
Abstract

This work presents the motivation, basic concepts,
and requirements for benchmarking a Network-on-
Chip (NoC). Currently there is practically no bench-
mark sets for NoC or the presented tools do not meet
the requirements. The presented benchmarking method
utilizes traffic generator with a dataflow models of the
applications. Combined with transaction-level NoC, the
abstract application model allows approximately 200x
speedup and on average 10% error in estimated runtime
w.r.t. cycle-accurate HW/SW co-simulation without
exposing the exact internal functionality of the applica-
tion.

1. Introduction

Common benchmarks allow fair performance compar-
ison. Traditionally, benchmarks have measured the per-
formance of CPU and/or its compiler but nowadays they
are used in many areas of system design, for example,
CAD (computer-aided design) tools and Network-on-
Chip (NoC). There are three basic benchmark categories:
synthetic, actual applications, and algorithm-based (or
derived) benchmarks. Synthetic benchmarks, e.g. Dhrys-
tone [1] and Whetstone [2], abstract out the functional
details. For example, they execute instructions according
to an artificial distribution or the one measured from a
real life program. They are intended to debugging and
isolating certain functionality and hence they tend to be
small in size. Application benchmarks, on the other hand,
are functionally accurate tests that use system or user
level applications for testing. An algorithm-based bench-
mark includes only the kernel of the real algorithm but
not the full application [1].

Applications give the best accuracy but are harder to
port to different systems, require standardized input data,
and their simulation is usually slower than other types of
benchmarks. In addition, many companies and institu-
tions are not willing to contribute new test cases in the
form of source codes. Small benchmarks, on the other
hand, require only minimal resources so they can be
widely adopted, but their expressiveness is limited and
they tend to become obsolete as technology evolves. Fur-
thermore, they may be easily tricked to achieve good
results, for example, with some special compiler options.

A scalable benchmark can obtain a superset of the infor-
mation given by any particular fixed size benchmark and,
hence, remains valid for longer time [3]. Pseudo-random
graphs have been used for allocation and scheduling
research. However, it is important to ensure that graphs
are reproducible by other researchers to allow compari-
son [4]. Sometimes, however, it may be hard to prove that
artificial cases represent properties of any known applica-
tion.

So far, most of the NoC studies regard only implemen-
tation related issues, such as area and power, or anecdotal
performance values. Furthermore, the researchers tend to
use their own, proprietary test cases, which complicates
comparison between research projects. Therefore, a com-
mon benchmark set is required also for NoC evaluation to
allow fair and thorough comparison of different
approaches.

In Section 2, we introduce the goals and methods for
NoC benchmarking. Furthermore, we present some com-
mon requirements and an approach for meeting them. An
exemplar application set is presented in Section 3.
Finally, the concluding remarks are given.

2. Benchmarking Network-on-Chips

Network-on-Chips are often utilized in embedded sys-
tems with multiple processing elements (both CPUs and
HW accelerators) and, hence, the traditional single-CPU
benchmarks are not applicable. Unfortunately, also the
multiprocessor benchmarks may be unsuitable. SPEC
OMP2001 [5], for example, requires 8 GB memory and
UNIX or Windows operating system. Therefore, new
benchmarks specializing in Network-on-Chip domain are
needed.

According to our experience in NoC design and analy-
sis, we have identified the following requirements for
NoC benchmark set:

• Open - to allow comparison and wide adoption.
• High accuracy both in timing and the amount of

data.
• Several test cases and scalable workload - to gener-

alize the results and to estimate future application
requirements.

• Modularity - several applications can be combined
to model heterogeneous behavior.

Erno Salminen1, Tero Kangas1, Jouni Riihimäki2 and Timo D. Hämäläinen1

1Tampere University of Technology
P.O. Box 553, FI-33101, Tampere, Finland

erno.salminen@tut.fi
2Nokia Technology Platforms

P.O. Box 88, FI-33721, Tampere, Finland

Requirements for Network-on-Chip Benchmarking

• Expandable - researchers can contribute new test
cases easily to keep the set up-to-date.

