An Experimental Analysis of Diffserv-MPLS Interoperability

S. Avallone', M. Esposito’?, A. Pescapé'?, S. P. Romano', G. Ventre'
YUniversita degli Studi “Federico 1I” di Napoli
DIS, Dipartimento di Informatica e Sistemistica
Via Claudio, 21
80125, Napoli
tel +39 081 7683908
fax. +39 081 7683816
{stefano.avallone, mespaosit, pescape, spromano, giorgio }@unina.it
2 ITEM - Laboratorio Nazionale CINI per I’Informatica e la Telematica Multimediali
Via Diocleziano, 328
80125, Napoli
{ marcello.esposito, antonio.pescape }@napoli.consorzio-cini. it

Abstract

In this paper we present some interesting research studies
conducted over both a Differentiated Services (Diffserv)
and @ Multi Protocol Label Switching (MPLS)
experimental testbed. Diffserv operation over an MPLS
backbone is also investigated. The frials have been
performed on a network made of Linux routers and the
measures have been collected by exploiting state-of-the-art
open source Ssoftware, either available from other
researchers or developed at our own Universily.

Keywords: Diffserv, MPLS, Diffserv over MPLS.

1. Introduction

This paper presents an experimental approach to the study
of the interoperability between the Diffserv and MPLS
paradigms: this piece of work represents part of a more
comprehensive research aimed at designing and
implementing a gencral framework for the effective
negotiation and delivery of services with quality assurance.
Nowadays, when discussing about enhanced Quality of
Service (QoS) models, the basic assumption is that a QoS-
enabled network infrastructure is available at the lower-
most level. With regard to this point, Differentiated
Services (Diffserv [1]) and Multi Protocol Label Switching
(MPLS [2]) currently appear as the best choices. While
being far from original with such a statement, it has to be
noticed that a crucial factor is definitely missing inside the
research community: few implementations currently exist
of both such architectures and most of them represent
proprictary solutions, full of device-specific
contaminations. Our contribution in this field is related
both to exploiting 1o their best state-of-the-art open source
implementations of thesc architectures and to adding new
functionality to them whenever decmed necessary. With
respect to Diffserv, we became familiar with two different
implementations, based, respectively, on the FreeBSD and
Linnx operating systems. The former is the ALTQ [3]
package developed at the Sony Research Laboratories in

0-7803-7661-7/03/$17.00©2003 IEEE

Japan, the latter is the Traffic Cantrol (TC) [4] [5] module
(together with the TC next Generation — TCng — package,
which adds lots of useful functions to TC). Such modnles
basically make available the fundamental waffic control
components which are needed in order to realize the
Diffserv paradigm: classifiers, schedulers, conditioners,
markers, shapers, etc. Coming to MPLS, we utilized a
brand new package rumning under Limux (6], which
required some fixes and modifications (also in cooperation
with the author) in order to function properly. We already
have substantial experience with this platform, since we
exploited it in order to make a thorough evaluation of its
performance in a number of different situations:
comparative analysis of the behavior of different protocols
(ICMP, TCP, UDP) on top of MPLS, impact of label
stacking in terms of protocol overhead, etc. [7]. In the
following we will show some interesting experimental
results obiained over a testbed set up at the University of
Naples. More precisely, we will herein concentrate on the
Linux implementations of both Diffserv and MPLS.

After analyzing Diffserv and MPLS behavior, we will
finally expand on issucs related to their interoperability: to
this purpose, we will present a sccnario where Diffserv
runs over an MPLS backbone and we will make a
compatison of the results obtained with those related to the
plain Diffserv case. The paper is organized in four
sections. The experimental testbed we setup in order to
carry out the trials is presented in section 2. Section 3
shows the results we obtained from our experimentations
and draws a comparison among the four different scenarios
we analyzed: best effort, Diffserv, MPLS anrd Diffserv
over MPLS. Conclusions and directions of future work are
provided in section 4.

