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In this paper we propose an automated system able to detect volume-based anomalies in network traffic
caused by Denial of Service (DoS) attacks. We designed a system with a two-stage architecture that
combines more traditional change point detection approaches (Adaptive Threshold and Cumulative Sum)
with a novel one based on the Continuous Wavelet Transform. The presented anomaly detection system
is able to achieve good results in terms of the trade-off between correct detections and false alarms,
estimation of anomaly duration, and ability to distinguish between subsequent anomalies. We test our
system using a set of publicly available attack-free traffic traces to which we superimpose anomaly profiles
obtained both as time series of known common behaviors and by generating traffic with real tools for DoS
attacks. Extensive test results show how the proposed system accurately detects a wide range of DoS
anomalies and how the performance indicators are affected by anomalies characteristics (i.e. amplitude
and duration). Moreover, we separately consider and evaluate some special test-cases.
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1. Introduction

There is a relatively long list of network events that can be considered anomalous
from the network operator point of view and that can be associated to variations
of the network traffic profile. On one side, there are user-generated events, which
can be malicious or not. In the first case different kinds of attacks are conducted by
one or more machines and are directed to, or traverse, the network under operation.
Some examples are Worms, Scans and Denial of Service (DoS) attacks. However,
it is possible that even a legitimate behavior of one of more users, under some spe-
cific conditions, could generate an event requiring the attention of network managers.
Flashcrowds are a notable example [27]. The posting on a heavily frequented news
site of the URL of a not very popular web page is a typical case that may cause
such a concentration of visitors in the same time period that the resulting amount
of link traffic would lead to unexpected network problems. On the other side, there
are anomalous events that are not generated by users, as outages, link failures and
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network device misconfigurations. The efficient operation and management of cur-
rent large networks depend heavily on the correct analysis of all these anomalies.
However, their accurate detection and classification in IP networks is still an open
issue due to the intrinsic complex nature of network traffic. Also because isolating
anomalous events within traffic is an inherently difficult task. For these reasons, the
design and evaluation of a variegate set of anomaly detection systems (ADS), based
on very different approaches and techniques, are currently the subject of many re-
search studies.

In particular, a lot of work has been concentrated on the detection of Denial of
Service attacks. The motivation behind this, is that these kinds of attacks are very
difficult to defend against, and they have caused (and still do) large economical
losses. A Denial of Service attack is typically based on the consumption of victim’s
resources (CPU, bandwidth, memory) to deny legitimate users access to network
services. Such attacks are often performed in a highly distributed fashion, making
an early and automated detection and the adoption of countermeasures extremely
difficult. Even the largest computer-industry companies and high-visibility Internet
e-commerce sites have notoriously been victims of Denial of Service attacks since at
least year 2000. However, it is known the vast majority of attacks are not publicized,
while they include a wide range of victims: from commercial sites, to educational
institutions and government organizations [24]. All these summing to considerable
damage and economical losses.

In this paper we propose a novel approach — tested in an offline fashion — to the
detection of anomalous network events focused on Denial of Service attacks, and
centered on the use of the continuous wavelet transform. Network traffic is analyzed
by looking at the packet rate signal, processed by a two-stage system that is able not
only to raise an alert in case of a detected attack, but also to report to the operator an
estimation of the time interval during which the anomaly was present. We evaluate
several properties of the proposed system, using a very large set of synthetically gen-
erated traffic profiles that reproduce different typologies of DoS attacks. Our first ob-
jective is to obtain a high percentage of correct detections (hits) with a small amount
of false alarms, and we also study the influence on such performance indicators of
the shape, the duration and the amplitude of anomalies. Moreover, we evaluate the
system capabilities in terms of the accuracy in the estimation of the anomaly time
interval, considering also the occurrence of special cases as close anomalies, puls-
ing attacks, etc. This capability of a network anomaly detection system represents
a novel aspect which has not been investigated much in past literature. The results
reported in this paper show that the proposed approach presents good performance
and interesting features that make it attractive.

The rest of the paper is organized as follows. We discuss related literature in Sec-
tion 2, commenting on the main differences with other detection approaches in which
the wavelet transform was specifically applied. In Section 3 we provide some back-
ground analytical information that justifies the techniques adopted. In Section 4 de-
tails on the system architecture and algorithms implemented are given. In Sections 5,
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6 and 7, we describe, respectively, the traffic traces and anomalies that have been
used for the experimental tests, the mother wavelet adopted in such computations,
and the detection results obtained in terms of performance. Finally, in Section 8§ we
draw conclusions and foresee future works.

