Reviewing Traffic Classification

Silvio Valenti'*, Dario Rossi, Alberto Dainott?,
Antonio Pescag, Alessandro FinamofeMarco Mellia®

1 Telecom ParisTech, Francd +r st . | ast @nst . fr
2 Universita di Napoli Federico II, ltaly + ast @i na. i t
3 Politecnico di Torino, ltaly first.l ast @olito.it

4 Current affiliation: Google, Inc.

Abstract. Traffic classification has received increasing attention in the last years.
It aims at offering the ability to automatically recognize the application that has
generated a given stream of packets from the direct and passieevatisn of
the individual packets, or stream of packets, flowing in the network. thiigy

is instrumental to a number of activities that are of extreme interest tecsrr
Internet service providers and network administrators in generagethdraffic
classification is the basic block that is required to enable any traffic maredge
operations, from differentiating traffic pricing and treatment (e.dicimg, shap-
ing, etc.), to security operations (e.g., firewalling, filtering, anomakgat®on,
etc.).

Up to few years ago, almost any Internet application was using well-Rii@msport-
layer protocol ports that easily allowed its identification. More recently, tima-n
ber of applications using random or non-standard ports has dramaticatased
(e.g. Skype, BitTorrent, VPNSs, etc.). Moreover, often networkliappions are
configured to use well-known protocol ports assigned to other applicatéeg.
TCP port 80 originally reserved for Web traffic) attempting to disguise tireis-
ence.

For these reasons, and for the importance of correctly classifyirfic tfimfvs,
novel approaches based respectively on packet inspection, sthfistiomachine
learning techniques, and behavioral methods have been investigatedeabe-
coming standard practice. In this chapter, we discuss the main trend irltheffi
traffic classification and we describe some of the main proposals of skaneh
community.

We complete this chapter by developing two examples of behavioral ctassifi
both use supervised machine learning algorithms for classificationgabtitis
based on different features to describe the traffic. After presentim,tive com-
pare their performance using a large dataset, showing the benefitsaaviobhdk

of each approach.

1 Introduction

Traffic classification is the task of associating networffizavith the generating ap-
plication. Notice that the TCP/IP protocol stack, thanka tdear repartition between
layers, is completely agnostic with respect to the appbcaprotocol or to the data
carried inside packets. This layered structure has beewfahe main reasons for the
success of the Internet; nevertheless, sometimes netweriamrs, though logically at

Table 1. Taxonomy of traffic classification techniques

[Approach [Properties exploited [Granularity [Timeliness [Comput. Cost |
Transport-layer port | : : . .
Port-based Fine grained |First Packet Lightweight
[49,50, 53] g ghtweig
Deep Packet Signatures in payload Fin : : Moderate, access
: e grained |First payload
Inspection |[44,50, 60] g pay to packet payload
Stochastic o : High, eventual
Packet Statistical properties Oizine grained |After a few packets |access to payload
. payload [26, 30, 37]
Inspection of many packets
Flow-level properties Coarse graingdfter flow terminationLightweight
Statistical [38,45,50, 58] i
[F;a(ilgt]et-level propertiet:;,q grained |After few packets Lightweight
. Host-level properties Coarse graingdfter flow terminationLightweight
Behavioral |[35,36,67]
Endpoint rate [7,28] |Fine grained |After a few seconds |Lightweight

layer-3, would be happy to know to which application packeti®ng, in order to better
manage their network and to provide additional serviceleo tustomers. Traffic clas-
sification is also instrumental for all security operatidiie filtering unwanted traffic,
or triggering alarms in case of an anomaly has been detected.

The information provided by traffic classification is extrelynvaluable, sometimes
fundamental, for quite a few networking operations [384%52]. For instance, a de-
tailed knowledge of the composition of traffic, as well asithentification of trends in
application usage, is required by operators for a bettdwork design and provision-
ing. Quality of servic€QoS) solutions [58], which prioritize and treat trafficfdifently
according to different criteria, need first to divide thdficain different classes: identi-
fying the application to which packets belong is crucial whssigning them to a class.
In the same way, traffic classification enables differeatiatlasschargingor Service
Level Agreements (SLA) verification. Finally, some natibgavernments expect ISPs
to performLawful Interception[6] of illegal or critical traffic, thus requiring them to
know exactly the type of content transmitted over their reks. Traffic classification
represents in fact the first step for activities suclaasmaly detectioffor the identifi-
cation of malicious use of network resources, and for sgcageration in general, like
firewalling and filtering of unwanted traffic [53, 56].

