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he variety and complexity of modern Internet traffic
exceeds anything imagined by the original designers
of the underlying Internet architecture. As the Inter-
net becomes our most critical communications infras-

tructure, service providers attempt to retrofit functionality,
including security, reliability, privacy, and multiple service
qualities, into a “best effort” architecture originally intended
to support a research environment. In order to prioritize, pro-
tect, or prevent certain traffic, providers need to implement
technology for traffic classification: associating traffic flows
with the applications — or application types — that generated
them. When the focus is on detecting specific applications
(e.g., Skype), the term traffic identification is sometimes used.
Despite the increasing dependence on the Internet, there is
essentially no scientifically reproducible body of research on
global Internet traffic characteristics due to the sensitivity of
and typical restrictions on sharing traffic data. Despite these
constraints, security concerns and economic realities have
motivated recent advances in traffic classification capabilities.
Situational awareness of traffic is essential to prevention, miti-
gation, and response to new forms of malware, which can sud-
denly and rapidly threaten legitimate service on network links.
Arguably as important, the high cost of deploying and operat-
ing Internet infrastructure compels providers to continually
seek ways to optimize their network engineering or otherwise
increase return on capital investments, including application-
based service differentiation and content-sensitive pricing. 

For these reasons, the state of the art in traffic classifica-
tion has experienced a major boost in the past few years, mea-
sured in the number of publications and research groups
focused on the topic. Diverse interests have led to a heteroge-
neous, fragmented, and somewhat inconsistent landscape. A
recent survey of traffic classification literature reviewed
advantages and problems with different approaches, but

acknowledged their general lack of accuracy and applicability
[1], whereas others took a narrower focus, taxonomizing and
reviewing documented machine-learning approaches for IP
traffic classification [2].

In this article we provide a critical but constructive analysis
of the field of Internet traffic classification, focusing on major
obstacles to progress and suggestions for overcoming them.
We first give an overview of both the evolution of traffic clas-
sification techniques and constraints to their development.
After briefly summarizing results of surveys in this field, we
highlight key differences across existing approaches and tech-
niques. We then discuss the main obstacles to progress in the
current state of the art, including required trade-offs in appli-
cability, reliability, performance, and respect for privacy. The
persistently unsolved challenges in the field over the last
decade suggest the need for different strategies and actions,
which we recommend in the concluding section.

Traffic Classification: Evolution and State of
the Art
At least three historical developments over the last two
decades have rendered less accurate the traditional method of
using transport-layer (TCP and UDP) ports to infer most
Internet applications (port-based approach): 
• The proliferation of new applications that have no IANA

registered ports, but instead use ports already registered (to
other applications), randomly selected, or user-defined

• The incentive for application designers and users to use
well-known ports (assigned to other applications) to dis-
guise their traffic and circumvent filtering or firewalls

• The inevitability of IPv4 address exhaustion, motivating per-
vasive deployment of network and port address translation,
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where, for example, several physical
servers may offer services through the
same public IP address but on differ-
ent ports

Despite its inaccuracy, associating trans-
port layer ports with specific applica-
tions is still the fastest and simplest
technique for continuous monitoring
and reporting, often used operationally
when accuracy is not critical.