2. Related works

In past literature, approaches of very different nature for the design of net-
work anomaly detection systems have been proposed. Techniques based on pattern-
matching algorithms, finite-state machine models, statistical analysis, and signal
processing have shown promising results. In this paper we focus on the last two ap-
proaches, which have brought a large amount of interesting literature. Some of these
works analyze the aggregate traffic volume on a network link, others consider differ-
ent flows carried on several links of an ISP, finally others restrict their focus to few
typologies of attacks by looking at the time series of specific kinds of packets inside
aggregate traffic (e.g. SYN packets). SNMP MIB variables from network devices
are another common source of data. A mathematical model based on exponential
smoothing and Holt—Winters forecasting was adopted in [4] for performing aberrant
behavior detection on time series stored by a network monitoring software. Standard
change point detection approaches as the Cumulative Sum algorithm (CUSUM) [25],
have been proposed in a lot of different works and they have been applied to different
typologies of time series [3,29,33]. In [29], the CUSUM algorithm and an adaptive
threshold algorithm were used to detect syn flooding attacks. The proposed system
analyzed the time series of the number of TCP SYN packets observed on a network
link within a specific time period. Syn flooding attack detection using a CUSUM-
based approach was proposed in [33] as well. In [3], instead, the authors propose
a multistage sequential procedure with batch processing within individual stages. It
represents the combination of a fixed-size batch detection and a sequential change
point detection technique. They call it Batch-Sequential method and apply it to the
detection of network Denial of Service attacks in general. In [31] an auto-regressive
(AR) process is used to model abrupt changes in network time series derived from
SNMP MIB variables stored in the devices of a network under observation. This
work is based on the assumption that in the event of an anomaly, abrupt changes
should propagate through the network, and they can be traced as correlated events
among the MIB variables of different nodes. This correlation property would allow
to discriminate the abrupt changes intrinsic to anomalous situations from the ran-
dom changes of the variables related to normal network operation. This approach is
verified in different contexts with various kinds of network anomalies.

Furthermore, very recent statistical approaches, instead of classical change-point
detection techniques, have investigated the adoption of alternative methods as prin-
cipal component analysis [17] or maximum entropy estimation [11].
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As regards approaches more related to the time-frequency domain, Cheng et al. [8]
propose the use of spectral analysis to identify legitimate TCP flows, which should
exhibit strong periodicity. This is proposed as a complementary approach to existing
DoS detection and defense mechanisms that identify attacks. The use of the Fourier
transform has also been proposed in [23] and [16]. However, in all these works the
focus is more on fingerprinting and on the recognition of different kinds of anomalies
once a candidate anomaly inside a specific time interval has already been identified.
In [23] the authors state that for strong transients in the attack fingerprint, since such
features are not well captured by a Fourier analysis, a wavelet transform was ini-
tially applied to the data. The very good time- and scale-localization abilities of the
wavelets, indeed, make them ideally suited to detect irregular traffic patterns in traf-
fic traces. For these reasons, in the past few years, we have seen the publication of
several works based on the wavelet transform, especially with approaches geared to-
wards automated detection and good time localization of the anomaly. In [2] Barford
et al. apply wavelet analysis and synthesis techniques to evaluate the signal of traffic
volume filtered only at certain scales, and a thresholding technique is used to detect
changes caused by events like outages, attacks and flashcrowds. The authors of [15]
show that network problems affecting dominant Round Trip Times can be detected
through the analysis of the energy function of the wavelet coefficients, obtained with
the discrete Haar wavelet transform, at the corresponding scales. In [20] the authors
exploit a property of the energy function calculated at a specific set of scales that
is related to some network misconfigurations; while, in [18], spikes in the energy
function of the wavelet coefficients are connected to DoS attacks.

In this work we propose an approach to network anomaly detection based on the
wavelet transform, which we tested against several kinds of DoS attacks. Such ap-
proach presents substantial differences with past works. Firstly, we make use of the
Continuous Wavelet Transform (CWT), exploiting its interpretation as the cross-
correlation function between the input signal and wavelets and its redundancy in
terms of available scales and coefficients. All the cited works, instead, are based on
the use of the Discrete Wavelet Transform (DWT), which is more oriented to the
decomposition of the signal over a finite set of scales, each one with a reduced num-
ber of coefficients, in order to make the original signal reconstructible from them.
This is typically done in a way that avoids redundancy. Secondly, our detection ap-
proach takes explicitly into account — beside hits and false alarms — the accuracy
in the estimation of the time interval during which the anomalous event happens and
the resolution (in terms of ability to distinguish between subsequent anomalies). In
the context of security incidents, these aspects can be crucially important, for exam-
ple, for tracing back the source of an attack, or during forensic analysis. Thirdly, we
propose a cascade architecture made of two different systems — the first one based
on classical ADS techniques for time series, the second one based on the analysis
of wavelet coefficients — which allows more flexibility and performance improve-
ments as regards the hits/false alarms trade-off. Finally, as fourth point, we present
an experimental analysis of the performance of the system under an extensive set
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(=15,000) of attack — traffic trace combinations. This paper represents an extension
of a preliminary work presented at [9]. Aside from extending discussions related
to the architecture proposed and related works, here, after a complete revision of
the framework and clarifications on several points regarding the analytical basis, we
present more details and experimental results.