• Standard interface - to allow wide portability.
• Fast to simulate - to allow design space exploration.
• Measures several performance factors - see next

subsection.
• Detects corrupted, duplicated, and missing data -

benchmark set is also a NoC testbench.
• Allows various components allocations and appli-

cation mappings - optimal allocation-mapping pair
depends heavily on topology and other NoC param-
eters. This measures also the performance of NoC
design tools which have a profound impact on sys-
tem performance.

A. Required results of benchmarking

Many different types of metrics must be defined in
addition to application runtime which is the most obvi-
ous. Furthermore, the performance reports must explicitly
state which test case was used and whether the perform-
ance values are given for the best, average, or worst case.
The standard deviation of values is also of great concern.

There are three basic quantities: throughput, latency,
and fault tolerance [6]. Many sources report the through-
put (or accepted load) which can be defined as a fraction
of total capacity of the network when the system satu-
rates. It is determined by measuring the amount of
received data when the transfer probability of each
processing element (PE) is increased. Latency is defined
as the time required for data to reach its destination. It
consists of separate phases, such as contention, transfer
initialization, transfer, and turn-around latencies. In a sin-
gle bus, the contention latency easily dominates whereas
in multi-hop network the transfer latency may have the
biggest impact. Fault tolerance describes the ability of the
network to perform in the presence of one or more faults.
It has been recognized for long in wide area, such as tele-
phone networks, but it is also emerging into NoC domain.

Unlike PCs, embedded systems are targeted for a cer-
tain performance level in a narrow application domain
instead of maximum performance in general purpose
computing. Therefore, performance with given constraint
is desired. For example, define the smallest area for NoC
that achieves at least 500 MB/s throughput for test case X.
Such constraints are very important when designing real-
time systems in which the violation of (hard) timing con-
straints may be hazardous. Therefore, also the quantities
related to implementation must be documented. These
include at least silicon area, power, and operating fre-
quency. It is equally important to report how the values
are achieved: with synthesis or full-custom design, is
placement and routing information included, and the val-
ues of key parameters (e.g. buffer size and data width).

The basic metrics and estimated PE utilization can be
obtained automatically by the generic benchmark tool. To
obtain greater insight, they should be augmented with
NoC-specific metrics with separate monitors, for example
the fairness of flow control and the utilization of links and
buffers. This way the designer can spot the bottlenecks

and design errors in the NoC. The benchmarking should
be complemented with theoretical studies, regarding fac-
tors such as bisection bandwidth.

B. Traffic generator types

Benchmarking a multiprocessor system using multiple
instruction set simulators (ISSs) gives accurate results but
is too slow with contemporary workstations even if the
simulation is distributed to multiple computers [7].
Applications can be run on a host simulation computer
(native execution) and the execution time is modeled by
annotating wait statements [8][9]. The simulation is both
accurate (3-10% error is reported) and fast (more than
1000x speedup over ISS). However, the application
source codes must be distributed in the benchmark set.
Error detection and detailed performance measuring may
also be laborious to implement with a real application.

For pure NoC benchmarking, only the external behav-
ior of each PE needs to be modeled, i.e. the amount and
timing of data transfers regardless of the actual values of
the internal variables or the transferred data. This higher
abstraction level approach is utilized with traffic genera-
tors, which provide means to generate data transfers to
network according to pre-defined communication profile.
Hiding the internal functionality should allow researchers
to more easily contribute data to test suite allowing it to
be extended and updated with technology. Furthermore,
the contents of data can be freely chosen to simplify error
checking, NoC debugging, and performance measure-
ments. Traffic generators have been widely utilized, for
example, for characterizing Internet traffic in order to test
and measure routers and servers [10][11].

Transfer-independent (also called stochastic) traffic
generator does not take dependence of subsequent trans-
fers into account but all PEs generate traffic according to
a fixed probability and distribution [12][13][14][15][16].
For example, each PE transfers random number of data
words to all other PEs with uniform probability regard-
less how it receives data from others [17]. In practice, the
real traffic tends to be both localized and bursty and,
therefore, the uniform model must be modified [18].

More realistic traffic may be generated by considering
the dependencies between the transfers, in other words
generating a transfer-dependent (i.e. reactive) communi-
cation profile [19][20][21][22][24][25]. Dependencies
make the profile partially ordered, i.e. certain tasks are
not executed before they have received their input data.
Small runtime estimation errors of 2% [20] and 1.5% [22]
have been reported. At the same time, the speedup over
ISS can be in the range of 20x-50x [22] (accounting the
effect of [23]).