2. The Experimental Testbed

In this section we present an experimental testbed
developed at the University of Naples with the intent of
gaining experience from actual trials and experimentations.
Such testbed, shown in Figure 1- The testbed used for the
trials, is made of Linux routers and closely mimics (apart

281

Nst 19168164
Mebuuek 253288285334

Figure I- The testbed used for the trials!

from the scale factor) an actual internetworking scenario, It
is built of a number of interconnected I.AN networks, each
realized by means of one or more cross-connections
between pairs of romters. The setup allows for
communication between gach network element and alt the
others, thanks to ad-hoc static configuration of some
routing paths. For these tests, Gaia, Zeus and Poseidon
represent the QoS-enabled P infrastructure whose
performance we want to evaluate, Aphrodite hosts the
traffic generator and also acts as a sink. The direct
connection from Cronus to Aphrodite, in fact, was added in
order to allow a precise evaluation of transmission time for
the packets: Aphrodite just sends data from one of its
interfaces (192.168.1.5) to the other (192.168.1.65) and,
provided that network routes have been appropriately
configured, such data flows first to Cronus (thus crossing
the QoS backbone) and then directly back to Aphrodite.
Thanks to this mechanism, we are able to measure
transmission times by relying on a single clock (the one
residing on Aphrodite), thus avoiding any distributed clock
synchronization issue.
Before digging into the detailed performance analysis for
the four different configurations (Best Effort, Diffserv,
MPLS and Diffserv over MPLS) let's spend a few words
about the traffic pattern we adopted for all of the
experiments. We uscd a traffic generator we developed at
our univetsity [8] [9), which lets you choose packet
dimensions, average transmission rates and traffic profiles
(either deterministic or Poisson), also giving a chance to
set the Diffserv Code Point (DSCP) of the generated
packets. An interesting feature of Miools is the capability
to reproduce the same realization of the packet generation
random process, by setting the same generating seed for
different trials, We fed our network with the following
traffic:

« packet size: 1000 bytes;

= traffic pattern: Poisson;

« traffic duration: 3¢ seconds;
Aphrodite sends four different flows simultancously:

1. 760 Kbps Expedited Forwarding (EF) traffic;

2, 1.24 Mbp' Defanit (DE) traffic;
3. 846 Kbys Assured Forwarding traffic, with a low
drop pr cedence (AF11);
4. 160 Kbp: Assured Forwarding traffic, with a higher
drop prcedence (AF12);,
The overall bit 1ate of the traffic injected into the network
is thus about 3 "Mbps. In order to appreciate the impact of
scheduling (and! in the case of Diffserv, also policing) on
the network, we configured all of the routers so to use a
Class Based Qr'2uing (CBQ) scheduler, with a maximum
available bandv'idih of 2.8 Mbps. Since the injected
traffic is more 1l an the network can bear, packet losses will
be experienced and we expect them to be uniformly
distributed amo: g the various classes of service only in the
Best Effori and plain MPLS (i.e. MPLS with just one LSP
cartying all the ’;raﬂic) scenarios.

2.1 Best Eff)t scenario

In the Best Effc rt case, we have just one CBQ class for all
of the waffic :lows (which are thus scheduled without
taking into con ideration the DSCP inside the IP header).
2.8Mbps have t zen assigned to this class. Here is the TCog
script used to o nfigure network nodes in this simple case:

// Output ir terface (towards Zeus)

ethl cbg(b:ndwidth 100Mbps, avpkt 1000B,
allot 1514B: maxburst

8p) { :
clas::(rate 2.8Mbps, bounded} if 1

2.2 Diffsery scenario

In this case, of:the available 2,8 Mbps, 0.8 are assigned to
the EF class, :.0 to AF1 and 1.0 to defanit waffic (DE).
Expedited For varding is served in a First In First Out
(FIFO) fashiot:, while the Assured Forwarding and Default
quecues are managed, respectively, with a Generalized
Random Early Discard (GRED) and a Random Early
Discard (RED) algorithm. Following, you can find an

282

excerpt of the traffic control script used to enforce such a

configuration onto router Gaia,

#idefine EF_PROFILE rate 1.1Mbps, burst
10kB

#define AF11_PROFILE rate 0.9Mbps, burst

10kB, peakrate 1.2Mbps
f#idefine AF12 PROFILE rate 0.9Mbps, burst SkB

#define DE_PROFILE
15kB

rate 1.5Mbps, burst

#define CBQ _ODISC_PARAM bandwidth 100Mbps,
avpkt 1000B, allot 15148, maxburst 10p