As application design and user behav-
ior rendered port-based flow classifica-
tion unreliable, payload-based
approaches emerged, which inspect
packet content to identify byte strings
associated with an application, or per-
form more complicated syntactical
matching. The most common payload-
based approaches compare packet con-
tent (payload) to a set of stored
signatures (pattern matching), imple-
mented in open source1 as well as pro-
prietary2 tools. Payload examination is
considered a reliable technique for Internet traffic classifica-
tion, but poses formidable privacy challenges — privacy poli-
cies and laws may prevent access to or archiving of packet
content. Payload inspection technology — sometimes called
deep packet inspection (DPI) — also face technological and
related economic challenges: it is easily circumvented by
encryption, protocol obfuscation or encapsulation (e.g., tun-
neling traffic in HTTP), and prohibitively computationally
expensive for general use on high-bandwidth links. These con-
cerns with DPI techniques have motivated researchers to seek
new discriminating properties of traffic classes and other clas-
sification techniques that do not require payload examination.
Algorithms from the pattern recognition field using machine-
learning techniques have proven promising, especially in the
face of obfuscated and encrypted traffic which precludes pay-
load analysis. These systems learn from empirical data to
automatically associate objects with corresponding classes. In
supervised algorithms, the classes are defined by the
researcher, and the sample objects are given to the system
already labeled with classes; whereas in unsupervised algo-
rithms, the system identifies distinct classes and assigns
objects to these classes (e.g., clustering). Many Internet appli-
cations generate traffic with specific characteristics amenable
to classification using machine learning. In fact, supervised
machine-learning approaches have achieved results compara-
ble to DPI [2]. Unsupervised machine-learning techniques are
a promising way to cope with the constant changes in network
traffic, as new applications emerge faster than it may be possi-
ble to identify new signatures and train machine-learning clas-
sifiers. The performance of such classifiers depends not only
on the differences among machine-learning algorithms (neural
networks, decision trees, Bayesian techniques, etc.) and their
specific configuration, but also on the selection of classifica-
tion features, which are the types of data used to “describe”
each object to the machine-learning system. Features include
common flow properties (e.g., per-flow duration and volume,
mean packet size) as well as more detailed properties, such as
sizes and interpacket times of the first n packets of a flow, or

entropy of byte distribution in packet headers or payload.
Identifying particular traffic classes or applications (e.g., VoIP
or Skype) requires discerning even more specific features, and
must contend with application software changes, including
those designed to preclude classification.

Finally, approaches based on host communication patterns
use heuristics that can effectively complement payload inspec-
tion techniques, especially for obfuscated traffic. For example,
keeping a table of (IP, Port) pairs for each flow classified by
payload inspection allows identification of unclassified flows
that have a source or destination IP stored in the table [3, 4].
Another approach tries to identify peer-to-peer applications
by correlating the social network of a given host with its trans-
port-level interactions [5]. Unfortunately, this approach
requires seeing both directions of each traffic flow, so it can
only be used on single-homed edge or near-edge links.

The evolution of traffic classification technology (Fig. 1) has
created a heterogeneous landscape, recently summarized in sur-
vey papers [1, 2]. These surveys taxonomize the available tech-
niques by their classification algorithm, (e.g., port-based, DPI,
machine-learning), and document the decreasing reliability of
the port-based approach [6] and the ability of machine-learning
approaches to achieve results comparable to far more privacy-
invasive DPI techniques. However, surveys also show that a
large portion of network traffic is still left unclassified by all
techniques [1, 6]. Moreover, the literature exhibits a wide range
of inconsistent terminology to describe approaches and metrics,
making it difficult or impossible to compare studies or safely
infer conclusions. While the existing surveys highlight inconsis-
tencies in terminology and evaluation metrics [1, 7], here we
draw attention to even more substantial differences: there is a
wide methodological range of granularity in definitions of flows
and traffic classes across approaches that makes different
approaches difficult to systematically compare, even when using
the same reference data and tools as well as the same evalua-
tion metrics. The granularity of traffic flows reflects the portion
of the packet headers analyzed to construct what we call flow
objects, which can vary from one direction of an individual
application session to bidirectional flows between hosts. Com-
mon flow objects, with different granularities, include: 
• TCP connections: Heuristics based on the observation of

some TCP flags (i.e., SYN, FIN, RST), or TCP state
machines, are used to identify the start and the end of each
connection. 

Figure 1. Evolution of approaches and literature in traffic classification.
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• Flows: A typical flow definition uses the 5-tuple {sourceIP,
sourceport, destinationIP, destinationport, transport-level proto-
col}; some tools also use a flow timeout (60 s or 90 s of idle
time to delineate the end of a flow) or periodic reset (e.g.,
timeout all flows on a 5-min boundary). 