In our approach, a transfer-dependent generator called
Transaction Generator (TG) [25] is utilized. The basic
principle is depicted in Fig. 1. Application model consists
of communicating tasks which are mapped onto process-
ing elements. The data transfers between tasks that are
mapped to separate PEs are forwarded to the NoC. The
task runtime and transfer sizes are defined according to
the application and the characteristics of the PE models.

Both parameters may be varied uniformly within user-
defined limits to mimic real behavior. Furthermore, TG
allows both transfer-dependent and independent profiles.
The exploration of various mapping possibilities and
architectures is possible without modifying the applica-
tion model. TG is written in SystemC and can be con-
nected to different types of NoC models: VHDL at gate-
level or RTL and SystemC at RTL or transaction level.
Furthermore, TG automatically checks all the transfers
and collects statistics about system performance such as
execution counts for processes, execution and idle period
lengths, and latency of data transfers. Hence, TG is likely
to meet all the presented requirements for benchmarking
tool.

C. Traffic characterization

Traffic characterization is required in order to utilize
traffic generators. Static analysis prior to compilation is
difficult and/or inaccurate since the execution (time)
practically always depends on the input data set. For
example, unbounded loops in SW are problematic. There-
fore, it is often better to profile application by running it
(either in simulator or in real HW) with multiple input
data sets, collecting the communication (and potentially
execution) traces, and generating the communication pro-
file from the traces. Traditionally, the profiling is done
after the application mapping by tracing the communica-
tion between PEs. This means that the architecture explo-
ration is limited to the NoC itself. Every time the
application, mapping, or PE allocation is changed, the
profiling must be performed again. Clearly, this is contra-
dictory to the requirements.

Another way is to profile the application execution in
a reference PE or alternatively on each possible PE. The
resulting database shows that, for example, application
task t takes n clock cycles on PE1, m cycles on PE2, and
so on. By utilizing this method, the same communication
profile is applicable throughout the exploration for all
application mappings and PE allocations [8]. Similarly as
in architecture exploration, this facilitates the NoC bench-
marking as the same communication profile remains
valid for each NoC architecture.

3. Benchmark set for Network-on-Chip

To cover a wide spectrum of profiles, the aimed set
consists of both application benchmarks and synthetic
cases, both of which can be parameterized. Likewise,
both transfer dependent and independent profiles are
included. Models are preferably executed with a traffic
generator since that allows easier mapping exploration,
data checking, statistics collecting than actual or algo-
rithm-based applications.

A. Application benchmarks

Different application types, i.e. communication and
computation intensive cases, must be present. Regular
and simple functions like FFT, DCT, IIR, and matrix mul-
tiplication are sometimes used [19][21][22] but they can
hardly be considered as typical applications for SoC, i.e.
they present only kernels. In contrast, video coding
[14][16][21][26], 3GPP [24] and WLAN [27] baseband
processing are more demanding and, hence, interesting.

In this work, a data-parallel video encoder [26] has
been manually profiled to derive a parameterizable Trans-
action Generator model. The process network can be
scaled by setting the picture size (QCIF, CIF etc.) and the
number of slave CPUs. At the same, the number of tasks
(e.g. dct_8x8 and vlc) in the model varies between 20-
220. The simulation speed was measured both cycle-
accurate ISS simulation (10 ARM7 ISS connected to a
co-simulation environment) and Transaction Generator
simulation. ISS-based approach could be simulated at the
speed of 235 cycles/second whereas TG provided over 10
000 cycles/second, i.e. over 40x speedup. Using transac-
tion-level NoC model instead of RTL offers additional
speedup, in the range of 5-7x. At the same time, the tim-
ing error remains at 10% on average which should be sat-
isfactory for benchmarking purposes.

Manual profiling of video encoder application was
tedious and time-consuming. Therefore, MAC protocol
for proprietary WLAN described in UML 2.0 [27] was
profiled by linking special functions to the automatically
generated C code. The application was run on FPGA and
the collected execution traces were transformed automati-
cally into TG model (18 tasks) with scripts in few min-
utes which is comparable with results given in [22]. Other
sources do not report time and effort needed for the pro-
filing.

