
Teaching Artificial Intelligence Using Lego

Dr. Jianna Jian Zhang Irgen-Gioro
Jianna.Zhang@wwu.edu

Department of Computer Science, Western Washington University
Bellingham, WA, USA

We present 12-years teaching experience on Artificial 
Intelligence using Lego RCX, NXT, and EV3 Robotics platforms
for both undergraduate and graduate classes at Western 
Washington University. We present the curriculum design, methods 
used, and outcomes of this kind of teaching. We discuss the 
advantages and disadvantages of using Lego. We suggest using a
systematic method to raise the quality of teaching computer science, 
particularly to address how to teach students to code their idea 
efficiently using our research methodology of flowcharting-to-code.
We will address some of the current problems in our education 
system for computer science and present our future plan.

Keywords— University Education, Robotics, AI, Lego

I. INTRODUCTION

Lego has a long and impressive history as an effective 
educational tool for all ages. Many educators adopt Lego to 
teach math, computer science, and engineering in different
levels [5,6,8] including educational therapy for children with 
autism [1]. Lego Robot Kits such as RCX, NXT, and EV3 can 
be used to make prototypes for a real world robots using 
Artificial Intelligence (AI). In this paper, we present and 
discuss methods used to teach AI using Lego Mindstorms 
Robotics Kits in the classroom for undergraduate and graduate
students at Western Washington University (WWU) since 
2004.

We will first briefly introduce the history of RCX, NXT, 
and EV3, and the schematic for each with comparison 
discussion. In Section III, and IV, we will present the class 
curriculum design, practice, and the changes over the last 12 
years. We will present and discuss the outcome of the classes,
conclude our current research, and present future teaching plan 
and strategy in Section V.

II. HISTORY OF RCX, NXT, AND EV3
In 1939, with 10 employees [3], Lego started as a toy 

company. By 1986, Lego created software that enables a PC to 
control light, and sound sensors. After 12 years, in 1998, Lego 
released the Robotic Command Explorer (RCX), a plug and
ready to program microcontroller brick [3,4]. RCX is a bench 
mark which made a significant leap for Lego education. At 
WWU, we created both introductory and AI application 
robotics classes using RCX. Due to the highly reusable Lego 
electronical and mechanical parts, students can create several 
different robots and apply different AI techniques during one 
academic quarter. With only 32kb of RAM, students must 

learn how to create memory-efficient code which is a 
permanent important skill of computer programming. Not long 
after the creation of RCX, Lego released its NEXT (NXT) 
generation of RCX in 2006, and Evolution (EV3) 
microcontroller in 2013 (See Figure 1). With NXT and EV3 
bricks, we started to teach more AI algorithms including 
Artificial Neuron Network (ANN), Reinforcement Learning 
(RL), and Genetic Algorithms (GA) to tackle more difficult AI
problems such as indoor navigation, and color shade 
recognition.

Figure 1. Summary of Lego Development Timeline [3,4]

A. RCX: Robotic Command Explorer [5,6,8]
Inside of the RCX, is an 8-bit Hitachi H8/3292
microcomputer with 32 kb RAM and 16 kb 
flash memory. The 16 kb flash is divided into 5 
program slots. Instructions are executed with a 
speed of 16 MHz. The numeric display of the 

RCX is very useful for real time debugging. The numeric LCD
has 43 segments that can be used to display sensor or internal 
values at run time. Instead of USB, RCX uses infrared signals
to communicate with a PC or another RCX. The popular 
languages for RCX includes Forth, C, Pascal, and Java using 
BricxCC [16] (famous free ware), and Mindstorms SDK. A 
very useful feature, that disappeared in later versions of Lego 
microcontrollers, is a power adapter jack to allow continuous
operation without consuming batteries. 

B. NXT: The Next Generation [5,7,9]
Inside of NXT is a 32-bit AT91SAM7S256
microcontroller with 64 KB RAM and 256 KB 
flash memory which equivalent to a typical PC 
in 20th Century. On top of the main processor,

Int'l Conf. Frontiers in Education: CS and CE |  FECS'16  | 209

ISBN: 1-60132-435-9, CSREA Press ©



NXT uses a co-processor, an Atmel 8-Bit ATmega48, to 
control motors. The communications between main processor 
and the co-processor is through a I2C bus. The execution 
speed is 48 MHz which is three time as fast as the RCX. Two 
other significant advantages of the NXT over the RCX are 
Bluetooth communication and the 100 × 64 LCD matrix 
display. On top of the original supporting languages, NXT 
also support Ada. However, it has no power adapter and 
consumes batteries much faster than both RCX and EV3.

