
An efficient storage technique for network
monitoring data

Giuseppe Aceto, Alessio Botta, Antonio Pescapé

University of Napoli Federico II, Italy

Email: {giuseppe.aceto, a.botta, pescape}@unina.it

Cedric Westphal

Docomo Innovations

Email: cwestphal@docomoinnovations.com

Abstract—Monitoring modern networks involves storing and
transferring huge amounts of data. For this reason, compression
techniques are typically used in order to reduce the space
and time needed for these operations. The main drawback
of this approach is that, when data has to be processed, a
preliminary decompression is necessary, which increases the time
and computational power needed. To cope with this problem, in
this paper we propose a technique that allows to transform the
measurement data in a representation format meeting two main
objectives at the same time. Firstly, it allows to perform a number
of operations directly on the transformed data with a controlled
loss of accuracy, thanks to the mathematical framework it is
based on. Secondly, the new representation has a small memory
footprint, allowing to reduce the space needed for data storage
and the time needed for data transfer. To validate our technique,
we perform an analysis of its performance in terms of accuracy
and memory footprint. The results show that the transformed
data closely approximates the original data (within 5% relative
error) while achieving the compression ratio of 20%; storage
footprint can be gradually made close to that of the state-of-the-
art compression tools, such as bzip2, if higher approximation is
allowed.

I. INTRODUCTION

Telecom operators have to constantly monitor the network
for a number of tasks, such as billing, management, pro-
visioning, dimensioning, etc.. Some of these tasks such as
billing require the analysis of the data in near real-time,
while others are performed a posteriori on historical data sets.
For instance, network provisioning is performed on a set of
statistical indicators calculated over the last months or years.
For these tasks monitoring infrastructures have been presented
such as [1] that rely on data reduction techniques to keep
the amount of data manageable. Similar issues were early
addressed by the networking research community, e.g. [2] but
the evolution of technology has worsened them, requiring more
“aggressive” lossy approaches such as adaptive shedding of
input data [3]. On the other hand, the availability of network
monitoring data has allowed for more complex analyses such
as behavioral pattern mining [4], high valuable for both content
providers and communication infrastructure managers.
For all of these cases, it is often required to save the moni-

toring data; this implies storing for a long time a huge amount

Part of the research activities presented in this paper have been performed
during a summer intership by Mr. Giuseppe Aceto at Docomo Innovations.
The research has been partially funded by LINCE project of the FARO
programme jointly financed by the Compagnia di San Paolo and by the Polo
delle Scienze e delle Tecnologie of the University of Napoli “Federico II”.

of information. For instance, a telecom operator willing to
analyze service access patterns could easily face data sizes
in the order of terabytes per day, to be transmitted from
monitoring points to processing sites, and accumulated for
over several months. One possible solution resorts to state-of-
the-art compression algorithms, in order to keep the storage
footprint - and the transmission burden - manageable; but this
approach has the drawback of needing a decompression stage
(and then space for the uncompressed data) before any further
processing.

In order to cope with this issue, we propose a technique
that i) is efficient in space utilization, and ii) provides the
possibility to perform a class of operations directly on the
compressed data. The technique we present, described in
Sect. II, trades off accuracy for reduced memory footprint
and computational complexity for postprocessing, allowing for
different levels of approximation or compression, according to
the needs of the intended application. To validate our tech-
nique, in Sect. III we perform an analysis of its performance
in terms of accuracy and memory footprint. The results show
that the transformed data closely approximates the original
data while the compression ratio is close to that of the state-
of-the-art compression tools, such as bzip2.

