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Chapter 1

Leonardo of Pisa and the
Fibonacci Sequence

Fibonacci, the pen name of Leonardo of Pisa which means son of Bonacci, was born in Pisa,

Italy around 1170. Around 1192 his father, Guillielmo Bonacci, became director of the Pisan

trading colony in Bugia, Algeria, and some time thereafter they traveled together to Bugia.

From there Fibonacci traveled throughout Egypt, Syria, Greece, Sicily, and Provence where

he became familiar with Hindu-Arabic numerals which at that time had not been introduced

into Europe.

He returned to Pisa around 1200 and produced Liber Abaci in 1202. In it he presents

some of the arithmetic and algebra he encountered in his travels, and he introduces the place-

valued decimal system and Arabic numerals. Fibonacci continued to write mathematical

works at least through 1228, and he gained a reputation as a great mathematician. Not

much is known of his life after 1228, but it is commonly held that he died some time after

1240, presumably in Italy.

Despite his many contributions to mathematics, Fibonacci is today remembered for the

sequence which comes from a problem he poses in Liber Abaci. The following is a paraphrase:

A man puts one pair of rabbits in a certain place entirely surrounded by a wall.

The nature of these rabbits is such that every month each pair bears a new pair

which from the end of their second month on becomes productive. How many

pairs of rabbits will there be at the end of one year?

If we assume that the first pair is not productive until the end of the second month, then
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clearly for the first two months there will be only one pair. At the start of the third month

the first pair will beget a pair giving us a total of two pair. During the fourth month the

original pair begets again but the second pair does not, giving us three pair, and so on.

Assuming none of the rabbits die we can develop a recurrence relation. Let there be Fn

pairs of rabbits in month n, and Fn+1 pairs of rabbits in month n+1. During month n+2,

all the pairs of rabbits from month n + 1 will still be there, and of those rabbits the ones

which existed during the nth month will give birth. Hence Fn+2 = Fn+1 +Fn. The sequence

which ensues when F1 = F2 = 1 is called the Fibonacci sequence and the numbers in the

sequence are the Fibonacci numbers.

n: 1 2 3 4 5 6 7 8 9 10 11 12 ...
Fn: 1 1 2 3 5 8 13 21 34 55 89 144 ...

Thus the answer to Fibonacci’s problem is 144.

Interestingly, it was not until 1634 that this recurrence relation was written down by

Albert Girard.

Despite its simple appearance the Fibonacci sequence contains a wealth of subtle and

fascinating properties. For example,

Theorem 1.1 Successive terms of the Fibonacci sequence are relatively prime.

Proof: Suppose that Fn and Fn+1 are both divisible by a positive integer d.

Then their difference Fn+1 − Fn = Fn−1 will also be divisible by d. Continuing,

we see that d|Fn−2, d|Fn−3, and so on. Eventually, we must have d|F1. Since

F1 = 1 clearly d = 1. Since the only positive integer which divides successive

terms of the Fibonacci sequence is 1, our theorem is proved.

One of the purposes of this chapter and the next is to develop many of the identities

needed in chapters three and four. All of these can be found in either [4] or [20]. Given

the recursive nature of the sequence, proof by induction is often a useful tool in proving

identities and theorems involving the Fibonacci numbers. One of the most useful is the

following.

Identity 1.2 Fm+n = Fm−1Fn + FmFn+1.
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Proof: Let m be fixed and we will proceed by inducting on n. When n = 1,

then Fm+1 = Fm−1F1 + FmF2 = Fm−1 + Fm which is true.

Now let us assume the identity is true for n = 1, 2, 3, . . . , k, and we will show

that it holds for n = k + 1. By assumption

Fm+k = Fm−1Fk + FmFk+1

and

Fm+(k−1) = Fm−1Fk−1 + FmFk.

Adding the two we get Fm+k + Fm+(k−1) = Fm−1(Fk + Fk−1) + Fm(Fk+1 + Fk)

which implies Fm+(k+1) = Fm−1Fk+1 + FmFk+2 which is precisely our identity

when n = k + 1.

As an example of this identity, we see that F12 = F8+4 = F7F4 +F8F5 = 13(3)+21(5) =

144.

It is often useful to extend the Fibonacci sequence backward with negative subscripts.

The Fibonacci recurrence can be written as Fn = Fn+2 − Fn+1 which allows us to do this.

n: ... -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 ...
Fn: ... 13 -8 5 -3 2 -1 1 0 1 1 2 3 ...

Sequences such as the Fibonacci sequence which can be extended infinitely in both directions

are called “bilateral”.

With some inspection another useful identity presents itself:

Identity 1.3 F−n = (−1)n+1Fn.

Now we can combine the above two identities to obtain

Identity 1.4 Fm−n = (−1)n(FmFn+1 − Fm+1Fn)

Another important fact about the Fibonacci sequence is easily tackled with induction.

Theorem 1.5 Fm|Fmn for all integers m,n.

Proof: Let m be fixed and we will induct on n. If either m or n equals zero,

then the theorem is true by easy inspection. For n = 1 it is clear that Fm|Fm.
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Now let us assume that the theorem holds for n = 1, 2, . . . , k and we will

show that it also holds for n = k + 1. Using identity 1.2 we see Fm(k+1) =

Fmk−1Fm + FmkFm+1. By assumption Fm|Fmk, and so Fm divides the entire

right side of the equation. Hence Fm divides Fm(k+1) and the theorem is proved

for n ≥ 1. Since Fmn differs from F−mn by at most a factor of -1, then Fm|Fmn

for n ≤ −1 as well.

A surprising result, with a surprisingly simple geometric proof is demonstrated in the

following identity.

Identity 1.6 F 2
1 + F 2

2 + F 2
3 + · · ·+ F 2

n = FnFn+1.

Proof: We can think of the squares of Fibonacci numbers as areas, and then

put them together in the manner below.

1 × 1 1 × 1

2× 2

3× 3

5× 5

8× 8
. . .

...

We can find the area of the above rectangle by summing the squares, F 2
1 +F 2

2 +

F 2
3 +F 2

4 +F 2
5 +F 2

6 , or by multiplying height times width, F6 ·(F5 +F6) = F6 ·F7.

The general case for the sum of the squares of n Fibonacci numbers follows easily.

The following identity will be useful to us and it, too, can be proved geometrically.

Identity 1.7 F 2
n + F 2

n+1 = F2n+1.
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Proof:

Fn+Fn+1=Fn+2︷ ︸︸ ︷
Fn × Fn

Fn+1 × Fn+1  Fn+1 − Fn = Fn−1

The area above can be represented as Fn−1Fn+1 + FnFn+2. From identity 1.2

this simplifies to Fn+(n+1) = F2n+1.

Here is another identity involving the square of Fibonacci numbers.

Identity 1.8 Fn+1Fn−1 − F 2
n = (−1)n.

Proof:

Fn+1Fn−1 − F 2
n = (Fn−1 + Fn)Fn−1 − F 2

n

= F 2
n−1 + Fn(Fn−1 − Fn)

= F 2
n−1 − FnFn−2

= −(FnFn−2 − F 2
n−1).

We can now repeat the above process on the last line to attain

−(FnFn−2 − F 2
n−1) = (−1)2(Fn−1Fn−3 − F 2

n−2)

= (−1)3(Fn−2Fn−4 − F 2
n−3)

...

= (−1)n(F1F−1 − F 2
0 )

= (−1)n

It was the 19th century number theorist Edouard Lucas who first attached Fibonacci’s

name to the sequence we have been studying. He also investigated generalizations of the

sequence.
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A generalized Fibonacci sequence, G, is one in which the usual recurrence relation

Gn+2 = Gn+1+Gn holds, but G0 and G1 may take on arbitrary values. The Lucas sequence,

L, is an example of a generalized Fibonacci sequence where L0 = 2 and L1 = 1. It continues

2, 1, 3, 4, 7, 11, .... There are many interesting relationships between the Fibonacci and

Lucas sequences, and we give two of the most basic here.

Identity 1.9 Ln = Fn−1 + Fn+1.

Proof: We will prove the identity by induction. It is easy to see that L1 = 1 =

0 + 1 = F0 + F2 and L2 = 3 = 1 + 2 = F1 + F3. Now suppose that the identity

holds for Lr and Lr+1:

Lr = Fr−1 + Fr+1

Lr+1 = Fr + Fr+2

Adding the two equations gives us Lr+2 = Fr+1 + Fr+3 and subtracting the top

equation from the bottom yields Lr−1 = Fr−2 + Fr. Thus the identity holds for

all positive and negative r.

Identity 1.10 F2n = FnLn.

Proof: F2n = Fn+n = Fn−1Fn + FnFn+1 = Fn(Fn−1 + Fn+1) = FnLn.

We make a distinction between a Fibonacci sequence, meaning any generalized Fibonacci

sequence, and the Fibonacci sequence, meaning the sequence with G0 = 0 and G1 = 1.

Some authors generalize the sequence even more by using the relation Sn+2 = bSn+1 +

aSn. A further generalization examines sequences with the relation Sn = c1Sn−1 +c2Sn−2 +

· · · + ckSn−k for constants k and ci. Throughout this paper we will concentrate primarily

on the Fibonacci sequence, though we will have occasion to make use of the generalized

form Gn+2 = Gn+1 + Gn. We end this chapter with two identities from [20] involving the

generalized Fibonacci sequence.
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Identity 1.11 Gm+n = Fn−1Gm + FnGm+1.

Proof: For the cases n = 0 and n = 1 we have

Gm = F−1Gm + F0Gm+1

Gm+1 = F0Gm + F1Gm+1

which is true since F−1 = 1, F0 = 0, and F1 = 1. By adding the two equations

it is easy to see that our identity continues to hold for n = 2, 3, . . . and so on.

Subtracting the first equation from the second indicates that the identity also

holds for negative n.

Identity 1.12 Gm−n = (−1)n(FnGm+1 − Fn+1Gm)

Proof: This identity follows by substituting −n for n in the above identity and

then using identity 1.3.
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Chapter 2

The Binet Formula

While the recurrence relation and initial values determine every term in the Fibonacci

sequence, it would be nice to know a formula for Fn so we wouldn’t have to compute all the

preceding Fibonacci numbers. Such a formula was discovered by Jacques-Philippe-Marie

Binet in 1843. Vajda [20] observes that this was actually a “rediscovery” since Abraham

DeMoivre knew about this formula as early as 1718. However, history has favored Binet

with the credit. Much of the material in this chapter can be found in [20].

Let us find the values for x which will give us the generalized Fibonacci sequence xn+2 =

xn+1 + xn. Since we are not concerned with the case where x = 0 which gives us the trivial

sequence, we may divide through by xn to attain x2 = x + 1, that is, x2 − x− 1 = 0. The

two roots of this equation are

τ =
1 +

√
5

2
σ =

1−
√

5
2

. (2.1)

Note the following properties of τ and σ:

τ + σ = 1 τ − σ =
√

5 τσ = −1 (2.2)

Now 1, τ, τ2, τ3, . . . and 1, σ, σ2, σ3, . . . are in fact generalized Fibonacci sequences since

τn+2 = τn+1 + τn and σn+2 = σn+1 + σn. Indeed, any linear combination of τn and σn

forms the nth term of some Fibonacci sequence.

Gn = ατn + βσn (2.3)

As we see, (ατn+βσn)+(ατn+1+βσn+1) = α(τn+τn+1)+β(σn+σn+1) = ατn+2+βσn+2.

11
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Any Fibonacci sequence can be expressed this way for particular values of α and β. We

show this by expressing α and β in terms of G0, G1, τ , and σ.

First, notice that G0 = α + β and G1 = ατ + βσ. Since β = G0 − α we can write

G1 = ατ + (G0 − α)σ

= α(τ − σ) + G0σ

= α
√

5 + G0σ

which implies

α =
G1 −G0σ√

5
. (2.4)

Similarly α = G0 − β and so

G1 = (G0 − β)τ + βσ

= G0τ + β(σ − τ)

= G0τ − β
√

5

which implies

β =
G0τ −G1√

5
. (2.5)

Now, once we know G0 and G1 we can use equations 2.4 and 2.5 to determine α and β, and

then the formula for Gn follows from equation 2.3.

For example, in the Fibonacci sequence F0 = 0 and F1 = 1, and so α = 1/
√

5 and

β = −1/
√

5. Thus

Fn =
τn − σn

√
5

. (2.6)

In the Lucas sequence L0 = 2 and L1 = 1.

α =
1− 2σ√

5
=

(τ + σ)− 2σ√
5

=
τ − σ√

5
= 1.

β =
2τ − 1√

5
=

2τ − (τ + σ)√
5

=
τ − σ√

5
= 1.

Thus

Ln = τn + σn. (2.7)

DeMoivre was able to derive the formula for Fn in a different way, using generating

functions. We demonstrate this technique next.
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Let g(x) =
∑∞

i=0 Fix
i. It follows that g(x)− F0x

0 − F1x
1 = g(x)− x. Hence

g(x)− x =
∞∑

i=2

Fix
i =

∞∑
i=2

(Fi−1x
i + Fi−2x

i)

= x
∞∑

i=1

Fix
i + x2

∞∑
i=0

Fix
i

= xg(x) + x2g(x).

Now we have g(x)− xg(x)− x2g(x) = x. That is,

g(x) =
x

1− x− x2
=

x

1− (τ + σ)x + τσx2

=
x

(1− τx)(1− σx)
=

(τ − σ)x√
5(1− τx)(1− σx)

=
1− σx√

5(1− τx)(1− σx)
− 1− τx√

5(1− τx)(1− σx)

=
1√

5(1− τx)
− 1√

5(1− σx)
.

Expressing 1
1−τx and 1

1−σx as the sums of geometric series we get

g(x) =
1√
5
(1 + τx + τ2x2 + · · ·)− 1√

5
(1 + σx + σ2x2 + · · ·)

= [(τ − σ)x + (τ2 − σ2)x2 + · · ·]/
√

5

The coefficient of xn, in other words Fn, is (τn − σn)/
√

5, just as we suspected.

We can use the generating function to attain some unusual results. Taking our equation

g(x) =
x

1− x− x2
=

∞∑
i=0

Fix
i

and dividing through by x we get

1
1− x− x2

=
∞∑

i=0

Fix
i−1. (2.8)

When x = 1/2,

4 =
∞∑

i=0

Fi

2i−1
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which implies

2 =
∞∑

i=0

Fi

2i
. (2.9)

Another remarkable summation identity is obtained by differentiating both sides of equa-

tion (2.8)

1 + 2x

(1− x− x2)2
=

∞∑
i=0

(i− 1)Fix
i−2.

When x = 1/2,

32 =
∞∑

i=0

(i− 1)Fi

2i−2

8 =
∞∑

i=0

(i− 1)Fi

2i
=

∞∑
i=0

iFi

2i
−

∞∑
i=0

Fi

2i

8 =
∞∑

i=0

iFi

2i
− 2

10 =
∞∑

i=0

iFi

2i
. (2.10)

The next identity is clearly more complicated than those we’ve looked at before, yet its

proof yields readily to the Binet formula. The interesting thing about it is that it gives us

insight into the recurrence relation governing subsequences of the Fibonacci sequence. This

identity shows how every nth term of the Fibonacci sequence is related.
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Identity 2.1 Fm+n = LnFm + (−1)n+1Fm−n.

Proof:

LnFm + (−1)n+1Fm−n = (τn + σn)(
τm − σm

√
5

) + (−1)n+1(
τm−n − σm−n

√
5

)

=
τm+n − τnσm + σnτm − σm+n

√
5

+
(−1)n+1τm−n − (−1)n+1σm−n

√
5

=
τm+n − (−1)nσm−n + (−1)nτm−n − σm+n − (−1)nτm−n + (−1)nσm−n

√
5

=
τm+n − σm+n

√
5

= Fm+n

It is easy to see that when n = 1 in the above identity, we get the usual Fibonacci

recurrence relation, Fm+1 = (1)Fm + (1)Fm−1. When n = m we get identity 1.10: F2n =

LnFn.

Identity 2.2 Fn = 1
2n−1 [

(
n
1

)
+

(
n
3

)
5 +

(
n
5

)
52 +

(
n
7

)
53 + · · ·].

Proof:

Fn =
τn − σn

√
5

=
1

2n
√

5
[(1 +

√
5)n − (1−

√
5)n]

Now expand using the binomial theorem:

=
1

2n
√

5

[(
1 +

(n

1

)√
5 +

(n

2

)√
5
2

+
(n

3

)√
5
3

+ · · ·
)

−
(
1−

(n

1

)√
5 +

(n

2

)√
5
2
−

(n

3

)√
5
3

+ · · ·
)]

=
1

2n−1
√

5

[(n

1

)√
5 +

(n

3

)√
5
3

+
(n

5

)√
5
5

+ · · ·
]

=
1

2n−1

[(n

1

)
+

(n

3

)
5 +

(n

5

)
52 +

(n

7

)
53 + · · ·

]
Lastly in this chapter we use τ and σ to demonstrate some simple greatest-integer iden-

tities. Though we will not use these, much research has been done in this area and they are

certainly of interest in their own right.
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Identity 2.3 Fn = b τn
√

5
+ 1

2c for all n.

Proof: |Fn − τn
√

5
| = | σ

n
√

5
| < 1

2 for all n.

