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ABSTRACT

We propose a model-based methodology to size and plan en-
terprise applications under Service Level Agreements (SLAs).
Our approach is illustrated using a real-world Enterprise
Resource Planning (ERP) application, namely SAP ERP.
Firstly, we develop a closed queueing network model with
finite capacity regions describing the SAP ERP application
performance and show that this model is effective and robust
in capturing measured response times and utilizations. Sec-
ondly, we propose an analytical cost model of ERP hosting
that jointly accounts for fixed hardware costs and dynamic
operational costs related to power consumption.

Based on the developed performance and cost models,
we propose to use multi-objective optimization to find the
Pareto-optimal solutions that describe the best trade-off so-
lutions between conflicting performance and cost-saving goals.
Experimental validation demonstrates the accuracy of the
proposed models and shows that the attained Pareto-optimal
solutions can be efficiently used by service providers for SLA-
driven planning decisions, thus making a strong case in favor
of the applicability of our methodology for deployment de-
cisions subject to different SLA requirements.

1. INTRODUCTION

Enterprise resource planning (ERP) applications are a
class of software systems that provide the core business func-
tionalities for an enterprise which aims to improve its pro-
ductivity and efficiency. For instance, SAP ERP is used for
business activity coordination and resource management in
large and midsize enterprises [23]. Traditionally, industrial
enterprise software systems such as ERPs are purchased,
provisioned, and maintained on-premise, especially in large
organizations where capacity planning decision are updated
infrequently and rely on simple sizing rules. However, the
ongoing trend of cloud computing and Software-as-a-Service
(SaaS) [1] is showing an increasing trend toward config-
uring enterprise applications as on-demand services. This
trend makes increasingly complex the sizing and provision-
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ing of applications because of dynamic business-driven re-
quirements on capacity, responsiveness, and operational costs
that must be met in combination to make the on-demand
approach both scalable and cost-effective. Clearly, it is very
difficult to take into account all cost and performance re-
quirements without properly engineered methodologies. This
paper proposes a solution to this problem by developing a
model-based methodology for application deployment that
is capable of accounting for multiple cost and performance
constraints using multi-objective optimization [10].

Binding contracts on the service levels between customers
and service provider are ubiquitous in modern service-oriented
applications. Service Level Agreements (SLA) are a common
way to specify such contractual terms, including both func-
tional and non-functional properties [19]. SLAs can be used
by customers and service providers to monitor if an actual
service delivery complies with the agreed terms. In case of
SLA violations, penalties or compensations can be directly
derived. From the service provider perspective, it is impor-
tant to guarantee the service level objectives specified in the
SLA in terms of performance and availability requirements.
At the same time, it is crucial for the service provider to
reduce the Total Cost of Ownership (TCO) as quantified by
hardware and operational costs related to power consump-
tion and IT management.

This paper proposes a new methodology for an enterprise
application provider to optimally plan and size its applica-
tion deployment according to stated SLA objectives. On
one hand, a performance model is developed for a real-world
ERP enterprise application, showing how a simple analyti-
cal queueing-theoretic model can describe the performance
of real-world industrial applications that are much more
complex than simplified systems considered for performance
modeling exercises in the literature. On the other hand, a
cost model is developed to quantify the tangible costs for
hosting such applications. We show that these two models
are able to predict the performance and cost objectives. The
performance and cost goals are conflicting with each other,
and we apply a multi-objective optimization (MOO) tech-
nique to find the so-called Pareto-optimal (best trade-off) so-
lutions. The Pareto-optimal set enables the service provider
to define, evaluate, and decide on the performance goals in
SLAs with respect to the cost factors. Recommendations
on the best deployment decisions are readily derived from
the Pareto-optimal solutions. To the best of our knowledge,
this is the first time that a comprehensive methodology that
jointly uses queueing network models and multi-objective
optimization is proposed for deployment of enterprise appli-



cations under SLA constraints. Specifically, the novel con-
tributions of this paper can be summarized as follows:

e We propose a closed queueing network model with finite
capacity region (FCR queueing network) for the ERP en-
terprise application. This model describes a multi-station,
multi-tier architecture, which takes into account software
threading levels affecting multiple resources and their impact
on the underlying hardware. We show that this performance
model is able to predict the end-to-end response time of the
ERP application in a way that reflects well measurements
of the real system in operation.

e We develop a cost model that is able to quantify two
tangible cost components of the TCO, namely fixed hard-
ware costs and dynamic server power consumption, which
is an operational cost determined by application usage. For
server hardware, we propose a pricing model that is func-
tion of per-core performance and the number of cores, thus
accounting for the current trend of using multi-core archi-
tectures in enterprise servers. Server power consumption,
on the other hand, is modeled as a function of CPU utiliza-
tion. Server hardware and power consumption are weighted
to reflect different cost structures.

e We adopt a multi-objective optimization (MOO) ap-
proach for SLA-driven planning and use a state-of-the-art
MOO algorithm, called SMS-EMOA [6], for its implemen-
tation. A multi-objective approach enables the planner to
evaluate design tradeoffs and balance performance and costs
from the service provider perspective. It also provides a
systematic way to optimally specify service level objectives
(SLOs), and translate such objectives into both software and
system level parameters.

The rest of the paper is organized as follows. Section
2 describes the queueing network model of the SAP ERP
application together with validation results proving its ac-
curacy. Section 3 develops the cost model based on publicly
available benchmark results and real measurement data of
enterprise systems. CPU costs and power consumption are
modeled separately and later included into a comprehensive
cost model. Section 4 presents a SLA-driven planning frame-
work that builds on top of the SMS-EMOA multi-objective
optimization algorithm. The concept of Pareto front and
MOO are introduced, and the SMS-EMOA algorithm is de-
scribed including its parallel implementation used in exper-
iments. Section 5 presents the experimental results of ap-
plying multi-objective optimization in SLA-driven capacity
planning; the computational efficiency of SMS-EMOA is dis-
cussed, and the use of Pareto-optimal set in decision making
is illustrated. Section 6 overviews related work. Finally, Sec-
tion 7 gives conclusions and outlines future work.