3. An analytical basis

The Continuous Wavelet Transform (CWT) is defined as:
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f() is the signal under analysis, ¥(-) is a function of finite energy whose integral
over R is 0, called mother wavelet, and a and b are the scaling and translation factors
respectively (that are applied to the mother wavelet to obtain a scaled and translated
version ,p(t)). Each (a, b) pair furnishes a wavelet coefficient, which can also be
seen as the cross-correlation at lag b between f(t) and the mother wavelet function
dilated to scaling factor a. An important difference between the CWT and the DWT
is that the former calculates such correlation for each lag at every possible scale,
whereas the DWT calculates a number of coefficients that decreases with the scaling
factor. More precisely, the CWT differs from the more common DWT because the
same number of coefficients is always obtained at each scale, while in the DWT the
number of coefficients diminishes as the value of a increases. Moreover, the use of
the DWT is more focused to signal decomposition avoiding redundancy, whereas
the CWT can be easily interpreted as a cross-correlation function at several scales:
at each scale “a” we can see the series of the coefficients as b varies as the cross
correlation function between the signal and the mother wavelet (scaled by “a”) at
lag b.

The scale of the coefficients global maximum, is where the input signal is most
similar to the mother wavelet. This function is chosen to be oscillating but with a
fast decay from the center to its sides, in order to have good scale (frequency) and
time localization properties. This makes the CWT a good tool for analyzing transient
signals as network traffic time series. When the CWT is implemented as a numeric
algorithm, b can assume a number of values equal to the number of samples N of
the input signal and the scaling factor @ is expressed by a = 2(—J +m/M) | where J
is the octave, m is the voice index (0 < m < M), and M is the number of voices
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per octave. The number of octaves is given by J = [log, N] — 1, where the operator
[-] returns the nearest integer to its argument. The parameter j can vary between 2
and J + 2. M usually ranges between 0 and 12; the greater M is, the better is the
frequency resolution of the wavelet transform obtained.

In the study of wavelets and image processing, it has been proven that the local
maxima of a wavelet transform can detect the location of irregular structures in the
input signal [21]. According to this, by applying the CWT to network traffic time
series, here we propose to use the property of detecting the location of an irregular
structure as the indication of an abrupt change in the traffic time series and, therefore,
as an indication of an abnormal event.

Let us consider a smoothing function 6(t), that is the impulsive response of a low-
pass filter, such that 8(¢t) = O(1/(1 + t?)) and whose integral is not zero (e.g. the
Gaussian function). Given ,4(t) = (1/a)0(t/a), let f(t) be a real square-summable
(over R) function. The edges of f(¢) at scale a can be defined as the points of rapid
local changes of f(t) filtered by 6,(¢).

Given two mother wavelets defined as:

1 40 5, d20)
Y = m and Y1) = TR (3)
the corresponding CWTs are:
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Substituting in (4), we obtain:
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Thus, fCIWT(a, t) and féWT(a, t) are proportional to the first-order and second-order
f(t) derivative respectively, filtered by 6,(t). Such properties are obviously main-
tained by derivatives of greater order. It follows that, for a fixed scale a, the local
extrema of fCIWT(a, t) along ¢ correspond to the zero-crossings of féWT(a, t) and to
the inflection points of f * 6,(t). Thus, using the derivative of a smoothing function
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as a mother wavelet (e.g., derivatives of the Gaussian function), the zero-crossings or
the local extrema of the wavelet transform applied to a signal indicate the locations
of its sharp variation points and singularities. The CWT coefficient redundancy, al-
lows to identify these points at every scale with the same time-resolution of the input
signal.

4. The cascade architecture

In Fig. 1 a block diagram representing the two-stage architecture of the proposed
ADS is shown. The ADS takes as input a time series of samples representing the
packet rate and outputs an ON—OFF signal reporting the presence of an anomaly for
each sample. The first stage, which we called rough detection, can be implemented
using statistical anomaly detection techniques previously presented in literature, and
it is just responsible to detect any suspicious change in the traffic trend and to report
an alarm to the second stage. Its output is equal to O or 1 for each input sample.
Here we impose a high sensitivity aiming at catching as much anomalies as possible,
whereas the second stage, which we called fine detection, is designed to reduce the
number of false alarms. For each detected anomaly, this stage also estimates the time
interval during which it is present.

Before going into the details of each component of the proposed architecture, to
provide a first look at the entire system we point the attention of the reader to Fig. 2,
anticipating some of the concepts that will be explained in the next sections of the
paper. Figure 2 shows a test on a sample attack-free trace from Darpa 1 dataset
(see description of Table 1), to which we superimposed the profile of a TCP ACK
flood anomaly. The anomaly profile, which is highlighted by a frame in the upper
diagram, starts from sample 1800, is of 200 samples length, and has been scaled so
that its maximum peak is equal to 1.5 times the root mean square of the attack-free
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Fig. 1. Anomaly detection system: proposed architecture.
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Fig. 2. Exemplifying test on a single trace (Darpa 1 with StachelDraht TCP ACK flood): anomaly correctly
detected.

