T (s).

20

The Critical node s is well-defined for all rooted trees except the greatest tree

〈0, 1, . . . , n− 1〉, since the siblings of the first ancestor with at least one sibling could

be the candidates for the critical node. For the exceptional case, i.e. the greatest

canonic tree (which is actually a chain), we let s = 0 and cL = 0. We will not do

any copying, we just add node n as the child of node n− 1.

Observe that a tree is canonic if and only if all its subtrees are canonic.

Lemma 3.2.3 The tree T ′ of size n extended, by copying subtree T (s), where s is the

critical node, from T of size n− 1 is canonic and lexicographically greatest among all

rooted trees of size n.

Proof:Let s be as defined in the Definition 3.2.1. Since we are actually copying

subtree T (s), the subtree T ′(par(s)) is canonic and lex largest with prefix T (par(s))

by Proposition 3.2.4. Let c be rightmost younger sibling of par(s), then we know that

T (par(s)) ≺ T (c) and T (par(s)) is not a prefix of T (c) because of the minimality

of s. So, T ′(par(s)) ≺ T ′(c) where T ′(c) = T (c). Similarly, we can prove that all

subtrees rooted at ancestors of s,which are all valid positions, are canonic (including

the root of T ′), hence T ′ is canonic.

Since T ′(par(s)) is the lex largest extension of T (par(s)), any larger extension of

tree T will definitely enlarge T (par(s)) further because the newly added node n in

T ′ must be a descendant of par(s) on the rightmost path. This is contrary to the

fact that T ′(par(s)) is the lexicographically largest extension of T (par(s)). Hence T ′

is the lex largest extension of T . 2

Suppose we are given any prefix 〈par[1..k]〉, then to generate the parent arrays of

all rooted trees with n nodes, we divide the situation into two cases:

case 1: no trees with this prefix have been generated yet;

case 2: all trees with this prefix have been generated.

Copying Strategy:

{Rule1} For case 1, use the current s and cL to continuously

21

copy subtree T (s) of size cL.

{Rule2} For case 2, set s = par[k], and par[k] = par[s]

if par[k] is not the root of the tree T .

Note that the first tree 〈0, 1, 2, . . . , n−1〉 will be initialized by the program. There

is no doubt that it is the lexicographically greatest tree of size n. For this case, critical

node s remains the same as in the initial call, s = 0 and cL = 0.

Lemma 3.2.4 {Rule2} in the Copying Strategy correctly updates the critical node s

for any given prefix.

Proof:For the given prefix(which is a tree T) 〈par[1..k − 1], par[k]〉, either there

exists an ancestor p 6= k of k such that T (p) is a prefix of its rightmost sibling, or

there exists no such p. Let a = par[k] and b = par[par[k]].

The second case implies that for any ancestor q of k, T (q) ≺ T (c) where c is the

rightmost sibling of q. After the updating par[k] = par[par[k]], we get T ′,〈par[1..k−
1], par[par[k]]〉. For any ancestor q of a, T ′(q) ≺ T (q), hence there exists no q such

that T ′(q) is a prefix of T ′(c) where c is its rightmost sibling. So, only T ′(k), the tree

with only one node k, is a prefix of T (a), where a is its rightmost sibling. And there is

no sibling c′ of a such that T ′(a) = T ′(c′) since a is a valid position for 〈par[1..k−1]〉.
So s = a for prefix 〈par[1..k − 1], par[par[k]]〉.

For the first case, any ancestor p of node k in T ′ has no sibling c such that T ′(p)

is a prefix of T ′(c), even though T (p) might be the prefix of the tree rooted at p’s

rightmost sibling, because T ′(p) ≺ T (p). Similarly, only T ′(k) is the prefix of the

subtree T ′(a), and s = a. 2

Pascal code is shown in Figure 3.3 as the procedure Gen(p,s,cL). The procedure

produces all parent arrays with prefix 〈par[1..p− 1]〉. The initial call is Gen(1,0,0);

no initialization is necessary.

Theorem 3.2.1 If 〈par[1..p−1]〉 is the parent array of a canonic tree T , the critical

node of T is s, and cL = |T (s)|, then the call Gen(p,s,cL) generates all canonic trees

of size n whose parent array has prefix 〈par[1..p− 1]〉.

22

Proof: We shall prove the theorem by induction on decreasing values of p for

fixed n. The theorem is true if p > n because 〈par[1..n]〉 is the only tree of size n

with the prefix of itself. Line {R1} in procedure Gen() will simply output the tree.

Assume for any p + 1 ≤ n, the theorem holds. We want to show that that

Gen(p,s,cL) will generate all canonic trees with prefix 〈par[1..p − 1]〉. If the tree is

the first tree in the list, i.e., cL = 0, we just append node p as child of p − 1. This

is the lex largest tree. Otherwise, by Lemma 3.2.4, s and cL have been correctly

updated by previous calls at line {R9} and {R11} respectively, and Lemma 3.2.3

guarantees the valid position with the biggest level will be generated first at lines

{R4 − R7} by applying {Rule1}. By Lemma 3.2.2, all possible extensions to trees

of size p will be generated at lines {R8 − R12} by applying {Rule2}. Then, by our

assumption, all these extensions will be wholly expanded to canonic trees of size n.

2

3.3 Complexity Analysis

We now argue that the algorithm is CAT. Observe that every iteration of the while

loop results in a recursive call, and that the total amount of computation is propor-

tional to the number of recursive calls. Let rn denote the number of rooted trees

with n nodes. The number of recursive calls is r1 + r2 + · · ·+ rn.

From Knuth [6], pg. 396:

rn ∼ 0.43992...(2.95576...)nn−3/2 (3.1)

Let T (x) =
∑

i≥0 rix
i be the ordinary generating function of the sequence {rn}.

It’s radius of convergence is ρ ≈ 0.3383219. Kubicka [11] shows that asymptotically

1

rn

n∑

i=0

ri ∼ 1

1− ρ
≈ 1.5113.

This constant ratio implies that the algorithm is CAT.

The preceding proof relied on the asymptotic expression (3.1). By slightly modify-

ing the algorithm, we can prove, by completely elementary means, that the algorithm

23

is CAT. In the computation tree Cn, nodes with one child only occur if the corre-

sponding rooted trees have two successive nodes whose parent is the root; i.e., if

par[p − 1] = par[p − 2] = 1. Removing the comment delimiters (* and *) at line

{R1} eliminates nodes with only one child. The computation tree now has more

leaves than internal nodes and so clearly the underlying algorithm is CAT, since only

a constant amount of computation is done at each node. Ruskey [8] calls this the

Path Elimination Technique (PET).

3.4 Generating Rooted Trees with Height Re-

strictions

By slightly modifying the procedure Gen() of Figure 3.3, we can also generate trees

with height restrictions, without losing the CAT property. The computation trees

of these modified algorithms are certain subtrees of Rn, the computation tree of the

original recursive rooted tree algorithm in Figure 3.3.

To generate all trees of height at least h, initialize par[1..h+1] to be 0, 1, . . . , h

and then call Gen(h+2,0,0). To generate all trees of height exactly h, initialize

par[1..h+1] to be 0, 1, . . . , h and then call Gen(h+2,h+1,1). To generate all trees of

height at most h change the test cL = 0 at line {R3} to

(cL = 0) and (p <= h+2)

and ignore the first tree generated (which has height h+1 and acts as the initialization

of the recursive construction).

In all three cases the resulting algorithms are CAT. Recall that Rn is the com-

putation tree for the algorithm in Figure 3.3. Let R>h be computation tree for the

algorithm of generating trees with height at least h, and R=h for the algorithm of

generating trees with height h, and R<h for the algorithm of generating trees with

height at most h. Since each node in the computation trees are associated with a

recursive call Gen(p,s,cL), we label each node of Rn by (p, s, cL). So the root of Rn

will be (1, 0, 0).

24

h 1 2 3 4 5 6 7 8 9 10 11 12 13
n = 9 1 21 76 93 61 26 7 1

n = 10 1 29 147 225 180 94 34 8 1
n = 11 1 41 277 528 498 308 136 43 9 1
n = 12 1 55 509 1198 1323 941 487 188 53 10 1
n = 13 1 76 924 2666 3405 2744 1615 728 251 64 11 1

Table 3.1: The numbers of rooted trees of various heights.

The computation tree R>h is the subtree of Rn rooted at (h + 2, 0, 0); R=h is the

subtree of Rn rooted at (h + 1, 0, 0) minus the subtree of Rn rooted at (h + 2, 0, 0);

R<h is the subtree ofRn obtained by deleting the subtree ofRn rooted at (h+2, 0, 0).

By applying the PET technique as above to eliminate those nodes with one child,

the resulting computation trees, R>h,R=h,R<h, will have more leaves than internal

nodes. This is because the subtree deletion of R=h and R<h can introduce at most

one node with a single child.

3.5 Generating Rooted Trees with Parenthood

Restrictions

In this section we consider rooted tree where each node has at most k children.

Algorithms for the case of k = 2 has been developed previously by Pallo in [15], by

Ruskey in [9] and by Kubicka and Kubicki [14]. Our strategy is the same as in the

rooted tree case; that is, we develop a recursive algorithm whose computation tree

is that subtree of Rn, call it Bn,k, containing only rooted tree T so that |T | ≤ n and

the number of children of each node in T is less than or equal to k. Figure 3.4 shows

B6,2. An important difference from Rn is that in Bn,k there can be rooted trees at

levels less than n with no children. The three nodes in B6,2 boxed with dotted lines

in Figure 3.4 are wasted steps, where two of them have no children.

Let bn be the number of binary unordered trees. These numbers satisfy the

recurrence relation b0 = b1 = 1 and for even n = 2k,

25

Figure 3.4: The tree of rooted “binary” trees (up to 6 nodes).

26

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
rn 1 1 1 2 4 9 20 48 115 286 719 1842 4766 12486 32973

bn,2 1 1 1 2 3 6 11 23 46 98 207 451 983 2179 4850
bn,3 1 1 1 2 4 8 17 39 89 211 507 1238 3057 7639 19241
bn,4 1 1 1 2 4 9 19 45 106 260 643 1624 4138 10683 27790

Table 3.2: Number bn,m of rooted trees of size n with at most m children.

b2k = b0b2k−1 + b1b2k−2 + · · ·+ bk−1bk,

and for odd n = 2k + 1,

b2k+1 = b0b2k + b1b2k−1 + · · ·+ bk−1bk+1 +

(
bk + 1

2

)
,

from which we may compute the numbers in Table 3.2.

Sloane’s sequence database refers to these as the Wedderburn-Etherington num-

bers [34], [35]. Their ordinary generating function satisfies the functional equation

2B(x) = 2 + x[B2(x) + B(x2)]. Asymptotically (from Comtet [36], pg. 55),

bn ∼ 0.7916...(2.48325354...)nn−3/2.

From the preceding expression it follows that

n∑

i=1

bi = O(bn).

A naive approach is to introduce an array chi[1..n] whose ith entry is the number

of children of node i. Replace each of the recursive calls Gen(p+1,s,cL) at lines {R7}
and {R11} by the three lines

chi[par[p]] := chi[par[p]] + 1;

if chi[par[p]] <= k then Gen(p+1,s,cL);

chi[par[p]] := chi[par[p]] - 1;

The result is an algorithm whose running times are CAT for realistic values of

n (i.e., on average there is at most 3 iterations of the loop for n ≤ 25). There is

27

some redundancy in the algorithm: because if any node have k or more children, the

algorithm will still check them to see if it is possible to attach a new child to the

node.