C. EV3: The Evolution (3rd Generation) [5,9]
EV3 has a 32-bit ARM9 processor while 
NXT has an ARM7 processor. The size of 
the EV3 RAM is increased from 64 KB to 
64 MB and the size of the flash memory is 
increased to 16 MB. The system clock speed 
is increased to 200MHz which is 3 times 

faster than that of NXT and 12 times faster than that of RCX.
EV3 uses the same pixel matrix display with larger screen, 
178 × 128. New features of EV3 over NXT and RCX is Wi-Fi 
connection to a network. It requires a wireless adapter which 
is also called a “dongle”.

III. CURRICULUM DESIGN AND PRACTICE

The CS robotics classes at WWU were created in 2003. 
We have used Lego RCX, NXT, and EV3 as the platforms for 
both first-year, third-year undergraduate and MSc. graduate 
robotics courses over the past 12 years. These courses provide
an introduction to robotics, AI algorithms, and how to 
program AI. Students start by learning to build a variety of 
robots then programming motors and sensors. Applications 
using AI algorithms depends on different levels of the courses. 
The general goal is to provide students a first-hand experience 
in quantitative and symbolic reasoning. It is not uncommon 
for students to be curious about AI, but fearful that it is too 
difficult to learn. We try to provide a positive learning 
environment for students who do not have AI background
knowledge, and change serious and fearful learning process 
into a natural and interesting learning process. The following 
guideline defines the curriculums.

Students will be able to:
Clearly define target problems
Design strategies to solve these problems
Design and build robots that are suitable to solve 
these target problems
Analyze both the fundamental and complex logical 
relationship between input and output
Make intelligent decisions using AI techniques to 
deal with physical environments
Use flowcharts method to present decisions to the 
problems
Translate ideas using flowcharts-to-code method
Document program code
Test and record results
Discuss and analyze the test results
Make future plans

With this guideline, students are required to creatively 
build their own robots using classroom knowledge for the 
final project. Throughout the course of hands-on learning, 
students gain a deeper understanding of AI algorithms and the 
applications of these algorithms in different physical 
environments. We found that students’ motivation and efforts 
in learning AI theory and concepts increase as they observe 
intelligent behaviors from their own robots.

Due to the hardware changes and cost increases over the 
last 12 years, our curriculums have changed. For example, we 
originally used three RCX light sensors in an ANN line 
following robot because the cost of RCX light sensors are 
much cheaper ($1.76) than that of NXT ($24.95) and EV3 
($39.95). The learning strategy or the application algorithms
evolved into more complexed ones that must be work with 
less sensor input, for example learning color recognition or 
balancing.

IV. TEACHING AI USING LEGO BRICKS

In this section, we highlight a few cases of our approach 
for teaching AI with Logo Bricks. We have three levels of 
robotics classes, and currently using RobotC with NXT and 
EV3. The first year class emphasizes teaching plain RobotC 
programming with simple AI techniques such as left-hand rule 
for line followers and maze solvers. While the third-year and 
graduate classes, we apply reinforcement learning, artificial 
neuron networks, and genetic algorithms. 

A. Teaching a First-Year GUR Robotics Class
Line following and maze solving are two most commonly 

used projects to teach robotics classes at the beginner’s level. 
Most of the students who signed up for this class did not have 
prior robotics or programming experiences. They are working 
towards different majors from different departments at WWU. 
Line following and maze solving are two of most commonly 
used projects to teach introductory robotics classes. We strive 
to teach the following:

Understand how Lego motor and sensor work
Design intelligent strategies for the robots to follow
Present these strategies in flowcharts
Translate these flowcharts to program code

Currently, the “Introduction to Robotics” class uses the NXT 
platform with RobotC. The Lego Mindstorms kit includes
touch, light, sound, and ultrasonic sensors. Although most of 
the students in this class are not in computer science major. we 

want them to gain an 
appreciation for how the 
hardware works in addition to 
learn how to program. For 
example, the NXT touch 
sensor returns default value 1 
or 0 (touched or not touched). 
We do not only show the 