II. OUR TECHNIQUE

The technique we propose produces a spatially efficient data
representation scheme that allows approximated computations
and pattern recognition in network monitoring logs, with no
need for decompression stage. In order to ease the description
of the technique, of its characteristics, and of the challenges
it must deal with, we consider a specific format of monitoring
log, but the technique can be applied to more complex moni-
toring data. The considered monitoring log format, analogous
to flow-based traffic traces, is constituted of records, each
comprising four fields: timestamp, source IP, destination URL,
load; each record represents a single HTTP conversation
originated by a source IP to retrieve the given URL, and the
amount of data that has been exchanged. Even if we focus
on this type of traffic for ease of exposition - it represents a
reasonable example of data commonly logged by operators -
our technique applies to other types of data as well. To be
able to perform computation directly on the representation,
we apply a technique which identifies patterns in matrices
where each row/column is a vector of real numbers. Thus

978-1-4577-0457-4/11/$26.00 ©2011 IEEE

our technique will take two phases: in the first phase (the pre-
processing phase), we will first convert the IP addresses and
URLs into numbers in a Euclidean space, and then we will
scale all fields so that each of them ranges between 0 and 1. As
a result of this preprocessing phase we obtain a fully numeric
matrix representation of the original data. In the second phase
(the factorization phase), we transfor the numeric matrix into
a couple of sparse matrices which approximate our original
data, while having a smaller memory footprint.

In the following sections, we detail the two phases of our
technique.

A. Mapping and Normalizing

1) URL filtering: As in some applications singular events
may be of no importance, the proposed technique provides
the possibility to control the presence of rare connections to
servers; this is done by means of a URL filtering threshold

parameter, defined as the minimum number of occurrences a
URL must exhibit in the log to be considered. Such kind of
filtering reduces the number of uniques URLs, but also affects
some sources (all sources communicating with an under-the-
threshold URL are discarded).

2) Label Coding: Even if source IPs could be represented
as their numerical value, this value conveys little meaning,
and presents a strongly uneven distribution, so we treat IP as
a non-numerical value to be processed similarly to URL field.
The values in the field URL (destination URLs1) are stored
as a list of unique elements; URLs are ranked by number
of occurrences, and mapped to an integer equal to their rank
order: the higher the frequency, the higher the numerical label
assigned to them. In a typical encoding, a shorter code is
assigned to more frequent items. However, in our case, small
values might be changed to zero when attempting to find a
sparse representation and we would like to preserve the values
of the most frequently accessed items. The values in the field
source IP are stored as a list with unique elements: the label
corresponding to a source IP is given by its position in the
list, and referred to as srcID.

3) Normalization: The fields srcID, Bytes and URLcode are
scaled to]0, 1]. For srcID this is done by dividing the code
(ranking) by the total number of srcIDs. The same is done for
URLs. Due to the high variance of values in Bytes field, base-2
logarithm of the value is taken, and divided by its maximum
over the trace.

4) Timestamp: The timestamps are considered implicitly
in the ordering of the transactions, and they are not included
in the processing. Due to the large number of independent
transactions in a window of time, one can assume that these
transactions are regularly spaced in time with an acceptable
error. Define by ∆ the average inter-arrival time within the
observed time window τ . Thus, ∆ = τ/N where N is the
number of entries in the log. τ ranges from a few minutes to

1We consider a general domain as a URL, without including php arguments
or subpaths within a domain.

a few hours. The timestamp of entry k is replaced by:

t̃k = t1 + (k − 1) ∗∆

This allows to only keep the ordering of the entries.
In the following we calculate the error made with this

approximation. Define ai to be the sequence of inter-arrival
times in between connection requests i and i + 1. ai is a
Poisson distributed random variable with mean E[a] = ∆ (and
thus variance ∆ as well). The actual arrival time for the k-th
connection is thus t1 +

∑k−1

i=1
ai. The error in the time stamp

is: ek =
∑k−1

i=1
ai−(k−1)∆. By the central limit theorem, ek

is distributed according to a normal distribution N (0,
√
k∆).

Since ∆ = τ/N , where N is the number of connections, and
since k ≤ N , the error is upper bounded by N (0, τ/

√
N),

and it goes to zero as the number of connection grows within
a time window τ . Considering as a typical scenario the case
of a cellular operator, the system under consideration has a
number of users in order of tens to hundreds of millions, thus
the assumption that N is large is reasonable.
5) Matrix format: As the last step of the preprocessing

phase we build P , which is an N × M matrix, represent-
ing N connections, each of which with M dimensions (we
described three fields in the input data format above, but
we could consider other flow parameters as well). In this
representation, each column of the input matrix is a vector
(srcID;URLcode;Bytes)T where the time is implicitly rep-
resented by column index, namely the ith column holds values
of the ith entry of the input file.