Table 1
Traffic traces

Data set Year Ts (s) # Traces Mean Std
Darpa 1 1999 2 80 pkt 90 pkt
Darpa 2 1999 5 5 20 pkt 40 pkt
Darpa 3 1999 5 5 12 pkt 30 pkt
UCLA 2001 2 4 20 pkt 15 pkt
UNINA 2004 2 3 8 10E3 pkt 1.3 10E3 pkt

trace (refer to Section 7). The output of the first stage, the rough detection module, is
shown in the diagram in the middle. Here, an adaptive threshold algorithm has been
used for this module. Whereas the diagram at the bottom of the figure shows the final
output of the system (the output of the fine detection module).

Following the definitions which will be given in the next sections, the output pa-
rameters of an automated run of this sample test are the following:

test_result = 1 (the test was successful: the anomaly has been detected);

FP = 0 (there have not been false positives);

FN = 0 (there have not been false negatives);

left_lag = +12 (the begin of the anomaly has been estimated with a delay of
12 samples);

right_lag = O (the end of the anomaly has been estimated correctly);

e fragments = 1 (the detection of the anomaly led to a single alarm, that is the
anomaly interval estimated is only one, no fragments).
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4.1. First stage: Rough detection

As for the rough detection module, we adopted the two alternative techniques
proposed in [29] to detect SYN flooding attacks (an adaptive threshold algorithm
and the CUSUM algorithm) and we applied them to generic traffic traces. A similar
implementation of the CUSUM algorithm has also been proposed in [3] to detect
different DoS attacks. The system proposed in [29] analyzed the time series of sam-
ples representing the number of TCP SYN packets observed on a network link. Such
algorithms can be applied in the same way to time series representing the number of
IP packets observed on a link, as we do in our approach.

The adaptive threshold (AT) algorithm generates an alarm when the value of a
sample is greater than a threshold that adaptively changes with the traffic trend. Such
threshold is adaptive, indeed it changes depending on recent measures. This is good
because of the typical high non-stationarity of network traffic. Let x;, be the number
of packets during the nth time interval and let fi,,_ be the mean rate estimated from
measurements prior to n, an alarm at time n is signaled if:

n

Z 2>+ D11 2 K> 9
i=n—k-+1

where « determines the threshold sensitivity, and 1>, is equal to 1 if z > y,
to 0 otherwise. The average value [iy, is calculated using the Exponentially Weighted
Moving Average (EWMA) on the previous estimates:

fin = Bin—1 + (1 = Bzn, (10)

where 3 is the EWMA factor. The configurable parameters of the algorithm are: «,
3 and k.

The CUSUM algorithm is based on the change-point detection theory, and uses
the log-likelihood ratio:

n
Sn =) si, (11)
i=1
where s; = In Po, (9:) and {y;} are random variables. The 6y and #; hypotheses

Doy (Yi)
represent the statisotical distributions prior and after a change respectively. The log-
likelihood ratio guarantees a negative drift before a change and a positive drift
after the change. Therefore, let my = min|¢j<, Sj, an alarm is signaled when
gn = Sn —my, = h, where h represents the threshold. After some calculations [29],
an expression of g, based on the mean and variance of 6y and ; can be derived (we
assume the two distributions have different mean, p; and pu», respectively, but same



954 A. Dainotti et al. / A cascade architecture for DoS attacks detection

variance o). However, {y; } are assumed as independent Gaussian variables. Because
this is generally not true for network traffic, algorithms to remove trends and time
correlations should be applied to the input signal. A common and simpler approach
is to subtract from the considered time series its EWMA. We therefore apply the
CUSUM algorithm to ,, = xp, — fin—1, Where x,, is the number of packets in the
nth time interval and fi,, is an estimate of the mean rate at time n (calculated using
the same EWMA as in the adaptive threshold algorithm). Taking into account that
the mean value of &, prior to a change is 0, and approximating the mean traffic rate
after the change with aji,, g, can be expressed as:

- - +
Ofly—1 _ Afin—1
gn = |gn-1+ =% +<xn—un_1—“%)] : (12)

The algorithm configurable parameters are: «, 3 and h.
4.2. Second stage: Fine detection

The CWT computing block (Fig. 1) computes the continuous wavelet transform of
the whole input signal. We used the Wavelab [14] set of routines under the Matlab
environment. The block output is a matrix W of M rows and N columns, where N
is the number of samples of the input trace. Each row reports the wavelet coefficients
at a different scale. The number of available scales M is given by the number of
octaves, J = [log, N]— 1 times the number of voices per octave. The CWT function
implemented under Wavelab allowed us to work with 12 voices per octave (this to
obtain a good frequency resolution). This matrix is fed as an input to the Detection-F
block, which receives as inputs also a threshold level (that will be explained in the
following) and the Rough Detection Signal. For each alert reported in the Rough
Detection Signal, the Detection-F block operates as follows:

e In the column of W that corresponds to the instant of the alert, the maximum
value is found. The row index j; of this value represents a first estimate of the
scale at which the anomaly is present.

e Looking at all the coefficients at the scale j;, the zero-crossings (starting from
the left and right of the maximum value) are determined. Their distance repre-
sents a first estimation of the anomaly interval.

e A sub-matrix of W, obtained by considering only the columns related to this
interval, is used for a new search. In this sub-matrix, a new maximum coefficient
is found. The index j, of its row represents the final estimated scale.

e An anomaly is found if the maximum coefficient results greater than the thresh-
old level. Otherwise the rough detection alarm is ignored and no other opera-
tions need to be performed.

o The final estimation of the anomaly interval is made by looking at the coeffi-
cients at the scale j,. Again, the interval boundaries are identified by searching
for the zero-crossings at the left and right of the maximum value.
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Fig. 3. Threshold calculation block.