We may obtain an algorithm that is provably CAT by maintaining an array

jump[1..n] where jump[i] is the closest ancestor of node i with less than k children,

and an array rchild[1..n] where rchild[i] is the rightmost child of node i.. Array jump

is the parent array of a certain “subtree” of T generated by the algorithm. See

Appendix B for a Pascal implementation of jump[].

3.6 Final Remarks

The recursive algorithm for generating rooted trees we presented in this chapter is

not only much simpler than the Beyer-Hedetniemi iterative algorithm, it is also much

more flexible in the sense that it can be easily modified to generate rooted trees so that

they are of size between n1 and n2, each node has at most m children, and the height

of the trees is between lb and ub (see Appendix B for its Pascal implementation). We

have proved that this recursive algorithm is a CAT algorithm.

We did a small experiment on the actual running time of the simplified Beyer-

Hedetniemi’s algorithm and our recursive algorithm. The results were in Table 3.3.

Both algorithms were implemented in Pascal and tested on the same machine. It

shows that our recursive algorithm is faster than the iterative one.

28

n trees Iterative time/tree Recursive time/tree
9 286 1940 6.783 1490 5.210

10 719 4880 6.787 3660 5.090
11 1842 12700 6.894 9300 5.049
12 4766 32200 6.756 23300 4.888
13 12486 84800 6.791 60900 4.877
14 32973 221000 6.702 157000 4.761
15 87811 591000 6.730 415000 4.726
16 235381 1560000 6.628 1100000 4.673
17 634847 4260000 6.710 2950000 4.647
18 1721159 11550000 6.711 7980000 4.636
19 4688676 31960000 6.816 21760000 4.641

Table 3.3: The running time(in microseconds) comparison of BH’s iterative and our
new recursive algorithm.

29

Chapter 4

Previous Algorithms for

Generating Free Trees

4.1 An Introduction

A free tree is a connected graph without cycles. The generation of unlabeled free

trees is more complicated than that of rooted trees due mainly to the absence of the

root. In this chapter, we will first count the free trees. We will then give a brief

discussion of previous algorithms for generating free trees. We will provide a detailed

description of Wright, Richmond, Odlyzko and McKay’s [18] algorithm. It is related

to our new recursive algorithm which will be presented in the next chapter.

4.2 Counting the Free Trees

We discussed in Chapter 2 that free trees can be easily represented as a rooted tree

by picking a node as the root. Enumeration of free trees is also related to rooted

trees.

The number rn of unlabeled rooted trees is given by the formula (2.1).

Let F be any free tree with n nodes, and r a node in F . Recall that Tr is

the corresponding rooted version of T with r as root. Suppose there are k sub-

trees of the root r in Tr, with s1, s2, . . . , sk nodes in these respective subtrees. So,

30

a

b

c

d

e f g h

7

7

7

7

7653

Figure 4.1: Weights of the nodes in a free tree.

∑
1≤i≤k si = n− 1. In such circumstances, we say that the weight of r, weight(r), in

F is max(s1, s2, . . . , sk). Thus in the tree in Figure 4.1, the node e has weight 3, and

node f has weight max(5, 2) = 5.

A node in a free tree with minimum weight is called a centroid of the free tree.

Note that the centroid of a free tree is not necessarily a center of the free tree. For

example, in Figure 4.1, the centroid is e, and the center is f .

Let r and s1, s2, . . . , sk be as above, and let t1, t2, . . . , tk be the roots of the subtrees

emanating from r. Obviously, the weight of t1 is at least n− s1 = 1 + s2 + · · ·+ sk.

If there is a centroid c, we have

weight(r) = max(s1, s2, . . . , sk) ≥ weight(c) ≥ 1 + s2 + · · · sk,

and this implies s1 > s2 + · · · + sk. A similar result can be derived if we replace t1

by ti in the above discussion. So at most one of the subtrees can contain a centroid.

This condition implies the following proposition:

Proposition 4.2.1 Any free tree F has either one or two adjacent centroids.

Conversely, if s1 > s2 + · · ·+ sk, there is a centroid in the subtree T (t1), since

weight(t1) ≤ max(s1 − 1, 1 + s2 + · · ·+ sk) ≤ s1 = weight(r),

and the weight of all nodes in the subtrees T (t2), T (t3), . . . , T (tk) is at least s1 + 1.

Now we have the following proposition:

31

Proposition 4.2.2 A node r in a free tree F is the only centroid if and only if

sj ≤ (
∑

1≤i≤k

si)− sj, for 1 ≤ j ≤ k. (4.1)

We now have that the free trees with one centroid is the number of rooted trees

minus those rooted trees that violate the condition in equation (4.1). The number of

free trees with one centroid therefore comes to

rn −
∑

1≤i≤j

i+j=n

rirj.

Now, what is the number of free trees with two centroids? Since the weights of

the two centroids is equal, n must be even and they each are weighted at n/2. Let

n = 2m. To form a bicentroidal free tree, we could just choose two rooted trees of

size m with repetition and connect two roots by an edge. This gives the number of

bicentroidal free trees: 


rm + 1

2


 .

Thus the total number of unlabeled free trees is

fn = rn −
∑

i≤j

i+j=n

rirj +
(1− (−1)n−1)

2




rn/2 + 1

2


 . (4.2)

The equation (4.2) above suggest a simple generating function for the number of

unlabeled free trees (see [6]):

F (x) = A(x)− 1
2
A(x)2 + 1

2
A(x2)

= x + x2 + x3 + 2x4 + 3x5 + 6x6 + 11x7 + 23x8 + · · ·

where A(x) is the generation function for rn.

We can also use equation (2.1) to compute the number fn of unlabeled free trees

of size n (see Table 4.1).

Equation (4.2) gives no clue how to generate free trees, but it does show the

relation between rooted trees and free trees. Some algorithms were developed based

32

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fn 1 1 1 2 3 6 11 23 47 106 235 551 1301 3159 7741

Table 4.1: The number fn of free trees with n nodes

on the idea that the set of unlabeled free trees is the subset of unlabeled rooted trees

if free trees are represented by rooted trees as discussed before.

4.3 Generating Free Trees

Algorithms for generating various labeled or unlabeled rooted trees have been exten-

sively investigated in the past, but to our knowledge few results have been published

on generating unlabeled free trees (even though a significant amount of work has

been done on the generation of labeled free trees). It is easier to generate bicentral

and unicentral free trees separately. In [16], Scions wrote: “However, it has proved

impossible so far to generate the interleaved set of unicentral and bi-central [free]

trees except by carrying out a comparison between the next central tree and the next

bi-central tree, which is essentially a sorting operation which we have previously

avoided.”

Read [1] did some early work in 1970. He formulated an algorithm for generating

all free trees of size n. Unfortunately, since his algorithm must process and store all

trees with n−1 nodes, the space required grew exponentially. Kozina [19] introduced

a coding method using linear space and derived from it an algorithm for generating

rooted trees and free trees. His free tree algorithm generated unicentral free trees and

bicentral free trees separately. The running time is O(nrn) for rooted trees, O(n2rn)

for free trees since after generating each rooted tree, a checking procedure is needed

to output only valid free trees. In 1981, Wilf [17] gave an algorithm for random

generation of unlabeled free trees. But no systematic ways of generation all free trees

was provided.

In 1981, Liu [24] published a paper on generating rooted trees and free trees

33

lexicographically. He first introduced an algorithm for generating rooted trees. Then

this algorithm was extended to generate free trees.

He represented a rooted tree by a sequence of non-negative integers when the

integer at position i gave the number of children it had. The nodes were labeled

by a preorder traversal of the tree as we discussed in Chapter One. Two trees were

equivalent if one can be obtained by rearranging the order of the subtrees of the

other one. The representative of each equivalence class was the lexicographically

largest sequence in this class. The algorithm was iterative. Given a sequence, it

scanned the sequence from right to left to find the first node p with more than one

child, reduced the number of children of p by one, and then made the rest of the

sequence lexicographically largest. The algorithm outputed all valid representations

of unlabeled rooted trees lexicographically from largest one, (n − 1, 0, 0, . . . , 0), to

smallest one, (1, 1, . . . , 1, 0).

A free tree was represented by a rooted tree where the root of the rooted tree

was a center of the free tree. For bicentral free trees, the root was picked so that the

resulting rooted tree was lexicographically bigger. Note that the representation of

rooted tree mentioned above was always referred to as the lexicographically biggest

one in its equivalence class.

The algorithm introduced by Liu for generating free trees was an extension of the

one for rooted trees. The algorithm will generate all rooted trees. Only those valid

representation of free trees will be output.

The complexity of Liu’s rooted tree algorithm was O(nrn), where rn is the number

of unlabeled rooted trees. The complexity of his free tree algorithm was O(n2rn) since

all rooted trees would actually been generated in O(nrn) time and examined in O(n)

time. Note that rn/fn = O(n) where fn is the number of unlabeled free trees, so the

average running time for each tree is O(n2).

In 1984, Tinhofer and Schreck [26] presented an algorithm for generating all unla-

beled free trees as an application of their new method of coding unlabeled free trees.

Their algorithm for coding the free trees is O(n) where n is the size of the free trees.

34

The average length of their coding sequence is 0.84n, the algorithm ran in O(nfn)

time where fn is the number of free trees with n nodes, and the resulting list of

coding sequences were not in lexicographic order. The average running time for each

tree is O(n).

In 1985, Wright, Richmond, Odlyzko and Mckay [18] extended Beyer and Hedet-

niemi’s [5] algorithm for generating rooted trees to generating unlabeled free trees.

The algorithm generates each tree in constant average time, independent of the size

of the trees. We will discuss their algorithm in detail in the following section.

4.4 An Iterative Algorithm

An algorithm of Beyer and Hedetniemi[5] for generating rooted unlabeled trees was

extended to generate unlabeled free trees by Wright,Richmond, Odlyzko and McKay

[18]. We therefor call their algorithm the WROM Algorithm. All nonisomorphic trees

of a given size are generated, without repetition, in time proportional to the number

of trees.

The WROM algorithm adopts canonic level sequences for rooted trees as the

representation of unlabeled free trees (see also the discussion in Chapter 1 on repre-

sentation of free trees). They differ from our representation only on the selection of

the root for bicentral free trees. They call the center they pick the primary root, and

the canonic level sequence of the resulting rooted tree the primary level sequence.

For unicentral free trees, our canonic center is their primary root, and our canonic

representations of free trees represent the exactly same free trees as their primary

level sequences.

For bicentral trees, let c, d be two centers in free tree T , and Q(c) and R(d) be

two rooted trees obtained by deleting the edge between c and d from T . Let |Q(c)|
and |R(d)| be the number of nodes in Q and R respectively.

For any free tree T , the WROM algorithm’s selection of primary root is defined

by the following rules:

(R1) if T is unicentral, then c is the root if c is the center of T , or

35

Our selectionWROM’s root selectionOriginal free tree

Figure 4.2: Two different ways to select the root.

0 1 2 3 4 1 2 3 0 1 2 2 2 2 1 2
0 1 2 3 3 1 2 3 0 1 2 2 2 1 2 2
0 1 2 3 3 1 2 2 0 1 2 2 2 1 2 1
0 1 2 3 2 1 2 3 0 1 2 2 2 1 1 1
0 1 2 3 2 1 2 2 0 1 2 2 1 2 2 1
0 1 2 3 2 1 2 1 0 1 2 2 1 2 1 2
0 1 2 3 1 2 3 1 0 1 2 2 1 2 1 1
0 1 2 3 1 2 2 2 0 1 2 2 1 1 1 1
0 1 2 3 1 2 2 1 0 1 2 1 2 1 2 1
0 1 2 3 1 2 1 2 0 1 2 1 2 1 1 1
0 1 2 3 1 2 1 1 0 1 2 1 1 1 1 1

0 1 1 1 1 1 1 1

Figure 4.3: Primary canonical level sequences with n = 8.