• Bidirectional flows (biflows): Same as above, but includes
both directions of traffic, assuming both directions of flows
can be observed (especially challenging on backbones
where Internet routing is often asymmetric). Classification
approaches using bidirectional flows cannot be applied “as
is” to flows or TCP connections because the classification
features can change. 

• Services: Typically defined as all traffic generated by an IP-
port pair.

• Hosts: Some approaches classify a host by the predominant
traffic it generates, assuming both directions of traffic (to
and from the host) can be observed.
Furthermore, different approaches may ascribe flow objects

to traffic classes of different size or granularity, such as:
• Traffic profiles (bulk, interactive, etc.)
• Application categories (e.g., chat, streaming, web, mail, file

sharing)
• Applications (e.g., KaZaa, Edonkey, IMAP, POP, SMTP) 
• A single application vs. the rest (i.e., identification)
• Content type, either coarse-grained (e.g., text, binary, or

encrypted content) or fine-grained (e.g., text, picture, audio,
video, compressed, base64-encoded image, base64-encoded
text)
Figure 2 illustrates several different types of flow objects,

the proper selection of which often depends on the purpose of
classification (e.g., traffic management, security).

Obstacles and Future Directions in Internet
Traffic Classification
Using the terminology and context provided in the previous
section, we outline the persistently unsolved challenges in the
field over the last decade, and suggest several strategies for
tackling these challenges to promote progress in the science
of Internet traffic classification.

Available Data and Ground
Truth

The most obvious obstacle to
progress on traffic classification is
a persistent problem of Internet
research generally: lack of a variety
of sharable traces to serve as test
data as well as ground truth (i.e.,
annotated flow objects used as ref-
erence) for validation. Balancing
individual privacy against other
needs, such as security, critical
infrastructure protection, or even
science, has long been a challenge
for law enforcement, policymakers,
and scientists. It is good news when
regulations prevent unauthorized
people from examining the con-
tents of your communications, but
current privacy laws often make it
hard — sometimes impossible —
to provide researchers with data
needed to scientifically study the
Internet. Our critical dependence

on the Internet has rapidly grown much stronger than our
comprehension of its underlying structure, performance limits,
dynamics, and evolution, and unfortunately, current privacy
law is part of the problem: legal constraints intended to pro-
tect individual communications privacy also leave researchers
and policymakers trying to analyze the global Internet ecosys-
tem essentially in the dark. Traffic classification is but one
casualty.

One potential solution would be to share traces that are
sufficiently aged as to have minimal privacy sensitivities, but
since all classification tools must also contend with the appli-
cation obfuscation arms race, the most relevant and
formidable challenge is accurately classifying a substantial
fraction of traffic on recent traces [6].

To address the difficulty in sharing even anonymized data,
one proposed but untested and scientifically problematic
alternative is to “move the code to the data,” where researchers
send their analysis tool (generally software) to a data provider
who runs the tool against private data and sends the results
back to the researchers. Several researchers independently
proposed this model years ago, but there has been no measur-
able traction in this direction, partly because few data
providers have the resources and incentive to review
researcher software to ensure it will not leak unexpected
information from the data.