If, on the one hand, the applications of traffic classifiaatice plentiful, on the other
hand, the challenges classifiers have to face are not to berweitFirst, they must deal
with an increasing amount of traffic as well as equally insieg transmission rates: to
cope with such speed and volume, researchers are lookinglfitweight algorithms
with as little computational requirements as possible. sk is further exacerbated
by developers of network applications doing whatever iiirthewer to hide traffic and
to elude control by operators: traffic encryption and enakgt®n of data in other pro-
tocols are just the first two examples that come to mind. Thezeresearchers had to
come out with novel and unexpected ways for identifyingficaf

This Chapter is organized as follows. In Section 2, to preite background of the
field, we define a taxonomy in which we highlight the most imignt contributions in
each category along with their most important charactesistn Section 3 we discuss
the state of the art in the field of traffic classification. Irc&an 4 we describe the most
used machine-learning algorithms in the field of traffic sifisation. In Section 5 we
present two antipodean examples of traffic classificatiggr@aches, that we directly
compare in iSection 6. Section 7 ends the Chapter.

2 Traffic Classification: basic concepts and definitions

The large body of literature about traffic classificationd,715, 20, 21, 26, 28, 30, 35,
36, 38,44, 45,49, 50,50, 53,58, 60, 67] is a further evideridhe great interest of the
research community towards this topic. In the following, wi# present an overview
of the different approaches and methodologies that have jregposed by researchers
to solve this issue. It is important to underline that thigisfrom being an attempt to
provide a comprehensive list of all papers in this field (vahgiven their number, would
be particularly tedious). Such a detailed reference canimedfin a few surveys [38,52]
or in related community websites (e.g., [1]). Our aim is eatto identify the most
important research directions so far, as well as the mostseptative milestone works
and findings, to better highlight our contribution to thisealdy deeply investigated
subject. Still, despite this huge research effort, the camitg has not put the last word
on traffic classification yet, as a number of challenges amdtipns still remain open.

To better structure this overview, we divide the classifiara few categories ac-
cording to the information on which they base the classificatThis widely accepted
categorization, which reflects also the chronological eoh followed by research, is
summarized in Tab. 1. The table lists the most important sarleach category along
with their most relevant characteristics. The most impurpxoperties of a traffic clas-
sifier, which determine its applicability to different netik tasks [19], are:

Granularity We distinguish betweetparse-grainedlgorithms, which recognize only
large family of protocols (e.g. P2P vs non P2P, HTTP vs Stmeg)randfine-
grained classifiers, which, instead, try to identify the specifictponl (e.g. Bit-
Torrent vs eDonkey file-sharing), or even the specific apgibo (e.g. PPlive vs
SopCast live streaming).

Timeliness Early classificatiortechniques are able to quickly identify the traffic, after
a few packets, thus being suited for tasks requiring a proegation (e.g. security).
Late classificatioralgorithms take longer to collect traffic properties, andame
case they even have to wait for flow termination (ipmst mortenctlassification):
such techniques are indicated for monitoring tasks, suchaging.

Computational cost The processing power needed to inspect traffic and take dise cl
sification decision is an important factor when choosingaasification algorithm.
In the context of packet processing, the most expensiveatiparis usually packet
memory access, followed by regular expression matching.

3 State of the Art

In the first days of the Internet, identifying the applicatassociated with some network
packets was not an issue whatsoever: protocols were adgigme|l-known transport-
layer ports by IANA [2]. ThereforePort-based classification49, 50, 53] simply ex-
tracted such value from the packet header and then look it tipei table containing
the port-application associations. UnfortunatBhyrt-basedclassification has become
largely unreliable [34,50]. In fact, in order to circumverntrol by ISPs, modern ap-
plications, especially P2P ones, either use non-standats, @r pick a random port at
startup. Even worse, they hide themselves behind portshef grotocols — this might
enable bypassing firewalls as well. While port-based classifin may still be reliable
for some portion of the traffic [38], nevertheless it willsaiundetectable false-positive
(e.g., a non-legitimate application hiding beyond welbkm port numbers) and false-
negative (e.g., a legitimate application running on n@mdard ports) classifications.

To overcome this problen®Rayload-based classifierf26, 30, 44, 50, 60] were pro-
posed. They inspect the content of packets well beyond #respiort layer headers,
looking for distinctive hints of an application protocolpacket payloads. We actually
split this family of classification algorithms in two subegobries Deep packet inspec-
tion (DPI) techniques that try to match a deterministic set ofiaigres or regular ex-
pressions against packet payload, &tachastic packet inspecti¢gPl), rather looking
at the statistical properties of packet content.

DPI has long provided extremely accurate results [50] arsdd@®n implemented
in several commercial software products as well as in opencegprojects [4] and in
the Linux kernel firewall implementation [3]. The payloadpmdckets is searched for
known patterns, keywords or regular expressions which hagacteristic of a given
protocol: the website of [3] contains a comprehensive lidtavell known patterns.
Additionally, DPI is often used in intrusion detection srsis [53] as a preliminary step
to the identification of network anomalies. Besides beingeswely accurate, DPI has
been proved to be effective from the very first payload pac&ét session [5,54], thus
being particularly convenient for early classification.