Figure 2. NXT Sensors [12]            electronic circuit, but also the 
internal structure of the sensors, and how to program them. We 
use the light sensor combined with the ultrasonic sensor to 
teach a simple, yet powerful, AI technique called “left-hand” or 
“right-hand” rule. The environment is a loop of black line on a 

210 Int'l Conf. Frontiers in Education: CS and CE |  FECS'16  |

ISBN: 1-60132-435-9, CSREA Press ©



white surface, or walls of a maze. As a light sensor reads 
darker color, it directs the motors turn towards the white 
surface and vice versa. For the maze example, when the
ultrasonic sensor reads the walls are “too far away”, the robot 
should turn itself closer to the wall such that the robot 
continues to follow either left or right-hand side of the walls as 
designed by the students. This simple AI application makes 
students truly understand what AI is about, and aware that AI 
is everywhere in our life. 

Unlike searching in a huge deterministic database, calculate 
with large quantity of numbers, or processing 3-D graphics, the 
program that we create for robots must have the ability to deal 
with ever changing real physical world. This can be seen when 
considering the simple light sensor example above. When the 
lighting condition changes at the different time of the day (sun 
rise, down, sunny, rainy, etc.), immediately students noticed 
that their robots behave differently. “It does not listen to me”, 
as some of the students commented. This demonstrates the 
need for dealing with environmental changes, and we must 
“give” the robots the ability to do so. We further direct students 
to think about how would a person deal with this situation, and 
how could we code the robot to collect the environmental 
statistics, such as color intensity, and then automatically 
calculate a threshold. Students now realize that it is not hard to 
code an intelligent behavior limited to a fixed environmental 
condition, but it is very difficult to make a robot adapt to the 
ever changing environments. At this point, we can introduce
some more advanced AI: learning behavior.

For this introductory class, we introduce a simple learning 
behavior: automatically set the light thresholds by collecting 
environment statistics. That is, read the black and white color 
under any lighting condition, and then calculate the thresholds 
on the fly. With this learning behavior, robots can follow the
black line under any lighting condition. As result, students 
suddenly realize that we can code a learning behavior using 
less than 10 lines of code. 

We teach students to use an ultrasonic sensor to detect the 
walls of a maze. The task is to keep a constant distance 
between the robot and the walls of the maze when the robot is 
moving forward to the end of the maze. Note, we eliminate 
loops of walls in the maze to simplify the learning environment 
for first year students. Two major difficulties we want to 
address here. The first one is that the ultrasonic sensor reading 
for less than 3cm or longer than 180cm are both equal to 
infinity. Theoretically, the NXT ultrasonic sensor has a reading 
0-254 cm, but the reality is quite different. The readings of 
distance 0 and 255cm are equally set to the value “??????”. 
This error default reading not only occurs with Lego ultrasonic 
sensors but also with general ultrasonic sensors, such as 
Arduino compatibles. The second difficulty is the blind spots. 
There blind spot is about 12-15 between the transducer to the
receiver of the sensor. Students must learn to deal with these 
problems while programing the left-hand or right-hand rule. 

We now discuss our teaching method to transfer these ideas 
into a computer language such as RobotC. The approach starts 
from defining the target problem. We require each student
describe the target problem using their own language. They 
must define the general problem, and divide the general 

problem into sub-problems. Then the students must decide 
what kind of robot should be used. Based on this information, 
we worked with the students to define a logic table. 

In a logic table, we first lay out the input and output 
variables and then display the logical relationship between
these variables. Table 1 illustrates an example of a logic table 
that shows the relationship among a light sensor, a sonar 
sensor, and two motors. The task is to follow a black line and 
avoid objects on the black line using a right-hand rule 
(Example 1).