Researchers have also explored the possibility of sharing
anonymized traffic traces annotated with ground truth
obtained via payload examination before anonymization [7].
Unfortunately, tools for labeling traces with ground truth are
still in early development, do not consistently assign the same
flow object to the same class [8], and most of them are not
publicly available, so they cannot be scientifically evaluated or
improved by researchers. Primarily based on matching the
presence of known strings (“signatures”) in the packet pay-
load, these tools differ not only in the set of signatures, but
also in the matching techniques and algorithms. For example,
the L7-Filter tool, used in several studies (e.g., [9]), is strictly
based on regular expressions applied to a portion of the pay-
load stream (e.g., first 4096 bytes), while the crl_pay tool by
Karagiannis et al. [4–6] limits the payload analysis to the first
16 bytes, but also uses port numbers and packet sizes to infer
the generating application. Another problem is that some sig-

Figure 2. Types of Flow Objects. In this example packets between hosts A and B can be
grouped either into a single TCP connection, or two biflows, or four flows. The same packets
can instead (or also) be part of a larger object that groups all packets to/from port TCP 143
of host A into a single service, i.e., including packets to/from host C in the figure, or part of a
host, which groups all packets to/from host A, i.e., all packets in the figure. 
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natures are too general (e.g., based on too few bytes) and can
generate incorrect annotations. Most recently (2010),
researchers have experimented with gathering ground truth
directly from hosts of users volunteering to self-annotate their
traffic, using an admittedly small population of (about 20)
users.3 Although still meager in scope, such technical develop-
ments reflect growing awareness by researchers of the need
for accurate publicly available tools for ground truth annota-
tion, as well as standard techniques, procedures, and annotat-
ed data sets to use as ground truth reference resources.

Traffic Evolution
Both research and marketing literature in traffic classification
suggest there is no perfect classification technique (i.e., with
100 percent accuracy over all traffic. In addition to the three
historical developments reviewed earlier (non-standard ports,
disguised ports, and NATs) that have increased the difficulty
of classifying traffic by port identifiers over the last two
decades, three more recent trends this decade have further
hindered the ability to classify Internet traffic:
• Protocol encapsulation, such as traffic tunneled inside

HTTP, accurate identification of which requires more inva-
sive payload inspection and/or complex protocol analysis in
the classifier.

• Some traffic is encrypted or encoded, limiting the ability to
extract features to those that remain after encryption.

• Some applications support multiple service channels: multi-
channel applications that merit different service qualities or
security policies within the application require identifying
not only the network application associated with a traffic
flow, but also the specific task within the application (e.g.,
signaling, video streaming, chat, data transfer, voice call).

Traffic classification techniques in the literature have not kept
pace with these three challenging trends.

Scalability
Another challenging trend in Internet evolution is the tremen-
dous growth of the infrastructure in every dimension, includ-
ing bandwidth capacity of links. Most real-world applications
of traffic classification require tools to work online, reporting
live information or triggering action according to classification
results. But online traffic classification on modern links
requires trade-offs among accuracy, performance, and cost. The
practical challenges have led to many published studies with
limited evaluation in a simplified environment rather than a
systematic rigorous analysis of these trade-offs. For example,
in order to work online without custom (often prohibitively
expensive) hardware, complex DPI classifiers must sacrifice
functionality — either analyzing a shorter portion of the pay-
load stream of each traffic flow, or simplifying their pattern
matching approaches.

Machine learning techniques require similar compromises
to lower or bound the latency of classification during online
execution. Data reduction is generally implemented by limit-
ing the number of packets of a flow [9, 10] used for extracting
classification features. Computational overhead is limited by
reducing the set of features [11] used to classify traffic, ideally
using features that can be extracted with low computational
complexity. Some features are not suitable for online classifi-
cation because they are available only at the end of a flow,
such as total transferred bytes.

In [11] the authors analyzed the computational complexity
and memory requirements associated with typical traffic fea-
tures in an online classification context. Selecting 12 features,

where the maximum complexity is O(n × log2(n)) (for median
packet size), they show that while features like source and des-
tination ports or number of bytes sent in initial window have
complexity O(1), most features used for online classification
(e.g., variance of packet size) have complexity O(n), with n
being the number of packets used to extract features. Limiting
the number of packets used to extract features offers several
benefits: lower feature extraction complexity; lower latency
since classification can occur early in each traffic flow; and
lower memory cost to maintain flow state during classification.
Using a limited set of packet traces, some researchers have
shown that four to five packets were enough to approach the
maximum classification accuracy obtainable with a restricted
set of features suitable for online classification [10, 11]. How-
ever, these compromises also make the techniques easier to
evade, so designers must consider the specific objective of the
online classifer when optimizing performance, e.g., the eva-
sion likelihood matters more for security-related contexts than
for quality of service.