Basically, starting from the alert of the rough detection stage, we look for the scale
at which the coefficients reach the maximum variation. The use of the CWT guar-
antees that we have a coefficient for each input sample at every scale — differently
from the DWT, where typically the number of coefficients decreases as the scale
grows. This way, if an anomaly is recognized, we can identify with good precision
the zero-crossing points of the wavelet coefficients at the scale where the anomaly is
present.

The choice of the threshold level for the wavelet coefficients (Threshold Calcula-
tion block) is based on the mean and standard deviation of the traffic trace (Signal
Analysis block) and on the Library of Anomalies, which is a collection of signals
representing some traffic anomalies (see Section 5.2). Inside the Threshold Calcula-
tion block (Fig. 3), in the sub-block named Library Scaling, all the anomaly signals
are scaled to a maximum peak value of pmax. This value is given by the standard
deviation of the input trace multiplied by a factor, for which we have chosen three
possible values corresponding to different ranges of the mean/standard deviation
ratio of the input trace. This is because we want to make the threshold calculation
adaptive with respect to the trace characteristics. After that all the anomalies have
been scaled, for each anomaly & in the library the CWT of the scaled anomaly signal
is computed, and the maximum mj, among all the coefficients is found. Finally, the
threshold is obtained as min(my,), that is the smallest of the maximum coefficients
of each anomaly.

5. Traffic traces and anomalies

To study and develop our ADS, we made several experiments under a broad range
of situations. Our approach was to generate traffic signals by superimposing anom-
aly profiles to real traffic traces in which no anomalies were present, an approach
commonly used in literature [5,10,29]. This choice is partly due to the scarce avail-
ability of traffic traces containing classified anomalies along with all the necessary
details. For example, the lack of information on the exact beginning and end of each
anomaly would not allow us to evaluate the temporal precision of the detection sys-
tem. On the other hand, being able to generate different traces containing anomalies
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allowed us to dispose of much more test cases than those practically obtainable by
capturing real traffic traces with real anomalies. In the following subsections we give
some details on the data we used.

5.1. Traces

We considered real traffic traces that were known not to contain any anomalies,
obtaining a large and heterogeneous set of traces. In Table 1 the data sets we used
are summarized. The first three groups of traces in Table 1 were derived from the
DARPA/MIT Lincoln Laboratory off-line intrusion detection evaluation data set
[19], which has been widely used for testing intrusion detection systems and has
been referred in many papers (e.g. [28,32]). We used only traces from the weeks in
which no attacks were present. The dataset marked in Table 1 as UCLA refers to
packet traces collected during August 2001 at the border router of Computer Science
Department of University of California Los Angeles [12]. They have been collected
in the context of the D-WARD project [22]. Finally, the UNINA data set refers to
traffic traces we captured by passively monitoring ingoing traffic at the WAN access
router at University of Napoli “Federico I1I”. We make the time series representing
the sampled packet rate publicly available at [13]. Table 1 contains details about the
data sets, as the number of traces for each group and the sampling period T used
to calculate the packet rate time series. Also, indicative values of mean and standard
deviation (std) for the traces of the same set are shown. All traces are composed of
3600 samples.

5.2. Anomalies

Anomalies in network traffic can be of different nature and can be originated by
different kinds of events. It is possible to distinguish among network performance
problems and failures (temporary or permanent problems on nodes or links), non-
malicious but unordinary events (e.g. flashcrowds) and malicious events (e.g. DoS
attacks). These events tend to determine an abrupt change in the time series repre-
senting the traffic rate. In this work, several kinds of anomaly profiles related to DoS
attacks have been synthetically generated. We assigned labels to each anomaly we
used (see Table 2 for the complete list, and Fig. 4 for understanding the envelopes of
some of them). Some anomaly profiles were obtained by generating traffic with real