Table 1. Logic Table Example 1

Light Sonar Left 
Motor

Right
Motor Action

<= Thr >= Max slower Faster Turn left

> Thr >= Max faster Slower Turn right

Don’t care < Max
stop Fast 90          

left turn

Master 
(full speed)

Slave 
(30%) 

Circle 
around

Each row shows one relationship, and it is the flowchart’s 
job to show how these individual actions arranged sequentially 
or parallel in order to fulfill the overall line following and 
object avoidance task. We must help students understand that 
for each set of input (situation), there must be a set of output 
(actions). Note, the logic table does not necessarily show the 
sequence of actions but the logic between sensors and motors.

After the logic table is generated, we show students how to 
create a flowchart based on the logic table and task description. 
We strongly encourage students to draw a flowchart first, 
examine the flowchart carefully to see if there are any logic 
errors, problems, redundancies, and or any inefficiencies 
before they start programming. However, students, particularly 
most of the computer science students are not used to drawing
flowcharts. They tend to start coding without thoroughly 
understanding the problem and the logistics. This results in 
inefficient time usage. That is, taking longer time to debug in 
order to solve unknown logical errors. In the worst case, they
have to rewrite the entire code due to “unknown” or “hard to 
figure out” logical errors. This inefficient style also has a
tendency to produce redundant code, waste CPU time, and 
memory. We should not waste memory just because the size of 
memory increased dramatically. On contrast, we should keep 
educating our students to pay attention to using their resources 
efficiently. 

How do we make a flowchart? There are two simple rules:

Using correct symbols (just like using correct alphabet 
for English language for communications, Figure 3)

Directed graph with clockwise direction (mixing both 
counter clockwise and clockwise arrows make a
diagram hard to read)

Int'l Conf. Frontiers in Education: CS and CE |  FECS'16  | 211

ISBN: 1-60132-435-9, CSREA Press ©



Figure 4. Example 1 Flow Chart

Figure 3 shows the essential 
flowchart symbols, and Figure 
4 shows the flowchart for 
Example 1. All lines have its 
own direction, the entire flow 
is in clockwise direction, and 
the whole chart should be
simple and clean. The arrows 
should be connected to the 
next action sequentially, and 
the loops should be indicated 
by clockwise arrows. To avoid 
cross over lines and crowding, 
we should use either on-page 
or off-page connectors. If one 
flowchart becomes crowded, 
we should break it up. 

    Figure 3. Flowchart Symbols

Students must think very carefully. Which sensor value has 
higher priority? How do we make a loop of sequential 
processes to fulfill the task? Where are the loops, and where to 
put the condition for each loop?  Because the logic table only 
shows logically related segments of information for coding, we 
must teach students to make the sequential connections. We 
begin with asking students to determine which condition the 
program must check first? For our example, it is the sonar 
sensor because when the robot is too close to an object, the
robot must go around the object no matter what color the light 

sensor reads. 
Students noticed 
that when the sonar 
sensor was used as 
the first condition 
in the loop, then 
the rest of the parts 
of the flowchart are 
merged together 
naturally.
Translating the 
flowchart to code
becomes an easy
task if the students 
are familiar with 
RobotC syntax, 
which we have 
taught through 
many examples
prior to the lectures 
on creating 
flowcharts.

Here are the translation steps. First we show students how 
to start a RobotC program:
                     task main( ) {
                      }

Then using the built-in method of RobotC to declare sensors 
and motors:

Declare sensors,
motors and 
variables

#pragma config (Sensor, S1, light, sensorLightActive)
#pragma config (Sensor, S2, sonar, sensorSONAR)
#pragma config (Motor, motorA, leftWheel, 
                           tmotorNXT, PIDControl, encoder)
#pragma config (Motor, motorB, rightWheel, 
                           tmotorNXT, PIDControl, encoder)

//*!!Code automatically generated by 'ROBOTC' … !!*//

Next the variables are declared:

task main()  {
   //declare variables
   int max = 25;  //max distance between robot and object
   int th = 40;      //threshold for distinguish dark color
   //check sonar sensor
   //check light sensor
}

Now we show students how to use the input sensor values as
control conditions using the “if” statement:

task main()   {
//declare variables
int max = 25;  //max distance between robot and object
int th = 40;      //threshold for distinguish dark color
//check sonar sensor
if (SensorValue[sonar] < max)   {
    //turn around
}
//check light sensor
else if (SensorValue[light] <= th)   {
    //turn left
}
else //turn right

}

The code is almost complete except the loop which repeats the
sequence of processes. We guide students in the completion of 
this task by pointing out the flowchart again. Immediately 
students realized that the loop can be created with the addition 
of a “while” statement before the “if” statement. The resulting 
program produced with students in a class is shown below:

task main()   {
//declare variables
while(true) {

//check sonar sensor
if (SensorValue[sonar] < max)   {

   //turn left
}
//check light sensor
else if (SensorValue[light] <= th) {
   //turn left
}
else   { //turn right }

}
}

Start

Declare sensors,
motors and 
variables

Sonar < max?