B. Factorization

In order to store P efficiently, we want to use a matrix P̂
such that: P̂ approximates P , and P̂ = TC, where T (N ×
K) and C(K ×M) are two matrices with high sparsity and
thus requiring a small amount of memory for their storage.
K ≤ M is a parameter that is optimized at the same time
as when T and C are derived. As our objective is to trade
off in computational complexity vs accuracy, we model our
approximation as the minimization problem:

min
T,C

||P − TC||22 + λ(||T ||0 + ||C||0) (1)

where ||.||0 is the #0 norm that counts the number of non-zero
elements of its argument, and λ is a Lagrangian multiplier
which is specified by the user. T is the pattern basis and C
a matrix of coefficients. Namely, a column vector p̂k from P̂
can be expressed as a decomposition along the basis vectors
ti in T :

p̂k =
K∑

i=1

ck(i)ti (2)

T can thus be used to identify patterns in P and answer queries
about patterns in the logged data. Note that since the optimiza-
tion problem (1) takes into account the number of non-zero
elements of T and C, it yields sparse results, thus reducing
the storage requirement and also the computational complexity
required by operations on the compressed representation. In

more details, to answer a specific query that can be put in
the form Y = PX , one can use P̂ instead of P and solve
Ŷ = P̂X = TCX . Remember that ||T ||0 and ||C||0 are
minimized by construction. Therefore, computing the product
CX requires at most ||C||0 multiplications of coefficients.
Similarly, computing Y = T (CX) requires no more than
||T ||0 multiplications. Thus, the complexity of answering a
query that can be put in the form Y = PX is equal to
||T ||0 + ||C||0 operations.
Using this factorized format allows to answer a range of

queries. For instance, one can answer any max-k transaction
query to find the k largest transactions in the log file. This
can be solved by finding the k largest value of the N × 1
row of P̂ that corresponds to the load. One can similarly
find the total usage of a specific srcID, by summing all
bytes value P̂ (3, i) for which P̂ (1, i) = srcID. The matrix
C points to which patterns in T the user calls upon. Thus
similar users will have similar coefficient in the C matrix, and
can be identified by observing this sparse matrix. Conversely,
the underlying matrix of patterns T embeds some overall
behavior of the system and can be used to identify abnormal
usage. In particular, if after computing T over some period of
time ∆ at regular intervals, one sees dramatic changes in the
composition of T , say minπ ||T (t2)−πT (t1)||2 > γ where π
is a column permutation and γ a threshold, then it might point
to some abnormal behavior in the system and call for some
investigation.

In order to compute T and C, we use the technique
proposed by Zujovic et al [5] in the context of pattern matching
algorithms (applied to query-by-example image retrieval).

III. EXPERIMENTAL EVALUATION

To evaluate the performance of our technique, we have
considered its efficiency in terms of memory footprint reduc-
tion (Compression Ratio) and different consequences of the
approximation (Bytes error, ID error, URL error). For the
evaluation of the memory footprint, the compression ratio is
compared with the output of the general purpose compression
utility bzip2, employing the Burrows-Wheeler block sorting
text compression algorithm, and Huffman coding. The reported
results are obtained by varying the value of λ, that controls
the amount of distortion allowed in the approximated factor-
ization algorithm (the higher the value of λ, the higher the
tolerated approximation, but also the more sparsity induced in
the representation matrix); preprocessing stages are identical,
with a fixed URL threshold2, while λ is varied in the set
{0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1}.

A. Data set

For a proof of concept of the effectiveness of our technique,
we use a real traffic trace: the considered data cover a
time span of 1 hour, presenting 26965 sessions, with 110
different source IDs exchanging 907.024 MB of data with

2We performed an analysis of the effects of the filtering threshold, and
found that 5 is the maximum value for which the accuracy is not significantly
affected: all presented results refer to this value of URL threshold.