Table 2
Tested anomalies

Tools Matlab TFN2K Stacheldraht

Anomalies Constant rate, ICMP Ping flood, TCP ACK flood, TCP ACK NUL flood, TCP
increasing rate, TCP SYN flood, random header attach, Mstream (TCP DUP
decreasing rate UDP flood, mix ACK), DOS flood, mass ICMP bombing, IP

flood, Targa3 flood header attack, SYN flood, UDP flood
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Fig. 4. Packet rate profiles of some of the anomalies used.
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DoS attack tools, TFN2K [6] and Stacheldraht [7]. Both tools can be configured to
perform DoS attacks using several known techniques. We launched such tools with
several different options and we captured the traffic generated by them. The anom-
aly profiles obtained were stored and labeled depending on the adopted attacking
technique. Another group of anomalies have been obtained by synthetically gener-
ating the corresponding time series with Matlab, according to known profiles that
were considered in [34]. We considered ‘Constant Rate’, ‘Increasing Rate’ and ‘De-
creasing Rate’ anomalies. Even if in this paper we focus our attention only on DoS
attacks, it is worth noticing that the envelope of some of the considered anomalies
due to DoS attacks may be also observed in other kind of anomalies (e.g., due to
worms, misconfigurations, flashcrowds, links failures, . . .).

6. Fine detection block: Choice of the mother wavelet

According to the description given in Section 3, it is clear the central role of the
selected mother wavelet. After several trials, in our tests we computed the CWT
using the Morlet mother wavelet (see Fig. 5), which has the following expression:

1 . 2
_ T L —jwot,—t /2. 1
ve) T © (13

The Morlet mother wavelet is one of the most used in signal processing because of its
good properties as symmetry and a narrow and rapidly decreasing central lobe. Usu-
ally wg = 5 is chosen, to have the second lobe half of the first one. Such properties
translate into good time and scale localization capabilities.

We found a strong similarity with even-order derivatives of a Gaussian, for which
there is a strong analytical basis for their use in the field of singularity detection

-1

Fig. 5. Real Morlet Mother wavelet (wg = 5).
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(see Section 3). We verified such similarities also by calculating the cross-correlation
function between the coefficients of the wavelet transform of the tested anomalies us-
ing even-order Gaussian derivatives and Morlet mother wavelets. We found a cross-
correlation value of 0.96 between coefficients obtained with the 24th order Gaussian
derivative and the Morlet mother wavelet with wy = 5. Experimental tests with even-
order derivatives of the Gaussian function of smaller orders — e.g., the Mexican Hat
mother wavelet [1] which is the 2nd order derivative — showed a remarkable loss
of accuracy in finding the start and the end of each anomaly. As regards odd-order
derivatives, we did not take them into account because singularity detection using
odd-order derivatives of a smoothing function is based on the identification of local
maxima (see Section 3). A search for local maxima is more difficult to implement
rather than a search for zero-crossing points, which is the case for even-order deriv-
atives.

7. Experimental results

The experimental results shown in the following have been obtained by perform-
ing a large set of automated tests. The results have been summarized and the follow-
ing performance metrics have been calculated:

1. The hit rate, HR = ™ber of test hits 1))

number tests

. __ number of false alarms .
2. The false alarms ratio, FAR = total mimber of alarms < 100;
3. The estimation errors in the identification of the beginning and the end of the
anomaly;

4. The number of fragments when a single anomaly is recognized as several ones.

Our scripts generated traces containing anomalies with various combinations of
parameters and ran the ADS on each of them. In order to test the ADS under more
complicated situations (i.e. obfuscating the anomalies in the traces), when a trace
and an anomaly profile are selected, the amplitude and the duration of the signal
representing the anomaly are modified. Then the signal is superimposed to the traffic
trace at a randomly selected point —at 1/4, 1/2 or 3/4 of the trace — and the detection
system is executed. For a specific trace, the amplitude of an anomaly was scaled in
order to make its maximum peak proportional to the root mean square of the original
traffic trace. The choice of the proportionality factor varies from 0.5 to 2.00 with a
step of 0.25. Anomaly durations range from 50 to 300 samples with a step of 50.
Sampling and interpolation of the anomaly profiles were performed for expansion
and shortening respectively. Thus we performed a number of tests given by the prod-
uct (traces x anomalies X intensities X durations). With 22 traces and 16 anomalies,
we performed about 15,000 tests, each time we tested a system configuration (i.e.
with CUSUM, with AT).
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7.1. Hit rate (HR) and false alarm ratio (FAR)

In Table 3 we show the system performance, in terms of HR and FAR, when the
rough detection block is implemented with AT and CUSUM algorithms. We report
results obtained separately for each of the 5 trace data sets, and in the last row,
we show global results obtained working with all the traces. The columns labeled
FD(AT) and FD(CUSUM) report performance indicators derived from the output
of the fine detection stage when the rough detection stage are AT and CUSUM, re-
spectively. Instead, the performance results related only to the output of the rough
detection stages are reported in columns labeled with RD(AT) and RD(CUSUM).
This is to show how we tuned the rough detection stage with a very high sensitivity
in order to catch as much anomalies as possible at the expense of a high FAR. We
tuned the «, 3, and k (% in the case of the CUSUM algorithm) accordingly. For all
the traces J was set to 0.98, k to 4 or 5; h was set to 5 except for UCLA and UNINA
traces, where h = 12 and h = 15 were respectively chosen; the o parameter was
chosen with values between 0.1 and 0.4 depending on the traces.