2. THE PERFORMANCE MODEL

We use SAP ERP as a case study for our SLA-driven ca-
pacity planning and optimization methodology [23]. ERP
software applications are challenging to provision, there-
fore they represent a difficult test case for capacity planning
methodologies. Complexity stems from the heterogeneity of
ERP workloads, which encompass thousands of transaction
types associated to different business areas (e..g, sales, distri-
bution, financial, supply chain management), and from the
characteristics of the software architecture, which is much
more complex than that of simple web systems considered in
the performance evaluation literature for benchmarking and
modeling exercises. ERP transactions are processed by dif-

ferent software subsystems running on top of a middleware
or a software integration platform, such as SAP NetWeaver
[23]. This integration platform needs to be accounted ex-
plicitly in the performance model, in addition to the char-
acteristics of the underlying hardware resources, to achieve
good performance predictions. This requires a different from
hardware resource consumption modeling, which does not
explicitly account for the software architecture characteris-
tics and yet is sufficient to achieve very good system model-
ing predictions on web systems [25, 15]. Workload complex-
ity is usually tackled in ERP application sizing by consider-
ing simplified transaction mixes that stress specific business
functions known to be representative of system usage for a
given customer. Throughout the experiments reported in
the paper, we have used a workload composed by sales and
distribution transactions, including order creations, order
listing, and delivery decisions'. The sequence of transactions
submitted to the ERP system is identical for all clients and
repeated cyclically 20 times, which corresponds to an exper-
iment duration of about 1 hour excluding initial and final
transients. Requests are sent to the system by a closed-loop
workload generator which issues a new request after comple-
tion of the previous one and following an exponential think
time with mean Z = 10s.

The goal of this section is to describe the general archi-
tecture of the SAP ERP application (Section 2.1) and out-
line the proposed modeling approach based on queueing net-
works with finite capacity regions [7, 18] (Section 2.2). We
also discuss experimental results on the real-system proving
that our model is in good agreement with observed system
performance (Section 2.3).

2.1 Architecture

We provide an high-level overview of the architecture of
the SAP ERP system, the interested reader can found ad-
ditional information in [23]. A basic ERP installation is
composed by an application server and a database server.
Clients interact with the ERP system through a graphi-
cal user interface (GUI) on client-side which exchanges data
with the application server through a proprietary commu-
nication protocol. The interaction model is stateful and
workflow-oriented: to complete a complex function, such as
a delivery, the GUI guides the user through an ordered se-
quence of dialog windows. These windows show data that
is dynamically retrieved from the ERP system in response
to atomic client-initiated requests called dialog steps. These
dialog steps are also used to send data updates to the ERP
system. Throughout the rest of the paper, we always refer
to the dialog step as the basic element of computation of the
SAP ERP system (i.e., atomic request) and we give response
time and performance index estimates on a per-dialog-step
basis.

2.1.1 Dialog Step Response Time Components

Table 1 lists the components of the response time of a
dialog step; qualitative description is given below.
Wait time (Ruwait). Upon arrival to the ERP system, a

'Due to the non-disclosure agreements that are in place, we
cannot provide in the paper additional information on the
detailed characteristics of the transactions of the sales and
distribution workload used in the experiment. However, we
stress that the workload mix used is strongly representative
of typical SAP ERP usage profiles.



Ruait | Dispatcher waiting queue latency
Zigr | Load, generation, and roll-in time
R.p | Non-idle time spent in work processes
Rap Data provisioning time

Table 1: Components of response time in SAP ERP

dialog step first joins an admission control queue. The dis-
patcher forwards requests from this waiting buffer to server
threads with processing capabilities, called work processes
(WPs). Admission takes place when there is an idle WP
and according to a first-come first-served (FCFS) schedul-
ing rule. WPs run as independent operating system pro-
cesses that share a memory area managed by the appli-
cation server; this area stores table buffers and client ses-
sion information. Service into a WP is offered in a non-
preemptive manner, thus a dialog step that starts execution
in a WP does not leave until completion of its activity cy-
cle and it is always served by the same WP. As a result of
non-preemptive scheduling, wait time tends to become the
dominating component of the end-to-end response time as
the number of active users is large with respect to capacity.

Load, generation, and roll-in times (Z4,). Upon admis-
sion of a dialog step into a WP, the application server builds
and stores in memory user context, object code, and data re-
quired for executing the dialog step transaction. We denote
by Zigr the sum of all latencies related to these initialization
activities. Since these overheads are mostly due to memory-
bound operations, an increase of the number of cores and of
the number of WPs (software threading level) does not sig-
nificantly affect Z;4,, which may therefore be seen as a con-
stant delay suffered on the end-to-end path of dialog steps
as opposed to the other components of the response time
that increase with the load.

Time in work process (Rwp). This is the response time
component due to computations performed within a WP.
Most ERP transactions break down into a cycle of CPU pro-
cessing phases followed by synchronous calls to the database
to provision new data for the upcoming computations. Dur-
ing this period, the WP remains idle waiting for new data.
Following these observations, we represent with the R,
term the time spent by the dialog step in the WP when
this is not blocked waiting for data. That is, in presence of
synchronous calls to the database, we assume that the re-
lated time spent idle waiting for DB response is not included
in Ryp. Summarizing, the Ry, term captures CPU-bound
activities and hence is significantly affected by changes in
the number of cores or in the software threading level.

Database response time (Rap ) This is the cumulative re-
sponse time due to the provisioning of data from the database
server. We ignore the load placed on the database by back-
ground operations for two reasons: first, these are executed
with lower priority than dialog step operations, hence they
do not impact on dialog step end-to-end response times; ad-
ditionally, in our experiments they are responsible of very
small utilization (DB utilization is about 3% for a system at
90% utilization). This make them also negligible for power
consumption prediction.

2.2 SAP ERP Performance Model

We now define a performance model with the aim of pre-
dicting end-to-end response times of dialog steps under dif-
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Figure 1: FCR queueing model of SAP ERP

ferent hardware and software configurations. To this end, we
need to have in the model as explicit input parameters both
the number of CPUs K (or vCPUs in virtualized environ-
ments) and the software threading level, as specified by the
number of work processes W used in the ERP configuration.