No

Light <= th?

No

Turn Right

Yes Turn Left

Yes Turn Around

Start

sonar<max? Light<=th?

212 Int'l Conf. Frontiers in Education: CS and CE |  FECS'16  |

ISBN: 1-60132-435-9, CSREA Press ©



Fig. 6. RCX Line Follow ANN Robot

Fig. 8. NXT Turing Machine

Fig. 7. Pnuematic Hand Learn to Grap

We have presented a systematic and logical method called 
“flowchart-to-code” to develop computer programs. This 
approach is especially useful for larger and more complex 
software. 

B. Teching Atificial Neuron Networks with Lego Robots
We have been teaching ANN using RCX, NXT, and/or

EV3 since 2003. The basic technique we use in higher level 
undergraduate and graduate classes are the same as we have 
shown in the previous section. We first explain the theory of 
ANN, show samples of the topology of forward networks,
explain how to compute the gradient, and then the computation 
of the delta value for the back propagation. It is particularly 
effective when we connect the algorithm with a real problem 
such as learning to distinguish colors or learning to follow a
black line instead of hard coding the behavior.

Students are quick to 
understand the concept of ANN,
but tend to have difficulties 
applying the theory and concept 
to real world projects. In the 
past we have used the RCX with 
three light sensors to learn line 
following behavior around a
complex course (see Figure 5). 
The general idea is to train a 
robot to take correct actions 
when it sees a black line.

Figure 5. Line Track Used by ANN Robots 

This may seem straight forward, but it is not as simple as it
sounds because the robot is not in an ideal virtual world and 

make sharp turns 
accordingly. The test
results were not ideal 
compared with hard 
coded robots, 
however all the ANN 
RCX robots can
correctly follow the 
most part of the black 
line shown in Figure
5. With faster speed, 

say > 75% power level, they all have difficulties following the 
zigzag sharp corners closely. The typical topology for the RCX 
line flowing ANN robot is 3×5×2. Three input light sensor 
value is fed into the hidden layer, and the output are two 
actions: left turn or right turn. 

We applied ANN and general AI algorithms to many other 
projects such as 
learning to walk, self-
balancing, Tic Tac Toe 
game engine, a Hanoi 
Tower problem solver, 
searching for objects 
in an open area, 
learning to type on a 
keyboard, learning to 
generate a piece of 
acceptable music, and 
more.

Figure 7 shows another robot that we use for research and 
teaching ANN. These robot hands are based on the pictures 
posted on the Brickshelf [10]. It is not only a good platform 
for ANN learning but also good platform for reinforcement 
learning. We use two RCXs, six motors, and two air tanks 
pneumatic system. The details of this project will be published 
in a separate paper in the near future.

A NXT Turing Machine shown in Figure 8, is another 
classroom example which implements an abstract Turing 
Machine. This Lego NXT Turing Machine is built based on 
[13] with many modifications. We use 16 lift arms to 

represent 16 bits of I/O
(2-symbol: 0 or 1), and 
3-states (L, M, R). The 
initial head position is
on the top of the 4th bit 
of the “tape”. The 
initial instruction is 
one byte located from 
the 4th to the 11th bits. 
There are two kinds of 
operations for current 
application: do math or 

display text. We use right hand side 8 bits (0-7) to represent 
the first operand, and the left hand side 8 bits (8-15) to 
represent the second operand, where both can be any of the 
128 ASCII code. The input data can be entered by users or 
randomly generated by the NXT brick. The tape (with the lift 
arms on it) moves back and forth. We use an infinite number 
of finite states to represent the infinitely long tape while the 
head of the Turing Machine stays in place. If a lift arm is away 
from the head reading point, the input for that particular bit is 
a “0”, and “1” otherwise. Let the input string from the Turing 
Machine be: {0,1}  Ascii codeAscii c such that the following 
finite states hold:

The corresponding state table for the NXT Turing Machine is 
defined as the follows:

Previous 
State

Current
State

Scanned 
Symbols

Print 
Symbol

Move 
Tape

Next 
State

Start M O: Ascii 0/p fwd L
M M 0 0/p stop H
M M 1 1/p idle M
M L R1: Ascii 0/p rev M
L M R2: Ascii 0/p rev R
M R No scan 0/p fwd M
R M No scan 0/p fwd L

Table 1. NXT Turing machine State Table

Int'l Conf. Frontiers in Education: CS and CE |  FECS'16  | 213

ISBN: 1-60132-435-9, CSREA Press ©



Fig. 9. EV3 Color Recognition ANN Robot

Fig. 10. NXT Guide Dog Robot, 2008 [14] [15]

We move the “tape” forwards or backwards based on the M 
state value scanned at the beginning of operation. Then the 
tape will move to the beginning position which is R. Then the 
machine will scan two values, R1 and R2. For example, if the 
operator is Ascii code “+” or “/”, the machine will perform the 
addition or division of R1 and R2 respectively. While if the 
operator is “T”, then the Turing Machine reads a sequence of 
Ascii code, and translate them into text. The text is displayed 
on the LCD panel. In the future, we want to make it into text-
to-speech Turing Machine.

Although the RCX and NXT can be used for many
AI algorithms, currently both RCX and NXT are no longer 
supported by Lego company. We have now switched to EV3 

bricks. As discussed 
in previous sections, 
EV3 has improved 
tremendously in 
comparison with the 
RCX and NXT. 
Figure 9 shows a 
multi-purpose EV3
robot which we
currently use to teach 
both introductory 
and higher level 

robotics classes. We made this robot as simple as possible to 
save material and building time. It can be used for line
following, navigation, obstacle avoidance, detecting color,
climbing stairs, and as a platform for AI applications.

For example, we use this robot to teach classical 
Backpropagation ANN. The learning task is to make the robot
recognize 5 different colors: red, green, blue, yellow, and 
brown while it is traveling on a black ring on a white surface. 
Based on our classroom experiments, EV3 has less accurate 
reading for “blue” than that of “red” and “green”. RobotC 
language provides a convenient way to obtain the standard 
Lego color: 0 = colorNone (not color object detected); 1 = 
colorBlack; 2 = colorBlue: 3 = colorGreen: 4 = colorYellow: 5 
= colorRed: 6 = colorWhite; 7 = colorBrown. However, if any 
color that does not belong to the standard Lego color, this 
mode would fail to classify them. To learn colors that are 
different from the standard Lego color, we have to use the raw 
EV3 RGB value. Theoretically, each of the R, G, and B 
channels have a value from 0 to 1024. That is over one million 
(1,070,598,144) distinct RGB color sequences. However, after
many tests, we found that the maximum RGB value never 
exceed 800. Thus in reality, the input RGB color sequence is 
less than 510,081,600. As we can see, the input space is still
huge. To make this computation possible, we use the 
hierarchical ANN techniques as shown in our previous 
research [11].

We first roughly classify these half million input RGB 
sequences into three classes using a generalization. That is, the
first class of the RGB input sequences are those causing the R-
output neuron to fire, the second class of the RGB input 
sequences are those causing the G-output neuron to fire, and 
the third class of the RGB input sequences causing the B-

output neuron to fire. Then we use these three classified RGB 
sequences to train three identical but separated sub ANNs. The 
final output of the entire ANN system can recognize 125 
colors in the RGB gamut cube. The general approach for this 
project is the classical Backpropagation using Gradient 
Decent. The topology of the ANN is: 3 3 3 for the first ANN, 
and 3 40 125 for the three identical sub ANNs. We will 
report our testing results for this more complex example in a 
separate paper in the near future.

Currently, we request students apply a simpler version of 
the ANN color recognition exercises. We use Lego predefined 
8 color as input training data on the classical Backpropagation
ANN. We request graduate level students apply the more 
advanced Hierarchical ANN approach. No matter how much 
more complex the programming task may be compared to 
those for the first year students, we found that the teaching
method explained in Section IV is very effective. Students are 
taught to use a systematic method to program AI, and help 
them reduce confusion when implementing the details. 