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.001 0.01 0.1 1

C
o
m

p
re

ss
io

n
 R

at
io

lambda

CCS/full
bzip2full/full
bzip2flt/full

Tot/full

Fig. 1. Compression Ratios

1771 different destination URLs. The data set has the format
of a log file, each record of which represents a single HTTP
session, and is constituted by four fields: timestamp (in UNIX
epoch time, µs precision), source ID, destination URL, load
(in bytes).

B. Results

1) Compression Ratio: The total size of the compressed
version, as well as the size of specific components, is com-
pared against the size of the original data. The quantities
whose ratio is considered are: CCS - size in bytes of Com-
pressed Column Sparse representation of C matrix alone; Tot
- sum of the size in bytes of CCS, T matrix, bzip2-compressed
ordered list of URLs, bzip2-compressed ordered list of source
IDs (this, with a few metadata, is all is needed to rebuild the
original data); bzip2flt - size in bytes of the URL-filtered and
bzip2-compressed version of the original data; bzip2full - size
in bytes of the bzip2-compressed version of the original data.
The CCS component is calculated in bits as:

nnz · (basesize+ &log2(cols)') + &log2(nnz)' · (rows + 1)

where nnz is the number of non-zero elements of the matrix,
rows and cols are the dimensions of the matrix, and &·' is the
ceiling function. This value corresponds to the size occupancy
of a sparse matrix, represented as Compressed Column Sparse
(or Compressed Sparse Column [6]), where indexes are binary
coded, and each element is represented with basesize bits.
In the considered case, basesize is 32, rows and cols are
respectively 3 and 23516. The matrix T is represented as
N · K values of length basesize bits each. Fig. 1 shows the
compression ratio as a function of the granularity parameter
λ. As expected, by increasing the approximation granularity,
more sparsity is found in the factor matrix C, and therefore the
size occupancy for CCS representation decreases, causing the
size of total representation to gracefully decrease for growing
values of λ.
2) Error on URL decoding: Error on URL decoding is

calculated as the ratio of entries with mistaken URLs versus

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1

F
ra

ct
io

n
 o

f
M

is
se

d
 U

R
L

s/
ID

s

lambda

missed URLs
missed IDs

Fig. 2. Fraction of Incorrect URLs and IDs.

the total number of entries. In order to calculate this value,
a reconstruction of the original log is performed, using the
approximated matrices and the index files. An URL is “mis-
taken” when the approximated index value, after the decoding,
is closer to an index different from the original one. The
same procedure is performed on source IDs, with analogous
definitions.
The percentage of mistaken URLs and IDs is shown in

Fig. 2. It can be seen that the errors increase until λ = 0.01,
then for λ = 0.025 there is a plateau, and then the error reaches
almost 1. This is due to the rescaling phase that precedes the
approximated matrix representation: in order to uniform the
value span among data of different nature, the indexes are
“compacted” so that for high values of approximation granu-
larity the distance between consecutive ones becomes smaller
than the allowed approximation error, eventually causing the
decoding fault.
3) Error on Bytes field: We consider two kinds of errors

on the Bytes field: the Relative Error, defined as ‖x−x̂
x

‖, and
the Signed Relative Error, defined as x̂−x

x
, where x is the true

value, and x̂ is the approximated value, affected by approxima-
tion error. The approximated value x̂ is reconstructed, for each
considered value of λ, by multiplying the matrices, rescaling
by the inverse of the normalization factors, and considering
the Byte rows.
For the Relative Error the extreme values, the quartiles and

the mean are shown in Fig. 3; due to the wide variations of
the Relative Error, the plot is in log-log scale; for y-axis a
minimum of 10−3 has been set, as minimum values of relative
error are always zero. We notice that the 75-percentile is
always close to mean relative error (blue solid line), which
increases with increasing λ, approximatively varying as 10λ
for values of λ in the decades [0.001, 0.1] and showing a
decrease for λ in [0.1, 1].
For the Signed Relative Error the mean and a confidence

interval as wide as the standard deviation are shown in Fig. 4;
as the y values are also negative, the graph is semilogarithmic.
The plot shows that the mean signed relative error is always

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1

B
y
te

s
R

el
at

iv
e

E
rr

o
r

lambda

Bytes RE quartiles
Bytes Mean RE

Fig. 3. Relative Error on Bytes field: box plot shows minimum, 1st quartile,
median, and 3rd quartile; the line connects mean values.