Latency is also affected by the speed of the specific
machine-learning algorithm. Studies of features for online
traffic classification and real traffic traces have shown that the
fastest techniques among those most commonly used are
based on decision trees, specifically the C4.5 algorithm [11,
12].

Architectural design choices also influence these scalability
trade-offs. In the next decade, traffic classification systems will
have to be redesigned to run on multicore hardware, targeting
low-cost but highly parallel architectures. General-purpose
graphical processing units (GPGPUs) have introduced a new
computing paradigm, allowing scientific and computationally
intensive applications to achieve orders of magnitude in per-
formance improvements with minimal hardware costs. Recent
works have successfully applied GPGPUs to DPI for intrusion
detection and traffic classification [13], using multiple cores to
speed up regular expression matching. Although not yet
applied specifically to traffic classification, redesigning generic
machine learning algorithms as support vector machines in
order to exploit multicore systems has yielded large scalability
improvements. Parallelism can also be pursued at a higher
layer of a traffic classification architecture, using multithread-
ing to pipeline the typical execution sequence: packet filtering,
packet classification (aggregation of packets into flow objects),
feature extraction, activation of different traffic classifiers,
flow object classification by each classifier, combination (see
the “Combining Techniques” section), and output. Alterna-
tively, replicating classification modules on different cores
may enable per-flow load  balancing to achieve even higher
scalability.

Consistent Evaluation and Comparison Methods
Rigorous evaluation and comparison of techniques requires
standard testing and validation procedures and benchmarking
metrics. We described earlier the lack of convergence in termi-
nology in the literature, which also extends to benchmarking
metrics used to evaluate methods [7]. The generally accepted
metric for evaluation is overall accuracy, the fraction of all
flow objects correctly classified. We have previously recom-
mended borrowing metrics from more mature fields, such as
those used in other machine-learning classification problems
[6] — precision, recall, and F-measure, calculated for each class
separately to yield a deeper understanding of the classifier’s
performance than a simple overall accuracy metric provides.
Precision is the ratio of objects properly attributed to a class
over the total number of objects attributed to that class.
Recall is the percentage of objects from a given class that are
properly attributed to that class. F-measure is calculated as 23 http://www.ing.unibs.it/ntw/tools/traces
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× precision × recall/(precision + recall); this last metric is use-
ful to rank and compare the per-class performance of differ-
ent classification algorithms. Byte accuracy, which is the ratio
of the sum of all bytes carried by the correctly classified flow
objects to the sum of all bytes in the traffic considered, is
rarely analyzed in Internet traffic classification literature,
although it is arguably more relevant operationally, and miti-
gates the class imbalance problem (a machine-learning term)
induced by high population variance, in this case across Inter-
net flow sizes [14]. 

Benchmarking metrics are more effective if they take into
account the target application of the classification approach
and distinguish among granularities under evaluation. Differ-
ent cost functions of basic metrics, including error handling,
depend on the specific application context (e.g., traffic man-
agement, differential pricing, security), which renders it diffi-
cult to standardize evaluation metrics. Using the terminology
from earlier, some techniques classify into only four broad
profiles (interactive, bulk data, streaming, transactional);
other tools group applications into categories (mail, web,
peer-to-peer [P2P], etc.) [5]; others consider individual appli-
cations [10]. Automated and rigorous comparison of tech-
niques would require both standard flow object definitions and
standard classes at each layer, as well as standard mapping
between layers (e.g., IMAP, POP, and SMTP are all in the
mail category).