(R2) if T is bicentral with two centers, c, d, then c is the root if

(R2.1) |Q(c)| ≥ |R(d)| and

(R2.2) if |Q(c)| = |R(d)|, then levQ(c) º levR(d).

This representation is different from ours (see Chapter 1). Our representation

is more natural in the sense that we always choose the lexicographically greatest

canonic rooted tree as the representation of the free tree. The WROM algorithm’s

representation is inconsistent since for unicentral free trees they followed this rule,

but for bicentral ones they didn’t.

From now on in this section, we will always look at the rooted tree representation

defined above for any given free tree.

36

(b)(a)

2

k+1k

1

Figure 4.4: (R1) fails: NEXT() generate (b) from (a).

The WROM algorithm trys to use the successor function, NEXT(), in Beyer and

Hedetmieni’s algorithm (see Figure 2.4) to generate all unlabeled free trees. Since

the set of all primary canonic level sequences of free trees is a subset of all canonic

level sequences of rooted trees (see [18] for details), only a filter system is needed to

be built to skip over those canonic level sequences which are not primary.

Beyer-Hedetmieni’s successor function NEXT() will always generate a canonic

level sequence. The only problem raised when applying it to the free tree case is that

the resulting canonic level sequence may not be primary, i.e., the resulting root may

not be a primary root, if we treat the resulting tree as a free tree.

It turns out that there are only three classes of primary level sequences which will

be transferred to a non-primary ones by Beyer and Hedetmieni’s successor function

NEXT():

Class 1: The transformation of primary level sequences in this class will violate

only (R1) above. These trees must be a bicentral free tree with two subtrees Q(c)

and R(d) (as above) where c is the root, and the leftmost subtree of c in Q(c) is a

chain, and the rest of subtrees are one-node subtrees. See Figure 4.4.

Class 2: The transformation of primary level sequences in this class will violate

only (R2.1) above. Such a tree must be unicentral free tree, with c as primary root,

in which the leftmost subtree of c has more than half of the nodes in the whole tree.

See Figure 4.5.

Class 3: The transformation of primary level sequences in this class will violate

only (R2.2) above. Such a tree must be a bicentral free tree, with c as primary root, d

as the other center, and |Q(c)| = |R(d)|, levQ(c) = levR(d)(for Q,R defined as before).

See Figure 4.6.

37

(b)(a)

Figure 4.5: (R2.1) fails: NEXT() generate (b) from (a).

(b)(a)

Figure 4.6: (R2.2) fails: NEXT() generate (b) from (a).

The WROM algorithm then modifies the results generated by NEXT(). Figure

4.8 shows some examples of such modifications.

Let T be a free tree with n nodes in one of the classes above, and NEXT(L)

denotes the level sequence generated by NEXT() from L. Let L[i] be the level of

node i, and T1, T2, . . . , Tm be the subtrees of primary root of T . Let S be the set of

all primary level sequences of length n in Class 1, 2 and 3. The WROM algorithm

for generating free trees is shown in Figure 4.7 based on above notations.

The WROM algorithm was shown to be very efficient. Table 4.2 shows that

the average number of times the WROM algorithm access the positions in the level

sequences L[1..n] where n is the size of the rooted trees.

Theorem 4.4.1 [18] WROM’s algorithm generates unlabeled free trees in Constant

Amortized Time (CAT).

if L ∈ S then begin
L := next(L) where p initialized to |T1|+ 1;
if L[|T1|+ 1] > 1 then L[n− h + 1 . . . n] := 1, 2, . . . , h;
else L := next(L);

Figure 4.7: The WROM algorithm

38

n trees cost cost/tree n trees cost cost/tree
4 2 7 3.500 13 1301 4558 3.503
5 3 11 3.667 14 3159 10709 3.390
6 6 26 4.333 15 7741 25469 3.290
7 11 44 4.000 16 19320 61729 3.195
8 23 97 4.217 17 48629 151897 3.124
9 47 189 4.021 18 123867 377951 3.051

10 106 416 3.925 19 317955 953876 3.000
11 235 887 3.774 20 823065 2423668 2.945
12 551 2006 3.641 21 2144505 6235148 2.907

Table 4.2: Average number of positions accessed by the WROM algorithm.

As discussed in Chapter 2 and 3, we simplified and introduced a recursive version

of Beyer Hedetniemi’s algorithm for generation of rooted trees. That idea can also

be extended to simplify the WROM algorithm. In the next chapter, we present our

new recursive algorithm for generating free trees.

39

0123122 0123121 0122212

non-primary

0123111

 0122211

non-primary
0122122

0123123

01211110121211 0111111

012121201221110122121

Figure 4.8: Free trees generated by the WROM algorithm.

40

Chapter 5

A New Recursive Algorithm for

Generating Free Trees

5.1 An Introduction

In this chapter, we first introduce our new recursive algorithm for generating unla-

beled free trees. We then present a proof of its correctness and a complexity analysis.

Finally, we modify our algorithm to generate free trees under some height and/or de-

gree constraints.

5.2 The Recursive Algorithm

Our recursive algorithm for free trees is an extension of our recursive algorithm for

rooted trees, since the set of rooted versions of all free trees is a subset of the set of

all canonic rooted trees, i.e., the rooted version of a free tree is actually a rooted tree

in which the root is always a center of the original free tree.

5.2.1 How to approach the problem

There are many approaches to the problem of generating unlabeled free trees.

One approach is to generate free trees of size n by examining and extending free

trees of size n−1. Figure 5.1 presents all unlabeled free trees of at most seven nodes.

41

Figure 5.1: The Hasse diagram of the poset of free trees with at most 7 nodes.

The free trees at the same level have the same number of nodes, and are organized

in relex (reversed lexicographic) order. We define a partial order ≺ among all free

trees with at most n nodes. Define T ≺ T ′ if |T | < |T ′| and T can be obtained by

recursively remove some leaves from T ′, i.e., T ′ is a “supertree” of T . In Figure 5.1

we show the Hasse diagram of the poset of all free trees with at most 7 nodes.

The Hasse diagram in Figure 5.1 illustrates that it is possible to generate free

trees of size n from free trees of size n− 1 by adding a leaf to a free tree of size n− 1

as a child of some leaf. Given a free tree T of size n − 1, to generate all T ′ so that

T ≺ T ′ and |T ′| = n, we need to solve two problems: one is how to pick the right

leaf to add a new node as its child; the other is how to avoid duplicates (since the

Hasse diagram in Figure 5.1 is not a tree structure, there are “loops” in it). Read

[1] developed an algorithm which could generate all free trees of size n from all free

trees of size n − 1, but his algorithm had to examine and store all free trees of size

n− 1, and the space was exponential with respect to n. Another problem with this

approach is that it is hard to generate all free trees of size n lexicographically in

terms of the level sequence representation. The lexicographically biggest free tree of

size n− 1 may not always be used to generate the lexicographically biggest free tree

of size n by adding a leaf. See, for example, the leftmost tree at level n = 6 in Figure

42

5.1 can not be generated from the leftmost tree at level n = 5 by adding a leaf.

Another approach is the WROM iterative algorithm. The algorithm adopted

the idea from the Beyer-Hedetniemi algorithm for generating rooted trees. It used

unlabeled rooted trees to represent free trees as we discussed in Chapter 1. It first

initialized the lexicographically biggest free tree. It then applied Beyer-Hedetniemi’s

iterative algorithm to generate its successor. There are some cases where Beyer-

Hedetniemi’s algorithm generates some rooted trees which can not be used as a

representation of a free tree (see [5] for definition of the representation). The WROM

algorithm uses some techniques to detect and fix these failure cases (see Chapter 2

for details). For easy detection and repair, the WROM algorithm uses an unnatural

way to represent free trees. Recall that a free tree is transferred into a rooted tree by

picking a root for it. For unicentral free trees, the WROM algorithm picks the unique

center as the root and arranges the subtrees of the resulting rooted tree recursively

so that the subtrees on the left are always lexicographically bigger or equal to the

ones on the right. But for bicentral free trees, there are two centers. By deleting the

edges between these two centers we have two rooted subtrees (see Chapter 1 for more

explanation). The WROM algorithm picks the center not purely according to the

lexicographic order of the two rooted subtrees. It always arranges the bigger sized

subtree on the right side of the root, and if they are of the same size, arranges the

lexicographically bigger subtree on the right side of the root instead of the left as in

unicentral case (see Figure 4.2 for some examples).

Compared to the WROM algorithm, we pick the root in a very natural and

consistent way: we always pick the center which lexicographically maximizes the

canonic level sequence of the resulting rooted tree Tr.

Our goals are, first, to maintain the same natural canonic representation of free

trees extended from that of rooted trees (see Chapter 1), and second, to develop a

simpler, more flexible recursive algorithm for generating free trees in relex order.

Recall from Chapter 1 that we represent a free tree T by picking a root r and then

transferring it to its rooted version, a canonic rooted tree, Tr. The level sequence

43

T is unicentral T is bicentral

R

LRL

h

h
h+1

c

rr

r1

T T T

T

Figure 5.2: Two subtrees of unicentral and bicentral free trees.

levTr and parent array parTr of this canonic rooted tree Tr becomes the representation

of the free tree T .

If |T | > 2, we further divide the rooted version of the free tree T into two subtrees,

LT and RT whose heights differ by at most one. See Figure 5.2. The definitions of

LT and RT are given below:

If T is unicentral with center r, let r1, r2, . . . , rm be the children of root r in the

rooted version Tr of T , and let T (ri) be the subtree of Tr rooted at ri for i = 1 . . . m.

From the definition of Tr we know that Ti ¹ Tj if i > j. Now, we delete the edge

between r and r1. We have two rooted subtrees: LT and RT . The left subtree LT

is T (r1) and the right subtree RT is Tr after removing subtree T (r1), denoted by

Tr\T (r1). See Figure 5.2.

If T is bicentral, let r be the center which lexicographically maximizes the canonic

level sequence of the resulting rooted tree Tr, i.e., the rooted version of T , and c be

the other center of T . After deleting the edge between r and c, similarly, we have

two rooted subtrees of Tr: LT and RT . The left subtree LT is T (c) and the right

subtree RT is Tr after removing T (c), denoted by Tr\T (c). See Figure 5.2.

Let r be the canonic center we choose, and r1 < r2 < · · · < rm be the children

of r. Then node r1 is the root of LT by definition. Recall that Tr(ri) is the subtree,

rooted at ri, of rooted tree Tr. Observe that by the definition of the rooted version

Tr of T , and the way we choose LT and RT , we have the following proposition.

Proposition 5.2.1 If T is unicentral, then LT º Tr(r2) º · · · º Tr(rm). If T is

44

bicentral, then LT º RT .

Note that if T is a free tree in the WROM algorithm, we can define the same LT

and RT , but Proposition 5.2.1 is not always true for the bicentral case: it is not true

when |LT | = |RT | and LT not equivalent to RT ; sometimes true, sometimes not true

otherwise (see Chapter 4 for details).