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0.001 0.01 0.1 1

B
y
te

s
S

ig
n
ed

 R
el

at
iv

e
E

rr
o
r

lambda

Bytes Signed RE mean and std dev

Fig. 4. Signed Relative Error: error bars are centered in the mean value, and
are as wide as standard deviation.

negative, and that the standard deviation increases less than
linearly for values of λ in the decades [0.001, 0.1], presenting
a peak of about 8 for λ = 0.25.

C. Discussion

From the experimental evaluation we find that the technique
is suitable for efficient space usage, as can be seen in Fig. 1,
where for fine-grained approximation (λ = 10−3) the space
occupation becomes 21% of the original, and compression
level equivalent to the one of bzip2 is reached, for slightly
coarser approximation (λ = 0.06); this result is of notable
value, as our format does not require decoding in order
to perform a whole class of data mining and processing
operations, as opposed to bzip2 outcomes, that always need
a decompression phase (and space for the decompressed data).

Our ongoing work is focused on researching optimizations
aimed at improving the compression performance, e.g. reduc-
ing the memory footprint of CCS representation by lowering
the precision of values in the C matrix from 32 to 16 bit.

In Fig. 3 we can see that the average relative error increases
less than linearly for λ ∈ {10−3, 25 · 10−3}, always close
to the 75-percentile, while the median is notably lower, and
less or close to 10% of the true value even for coarse grained
approximation. This shows how, although some values can
undergo a substantial and increasing approximation, the large
part is barely affected. As can be seen in Fig. 2, the fields that
are mostly affected by approximation error are IDs and URLs,
due to their nature of identifiers: in this case the decoding is
either hit or miss, and “approximation” to the closer IDs is
still a miss. A way to reduce this impact is to exploit the pre-
processing phase that precedes the approximation algorithm to
extend the separation between coded identifiers. This results
in a trade-off with accuracy on the other fields, and can be
simply implemented by choosing weighting factors for all
fields according to the relative sensitivity to approximation
error, so that the difference between adjacent elements is more
than double the allowed approximation error. This choice is
to be done according to the intended application.

In order to analyze the effect of the proposed scheme on
the Byte field, that represents the amount of data that has been
exchanged in a single connection, the empirical distribution
function has been calculated for the original file and for the
approximated versions corresponding to a subset of λ values,
namely 0.001, 0.01, 0.1. Fig. 5 shows the results obtained with
λ = 0.01: using a bin width of 10kB, the histogram of
the relative frequencies is plotted. It can be noted that the
first bin (0 − 10kB) accounts for more than 80% of the
total and the count of occurrences quickly falls under 0.001
times the total, reached at bin 120−130kB. The same overall
behavior is shown for the other values of λ and for the original
data; thus the statistical characteristic of the Byte field are not
significantly affected by the application of the scheme.
In general, the choice of allowed error, and thus, the setting

of the control parameter λ, is dependent on the application.
Values of λ exceeding 0.1, even if introduce significant
approximation error, with higher variance (see Fig. 2,3 and
4), achieve compression levels better than the state-of-the-
art reference (Fig. 1), still retaining the possibility for direct
processing without decompression. In applications where the
exact storage of the value is not needed (e.g. in clustering),
the graceful and controlled degrading of accuracy, distributed
among different monitoring fields, could be further exploited
to gain even higher efficiency: ongoing work is also focused
on these aspects.