Identity 2.4 Fn+1 = bτFn + 1
2c for n ≥ 2.

Proof: |Fn+1 − τFn| = | τ
n+1−σn+1

√
5

− τn+1−σnτ√
5

| = |σ
n(τ−σ)√

5
| = |σn| < 1

2 for all

n ≥ 2.



Chapter 3

Modular Representations of
Fibonacci Sequences

One way to learn some fascinating properties of the Fibonacci sequence is to consider the

sequence of least nonnegative residues of the Fibonacci numbers under some modulus. One

of the first modern inquiries into this area of research was made by D. D. Wall [22] in 1960,

though J. L. Lagrange made some observations on these types of sequences in the eighteenth

century. Typically, the variable m will be used only to denote a modulus.

3.1 The Period

Perhaps the first thing one notices when the Fibonacci sequence is reduced mod m is that

it is periodic. For example,

F (mod 4) = 0 1 1 2 3 1 0 1 1 2 3 ...
F (mod 5) = 0 1 1 2 3 0 3 3 1 4 0 4 4 3 2 0 2 2 4 1 0 1 1 2 3 ...

See appendix C for a list of the Fibonacci sequence under various moduli.

Any (generalized) Fibonacci sequence modulo m must repeat. After all, there are only

m2 possible pairs of residues and any pair will completely determine a sequence both forward

and backward. If we ignore the pair 0,0 which gives us the trivial sequence, then we know

that the period of any Fibonacci sequence mod m has a maximum length of m2 − 1.

It will always happen that the first pair to repeat will be the pair we started with.

Suppose that this were not so. Then we might have the sequence a, b, ..., x, y, ..., x, y, ...

where the pair a, b is not contained in the block x, y, ..., x, y. However, we know that this

17
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block repeats backward as well as forward, and so the pair a, b cannot be in the sequence.

This gives us our contradiction.

We can say some things about where the zeros will appear in the modular representation

of the Fibonacci sequence. Recall from identities 1.2 and 1.4 that

Fs+t = Fs−1Ft + FsFt+1

Fs−t = (−1)t(FsFt+1 − Fs+1Ft).

If Fs ≡ Ft ≡ 0 then clearly Fs+t ≡ 0 and Fs−t ≡ 0. Hence all the zeros of F (mod m) are

evenly spaced throughout the sequence. Since F (mod m) is periodic for any m and F0 = 0

we can say that any integer will divide infinitely many Fibonacci numbers. In addition,

all the Fibonacci numbers divisible by a given integer are evenly spaced throughout the

sequence.

We know that F (mod m) is periodic, so the question naturally presents itself: What is

the relationship between the modulus of a sequence and its period? We will examine some

results in this area.

Each author seems to have his or her own notation, but the following definitions come

from Wall. Let k(m) denote the period of the Fibonacci sequence modulo m. Let h(m)

denote the period of any generalized Fibonacci sequence modulo m. From our previous ex-

ample we see that k(4) = 6 and k(5) = 20. The following are some immediate consequences

of the definition.

Fn ≡ Fn+r·k(m) (mod m)

Gn ≡ Gn+r·h(m) (mod m)

Fk(m) ≡ 0 (mod m) (3.1)

Fk(m)−1 ≡ Fk(m)+1 ≡ Fk(m)+2 ≡ 1 (mod m) (3.2)

We will often use the fact that if Fn ≡ 0 (mod m) and Fn+1 ≡ 1 (mod m) then k(m)|n.

This result follows immediately from the periodicity of F (mod m).

We now demonstrate some very general properties of F (mod m) using our notation.

The following three theorems can be found in [22]. The reader is encouraged to examine the

table in appendix B which gives the period of F (mod m) for 2 ≤ m ≤ 1000, and observe the
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behavior of k(m) as m varies. After noticing that F (mod m) is periodic one notices that

almost all of the periods are even. Though Wall provides the next theorem, the proof is the

author’s.

Theorem 3.1 For m ≥ 3, k(m) is even.

Proof: For ease of notation let k = k(m), and we will consider all congruences

to be taken modulo m. From identity 1.3 we know that if t is odd then Ft = F−t

and if t is even then Ft = −F−t. We will assume k to be odd and show that m

must equal 2.

We know that F1 = F−1 ≡ Fk−1. Now k−1 is even so Fk−1 = −F1−k ≡ −F1.

Thus F1 ≡ −F1, and as a result m = 2.

Another curious feature of F (mod m) is that k(n)|k(m) whenever n|m. Surprisingly,

this property is true of generalized Fibonacci sequences as well.

Theorem 3.2 If n|m, then for a given Fibonacci sequence, h(n)|h(m).

Proof: Let h = h(m). We need to show that G(mod n) repeats in blocks

of length h. We do this by showing that Gi ≡ Gi+h (mod n) regardless of our

choice for i. Certainly we know that Gi ≡ Gi+h (mod m), so for some 0 ≤ a < m

we have Gi = a + mx and Gi+h = a + my.

Now say m = nr and let us substitute nr for m in the previous two equations.

Then Gi = a+nrx and Gi+h = a+nry. We can say that a = a′+nw (0 ≤ a′ < n)

and this time substitute for a in the previous equations. Now Gi = a′+n(w+rx)

and Gi+h = a′+n(w+ry). Of course this implies that Gi ≡ Gi+h (mod n) which

was needed to be shown.

We can make this theorem more exact by expressing h(m) in terms of h(pei
i ) where m

has the prime factorization m =
∏

pei
i .

Theorem 3.3 Let m have the prime factorization m =
∏

pei
i . Then h(m) = lcm[h(pei

i )],

the least common multiple of the h(pei
i ).
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Proof: By our previous theorem h(pei
i )|h(m) for all i. It follows that lcm[h(pei

i )]|h(m).

Second, since h(pei
i )|lcm[h(pei

i )] we know G(mod pei
i ) repeats in blocks of

length lcm[h(pei
i )]. Hence Glcm[h(p

ei
i

)] ≡ G0 and Glcm[h(p
ei
i

)]+1 ≡ G1 (mod pei
i )

for all i. Since all the pei
i are relatively prime, the Chinese Remainder Theo-

rem assures us that Glcm[h(p
ei
i

)] ≡ G0 and Glcm[h(p
ei
i

)]+1 ≡ G1 (mod m). Thus

G(mod m) repeats in blocks of length lcm[h(pei
i )] and we can say that h(m)|lcm[h(pei

i )].

This concludes the proof.

Hence we have reduced the problem of characterizing k(m) into the problem of charac-

terizing k(pe). Before we develop theorems which speak to this problem, however, we look

at a related result. We see in the following theorem that it is not necessary to break a

modulus all the way into its prime factorization in order to attain information about k(m).

Theorem 3.4 h([m,n]) = [h(m), h(n)] where brackets denote the least common multiple

function.

Proof: Since m|[m,n] and n|[m,n] we know that h(m)|h([m,n]) and h(n)|h([m,n]).

It follows that [h(m), h(n)]|h([m,n]).

Say we have the prime factorization [m,n] = pe1
1 . . . pet

t . Then h([m,n]) =

h(pe1
1 . . . pet

t ) = [h(pe1
1 ) . . . h(pet

t )]. Since pei
i divides m or n for all i, certainly

h(pei
i ) divides h(m) or h(n) for all i. Thus [h(pe1

1 ) . . . h(pet
t )]|[h(m), h(n)]. In

other words, h([m,n])|[h(m), h(n)].

Hence h([m,n]) = [h(m), h(n)].

Now we turn our attention back to the matter of solving k(pe) in terms of pe. The general

case of this theorem is somewhat involved, so to motivate the ideas we look at a couple of

specific cases. We will demonstrate that k(2e) = 3 ·2e−1 and k(5e) = 4 ·5e. These results can

be found in [11], but the proofs there are somewhat incomplete. For example, Kramer and

Hoggatt show that F3·2e−1 ≡ 0 (mod 2e) and F3·2e−1+1 ≡ 1 (mod 2e) and they immediately

conclude that k(2e) = 3 · 2e−1. However, this only demonstrates that k(2e)|3 · 2e−1. The

proof below takes this point into consideration.

Theorem 3.5 k(2e) = 3 · 2e−1.
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Proof: By inspection, k(2) = 3 and k(4) = 6, so the theorem holds for e = 1, 2.

Suppose k(2r) = 3 · 2r−1, so that F3·2r−1 ≡ 0 and F3·2r−1+1 ≡ 1 (mod 2r) and

we will induct on r.

By identity 1.10,

F3·2r = (F3·2r−1)(F3·2r−1−1 + F3·2r−1+1)

The first factor on the right, F3·2r−1 ≡ 0 (mod 2r). It is an easy matter to see

that every third Fibonacci number is even and the rest are odd, so the second

factor on the right, F3·2r−1−1 + F3·2r−1+1 ≡ 0 (mod 2). Thus their product,

F3·2r ≡ 0 (mod 2r+1).

By identity 1.7,

F3·2r+1 = (F3·2r−1)2 + (F3·2r−1+1)2

≡ (0 or 2r)2 + (1 or 2r + 1)2 (mod 2r+1)
≡ 0 + 1 (mod 2r+1)
≡ 1 (mod 2r+1)

Thus we know k(2r+1)|3 · 2r.

We know that k(2r)|k(2r+1), and by our induction hypothesis k(2r) = 3 ·

2r−1. Thus k(2r+1) = either 3 · 2r−1 or 3 · 2r. We will show that the latter is

true by proving F3·2r−1+1 6≡ 1 (mod 2r+1). More precisely, we will prove that

F3·2r−1+1 ≡ 2r + 1 (mod 2r+1).

Let us add this statement to our induction hypothesis: assume F3·2r−2 ≡ 0

and F3·2r−2+1 ≡ 2r−1 + 1 (mod 2r). By inspection this is the case for r = 3. We

will induct on r to show that F3·2r−1+1 ≡ 2r + 1 (mod 2r+1).

By identity 1.7,

F3·2r−1+1 = (F3·2r−2+1)2 + (F3·2r−2)2.

Let us look at the first term on the right.

F3·2r−2+1 ≡ (2r−1 + 1) or (2r−1 + 1 + 2r) (mod 2r+1)

(2r−1 + 1)2 = 22r−2 + 2r + 1 ≡ 2r + 1 (mod 2r+1)

(2r−1 + 1 + 2r)2 = (3 · 2r−1 + 1)2

= 9 · 22r−2 + 3 · 2r + 1 ≡ 2r + 1 (mod 2r+1)
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Thus

(F3·2r−2+1)2 ≡ 2r + 1 (mod 2r+1).

Let us look at the second term on the right.

F3·2r−2 ≡ 0 or 2r (mod 2r+1)

02 ≡ 0 (mod 2r+1)

(2r)2 = 22r ≡ 0 (mod 2r+1)

Thus

(F3·2r−2)2 ≡ 0 (mod 2r+1).

Consequently F3·2r−1+1 ≡ 2r + 1 (mod 2r+1) and the theorem follows.

Before we prove a similar theorem for k(5e) we first need to mention a lemma which

provides insight into one of the divisibility properties of the Fibonacci sequence.

Lemma 3.6 Let p be an odd prime and suppose pt|Fn but pt+16 |Fn for some t ≥ 1. If p6 | v

then pt+1|Fnvp but pt+26 | Fnvp.

The proof of this lemma is too involved to be examined here, but it can be found in [20].

Since F5 = 5, clearly 5 goes into F5 once. By the the lemma then, 5 goes into Fn·5t

exactly t times if 56 | n.

Theorem 3.7 k(5e) = 4 · 5e.

Proof: First we will show that for all e, F4·5e ≡ 0 and F4·5e+1 ≡ 1 (mod 5e).

By the lemma above clearly F4·5e ≡ 0 (mod 5e). From identity 1.7 we have

F4·5e+1 = (F2·5e)2 + (F2·5e+1)2.

Applying our lemma to the first term on the right gives us (F2·5e)2 ≡ 02 ≡

0 (mod 5e). By identity 1.8, the second term on the right, (F2·5e+1)2 = F2·5eF2·5e+2+

(−1)2·5
e+2 ≡ 1 (mod 5e).

Thus we know that F4·5e ≡ 0 and F4·5e+1 ≡ 1 (mod 5e) and it follows that

k(5e)|4 · 5e for all e.
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We proceed now by induction using the hypothesis k(5r) = 4 · 5r. By inspec-

tion this is the case for r = 1. We induct on r to show k(5r+1) = 4 · 5r+1.

Since 4 · 5r = k(5r)|k(5r+1) and k(5r+1)|4 · 5r+1, we know k(5r+1) = either

4 · 5r or 4 · 5r+1. In the first case, F4·5r contains exactly r factors of 5 and hence

F4·5r 6≡ 0 (mod 5r+1). Hence we must have k(5r+1) = 4 · 5r+1 and our theorem

is proved.

We have proved k(pe) = pe−1k(p) for p = 2 and p = 5, and we now turn to proving it

for all p. While the general theorem is slightly less strict than these special cases, it does

give us great insight into the periodic behavior of the Fibonacci sequence. One proof, by

Robinson[15], also shows how matrices may be used to discover facts about the Fibonacci

sequence. We will be working with the matrix U defined by

U =
[

0 1
1 1

]
which has the property that

Un =
[

Fn−1 Fn

Fn Fn+1

]
. (3.3)

This matrix has been called the Fibonacci matrix because of this property. Note that

Uk(m) = I + mB ≡ I (mod m) for some 2 × 2 matrix B. And, if Un ≡ I (mod m) then

k(m)|n.

Theorem 3.8 If t is the largest integer such that k(pt) = k(p) then k(pe) = pe−tk(p) for

all e ≥ t.

Proof: Since Uk(pe) = I + peB we can write Upk(pe) = (I + peB)p = Ip +(
p
1

)
Ip−1(peB) +

(
p
2

)
Ip−2(peB)2 + · · ·. Thus Upk(pe) ≡ I (mod pe+1). Clearly

Uk(pe+1) ≡ I (mod pe+1) and so we have k(pe+1)|pk(pe). Combine this fact with

the knowledge that k(pe)|k(pe+1) and as a result k(pe+1) = k(pe) or pk(pe).

Now let us assume that k(pe+1) = pk(pe) and we will induct on e to arrive

at k(pe+2) = pk(pe+1).

By assumption k(pe) 6= k(pe+1) and so we know that Uk(pe) = I +peB where

p6 |B. Hence Upk(pe) = (I +peB)p = Ip +
(

p
1

)
Ip−1(peB)+

(
p
2

)
Ip−2(peB)2 + · · · ≡

I +pe+1B (mod pe+2). (The astute reader may notice that this congruence does



24 CHAPTER 3. MODULAR REPRESENTATIONS OF FIBONACCI SEQUENCES

not actually hold for p = 2, e = 1. However, since we have proven the case for

p = 2 in theorem 3.5 we may assume p ≥ 3.) That is, Uk(pe+1) = Upk(pe) ≡

I + pe+1B 6≡ I (mod pe+2). This implies k(pe+1) 6= k(pe+2) so we must have

k(pe+2) = pk(pe+1) and the induction is complete.

Now let t be the largest e such that k(pe) = k(p). Then k(pe) = k(p) for

1 ≤ e ≤ t and k(pe) = k(pe−t) for e ≥ t.

Remarkably, the conjecture that t = 1 for all primes has existed since Wall’s paper

in 1960, but neither a proof nor a counter example has yet been found. Once again we

have been able to reduce the problem of finding the period of the Fibonacci sequence given

a modulus. All that remains (other than proving t = 1 for all primes, of course) is to

characterize k(p) in terms of p. However, this undertaking has proven to be extraordinarily

difficult, and the best we can do is to describe some bounds on k(p).

Theorems 3.11 through 3.13 will describe upper bounds on k(p), but we must first take

some time to develop certain divisibility properties of the Fibonacci sequence found in [20].

We will make use of these three facts for primes, p:

(i)
( p

n

)
≡ 0 (mod p) for 1 ≤ n ≤ p− 1

(ii)
(

p− 1
n

)
≡ (−1)n (mod p) for 0 ≤ n ≤ p− 1

(iii)
(

p + 1
n

)
≡ 0 (mod p) for 2 ≤ n ≤ p− 1

We will also use the following lemma:

Lemma 3.9 5 is a quadratic residue modulo primes of the form 5t ± 1 and a quadratic

nonresidue modulo primes of the form 5t± 2.

Proof: Using the Legendre symbol and the law of quadratic reciprocity we

know that ( 5
p ) = (p

5 ) since 5 is a prime of the form 4t + 1. Then,(
5

5t + 1

)
=

(
5t + 1

5

)
=

(
1
5

)
= 1

(
5

5t− 1

)
=

(
5t− 1

5

)
=

(
4
5

)
= 1.
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However, (
5

5t + 2

)
=

(
5t + 2

5

)
=

(
2
5

)
= −1

(
5

5t− 2

)
=

(
5t− 2

5

)
=

(
3
5

)
= −1.

Using identity 2.2 we have 2p−1Fp =
(

p
1

)
+

(
p
3

)
5 + · · ·+

(
p
p

)
5

p−1
2 . Applying (i) above

and Fermat’s theorem we get Fp ≡ 5
p−1
2 (mod p). Now from the lemma we know that

5
p−1
2 ≡ 1 (mod p) if and only if p = 5t±1, and 5

p−1
2 ≡ −1 (mod p) if and only if p = 5t±2.