C. Teaching Reinforcement Learning with Lego Robots
Reinforcement Learning is also taught in our classroom

using Lego robots. Figure 10 shows a NXT Lego guide “dog” 
robot that uses a Q-Learning algorithm to train itself not just 
listen to the owner’s command, but also learn to disobey when 
it encountered a dangerous situation [14] [15]. The dangerous 
situation including, but not limited to, objects blocking the 
way, a hole or a ditch nearby when the owner gives command 
to move to that direction.

This NXT guide dog robot operates in the 2-dimentional 
n m grades-world using an ultrasonic and a light sensor. A
policy must set to enable the initial learning. We must first set 
the reasonable policy for initial learning. We set this initial 
policy as follows: the robot can move one step forward, left, 
right, and reverse within the closed environment. For example, 
given the environment is a 3 5 grades, and the current position 
of the robot is p = (1, 1), then the robot cannot move to (1, 2), 
(2, 1) but not outside the limit. The goal of the learning is to 
obtain an optimal policy to avoid obstacles automatically, and
disobey the owner’s command in a dangerous situation. The

214 Int'l Conf. Frontiers in Education: CS and CE |  FECS'16  |

ISBN: 1-60132-435-9, CSREA Press ©



general Q-Learning function given this initial policy on action 
“a” given a state “s” can be written as 

Q(s, a) = r(s, a) + argmaxa Q( (s, a), a )    (1)

where “r” is the reward value for action a in state s, is an 
arbitrary learning speed between 0 and 1, and a is one of the 
next actions that is allowed by the current policy. We want to 
maximize the Q-value for each given state and generate two 
things: an optimal action and a new Q-value. For example, if 
the next action “a = left” gives the highest Q-value based on 
the current state value (s, a), then the robot would turn left. 
After performing this action, the robot would update its Q-table 
with the optimal Q-value. The robot repeats this learning 
process from different starting positions, and eventually it can 
continually improve its performance by looking up the learned 
Q-table: the state-action pair. This practice helps students gain 
an understanding of the fundamental machine learning theory.

D. Teaching Genetic Algorithm with Lego Robots 
The students are asked to reuse their Backpropagation

ANN programs to learn the general Genetic Algorithm (GA). 
Instead of using the Backpropagation, we show students how 
to use GA to generate candidate ANNs, evaluate these 
candidates, select parent pool of ANNs from these candidates,
and then use GA operators to produce child pool of ANNs. For 
example, we start with random generated ANNs (sets of 
weights), then test them to see how many colors that each
ANN classified correctly. These test results show how “good” 
each ANN is. Several selection methods are introduced, such 
as Ranking, Rolette Selection, Tournament, Steady State, and 
Elitism Selections. Students can use one of these selection 
methods or combine them to generate a pool of parent ANNs.
After that we explain how to use GA operators, such as Cross 
Over and Mutation, to produce a pool of child ANNs. This 
process of measurement, selection, and mutation are repeated 
over and over until several satisfactory ANNs are generated. 
We found that by modifying previous ANN programs to learn 
GA, not only helps students learn a new machine learning 
algorithm, but also reinforce their knowledge on ANN.   

V. FUTURE TEACHING PLAN AND STRATEGY

Our 12-year classroom experience shows that using Lego 
robots to teach AI is economical and effective. Students can 
extend their creative ability by making different kinds of robots 
more easily, spend less time on the mechanical construction, 
have more time on learning AI algorithms, and programming 
to deal with real world complexities. We regard this first-hand 
programming experience as a very important preparation for 
students to be successful in their future careers. Using Lego is 
economically desirable compared with other equivalent 
commercial robots. However, using Lego as the classroom 
equipment is labor intensive for maintenance, such as tracking 
and sorting Lego parts as well as the sensors, wires, and 
batteries.

In the future, we want to create more demo examples on 
color sensor because there is still much to discover. Currently, 
the raw RGB value do not show the full range, but we do not 
fully understand why. More investigation must be done to test 

the electronics, mechanics, firmware, and RobotC language on 
EV3 color sensor.