2.2.1 Modelswith Finite Capacity Regions

The starting point of our modeling analysis is that jointly
accounting for the software threading level W and for the
number of CPUs K using a product-form queueing net-
work model [18, 20] is a difficult task. Product-form net-
works are standard capacity planning model enjoying ef-
ficient solutions algorithms such as Mean Value Analysis
(MVA) [21]. Although product-form models support the def-
inition of multi-server queues with exponential service times
through the load-dependent formalism [18], they cannot ac-
count for two simultaneous constraints affecting the process-
ing activity of a same resource. In our case, they could not
represent the joint software and hardware parallelism con-
straints on the CPUs given by W and K. A number of
modeling techniques exist that are capable of overcoming
these issues by explicit representation of constraints in re-
source usage, noticeably Layered Queueing Networks [22, 13]
(LQNs) and Queueing Petri Nets (QPNs) [16] are two pop-
ular formalisms for these constraints. In this work, we focus
instead on the simpler formalism of queueing networks with
finite capacity regions (FCR queuing networks) [7, 18, 17, 2,
5]. These are models that are similar to ordinary product-
form networks, but that can also place constraints on the
maximum number of jobs circulating in a subnetwork of
queues called the finite capacity region. FCR queueing net-
works enjoy several approximation schemes that make them
appealing for analytical evaluation [18, 2]. Indeed, FCR
queueing networks may be seen as basic specializations of
LQNs or QPNs, therefore we stress that they are not more
expressive than these formalisms. Nevertheless, our prefer-
ence for FCR queueing models is motivated by the fact that
they are the simplest class of models that offers the features
we need to describe performance scalability as a function of
the software threading level W and for the number of CPUs
K.

2.2.2 SAP ERP Model

Starting from the above discussion, we have defined a per-
formance model of the SAP ERP application using the FCR
queueing network model shown in Figure 1. The model fea-
tures a FCR that represents the dispatcher admission con-
trol policy by imposing a limit of W requests circulating in
the stations inside the FCR: thus, each request represents a
dialog step being admitted into a work process. The FCR
models the software threading limit imposed by the num-
ber of work processes W specified in the ERP configuration.



The arrival process to the FCR waiting buffer is instead
controlled by the workload generator. This is modeled in
Figure 1 as a delay station (—/M /oo queue) with exponen-
tial think times having mean Z = 10s. Within the FCR,
the load, generation and roll-in times are modeled as a pas-
sage through a delay station with mean service time equal
to Zigr = 0.015s as estimated from measurement. Note that
this modeling decision makes the number of CPUs K unin-
fluential on the Z;4. term; this is desired because Zi4 is a
memory-bound latency term. The remaining stations within
the FCR are a multiserver —/M/K queue representing the
WP usage of the K CPUs and a —/M/1 queue modeling
software contention at the database server. This is an accu-
rate modeling abstraction whenever application server and
database run on separate tiers. However, as we explain in
the next subsection, we have found this to be a very accu-
rate approximation also in the case of a two tier deployment
where application server and database share the same CPUs.
This can be explained by the fact that both work processes
and database spend a part of their service time in I/O-bound
and memory-bound operations that allow other processes to
gain access to the CPU in the meanwhile. This makes the
parallelism of the ERP system effectively greater than the
number of processors K. Rather than explicitly modeling
I/0 and memory effects, which would introduce additional
complexity in model parameterization and approximation,
we prefer to decouple the database as a separate queue since
this is the resource with most frequent access to I/O and
storage resources and thus contention at this server is often
not due to limited CPU capacity. Validation experiments
reported in the next subsection indicate that the proposed
model provides an accurate abstraction of the system per-
formance under changes of the number of CPUs and WPs.

2.3 Modd Validation

The validation of the performance model proposed in the
previous subsection has been done using an installation of
SAP ERP on a two-tier configuration. The ERP system
runs in a virtual machine under VMware ESX server; this
virtual machine is configured with 32GB of memory, 230GB
of provisioned storage space, and K € {1,2,4} vCPUs each
running with 2.2GHz frequency. The underlying hardware
supports each vCPU with a separate physical processor. We
have been running a sales and distribution workload on the
ERP system configured with W € {1,2,4,8,16,32} work
processes. For given choice of number of vCPUs K and
work processes W, we have first performed a dummy exper-
iment with NV =1 to load system caches thus accounting for
system reboot after the configuration change, followed by ex-
periments for N = 300 users; all think times are exponential
with mean Z = 10s. The value N = 300 is chosen because
under this load the system reaches heavy-usage conditions
where the number of clients requesting simultaneously dialog
step processing is greater than both the number of processor
and work processes. Therefore, this heavy-load experiment
demonstrates the effects of both the K and W parameters
on the scalability of the ERP application.

Model estimates of the application performance are ob-
tained as follows. The service demand parameters used
in the definition of the FCR queueing models are D.p, =
0.072s for the CPU service demand, Zi4, = 0.015s and
Dgp = 0.032s for the database demand. These values are ob-
tained by measurement of the hardware infrastructure and

R R U U
K W N | (Model) (Meas.) | (Model) (Meas.)
2 1 300| 25.86 28.76 0.30 0.51
2 2 300 9.15 9.32 0.56 0.65
2 4 300 3.57 7.62 0.79 0.66
2 8 300 1.76 2.41 0.92 0.86
2 16 300 1.11 1.37 0.97 0.97
2 32 300 1.05 0.91 0.98 0.99
4 1 300| 25.68 26.8 0.15 0.28
4 2 300 9.19 10.6 0.28 0.37
4 4 300 1.61 1.67 0.46 0.51
4 8 300 0.47 1.16 0.52 0.65
4 16 300 0.41 0.43 0.53 0.63
4 32 300 0.37 0.38 0.53 0.62

Table 2: FCR queueing model validation results

against measurement. Legend: R is response time;
U is utilization; N is number of users; K number of
processors; W is software threading level.

from the internal performance monitor of the SAP ERP sys-
tem available via the STAD transaction [23]. To keep the
model and its parameterization simple, we assume through-
out this paper that service demands are independent of the
load. The FCR model has been here solved by simulation
using the Java Modeling Tools suite [5] that supports the
analysis of FCR queueing networks: response times are im-
mediately computed by the tool; conversely, we approximate
the utilization of the CPUs by the utilization Ucp, of the
multi-server station only, which is consistent with our obser-
vation that the DB server has low impact on the utilization
(3% at 90% utilization) and that performance degradation
at the DB is due to I/O and memory overheads.