Hence,

If a prime p is of the form 5t± 1 then Fp ≡ 1 (mod p).
If a prime p is of the form 5t± 2 then Fp ≡ −1 (mod p).

The converse of these statements is not true, for in fact F22 = 17711 = 85(22) + 1 ≡

1 (mod 22), and quite clearly, 22 is not prime.

Again we use identity 2.2 and see 2p−2Fp−1 =
(

p−1
1

)
+

(
p−1
3

)
5 + · · ·+

(
p−1
p−2

)
5

p−3
2 . By

(ii) above, 2p−2Fp−1 ≡ −(1 + 5 + 52 + · · ·+ 5
p−3
2 ) (mod p). Summing the geometric series

yields,

2p−2Fp−1 ≡ −5
p−1
2 − 1
4

(mod p).

Clearly if 5
p−1
2 ≡ 1 (mod p) then 2p−2Fp−1 ≡ 0 (mod p). Certainly 2p−2 6≡ 0 (mod p) so it

would have to be that Fp−1 ≡ 0 (mod p). Hence,

If a prime p is of the form 5t± 1 then Fp−1 ≡ 0 (mod p).

Finally, identity 2.2 gives us 2pFp+1 =
(

p+1
1

)
+

(
p+1
3

)
5 + · · · +

(
p+1

p

)
5

p−1
2 . By (iii)

above, 2pFp+1 ≡
(

p+1
1

)
+

(
p+1

p

)
5

p−1
2 = (p + 1) + (p + 1)5

p−1
2 ≡ 1 + 5

p−1
2 (mod p). Now

when 5
p−1
2 ≡ −1 (mod p) we will have 2pFp+1 ≡ 0 (mod p). Since 2p ≡ 2 (mod p), it would

have to be that Fp+1 ≡ 0 (mod p). Thus,

If a prime p is of the form 5t± 2 then Fp+1 ≡ 0 (mod p).

Collecting our results provides us with the following theorem.

Theorem 3.10 If a prime p is of the form 5t± 1 then Fp−1 ≡ 0 and Fp ≡ 1 (mod p). If a

prime p is of the form 5t± 2 then Fp ≡ −1 and Fp+1 ≡ 0 (mod p).
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Now at last we can present some theorems concerning the character of k(p).

Theorem 3.11 If p is a prime, p 6= 5, then k(p)|p2 − 1.

Proof: By inspection, k(2) = 3, and the theorem holds for p = 2. Now let

us assume p odd. To prove the theorem we will show that Fp2−1 ≡ 0 and

Fp2 ≡ 1 (mod p).

If p = 5t ± 1 then p|Fp−1. We know that p − 1|p2 − 1 and so Fp−1|Fp2−1.

Hence p|Fp2−1. If p = 5t ± 2 then p|Fp+1. We know that p + 1|p2 − 1 and so

Fp+1|Fp2−1. Hence p|Fp2−1. Thus for all p 6= 5, Fp2−1 ≡ 0 (mod p).

To prove Fp2 ≡ 1 (mod p), we first note that 2p2−1Fp2 =
(

p2

1

)
+

(
p2

3

)
5 +

· · · +
(

p2

p2

)
5

p2−1
2 . Now 2p2−1 = (2p−1)p+1 ≡ 1 (mod p) and

(
p2

n

)
≡ 0 (mod p)

for 1 ≤ n ≤ p2 − 1. Hence Fp2 ≡ (5
p−1
2 )p+1 ≡ (±1)p+1 ≡ 1 (mod p).

Thus the theorem is proved.

Theorem 3.12 If a prime p is of the form 5t± 1 then k(p)|p− 1.

Proof: Since p = 5t ± 1, theorem 3.10 tells us that Fp−1 ≡ 0 and Fp ≡

1 (mod p). Hence F (mod p) repeats in blocks of length p− 1. Thus k(p)|p− 1.
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Theorem 3.13 If a prime p is of the form 5t± 2 then k(p)|2p + 2.

Proof: Suppose p = 5t ± 2. By theorem 3.10 then, Fp+1 ≡ 0 (mod p). Since

p + 1|2p + 2 and the zeros of F (mod p) are evenly spaced, we can say F2p+2 ≡

0 (mod p).

We also know that Fp ≡ −1 (mod p). By the usual recurrence relation

then, Fp+2 ≡ Fp+3 ≡ −1 (mod p). Now we can write F2p+3 = F(p+1)+(p+2) =

FpFp+2 + Fp+1Fp+3 ≡ (−1)(−1) + (0)(−1) ≡ 1 (mod p).

Thus k(p)|2p + 2.

We now consider upper and lower bounds for k(m) where m can be any integer m ≥ 2.

It was noted earlier that k(m) ≤ m2 − 1, but can we do better than this? One method of

determining an upper bound is to use the two preceding theorems to show that k(p) = p2−1

if and only if p = 2 or 3. Then by application of theorem 3.8 it can be proved that k(pe) <

(pe)2 − 1 for e ≥ 2. Finally, we can use theorem 3.4 to demonstrate that k(m) < m2 − 1 for

all composite m.

However, the author would like to propose a more elegant way of proving this inequality.

If k(m) = m2 − 1 for some m, then every possible pair of residues except 0, 0 appears in

F (mod m). It will be seen in section 3.3 that a single period of F (mod m) contains at most

four zeros. Consequently, F (mod m) contains at most four 0, r pairs where 1 ≤ r < m.

Hence, for m ≥ 6 there is some 0, r pair not represented in F (mod m) and we must have

k(m) < m2 − 1. It is a simple matter to check the remaining cases. When m = 2 or 3,

k(m) = m2 − 1 and when m = 4 or 5, k(m) < m2 − 1.

Unfortunately, empirical evidence indicates that this upper bound becomes less and less

precise as m increases. For 2 ≤ m ≤ 299 we find by inspection that k(m) ≤ 6m. For

300 ≤ m ≤ 1000 we find k(m) ≤ 4m. There does not appear to be any other material

published concerning upper bounds on k(m).

A sharp lower bound on k(m) was given by Paul Catlin[5] in 1974. We see here an

interesting interaction between the Lucas and Fibonacci numbers. We present his theorem

without proof.
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Theorem 3.14 Given a modulus m > 2, let t be any natural number such that Lt ≤ m.

Then k(m) ≥ 2t with equality if and only if Lt = m and t is odd.

In the beginning of the section we saw some results which helped to define the overall

character of h(m) and thus of k(m). In the last part of this section we present some results

due to Wall on the relationship between h(m) and k(m). The first of these is strikingly

simple.

Theorem 3.15 h(m)|k(m).

Proof: For ease of notation, let k = k(m). Applying identity 1.11 and then

equations 3.1 and 3.2 we get Gk = Fk−1G0 + FkG1 ≡ G0 (mod m) and Gk+1 =

FkG0 + Fk+1G1 ≡ G1 (mod m). Thus G(mod m) repeats in blocks of length

k(m). From this we can conclude h(m)|k(m).

We can elicit equality between h(m) and k(m) by putting stricter conditions on m.

Theorem 3.16 If a prime p is of the form 5t± 2 then h(pe) = k(pe).

Proof: For ease of notation, let h = h(pe). Certainly,

Gh −G0 ≡ 0 (mod pe), and

Gh−1 −G1 ≡ 0 (mod pe).

By identity 1.11 the above is equivalent to

(Fh−1G0 + FhG1)−G0 = G1Fh + G0(Fh−1 − 1) ≡ 0 (mod p)

(Fh−1G1 + Fh+1G2)−G1 = G2Fh + G1(Fh−1 − 1) ≡ 0 (mod p)

We now have a system of equations which we may treat as a matrix with

determinant D = G2
1 − G0G2. We will assume that D ≡ 0 (mod p) and arrive

at a contradiction.

When D ≡ 0 (mod p) then G2
1−G0G2 = G2

1−G0(G0 + G1) = G2
1−G0G1−

G2
0 ≡ 0 (mod p). This last congruence is impossible if p = 2 (we ignore the
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trivial case G0 = G1 = 0) so we may assume p to be odd. Multiply both sides

by −4.

4G2
0 + 4G0G1 − 4G2

1 ≡ 0 (mod p)

Add 5G2
1 to both sides.

4G2
0 + 4G0G1 + G2

1 = (2G0 + G1)2 ≡ 5G2
1 (mod p)

Now multiply both sides by Gp−3
1 and apply Fermat’s theorem to the right.

Gp−3
1 (2G0 + G1)2 ≡ 5 (mod p)

Since p is odd, this implies that 5 is a quadratic residue modulo p. However,

by lemma 3.9, this contradicts our hypothesis that p = 5t ± 2. Therefore,

D 6≡ 0 (mod p), and this implies that D 6≡ 0 (mod pe).

Since the determinant of our matrix is not congruent to zero (mod pe), it

must have a unique solution modulo pe. Certainly Fh ≡ 0 and (Fh−1 − 1) ≡

0 (mod pe) satisfy the system, and so Fh ≡ 0 and Fh−1 ≡ 1 (mod pe). From the

recurrence relation, Fh+1 ≡ 1 (mod pe) as well.

Since h = h(pe) our results tell us that k(pe)|h(pe). By theorem 3.15 we

know h(pe)|k(pe). Hence h(pe) = k(pe).

Wall proved several other results regarding the relationship between h(m) and k(m). We

present some of these here without proof. As usual, p denotes a prime number.

Theorem 3.17 Let D = G2
1 −G0G1 −G2

0. If gcd(D,m) = 1 then h(m) = k(m).

Theorem 3.18 If h(pe) = 2t + 1 for some generalized Fibonacci sequence, then k(pe) =

4t + 2.

Theorem 3.19 If p > 2 and k(pe) = 4t + 2 then there exists some generalized Fibonacci

sequence where h(pe) = 2t + 1.

Theorem 3.20 Let p be odd and p 6= 5. If h(pe) is even then h(pe) = k(pe).

We end the section with two curious theorems pertaining to the period of F (mod m)

which did not seem to fit logically elsewhere within this section. We defer their proofs to the
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end of section 3.3 where we will have developed other ideas sufficiently to make their proofs

easy. The curious feature here is that the modulus of the sequence is an actual Fibonacci

or Lucas number. Theorem 3.45 can be found in [7] and theorem 3.46 can be found in [17].

Theorem 3.45 If n ≥ 5 is odd then k(Fn) = 4n. If n ≥ 4 is even then k(Fn) = 2n.

Theorem 3.46 If n ≥ 3 is odd then k(Ln) = 2n. If n ≥ 2 is even then k(Ln) = 4n.

These theorems indicate that for any even t ≥ 6 there is some m such that k(m) = t.

Also, k(m) can not equal 4, otherwise F4 = 3 ≡ 0 and F3 = 2 ≡ 1 (mod m) which is not

possible. Hence the range of k(m) is 3 union the set of all even numbers greater than or

equal to 6.

3.2 The Distribution Of Residues

In this section we look at what is known about the distribution of residues within a single

period of F (mod m). That is, how frequently each residue is expected to appear. We start

off with a more specific question: for which moduli will all the residues appear with equal

frequency within a single period? If F (mod m) exhibits this property it is said to be uniform

or uniformly distributed. Kuipers and Shiue[12] proved that the only time F (mod m) can

possibly be uniform is when m = 5e.

It is not difficult to see that if F (mod m) is uniform, then necessarily m|k(m). We use

this requirement to prove that 5 is the only prime for which F (mod p) is uniform.

We first note that by inspection F (mod 2) is not uniform but F (mod 5) is, with each

residue appearing four times per period. Let us consider odd primes p.

If p = 5t ± 1 then F (mod p) cannot be uniform. For such p, we know k(p)|p − 1, but

p6 | p− 1 and so p6 | k(p).

If p = 5t± 2 then F (mod p) cannot be uniform. In this case k(p)|2p + 2, but for odd p

we know p6 | 2p+2. Hence p6 | k(p). Thus 5 is the only prime for which F (mod p) is uniform.

Now we mention a second fact about uniform distribution: if F (mod m) is uniform and

n|m, then F (mod n) is also uniform. Suppose m = nr. Then in one period of F (mod m)

each of the residues 0, 1,..., n− 1 occurs with equal frequency as do the residues n, n+1,...,
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Figure 3.1: Comparing residues mod 5 and mod 25. The residues mod 25 are “stratified”
to display them more clearly.

2n−1, and so on until (r−1)n, (r−1)n+1,..., rn−1. Thus within k(m) terms of F (mod n)

the residues 0, 1, 2, . . ., (n− 1) appear with equal frequency, say t times. Since k(n)|k(m)

we can find these k(m) terms by simply repeating the first k(n) terms. If k(m)
k(n) = u, then

within k(n) terms each residue appears t
u times. Hence F (mod n) is uniform.

Putting these two facts together provides us with the following theorem.

Theorem 3.21 The only possible values of m for which F (mod m) is uniform are m = 5e.

It takes a very clever proof to finally settle the issue as we will demonstrate next. Nieder-

reiter provided such a proof in [14].

Theorem 3.22 F (mod 5e) is uniform for all integers e ≥ 1.

Before we start in earnest, we present the basic idea behind the proof. We know that

k(5e) = 4 · 5e and so “it will suffice to show that among the first 4 · 5e elements of the

sequence, we find exactly four elements, or, equivalently, at most four elements from each

residue class mod 5e.”

For example, modulo 5 we see that the residue 3 appears exactly four times per period.

Modulo 25, the residues 3, 8, 13, 18, and 23 each appear exactly four times in one period.

Each of the five sections in figure 3.1 represents one period mod 5, and the bottom portion

shows where the residues 3, 8, 13, 18, and 23 appear in relation to the threes.

Proof: Let us assume that F (mod 5r−1) is uniform and we will use induction

on r. We have seen that the hypothesis holds for r = 2.
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Consider integers a and b such that 0 ≤ a < 5r−1 and 0 ≤ b < 5r. (In the

figure we show a = 3 and r = 2.) Fn ≡ a (mod 5r−1) has four solutions: n = c1,

c2, c3, c4, with 0 ≤ c1, c2, c3, c4 < 4 · 5r−1. Suppose b ≡ a (mod 5r−1) and n = d

is a solution to Fn ≡ b (mod 5r) where 0 ≤ d < 4 · 5r. Then Fd ≡ a (mod 5r−1).

Hence by periodicity we must have d ≡ ci (mod 4 · 5r−1) for some i. We will

show that there is only one solution d such that d ≡ ci (mod 4 · 5r) for each i.

Suppose m ≡ n (mod 4 ·5r−1) and Fm ≡ Fn (mod 5r). Let 0 ≤ m,n < 4 ·5r,

and without loss of generality, say m ≤ n. We will prove that, in fact, m = n.

From identity 2.2, Fn ≡ Fm (mod 5r) implies∑
j=0

5j

(
n

2j + 1

)
≡ 2n−m

∑
j=0

5j

(
m

2j + 1

)
(mod 5r).

Now 4·5r−1|n−m and by the Euler-Fermat theorem, φ(5r) = 5r−5r−1 = 4·5r−1.

Thus 2n−m ≡ 1 (mod 5r). Hence we have,∑
j=0

5j

[(
n

2j + 1

)
−

(
m

2j + 1

)]
≡ 0 (mod 5r) (3.4)

Here we use the known identity
(

s+t
u

)
=

∑u
i=0

(
s
i

) (
t

u−i

)
to obtain

(
n

2j+1

)
=∑2j+1

i=0

(
n−m

i

) (
m

2j+1−i

)
. That is,

(
n

2j + 1

)
=

(
m

2j + 1

)
+

2j+1∑
i=1

(
n−m

i

) (
m

2j + 1− i

)
.

Substituting this result into equation (3.4) gives us

∑
j=0

[
2j+1∑
i=1

5j

(
n−m

i

) (
m

2j + 1− i

)]
≡ 0 (mod 5r).

We claim that for j ≥ 1 each term in brackets is divisible by 5r. Consider

5j
(

n−m
i

)
= 5j(n−m)!

i!(n−m−i)! . Cancelling out 5’s from i! against 5j always leaves at

least one power of 5 in the latter. This is so since the largest value for i is 2j +1

and the largest exponent t such that 5t divides (2j + 1)! is given by

t =
∞∑

i=1

b2j + 1
5i

c <
∞∑

i=1

2j + 1
5i

=
2j + 1

4
< j.
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(The above identity can be found in [4]).

Since there is a factor of 5r−1 in n − m we get the desired divisibility

property. Hence only the term corresponding to j = 0 remains. That is,

n −m ≡ 0 (mod 5r). Now we can say that 5r|n −m and 4 · 5r−1|n −m. Thus

4 · 5r|n − m. We know that 0 ≤ m,n < 4 · 5r, and so we must conclude that

n = m.

Therefore any residue mod 5r appears at most four times, which implies

that each residue must appear exactly four times, which gives us F (mod 5r) is

uniform. The induction is complete and the theorem proved.

While F (mod m) is uniformly distributed only for m = 5e, one wonders if there is at least

a predictable distribution of residues under different moduli. In 1992 E. T. Jacobson[10]

fully described the distribution of residues in F (mod 2e) and F (mod 2i · 5j) for i ≥ 5, and

j ≥ 0. We present his results below without proof.

Let v(m, b) be the number of occurrences of b as a residue in one period of F (mod m).