#define FIFO_EF PARAM limit 10kB

#define RED DE_PARAM bandwidth 1.0Mbps,
limit 120kB, min 10kB, max 100kB, avpkt
10008, burst 11kB, probability 0.3

#define GRED_AF1l_PARAM
limit 120kB, min 30kB,
10008, burst 35kB

bandwidth 1.0Mbps,
max 100kB, avpkt

Please notice that in this case Gaia acts as the ingress
Diffserv edge router and has thus been configured with a
policer, whose function is to either drop or remark out-of-
profilc packets.

-2.3 MPLS scenario

in a pure MPLS network, packets are assigned to the
various Label Switched Paths (LSPs) based on information
such as sender’s and receiver’'s IP addresses. More specific
fields, such as the DSCP (i.e the Type Of Service byle of
the IP header), are completely ignored.

Tn this scenario we will thus rely on a single LSP to carry
all of the traffic flows that enter the MPLS cloud. This
means that all packets will be marked with the same label
and will experience the same treatment. When leaving the
MPLS backbone (i.c. upon arrival at Poseidon) the MPLS

Beat Witort - TrRNEMiseon Delsy:
T u

i N N
250080 E 25080 35085 6100 a10% 110 8IS

header is bumped off and the packet is passed to the TP
module for further forwarding,

2.4 Diffserv over MPLS scenario

As opposed to the previous case, this scenario provides for
MPLS support to Diffserv, that is to say packets are
forwarded via MPLS label swapping, but different packet
flows (as identified by the DSCP code) are treated in a
different fashion. This is achieved by inserting additional
information into the MPLS header. Here we will exploit
one LSP for EF and DE {raffic and a different one for the
two AF1 flavors. In the first case, information about the
Per Hop Behavior will be encoded in the EXP bits of the
MPLS header, thus creating a so-called E-LSP [10]; on the
other hand, for the Assured Forwarding flows (which have
0 be scheduled in the same fashion) the EXP bits carry
information related to the drop precedence level (L-LSP).
For this trial, again, router Gaia has to perform policing at
its ingress interface.

3. Experimental results

In this section we will show, comment and compare the
experimental resultis we obtained for the four
aforementioned Scenarios. As a preliminary consideration,
please notice that transmission time is a useful indicator
when evaluating performance, since it contains information
related to two fundamental aspects: the time needed to
process packets and the time spent waiting inside queunes.

3.1 Best Effort scenario

Let’s get started by analyzing the results obtained with the
Best Effort network setup. Since no differentiation is
provided in this case, we expect that all the flows receive
more or less the same treatment. This is what actually
happens, as witnessed by Figure 2 - Best Effort scenario:
transmissicn delay which shows the transmission delay for
every flow. As you cdn see from the pictures, all the curves
have the same aspect, which means that no special
treatment i5 reserved to any of the flows,

ne L

o5t

25080 o 25080 25088 o 108 B0 s

283

Best fort - Transmisslon Disay
v T

AF1Z ——

it

B110 EE

|

o -

" P " N L
»ot . 25090 30095 kT »103 210
Timels}

Eo]

Figure 2 - Best Effort scenario: transmission ¢ elay

The previous considerations are also confirmed by table
Table 1 - Best Effort scenario: statistical indicators, which
summarizes some of the most interesting indicators
associated to the traffic. Notice that packet losses are
directly proportional to the different rates of the flows.