Table 2 shows validation results for the proposed model
as compared to measurement of 12 experiments on the real
ERP application. As we can see, the model produces re-
sponse time estimates that are in good agreement with ex-
perimental data. In particular, for low and high number of
WPs the results are tight to the measured ones and make a
case for the effectiveness of the proposed model in capturing
the salient effects of W and K on system performance. Some
deviations as soon as W exceed K, where for both cases with
two and four CPUs the results are optimistic estimates on
the measured performance. Two considerations are possi-
ble regarding these configurations: first, these are system
configurations where the software threading level starts ex-
ceeding the number of processors in the system, thus it is
problematic to predict if the bottleneck is due to hardware
or software components and thus performance prediction is
clearly harder than in the other cases. A second remark
is that, despite some optimistic results, the overall trend
of the performance model reflects quite well the one mea-
sured on the real system. This is important because real-
world systems deployed under SLA constraints systemati-
cally over-provision capacity with the aim of avoiding SLA
penalties. In this context, we believe that the general per-
formance trend and the order of magnitude of an index is
more important that highly-accurate point estimates in all
evaluations, since eventually an over-provisioning gap will
be anyway applied to the recommended solution. As such,
configurations where W is close to K can be expected to be
more critical and should either discarded or would require
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stronger over-provisioning gaps for safety margin.

Concerning utilization estimates, the model appears quite
robust on all experiments with an error that is typically less
than 15%. In particular, the results in heavy load appear
tighter to the measured values. Since utilization is responsi-
ble for our estimates of the power consumption, these result
indicate that our performance model is expected to have
good prediction accuracy on system energy consumption.

Summarizing, the results proposed in this section illus-
trate that our FCR queueing network model is successful in
capturing the scalability of the ERP under different number
of processors K and work process configurations W. Only
configurations around the critical point K = W are harder
for response time prediction; utilization estimates are gen-
erally good in all cases.

3. THE COST MODEL

After developing a performance model for the enterprise
applications, we focus on the cost factors and economic im-
pacts of hosting such applications. For the service providers
to specify SLAs and optimize their service/infrastructure
landscapes, it is important to analyze, understand, and model
the cost components within the so-called “Total Cost of
Ownership” (TCO). TCO is intrinsically complex and in-
volves a great number of tangible/intangible factors. As is
pointed out in [3], the TCO of a large-scale hosting cen-
ter can be broken down into four main components: hard-
ware, power (recurring and initial data-center investment),
recurring data-center operations costs, and cost of the soft-
ware. Normally the operations costs (incl. human capi-
tal/consulting) and software constitute a large percentage
of TCO for commercial deployment, however, it is very dif-
ficult to develop a generic quantitative cost model for these
components. In this paper we focus on more tangible cost
factors such as server hardware, and we incorporate power
consumption into the cost model as a server’s energy foot-
print becomes an increasingly important cost factor in large-
scale hosting environments.

Not aiming at a comprehensive TCO model, this paper
focuses on the quantitative aspects and develop an analytic
cost model that consists of two tangible cost components:
server hardware and power consumption. Firstly, a pricing
model for CPU is proposed as a function of per-core perfor-
mance and the number of cores. The per-core performance is
based on the published results of industry-standard OLTP
(online transaction processing) benchmark TPC-C [24] on

Intel DP/MP platforms®. The fitted CPU pricing model
also manifests the current multi-/many-core trend. Sec-
ondly, server power consumption is modeled as a function
of CPU utilization using a customized Power function. By
combining the fitted models for both server costs and power
consumption, we develop a simplified analytic model that
can be used in the studies of optimizing the enterprise sys-
tem landscape with multiple objectives.

3.1 Modeing CPU Costswith Multi-Core

Among the many components of server hardware, namely
CPU, memory, storage, and network, we focus on the CPU
costs in this paper and make simplified assumptions that
costs of other components remain constants or scale with
the CPU costs. We are particularly interested in the price-
performance relationship on multi-/many-core platforms, as
the general trend in processor development has been from
single-, multi-, to many cores. Our goal is to investigate and
model the relationship between the objective, namely the
price per-CPU (Cepu) or price per-core (Ceore), and the two
related parameters: number of cores (Neore) and benchmark
results per-core (Tcore). Teore also corresponds to the pro-
cessing speed of the core, and thus the resource demands of
the measured OLTP applications.

We examine the certified TPC-C [24] benchmark results
on Intel DP/MP platforms and associate them with CPU
price information® [14], which are shown in Figure 2. As
there are two independent parameters (Ncore and Teore) we
study one of them by fixing the value of the other, and vice
versa.

3.1.1 Price, Performance, and Number of Cores

Firstly let us look at the price versus the number of cores
given a similar per-core performance. In 2(a), we can see

2The sales and distribution workloads used for performance
model evaluation are also studied and the results are not
published here due to the non-disclosure agreements in
place. However, we stress that the TPC-C results are rep-
resentative for data fitting purposes.

3Disclaimer: The performance is measured in tpmC (trans-
actions per minute), which is defined as how many New-
Order transactions per minute a system generates while
executing other transactions types. Such a performance
measure is influenced by CPU performance and additional
factors like machine architecture, cache sizes, memory
size/latency /bandwidth, operating system, storage system
characteristics, DBMS, TPC-C version/settings as well as
other factors not mentioned here.
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model param. | ¢1 | c2 | c3 C4 Cs
TPCC/DP 36 | 2.0 | 261 | -0.9 | -105

Table 3: CPU cost model parameters for TPC-C
benchmarks on Intel Xeon DP (3).

that the per-core price decreases as the number of cores
per CPU increases on the Intel Xeon DP platform. As
the per-core performance of TPC-C remains the same, the
price/performance ratio improves by adding more cores. Gen-
erally this trend is also observed for TPC-C on Intel MP, as
is shown in Figure 2(b). We notice that the per-core tpmC
decreases slightly as the number of cores increases. This is
because that the core frequency scales down as the number
of cores scales up. Nevertheless, as the chip design becomes
more efficient, the per-core performance/frequency ratio im-
proves with the evolution of CPU generations.