Since LT and RT are both canonic rooted trees, Figure 5.2 illustrates a way to

construct the rooted version of a free tree T : first build a rooted tree LT , then build

a rooted tree RT so that |T | = |LT | + |RT | and Proposition 5.2.1 is satisfied. By

connecting the root of LT and the root of RT , and making the root r of RT as the

new root, we form the rooted version Tr of the desired free tree T .

Now, the problem becomes how to generate free trees in relex order. Here is our

strategy: We first label the root of RT as 1, the root of LT as 2, and let parent of 2

be 1, parent of 1 be 0. We then generate all those LT ’s in relex order by using our

recursive rooted tree algorithm with initial call Gen(3, 0, 0), and then for fixed LT ,

we generate corresponding RT ’s in relex order. The parent array of Tr will be

〈p1, p2, . . . , psL︸ ︷︷ ︸
LT

, psL+1, . . . , pN︸ ︷︷ ︸
RT

〉

where pi is the parent of node i in Tr. Note that it is always true that p1 = 0 and

p2 = 1.

5.2.2 How to generate LT ’s in relex order

We have a recursive algorithm Gen() for generating rooted trees of fixed size (see

Chapter 3). Suppose we want to generate all free trees of fixed size n. Observe that

the size of LT is not fixed even though the size of T is fixed. This makes the problem

harder as we can not directly use Gen().

The reason that the size of LT is not fixed is that the difference between the

height of LT and RT must not exceed 1, due to the root selection method for the

rooted version of the free tree T .

45

Proposition 5.2.2 For a rooted version Tr of a free tree T of size N and height h,

the biggest possible size of LT is obtained when the RT is a chain of length h− 1 for

the bicentral case, and height h for the unicentral case.

Proposition 5.2.2 implies the following proposition.

Proposition 5.2.3 The lexicographically biggest possible LT for a free tree T of size

N and height h is the lexicographically biggest rooted tree of size N − h and height

h− 1 for bicentral case, or of size N − h− 1 and height h− 1 for unicentral case.

Figure 5.3 (a) and (b) show an example for N = 10, h = 3.

Proposition 5.2.4 Let T be a free tree with N nodes and height h. The smallest

value of |LT | is obtained when LT has the following form.

(a) If T is unicentral, then LT is a chain of length h− 1.

(b) If T is bicentral and not an odd length chain, then LT is a chain C of length

h− 1 together with a node attached at a non-leaf of C.

(c) If T is an odd length chain (and so h = N/2), then LT is a chain of length

h− 1.

See Figure 5.3 (c) and (d) for example.

(d)(c)

(a) (b)

Figure 5.3: For N = 10, h = 3, (a) Biggest LT for unicentral case, (b) Biggest LT for
bicentral case, (c) Smallest LT for unicentral case, (d) Smallest LT for bicentral case.

46

So, to generate all LT ’s, we have to consider these constraints related to the height

of Tr. Now two things need to be taken care of: generating all possible LT ’s under

these size constraints and generating them in relex order.

Let N = |T | be the size of T , sL = |LT | + 1 be the label of the last node in

LT , and h be the height of the rooted version Tr of T . Proposition 5.2.5 tells us the

lexicographically biggest free tree of size N .

Proposition 5.2.5 Let Tr be the canonic rooted version of free tree T , with LT and

RT defined as before. Then Tr is the lexicographically biggest among all free tree T

of size N if

1). sL = |LT |+ 1 = dN/2e+ 1 and h = bN/2c, and

2). If N is even, then both LT and RT are chains of length h− 1, or

3). If N is odd, then LT is the lexicographically biggest rooted tree of size sL−1 = |LT |
and height h− 1, and RT is a chain of length h− 1.

The leftmost tree at the bottom level (level 7) of Figure 5.1 shows an example of

case 3) with N = 7 and the leftmost tree at level 6 shows an example of case 2) with

N = 6.

Recall that our recursive algorithm Gen(p,s,cL) for generating rooted trees in

Figure 3.3 generates rooted trees of fixed size n in relex order: the greater the height

of a rooted tree, the earlier it gets generated. To generate LT , we first initialize n

to be sL, the size of LT plus one (since the label of LT starts with node 2 instead

of 1), and then run the algorithm Gen(p, s, cL). When the size of LT needs to be

changed, we change the value of n in the algorithm, and continue the execution of

the recursive call Gen(p, s, cL).

There are two instances when sL changes. One is after the node |LT |+1, the last

node in LT , is added as the rightmost child of the root of LT , which is 2 according

to our preorder labeling; the other is when the height of LT is reduced (by one).

After the node |LT |+ 1 being added as the rightmost child of the root of LT , we

generate the successor of LT by throwing away the node |LT |+ 1. This node will be

used in RT . So, the size of the successor of LT is one less than the size of LT .

47

T

� � � � � �� � � � � �
� � � � � �� � � � � �
� � � � � �
� � � � � �� � � � � �
� � � � � �� � � � � �
� � � � � �� � � � � �

� � � � � �
� � � � � �� � � � � �
� � � � � �� � � � � �
� � � � � �
� � � � � �� � � � � �� � � � � �
� � � � � �
� � � � � �

� � � �� � � �
� � � �� � � �
� � � �

� � � �
� � � �� � � �
� � � �� � � �

� � �� � �
� � �� � �
� � �

� � �
� � �� � �
� � �� � �

� �� �
� �� �
� �

� �
� �� �
� �� �

� � � �� � � �
� � � �� � � �
� � � �� � � �
� � � �� � � �
� � � �� � � �
� � � �� � � �
� � � �
� � � �� � � �
� � � �

	 	 	 	
	 	 	 		 	 	 	
	 	 	 		 	 	 	
	 	 	 		 	 	 	
	 	 	 		 	 	 	
	 	 	 	
	 	 	 		 	 	 	
	 	 	 		 	 	 	
	 	 	 		 	 	 	

� �
� �� �
� �
� �

� � � � � � �
� � � � � � �� � � � � � �
� � � � � � �� � � � � � �
� � � � � � �

� � � �
� � � �� � � �
� � � �� � � �
� � � �

� � � �� � � �
� � � �� � � �
� � � �� � � �

succ(T)

���
�

�
�
�
�

�
�
���

�
�� ��

�
� ��

�
�

�
�
�
�

���
�

! !
! !

"
"
#
#

$
$
%
%&

&
'
'

(
(
))

**+
+

,
,
-
-

.

.
//

001
1

2
2
3
3

4
4
55

667
7

Figure 5.4: The successor of the smallest free tree of height h.

Note that this is a modification to the original rooted tree algorithm Gen(p, s, cL).

The original algorithm will not generate rooted trees of varied size. To implement this

modification, we need only reduce sL by one and output the new LT , represented by

the sequence L[2..sL], after the while loop at line R8-R12. We call this modification

as Modification L1. We call the modified version of Gen() for generating LT

GenLT ().

Observe that

Proposition 5.2.6 If the last node, |LT |+1, in LT is the rightmost child of the root

2 of LT , then by removing this node, we obtain the lexicographically biggest rooted

tree among those rooted trees of size less than or equal to N and lexicographically

smaller than LT .

When the height of LT is going to be reduced by one, what is the successor of the

current free tree T? Observe that by Proposition 5.2.6, we have

Lemma 5.2.1 Only when rooted tree LT is a chain will the modified recursive al-

gorithm GenLT () reduce the height of LT by one (and only one) when generating

the successor of LT . This happens when s = 0 in the while loop at line R8 in

Gen(p, s, cL).

Proof:Since the successor of LT can be of various size, if LT is not a chain, GenLT ()

will not have to move the last node on the leftmost path of LT in order to reduce

the height of LT . Simply removing a leaf not on the leftmost path of LT will give a

rooted tree which has the same height as LT , but is lexicographically smaller. 2

48

To generate the successor, succ(LT), of LT mentioned in Lemma 5.2.1, we need

to make the left subtree Lsucc(T) in the successor, succ(T), of T as large as possible.

By Proposition 5.2.3, succ(T) must be a bicentral free tree such that Rsucc(T) is just

a chain and Lsucc(T) is the lexicographically biggest in its size and height. Suppose p

is the last node of LT mentioned above. To generate succ(T), we only need to reset

h, which is currently p− 1 since LT is a chain, to p− 2, then reset sL to N − h + 1,

and then continue the execution of the algorithm GenLT (). The algorithm will then

generate the successor Lsucc(T) of LT with new size N −h+1 instead of h (see Figure

5.4. We call this modification of the algorithm GenLT () Modification L2. We add

this modification into GenLT (), and still call the modified algorithm GenLT ().

Proposition 5.2.7 Given the rooted version Tr of a free tree T with LT a chain of

length h− 1, where h is the height of Tr, Modification L2 will result in generating the

lexicographically greatest successor succ(T) of T , in the corresponding rooted version,

such that Rsucc(T) is a chain of height h − 2 and Lsucc(T) is the lexicographic biggest

rooted tree of size N − h + 2 and height h− 2.

Now, the prototype of our new algorithm for generating left subtree LT will

be GenLT (p, s, cL, h, sL), where p, s, cL are inherited from Gen(p, s, cL) with the

same meaning (see Chapter 3). We add sL, the label of the last node in LT , as a

parameter to trace the current size of LT , and h, the height of T , as another new

parameter. Recall that GenLT is obtained by implementing Modification L1 and L2

in Gen(p, s, cL).

We first initialize root of RT as 1, root of LT as 2, and par[2] = 1. The initial

call will be GenLT (3, 0, 0, h, sL) (see Figure 5.2.2 for the algorithm GenLT) with h

and sL as set in Proposition 5.2.5. To implement Modification L2, we just insert the

following lines after {R8} in Gen(p, s, cL):

if s=0 then begin

h := p - 2;

sL := N - h + 1;

end;

49

Since the node pp on the leftmost path of LT is added into LT by recursive call

GenLT (pp, 0, 0, h, sL) as in Gen(pp, 0, 0), we use s = 0 to identify the situation when

the last node p of LT is on the leftmost path of LT , i.e., LT is a chain.

For Modification L1, we simply add the line

GenRT(p,2,p-2,h,sL-1);

after the while loop (line {R8-R12}) in Gen(p, s, cL) to generate RT such that

the last node p in the current left subtree LT is transferred to the right subtree in

the successor of the current T . Note, GenRT will be discussed in the next section.

There are some other small modifications to transfer Gen() into GenLT (). In

line {R1} of Gen(), n will be replaced by sL to indicate the completion of LT , and

PrintIt is replaced by GenRT () to generate the right subtree RT for the current left

subtree LT . Since the root of LT is 2 instead of 1, we replace 1 by 2 at line {R8} in

Gen(). Algorithm GenRT () will be discussed in the next section.

5.2.3 How to generate RT ’s in relex order

For a fixed LT , we will then generate RT ’s for unicentral case first and then the

bicentral case.

Since for a fixed LT , the height of RT in a bicentral T is one bigger than the

height of RT in a unicentral T . So, we have the following proposition.

Proposition 5.2.8 Given any bicentral free tree T and unicentral free tree T ′. If

|T | = |T ′| and LT is equivalent to LT ′, then RT ¹ RT ′.

First we have to make sure that the number of nodes left from GenLT is enough

to generate RT since we require the height of RT to be exactly h for unicentral case,

and h − 1 for bicentral case, where h is the height of the rooted version Tr of T .

So, if p = |LT | + 1 = sL is the label of the last node of LT (hence N − p is the

number of nodes left for RT), we require that N − p >= h for unicentral case, and

N − p >= h− 1 for bicentral case.