Passing from the rough detection output to the fine detection output, while HR
remains almost the same, FAR decreases dramatically. This happens for all the sets
of traces, and for both AT and CUSUM, and it represents one of the most important
features of the proposed ADS.

In order to sketch a comparison between the proposed two-stage ADS and AT
or CUSUM used as standalone algorithms, in the columns labeled as AT-sa and
CUSUM-sa we show how they perform in terms of HR when tuned with approx-
imately the same FAR of the proposed ADS. We see that, in the case of AT, the
introduction of the second stage, improves HR of about 10% for 3 out of 5 trace sets,
as for AT, while for CUSUM the improvements range from about 12%, for the fifth
trace set, to almost 50%, for the first one.

In Fig. 6 we show how HR and FAR are influenced by the relative amplitude (left
figures) and the duration (right) of the anomalies. Top and bottom figures refer to
the system with AT and CUSUM rough detection, respectively. We evaluated perfor-
mance separately for each anomaly profile. We observed that the increasing rate and
decreasing rate anomalies are more difficult to be detected, compared to the other

Table 3
HR/FAR trade-off results
Dataset RD(AT) FD(AT) RD(CUSUM)  FD(CUSUM) AT-sa CUSUM-sa

HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR
Darpal 959 728 895 349 840 68.6 82.4 1.56 79.0 353 351 6.7
Darpa2 937 682 849 380 857 83.6 848 389 74.1 364 494 326
Darpa3 92.1 81.1 83.8 50.1 883 779 84.7  28.1 71.6 51.0 627 250
UCLA 909 177 86.0 140 915 89.6 86.2 3938 857 158 563 444
UNINA 996 69.7 980 74 996 773 98.0 121 864 7.0 78.6 13.1

All 942 709 87.7 341 837 862 863 272 794 331 492 339
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anomalies. However, it is interesting to note that the curves related to all the anomaly
profiles follow approximately the same trends. The relative amplitude has more in-
fluence on HR and FAR than the anomaly duration. But, when the anomaly amplitude
is tuned for peak values greater than the RMS of the trace (relative amplitude > 1)
HR does not increase anymore. A similar behavior happens for FAR in the AT case,
while as for the CUSUM implementation FAR tends to slowly decrease even after
the relative amplitude is higher than 1. As regards the anomaly duration, while FAR
always decreases when the anomaly lasts longer, HR inverts this trend after a certain
duration. This behavior is accentuated in the CUSUM case.

7.2. Accuracy in the detection of the anomaly time interval

The diagrams in Fig. 7 show the percentage of correct estimates of the start and
the end time of the anomalies, when the width of the confidence interval (expressed
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in number of samples) increases. We consider the estimate to be correct when the
start/end time falls into the confidence interval. For a confidence interval of 30 sam-
ples, 70% of the start and end times are correctly identified. In general, we note a
slightly better performance in the estimation of the start time compared to the end
time. We also evaluated when the system did not correctly estimate the anomaly du-
ration because the anomaly was recognized as several different anomalous events.
This occurred rarely: for only 4.62% of the detections with the AT rough detection
block, and 1.62% with CUSUM.

7.3. Resolution

With the term resolution we mean the minimum distance at which two anomalous
events can be placed for the system to detect them as distinct anomalies. We made
several tests by superimposing two anomalies to the same trace. We varied their dis-
tance, duration and amplitude. The system seems to perform very well, detecting two
separate anomalies even at small distances. In Fig. 8 we show two examples. In the
top diagrams, we used a trace from the DARPA 2 set, to which we superimposed an
UDP flood and an IP header attack at the distance of 5 samples. The rough detection
block here is implemented using the AT algorithm. In the bottom diagrams a con-
stant rate anomaly and a stacheldracht TCP ACK flood at the distance of 1 sample
have been correctly detected (with a CUSUM rough detection) when they were su-
perimposed to a trace from the DARPA 1 set. In both cases it can be seen how the
system correctly identifies two distinct anomalies, whereas the rough detection stage
fails to make this distinction: in the first test, the AT block reports several alerts all
at the same distance, while in the second test the CUSUM block reports a series of
alerts from the start of the first attack to the end of the second one (plus a false alert
nearby).

These results, along with those related to fragmentation and accuracy in the pre-
vious subsection, show that the proposed ADS is reliable also in the identification of
anomalies intervals. Such feature is even not considered by most of the other ADSs,
which only report an alarm for each input sample that is recognized as anomalous
(e.g. see the fragmented alerts from the AT rough detection stage in top Fig. 8).