Secondly let us examine the price versus the per-core per-
formance given the same number of cores. In Figure 2(c), as
predicted, we can see that the price increases as the CPU fre-
quency and throughput numbers increase. Some abnormal
behavior happens between 2.33 GHz and 2.83 GHz. This
may be explained partially by the noise in the data as there
is only one available measurement each for CPU frequency at
2.33 GHz and 2.83 GHz. Nevertheless, the general trend of
price increasing with speed (core frequency) still holds. Fig-
ure 3 gives a better view on the pattern of how price changes
with the per-core performance for TPC-C. On both DP and
MP platforms with different cores, the per-core price scales
with the per-core throughput like a power function. We
studied different functions for curve fitting, including poly-
nomial, exponential, power, and other custom functions. It
is found that the power function, shown in (1), gives the
overall best fit for different data sets.

flz) =c1z®™ 4¢3 (1)

It is also shown that the price per-core decreases like a power
function while increasing the number of cores per-CPU. This
indicates that the power function in (1) can be used to model
the relationships between price per-core and Teore Or Neore
individually.

3.1.2 ACPU Price Model

The next step is to study per-core performance (Tecore) and
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Figure 4: Normalized power vs CPU utilization.

model param. | ¢ c2 | c3|ca |cs
business app. | 276.7 | 15 | 7 | 2.1 | 1.1

Table 4: Power consumption model parameters for
a customized business workload (5).

number of cores (Ncore) jointly and model their relationship
with price. Since the power function is the best fitted model
for Teore and Neore individually, we can extend this model to
a multi-variable case?. A power function with two variables
can be formulated as follows:

Cco're = g(Tco'r87 Nco're) = (2)

co cq
Cchore + C3Ncm“e + ¢s,

where (ci, ..., c5) are the parameters to be fitted. The price
per-CPU C4py is readily obtained by multiplying price per-
core with the number of cores:

Ccpu - Ncoreccore - coreg(Tcore, Ncore)- (3)

A non-linear least-squares method in the Matlab Optimiza-
tion toolbox (Isqcurvefit) is used for curve fitting, and the
fitted parameters are shown in Table 3. The fitted model
gives an overall good interpolation of real benchmark re-
sults. Although different benchmarks on different platforms
may yield different parameters®, the model shown in (3) is
general and flexible enough for estimating a wide range of
CPU cost information.

It should be noted that the power-function based model
for CPU costs developed in this section depends on the In-
tel pricing schemes for its multi-/many-core platforms. Our
contribution is to fit such price information with mathemat-
ical models, in relationship to real OLTP benchmark results.
This gives the planners/architects at the provider side a con-
venient tool for estimating hardware costs given the desired
performance level of their applications.

4An informal proof for this extension can be described as
follows: When x or y is constant, either f(z) or f(y) takes

the form ax® 4 ¢. This means there is no 2 or y components
of any form in the function other than 2’ or y*. So f(z,v)
can be written as ax® + cyd +e.

5There are no sufficient data for curve fitting of TPC-C
benchmark on Intel MP platform.



3.2 Modeling Power Consumption

Power consumption and associated costs become increas-
ingly significant in modern datacenter environments [12]. In
this section we analyze and model the server power con-
sumption of business applications. We study the relation-
ship between system power consumption (Psys, measured in
Watts) and CPU utilization (U), which is used as the main
metric for system-level activity. We run a customized ap-
plication similar to sales and distribution business processes
(the same workload used in Section 2.3), on a 64-bit Linux
server with 1 Intel dual-core CPU and 4 GB main memory.
The system power is measured using a power meter con-
nected between the server power plug and the wall socket.
The CPU utilization data is collected using Linux utilities
such as sar and iostat. Monitoring scripts in SAP perfor-
mance tools are also used for correlating power and CPU
utilization data.

Before data fitting and modeling we first perform a data
pre-processing step called normalization. Instead of directly
modeling Psy,s we use a normalized power unit Py oppm, which
is defined as follows:

P@ys — Lqdle (4)
Pbusy - Pidle,

where the measured Pgie (U = 0) and Pyysy (U = 1) for our
test system are 42W and 84W, respectively. Different sys-
tems may have different idle and peak power consumptions.
The normalized measurement results are shown in Figure 4.

Generally speaking the server power consumption increases
as the CPU utilization grows. One important finding from
the measurement data is the so-called power capping be-
havior [12], which means there are only a few times that
the highest power consumption is reached by the server.
Additionally we find that such highest power points are
drawn mostly when the CPU utilization is higher than 80%
and they have very similar peak values. Most of the func-
tions, such as quadratic polynomial, power, exponential, and
Gaussian, cannot fit such flat curve of power values in the
high-utilization interval (see the quadratic fitting in Fig-
ure 4).

We developed a model that can fit such power-capping
behavior well. The model is inspired by the frequency re-
sponse curve of a linear filter called Butterworth filter [28].
It has such desired “flat” behavior in the passband of the
frequency. We replace the polynomial part of the transfer
function with the following customized power function with
two U components:

h(U) = ClUC2 + C3U04 + cs, (5)

Poorm =

where (c1, ..., ¢5) are the parameters to be fitted. The model
that relates normalized power (Pporm) and CPU utilization
U can be formulated as follows:

Prorm(U) =1—h(U)"" (6)

The fitting result is shown in Figure 4 and the fitted model
parameters are listed in Table 4. We can see that the pro-
posed power model fits the measurement data well, espe-
cially during the high utilization period. Given the mea-
surements for Pjgie and Pyysy, the overall system power con-
sumption Psys can be obtained by substituting Pporm (6) in

(4).
3.3 A Cost Model for Enterprise Applications

By combining the cost models for CPU and power con-
sumption in previous sections (equations (3), (4), and (6)),
we developed a cost model for business applications:

COSt(Tcore7 Ncore: U7 I) = (7)

pO + plccpu + p2 PSyS(U(t))dt7

tel
where t is the measurement time, [ is the measurement pe-
riod (¢t € I), po is an adjusting constant, p1, and p2 are the
weighting parameters that scale the individual model out-
puts. If during the measurement period only average uti-
lization is available, the output can be written as Psys(U)I.
The model in (7) uses an additive form to combine server
hardware costs and operational costs, in which parameters
p1 and p2 have to be set properly to reflect different cost
structures.