Another interesting sensor is the EV3 Gyro. This sensor is 
not stable. The well-known problems are its drifting and 
lagging. To make this sensor useful with RobotC programming 
language, we have to hard code a counter drifting every mSec 
There must be better solutions. As for the lag, the most popular 
solution is to use a third party Gyro sensor. There is some 
problem located in RobotC language or the firmware. We may 
create more sophisticated RobotC library as a solution. 

We plan to connect cameras to Lego EV3 brick, because
we believe computer vision is an important key to indoor 
navigation robots. We want to further develop our teaching 
methods to help students learn better and faster. We feel that 
the current education system of teaching computer science 
needs more focus on quality instead of quantity.  Using robots 
as real world programming platform helps students raise their 
comprehension level, and increase the ability to problem solve.

REFERENCES

[1] Ferrandez, Jose Manuel ; Paz, Felix ; Barakova, Emilia I. ; Bajracharya, 
Prina ; Willemsen, Marije ; Lourens, Tino ; Huskens, Bibi; “Long-term
LEGO therapy with humanoid robot for children with ASD”, Expert 
Systems, 2015, Vol.32(6), p.698(12) [Peer Reviewed Journal].

[2] Gomez-de-Gabriel, Jesus Manuel; Mandow, Anthony; Fernandez-
Lozano, Jesus; Garcia-Cerezo, Alfonso, “Mobile Robot Lab Project to 
Introduce Engineering Students to Fault Diagnosis in Mechatronic 
Systems”, IEEE Transactions on Education, Aug. 2015, Vol.58(3), 
pp.187-193 [Peer Reviewed Journal]

[3] Lego Group, “Lego History Timeline”, http://www.lego.com/en-
us/aboutus/lego-group/the_lego_history, 2016.

[4] Mindstorms, “History of LEGO Robotics”, http://www.lego.com/en-
us/mindstorms/history, 2016.

[5] Official Lego Vikipidia, “Lego Mindstorms”, https://en.wikipedia.org
/wiki/Lego_Mindstorms#RCX, 2016.

[6] Hitachi, “Hitachi Single-Chip Microcomputer”, http://www.legolab
.daimi.au.dk/CSaEA/RCX/Manual.dir/H8Hardware.pdf, 3rd Edition, 
accessed 2016.

[7] ATMEL, “AT91SAM ARM-based Flash MCU”, http://www.atmel.com 
/Images/6175s.pdf, 2012.

[8] University of Aarhus, Department of Computer Science, RCX Manual,
[9] Lego Mindstorms EV3, https://en.wikipedia.org/wiki/Lego_Mindstorms 

_EV3, accessed 2016.
[10] Brickshelf folder: MOC Bionicle Technic Mecha hand legotic, Folder 

created: 2003/11/30 13:10:26, Folder modified: 2006/01/26 21:13:35, 
accessed 2016.

[11] Zhang, J., Blachford, D., and Tien, J., "Chinese Handwriting 
Recognition System Using Artificial Neural Network" in Chinese 
Language Instruction and Computer Technology, in Traditional Chinese 
Language, US Department of Education, Printed in Taiwan, June 2005, 
pp. 259-273.

[12] LEGO® Education, https://education.lego.com/en-us/, accessed 2016.
[13] Mario Ferrari, Giulio Ferrari, Kevin Clague, J. P. Brown, Ralph Hempel, 

“LEGO Mindstorms Masterpieces: Building Advanced Robots”, 1st 
Edition, Syngress, 2003.

[14] Jianna Zhang and John Huddlston, “Guid Robot: a Q-Learning Lego 
Robot”, The AAAI 2008 Workshop on Mobility and Manipulation (held 
during the 23rd AAAI Conference on Artificial Intelligence), 2008, 
Chicago, USA.

[15] Anderson, Monica; Jenkins, Odest Chadwicke; Oh, Paul, “The 17th 
Annual AAAI Robot Exhibition and Manipulation and Mobility 
Workshop”, AI Magazine. Volume: 30. Issue: 1, 2009, pp. 95-102.

[16] Bricx Command Center, http://bricxcc.sourceforge.net/, accessed 2016.

Int'l Conf. Frontiers in Education: CS and CE |  FECS'16  | 215

ISBN: 1-60132-435-9, CSREA Press ©