50

procedure GenLT(p, s, cL, h, sL : integer);

begin

{T1} if p > sL then GenRT(p,2,p-2,h,sL) {n->sL; PrintIt->GenRT}

{T2} else begin

{T3} if cL = 0 then par[p] := p-1 else

{T4} if par[p-cL] < s

{T5} then par[p] := par[s]

{T6} else par[p] := cL + par[p-cL];

{T7} GenLT(p+1, s, cL, h, sL);

{T8} while par[p] > 2 do begin {change 1 to 2}

{T9} if s = 0 then begin {Modification L2}

{T10} h = p-2; { ’’ }

{T11} sL = N - h + 1 { ’’ }

{T12} end; { ’’ }

{T13} s := par[p];

{T14} par[p] := par[s];

{T15} GenLT(p+1, s, p-s, h, sL)

{T16} end;

{T17} GenRT(p,2,p-2,h,sL-1) {Modification L1, add GenRT}

{T18} end

end; {of GenLT};

51

Lemma 5.2.2 For N, p, h as above, N − p >= h− 1.

Proof:Initially, we set sL so that N − p = N − sL = h− 1 (see Proposition 5.2.5).

sL will only be modified in two cases, Modification L1 and L2. Modification L1 will

reduce sL by one, hence N − p will be greater than h− 1. Modification L2 set sL so

that N − p = h− 1 (see Proposition 5.2.7). 2

We then have to check whether Proposition 5.2.1 will be satisfied if we adopt

Gen() as GenRT () to generate RT .

For unicentral case, if we have at least h + 1 nodes, including the root 1, for RT ,

we can always do the following without violating Proposition 5.2.1: (Otherwise, no

unicentral T will be generated with the current LT .)

Proposition 5.2.9 For fixed LT , to generate the lexicographically biggest Tr of a

unicentral free tree T , we can call Gen(p, 2, sL) to copy subtree LT repeatedly.

For bicentral case, from Lemma 5.2.2, we know we have at least enough nodes to

build a chain of length h − 1, and this is a valid rooted version of a bicentral free

tree. What happens when we have more nodes? We have to make sure Proposition

5.2.1 is preserved.

Lemma 5.2.3 If h is the current designated height of the rooted version Tr of a bi-

central free tree T , N = |T |, and p is the last node in LT , then RT can be built without

violating Proposition 5.2.1 only when one of the following conditions is satisfied:

(D1) (p− 1) ∗ 2 ≥ N , or

(D2) (p− h− 1 = 1) and par[p] > 2, or

(D3) (p− h− 1 ≥ 2) and ((par[h + 2] > 2) or (par[h + 3] > 2)).

Proof:When condition (D1) is satisfied, |LT | ≥ |RT |, so we can just make a (partial)

copy of LT to generate RT . LT will be lexicographically greater than or equal to RT .

When condition (D2) is satisfied, we know that LT is just a chain C of length

h − 1 plus the last node p attached to a non-leaf node on the chain C which is not

52

the root 2 of LT . Since the last node p is not the child of the root of LT , LT has a

successor of the same size or of larger size. So, if |LT | < |RT |, we can generate RT

by finding the successor of LT .

When condition (D3) is satisfied, LT is not a chain. It has at least two more nodes

than a chain of length h − 1. So as long as LT is not the lexicographically smallest

of height h− 1, we are done. We know by the recursive definition of canonic rooted

trees, if there are two consecutive nodes at level one, i.e. children of root, then all

the following nodes have to be at level one. We know that node h + 1 is the node

in LT with highest level. If the two following nodes, h + 2 and h + 3 are children of

node 2, the root of LT , then LT is the lexicographically smallest of its size and its

height. Otherwise we can always find a successor of LT with the same height, h− 1,

so that RT is the successor of the current LT . 2

Lemma 5.2.3 will guarantee that if one of the conditions is satisfied, we can always

expect a good and lexicographically biggest, with respect to the fixed LT , RT to be

generated according to Proposition 5.2.1. We now apply Gen(p, s, cL) to generate

RT ’s in order to build those bicentral free trees with fixed LT .

Is it possible that all the conditions in Lemma 5.2.3 fail, i.e., no RT will be

generated for a LT generated by GenLT ()? Fortunately, this is impossible.

Lemma 5.2.4 If LT is generated by GenLT (), then there exists at least one RT so

that Proposition 5.2.1 is satisfied.

Proof:The height h of the rooted version Tr of a free tree T plays an important

role here. Observe that h = bN/2c is the biggest possible height of all free trees

with N nodes. With such height, RT will always exist. It is a chain of length h− 1

for bicentral case, and h for unicentral case. See the first few trees at each level in

Figure 5.1 for examples. If h < bN/2c, then by Lemma 5.2.2 we have at least h− 1

nodes left for RT . We can always generate RT by copying LT to form a unicentral

T if there are more than h− 1 nodes left for RT (otherwise, we can simply generate

53

a RT as a chain of length h− 1 to form a bicentral T without violating Proposition

5.2.1). 2

For a fixed LT , The first RT to be generated is the lexicographically biggest one.

Since the root of RT has been set, we can use Gen(p, 2, p − 2) to copy LT except

the root of LT (note that p − 2 = |LT | − 1). But if the size of RT is greater than

the size of LT , and we continuously make copies of LT , RT will be lexicographically

bigger than LT . In such a case, we need to find the lexicographically biggest RT of

height h−1 which is smaller than LT (if |RT | = |LT |, we can just make a copy). The

following lemma provides the solution to finding such an RT .

Lemma 5.2.5 If (sL− 1) ∗ 2 < N , i.e., |LT | < |RT |, then we can find the successor

R = succ(LT) of LT with height h− 1 and size N − sL + 1 by doing the following:

Step1. Scan the array par[2..sL] backward to find the first position (i.e. the first

node) q so that q is not a child of node 2 (root of LT). If such q does not exist, then

R does not exist, otherwise,

Step2. If par[q] = q − 1, i.e., q is the node on the leftmost path of LT at level h

of rooted version Tr of T , then no such R exists. Otherwise,

Step3. Reset s = par[q], par[q] = par[s], and start to copy the subtree rooted at s

until reaching the node |R|, the last node in R.

Proof:This is just an extension of our algorithm for rooted trees, except that we

now generate successors with different sizes and the same height, which will not

affect the correctness of our algorithm for rooted trees. For Step2, before we start to

generate RT , we already check (see Lemma 5.2.3) to make sure such a situation will

not happen, i.e., we won’t be required to generate R in such a situation. 2

Lemma 5.2.5 shows how to modify Gen(p, s, cL) to generate the lexicographically

biggest RT with height h−1 which is lexicographically less than LT when |LT | < |RT |.
When doing the copy using Gen(p, 2, p−2) to generate RT , we let pp be the node

in RT supposed to copy node q defined in Step1 of Lemma 5.2.5. To modify Gen()

in order to identify pp, we do the following:

54

procedure modRT;

if ((sL-1)*2 < N) and (pp-cL<=sL) and (

((pp-cL+1<sL) and (par[pp-cL+1]=2) and

(par[pp-cL+2]=2)) {Case1}

or ((pp-cL+1=1) and (par[pp-cL+1]=2)) {Case2}

or (pp-cL+1)) then begin {Case3}

s:= par[pp]; cL:= pp-s;

par[pp]:=par[s];

end else if par[p-cL]=2 then par[p]:= 1;

end {of modRT}.

Figure 5.5: The code to modify Gen(p, s, cL) to make the successor of LT .

Observe that pp must be encountered before we finish the first copy of LT in the

generation of RT (actually, there won’t be second copy after the modification–we

will be copying a new subtree). So we have pp − cL <= sL. Since Lemma 5.2.3

guarantees that LT is not the lexicographically smallest one, such a pp exists, and it

is not on the leftmost path of LT . Then the corresponding node q = pp − cL in LT

of pp must fall into one of the following three cases:

Case1. q = pp − cL is followed by at least two nodes of level 2, i.e., they are

the children of the root of LT . So, we can use pp − cl + 1 < sL to indicate there

are at least two nodes beyond pp − cL in LT , and they are children of node 2, i.e.,

par[pp− cL + 1] = 2 and par[pp− cL + 2] = 2.

Case2. q = pp− cL is followed by only one node at level 2 which is the only one

beyond pp− cL in LT , i.e., pp− cL + 1 = sL and par[pp− cL + 1] = 2.

Case3. pp−cL is the last node in LT which is not at level 2, i.e., pp−cL+1 > sL.

pp− cL must be at level bigger than 2 because LT is not the lexicographic smallest,

and Case1 and Case2 has failed.

After identifying pp, we reduce the level of pp by setting the parent of pp be to the

current grandparent of pp, then start to copy the subtree rooted at new rightmost

sibling (used to be the parent of pp) of pp. Figure 5.2.3 shows a piece of code, called

modRT , which will identify pp and make the corresponding modification.

55

Since Gen(p, 2, p − 2) (see Figure 5.2.2) will only copy the parenthood relation

within LT except the parenthood relation between the root 2 of LT and the children

of node 2, we have to make special arrangement. To make a copy of all nodes which

are children of node 2, root of LT , we simply add the following code to the end of

modRT .

else if par[p-cL]=2 then par[p]:=1;

After creating the first RT for fixed LT , Gen(p, s, cL) will do the job to generate

all successors of RT . One more thing to be aware of is that we don’t want the height

of RT get reduced for bicentral case (also for unicentral case). To avoid this, we

only need to check at the beginning of the while loop in line {R8} of Gen(p, s, cL)

if p > sL + h for unicentral case, and p > sL + h + 1 for bicentral case If these

conditions are satisfied, we go on. Otherwise, we skip the while loop.

After making all the modifications to Gen(p, s, cL), we have the algorithm GenRT

for generating RT in relex order (see Figure 5.6).

5.2.4 Generating free trees in relex order

Recall in the above section, before we generate RT for a fixed LT we have to check if

there exists a valid RT . We call this procedure expand() to check if RT is obtainable.

Observe that GenLT () and GenRT () has many thing shared with Gen(). We im-

plement the algorithm by merging these two recursive procedures together to form a

new recursive procedure called GenFree(). We introduce parameter f in GenFree()

where f = 0 means we are now generating LT , i.e., we are in the GenLT () part of

GenFree() and f = 1 means we are now generating RT . Another parameter g will

also be added so that g = 0 means we are generating RT for unicentral T and g = 1

means we are generating RT for bicentral T .

Our recursive algorithm for generating rooted version of free trees is shown in

Figure 5.7.

56

procedure GenRT(p, s, cL, h, sL : integer);

begin

{W1} if p > N then PrintIt {We can now print the whole tree}

{W2} else begin

{W3} if cL = 0 then par[p] := p-1 else

{W4} if par[p-cL] < s

{W5} then par[p] := par[s]

{W6} else begin

{W7} par[p] := cL + par[p-cL];

{W8} if bicentral then modRT;

{W9} end;

{W10} GenRT(p+1, s, cL, h, sL);

{W11} while (par[p] > 2) and (not-reducing-height-of-RT) do begin

{W12} s := par[p];

{W13} par[p] := par[s];

{W14} GenRT(p+1, s, p-s, h, sL);

{W15} end;

{W16} end;

end {of GenRT};

Figure 5.6: An algorithm for generating RT .