To summarize from a mathematical modeling perspective,
we can conclude that the power function (ci12°? +c¢3) and its
variants have attractive properties for fitting a wide range of
curves, including both single- and multi-variable case. Thus,
the power function family represents a general and flexible
modeling library from which different cost models can be
fitted and derived.

In practice when using the cost model for the optimization
of enterprise systems, we need to determine the weighting
parameters p; (fixed cost) and p2 (operational cost). These
parameters are chosen in a way to reflect the real numbers
obtained in case studies in [4]. There are two situations
under study in this paper. On one hand, for a typical “clas-
sical” data center the ratio of fixed cost versus operational
cost (r) is set to 7 : 3, which indicates that the high server
capital costs dominate overall TCO by 70%. For a mod-
ern commodity-based data center, on the other hand, the
ratio r is set to 3 : 7. This means operational costs includ-
ing power consumption and cooling become the dominating
factor. The cost model outputs of (7) for these two situ-
ations are illustrated in Figure 5, where differences can be
clearly identified. For instance, the total cost increases sig-
nificantly with the increasing system utilization for the high
operational cost situation (r = 3 : 7), which is not the case
for the high fixed cost counterpart(r = 7 : 3). We also ob-
serve that the discontinuity of cost model outputs along the
performance/core axis in the r = 3 : 7 situation. This is
because the settings of Pjjie and Pyysy take discrete values
like a piecewise constant function. The CPU performance
per core is divided into three ranges and the values of P4
and Py,sy are set accordingly. For instance, for a 2-core
system from low to high performance, P;g and Pyysy have
been set to [40, 60, 80] and [65, 95, 150], respectively. Such
settings are made in accordance to the CPU power consump-
tion characteristics on Intel platforms. In the r = 7 : 3 sit-
uation, however, such effects is dramatically reduced as the
operational cost is no longer dominant. We investigate both
situations in the optimization phase to see how different cost
structures impact the planning results.

4. MULTI-OBJECTIVE OPTIMIZATION

We adopt a multi-objective approach towards SLA-driven
planning of enterprise applications. A framework is intro-
duced for formulating the problem with multiple objectives
and describing the design paradigm. What lies in the core of
the framework is a multi-objective optimizer, and we apply
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Figure 5: Cost model structures: For a typical “classical” data center, the ratio of fixed cost versus operational
cost (r) is set to 7: 3. For a modern commodity-based data center, the ratio r is set to 3: 7.

a state-of-the-art evolutionary multi-objective optimization
(MOO) algorithm. We show how the performance and cost
models can be used in an optimization process of the plan-
ning phase.

4.1 A SLA-Driven Planning Framework

Firstly we present a framework for SLA-driven planning
and optimization, which is shown in Figure 6. The system
planner interacts with the planning tool via a dashboard-
based User Interface (UI). The planner starts with defining
the objectives, namely, system end-to-end response time and
infrastructure cost. In this case the problem is formulated
as a minimization problem: minimizing both response time
and cost. The planner then follows several main steps in the

lanning phase:
P 1. Degﬁlr)le Elefault constraints or extract them from the

customer SLAs. Such constraints are considered as
fixed constants in the optimization process, and they
are mostly related to the user workloads. For a closed
queueing network model used in this paper, the con-
straints of interest are number of users and think time.

2. Define parameters to be optimized. In the context of
this paper most of the parameters are configuration
parameters in the enterprise system landscape. These
include hardware resource specifications, namely, Re-
source Demand (D) and number of cores K. It also
includes application server configurations such as W,
number of WPs (dialog work processes).

3. Formulate the problem for optimization. The perfor-
mance and cost models developed in previous sections
can take configuration parameters as inputs and gener-
ate/predict performance and cost outputs. The utility
functions scale the model outputs as utilities for a uni-
fied representation of objective values. The decoder,
on the contrary, maps the encoded parameters into
model-specific formats.

4. Run the optimization and interpret the results. With
the set of “optimal” trade-off solutions obtained via op-
timization, the planner can make educated decisions
for planning the system landscape according to differ-

ent levels of SLAs.
The central component of the framework is an evolutionary

MOO algorithm called SMS-EMOA, which will be elabo-
rated in the next section. Here we give more explanations on
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Figure 6: A SLA-driven planning framework.

utility and encoding/decoding functions. Firstly, for scaling
the diverse objective values into unified utilities (e.g. [0, 1]),
we adopt Derringer’s individual desirability function [11]. In
case of a minimization problem, to which our problem be-
longs, the desirability value is increasing along with the value
of the objective, bounded by a maximum value. For the sake
of simplicity linear scaling is used in practice. Secondly, like
other evolutionary algorithms the configuration parameters
is encoded in the individuals as continuous double values.
The number of WPs is discretized by rounding up to the
closest small integer. The number of cores is encoded as a
double variable z € (0, 3), and is decoded by ftoor(z) (1, 2,
or 4 cores).

4.2 A Multi-Objective Optimizer

In the introduction of the planning framework the MOO
algorithm is treated as a black-box: iteratively evaluate the
objective values, generate new parameters, and hopefully af-
ter some generations (sub)optimal solutions could be found.
In this section we explain the rationale behind a true multi-
objective optimization and describe how a state-of-the-art
evolutionary MOO algorithm works.

Multi-objective optimization (MOQO) is the process of si-
multaneously optimizing two or more objectives. Most prob-



lems in nature have several, possibly conflicting, objectives.
In the context of this paper, for instance, we are aiming
at maximizing the system performance at the same time
minimizing the infrastructure cost. On one hand, common
ways of dealing with MOO problems include treating them
as single-objective by turning all but one objective into con-
straints, or combining multiple objectives into one. A MOO
algorithm, on the other hand, tries to find good compromises
(or trade-offs) rather than a single global optimum. There-
fore the notion of “optimum” in multi-objective optimization
changes accordingly, and the most commonly accepted term
is called Pareto optimum [10].