Finally, and related to the first challenge described above
(available data), the traffic used for test and validation is typi-
cally limited to what is easy to collect or share. Traffic traces
for validation are often necessarily extracted from a single or
a few links, or from links too similar in nature (e.g., university
access networks and home access networks (digital subscriber
line [xDSL]), which inhibits the evaluation of the robustness
of tools in the face of more realistically varying traffic. Data
sets may only include a subset of traffic on a given link. UDP
traffic is often ignored, despite its growth on the global Inter-
net. Many traffic traces do not include both directions of traf-
fic flow, preventing their use for techniques based on overall
host behavior [5]. Data used for evaluation is often years old,
while identifying current traffic types, especially malicious, is a
more common goal for those deploying traffic classification
technology. The effect of sampled traffic — often the only
type of data available due to measurement performance con-
straints — on feature extraction and classification accuracy
has not been systematically explored, while complete traffic
traces of sufficient length for evaluation are unwieldy and
costly to store, curate, and use.

Combining Techniques
Since different techniques perform better on some traffic

classes, a system combining them — called a multiclassifier sys-
tem — potentially achieves better accuracy than any single
classifier. The machine learning community has recently
developed multiclassifier systems based on intelligent combi-
nation algorithms that learn from historical behaviors of indi-
vidual classifiers on the studied flow objects. Such systems can
achieve higher accuracy than any single classifier, and are
more robust to changes in the sample population, including
the nature and mix of applications (concept drift). Network
anomaly and intrusion detection applications have successfully
used such multiclassification approaches, but traffic classifica-
tion tools have only attempted simplified approaches, such as
resorting to host-based heuristics or machine learning tech-
niques only after payload inspection has failed. Researchers
are only recently beginning to investigate more general and
effective techniques [15] that use different classifiers on the
same flow object and combine the results through algorithms

based on either voting, Bayesian probability, Dempster-Shafer
theory, or the behavior knowledge space (BKS). Although
combining classifiers can increase the computational complexity
of the process, it can also potentially reduce the amount of
traffic information required for accurate classification (e.g.,
using two packets per flow rather than five), which can reduce
the average classification time (latency). However, such algo-
rithms also typically require additional information in the
training phase, such as confusion matrices or BKS tables. A
per-classifier confusion matrix lists in each cell (i, j) the per-
centage of objects of class i recognized by the classifier as
belonging to class j. A BKS table similarly lists the probability
of an object belonging to each class, for each possible combi-
nation of outputs from different classifiers. Obtaining the data
to populate the confusion matrix or BKS table requires indi-
vidually training and testing each classifier before training the
combination algorithm. Nonetheless, assuming that the differ-
ent classifiers in the combination can execute in parallel, the
flexibility offered by combination classifiers facilitates the scal-
ability trade-offs essential for online techniques.

Finally, adding confidence values to the output of individu-
al classification algorithms may further improve the accuracy
of multiclassifier systems. Many machine learning algorithms
can associate a confidence value with the inferred class, while,
as regards payload-based approaches, one can also derive con-
fidence values for a given output class by analyzing pattern
matching signatures [9]. Using confidence values in conjunc-
tion with multiclassification enables the implementation of
classifiers that may improve precision by refusing to attempt
classification (a rejection option) under specific circumstances.

Available Implementations
A few available tools are worth noting. The NetAI4 tool does
not directly perform traffic classification, but can extract a set
of features from both live and stored traffic for use by a gen-
eral-purpose machine learning classifier. The Fullstats utility
developed at the University of Cambridge, United Kingdom,
is also able to extract classification features from a traffic
trace. The same research group released GTVS, a DPI-based
tool able to assist researchers in manually inspecting and
semi-automatically labeling traffic traces.5 To our knowledge
the only two traffic classifiers implementing machine learning
techniques presented in the literature are Tstat 2.06 and TIE.7
Tstat uses a customized machine learning technique based on
a Bayesian framework with packet size and interpacket time as
classification features to identify applications such as Skype
and obfuscated P2P file sharing. Although Tstat’s machine-
learning-based classification is limited to a few applications,
the tool allows the extraction of a large number of classifica-
tion features. It also performs both payload inspection and
machine learning classification online on live traffic, and can
generate web reports with graphs of aggregated data.