57

procedure expand(p, h, n: integer);

begin

{E1} if N-p >= h then GenRT(p+1,2,p-1,h,n,N,1,0);

{E2} if ((p-1)*2 >= N) or ((p-h-1=1) and (par[p]>2)) or

{E3} ((p-h-1>=2) and ((par[h+2]>2) or (par[h+3]>2))) then

{E4} GenRT(p+1,2,p-2,h,n,N,1,1)

end;

procedure GenFree(p, s, cL,h,sL, n, f,g : integer);

begin

{F1} if p > n then begin

{F2} if f = 0 then expand(p-1,h,n) else PrintIt

{F3} end else begin

{F4} if cL = 0 then par[p] := p-1 else

{F5} if par[p-cL] < s then par[p]:=par[s]

{F6} else begin

{F7} par[p] := cL + par[p-cL];

{F8} if g=1 then

{F9} if ((sL-1)*2 < n) and (p-cL<=sL) and (

{F10} ((p-cL+1<sL) and (par[p-cL+1]=2)

{F11} and (par[p-cL+2]=2))

{F12} or ((p-cL+1=sL) and (par[p-cL+1]=2))

{F13} or (p-cL+1>sL)) then begin

{F14} s:= par[p]; cL:= p-s;

{F15} par[p] := par[s]

{F16} end else if par[p-cL]=2 then par[p]:=1

{F17} end;

{F18} GenFree(p+1, s, cL,h,sL,n,f,g);

{F19} while (par[p] > 2) and ((f=0) or (p>sL+h-g)) do begin

{F20} if s=0 then h:= p-2;

{F21} s := par[p]; par[p] := par[s];

{F22} if f=0 then GenFree(p+1,s,p-s,h,0,N-h+1,f,g)

{F23} else GenFree(p+1,s,p-s,h,sL,n,f,g)

{F24} end;

{F25} if f=0 then expand(p-1,h,p-1)

{F26} end

end; {of GenFree};

Figure 5.7: A recursive algorithm for generating unlabeled free trees

58

The Figure 5.8 shows the output of our algorithm in parent arrays and level

sequences for N = 8.

5.3 Proof of Correctness

Theorem 5.3.1 Algorithm GenFree() in Figure 5.7 generates all canonic represen-

tatives of unlabeled free trees in relex order.

Proof:

First of all, the algorithm GenFree correctly inherits the Copying Strategy in-

troduced in Gen since GenLT and GenRT do not modify the copying techniques

implemented in Gen.

1) The algorithm generates the lexicographically largest correctly. To generate

the lexicographically biggest free tree T , we first set sL = dN/2e and h = bN/2c.
Then call the recursive GenFree(3, 0, 0, h, 0, sL, 0, 0). It will first generate LT in

exactly the same way as Gen() with the height restriction. The correctness of Gen

will guarantee that T described in Proposition 5.2.5.

2) For any given canonic representative of a free tree T of height h, the algorithm

will produce its correct successor succ(T).

{Case 1}. If the right subtree TR is not the lexicographically smallest one of its

size and its height, GenRT will correctly apply the Copying Strategy to generate the

correct successor succ(TR) (See Chapter 3.2) of TR. Since LT is fixed and unchanged,

the resulting rooted tree T ′ by connecting LT and RT is the correct successor of

Tr: since succ(RT) ≺ RT implies that Proposition 5.2.1 is satisfied for the resulting

rooted tree; secondly, if there is a free tree F so that the rooted version of F is

lexicographically smaller than Tr and bigger than T ′
r, then we have that succ(TR) is

not the correct successor of TR.

{Case 2}. If the right subtree TR is the lexicographically smallest one of its size

and its height, then it must be in one of two forms shown in Figure 5.9, and GenRT

will stop at line {W11} since the algorithm is trying to reduce the height of RT .

59

0 1 2 3 4 1 6 7 0 1 2 3 4 1 2 3
0 1 2 3 3 3 1 7 0 1 2 3 3 3 1 2
0 1 2 3 3 2 1 7 0 1 2 3 3 2 1 2
0 1 2 3 3 1 6 7 0 1 2 3 3 1 2 3
0 1 2 3 3 1 6 6 0 1 2 3 3 1 2 2
0 1 2 3 3 1 6 1 0 1 2 3 3 1 2 1
0 1 2 3 2 5 1 7 0 1 2 3 2 3 1 2
0 1 2 3 2 2 1 7 0 1 2 3 2 2 1 2
0 1 2 3 2 1 6 7 0 1 2 3 2 1 2 3
0 1 2 3 2 1 6 1 0 1 2 3 2 1 2 1
0 1 2 3 1 5 6 1 0 1 2 3 1 2 3 1
0 1 2 2 2 2 2 1 0 1 2 2 2 2 2 1
0 1 2 2 2 2 1 7 0 1 2 2 2 2 1 2
0 1 2 2 2 2 1 1 0 1 2 2 2 2 1 1
0 1 2 2 2 1 6 6 0 1 2 2 2 1 2 2
0 1 2 2 2 1 6 1 0 1 2 2 2 1 2 1
0 1 2 2 2 1 1 1 0 1 2 2 2 1 1 1
0 1 2 2 1 5 5 1 0 1 2 2 1 2 2 1
0 1 2 2 1 5 1 7 0 1 2 2 1 2 1 2
0 1 2 2 1 5 1 1 0 1 2 2 1 2 1 1
0 1 2 1 4 1 6 1 0 1 2 1 2 1 2 1
0 1 2 1 4 1 1 1 0 1 2 1 2 1 1 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
parent array level sequence

Figure 5.8: Output of our free tree recursive algorithm for N = 8.

60

k

1

h

G3G2

k

Figure 5.9: Two forms of the lexicographically smallest RT .

Now, all recursive calls issued by GenRT will exit, and program returns to the line

in GenLT where GenRT is called. GenLT will resume its execution by generating

the successor of the current LT .

To generate correct successor of the current LT , GenLT will do the following:

{Case 2.1}. If LT is not the lexicographically smallest of its size and its height, the

Copying Strategy in GenLT inherited from Gen will correctly generate the successor

succ(LT) of LT . Then GenRT will be called to generate a new right subtree R

for succ(LT) and R will be the lexicographically biggest for the fixed left subtree

succ(LT). Clearly the free tree formed by succ(LT) and R is the correct successor

of the current free tree T . By Proposition 5.2.8, we will generate unicentral free

trees first if there are enough nodes (this is implemented in subroutine expand() in

algorithm GenFree: we first let g = 0 to generate unicentral free trees; then let

g = 1 to generate bicentral free trees) and then generate bicentral free trees. By

Lemma 5.2.4, we can generate at least one RT for the current LT without violating

Proposition 5.2.1.

{Case 2.1.1}. To generate the lexicographically biggest right subtree for unicentral

free tree F , we simply use the Copying Strategy in GenRT to copy the current

LF = succ(LT) repeatedly. This will generate lexicographically biggest RF without

violating the Proposition 5.2.1. The resulting free tree F is the correct successor of

T .

{Case 2.1.2}. To generate the lexicographically biggest right subtree for bicentral

free tree F with a fixed left subtree LF = succ(LT), we need to consider two cases: if

61

|LF | ≥ |RF |, then we just copy (partially) the subtree LF to be RF without violating

Proposition 5.2.1; if |LF | < |RF |, then we need to find the successor of LF of size

|RF |. If the left subtree LF satisfies the conditions in Lemma 5.2.3, then we can build

a lexicographically biggest RF for bicentral F with the fixed LF by Lemma 5.2.5.

{Case 2.2}. If LT is the lexicographically smallest of its size and its height, then

LT is either a chain or a chain plus some nodes added as children of the root of the

LT .

If LT is a chain, GenLT will apply Modification L2 to reduce the height of LT .

Proposition 5.2.7 shows that GenLT will generate the correct successor succ(LT) of

LT of size N − h + 2 and height h − 2. succ(LT) has the biggest possible size of

its height by Proposition 5.2.2, and it is the lexicographically biggest in its size and

height by Proposition 5.2.3. After GenRT generates a new right subtree R (also the

lexicographically biggest of its height and its size as stated in Proposition 5.2.2), the

resulting rooted tree obtained by combining succ(LT) and R together is the correct

successor of the current Tr.

If LT is a chain with some nodes attached to the root of LT , we can apply

Modification L1 to generate the correct successor of LT by Proposition 5.2.6.

2

5.4 Complexity Analysis

By examining the algorithm, we know that between each consecutive pair of

recursive calls GenFree() there is only constant amount of work. There is only one

while-loop in the algorithm. But for each loop executed, one recursive call will be

made. So, we need only to count the number of the calls to GenFree() to estimate

the time complexity of the algorithm. The results of an experimental test of the

algorithm are shown in Table 5.1

Table 5.1 suggests that there exists a bound, b = 5, of average number of calls

per tree generated, which would imply that the algorithm is CAT.

62

n trees calls calls/trees n trees calls calls/trees
4 2 7 3.500 14 3159 8974 2.841
5 3 15 3.750 15 7741 20725 2.677
6 6 25 4.167 16 19320 49021 2.537
7 11 47 3.917 17 48629 117298 2.412
8 23 92 4.000 18 123867 285547 2.305
9 47 181 3.771 19 317955 703119 2.211
10 106 383 3.613 20 823065 1754073 2.131
11 235 803 3.403 21 2144505 4420303 2.061
12 551 1772 3.216 22 5623756 11253413 2.001
13 1301 3920 3.011 23 14828074 28895101 1.949

Table 5.1: Average number of recursive calls for generating free trees

Let us first take a look at the computation tree Fn of our algorithm(see Figure

5.10).

By the algorithm in Figure 5.7, we observe that the recursive call GenFree()

always occurs after an assignment of par[p]. This assignment represents the current

status of the partially constructed free tree. We thus use the partially constructed

free trees, represented by the parent arrays par[1..p] for 1 ≤ p ≤ n, to be the nodes

in the computation tree Fn in Figure 5.10. We further divide these recursive calls

into two classes:

{C1} the calls which will lead to valid free trees (in their rooted versions) at level

n,

{C2} the calls which will not lead to any valid free trees at level n.

The calls in {C2} are wasted, they occur when p > n and f = 0 (node p will get

reassigned in the next call) at line {F1-F2}.
The execution of the algorithm GenFree() is just a preorder traversal of the

computation tree. To obtain a child of a node, we need only add a new node to a

proper position in the currently half-built free tree. The nodes resulted from recursive

calls in {C2} is represented by a symbol
⊗

.

Observe that there are some single-branched paths in the computation tree. And

furthermore, some of these paths occur in the middle of the paths from the root of

63

Figure 5.10: The computation tree Fn of our recursive free tree generation algorithm.

Fn to its leaves. This makes it difficult to use Path Elimination Techniques(PET) [8]

to eliminate those single-branched paths as we did for rooted trees (see also section

3.3, 3.4).

Let us investigate closely those paths from leaves up to the root in the computation

tree. For leaves x and y at level n in Fn, let d(x, y) be the distance to their youngest

common ancestor in the computation tree. Let succ(T) be the successor of the free

tree T in relex order. Let succ(T) = E when T is the lexicographically smallest, and

d(T, E) = n. Let εn be the total number of wasted calls (
⊗

in computation tree Fn).

Then clearly, we have

| Fn |= εn +
∑

T∈Fn

d(T, succ(T)) (5.1)

where Fn is the set of all unlabeled free trees, and | Fn | is the number of nodes in

Fn.

We now partition the set Fn of free trees into three disjoint subsets: G1⊕G2⊕G3.

64

k

1

h

G3G2

k

Figure 5.11: Free trees in G2 and G3.