The concept of Pareto optimum and Pareto front are ex-
plained as follows. Given a parameter vector X € R", an
evaluation function f : X — Y evaluates the quality of the
solution by mapping the parameter vector to an objective
vector Y € R™. The comparison of two parameter vectors
x and x’ follows the well-known concept of Pareto domi-
nance. We say that an objective vector y dominates y’ (in
symbols y < y’), if and only if Vi € {1,...,m}: y; < y; and
y # y’. The set of non-dominated solutions of a set Y C R™
is defined as: Yy = {y € Y|Py’ € Y : y’ < y}. Given a
multi-objective optimization (minimization) problem

fi(x) — min, ..., fi(x) — min,x € X C R™, (8)
the image set Y'(.S) of this problem is defined as {y € R™|3x €
X : fi(x) =vy1,-.., fm(X) = ym}. The non-dominated set
of Y(X) is called Pareto front. In other words, the Pareto
front consists of a set of optimal solutions representing dif-
ferent trade-offs among the objectives. The knowledge of
Pareto front helps the decision maker in selecting the best
compromise solutions.

In order to approximate a continuous Pareto front that
typically consists of infinitely many points, we can compute
an approximation set that covers the Pareto front. In gen-
eral, an approzimation set is defined as a set of mutually
non-dominated solutions in Y (X). A common indicator for
the quality of an approximation set, measuring how well it
serves as a well-distributed and close approximation of the
Pareto front, is the hypervolume indicator (or: S-Metric) [6].
The problem of finding a well distributed approximation of
the Pareto front can be recasted as the problem of finding
an approximation set that maximizes the S-Metric.

Evolutionary algorithms possess several characteristics that
are naturally desirable as the search strategies for multi-
objective optimization [10]. Among other indicator-based
MOO algorithms, the S-Metric Selection Evolutionary Multi-
objective Optimization Algorithm (SMS-EMOA) approxi-
mates such S-Metric maximal approximation sets. The SMS-
EMOA algorithm implements a steady-state (u + 1) evolu-
tionary strategy: keep a population of p individuals, remove
one “bad” individual and add a new one in each generation.
SMS-EMOA can also be parallelized by distributing function
evaluations to different processors. We follow the algorith-
mic details for the hypervolume computation and variation
operators as described in [6], and integrated both sequen-
tial and parallel SMS-EMOA implementation in SLA-driven
planning.

5. EMPIRICAL EVALUATION

In previous sections, we have shown the experimental re-
sults for performance model validation and cost model deriva-

tion. In this section we present the simulation results of ap-
plying multi-objective optimization to SLA-driven planning.

We implemented the performance model using the Java
Modeling Tools (JMT) mentioned in Section 2.3. The cost
models and utility functions are implemented in Java. These
models evaluate the input parameters and feed objective val-
ues into the SMS-EMOA optimization engine (implemented
in C+4). On a 3 GHz dual-core Intel machine, a single
evaluation of our simulation-based performance model takes
around Tpery = 8 seconds. For the sequential version of the
optimization engine, the total run time is proportional to
the number of generations Nyen (Tiotal = TperfNgen). The
parallel version of optimization scales sub-linearly with the
number of processors, especially for relatively long model
evaluations. In the case 1000 generations it takes approxi-
mately 25 minutes on 4 processors.

51 SLA-Driven Planning

We conducted experiments to validate the MOO-based
approach and illustrate how to use the Pareto optimal so-
lutions (Pareto front) for SLA-driven system planning. The
questions of interests are listed and addressed as follows.

5.1.1 How does the proposed multi-objective opti-
mization approach work in practice?

Figure 7 shows the Pareto fronts attained by the SMS-
EMOA algorithm for different cost structures. Overall we
can see that the algorithm is able to find a well-balanced ap-
proximation set for the Pareto front. For r = 7 : 3 case (high
fixed cost) with 100 users, the relatively large gap between
response time R of 2 and 8 seconds is because that most
of the points in this region are dominated by the left-most
point. It means that most of the interesting decision points
reside in the left of R = 2 seconds, in a relatively light-
loaded situation (users = 100). When there are more users
in the system (users = 300), the decision points spread out
and cover the whole front evenly. Figure 8 further shows
the full history of an MOO run with 1000 generations for
the r = 7 : 3 case, with both dominant and non-dominant
solutions. By comparing the Pareto front and the full his-
tory in this case, it is reasonable to believe that the algo-
rithm is able to approximate closely with the true Pareto
front, and the final set of points are the optimal trade-off
solutions. Another attractive property we observe is the so-
called “kneeling” behavior. From the coverage of the design
space in Figure 8, it shows that the heuristic search strat-
egy of the algorithm is not only able to find a well-balanced
solution set, but also able to concentrate solutions around
the “knee” point. The knee point is located in the lower-left
part of the Pareto front, which represents the most inter-
esting trade-off solutions in the front. For r = 3 : 7 case
(high operational cost), on the other side, we are also able
to obtain a well-balanced Pareto front. However, the front
is clearly divided into multiple, discrete sets of points. This
is explainable by the cost model structure of the high opera-
tional cost case, as the power consumption has a piecewise-
like pattern with respect to the processor speed (see Figure
5). It becomes particularly interesting to interpret such re-
sults together with the parameters, which are discussed in
detail in the next section.

5.1.2 How can the attained Pareto front and param-
eters be used for decision making?
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Figure 7: Pareto fronts attained by MOO optimization with different cost structures.
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Figure 8: History of an MOO run showing both domi-

nant and non-dominant solutions.

Given a Pareto front, we now focus on how to use it for
planning and decision making. A system planner wants to
plan enterprise systems on the provider’s landscape accord-
ing to different customer SLAs, such as different workload
constraints (number of users) and performance guarantees
(response time R). The attained Pareto front enables the
planner to evaluate and explore different trade-off solutions,
and such solutions are the optimal compromises. For in-
stance, in the » = 7 : 3 case with 300 users shown in Figure
7, guaranteeing R = 1 or R = 2 seconds have quite some
differences in costs, so it makes sense to set different price
categories as well (e.g. bronze or silver). For a light-load
situation with 100 users, however, it is not necessary to
consider R = 2 second as a threshold because the service
provider can easily guarantee R = 1 second without much
increase in infrastructure costs. If the customer wants even
tighter bound on response time R < 1 second (e.g. gold),
the pricing should increase dramatically as the cost goes up
a lot. Using this example we can see that the interpretation
of the Pareto front (values and shapes) can greatly assist in
decision making in the SLA-driven planning process. One
a decision is made, the corresponding parameters (number
of cores, number of WPs, and resource demand D, shown
in Figure 9) can be readily used for system configuration.
Any decision taken from the front will be guaranteed to be
a Pareto-optimal solution. It is up to the planner to assess
the trade-offs for the service provider.