We have seen that v(5e, b) = 4 for all b (mod 5e).

Theorem 3.23 For F (mod 2e) the following is true:

For 1 ≤ e ≤ 4:

v(2, 0) = 1
v(2, 1) = 2
v(4, 0) = v(4, 2) = 1
v(8, 0) = v(8, 2) = v(16, 0) = v(16, 8) = 2
v(16, 2) = 4
v(2e, b) = 1 if b ≡ 3 (mod 4) and 2 ≤ e ≤ 4
v(2e, b) = 3 if b ≡ 1 (mod 4) and 2 ≤ e ≤ 4
v(2e, b) = 0 in all other cases.

For e ≥ 5:

v(2e, b) =


1, if b ≡ 3 (mod 4)
2, if b ≡ 0 (mod 8)
3, if b ≡ 1 (mod 4)
8, if b ≡ 2 (mod 32)
0, for all other residues.

For F (mod 2i · 5j) where i ≥ 5, and j ≥ 0, the following is true:
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v(2i · 5j , b) =


1, if b ≡ 3 (mod 4)
2, if b ≡ 0 (mod 8)
3, if b ≡ 1 (mod 4)
8, if b ≡ 2 (mod 32)
0, for all other residues.

It does not appear that any other work has been published on the distribution of residues

for other moduli.

3.3 The Zeros Of F(mod m)

The previous section indicates that the problem of describing all the residues for a given

modulus can be quite difficult, but when we restrict our attention to the behavior of the

zeros, many fascinating relationships become readily apparent.

Let α(m) denote the subscript of the first positive term of the Fibonacci sequence which

is divisible by m. Vinson calls this the restricted period of F (mod m). Since the subscripts

of the terms for which Fn ≡ 0 (mod m) form a simple arithmetic progression, it is clear that

α(m)|k(m). In fact one sees without too much difficulty that α(m)|n if and only if m|Fn.

We use this idea in the following theorem.

Theorem 3.24 α(m)|α(mn).

Proof: By definition, we know that mn|Fα(mn). Clearly then m|Fα(mn), and

so α(m)|α(mn).

Let s(m) be the least residue of Fα(m)+1 modulo m. Because of the relationship (Fα(m), Fα(m)+1) =

s(m)(0, 1) (mod m) we call s(m) the multiplier of F (mod m).

Finally, let β(m) denote the order of s(m) modulo m. In other words, s(m)β(m) ≡

1 (mod m), and if n < β(m) then s(m)n 6≡ 1 (mod m).

Note the table in appendix B which compares the values of m, k(m), α(m), and β(m).

The next theorem ties together these three functions nicely. Robinson[15] states and proves

it, but also mentions that is a well known property. The proof presented here is the author’s.

Theorem 3.25 k(m) = α(m)β(m).
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Proof: Suppose that a single period of F (mod m) is partitioned into smaller,

finite subsequences A0, A1, A2, . . . as shown below:

0 1 · · · s1︸ ︷︷ ︸
A0

0 s1 · · · s2︸ ︷︷ ︸
A1

0 s2 · · · s3︸ ︷︷ ︸
A2

0 s3 · · · · · · · · · 0 1 (3.5)

Each subsequence Ai has α(m) terms, it contains exactly one zero, and s1 =

s(m).

Every subsequence Ai for i ≥ 1 is a multiple of A0. More precisely, the

following congruences hold modulo m.

A1 ≡ s1A0

A2 ≡ s2A0

...

An−1 ≡ sn−1A0

An ≡ snA0

...

Now the last term in An−1 is sn, and the last term in A0 is s1. Thus

sn ≡ (sn−1) · s1

≡ (sn−2) · s1 · s1

≡ (sn−3) · s1 · s1 · s1

...

≡ sn
1

with congruences modulo m. Since β(m) is the order of s1, sequence (3.5) can

be rewritten as

0 1 · · · 0 s1 · · · 0 s2
1 · · · 0 s3

1 · · · · · · · · · 0 s
β(m)−1
1 · · · 0 1

Thus β(m) can be interpreted in a different way: it is the number of zeros in

a single period of F (mod m). Clearly it follows that k(m) = α(m)β(m).

There is an identity which follows from the proof.
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Identity 3.26 Fn·α(m)+r ≡ Fn
α(m)+1 · Fr (mod m).

Proof: The identity comes from the fact that An ≡ sn
1A0. More specifically,

the rth term of An is congruent to sn
1 times the rth term of A0 modulo m.

As a point of interest, note the property that gcd(m, si) = 1 for all i. This must be the

case since (si)β(m) = (si
1)

β(m) = (sβ(m)
1 )i ≡ 1 (mod m). We could also draw this conclusion

from theorem 1.1, realizing that if m|Fn then m and Fn+1 have no nontrivial divisors in

common.

The following theorem doesn’t appear to give us any immediate insight into F (mod m),

but a couple of nice corollaries follow from it. The proof comes from Robinson [15], but he

acknowledges that Morgan Wood knew the result in the early 1930’s.

Theorem 3.27 k(m) = gcd(2, β(m)) · lcm[α(m), γ(m)] where γ(2) = 1 and γ(m) = 2 for

m > 2.

Proof: By identity 1.8, F 2
n − Fn+1Fn−1 = (−1)n+1 so

F 2
α(m) − Fα(m)+1Fα(m)−1 = (−1)α(m)+1.

Since Fα(m) ≡ 0 and Fα(m)+1 ≡ Fα(m)−1 (mod m),

−F 2
α(m)+1 ≡ (−1)α(m)+1 (mod m).

That is,

(s(m))2 ≡ (−1)α(m) (mod m). (3.6)

Thus (s(m))2 and (−1)α(m) have the same order modulo m. Specifically,

β(m)
gcd(2, β(m))

=
γ(m)

gcd(α(m), γ(m))

where γ(m) is the order of −1 modulo m. Thus

k(m) = α(m)β(m) = α(m)
gcd(2, β(m)) · γ(m)
gcd(α(m), γ(m))

= gcd(2, β(m)) · lcm[α(m), γ(m)].

Corollary 3.28 k(m) is even for m > 2.
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Proof: By the proceeding theorem, if k(m) is odd we must have lcm[α(m), γ(m)]

odd. For that to happen γ(m) must be odd. By the nature of γ(m) then m = 2.

Hence the contrapositive (for applicable values of m): If m > 2 then k(m) is

even.

One of the more surprising properties of F (mod m) is demonstrated in the following

corollary.

Corollary 3.29 β(m) = 1, 2, or 4.

Proof:

k(m) = gcd(2, β(m)) · lcm[α(m), γ(m)]

= (1 or 2) · (α(m) or 2α(m))

= α(m), 2α(m), or 4α(m).

Therefore β(m) = 1, 2, or 4.

Recall that it is this theorem which allows us to say that k(m) < m2 − 1 for m ≥ 6.

We have already seen that α(m) shares a property with k(m) in that α(m)|α(mn). We

will demonstrate that some other properties of k(m) are also exhibited in α(m). Like k(m),

Vinson[21] shows we can express α(m) in terms of α(pei
i ) where m =

∏
pei

i is the prime

factorization of m.

Theorem 3.30 If m has the prime factorization m =
∏

pei
i then α(m) = lcm[α(pei

i )].

Proof: Notice,

m|Fn ⇐⇒ pei
i |Fn for all i

⇐⇒ α(pei
i )|n for all i.

The smallest n which satisfies the last condition, and hence all of them, is n =

lcm[α(pei
i )]. Thus according to the first condition, Fn is the smallest Fibonacci

number divisible by m. That is, α(m) = n = lcm[α(pei
i )].

Again, like k(m), we can express α(m) in a slightly more convenient form.
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Theorem 3.31 α([m,n]) = [α(m), α(n)], where brackets denote the least common multiple

function.

Proof:

Ft ≡ 0 (mod [m,n]) ⇐⇒ Ft ≡ 0 (mod m) and Ft ≡ 0 (mod n)

⇐⇒ α(m)|t and α(n)|t

The smallest t for which the first condition is true is t = α([m,n]). the smallest

t for which the last condition is true is t = [α(m), α(n)]. The theorem follows.

A third similarity exists: if p is an odd prime and t is the largest integer such that

α(pt) = α(p) then α(pe) = pe−tα(p). This result exists as a corollary to yet another

surprising theorem from [15].

Theorem 3.32 For p any odd prime, β(pe) = β(p).

Proof: We again make use of the Fibonacci matrix, U . By equation (3.3) we

know that

Uα(pe+1) ≡ s(pe+1)I (mod pe+1).

Furthermore,

Uα(pe) ≡ s(pe)I (mod pe)

which implies

Upα(pe) ≡ (s(pe)I + peB)p ≡ (s(pe))pI (mod pe+1).

Hence α(pe+1)|pα(pe). Since α(m)|α(mn) we also know α(pe)|α(pe+1). Conse-

quently, α(pe+1) = α(pe) or pα(pe). It follows that α(pe)
α(p) = pi and similarly we

can say k(pe)
k(p) = pj . Clearly,

k(pe)
α(p)

· α(pe)
α(pe)

=
k(pe)
α(p)

· k(p)
k(p)

and so
α(pe)
α(p)

· k(pe)
α(pe)

=
k(p)
α(p)

· k(pe)
k(p)

.
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Since k(pe)
α(pe) = β(pe) and k(p)

α(p) = β(p),

pi(1, 2, or 4) = (1, 2, or 4)pj .

Since we assumed p to be odd, we must have pi = pj . That is, α(pe)
α(p) = k(pe)

k(p)

which implies k(p)
α(p) = k(pe)

α(pe) . In other words, β(p) = β(pe).

Corollary 3.33 If p is an odd prime and t is the largest integer such that α(pt) = α(p)

then α(pe) = pe−tα(p). In fact, this t is also the largest integer such that k(pt) = k(p).

Proof: This follows directly from the previous proof where α(pe)
α(p) = k(pe)

k(p) .

The case where p = 2 exists as a corollary to theorem 3.36.

We will now examine the function β(m) more closely. The next three theorems present

some useful relationships between β(m), α(m), and k(m).

Theorem 3.34 For m ≥ 3, β(m) = 4 if and only if α(m) is odd.

Proof: Assume β(m) = 4. Then (s(m))2 is the residue after the second zero

and by equation (3.6) we know (s(m))2 ≡ (−1)α(m). Clearly, (s(m))2 6≡ 1 and

so α(m) must be odd.

Assume α(m) is odd. In this case, equation (3.6) tells us that (s(m))2 ≡ −1.

The only possible value for β(m) now is 4.

In order to show some necessary and sufficient conditions for when β(m) = 1, we rely

on the identity Fk(m)−j ≡ F−j = (−1)j+1Fj (mod m).

Theorem 3.35 β(m) = 1 if and only if 46 | k(m).

Proof: We will prove the contrapositive of the theorem in both directions. First,

assume that 4|k(m). Then if we let j = k(m)
2 + 1 in the identity preceding the

theorem, and make note that this j is odd, we get F k(m)
2 −1

≡ F k(m)
2 +1

(mod m).

By the Fibonacci recurrence relation this implies F k(m)
2

≡ 0 (mod m), which in

turn implies β(m) 6= 1.

If β(m) 6= 1 then β(m) = 2 or 4. We know that k(m) = α(m)β(m), so if

β(m) = 4 then clearly 4|k(m). If β(m) = 2, then by the previous theorem α(m)

is even, and once again 4|k(m).
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Since theorems 3.34 and 3.35 are if and only if, the next theorem appears as a natural

consequence.

Theorem 3.36 β(m) = 2 if and only if 4|k(m) and α(m) is even.

Corollary 3.37 If 4|α(m) then β(m) = 2.

Corollary 3.38 If 8|k(m) then β(m) = 2.

Corollary 3.39 β(2) = β(4) = 1. For e ≥ 3, β(2e) = 2.

Proof: By inspection, β(2) = β(4) = 1 and β(8) = 2. From theorem 3.5 we

know that k(2e) = 3 · 2e−1. Since k(16) = 24 we see 8|k(2e) for e ≥ 4, and we

can apply the preceding corollary.

We must be careful when we try to apply theorem 3.36. We can not conclude that if

β(m) = 2 then 4|α(m). For example, β(40) = 2, yet α(40) = 30. However, when the

modulus is a prime or a power of a prime, theorem 3.36 can be strengthened. The following

theorem found in [21] will be used later.

Theorem 3.40 Let p be an odd prime. If β(pe) = 2 then 4|α(pe).

Proof: First we show that the theorem is true for e = 1. When β(p) = 2,

theorem 3.34 assures us that α(p) is even. In identity 3.26, let n = 1 and

r = − 1
2α(p) to attain

F 1
2 α(p) ≡ Fα(p)+1F− 1

2 α(p) (mod p).

Noting that Fα(p)+1 = s(p) and that s(p)2 ≡ (−1)α(p) (mod p), we can multiply

both sides of the above congruence by Fα(p)+1 and apply identity 1.3 to achieve

Fα(p)+1F 1
2 α(p) ≡ (−1)α(p)(−1)

1
2 α(p)+1F 1

2 α(p) (mod p).

We recall that α(p) is even, then multiply both sides by F p−2
1
2 α(p)

and apply Fer-

mat’s theorem to get

Fα(p)+1 ≡ (−1)
1
2 α(p)+1 (mod p).
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Since β(p) = 2 we know that Fα(p)+1 6≡ 1. Thus (−1)
1
2 α(p)+1 = −1 which implies

4|α(p) and we have proved the theorem for e = 1.

Since p is odd, β(pe) = 2 implies that β(p) = 2. We have seen that this

implies 4|α(p), and so by theorem 3.24, 4|α(pe). Thus the theorem is proved.

So far we have been able to find β(m) only by analyzing k(m) or α(m). The next theorem

gives us a method for finding β([m,n]) if we know β(m) and β(n). Vinson does not state

this theorem explicitly, but the author was able to construct it from the information given

by him.

Theorem 3.41 Given β(m) and β(n), the table below determines the value of β([m,n]).

Once again, brackets denote the least common multiple function.

β([m,n])

β(n)

β(m)

1 2 4

1 1 2 4 if m = 2
2 otherwise

2 2 2 2

4 4 if n = 2
2 otherwise 2 4
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Proof: Let

α(m) = 2ra β(m) = 2s k(m)2ta
α(n) = 2wb β(n) = 2x k(n)2yb

where a, b are odd integers. Hence

[k(m), k(n)] = 2max(t,y) · [a, b]

and [α(m), α(n)] = 2max(r,w) · [a, b].

Then

β([m,n]) =
k([m,n])
α([m,n])

=
[k(m), k(n)]
[α(m), α(n)]

= 2max(t,y)−max(r,w).

Notice that r + s = t and w + x = y. We now address four cases.

Case 1: To describe the diagonal of the table, suppose β(m) = β(n), that is,

s = x. Then max(t, y) − max(r, w) = max(r + s, w + x) − max(r, w) = s = x.

Hence β([m,n]) = 2s = 2x = β(m) = β(n).

In order to prove the remaining three cases it is helpful to translate theo-

rems 3.35, 3.36, and 3.34 into statements about r, s, and t:

If s = 0 then t = 0 (for m = 2) or t = 1 (for m > 2).
Respectively, r = 0 or r = 1.

If s = 1 then t ≥ 2 and r ≥ 1.
If s = 2 then r = 0 and hence, t = 2.

Analogous statements hold for w, x, and y.

Case 2: Suppose β(m) = 4 and β(n) = 1, that is, s = 2 and x = 0. Since

s = 2 we know that r = 0 and t = 2. Also, since x = 0 we know that either

w = 0 or w = 1.

Case 2a. Say x = 0, w = 0, and so y = 0. Then max(t, y) − max(r, w) =

2− 0 = 2. Hence β([m,n]) = 22 = 4.

Case 2b. Say x = 0, w = 1, and so y = 1. Then max(t, y) − max(r, w) =

2− 1 = 1. Hence β([m,n]) = 21 = 2.

Case 3: Suppose β(m) = 2 and β(n) = 1, that is, s = 1 and x = 0. Since

s = 1 we know that t ≥ 2 and r ≥ 1. Again, since x = 0 either w = 0 or w = 1.

Case 3a. Say x = 0, w = 0, and so y = 0. Then max(t, y) − max(r, w) =

t− r = s = 1. Hence β([m,n]) = 21 = 2.
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Case 3b. Say x = 0, w = 1, and so y = 1. Then max(t, y) − max(r, w) =

t− r = s = 1. Hence β([m,n]) = 21 = 2.

Case 4: Suppose β(m) = 4 and β(n) = 2, that is, s = 2 and x = 1. Then

r = 0, t = 2, and w ≥ 1, y ≥ 2. Then max(t, y) −max(r, w) = y − w = x = 1.

Hence β([m,n]) = 21 = 2.

This completes the proof.

There are two interesting corollaries that follow.

Corollary 3.42 If 3|m then β(m) = 2.

Proof: Since β(3) = 2 we know that β(3e) = 2. Let m be expressed as 3en

where 36 | n. By the previous theorem, then β(m) = β([3e, n]) = 2.

Corollary 3.43 β(m) = 1 if and only if 86 |m and α(p) ≡ 2 (mod 4) for all odd primes p

that divide m.