7.4. Detection of pulsing attacks

Pulsing attacks represent a special case of Denial of Service attacks. They usually
are used to cause a significant reduction of quality (RoQ attack) of a network service
while trying to pass undetected because of their specific profile [26]. In a pulsing
attack a single attacking node sends to the victim packets with a certain time period.
The packet rate is not very high, so that the average value of the traffic generated
can deceive common volume-based detection systems, but the peaks are still high
enough that their succession will cause a service disruption. We separately tested
the ability of the proposed anomaly detection system to properly detect this special
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Fig. 8. ADS resolution: two examples.

typology of attacks by identifying the single pulses without being confused by their
rapid succession and thus allowing a correct analysis of the attack. Figure 9 shows an
example in which a pulsing attack is superimposed to a Darpa 1 trace and the rough
detection module is the AT. We found that the system is able to correctly recognize
all pulses and to accurately identify starting and ending sample points of each of
them.

7.5. Considerations on computational constraints for an “online” implementation

To study and evaluate the proposed technique, in this paper we implemented a
prototype of the algorithm, under the Matlab environment, working in a offline mode.
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In other words our implementation works with a full trace of a limited size and
analyzes it ex post. Even if this working mode may be used for a real-world practical
implementation, for example by executing the algorithm each x hours or on a daily
basis, an important application of this technique would be to see it implemented in
a online version. That is, a version of our technique able to continuously monitor
network links and rapidly raise automatic alerts when anomalous events occur. Even
if considering and evaluating an online implementation of the proposed technique
falls out of the scope of the present paper, in this section, to allow a more complete
evaluation of the new approach here proposed, we report qualitative information
useful to understand under which conditions an online implementation would be
feasible. These are mostly bound to the computational load associated to the different
blocks composing the architecture.

Firstly, it is important to understand that implementing an online version of the al-
gorithm of our detection technique would require slight modifications to the specific
architecture presented here. Indeed, while the rough detection stages (both AT or
CUSUM) are natively conceived as online algorithms (they can be run for each new
sample) the operations of the second stage are designed to be applied to an interval,
that is, a set of samples. A possible implementation in an online fashion would be to
use a sliding window of time t,, over which the algorithms of the second stage could
be run. Considering a sampling period for the packet rate signal equal to 7" we have
a window of ¢y, /T samples that may slide for each sample. The arrival of each new
input sample would cause the calculation of the first stage, plus the sliding of the
samples window of 1 step, and the calculations of the second stage applied to this
window.
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Moreover, it is to be considered that some calculations of the second stage do not
need to be run each time the window slides. This is the case of the CWT computation
of the anomaly library. This operation can be done only once. This way the calcu-
lation of the threshold for the fine detection stage would require only few simple
operations.

Under these conditions, a design requirement would be that the total time for the
overall (first plus second stage) algorithm execution, each time a new input sample
arrives, should be less than the sampling period 7'. The total computation time thus
poses a constraint on the minimum sampling time to be used, a parameter related
to the responsiveness of the online anomaly detection system. If we call ¢y, ¢, t3,
t4 the times necessary to respectively execute the rough detection stage, the CWT
computation of the current window, the detection-F block, and the signal analysis
plus threshold calculation blocks, then we have ¢ + t, + 3 + t4 < T'. Where only
t, and t4 are functions of the window size t,, /7", and ¢, represents by far the highest
computational cost.

In our prototype implementation under Matlab, running on a machine equipped
with a Pentium 4 3.6 GHz, we verified that: ¢; is less 10 ps, t3 is about 0.01 s,
whereas, for a 3600 samples window, ¢, is around 0.15 s, and 4 (considering the
modified version cited above) is 0.02 s. These values show that the most intensive
operation is the CWT computation of the current window. However, even in our
prototype implementation the times observed are small enough to allow a sampling
period of 1 second when a sliding window of 3600 samples (i.e. 1 hour) is considered.
Moreover, an implementation for a production environment would be written in a
more performing language or it would make use of dedicated hardware (e.g., ASICs
or FPGAs), achieving much lower computation times.

8. Discussion and conclusion

This paper proposed a cascade architecture, working in an offline fashion and
mainly based on the Continuous Wavelet Transform, to detect volume-based net-
work anomalies caused by DoS attacks. We showed how the proposed schema is
able to improve the trade-off existing between HR and FAR, and at the same time to
provide insights on anomaly duration, by estimating starting and ending time inter-
vals. Testing the proposed approach showed good results also under special cases as
in the presence of subsequent close anomalies and with pulsing attacks. Our current
work is focused on investigating several improvements, additions, and evaluating
more properties under different conditions. E.g. extending the considered network
anomalies to not only Denial of Service attacks, and evaluating our detection tech-
nique “on the field”, testing it in a real network environment.

As for the rough-detection stage we are working both on testing other algorithms
as well as trying to redesign the whole system to work without a first stage. We are
also considering multi-channel change point detection approaches where the input is
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split into several series, e.g. by separately considering the rate of packets of different
nature (e.g., by transport protocol, by packet size, etc.), as proposed in [30]. Regard-
ing the fine-detection stage we are working on more sophisticated approaches for the
final detection decision, using correlation among wavelet coefficients and also try-
ing to use this information for anomaly classification purposes. Moreover, we plan
to further investigate and stress the ability of the system to work on the detection
of anomalies at very different time scales. This would also allow to infer properties
useful for the classification of the detected network anomalies.
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