It becomes even more interesting when we examine the
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Figure 9: The solution space showing the Pareto-

optimal configuration parameters.

high operational cost case (r = 3 : 7). We can see that the
Pareto fronts are divided into discrete sets of points. Within
each set of points the costs remain relatively similar. There-
fore the boundaries between sets represent the interesting
points where decisions can be made. For instance, in the
case of 300 users, R = 0.3, R = 1.83 and R = 3.3 seconds
are appropriate threshold values for dividing the SLA offers
with three levels of pricing and response time guarantees
(e.g. gold, silver, and bronze). By cross-checking with the
parameters in the solution space, we are able to find the
corresponding patterns for configuring the system. For the
gold customer (R <= 0.3 seconds), the planner needs to
configure a “high-end dual-core” system (D = 80ms). For
the silver customer (R <= 1.83 seconds), a “middle-end
quad-core” system (D = 120ms) is need. And for the bronze
customer (R <= 3.3 seconds) it requires a “middle-end dual-
core” system (D = 120ms). Some margins will have to be
included in the actual settings, but it gives the general idea
of SLA-driven planning assisted by the Pareto front. For
the application server we modeled, a setting of number of
WPs> 20 (dialog work processes) should be good as the im-
provement in response time flattens out after the number of
work processes exceeds a certain threshold (say 20).

To sum up, The results provided by multi-objective op-
timization can be easily interpreted and offer intuitions on
important sizing questions such as how to map different SLA
classes (e.g., gold, silver, bronze) into actual system config-
urations. The proposed model-driven methodology is also



flexible and extensible: we can introduce additional param-
eters and objectives under different scenarios, which can be
readily plugged into the optimization framework.

Our approach has its limitations as well. We validated
the performance model and the cost model individually via
benchmarking. Assuming that both models can accurately
predict the targeted objectives, the simulation results show
the effectiveness of applying multi-objective optimization to
SLA-driven planning. In real-world deployment scenarios,
nevertheless, variations can occur and the service level ob-
jectives (SLOs) have to be calibrated accordingly. Our per-
formance model can predict the average system response
times under exponentially-distributed workloads. Real sys-
tems, however, could exhibit different levels of burstiness
and heavy-tail behavior. From a planning perspective some
additional system capacity has to be reserved to anticipate
unforeseen situations. We believe that good run-time tech-
niques can complement design-time methodologies, for in-
stance, by introducing penalties and adaptiveness [8].

6. RELATED WORK

We briefly discuss the related work on the topic of SLA-
aware service and system planning. As is shown in Sec-
tion 2 performance modeling has been extensively investi-
gated for system capacity planning and lots of literature are
available on this topic. Chen et al. [9] propose a multi-
station queueing network model for multi-tier Web appli-
cations. By utilizing the performance model they further
developed an approach to translate service level objectives
such as response time into system-level parameters. Our
work is different from theirs in the following aspects. Firstly,
they deal with both open and closed workloads for Web ap-
plications, and developed an approximate MVA solver for
handling multi-station queues and multi-class users. Our
performance model, however, is developed for transactional
business-critical applications. We developed a closed multi-
station queueing network with finite capacity regions that
is able to model additional factors (software threading level:
number of WPs in the application server). Solving the model
requires simulation in our approach, which is relatively slower

than analytic solvers. Secondly, they apply a (single-objective)

constraint satisfaction algorithm to derive system-level pa-
rameters from high-level constraints. We developed a cost
model in addition and adopt a multi-objective approach for
similar purposes.

Planning and optimization techniques have been studied
for web services composition. Zeng et al. [29] present an
approach for QoS-aware service selection for DAG-like (di-
rected acyclic graph) service composition. Multiple QoS
attributes are considered (e.g. price, latency, availability)
as selection criteria and a simple additive weighting (SAW)
method is used to add all weighted attributes into one rank-
ing score. Another way of combining attributes is Der-
ringer’s desirability function [11]. It scales the individual at-
tributes into desirabilities and combines them into one over-
all desirability using the geometric mean. For a similar web
services composition problem, Wada et al. [26] apply an evo-
lutionary multi-objective optimization technique for service
selection. They focus on the service level and assume that
objectives such as response time, throughput, and cost are
readily measurable entities. Our solution differs from theirs
in that we take a holistic approach and aim at mapping
service-level objectives into system-level parameters. There-

fore we have to explicitly model the system performance and
cost. Our multi-objective algorithm SMS-EMOA also has an
efficient parallel implementation. Multi-objective trade-off
analysis and design space exploration have also been applied
in other domains such as embedded systems and component-
based software [27].

7. CONCLUSIONSAND FUTURE WORK

In this paper we developed a performance model for the
ERP enterprise application and a cost model of hosting such
applications. The performance model is a closed queueing
network model with finite capacity regions (FCR), which is
able to predict the SAP ERP application performance and
is validated with empirical data. It is difficult in general
for modeling the TCO of an application hosting provider.
Our cost model is a simplified analytic model that quan-
tifies the server hardware cost and power consumption as
operational cost. The two cost factors can be scaled and
combined to reflect different datacenter cost structures. We
apply a multi-objective optimization technique to find the
best tradeoff solutions (i.e. Pareto front) for the perfor-
mance and cost goals. The attained Pareto front can be
utilized to assist decision making of SLA-driven planning,
and the corresponding parameters can be readily used for
configuring the provider’s system landscapes. With the as-
sumption of realistic performance and cost models, the bene-
fits of a multi-objective approach are clearly shown: instead
of reaching a global optimal point, a set of best tradeoff so-
lutions are provided to decision makers. They can explore
different performance targets and the cost/pricing strate-
gies, and the corresponding solutions are guaranteed to be
the optimal compromises.

In future work we plan to solve FCR models with non-
iterative approximations instead of simulations. We expect
that it will greatly reduce the computational times of per-
formance model evaluation, thus also the optimization pro-
gram. We also plan to map the Resource Demand D into
hardware configuration profiles, including both virtualized
and non-virtualized environments. A prototype SLA-driven
planning toolkit is being developed that implements the
framework described in this paper.
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