Proof: Let m have the prime factorization m =
∏

pei
i . Suppose β(m) = 1. By

theorem 3.41 it is easy to see that we must have β(pei
i ) = 1 for all i. If p1 is the

smallest prime in the prime factorization of m and p1 = 2 then by corollary 3.39,

e1 ≤ 2 and thus 8 6 | m. Recall that for odd p, β(pei
i ) = β(pi). Theorem 3.36

tells us that if α(pi) ≡ 1 or 3 (mod 4) then β(pi) = 4. Theorem 3.34 tells us

that if α(pi) ≡ 0 (mod 4) then β(pi) = 4. Hence when β(m) = 1 we must have

α(pi) ≡ 2 (mod 4) for all i.

Suppose that 8 6 | m. Thus if 2e is a factor of m, then e ≤ 2 and β(2e) = 1.

For odd p, if α(p) ≡ 2 (mod 4) then β(p) = 1 by theorems 3.35 and 3.40. Hence

if we suppose that α(pei
i ) ≡ 2 (mod 4) for all i we have β(pei

i ) = 1 for all i and

then theorem 3.41 indicates that β(m) = 1.

We now know that for composite m, β(m) can be determined by factoring m into smaller

moduli. We also know that for odd primes p, β(pe) = β(p). Can we determine β(p) for

odd primes p? While k(p) and α(p) have strongly resisted this analysis, we can make some

progress on β(p). The four results are grouped together in the following theorem found in

[21].
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Theorem 3.44 For odd primes p,

(i) If p ≡ 11 or 19 (mod 20) then β(pe) = 1.

(ii) If p ≡ 3 or 7 (mod 20) then β(pe) = 2.

(iii) If p ≡ 13 or 17 (mod 20) then β(pe) = 4.

(iv) If p ≡ 21 or 29 (mod 40) then β(pe) 6= 2.

Proof: Since we are assuming p odd, we need only prove each part for e = 1

and the conclusion will follow. Before looking at the individual cases we take

some time to develop a couple useful facts. First, since β(p) is the order of s(p),

we know that (s(p))β(p) ≡ 1 (mod p). In addition, we know by Fermat’s theorem

that (s(p))p−1 ≡ 1 (mod p). Thus β(p)|p−1 and it follows that if p ≡ 3 (mod 4)

then β(p) 6= 4.

Secondly, if p = 5t ± 2 then Fp ≡ −1 and Fp+1 ≡ 0 (mod p). We see that

α(p)|p + 1 but k(p)6 | p + 1. Hence α(p) 6= k(p) and consequently β(p) 6= 1. Now

we turn our attention to the four results.

(i) Here p ≡ 3 (mod 4), so β(p) 6= 4. Assume β(p) = 2. Then by theo-

rem 3.36, 4|k(p). Since p = 5t± 1 we have k(p)|p− 1, and so 4|p− 1. However,

this is a contradiction since p− 1 ≡ 10 or 18 (mod 20). Thus β(p) = 1.

(ii) Again, p ≡ 3 (mod 4), so β(p) 6= 4. Now p = 5t ± 2 and we have seen

that this implies β(p) 6= 1. Thus β(p) = 2.

(iii) As in the previous part, p = 5t ± 2 and so β(p) 6= 1. Also, we know

α(p)|p + 1. In this case p ≡ 1 (mod 4) so 4 6 | p + 1. Hence 4 6 | α(p). Applying

theorem 3.40 we have β(p) 6= 2. Hence β(p) = 4.

(iv) Suppose β(p) = 2. By theorem 3.40, 4|α(p) and so consequently 8|k(p).

Furthermore, since p = 5t±1, theorem 3.12 assures us that k(p)|p−1. It follows

that 8|p − 1. However, p − 1 ≡ 20 or 28 (mod 40) so clearly 86 | p − 1. Thus we

have our contradiction and we can say β(p) 6= 2.

We would like to know if anything can be said about the primes not covered by the

theorem, namely p ≡ 1 or 9 (mod 40). Also, can we be more exact about primes where

p ≡ 21 or 29 (mod 40)? Vinson provides the following examples to show that his theorem
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is “complete”:

For p ≡ 1 (mod 40) : β(521) = 1, β(41) = 2, β(761) = 4

For p ≡ 9 (mod 40) : β(809) = 1, β(409) = 2, β(89) = 4

For p ≡ 21 (mod 40) : β(101) = 1, β(61) = 4

For p ≡ 29 (mod 40) : β(29) = 1, β(109) = 4

We finish section 3.3 with a couple of theorems promised at the end of section 3.1. While

they speak to the character of the period, their proofs are made easy by the theory developed

in this section.

Theorem 3.45 (i) If n ≥ 5 is odd then k(Fn) = 4n.

(ii) If n ≥ 4 is even then k(Fn) = 2n.

Proof: We first note that if Fn is used for the modulus, then naturally α(Fn) =

n.

(i) This result follows from the fact that for m ≥ 3, α(m) odd implies β(m) =

4. For n ≥ 5 and odd, Fn ≥ 3 and α(Fn) = n is odd. Thus k(Fn) = 4n.

(ii) Here, α(Fn) = n is even so β(Fn) = 1 or 2. If β(Fn) = 1 then Fn−1 ≡

Fn+1 ≡ 1 (mod Fn). However, F1, F2, F3, . . . , Fn−1 is non decreasing and F3 ≡

2 (mod Fn), hence our contradiction. Therefore, β(Fn) = 2 and k(Fn) = 2n.

Theorem 3.46 (i) If n ≥ 3 is odd then k(Ln) = 2n.

(ii) If n ≥ 2 is even then k(Ln) = 4n.

Proof: First we establish that α(Ln) = 2n. From identity 1.10, FnLn = F2n

which implies F2n ≡ 0 (mod Ln) so certainly α(Ln)|2n. Now if α(Ln) 6= 2n

then α(Ln) ≤ n. In other words, Ln|Ft for some t ≤ n. However, Ln > Ft for

2 ≤ t ≤ n, so clearly Ln6 | Ft. Hence α(Ln) = 2n.

(i)

Fn+1Ln = Fn+1(Fn+1 + Fn−1)

= F 2
n+1 + Fn+1Fn−1

= F 2
n+1 + F 2

n + (−1)n (by identity 1.8)

= F2n+1 − 1 (by identity 1.7 and n odd)
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Thus F2n+1 ≡ 1 (mod Ln) and we can say β(Ln) = 1. Therefore k(Ln) =

α(Ln) = 2n.

(ii) When n is even, 4|α(Ln) and so by corollary 3.37, β(Ln) = 2. Hence

k(Ln) = α(Ln) · 2 = 4n.



Chapter 4

Personal Findings

During my survey of known Fibonacci properties I was fortunate enough to stumble across

a few areas where apparently very little research had been done. Upon examining these

areas more closely I was able to discover yet more astounding properties of the Fibonacci

sequence.

4.1 Spirolaterals And The Fibonacci Sequence

Spirolaterals, invented in 1973 by Frank C. Odds, are simple graphical representations of

finite integer sequences. The rules for creating a spirolateral from a given sequence are

simple, and the spirolateral can easily be drawn on a sheet of ordinary graph paper. Suppose

we have a sequence x1, x2, x3, . . . , xn. To create the spirolateral draw a line from left to

right x1 units long, turn right 90◦, draw a line x2 units long, turn right 90◦ and continue

in this manner. When the end of the sequence has been reached, start over again with x1.

Figure 4.1: Some simple spirolaterals. The circle indicates the starting point.

Eventually, either the line will return to its starting point heading in the initial direction, or

else the pattern will wander off the page. It is known that when n ≡ 1 or 3 (mod 4) then the

spirolateral exhibits 4-fold symmetry. When n ≡ 2 (mod 4) then then spirolateral exhibits

2-fold symmetry, and when n ≡ 0 (mod 4) the spirolateral does not exhibit symmetry and

usually glides off the page in some diagonal direction.

I wrote a short computer program that randomly generated sequences and then drew

47
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them as spirolaterals. After playing with the spirolateral program for a while, viewing

hundreds of spirolaterals, I was accustomed to seeing interesting symmetries and curious

patterns fly off the screen at some diagonal. Then, when I used a period of residues of

the Fibonacci sequence under various moduli to generate spirolaterals I was surprised that

typically the results were not symmetric and often did not translate off the screen.

Figure 4.2: Some spirolaterals using Fibonacci residues. Here, F (mod 5) and F (mod 8) are
both asymmetric and nontranslating. Circles indicate starting points.

Apparently, after only one time through the period, the line had returned to the starting

point and was heading in the initial direction. That is, the sum of the lines drawn to the

right equaled the sum of the lines drawn to the left, and the sum of the lines drawn up

equaled the sum of the lines drawn down. This seemed a fairly remarkable occurrence, for

it indicated a truth about the alternating sum of the residues themselves. After studying

many examples, a conjecture was made and eventually a proof was given showing when the

alternating sum will be zero.

In order to express clearly the idea of working with the residues themselves, let us

introduce some notation. Let fn represent the least nonnegative residue of Fn modulo m.

As we would expect, fn = fn+r·k(m) for any integer r. When n is odd, F−n = Fn and so

f−n = fn. When n is even, F−n = −Fn which implies F−n +Fn ≡ 0 (mod m) and so either

f−n = fn = 0 or else f−n + fn = m

Theorem 4.1 4|k(m) if and only if

k(m)
2 −1∑
i=0

(−1)if2i+1 = 0.

Proof: Let k = k(m) and rewrite the above summation as

f1 − f3 + f5 − · · · − fk−5 + fk−3 − fk−1

= (f1 − fk−1)− (f3 − fk−3) + · · · − (f k
2−1 − f k

2 +1).
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First suppose that 4|k. When n is odd fn = f−n = fk−n. Hence each term in

parentheses equals zero, implying the entire summation equals zero.

On the other hand, since fn = fk−n for odd n we know that each parenthe-

sized term must equal zero, and in particular f k
2−1 = f k

2 +1. By the recurrence

relation we know then f k
2

= 0. Clearly now β(m) 6= 1 and by theorem 3.35 we

can say 4|k.

It turns out that the same conditions do not ensure that the alternating sum of the

evenly subscripted residues will be zero. However, the conditions needed in this case are

not very different. First, though, we need a lemma.

Lemma 4.2 Suppose 4|k(m) for some m and let j be even. If j is a multiple of k(m)
2 then

fj = fk−j = 0 otherwise fj + fk−j = m.

Proof: Let k = k(m) and take all congruences (mod m). When j is even

Fk−j ≡ (−1)j+1Fj ≡ −Fj . Thus if Fj 6≡ 0 then fj + fk−j = m. Since 4|k we

know by theorem 3.35 that F k
2
≡ 0 and consequently if j is a multiple of k

2 then

fj = 0. Also, k− j will be a multiple of k
2 so fk−j = 0. Suppose Ft ≡ 0 for some

0 < t < k
2 . Then β(m) = 4 and α(m) = t is necessarily odd. Thus the only time

Fj ≡ 0 and j is even is when j is a multiple of k
2 . The lemma follows.

Theorem 4.3 If k(m) ≡ 4 (mod 8) then

k(m)
2 −1∑
i=0

(−1)if2i = 0.

Proof: The summation above is

f0 − f2 + f4 − f6 + · · ·+ fk−4 − fk−2

= f0 − (f2 + fk−2) + (f4 + fk−4)− · · · − (f k
2−2 + f k

2 +2) + f k
2
.

By our lemma f0 = f k
2

= 0 and each quantity in parentheses equals m. There

are 1
2 (k

2 − 2) = k
4 − 1 parenthesized terms and since k ≡ 4 (mod 8) we know

k
4 − 1 is even. Hence the entire summation is zero.
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We can extend our idea of the spirolateral and instead of restricting ourselves to just 90◦

turns we can make spirolaterals with 60◦ turns or 45◦ etc... If 60◦ turns are used, hexagonal

type patterns emerge. Occasionally these pattern will return to their starting place when

F (mod m) for some m is used as the generating sequence. Since every third line is parallel

in these pictures, this result indicates that the alternating sum of every third term in these

sequences is zero, regardless of where we start to take our sum. The following conjecture

expresses this notion.

Conjecture 4.4 If k(m) ≡ 12 (mod 24) and β(m) = 4 for some m, then

k(m)/3−1∑
i=0

(−1)if3i+j = 0

for j = 0, 1, 2.

After only a cursory investigation it appears that this conjecture may yield to a proof if

given a couple hours of thought. Also, many times the alternating sum of every fourth, fifth,

and so on, residue in a period equals zero. This area seems to be quite open for research.

After trying for a while to find results pertaining to the summation of the residues

themselves I turned to a related question. If I take the sum (or alternating sum) of every

nth term of the Fibonacci sequence within a period of F (mod m), what will the result be,

modulo m? For example, k(5) = 20, so what is the sum modulo 5 of every fourth term

starting with, say, F2? Or what can I expect of F3 − F8 + F13 − F18 (mod 5)? To this end

the following two identities are vital. The following identity is due to Siler[16].

Identity 4.5 For 0 ≤ j < n and t ≥ 0, we have

t∑
i=0

Fni+j =
Fnt+n+j − Fj + (−1)j+1Fn−j + (−1)n+1Fnt+j

Ln − 1 + (−1)n+1
.

Proof: The identity στ = −1 will be used several times in the proof.

t∑
i=0

Fni+j =
t∑

i=0

1√
5
(τni+j − σni+j)
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=
1√
5

[
τ j

t∑
i=0

(τn)i − σj
t∑

i=0

(σn)i

]

=
1√
5

[
τ j(1− (τn)t+1)

1− τn
− σj(1− (σn)t+1)

1− σn

]

=
1√
5

[
τ j(1− σn)− τnt+n+j(1− σn)− σj(1− τn) + σnt+n+j(1− τn)

(1− τn)(1− σn)

]

=
1√
5

[
(τ j − σj) + (−1)j(τn−j − σn−j)− (τnt+n+j − σnt+n+j) + (−1)n(τnt+j − σnt+j)

1 + (τσ)n − (τn + σn)

]

=
Fj + (−1)jFn−j − Fnt+n+j + (−1)nFnt+j

1 + (−1)n − Ln
.

By multiplying the numerator and denominator by −1 we obtain the identity.

The second identity is similar, but concerns alternating sums. I have been unable to find

this identity published anywhere, and the proof below is due to Fredric Howard.

Identity 4.6 For 0 ≤ j < n and t ≥ 0, we have

t∑
i=0

(−1)iFni+j =
Fj + (−1)j+1Fn−j + (−1)tFnt+n+j + (−1)t+nFnt+j

1 + (−1)n + Ln
.

Proof:

t∑
i=0

(−1)iFni+j =
t∑

i=0

(−1)i

√
5

(τni+j − σni+j)

=
1√
5

[
τ j

t∑
i=0

(−τn)i − σj
t∑

i=0

(−σn)i

]

=
1√
5

[
τ j(1− (−τn)t+1)

1− (−τn)
− σj(1− (−σn)t+1)

1− (−σn)

]

=
1√
5

[
τ j(1 + σn) + (−1)tτnt+n+j(1 + σn)− σj(1 + τn)− (−1)tσnt+n+j(1 + τn)

(1 + τn)(1 + σn)

]
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=
1√
5


(τ j − σj) + (−1)j+1(τn−j − σn−j) +

(−1)t(τnt+n+j − σnt+n+j) + (−1)t+n(τnt+j − σnt+j)
1 + (τσ)n + (τn + σn)


=

Fj + (−1)j+1Fn−j + (−1)tFnt+n+j + (−1)t+nFnt+j

1 + (−1)n + Ln
.

If we fix n and j and sum up (using either identity) all terms of the form Fni+j within

a single period of the Fibonacci sequence (F0 ≤ Fni+j < Fk(m)) what will the result be? In

particular, for what values of n, j, and m will the sum be congruent to zero modulo m?

We will only consider those n such that n|k(m). We are not especially interested in

looking at, say, every seventh term if the period is not a multiple of seven. When t = k(m)
n −1

let S
+

n denote the summation of identity 4.5 and let S
+/−

n denote the alternating summation

of identity 4.6.

Hence, letting k = k(m),

S
+

n =

k
n−1∑
i=0

Fni+j =
Fk+j − Fj + (−1)j+1Fn−j + (−1)n+1Fk−n+j

Ln − 1 + (−1)n+1
.

Since Fj ≡ Fk+j (mod m),

S
+

n (Ln − 1 + (−1)n+1) ≡ (−1)j+1Fn−j + (−1)n+1Fk−(n−j)

≡ (−1)j+1Fn−j + (−1)n+1+(n−j)+1Fn−j

≡ 0 (mod m).

Quite surprisingly, j has dropped out of our equation and the following is then true for all

j:

Theorem 4.7 If gcd(m,Ln − 1 + (−1)n+1) = 1 then S
+

n ≡ 0 (mod m).

We will now look at some examples to demonstrate the surprising results this theorem

gives us.

When n = 1, Ln − 1 + (−1)n+1 = 1, and so for any modulus m, S
+

1 ≡ 0 (mod m). In

other words, F0 + F1 + F2 + · · ·+ Fk(m)−1 ≡ 0 (mod m) for all m.

When n = 2, Ln − 1 + (−1)n+1 = 1, and so for any modulus m, S
+

2 ≡ 0 (mod m).