3.2 Diffserv scenario

Let’s now switch to Diffserv. What we expect now is that
the requirements we specified for the single flows are
actually met: EF packets should be forwarded much faster
than the others, AF packets should be reliably delivered,
while DE packets should be treated in a Best Effort
fashion. Figure 3 reports packet transmission times in the

indicators, in ‘um, gives some statistical indicators
concerning the t affic. The first cornment that can be done
in this case is th:t packets belonging to different flows are
definitely treatei in a different manner: transmission
delays vary from one class to the other and this was exactly
what we envisag :d, since Diffserv is nothing but a strategy
to differentiate packets based on their specific
requirements. El packets are those that endure the smallest
delay;, AF packels, in turn, experience a reliable delivery
(as witnessed by the zero packets lost for both AFII and
AF12 classes). Finally, the DE class is the one which
suffers from th: highesi delay and the greatest packet
losses (see Tible 2 - Diffserv scenario; statistical

Diffserv case. Table 2 - Diffserv scenario: statistical indicators). |
TX time(sec)/flow EF AFil AF12 DE
mean 0.253 022 0.253 0.251
max 0.298 02¢8 0.298 0.298
tin 0.001 0.0(1 0.001 0.001
jitter 0.297 0.2t 7 0.297 0.298
dropped packels 99 183 3 453

|
Table 1 - Best Effort scenario: statistical indic ators

D41 Gy - Trmrmmlsnton Dedey

284

DfSery - Transmission Deiay

|
o | A —
" !
il / .
o
|
ol .‘ J

DFiSery - Traromirzion Deley

OFiSery - Trans:osion Déidy

Deityis)

Figure 3 - Transmission delays for the Diffserv scenario

TX time(sec)/flow EF AFl11 AFI12 DE
mean 0.015 0,127 0.127 0.444
max 0.128 0.387 0.388 0.656
min 0.001 0.001 0.001 0.001
jitter 0,127 0.387 0.387 0.655
dropped packets 11 0 0 769

Table 2 - Diffserv scenario: statistical indicators -

3.3 MPLS scenario

In the MPLS scenario all the flows should be treated the
same way, since no differentiation mechanism has been set
up and just one LSP is in place. Figure 4 - Transmission
delays in the MPLS scenario shows the transmission delay
for the MPLS configuration. As the reader will have
noticed, such graphs are surprisingly simifar to those we
showed for the Best Effort case. The total delay for a
packet is approximately given by the processing time
inside nelwork elements (to compute the appropriate

MPLS - Tranamiaaton Dacy

4
80120 sotss. ©0zie

Timaiz}

route), plus the quening time, plus the actval transmission
time over the outgoing link. In the above computation,
only the first contribution is dependent on the specific
forwarding strategy adopied (in our case, standard IP
forwarding versns MPLS switching). With the enforced
network setup the actval bottleneck is definitely
represented by the output interface’s bandwidth, hence the
contribution due to packet processing is negligible when
compared to the others: that’s why we were not able to
appreciate the performance improvement associated to the
use of MPLS.

MPLS~ Tracmmiesion Detry

0150 L] L) L L)

285

MPLE - Trarmmission Delay

AF12 ——

/}/\[’”’WWWWWZ

. L L " L
&S 80200 -] o0z10 w5

SALS . Trancrisaion Deay
T

JWWW"’\J

o L
0185 1%

o0z woi% boEN [(<41 <L)
Temes) Tenads)
Figure 4 - Transmission delays in the MPLS sc nario
TX Time(sec)/flow TF AF11 AF1Z DE
mean 0.249 0.249 0.250 0.247
max 0.288 0.279 0.289 0.287
min 0.001 0.00} 0.001 0.001
Jjitter 0.287 0.278 0.288 0.286
dropped packets 141 152 2 445

Table 3 - MPLS scenario: statistical indicatc rs

3.4 j)iﬁserv over MPLS scenario

Let’s finally take a look at the resulis obtained with the last
configuration, where Diffserv is running over an MPLS
backbone. Figure 5 and Table 4 show how the presence of
a Diffserv infrastructure meets the requirements for both
EF and AF flows. By comparing the graphs in Figure 3
with those in Figure 5 we notice that the traffic profiles are
almost the same in the two scenarios. As we already
mentioned in the previous section, with the network setup
considered, the MPLS improvement does not come to the
fore, First of all, in fact, also in this scenario the bottleneck
is represented by the output link bandwidth, which
definitely overwhelms the delay contribution due to packet