B. Synthetic test cases

Synthetic profiles are generated pseudo-randomly by
setting few key parameters, for example, number of proc-
esses, minimum and maximum transfer sizes, and aver-
age number of targets per task. Random traffic patterns,
both uniform [17][24] and localized [12][13][18], are the
most commonly used. For example, Poisson or exponen-
tial distribution functions are used for localization. Sim-
ple synthetic, transfer-dependent, ring-shaped process

Figure 1. Transaction Generator is a tool for combining abstract applica-
tion and architecture models for simulation with an arbitrary NoC

Transaction Generator

Application modeled as a
Kahn process network

Architecture modeled
with characteristic
parameters

Network-on-chip
Any model having OCP
TL2 interface

Network model

A

C

E

B

F

PE1 PE2 PE3 PE4

D

Task

Proceesing element (PE)

Legend:

Mapping of tasks to PEs

Inter-task transfer

Transaction Generator

Application modeled as a
Kahn process network

Architecture modeled
with characteristic
parameters

Network-on-chip
Any model having OCP
TL2 interface

Network model

A

C

E

B

F

PE1 PE2 PE3 PE4

D

Task

Proceesing element (PE)

Legend:

Mapping of tasks to PEs

Inter-task transfer

network were used for benchmarking in our earlier work
[28].

Few examples of synthetic process networks for TG
are shown in Fig. 2. The processes marked with black cir-
cle are start processes that are executed once after reset.
In addition, they can be periodical, i.e. they are executed
repeatedly irrespective of other transfers, or act as normal
processes after their first execution. For simplicity, each
example shows only one start process but their number
can be freely parameterized. By using several periodical
start processes, TG can also be used for generating trans-
fer-independent, purely stochastic traffic. Furthermore,
several synthetic test cases may be combined to generate
larger and more heterogeneous traffic profiles.

4. Conclusions

This paper presents a background, classification, and
requirements for NoC benchmarking. We shortly intro-
duced Transaction Generator that uses communication
profiles that are easy to generate, fast to simulate, and
accurate enough in NoC benchmarking. Furthermore, we
have generated a parameterizable set of synthetic and real
application models. The following tasks are to generate
new benchmarks, to evaluate and report the performance
of existing Network-on-Chips, and prepare the on-line
distribution of the benchmark set.

5. References

[1] A.R. Weiss, Dhrystone Benchmark - History, analysis, "scores" and
recommendations, white paper, EEMBC Certification Laboratories,
Austin, TX, Nov. 2002.
[2] R.P. Weicker, An overview of common benchmarks, Computer, Vol.
23, Iss. 12, Dec. 1990, pp. 65-75.
[3] J.L. Gustafson, R. Todi, Conventional benchmarks as a sample of
the performance spectrum, HICSS, Kohala Coast, HI, Vol. 7, Jan. 1998,
pp. 514-523.
[4] R.P. Dick, D.L. Rhodes, W. Wolf, TGFF: Task Graphs for Free,
CODES/CASHE, Seattle, WA, Mar. 1998, pp. 97-101.
[5] The Standard Performance Evaluation Corporation, OpenMP
Benchmark Suite, [online], http://www.spec.org/omp2001/, visited May
2005.
[6] W.J. Dally, B. Towles, Principles and practices of interconnection
networks, Morgan Kaufmann Publishers, San Francisco, CA, 2004.
[7] J. Riihimäki et al., Practical distributed simulation of a network of
wireless terminals, Intl. Symposium on System-on-Chip, Tampere, Fin-
land, Nov. 2004, pp. 49-52.