Consider n = 4. Here Ln − 1 + (−1)n+1 = 5. Thus if 4|k(m) but 5 6 | m then

S
+

4 ≡ 0 (mod m). Recall that this means
∑k/4−1

i=0 F4i ≡
∑k/4−1

i=0 F4i+1 ≡
∑k/4−1

i=0 F4i+2 ≡
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∑k/4−1
i=0 F4i+3 ≡ 0 (mod m). Again, it does seem remarkable that the point where we start

to take every fourth term does not matter at all. Finding some values for m which satisfy the

above conditions is easy to do. By inspection we look for an m such that 4|k(m) then using

the fact that k(m)|k(mr) we let r be any integer except multiples of 5. We see k(3) = 8 so

some viable choices for m are 3, 6, 9, 12, 18, 21, 24, 27, 33, ... Notice the omission of 15

and 30. Of course, these aren’t the only possible values for m. We find k(7) = 16, so 7, 14,

21, 28, 42, ... are all valid choices as well. Amazingly, for all these values of m (and many

more), S
+

4 ≡ 0 (mod m).

Next we fix m = 17 and find all n such that S
+

n ≡ 0 (mod 17). Now k(17) = 36 so we will

only consider those n which divide 36. It just happens that gcd(17, Ln − 1 + (−1)n+1) = 1

for all those n and so S
+

n ≡ 0 (mod 17) for n = 1, 2, 3, 4, 6, 9, 12, and 18. Truly amazing!

When m = 9, k(m) = 24. We find that gcd(9, Ln − 1 + (−1)n+1) = 1 for all divisors, n,

of 24 except n = 8. Hence S
+

n ≡ 0 (mod 9) for n = 1, 2, 3, 4, 6, and 12.

It should be noted that we need not always use the first k(m) terms of the Fibonacci

sequence in our summations. This comes from the fact that we are summing over a single

period of the Fibonacci sequence and the value of j in identities 4.5 and 4.6 is inconsequential.

Considering the last example, we can take any 24 consecutive Fibonacci numbers, then add

up, say, every third, and our total will continue to be a multiple of 9.

Now we turn our attention to the alternating sum, S
+/−

n . Again we want k(m)
n to be

an integer, but two cases arise: k(m)
n is either even or odd. The case where k(m)

n is even is

explored here. In this case the number of positive terms in the summation is the same as the

number of negative terms. The case where k(m)
n is odd does not appear to give nice results

(probably because it lacks the “symmetry” of the first case) and has not been explored a

great deal.

As before, we will now try to find out when S
+/−

n ≡ 0 (mod m). Let k = k(m). By

identity 4.6:

S
+/−

n =

k
n−1∑
i=0

(−1)iFni+j =
Fj + (−1)j+1Fn−j + (−1)

k
n−1Fk+j + (−1)

k
n−1+nFk−n+j

Ln + 1 + (−1)n
.

Assuming k
n is even, and noting Fj ≡ Fk+j (mod m),

S
+/−

n (Ln + 1 + (−1)n) ≡ (−1)j+1Fn−j + (−1)
k
n−1+n(−1)n−j+1Fn−j
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≡ (−1)j+1Fn−j + (−1)jFn−j

≡ 0 (mod m)

Once again j has dropped out and we are left with the following result.

Theorem 4.8 If k(m)
n is even and gcd(m,Ln + 1 + (−1)n) = 1 then S

+/−

n ≡ 0 (mod m).

Here are a couple examples of the application of this theorem.

Let n = 4. Then Ln + 1 + (−1)n = 9. Now we want the values for m such that k(m)
4

is even and gcd(m, 9) = 1, the latter requirement being the same as 3 6 | m. After some

inspection we find m = 7 works since k(m) = 16. Thus m = 7, 14, 28, 35, 49, ... are all

acceptable values. Also, k(16) = 24 so m = 16, 32, 64, 80, 112, ... work as well. For all

these values of m, S
+/−

4 ≡ 0 (mod m).

When m = 9, k(m) = 24. We see that k(m)
n is even for n = 1, 2, 3, 4, 6, 12. Of these

values, gcd(9, Ln + 1 + (−1)n) = 1 for n = 1, 2, 3, 6. Hence S
+/−

1 ≡ S
+/−

2 ≡ S
+/−

3 ≡ S
+/−

6 ≡

0 (mod 9).

When m = 17, k(m) = 36. Now k(m)
n is even for n = 1, 2, 3, 6, 9, 18. Of these values,

gcd(17, Ln + 1 + (−1)n) = 1 for n = 1, 2, 3, 6, 9. Hence S
+/−

1 ≡ S
+/−

2 ≡ S
+/−

3 ≡ S
+/−

6 ≡

S
+/−

9 ≡ 0 (mod 17).

It is remarkable that in the example above where m = 9, the alternating sum of the

residues themselves for n = 1, 2, 3, and 6 actually equals zero when j 6= 0. When j = 0, the

alternating sum of the residues equals −9 for all four values of n.

Similarly, in the example when m = 17, the alternating sum of the residues themselves

actually equals zero for all j. Clearly this is an area that is wide open for research and

appears to have some fascinating results.

Though we have provided some sufficient conditions indicating when a sum will be

congruent to zero, these conditions are nowhere close to necessary. There are many times

when a sum will be congruent to zero for some j but not all. It appears that with some

work, new and more general sufficient conditions may be found.

The notion of summing Fibonacci numbers over a single period is not new and has been

examined previously by Aydin and Smith in [3]. Their approach, however, was to take the

sum of powers of all the Fibonacci numbers in a period of F (mod p) and observe its value
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∑
Fi ≡ 0

∑
(−1)iFi ≡ 0

For all primes p
∑

F 2
i ≡ 0∑

F 3
i ≡ 0

∑
(−1)iF 3

i ≡ 0

For p 6= 3
∑

(−1)iF 4
i ≡ 0

For p 6= 11
∑

F 5
i ≡ 0

∑
(−1)iF 5

i ≡ 0

For p 6= 11, 29
∑

F 6
i ≡ 0∑

F 7
i ≡ 0

∑
(−1)iF 7

i ≡ 0

Table 4.1: Some sums of powers of Fibonacci numbers.

modulo p, where p is a prime. Table 4.1 displays a few of their results. All sums are taken

over a single period and all congruences are (mod p).

It seems that the next step is to look at summations of the form
∑

F e
ni+j and

∑
(−1)iF e

ni+j .

While no known work has been done in this area, empirical evidence suggests that there are

many interesting theorems waiting to be proven.

4.2 Fibonacci Subsequences

During my research I came across a paper [8] by Herta Freitag in which she describes

a property of the unit digits of the Fibonacci numbers. In the paper she examines sev-

eral subsequences of F (mod 10) where the terms of the subsequence actually follow the

usual Fibonacci recurrence relation. First she conjectures and proves that Fn + Fn+5 ≡

Fn+10 (mod 10) for all n, then she shows that if j ∈ {1, 5, 13, 17, 25, 29, 37, 41, 49, 53} the

relation Fn + Fn+j ≡ Fn+2j (mod 10) still holds for all n.

Her paper leaves many questions open. Are there other subsequences of this type in

F (mod 10) which do depend on the value of n as defined above? What can we say about the

subsequences of F (mod m) for arbitrary m? We can immediately answer the first question

by noting that F0, F9, F18, . . . (mod 10) forms such a sequence, but F1, F10, F19, . . . (mod 10)

does not. We will examine the second question closely.

First we need some notation. If a subsequence H of F (mod m) exhibits the recurrence
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relation Hn+2 ≡ Hn+1 + Hn (mod m), let us call H a “Fibonacci subsequence modulo

m”. We will drop the “modulo m” when the modulus is understood. We will only consider

subsequences whose terms are evenly spaced throughout F (mod m) and we will denote such

subsequence by {Fn, Fn+j} where Fn and Fn+j are successive term of the subsequence. We

will often use the variables n and j like this where Fn is a term in the subsequence and j is

the “spread” of the subsequence. Since F (mod m) has period k(m), we will always assume

0 ≤ n < k(m) and 1 ≤ j ≤ k(m).

Let us examine some properties of these Fibonacci subsequences. Let d =

gcd(j, k(m)). If {Fn, Fn+j} is a Fibonacci subsequence then {Fn+dx, Fn+dx+j} is also a

Fibonacci subsequence for all x. To see this, consider a period of F (mod m) where we start

at Fn then take every jth term. When we reach the end of the period, we “loop” back to the

start and continue. After “wrapping” around once or several times we will eventually return

to Fn. In the process, we will have taken every dth number in the period. Thus not only

is {Fn+dx, Fn+dx+j} a Fibonacci subsequence, in a sense it is the same subsequence with a

different starting point. We say that it is a “rotation” of the subsequence {Fn, Fn+j}.

In particular, notice that if {Fn, Fn+j} is a Fibonacci subsequence and gcd(j, k(m)) = 1,

then {Ft, Ft+j} is a rotation of {Fn, Fn+j} for any t, and the subsequence has k(m) terms.

So how do we find these Fibonacci subsequences? Given only a few successive terms of

{Fn, Fn+j}, can we say whether or not it is a Fibonacci subsequence, without having to

compute the entire subsequence? As a matter of fact, the main result of this section proves

that in many cases we can do just that. Before we present the main result we provide the

following two lemmas.

Lemma 4.9 {F0, Fj} is a Fibonacci subsequence if and only if {Fn, Fn+j} is a Fibonacci

subsequence with Fn ≡ 0.

Proof: The ideas in this proof are similar to those in the proof of theo-

rem 3.25. Let s be the residue of Fn+1 (mod m). The pair (Fn, Fn+1) ≡

s(F0, F1) (mod m), hence the sequence Fn, Fn+1, Fn+2, . . . (mod m) is the same

as the sequence sF0, sF1, sF2, . . . (mod m). Certainly, if {F0, Fj} is a Fibonacci

subsequence then {sF0, sFj} is a Fibonacci subsequence, and hence {Fn, Fn+j}

is a Fibonacci subsequence.
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In the other direction, we know that gcd(s,m) = 1, (this is seen in the

remark after identity 3.26) therefore there exists a t such that t(Fn, Fn+1) ≡

(F0, F1) (mod m), and the result follows as before.

Lemma 4.10 For odd j, Fn−j+Fn ≡ Fn+j (mod m) if and only if (Lj−1)Fn ≡ 0 (mod m).

Proof: We make use of identity 2.1, namely Fn+j = LjFn + (−1)j+1Fn−j , in

the first line below.

Fn−j + Fn ≡ Fn+j ⇐⇒ Fn−j + Fn ≡ LjFn + (−1)j+1Fn−j

⇐⇒ Fn ≡ LjFn (since j is odd)

⇐⇒ (Lj − 1)Fn ≡ 0 (mod m).

We are now ready to present the main theorem of this section.

Theorem 4.11 If Fj ≡ F2j (mod m), then {Fn, Fn+j} is a Fibonacci subsequence for all

n such that Fn ≡ 0 (mod m).

Proof: We will look at two cases: j is odd and j is even. In each case we

will show that {F0, Fj} must be a Fibonacci subsequence, then application of

lemma 4.9 will imply the conclusion of the theorem.

Case 1: Suppose j is odd.

In lemma 4.10 we can view (Lj − 1)Fn ≡ 0 (mod m) as a linear congruence

with Fn given and (Lj−1) the variable. The solution set of this linear congruence

is (Lj − 1) ≡ {0, m
dn

, 2m
dn

, 3m
dn

, . . . , (dn−1)m
dn

} where dn = gcd(Fn,m). If (Lj − 1) is

congruent to any of the elements in the set, then the linear congruence will be

satisfied. [4, p. 78].

Let n be given. Then

{odd j : Fn−j + Fn ≡ Fn+j}

=
{

odd j : (Lj − 1) ≡ 0,
m

dn
,
2m

dn
,
3m

dn
, . . . , or

(dn − 1)m
dn

}
.

We know that Fn|Ftn so we must have gcd(Fn,m)| gcd(Ftn,m). Thus, using

previous notation, dn|dtn. It follows that {0, m
dn

, 2m
dn

, . . . , (dn−1)m
dn

} ⊆ {0, m
dtn

, 2m
dtn

, . . . , (dtn−1)m
dtn

}.
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Hence, if j is a solution given n, then j is a solution given any multiple of n. In

other words, if Fn−j + Fn ≡ Fn+j (mod m) then Ftn−j + Ftn ≡ Ftn+j (mod m)

for all t.

In particular, suppose that j is a solution given n = j (this is exactly what

the hypothesis of our theorem supposes). Then F0 + Fj ≡ F2j , Fj + F2j ≡ F3j ,

F2j + F3j ≡ F4j , . . . (mod m). That is, {F0, Fj} is a Fibonacci subsequence.

Case 2: Suppose j is even.

First we look at a necessary condition. If we assume that {F0, Fj} is, in fact,

a Fibonacci subsequence then we must have Fj ≡ F0 + F−j ≡ F−j (mod m).

However, we know from identity 1.3 that for even j, F−j = −Fj , and so we

must conclude that Fj ≡ −Fj (mod m). Thus if m is odd we must have Fj ≡

0 (mod m), and if m is even we have either Fj ≡ 0 or m
2 (mod m). Hence, the

only nontrivial case occurs when m is even and Fj ≡ m
2 (mod m).

Once again, identity 2.1 states that Fn+j = LjFn + (−1)j+1Fn−j . When we

let n = tj − j we get Ftj = LjF(t−1)j + (−1)j+1F(t−2)j . When t = 2 we get the

familiar identity F2j = LjFj , which implies here, m
2 ≡ Lj(m

2 ) (mod m). We use

this relation to simplify the congruences (taken mod m) below.

F3j ≡ LjF2j − Fj

≡ Lj(
m

2
)− (

m

2
) ≡ 0

F4j ≡ LjF3j − F2j

≡ Lj(0)− (
m

2
) ≡ m

2

F5j ≡ LjF4j − F3j

≡ Lj(
m

2
)− (0) ≡ m

2
...

Hence our subsequence {F0, Fj} = 0, m
2 , m

2 , 0, m
2 , m

2 , . . . will continue on in

this manner and {F0, Fj} is a Fibonacci subsequence.

Now it is a simple matter to apply lemma 4.9 and see that if Fn ≡ 0 (mod m)

then {Fn, Fn+j} must also be a Fibonacci subsequence.
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This result gives us a fairly easy method for finding many of the Fibonacci subsequences

of F (mod m), if any exist. However, this method may actually give us more than that as

the following conjecture asserts.

Conjecture 4.12 If 56 |m then every Fibonacci subsequence contains a zero.

If the above conjecture is true, then our method should give us all the Fibonacci sub-

sequences of F (mod m) when 56 |m. It also appears that every time 5|m there must be at

least one Fibonacci subsequence containing no zeros. This may have something to do with

the fact that the period of the Lucas numbers = k(m) when 56 |m, and 1
5k(m) when 5|m.

We also make the next conjecture, which tests for the existence of a Fibonacci subse-

quence when we are given four terms in a row and none of them are required to be congruent

to zero modulo m.

Conjecture 4.13 If Fn−j + Fn ≡ Fn+j and Fn + Fn+j ≡ Fn+2j (mod m) then {Fn, Fn+j}

is a Fibonacci subsequence.

Finding just three consecutive terms of a subsequence which exhibit the Fibonacci recur-

rence relation is not sufficient to conclude that the subsequence is a Fibonacci subsequence.

As a counter example we see that F7, F9, F11 are 1, 4, and 5 (mod 6) respectively, but

F13 ≡ 5 (mod 6).

One thing that makes this area of research attractive is that these subsequences appear

quite frequently. Suppose we don’t count rotations as different subsequences, and we don’t

count trivial subsequences of all zeros or the Fibonacci sequence itself. Then for example

we find that F (mod 5) contains 8 Fibonacci subsequences, F (mod 6) contains 11 Fibonacci

subsequences, F (mod 7) contains 1 Fibonacci subsequence, and F (mod 10) contains 39 Fi-

bonacci subsequences. Table 4.2 lists all the “smallest” pairs (n, n+j) for which {Fn, Fn+j}

is a Fibonacci subsequence modulo 10. Note that k(10) = 60 and β(10) = 4.

Finally we mention that not only is the existence of these special subsequences interest-

ing, but how they actually look has its intrigue. We have seen that if a Fibonacci subse-

quence exits with even spread, then it has the form (m
2 )·[F (mod 2)]. Every third residue

from F (mod 6) forms a sequence like 2·[F (mod 3)]. Every seventh residue from F (mod 91)

forms a sequence like F (mod 7) multiplied through by 13.
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j gcd(j, 60) (n, n + j)
1 1 (0,1)
5 5 (0,5) (1,6) (2,7) (3,8) (4,9)
9 3 (0,9)
10 10 (0,10) (5,15)
13 1 (0,13)
15 15 (0,15)*
17 1 (0,17)
20 20 (0,20) (5,25) (10,30) (15,45)
21 3 (0,21)
25 5 (0,25) (1,26) (2,27) (3,28) (4,29)
29 1 (0,29)
30 30 (0,30)* (15,45)*
33 3 (0,33)
35 5 (0,35)
37 1 (0,37)
40 20 (0,40) (5,45) (10,50) (15,55)
41 1 (0,41)
45 15 (0,45)* (3,48) (6,51) (9,54) (12,57)
49 1 (0,49)
50 10 (0,50) (5,55)
53 1 (0,53)
55 5 (0,55)
57 3 (0,57)
60 60 (0,60)* (15,75)* (30,90)* (45,105)*

Table 4.2: Subsequences of F (mod 10). The subsequences with asterisks are trivial subse-
quences, containing only zeros.
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Once again, it appears that for every new insight we gain into the Fibonacci sequence,

a multitude of new relationships emerge to amaze and intrigue us.