TIE is a software platform for supporting the implementa-
tion of traffic classification techniques inside a unified frame-
work made available to the research community. TIE exposes
a simple application programming interface (API; in the C
language) for the development of traffic classification plugins
adopting either DPI, machine learning, or port-based tech-

4 http://caia.swin.edu.au/urp/dstc/netai

5 http://www.cl.cam.ac.uk/research/srg/netos/brasil

6 http://tstat.tlc.polito.it

7 http://tie.comics.unina.it
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niques. The modular architecture supports traffic capture and
filtering, packet aggregation at several granularities, feature
extraction, as well as combination of classifiers. We developed
and released TIE to support advanced features such as multi-
classification and online classification as well as to facilitate
consistent comparison of different techniques through a
framework of well defined classes, flow objects, and metrics,
addressing some of the recommendations made in the next
section.

Summary and Recommendations
Research on Internet traffic classification has produced cre-
ative and novel approaches, but the landscape is foggy, frag-
mented, and inconsistent. In this article we provide a critical
but constructive analysis of the field of traffic classification,
including its historical context, which illuminates its achieve-
ments and obstacles to progress. A recurrent emergent theme
of our investigation is the need for cooperative approaches to
the science of Internet classification, and a recognition of the
incentives as well as counter-incentives of industry stakehold-
ers to contribute to the transition of Internet traffic classifica-
tion from art to science. We outline both research and policy
directions that could improve the capabilities and effective-
ness of traffic classification systems, summarized in the follow-
ing recommendations: 
• Rigorous evaluation and comparison requires testing and

validation of tools against recent and complete traffic
traces, which will require navigating the persistent chal-
lenges (mostly policy, some technical) of sharing traffic data
with researchers.

• The ever increasing speed of network links requires rigor-
ous investigation of scalability trade-offs in traffic classifica-
tion. Appropriate and novel designs for highly parallel
low-cost architectures promise significant scalability
improvements.

• Improving tools to annotate data with the actual traffic class
(i.e., ground truth tools) can be done through sharing of
algorithms and signatures in order to allow community con-
tributions, comparisons, and validation, for example, by
comparing the output of the annotating tools against 100
percent safe reference data.

• Traffic classification techniques and algorithms should be
presented with rigorous empirically grounded analysis of
efficiency and performance, using standard metrics compar-
ing implementations running on diverse Internet traffic,
including encapsulated, encrypted, and multichannel appli-
cation flows of varying length. 

• Research on multiclassifier systems is warranted, since they
combine the benefits of different approaches to improve
accuracy, flexibility, and speed, at some cost in computa-
tional complexity and possibly additional training data and
time.

• Publications of open source implementations of real traffic
classification systems for use in experiments would foster
collaboration and promote convergence on standard defini-
tions, procedures, and reliable evaluation of techniques.
Many of these problems are complex policy rather than

purely technical problems, and advancing the field will require
that the Internet research community learn how to navigate
the conflicting incentive structure of the phenomena they are
trying to study. In the short term, we can imagine several con-

crete actions that would promote progress: community stan-
dardization (e.g., through Internet Engineering Task Force
[IETF] Requests for Comments [RFCs]) of definitions, data
formats, and metrics for traffic classification and identifica-
tion; holding traffic classification competitions in conjunction
with networking conferences and workshops; creating public
repositories of traces of recent traffic from real network links
annotated with ground truth; and establishing a coordinated
network of entities offering the execution of classification
code on their traces (i.e., send-code-to-the-data) and docu-
menting experiences in formats that allow comparison with
alternatives.
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