IV. RELATED WORK

The issues related to storing and processing huge amounts of
data coming from network monitoring activities is a strongly
felt problem, on which several different approaches have been
proposed. An information theoretic framework is presented
in [7], that within a network model analyzes the information
content of flow-level captures (using NetFlow-like format,
which is analogous to the log file format we considered);
by means of this modeling the authors derive the bounds
for lossless compression of network traffic traces, resulting

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

O
cc

u
rr

e
n
ce

s

Bytes

samples 23473
bin size 10000

original
lambda = 0.01

Fig. 5. Frequency distribution of Bytes of original data and processed with
λ = 0.01, cut at x = 106.

in around 20% theoretical compression ratio for the format
they considered.
Facing huge amounts of monitoring data, a possible strategy
to enhance the performance of storing and processing is by
preprocessing the data and then apply lossless compression
algorithms to the obtained data representation. An example
of this approach can be found in [8], where a technique is
presented that aims at compression improvement by reordering
on high dimension data. By organizing data in data matrices

in which each row is an occurrence of a multi-field values, it
applies an optimization algorithm that changes row ordering to
maximize the compression by differential predictive coding. A
similar approach, implying a preprocessing stage whose output
is fed to a general-purpose compressor, is adopted in [9],
where the input data show a common basic format: ASCII text
encoding, structured as a Character Separated Values database
(records separated by NL, tokens/fields separated by SPACE
or other delimitator character); the authors present a multi-
layered approach, where the general-purpose compression
algorithm (third stage) is prepended with a string substitution

stage on subsequent couples of lines. Another example of
compression gain obtained by preprocessing input data can
be found in [10], where the input data is constituted by log
files of mail server; a dictionary-based word replacement phase
is performed before applying different lossless compression
algorithms and the compression gain is evaluated, reporting
improvements of up to 56 percent in compression time and up
to 32 percent in compression ratio.
When input data has know structure, an ad-hoc preprocessing
can be done: for URL storage and retrieval, in [11] a com-
pression scheme is proposed based on AVL trees, a balanced
binary tree algorithm for lookup-intensive applications. The
paper is focused on URL compression and retrieval algorithms
for web caches, search engines ad webcrawlers. The scheme
gains a reduction in space occupancy of 50% (both store and
retrieval online) or 64% (just retrieval online, the case of
search engines). When on the one hand the huge amount

of data to be stored and processed is an issue, and on the
other hand, some loss of information is acceptable from the
point of view of the subsequent use of data, a trade-off
can be applied using lossy compression schemes. In [12] a
multi-scale approach is presented, that divides the input time-
series in 3 components, with different time and frequency
characteristics; each is separately represented with approxi-
mations that introduce error (low-pass filtering and sampling,
below-threshold clipping, Johnson-Lindenstrauss compressive
random projection), achieving data reduction larger than 91%.
The authors also demonstrate that histograms and correlations
can be approximated by using the “compressed” data (this is
done with known error bounds under some assumptions on the
input signal); the paper does not address multi-dimensional
data, and so does not consider correlations among different
dimensions.
It is worth noting that all the cited works but [12] either

propose a compression algorithm/scheme or a preprocessing
stage aimed at improving the compression of the original data:
in both categories they gain space efficiency but still have to
decompress the data in order to perform any computation on
them. In the case of [9], [10], a comparison is possible with
our experimental results for the space occupancy, as the input
data format they consider can be used in principle also for
our input data, and they both refer to plain bzip2 outcome
as we do. The other works only refer to the original size, and
consider data types that constitute a subset of ours, therefore a
quantitative comparison of the results is not directly possible.