62 CHAPTER 4. PERSONAL FINDINGS



Appendix A

The First 30 Fibonacci and
Lucas Numbers

n Fn Ln

1 1 1
2 1 3
3 2 4 = 22

4 3 7
5 5 11
6 8 = 23 18 = 2 · 32

7 13 29
8 21 = 3 · 7 47
9 34 = 2 · 17 76 = 22 · 19

10 55 = 5 · 11 123 = 3 · 41
11 89 199
12 144 = 24 · 32 322 = 2 · 7 · 23
13 233 521
14 377 = 13 · 29 843 = 3 · 281
15 610 = 2 · 5 · 61 1364 = 22 · 11 · 31
16 987 = 3 · 7 · 47 2207
17 1597 3571
18 2584 = 23 · 17 · 19 5778 = 2 · 33 · 107
19 4181 = 37 · 113 9349
20 6765 = 3 · 5 · 11 · 41 15127 = 7 · 2161
21 10946 = 2 · 13 · 421 24476 = 22 · 29 · 211
22 17711 = 89 · 199 39603 = 3 · 43 · 307
23 28657 64079 = 139 · 461
24 46368 = 25 · 32 · 7 · 23 103682 = 2 · 47 · 1103
25 75025 = 52 · 3001 167761 = 11 · 101 · 161
26 121393 = 233 · 521 271443 = 3 · 90481
27 196418 = 2 · 17 · 53 · 109 439204 = 22 · 19 · 5779
28 317811 = 3 · 13 · 29 · 281 710647 = 72 · 14503
29 514229 1149851 = 59 · 19489
30 832040 = 23 · 5 · 11 · 31 · 61 1860498 = 2 · 32 · 41 · 2521

63
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Appendix B

k(m), α(m), and β(m) for 2 ≤ m
≤ 1000

m k(m) α(m) β(m) m k(m) α(m) β(m) m k(m) α(m) β(m)
2 3 3 1 37 76 19 4 72 24 12 2
3 8 4 2 38 18 18 1 73 148 37 4
4 6 6 1 39 56 28 2 74 228 57 4
5 20 5 4 40 60 30 2 75 200 100 2
6 24 12 2 41 40 20 2 76 18 18 1
7 16 8 2 42 48 24 2 77 80 40 2
8 12 6 2 43 88 44 2 78 168 84 2
9 24 12 2 44 30 30 1 79 78 78 1

10 60 15 4 45 120 60 2 80 120 60 2
11 10 10 1 46 48 24 2 81 216 108 2
12 24 12 2 47 32 16 2 82 120 60 2
13 28 7 4 48 24 12 2 83 168 84 2
14 48 24 2 49 112 56 2 84 48 24 2
15 40 20 2 50 300 75 4 85 180 45 4
16 24 12 2 51 72 36 2 86 264 132 2
17 36 9 4 52 84 42 2 87 56 28 2
18 24 12 2 53 108 27 4 88 60 30 2
19 18 18 1 54 72 36 2 89 44 11 4
20 60 30 2 55 20 10 2 90 120 60 2
21 16 8 2 56 48 24 2 91 112 56 2
22 30 30 1 57 72 36 2 92 48 24 2
23 48 24 2 58 42 42 1 93 120 60 2
24 24 12 2 59 58 58 1 94 96 48 2
25 100 25 4 60 120 60 2 95 180 90 2
26 84 21 4 61 60 15 4 96 48 24 2
27 72 36 2 62 30 30 1 97 196 49 4
28 48 24 2 63 48 24 2 98 336 168 2
29 14 14 1 64 96 48 2 99 120 60 2
30 120 60 2 65 140 35 4 100 300 150 2
31 30 30 1 66 120 60 2 101 50 50 1
32 48 24 2 67 136 68 2 102 72 36 2
33 40 20 2 68 36 18 2 103 208 104 2
34 36 9 4 69 48 24 2 104 84 42 2
35 80 40 2 70 240 120 2 105 80 40 2
36 24 12 2 71 70 70 1 106 108 27 4
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m k(m) α(m) β(m) m k(m) α(m) β(m) m k(m) α(m) β(m)
107 72 36 2 146 444 111 4 185 380 95 4
108 72 36 2 147 112 56 2 186 120 60 2
109 108 27 4 148 228 114 2 187 180 90 2
110 60 30 2 149 148 37 4 188 96 48 2
111 152 76 2 150 600 300 2 189 144 72 2
112 48 24 2 151 50 50 1 190 180 90 2
113 76 19 4 152 36 18 2 191 190 190 1
114 72 36 2 153 72 36 2 192 96 48 2
115 240 120 2 154 240 120 2 193 388 97 4
116 42 42 1 155 60 30 2 194 588 147 4
117 168 84 2 156 168 84 2 195 280 140 2
118 174 174 1 157 316 79 4 196 336 168 2
119 144 72 2 158 78 78 1 197 396 99 4
120 120 60 2 159 216 108 2 198 120 60 2
121 110 110 1 160 240 120 2 199 22 22 1
122 60 15 4 161 48 24 2 200 300 150 2
123 40 20 2 162 216 108 2 201 136 68 2
124 30 30 1 163 328 164 2 202 150 150 1
125 500 125 4 164 120 60 2 203 112 56 2
126 48 24 2 165 40 20 2 204 72 36 2
127 256 128 2 166 168 84 2 205 40 20 2
128 192 96 2 167 336 168 2 206 624 312 2
129 88 44 2 168 48 24 2 207 48 24 2
130 420 105 4 169 364 91 4 208 168 84 2
131 130 130 1 170 180 45 4 209 90 90 1
132 120 60 2 171 72 36 2 210 240 120 2
133 144 72 2 172 264 132 2 211 42 42 1
134 408 204 2 173 348 87 4 212 108 54 2
135 360 180 2 174 168 84 2 213 280 140 2
136 36 18 2 175 400 200 2 214 72 36 2
137 276 69 4 176 120 60 2 215 440 220 2
138 48 24 2 177 232 116 2 216 72 36 2
139 46 46 1 178 132 33 4 217 240 120 2
140 240 120 2 179 178 178 1 218 108 27 4
141 32 16 2 180 120 60 2 219 296 148 2
142 210 210 1 181 90 90 1 220 60 30 2
143 140 70 2 182 336 168 2 221 252 63 4
144 24 12 2 183 120 60 2 222 456 228 2
145 140 70 2 184 48 24 2 223 448 224 2
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m k(m) α(m) β(m) m k(m) α(m) β(m) m k(m) α(m) β(m)
224 48 24 2 263 176 88 2 302 150 150 1
225 600 300 2 264 120 60 2 303 200 100 2
226 228 57 4 265 540 135 4 304 72 36 2
227 456 228 2 266 144 72 2 305 60 15 4
228 72 36 2 267 88 44 2 306 72 36 2
229 114 114 1 268 408 204 2 307 88 44 2
230 240 120 2 269 268 67 4 308 240 120 2
231 80 40 2 270 360 180 2 309 208 104 2
232 84 42 2 271 270 270 1 310 60 30 2
233 52 13 4 272 72 36 2 311 310 310 1
234 168 84 2 273 112 56 2 312 168 84 2
235 160 80 2 274 276 69 4 313 628 157 4
236 174 174 1 275 100 50 2 314 948 237 4
237 312 156 2 276 48 24 2 315 240 120 2
238 144 72 2 277 556 139 4 316 78 78 1
239 238 238 1 278 138 138 1 317 636 159 4
240 120 60 2 279 120 60 2 318 216 108 2
241 240 120 2 280 240 120 2 319 70 70 1
242 330 330 1 281 56 28 2 320 480 240 2
243 648 324 2 282 96 48 2 321 72 36 2
244 60 30 2 283 568 284 2 322 48 24 2
245 560 280 2 284 210 210 1 323 36 18 2
246 120 60 2 285 360 180 2 324 216 108 2
247 252 126 2 286 420 210 2 325 700 175 4
248 60 30 2 287 80 40 2 326 984 492 2
249 168 84 2 288 48 24 2 327 216 108 2
250 1500 375 4 289 612 153 4 328 120 60 2
251 250 250 1 290 420 210 2 329 32 16 2
252 48 24 2 291 392 196 2 330 120 60 2
253 240 120 2 292 444 222 2 331 110 110 1
254 768 384 2 293 588 147 4 332 168 84 2
255 360 180 2 294 336 168 2 333 456 228 2
256 384 192 2 295 580 290 2 334 336 168 2
257 516 129 4 296 228 114 2 335 680 340 2
258 264 132 2 297 360 180 2 336 48 24 2
259 304 152 2 298 444 111 4 337 676 169 4
260 420 210 2 299 336 168 2 338 1092 273 4
261 168 84 2 300 600 300 2 339 152 76 2
262 390 390 1 301 176 88 2 340 180 90 2
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m k(m) α(m) β(m) m k(m) α(m) β(m) m k(m) α(m) β(m)
341 30 30 1 380 180 90 2 419 418 418 1
342 72 36 2 381 256 128 2 420 240 120 2
343 784 392 2 382 570 570 1 421 84 21 4
344 264 132 2 383 768 384 2 422 42 42 1
345 240 120 2 384 192 96 2 423 96 48 2
346 348 87 4 385 80 40 2 424 108 54 2
347 232 116 2 386 1164 291 4 425 900 225 4
348 168 84 2 387 264 132 2 426 840 420 2
349 174 174 1 388 588 294 2 427 240 120 2
350 1200 600 2 389 388 97 4 428 72 36 2
351 504 252 2 390 840 420 2 429 280 140 2
352 240 120 2 391 144 72 2 430 1320 660 2
353 236 59 4 392 336 168 2 431 430 430 1
354 696 348 2 393 520 260 2 432 72 36 2
355 140 70 2 394 396 99 4 433 868 217 4
356 132 66 2 395 780 390 2 434 240 120 2
357 144 72 2 396 120 60 2 435 280 140 2
358 534 534 1 397 796 199 4 436 108 54 2
359 358 358 1 398 66 66 1 437 144 72 2
360 120 60 2 399 144 72 2 438 888 444 2
361 342 342 1 400 600 300 2 439 438 438 1
362 90 90 1 401 200 100 2 440 60 30 2
363 440 220 2 402 408 204 2 441 336 168 2
364 336 168 2 403 420 210 2 442 252 63 4
365 740 185 4 404 150 150 1 443 888 444 2
366 120 60 2 405 1080 540 2 444 456 228 2
367 736 368 2 406 336 168 2 445 220 55 4
368 48 24 2 407 380 190 2 446 1344 672 2
369 120 60 2 408 72 36 2 447 296 148 2
370 1140 285 4 409 408 204 2 448 96 48 2
371 432 216 2 410 120 60 2 449 448 224 2
372 120 60 2 411 552 276 2 450 600 300 2
373 748 187 4 412 624 312 2 451 40 20 2
374 180 90 2 413 464 232 2 452 228 114 2
375 1000 500 2 414 48 24 2 453 200 100 2
376 96 48 2 415 840 420 2 454 456 228 2
377 28 14 2 416 336 168 2 455 560 280 2
378 144 72 2 417 184 92 2 456 72 36 2
379 378 378 1 418 90 90 1 457 916 229 4
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m k(m) α(m) β(m) m k(m) α(m) β(m) m k(m) α(m) β(m)
458 114 114 1 497 560 280 2 536 408 204 2
459 72 36 2 498 168 84 2 537 712 356 2
460 240 120 2 499 498 498 1 538 804 201 4
461 46 46 1 500 1500 750 2 539 560 280 2
462 240 120 2 501 336 168 2 540 360 180 2
463 928 464 2 502 750 750 1 541 90 90 1
464 168 84 2 503 1008 504 2 542 270 270 1
465 120 60 2 504 48 24 2 543 360 180 2
466 156 39 4 505 100 50 2 544 144 72 2
467 936 468 2 506 240 120 2 545 540 135 4
468 168 84 2 507 728 364 2 546 336 168 2
469 272 136 2 508 768 384 2 547 1096 548 2
470 480 240 2 509 254 254 1 548 276 138 2
471 632 316 2 510 360 180 2 549 120 60 2
472 348 174 2 511 592 296 2 550 300 150 2
473 440 220 2 512 768 384 2 551 126 126 1
474 312 156 2 513 72 36 2 552 48 24 2
475 900 450 2 514 516 129 4 553 624 312 2
476 144 72 2 515 1040 520 2 554 1668 417 4
477 216 108 2 516 264 132 2 555 760 380 2
478 714 714 1 517 160 80 2 556 138 138 1
479 478 478 1 518 912 456 2 557 124 31 4
480 240 120 2 519 696 348 2 558 120 60 2
481 532 133 4 520 420 210 2 559 616 308 2
482 240 120 2 521 26 26 1 560 240 120 2
483 48 24 2 522 168 84 2 561 360 180 2
484 330 330 1 523 1048 524 2 562 168 84 2
485 980 245 4 524 390 390 1 563 376 188 2
486 648 324 2 525 400 200 2 564 96 48 2
487 976 488 2 526 528 264 2 565 380 95 4
488 60 30 2 527 180 90 2 566 1704 852 2
489 328 164 2 528 120 60 2 567 432 216 2
490 1680 840 2 529 1104 552 2 568 420 210 2
491 490 490 1 530 540 135 4 569 568 284 2
492 120 60 2 531 696 348 2 570 360 180 2
493 252 126 2 532 144 72 2 571 570 570 1
494 252 126 2 533 280 140 2 572 420 210 2
495 120 60 2 534 264 132 2 573 760 380 2
496 120 60 2 535 360 180 2 574 240 120 2
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m k(m) α(m) β(m) m k(m) α(m) β(m) m k(m) α(m) β(m)
575 1200 600 2 614 264 132 2 653 1308 327 4
576 96 48 2 615 40 20 2 654 216 108 2
577 1156 289 4 616 240 120 2 655 260 130 2
578 612 153 4 617 1236 309 4 656 120 60 2
579 776 388 2 618 624 312 2 657 888 444 2
580 420 210 2 619 206 206 1 658 96 48 2
581 336 168 2 620 60 30 2 659 658 658 1
582 1176 588 2 621 144 72 2 660 120 60 2
583 540 270 2 622 930 930 1 661 220 55 4
584 444 222 2 623 176 88 2 662 330 330 1
585 840 420 2 624 168 84 2 663 504 252 2
586 588 147 4 625 2500 625 4 664 168 84 2
587 1176 588 2 626 1884 471 4 665 720 360 2
588 336 168 2 627 360 180 2 666 456 228 2
589 90 90 1 628 948 474 2 667 336 168 2
590 1740 870 2 629 684 171 4 668 336 168 2
591 792 396 2 630 240 120 2 669 448 224 2
592 456 228 2 631 630 630 1 670 2040 1020 2
593 1188 297 4 632 156 78 2 671 60 30 2
594 360 180 2 633 168 84 2 672 48 24 2
595 720 360 2 634 636 159 4 673 1348 337 4
596 444 222 2 635 1280 640 2 674 2028 507 4
597 88 44 2 636 216 108 2 675 1800 900 2
598 336 168 2 637 112 56 2 676 1092 546 2
599 598 598 1 638 210 210 1 677 452 113 4
600 600 300 2 639 840 420 2 678 456 228 2
601 600 300 2 640 960 480 2 679 784 392 2
602 528 264 2 641 640 320 2 680 180 90 2
603 408 204 2 642 72 36 2 681 456 228 2
604 150 150 1 643 1288 644 2 682 30 30 1
605 220 110 2 644 48 24 2 683 1368 684 2
606 600 300 2 645 440 220 2 684 72 36 2
607 1216 608 2 646 36 18 2 685 1380 345 4
608 144 72 2 647 1296 648 2 686 2352 1176 2
609 112 56 2 648 216 108 2 687 456 228 2
610 60 15 4 649 290 290 1 688 264 132 2
611 224 112 2 650 2100 525 4 689 756 189 4
612 72 36 2 651 240 120 2 690 240 120 2
613 1228 307 4 652 984 492 2 691 138 138 1
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m k(m) α(m) β(m) m k(m) α(m) β(m) m k(m) α(m) β(m)
692 348 174 2 731 792 396 2 770 240 120 2
693 240 120 2 732 120 60 2 771 1032 516 2
694 696 348 2 733 1468 367 4 772 1164 582 2
695 460 230 2 734 2208 1104 2 773 1548 387 4
696 168 84 2 735 560 280 2 774 264 132 2
697 360 180 2 736 48 24 2 775 300 150 2
698 174 174 1 737 680 340 2 776 588 294 2
699 104 52 2 738 120 60 2 777 304 152 2
700 1200 600 2 739 738 738 1 778 1164 291 4
701 700 175 4 740 1140 570 2 779 360 180 2
702 504 252 2 741 504 252 2 780 840 420 2
703 684 342 2 742 432 216 2 781 70 70 1
704 480 240 2 743 496 248 2 782 144 72 2
705 160 80 2 744 120 60 2 783 504 252 2
706 708 177 4 745 740 185 4 784 336 168 2
707 400 200 2 746 2244 561 4 785 1580 395 4
708 696 348 2 747 168 84 2 786 1560 780 2
709 118 118 1 748 180 90 2 787 1576 788 2
710 420 210 2 749 144 72 2 788 396 198 2
711 312 156 2 750 3000 1500 2 789 176 88 2
712 132 66 2 751 750 750 1 790 780 390 2
713 240 120 2 752 96 48 2 791 304 152 2
714 144 72 2 753 1000 500 2 792 120 60 2
715 140 70 2 754 84 42 2 793 420 105 4
716 534 534 1 755 100 50 2 794 2388 597 4
717 952 476 2 756 144 72 2 795 1080 540 2
718 1074 1074 1 757 1516 379 4 796 66 66 1
719 718 718 1 758 378 378 1 797 228 57 4
720 120 60 2 759 240 120 2 798 144 72 2
721 208 104 2 760 180 90 2 799 288 144 2
722 342 342 1 761 380 95 4 800 1200 600 2
723 240 120 2 762 768 384 2 801 264 132 2
724 90 90 1 763 432 216 2 802 600 300 2
725 700 350 2 764 570 570 1 803 740 370 2
726 1320 660 2 765 360 180 2 804 408 204 2
727 1456 728 2 766 768 384 2 805 240 120 2
728 336 168 2 767 812 406 2 806 420 210 2
729 1944 972 2 768 384 192 2 807 536 268 2
730 2220 555 4 769 192 96 2 808 300 150 2
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m k(m) α(m) β(m) m k(m) α(m) β(m) m k(m) α(m) β(m)
809 202 202 1 848 216 108 2 887 1776 888 2
810 1080 540 2 849 568 284 2 888 456 228 2
811 270 270 1 850 900 225 4 889 256 128 2
812 336 168 2 851 912 456 2 890 660 165 4
813 1080 540 2 852 840 420 2 891 1080 540 2
814 1140 570 2 853 1708 427 4 892 1344 672 2
815 1640 820 2 854 240 120 2 893 288 144 2
816 72 36 2 855 360 180 2 894 888 444 2
817 792 396 2 856 72 36 2 895 1780 890 2
818 408 204 2 857 1716 429 4 896 192 96 2
819 336 168 2 858 840 420 2 897 336 168 2
820 120 60 2 859 78 78 1 898 1344 672 2
821 820 205 4 860 1320 660 2 899 210 210 1
822 552 276 2 861 80 40 2 900 600 300 2
823 1648 824 2 862 1290 1290 1 901 108 27 4
824 624 312 2 863 1728 864 2 902 120 60 2
825 200 100 2 864 144 72 2 903 176 88 2
826 1392 696 2 865 1740 435 4 904 228 114 2
827 1656 828 2 866 2604 651 4 905 180 90 2
828 48 24 2 867 1224 612 2 906 600 300 2
829 276 69 4 868 240 120 2 907 1816 908 2
830 840 420 2 869 390 390 1 908 456 228 2
831 1112 556 2 870 840 420 2 909 600 300 2
832 672 336 2 871 952 476 2 910 1680 840 2
833 1008 504 2 872 108 54 2 911 70 70 1
834 552 276 2 873 1176 588 2 912 72 36 2
835 1680 840 2 874 144 72 2 913 840 420 2
836 90 90 1 875 2000 1000 2 914 2748 687 4
837 360 180 2 876 888 444 2 915 120 60 2
838 1254 1254 1 877 1756 439 4 916 114 114 1
839 838 838 1 878 438 438 1 917 1040 520 2
840 240 120 2 879 1176 588 2 918 72 36 2
841 406 406 1 880 120 60 2 919 102 102 1
842 84 21 4 881 176 88 2 920 240 120 2
843 56 28 2 882 336 168 2 921 88 44 2
844 42 42 1 883 1768 884 2 922 138 138 1
845 1820 455 4 884 252 126 2 923 140 70 2
846 96 48 2 885 1160 580 2 924 240 120 2
847 880 440 2 886 888 444 2 925 1900 475 4
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m k(m) α(m) β(m) m k(m) α(m) β(m) m k(m) α(m) β(m)
926 2784 1392 2 951 1272 636 2 976 120 60 2
927 624 312 2 952 144 72 2 977 652 163 4
928 336 168 2 953 212 53 4 978 984 492 2
929 928 464 2 954 216 108 2 979 220 110 2
930 120 60 2 955 380 190 2 980 1680 840 2
931 1008 504 2 956 714 714 1 981 216 108 2
932 156 78 2 957 280 140 2 982 1470 1470 1
933 1240 620 2 958 1434 1434 1 983 1968 984 2
934 936 468 2 959 1104 552 2 984 120 60 2
935 180 90 2 960 480 240 2 985 1980 495 4
936 168 84 2 961 930 930 1 986 252 126 2
937 1876 469 4 962 1596 399 4 987 32 16 2
938 816 408 2 963 72 36 2 988 252 126 2
939 1256 628 2 964 240 120 2 989 528 264 2
940 480 240 2 965 1940 485 4 990 120 60 2
941 470 470 1 966 48 24 2 991 198 198 1
942 1896 948 2 967 176 88 2 992 240 120 2
943 240 120 2 968 660 330 2 993 440 220 2
944 696 348 2 969 72 36 2 994 1680 840 2
945 720 360 2 970 2940 735 4 995 220 110 2
946 1320 660 2 971 970 970 1 996 168 84 2
947 1896 948 2 972 648 324 2 997 1996 499 4
948 312 156 2 973 368 184 2 998 498 498 1
949 1036 259 4 974 2928 1464 2 999 1368 684 2
950 900 450 2 975 1400 700 2 1000 1500 750 2
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Appendix C