Let 〈e1, e2, . . . , en〉 be the canonic level sequence of the rooted version Tr of a free

tree T ∈ Fn, then

T ∈ G2 if and only if there is a h ≥ 1 and a k ≥ 0, such that

ei =





1 for n− k < i ≤ n

i− (n− k − h) for n− k − h < i ≤ n− k and T is unicentral

1 only for i = 2 if 1 ≤ i ≤ n− k − h

T ∈ G3 if and only if there is a h ≥ 1, and a k ≥ 0, such that

ei =





1 for n− k < i ≤ n

i− (n− k − h + 1) for n− k − h + 1 < i ≤ n− k and T is bicentral

1 only for i = 2 if 1 ≤ i ≤ n− k − h

T ∈ G1 if and only if T /∈ G2, and T /∈ G3.

The free trees in G2 and G3 are illustrated in Figure 5.11.

We now have that

Lemma 5.4.1

d(T, succ(T)) =





1 + kT for T ∈ G1

hT + kT + 1 for T ∈ G2

hT + kT for T ∈ G3

where kT is the number of leaves in T adjacent to canonic center of T , i.e., the

number of leaves at level 1, and hT is the height of the canonic representative, which

is a rooted tree, of T .

65

Proof:For any free tree T in G1, we only need to remove the kT leaves attached to

the canonic center of T , and then remove one more (which will be lifted up one level

to get the successor of T later), which comes up to 1 + kT . For any free tree T in

G2 or G3, we have to remove kT leaves attached the canonic center as well as those

nodes on the path from root to node n− kT in the right subtree, plus one more (as

in case G1), in order to get the successor of T . This gives hT + kT for bicentral case,

and hT + kT + 1 for unicentral case. 2

Now,

∑

T∈Fn

d(T, succ(T)) =
∑

T∈G1

d(T, succ(T)) +
∑

T∈G2

d(T, succ(T)) +
∑

T∈G3

d(T, succ(T))

=
∑

T∈Fn

(kT + 1) +
∑

T∈G2

hT +
∑

T∈G3

(hT − 1)

Let αn =
∑

T∈Fn
(kT + 1), and βn =

∑
T∈G2 hT , and γn =

∑
T∈G3(hT − 1). So,

∑

T∈Fn

d(T, succ(T)) = αn + βn + γn

Let fn,k denote the number of unlabeled free trees of size n with exactly k leaves

attached to their canonic centers. By the definition of canonic representation of the

free tree, in Chapter 1, we know that fn,k ≤ fn−k. Clearly, αn =
∑

T∈Fn
(kT + 1) =

∑n−1
k=0(k + 1)fn,k ≤ ∑n−1

k=0(k + 1)fn−k.

Asymptotically from [18], we have

αn ≤
n−1∑

k=0

(k + 1)fn−k ≤ 4fn (5.2)

We will then prove that βn and γn are also O(fn).

A fundamental tool in our analysis is the following results from [13] and [12].

Theorem 5.4.1 [13, 12] Let rn be the number of unlabeled rooted tree of size n, and

fn be the unlabeled free tree of size n, we have

rn ∼ C1ρ
−n

n3/2
(5.3)

fn ∼ C2ρ
−n

n5/2
(5.4)

where C1 ≈ 0.4399, C2 ≈ 0.5349 and ρ ≈ 0.3383.

66

Let Sh
n be the number of unlabeled rooted trees of size n and height at most h.

It was shown [18] that

Sh
n ≤ ρ−n(1 +

C2

h2
)−n ≤ C3rnn

3/2exp(−δn/h2) (5.5)

for some constant C2 > 0, C3 > 0, δ > 0 and 1 ≤ h < n.

Let rh
n be the number of rooted trees of size n with height exactly h. Then,

rh
n = Sh

n − Sh−1
n . Observe that the number of free tree T in G2 with height hT is

the number of rooted trees of height hT − 1 and of size n− hT − kT − 1 where kT is

the number of leaves attached to the canonic center of T . So, the size of G2 is equal

to the number of rooted trees of height hT − 1 with n − hT − kT − 1 nodes, where

1 ≤ hT ≤ n/2 and 0 ≤ kT ≤ n− 2hT − 1, i.e., |G2| = ∑n/2
h=1

∑n−2h−1
k=0 rh−1

n−h−k−1.

Lemma 5.4.2

βn = O(fn). (5.6)

Proof:

βn =
∑

T∈G2 hT

=
∑n/2

h=1

∑n−2h−1
k=0 hrh−1

n−h−k−1

=
∑n/2

h=1

∑n−2h−1
k=0 h(Sh−1

n−h−k−1 − Sh−2
n−h−k−1)

≤ ∑n/2
h=1

∑n−2h−1
k=0 hSh−1

n−h−k−1

≤ ∑n/2
h=1

∑n−2h−1
k=0 C3hrn−h−k−1(n− h− k − 1)3/2e−δ(n−h−k−1)/(h−1)2 (eq(5.5))

∼ ∑n/2
h=1

∑n−2h−1
k=0 hC1C3ρ

−(n−h−k−1)e−δ(n−h−k−1)/(h−1)2 (eq(5.3))

Now divide by fn to get

βn

fn
≤

∑n/2

h=1

∑n−2h−1

k=0
hC1C3ρ−(n−h−k−1)e−δ(n−h−k−1)/(h−1)2

fn

∼
∑n/2

h=1

∑n−2h−1

k=0
hC1C3ρ−(n−h−k−1)e−δ(n−h−k−1)/(h−1)2

C2n−5/2ρ−n (by eq. (5.4))

=
∑n/2

h=1

∑n−2h−1
k=0

hC1C3e−δ(n−h−k−1)/(h−1)2

C2n−5/2ρ−h−k−1

≤ ∑n/2
h=1

∑n−2h−1
k=0

C1C3n7/2

C2ρ−h−k−1eδ(n−h−k−1)/(h−1)2
(replace h with n)

≤ ∑n/2
h=1

∑n−2h−1
k=0

C1C3n7/2

C2e(h+k+1)+δ(n−h−k−1)/(h−1)2
(since 1/p > e)

67

From Lemma 5.4.3, we have (h+k +1)+ δ(n−h−k− 1)/(h− 1)2 ≥ C4n
C5 for some

constant C4 > 0, C5 > 0 when 1 < h ≤ n/2 and 0 ≤ k ≤ n− 2h− 1. Hence, we have

βn

fn

≤
n/2∑

h=1

n−2h−1∑

k=0

C1C3n
7/2

C2eC4nC5

≤ C1C3n
11/2

C2eC4nC5
−→ 0 when n −→∞

2

Lemma 5.4.3

(h + k + 1) + δ(n− h− k − 1)/(h− 1)2 ≥ C4n
C5

for some constants C4 > 0, C5 > 0 where n, h, k, δ as in Lemma 5.4.2.

Proof:Let φ(h, k) = (h + k + 1) + δ(n− h− k − 1)/(h− 1)2. For 1 ≤ h <
√

δ + 1,

φ(h, k) will decrease when k is increased. So, k = n− 2h− 1 will minimize the value

of function φ(h, k), and φ(h, k) ≥ (n−h)+δh/(h−1)2. Since h is bounded by
√

δ+1,

there exists a constant d1 such that φ(h, k) ≥ n + d1.

For
√

δ+1 ≤ h ≤ n/2, φ(h, k) will not decrease when k is increasing. So k = 0 will

minimize the value of φ(h, k), and φ(h, k) ≥ (h + 1) + δ(n− h− 1)/(h− 1)2 ≥ C4n
C5

for some constants C4 > 0 and C5 > 0 since the value of the function φ will reach its

lowest point when h = O(nC5) for some constant C5 > 0. 2

Lemma 5.4.4

γn = O(
n/2∑

h=1

n−2h∑

k=0

(h− 1)Sh−1
n−h−k) = O(fn). (5.7)

Proof:We can use a similar arguement as in Lemma 5.4.2 to prove this lemma since

the constant 1 in equation 5.6 does not matter. 2

Lemma 5.4.5

εn = O(fn) (5.8)

68

n trees WROM Time/trees New Alg Time/trees
16 19320 0.35 0.0000181 0.394 0.0000204
17 48629 0.88 0.0000181 0.91 0.0000187
18 123867 2.2 0.0000178 2.08 0.0000168
19 317955 5.64 0.0000177 4.89 0.0000154
20 823065 14.3 0.0000174 11.8 0.0000143
21 2144505 36.9 0.0000172 28.9 0.0000135
22 5623765 95.9 0.0000171 72.3 0.0000128
23 14828074 261.1 0.0000176 186.8 0.0000126

Table 5.2: The running time (in seconds) comparison of our algorithm with the
WROMalgorithm.

Proof:

εn < fn since node
⊗

always has a right sibling x that is not a
⊗

node. And

such case happens only when the program switches from generating left subtree L to

generating the right subtree R, so it occurs at most once in the generation of a leaf

node(a free tree). 2

From equations (5.1), (5.2), (5.6), (5.7), (5.8), we have

Theorem 5.4.2 | Fn |= O(fn) which implies that the algorithm in Figure 5.7 is

CAT.

We implement the algorithm (see appendix) in Pascal. The algorithm(even

though recursive algorithm usually requires extra time) turned out to be faster (see

Table 5.4) compared to the WROM algorithm(both algorithm are CAT).

5.5 Generating Free Trees with Diameter Restric-

tions

This algorithm can also be easily modified to generate free trees with diameter con-

straints.

To generate free trees with diameter at most U , you may let ub = (U + 1)/2, and

call

69

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
h ≤ 4 1 1 1 2 3 5 8 12 18 26 37 51 71 95 128
h ≤ 5 1 1 1 2 3 6 10 19 32 58 95 161 258 417 647

Table 5.3: The number of free trees with height restrictions

GenFree(3, 0, 0, ub, n− ub + 1, 0, 0).

To generate free trees with diameter at least L, you may set a global variable to

check the parameter p in the call GenFree(p, s, cL, h, l, n, f, g). Stop the program

when p ≤ (L + 3)/2 and s 6= 0.

Properly combining the above two will produce the free trees with diameter ex-

actly d.

Clearly, these simple modification will not affect the CAT property of the original

algorithm since we only add constant amount of work into each recursive call.

5.6 Generating Free Trees with Bounded Degree

Similarly, the algorithm can be modified to generate free trees with bounded degree

d by replacing each recursive call GenFree(p, s, cL, h, l, n, f, g) with

chi[par[p]] := chi[par[p]] + 1;

if par[p] = root then k := d else k := d-1;

if chi[par[p]] <= k then GenFree(p,s,cL,h,l,n,f,g);

chi[par[p]] := chi[par[p]] - 1;

where chi[p] is the number of children of node p, par[p] is the parent node of p.

To make the modified algorithm CAT, we can also implement an array called

jump[] as for rooted tree algorithm which maintains the current number of children

of each nodes.

70

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
m = 3 1 1 1 2 2 4 6 11 18 37 66 135 265 552 1132
m = 4 1 1 1 2 3 5 9 18 35 75 159 355 802 1858 4347
m = 5 1 1 1 2 3 6 10 21 42 94 204 473 1098 2633 6353

Table 5.4: The number of Cayley m-free trees with n nodes

71

Chapter 6

Conclusions

In this thesis, we presented two recursive algorithms for generating unlabeled rooted

trees and free trees. Both algorithms are proved to be CAT. These recursive al-

gorithms are very simple and flexible compared to those old algorithms. They can

be simply modified to generate trees under parenthood constraints (or degree con-

straints), or height restrictions.

72

Bibliography

[1] R.C. Read, How to grow trees, in Combinatorial Structures and their Applications,

Gordon and Breach, New York, 1970.