V. CONCLUSION

With the growth of the telecommunication networks and of
their user base, the need for efficiently collecting, transferring,
processing and storing network monitoring data continuously
poses new challenges. In this paper, we focused on the storage
and subsequent data mining phases, and presented a technique
that stores network measurement data in a representation
format that satisfies two main objectives at the same time: the
efficient utilization of storage space, and the possibility to per-
form a number of operations in a computationally convenient
way and directly on the transformed data; these high valuable
properties are traded-off with a controlled loss of accuracy.
The experimental evaluation on data derived from a real traffic
trace shows that a compression down to about 20 percent of
the original size can be achieved with relative error in the
order of 5 percent of the true value (for the numerical field),
and with a more aggressive approximation, compression level
greater of bzip2’s is reached while preserving the property of
being directly searchable and processable.
The experiments showed also space for further improve-

ments: given the accuracy requirements of an application for
the different data fields, the accuracy loss could be optimally
distributed on the different fields (specially non-numerical
ones, such as URLs or IDs). On the other side, an optimized
choice of the precision of the matrix elements (in terms of
amount of bits assigned for each field) would easily improve
the compression ratio. Current work is focused on investigating
the exploitation of the preprocessing-normalization stage in
order to meet different accuracy constraints (according to
application needs), as well as on assessing the sensitiveness
of the performances to the variation of the URL filtering
threshold. In future works we plan to evaluate the trade-off
in accuracy vs compression in relation to different precision
of matrix element representation, and also to evaluate the
accuracy of the technique after the data-mining operations,
in relation to different use cases.

REFERENCES

[1] S. Agrawal, C. N. Kanthi, K. V. M. Naidu, J. Ramamirtham, R. Rastogi,
S. Satkin, and A. Srinivasan, “Monitoring infrastructure for converged
networks and services,” Bell Labs Technical Journal, vol. 12, no. 2, pp.
63–77, 2007.

[2] M. Peuhkuri, “A Method to Compress and Anonymize Packet Traces,”
in In Proceedings of the First ACM Internet Measurement Workshop,
2001, pp. 257–261.

[3] P. B. Ros, G. Iannaccone, J. S. Cuxart, D. A. López, and J. S. Pareta,
“Load shedding in network monitoring applications,” in 2007 USENIX
Annual Technical Conference on Proceedings of the USENIX Annual
Technical Conference. Berkeley, CA, USA: USENIX Association,
2007.

[4] M. Munk, J. Kapusta, and P. Svec, “Data preprocessing evaluation for
web log mining: reconstruction of activities of a web visitor,” Procedia
Computer Science, vol. 1, no. 1, pp. 2273–2280, 2010.

[5] J. Zujovic and O. G. Guleryuz, “Complexity regularized pattern match-
ing,” in Proceedings of the 16th IEEE international conference on Image
processing, ser. ICIP’09. Piscataway, NJ, USA: IEEE Press, 2009, pp.
1869–1872.

[6] Y. Saad, “SPARSKIT: A basic tool kit for sparse matrix computations,”
Research Institute for Advanced Computer Science, NASA Ames Re-
search Center, Moffett Field, CA, Tech. Rep. RIACS-90-20, 1990.

[7] Y. Liu, D. Towsley, T. Ye, and J. Bolot, “An information-theoretic
approach to network monitoring and measurement,” in In Proc. of IMC,
2005.

[8] S. Vucetic, “A Fast Algorithm for Lossless Compression of Data Tables
by Reordering,” Data Compression Conference, vol. 0, pp. 469+, 2006.

[9] P. Skibiński and J. Swacha, “Fast and efficient log file compression,”
in CEUR Workshop Proceedings of 11th East-European Conference on
Advances in Databases and Information Systems (ADBIS), 2007.

[10] F. Otten, B. Irwin, and H. Thinyane, “Evaluating text preprocessing
to improve compression on maillogs,” in SAICSIT ’09: Proceedings of
the 2009 Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists. New York, NY,
USA: ACM, 2009, pp. 44–53.

[11] K. K. Arsa and S. Sanguanpong, “In-memory URL Compression,” in
National Computer Science and Engineering Conference, Chiang Mai,
Thailand, Nov. 2001, pp. 425–428.

[12] G. Reeves, J. Liu, S. Nath, and F. Zhao, “Managing massive time series
streams with multi-scale compressed trickles,” Proc. VLDB Endow.,
vol. 2, no. 1, pp. 97–108, 2009.