One Period Of F (mod m) for 2
≤ m ≤ 50

m
2 0 1 1
3 0 1 1 2 0 2 2 1
4 0 1 1 2 3 1
5 0 1 1 2 3 0 3 3 1 4 0 4 4 3 2 0 2 2 4 1
6 0 1 1 2 3 5 2 1 3 4 1 5 0 5 5 4 3 1 4 5

3 2 5 1
7 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1
8 0 1 1 2 3 5 0 5 5 2 7 1
9 0 1 1 2 3 5 8 4 3 7 1 8 0 8 8 7 6 4 1 5

6 2 8 1
10 0 1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1

5 6 1 7 8 5 3 8 1 9 0 9 9 8 7 5 2 7 9 6
5 1 6 7 3 0 3 3 6 9 5 4 9 3 2 5 7 2 9 1

11 0 1 1 2 3 5 8 2 10 1
12 0 1 1 2 3 5 8 1 9 10 7 5 0 5 5 10 3 1 4 5

9 2 11 1
13 0 1 1 2 3 5 8 0 8 8 3 11 1 12 0 12 12 11 10 8

5 0 5 5 10 2 12 1
14 0 1 1 2 3 5 8 13 7 6 13 5 4 9 13 8 7 1 8 9

3 12 1 13 0 13 13 12 11 9 6 1 7 8 1 9 10 5 1 6
7 13 6 5 11 2 13 1

15 0 1 1 2 3 5 8 13 6 4 10 14 9 8 2 10 12 7 4 11
0 11 11 7 3 10 13 8 6 14 5 4 9 13 7 5 12 2 14 1

16 0 1 1 2 3 5 8 13 5 2 7 9 0 9 9 2 11 13 8 5
13 2 15 1

17 0 1 1 2 3 5 8 13 4 0 4 4 8 12 3 15 1 16 0 16
16 15 14 12 9 4 13 0 13 13 9 5 14 2 16 1

18 0 1 1 2 3 5 8 13 3 16 1 17 0 17 17 16 15 13 10 5
15 2 17 1

19 0 1 1 2 3 5 8 13 2 15 17 13 11 5 16 2 18 1
20 0 1 1 2 3 5 8 13 1 14 15 9 4 13 17 10 7 17 4 1

5 6 11 17 8 5 13 18 11 9 0 9 9 18 7 5 12 17 9 6
15 1 16 17 13 10 3 13 16 9 5 14 19 13 12 5 17 2 19 1

21 0 1 1 2 3 5 8 13 0 13 13 5 18 2 20 1
22 0 1 1 2 3 5 8 13 21 12 11 1 12 13 3 16 19 13 10 1

11 12 1 13 14 5 19 2 21 1
23 0 1 1 2 3 5 8 13 21 11 9 20 6 3 9 12 21 10 8 18

3 21 1 22 0 22 22 21 20 18 15 10 2 12 14 3 17 20 14 11
2 13 15 5 20 2 22 1

24 0 1 1 2 3 5 8 13 21 10 7 17 0 17 17 10 3 13 16 5
21 2 23 1
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m
25 0 1 1 2 3 5 8 13 21 9 5 14 19 8 2 10 12 22 9 6

15 21 11 7 18 0 18 18 11 4 15 19 9 3 12 15 2 17 19 11
5 16 21 12 8 20 3 23 1 24 0 24 24 23 22 20 17 12 4 16

20 11 6 17 23 15 13 3 16 19 10 4 14 18 7 0 7 7 14 21
10 6 16 22 13 10 23 8 6 14 20 9 4 13 17 5 22 2 24 1

26 0 1 1 2 3 5 8 13 21 8 3 11 14 25 13 12 25 11 10 21
5 0 5 5 10 15 25 14 13 1 14 15 3 18 21 13 8 21 3 24
1 25 0 25 25 24 23 21 18 13 5 18 23 15 12 1 13 14 1 15

16 5 21 0 21 21 16 11 1 12 13 25 12 11 23 8 5 13 18 5
23 2 25 1

27 0 1 1 2 3 5 8 13 21 7 1 8 9 17 26 16 15 4 19 23
15 11 26 10 9 19 1 20 21 14 8 22 3 25 1 26 0 26 26 25
24 22 19 14 6 20 26 19 18 10 1 11 12 23 8 4 12 16 1 17
18 8 26 7 6 13 19 5 24 2 26 1

28 0 1 1 2 3 5 8 13 21 6 27 5 4 9 13 22 7 1 8 9
17 26 15 13 0 13 13 26 11 9 20 1 21 22 15 9 24 5 1 6
7 13 20 5 25 2 27 1

29 0 1 1 2 3 5 8 13 21 5 26 2 28 1
30 0 1 1 2 3 5 8 13 21 4 25 29 24 23 17 10 27 7 4 11

15 26 11 7 18 25 13 8 21 29 20 19 9 28 7 5 12 17 29 16
15 1 16 17 3 20 23 13 6 19 25 14 9 23 2 25 27 22 19 11
0 11 11 22 3 25 28 23 21 14 5 19 24 13 7 20 27 17 14 1

15 16 1 17 18 5 23 28 21 19 10 29 9 8 17 25 12 7 19 26
15 11 26 7 3 10 13 23 6 29 5 4 9 13 22 5 27 2 29 1

31 0 1 1 2 3 5 8 13 21 3 24 27 20 16 5 21 26 16 11 27
7 3 10 13 23 5 28 2 30 1

32 0 1 1 2 3 5 8 13 21 2 23 25 16 9 25 2 27 29 24 21
13 2 15 17 0 17 17 2 19 21 8 29 5 2 7 9 16 25 9 2
11 13 24 5 29 2 31 1

33 0 1 1 2 3 5 8 13 21 1 22 23 12 2 14 16 30 13 10 23
0 23 23 13 3 16 19 2 21 23 11 1 12 13 25 5 30 2 32 1

34 0 1 1 2 3 5 8 13 21 0 21 21 8 29 3 32 1 33 0 33
33 32 31 29 26 21 13 0 13 13 26 5 31 2 33 1

35 0 1 1 2 3 5 8 13 21 34 20 19 4 23 27 15 7 22 29 16
10 26 1 27 28 20 13 33 11 9 20 29 14 8 22 30 17 12 29 6
0 6 6 12 18 30 13 8 21 29 15 9 24 33 22 20 7 27 34 26

25 16 6 22 28 15 8 23 31 19 15 34 14 13 27 5 32 2 34 1
36 0 1 1 2 3 5 8 13 21 34 19 17 0 17 17 34 15 13 28 5

33 2 35 1
37 0 1 1 2 3 5 8 13 21 34 18 15 33 11 7 18 25 6 31 0

31 31 25 19 7 26 33 22 18 3 21 24 8 32 3 35 1 36 0 36
36 35 34 32 29 24 16 3 19 22 4 26 30 19 12 31 6 0 6 6
12 18 30 11 4 15 19 34 16 13 29 5 34 2 36 1

38 0 1 1 2 3 5 8 13 21 34 17 13 30 5 35 2 37 1
39 0 1 1 2 3 5 8 13 21 34 16 11 27 38 26 25 12 37 10 8

18 26 5 31 36 28 25 14 0 14 14 28 3 31 34 26 21 8 29 37
27 25 13 38 12 11 23 34 18 13 31 5 36 2 38 1

40 0 1 1 2 3 5 8 13 21 34 15 9 24 33 17 10 27 37 24 21
5 26 31 17 8 25 33 18 11 29 0 29 29 18 7 25 32 17 9 26

35 21 16 37 13 10 23 33 16 9 25 34 19 13 32 5 37 2 39 1
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m
41 0 1 1 2 3 5 8 13 21 34 14 7 21 28 8 36 3 39 1 40

0 40 40 39 38 36 33 28 20 7 27 34 20 13 33 5 38 2 40 1
42 0 1 1 2 3 5 8 13 21 34 13 5 18 23 41 22 21 1 22 23

3 26 29 13 0 13 13 26 39 23 20 1 21 22 1 23 24 5 29 34
21 13 34 5 39 2 41 1

43 0 1 1 2 3 5 8 13 21 34 12 3 15 18 33 8 41 6 4 10
14 24 38 19 14 33 4 37 41 35 33 25 15 40 12 9 21 30 8 38
3 41 1 42 0 42 42 41 40 38 35 30 22 9 31 40 28 25 10 35
2 37 39 33 29 19 5 24 29 10 39 6 2 8 10 18 28 3 31 34

22 13 35 5 40 2 42 1
44 0 1 1 2 3 5 8 13 21 34 11 1 12 13 25 38 19 13 32 1

33 34 23 13 36 5 41 2 43 1
45 0 1 1 2 3 5 8 13 21 34 10 44 9 8 17 25 42 22 19 41

15 11 26 37 18 10 28 38 21 14 35 4 39 43 37 35 27 17 44 16
15 31 1 32 33 20 8 28 36 19 10 29 39 23 17 40 12 7 19 26
0 26 26 7 33 40 28 23 6 29 35 19 9 28 37 20 12 32 44 31

30 16 1 17 18 35 8 43 6 4 10 14 24 38 17 10 27 37 19 11
30 41 26 22 3 25 28 8 36 44 35 34 24 13 37 5 42 2 44 1

46 0 1 1 2 3 5 8 13 21 34 9 43 6 3 9 12 21 33 8 41
3 44 1 45 0 45 45 44 43 41 38 33 25 12 37 3 40 43 37 34

25 13 38 5 43 2 45 1
47 0 1 1 2 3 5 8 13 21 34 8 42 3 45 1 46 0 46 46 45

44 42 39 34 26 13 39 5 44 2 46 1
48 0 1 1 2 3 5 8 13 21 34 7 41 0 41 41 34 27 13 40 5

45 2 47 1
49 0 1 1 2 3 5 8 13 21 34 6 40 46 37 34 22 7 29 36 16

3 19 22 41 14 6 20 26 46 23 20 43 14 8 22 30 3 33 36 20
7 27 34 12 46 9 6 15 21 36 8 44 3 47 1 48 0 48 48 47

46 44 41 36 28 15 43 9 3 12 15 27 42 20 13 33 46 30 27 8
35 43 29 23 3 26 29 6 35 41 27 19 46 16 13 29 42 22 15 37
3 40 43 34 28 13 41 5 46 2 48 1

50 0 1 1 2 3 5 8 13 21 34 5 39 44 33 27 10 37 47 34 31
15 46 11 7 18 25 43 18 11 29 40 19 9 28 37 15 2 17 19 36
5 41 46 37 33 20 3 23 26 49 25 24 49 23 22 45 17 12 29 41

20 11 31 42 23 15 38 3 41 44 35 29 14 43 7 0 7 7 14 21
35 6 41 47 38 35 23 8 31 39 20 9 29 38 17 5 22 27 49 26
25 1 26 27 3 30 33 13 46 9 5 14 19 33 2 35 37 22 9 31
40 21 11 32 43 25 18 43 11 4 15 19 34 3 37 40 27 17 44 11
5 16 21 37 8 45 3 48 1 49 0 49 49 48 47 45 42 37 29 16

45 11 6 17 23 40 13 3 16 19 35 4 39 43 32 25 7 32 39 21
10 31 41 22 13 35 48 33 31 14 45 9 4 13 17 30 47 27 24 1
25 26 1 27 28 5 33 38 21 9 30 39 19 8 27 35 12 47 9 6
15 21 36 7 43 0 43 43 36 29 15 44 9 3 12 15 27 42 19 11
30 41 21 12 33 45 28 23 1 24 25 49 24 23 47 20 17 37 4 41
45 36 31 17 48 15 13 28 41 19 10 29 39 18 7 25 32 7 39 46
35 31 16 47 13 10 23 33 6 39 45 34 29 13 42 5 47 2 49 1
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