[2] S. Zaks, Lexicographic generation of ordered trees, Theoretic Computer Science, 10

(1980), pp63-82.

[3] S. Zaks, D. Richards, Generating trees and other combinatorial objects lexicographi-

cally, SIAM J. Comp. 8. 73 (1979).

[4] R.W. Robinson, F. Harary, and A.T. Balaban, The Number of Chiral and Achiral

Alkanes and Monosubstitued Alkanes, Tetrahedron, Vol. 32, pp.355-361, Pergamon

Press, 1976.

[5] T. Beyer and S.M. Hedetniemi, Constant Time Generation of Rooted Trees, SIAM J.

Computing, 9 (1980) 706-712.

[6] D.E. Knuth, Fundamental Algorithms, The Art of Computer Programming, 1968,

Addison-Wesley.

[7] F. Ruskey, Generating t-ary trees lexicographically, SIAM Journal of Computing, 7

(1978), pp424-439.

[8] F. Ruskey, Combinatorial Generation, in preparation, 1996.

[9] F. Ruskey and T. Hu, Generating binary trees lexicographically, SIAM J. Computing,

6 (1977), pp745-758.

[10] F. Ruskey and A. Proskurowski, Generating binary trees by transpositions, Journal of

Algorithms 11 (1990) pp 68-84.

73

[11] E. Kubicka, An Efficient Method of Examining All Trees, unpublished manuscript,

1991.

[12] R. Otter, The number of Trees, Annals of Mathematics, Vol. 49, No. 3, July, 1948.

[13] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische

Verbindungen, Acta Math., 68 (1937), pp. 145-254.

[14] E. Kubicka and G. Kubicki, Constant Time Algorithm for Generating Binary Rooted

Trees, Congressus Numerantium, 90 (1992) 57-64.

[15] J. Pallo, Lexicographic generation of binary unordered trees, Pattern Recognition Let-

ters, 10 (1989) 217-221.

[16] H.I. Scions, Placing Trees in Lexicographic Order, Machine Intelligence, 3 (1969) 43-60.

[17] H.S. Wilf, Combinatorial Algorithms: An Update, SIAM, CBMS 55, 1989.

[18] R.A. Wright, B. Richmond, A. Odlyzko, and B.D. McKay, Constant Time Generation

of Free Trees, SIAM J. Computing, 15 (1986) 540-548.

[19] A. V. Kozina, Coding and generation of nonisomorphic trees, Cybernetics (Kibernet-

ica), vol. 15 (5), 1975 (1979), pg. 645-651 (38-43).

[20] A. Cayley, Collected Mathematical Papers, Cambridge, 1889-1897; 3, 242; 9, 202, 427;

11, 365; 13, 26.

[21] T. Beyer and F. Ruskey, Constant Average Time Generation of Subtrees of Bounded

Size, unpublished manuscript, May, 1989.

[22] J. Fill and E.M. Reingold, Solutions Manual for Combinatorial Algorithms: Theory

and Practice, Prentice-Hall, 1977.

[23] T. Hikita, Listing and Counting Subtrees or Equal Size of a Binary Tree, Information

Processing Letters, 17 (1983) 225-229.

[24] J. Liu, Lexicographic generation of rooted trees and trees, Kexue Tongbao, Vol. 28 No.

4 pp448-451, 1983.

74

[25] V. Vajnovszki, Constant time generation of binary unordered trees,Bulletin of the Eu-

ropean Association for Theoretical Computer Science, Number 57 (1995), pp221-229.

[26] G. Tinhofer and H. Schreck, Linear time tree codes, Computing, 33, pp211-225, 1984.

[27] T.C. Hu and F. Ruskey, Circular cuts in a network, Mathematics of Operations Re-

search, 5 (1980) pp422-434.

[28] A. Meir and J.W. Moon, On Subtrees of Certain Families of Rooted Trees, Ars Com-

binatoria, 16-B (1983) pp305-318.

[29] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, Second Edition, Academic

Press, 1978.

[30] F. Ruskey, Listing and Counting Subtrees of a Tree, SIAM J. Computing, 10 (1981)

pp141-150.

[31] L.K. Swift, T.Johnson, and P.E. Livadas, Parallel Creation of Linear Octrees from

Quadtree Slices, Parallel Processing Letters, World Scientific Publishing Company,

1994.

[32] Sabra S. Anderson, Graph Theory and Finite Combinatorics, p34, Markham Publish-

ing Company, 1970.

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduction to Algo-

rithms, The MIT Press, 1992.

[34] Etherington, Non-associative powers and a functional equation, Mathematical Gazette,

21 (1937) pp36-39.

[35] Wedderburn, The functional equation g(x2) = 2αx + g2(x), Annals of Mathematics,

24 (1922) pp121-140.

[36] Louis Comtet, Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht,

Holland, 1974.

75

Appendix A

Wright,Richmond,Odlyzko and

McKay’s Free Tree Program

The following Pascal program is translated from original authors’ algorithm.

procedure nexttree;

var

fixit, needr, needc, needh2 : boolean;

oldp,oldq,oldwq,delta : integer;

begin

fixit := false;

if (c=n+1) or (p=h2) and ((L[h1]=L[h2]+1) and (n-h2>r-h1)

or (L[h1]=L[h2]) and (n-h2+1<r-h1)) then begin

if L[r]>3 then begin

p:= r; q:= W[r];

if h1=r then h1:=h1-1;

fixit := true;

end else begin

p:=r; r:=r-1; q:=2;

end;

end;

76

needr:= false; needc:= false; needh2:= false;

if p<=h1 then h1:= p-1;

if p<=r then needr:= true else

if p<=h2 then needh2:= true else

if (L[h2]=L[h1]-1) and (n-h2=r-h1) then begin

if p<=c then needc:= true; end

else c:= MAX;

oldp:=p; delta:=q-p; oldq:= L[q]; oldwq:=W[q]; p:=MAX;

for i:=oldp to n do begin

L[i]:=L[i+delta];

if L[i]=2 then W[i]:=1 else

begin

p:=i;

if L[i]=oldq then q:= oldwq else

q:= W[i+delta] - delta;

W[i]:= q;

end;

if (needr) and (L[i]=2) then begin

needr:=false; needh2:=true; r:= i-1;

end;

if (needh2) and (L[i]<=L[i-1]) and (i>r+1) then begin

needh2:=false; h2:=i-1;

if (L[h2] = L[h1]-1) and (n-h2 = r-h1) then needc:= true

else c:= MAX;

end;

if needc then begin

if L[i]<>L[h1-h2+i]-1 then begin

needc:=false; c:= i;

end else

c:= i+1;

77

end;

end;

78

Appendix B

Implementation of Jump[]

The following code is our PASCAL implementation of the array Jump[] and Chi[],

as mentioned in section 2.2, to generate canonic trees in which each node has at most

k children.

procedure Gen(p, s, cL : integer);

var

entry : integer; { first good pos in jump[] }

temp : integer;

begin

numgen := 1 + numgen;

if (p > n) then PrintIt

else begin

if cL = 0 then begin {<---- first tree}

par[p] := p-1;

end else

if par[p-cL] < s

then par[p] := par[s]

else par[p] := cL + par[p-cL];

chi[par[p]] := chi[par[p]] + 1;

temp := rChi[par[p]]; rChi[par[p]] := p;

if chi[par[p]] <= k then begin

if chi[par[p]] < k then jump[p]:= par[p]

79

else jump[p] := jump[par[p]];

Gen(p+1, s, cL);

end;

chi[par[p]] := chi[par[p]] - 1;

rChi[par[p]] := temp;

jump[p] := jump[par[p]];

entry := jump[p];

while entry >= 1 do begin

par[p]:= entry;

chi[entry] := chi[entry] + 1;

temp := rChi[par[p]]; rChi[par[p]] := p;

if (chi[entry] >= k) then jump[p] := jump[entry];

Gen(p+1, temp, p-temp);

chi[entry] := chi[entry] - 1;

rChi[par[p]]:= temp;

entry:= jump[entry];

jump[p] := entry;

end;

end;

end {of Gen};

80

Appendix C

Pascal code for recursive

generation of free trees

program genTree(input, output);

const MaxSize = 50; { max size of the tree }

var

N : integer; { number of nodes in a tree }

par : array [1.. MaxSize] of integer; { parent position of i }

num : integer; { total number of trees }

ub : integer; {upper bound }

procedure PrintIt;

var i : integer;

begin

num := num+1;

write(’[’,num:3,’]’);

for i:=1 to N do write(par[i]:3); writeln;

end {of PrintRight};

procedure Gen(p, s, cL,h,l, n, f,g : integer); forward;

81

procedure expand(p, h, n, N: integer);

begin

if N - p >= h then Gen(p+1,2,p-1,h,n,N,1,0);

if ((p-1)*2 >= N) or ((p-h-1=1) and (par[p]>2)) or

((p-h-1>=2) and ((par[h+2]>2) or (par[h+3]>2))) then

Gen(p+1,2,p-2,h,n,N,1,1);

end;

procedure Gen(p, s, cL,h,l, n, f,g : integer);

begin

if (p > n) then begin

if (f = 0) then expand(p-1,h,n,N) else PrintIt; end

else begin

if (cL = 0) and (p<=ub+2) then par[p] := p-1 else

if par[p-cL] < s then par[p]:=par[p-cL]

else begin

par[p] := cL + par[p-cL];

if (g=1) then

if ((l-1)*2 < n)

and (p-cL<=l) and (

((p-cL+1<l) and (par[p-cL+1]=2)

and (p-cL+2<=l) and (par[p-cL+2]=2)) {case 1}

or ((p-cL+1=l) and (par[p-cL+1]=2)) {case 2}

or (p-cL+1>l)) then begin {case 3}

s:= par[p]; cL:= p-s;

par[p] := par[par[p]];

end else if (par[p-cL]=2) then par[p]:=1;

end;

Gen(p+1, s, cL,h,l,n,f,g);

while (par[p] > 2) and ((f=0) or (p>l+h-g)) do begin

if (s=0) then h:= p-2;

82

s := par[p]; par[p] := par[s];

if (f=0) then Gen(p+1,s,p-s,h,0,N-h+1,f,g)

else Gen(p+1,s,p-s,h,l,n,f,g);

end;

if (f = 0) then expand(p-1,h,p-1,N);

end;

end {of Gen};

begin {------------------ main --------------------}

write(’Input N =’); readln(N);

ub :=N div 2;

par[1] := 0; par[2] := 1;

Gen(3, 0, 0,ub,0,(N+3)div 2,0,0);

writeln(’total = ’,num:3);

end. {------------------ main --------------------}

VITA

Surname: Li Given Names: Gang

Place of Birth: Kuitun, Xingjiang, China

Educational Institutions Attended:

University of Victoria 1994 to 1996

University of Calgary 1992 to 1994

People’s University of China 1986 to 1990

Degrees Awarded:

B.Sc. Poeple’s University of China 1990

M.Sc. University of Calgary 1994

Honours and Awards:

University of Victoria Fellowship 1994-96

Publications:

PARTIAL COPYRIGHT LICENSE

I hereby grant the right to lend my thesis to users of the University of Victoria

Library, and to make single copies only for such users or in response to a request

from the Library of any other university, or similar institution, on its behalf or for

one of its users. I further agree that permission for extensive copying of this thesis for

scholarly purposes may be granted by me or a member of the University designated

by me. It is understood that copying or publication of this thesis for financial gain

shall not be allowed without my written permission.

Title of Thesis/Dissertation:

Generation of Rooted Trees and Free Trees

Author

Gang Li

March 1, 1996