[8] A. Baghdadi, W.O. Cesario, A.A. Jerraya, N.-E. Zergainoh, Combin-
ing a performance estimation methodology with a hardware/software
codesign flow supporting multiprocessor systems, IEEE TSE, Vol. 28,
Iss. 9, Sep. 2002, pp. 822-831.
[9] A. Bouchhima, I. Bacivarow, W. Youssef, M. Bonaciu, A.A. Jerraya,
using abstract CPU subsystem simulation model for high level HW/SW
architecture exploration, ASP-DAC, Shanghai, China, Jan. 2005, pp.
969 - 972.
[10] D. Emma, A. Pescapè, G. Ventre, Analysis and experimentation of
an open distributed platform for synthetic traffic generation, FTDCS,
Suzhou, China, May 2004, pp. 277-283.
[11] S. Kalidindi, N. Huynh, B. Eklow, J. Goldstein, “Real life” system
testing of networking equipment, ITC, Oct. 2004, pp. 1072 - 1077.
[12] K.Lahiri, A.Raghunathan, S.Dey, Evaluation of the traffic-perform-
ance characteristics of system-on-chip communication architectures,
Intl.Conf. on VLSI Design, Bangalore, India, Jan. 2001, pp. 21-35.
[13] T. Salminen and J.-P. Soininen, Evaluating application mapping
using network simulation, Intl. Symposium on System-on-Chip, Tam-
pere, Finland, Nov. 2003, pp.27-30.
[14] S. Murali, G. de Micheli, Bandwidth-constrained mapping of cores
onto NoC architectures, DATE, Paris, France, Feb. 2004, Vol 2, pp. 896-
901.
[15] S. Santi et al., On the Impact of traffic statistics on quality of serv-
ice for networks on chip, ISCAS, May 2005, pp. 2349-2352.
[16] Jiang Xu, W. Wolf, J. Henkel, S. Chakradhar, Methodology for
design, modeling, and analysis of networks-on-chip, ISCAS, May 2005,
pp. 1778-1781.
[17] C. Neeb, M.J. Thul, N. Wehn, Network-on-Chip-Centric Approach
to interleaving in high throughput channel decoders, ISCAS, May 2005,
pp.1766-1769.
[18] P.P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, Effect of traf-
fic localization on energy dissipation in NoC-based interconnect,
ISCAS, May 2005, pp. 1774-1777.
[19] M.E. Kreutz, L. Carro, C.A. Zeferino, A.A. Susin, Communication
architectures for system-on-chip, SBCCI, Pirenópolis, Brazil, Sep.
2001, pp. 14 -19.
[20] K.Lahiri, A.Raghunathan, S.Dey, Design space exploration for
optimizing on-chip communication architectures, IEEE TCAD, Vol. 23,
No. 6, Jun. 2004, pp. 952-961.
[21] Jian Liang, A. Laffely, S. Srinivasan, R. Tessier, An architecture
and compiler for scalable on-chip communication, IEEE TVLSI, Vol.
12 , Iss. 7, Jul. 2004, pp. 711-726.
[22] S. Mahadevan et al., Network traffic generator model for fast net-
work-on-chip simulation, DATE, 7-11 Mar. 2005, Vol. 2, pp. 780-785.
[23] L. Benini et al., SystemC cosimulation and emulation of multiproc-
essor SoC designs, Computer, Vol. 36, Iss. 4, Apr. 2003, pp. 53-59.
[24] D. Wiklund, Development and performance evaluation of networks
on chip, PhD thesis, No. 932, Linköpings universitet, Apr. 2005.
[25] T. Kangas, J. Riihimäki, E. Salminen, K. Kuusilinna, T.
Hämäläinen, Using a communication generator in SoC architecture
exploration, Intl. Symposium on System-on-Chip, Tampere, Finland,
Nov. 2003, pp.105-108.
[26] T. Kangas, T. Hämäläinen, K. Kuusilinna, Scalable architecture for
SoC video encoders, accepted to Journal of VLSI Signal Processing.
[27] P. Kukkala, V. Helminen, M. Hännikäinen, T. Hämäläinen, UML
2.0 implementation of an embedded WLAN protocol, PIMRC, Sep.
2004, Barcelona, Spain, pp. 1158-1162.
[28] E. Salminen et al., Benchmarking mesh and hierarchical bus net-
works in system-on-chip context, SAMOS V, Samos, Greece, July
2005, pp. 354-363.

Figure 2. Examples of synthetic process networks

...

...

...

...

...

a) ring

d) data-flow

...

c) fork-join

...

...

b) double ring

...

...

...

...

...

a) ring

d) data-flow

...

c) fork-join

...

...

b) double ring

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