DS+MPLS - Yrarmrsbssion Didey

:ldiﬂ

L L) su20 S

A

processing time. :Moreover,' as it is well known, the more
the routing tables: grow, the easier it becomes to appreciate

. the performance sap between the longest IP routing match

lookup and MPLS label switching. Finally, if you are
wondering why IPLS should be used, since it adds little
to network perfo mance in the contexi described (i.c. one
in which the rou:ing tables dimensions are pretty small),
notice that its najor benefit is disclosed as soon as
constraint-based :‘outing techniques are taken into account.
Stated in diffeient terms, it is our opinion that a
compariscn base: | solely on the delay performance figures
is not fair, sinze a thorough analysis cannot aveid
considering the fi ct that MPLS enables traffic engineering,
by evading tradi ional (e.g. shortest path) forwarding, in

favor of fuly customized routing paradigms.
|
‘ B3+MPLS - Tranmriwsion Detzy
i d A —
s
[%]
il "
0z}
olr 1
. 1 .
=00 -] [.- a2 280 K B340 L]

286

DSMPLS - Trantmisslon Dwiey

" AFiz ——
AR
E 03
" \y\
N Ai aﬂ A . . i N\
2510 L1 L~ 2R [~ -] -om3s B840 L~]

Tiealy)

Figure 3 - Transmission detay in the Diffserv over MPLS scenario

TX time(sec)/flow EF AF11 AF12 DE
mean 0013 0.120 0.119 0.444
max 0.119 0.369 0.371 0.699
min 0.001 0.001 0.001 0.001
jitter 0.118 0.369 0370 0.699
dropped packets 10 0 0 774

Table 4 - Diffserv over MPLS scenario: statistical indicators

4. Conclusions and Future Work

In this paper we summarized the lessons we learned when
applying an engineering approach to the study of state-of-
the-art QoS-enabled neiwork architectures, We prescnted a
number of experiments aimed at investigating network
performance in the presence of either Diffserv, or MPLS,
or a hybrid Diffserv/MPLS infrastructure.

As to the future work, we are currently facing the issue of
dynamically controlling such advanced networks, by
applying to them a policy-based management paradigm.
The research direction we are most interested in further
exploring is related fo the realization of a complex
architecture for Service Assurance, capable to take the best
ot of the two technologies. A TRAffic-engineered
Diffserv Environment (TRADE) is the final target of this
specific research: the major ingredients behind it are a
Diffserv-capable network on top of a trafficengineered
MPLS backbone.

Bibliography

[2] S. Blake et al, An Architecture for Differentiated
Services, JETF RFC2475, December 1998

[2] E. Rosen, A. Viswanathan and R. Callon, Multiprotocol
Labet Switching Architecture, /JETF RFC3031, January
2001

[3]1 Kenjiro Cho, Alternate Queuning (ALTQ) module,
Available at
http://www.csl.sony.co jp/person/kjc/programs. html,
Jamuary 2001

[4] W. Almesberger, Linux network traffic control —
implementation overview, White paper, EPFL ICA,
February 2001

[5] W. Almesberger, J. Hadi Salim and A. Kuznetsav,
Differentiated Services on Linux, draft-almesberger-
wajhak-diffserv-linux-01.txt, 1999

[6] J. R Leu, MPLS for Linux,
http://sourceforge.net/projects/mpls-linux
{71 S. Avalione, M. Esposito, A. Pescapé, S. P. Romano
and G, Ventre, Measuring MPLS overhead, Proc.
ICCC2002, August 2002

[8] S. Avallone, M. D’Arienzo, M. Espaosito, A. Pescapé,
S. P. Romano and G. Ventre, Mtools, Networking column
on IEEE Neiwork, September 2002 (the tool is available at
http:/fwvww.grid.unina.it/grid/mtools)

[91 S. Avalione, M. Esposito, A. Pescapé, S. P. Romano
and G. Ventre, MTools: a One-way Delay and Round-tdp
Time Meter, Proc. of the Gth WSEAS International
Conference on Computers, July 2002

[10] F. Le Faucher et al., Multi-Protocol Label Switching
(MPLS) Sopport of Differentiated Services, IETF
RFC3270, May 2002

available at

287

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