Despite its numerous advantages, DPI has some significantbdcks. First the
computational cost is generally high, as several accesgecket memory are needed
and memory speed is long known to represent the bottlenetkdérn architectures [66].
String and regular expression matching represent an additcost as well: although
there exist several efficient algorithms and data strustfomeboth string matching and
regular expression, hardware implementation (e.g. FP@éhoc coprocessors (e.g.
DFA) possibly massively parallel (e.g., GPU) are often ieggito keep up with current
transmission speed [41]. These hardware-based approbekiesbeen analyzed and
used to improve the performance of machine learning alywost traffic classification
approaches, and platforms for network security [11,352%4,68] Yet, it is worth not-
ing that while [64] estimate that the amount of GPUs powerpracess up to 40 Gbps
worth of traffic, bottlenecks in the communication subsysteetween the main CPU
and the GPU crushes the actual performance down to a merép2[64]. Similarly,
Network Processors [43] and [62] achieve 3.5 Gbps and 6 Gbpggregated traffic
rate at most. As we will see, statistical classification edigrms these classification
rates without requiring special hardware. Another drawls®PI is that keywords or

patterns usually need to be derived manually by visual ictse of packets, implying
a very cumbersome and error prone trial and error process biud not least, DPI fails
by design in the case of encrypted or obfuscated traffic.

Stochastic packet inspection (SPI) tries to solve somessitiissues, for instance by
providing methods to automatically compute distinctivétgras for a given protocol.
As an example, authors of [44] define Common Substring GrépBs): an efficient
data structure to identify a common string pattern in pack®ther works instead di-
rectly apply statistical tools to packet payload: authdrf36] directly use the values
of the first payload bytes as features for machine learniggrithms; in [26], instead,
a Pearson Chi-square test is used to study the randomnédssfobt payload bytes, to
build a model of the syntax of the protocol spoken by the @pgitbn. Additionally, this
last algorithm is able to deal with protocols with partiadigcrypted payload, such as
Skype or P2P-TV applications.

Authors of [37], instead, propose a fast algorithm to catailthe entropy of the
first payload bytes, by means of which they are able to idemiié type of content:
low, medium and high values of the entropy respectivelyespond to text, binary and
encrypted content. Authors argue that, even if this is a veungh repartition of traffic
and moreover some applications are very likely to use alhegé kinds of content,
nonetheless such information might reveal useful to gim@isome content over the
others (e.g. in enterprise environments, binary trangfersesponding to application
updates to fix bugs deserve an high priority). Yet, SPI i$ gtéedy in terms of com-
putational resources, requiring several accesses to pgaik®ad, though with simpler
operations (i.e., no pattern matching).

While both [26, 37] use entropy-based classification, a netdliference is repre-
sented by the fact that in [26] entropy is computed for churfkdataacrossa stream
of packets, while [37] computes entropy over chunkstin the same packet.

Statistical classification[8, 9, 15, 17, 18, 45, 48, 58, 65] is based on the rationale
that, being the nature of the services extremely diverse, (&/eb vs VoIP), so will
be the corresponding traffic (e.g., short packets burstsilbfiata packets vs long,
steady throughput flows composed of small-packets). Swadsifiers exploit several
flow-level measurements, a.kfaatures to characterize the traffic of the different ap-
plications [45,48,58]: a comprehensive list of a large nandf possible traffic discrim-
inators can be found in the technical report [47]. Finalbyperform the actual classi-
fication, statistical classifiers apply data mining techieig|to these measurements, in
particular machine learning algorithms.

Unlike payload-based techniques, these algorithms amdlysiery lightweight, as
they do not access packet payload and can also leveragenation from flow-level
monitors such as [12]. Another important advantage is tigt tan be applied to en-
crypted traffic, as they simply do not care what the contemaakets is. Nevertheless,
these benefits are counterbalanced by a decrease in aceutiacgspect to DPI tech-
niques, which is why statistical-based algorithms haveemotved to commercial prod-
ucts yet. Still, researchers claim that in the near futurerajors will be willing to pay
the cost of a few errors for a much lighter classification pesc

We can further divide this class of algorithms in a few sugsés according to the
data mining techniques employed and to the protocol lay¢hefeatures used. Con-

cerning the first criterion, on one hand, unsupervised etusd of traffic flows [45]
(e.g., by means of the K-means algorithm) does not requneitrg and allows to group
flows with similar features together, possibly identifyingvel unexpected behaviors;
on the other hand, supervised machine learning techni@8e83] (e.g., based on Naive
Bayes, C4.5 or Support Vector Machines) need to be traindd alieady classified
flows, but are able to provide a precise labeling of traffiqg&ding the protocol layer,
we have classifiers employing only flow-level features [48§(, duration, total number
of bytes transferred, average packet-size), as opposdgddntbms using packet-level
features [8, 15] (e.g., size and direction of the very firstkass of a flow). The for-
mer ones are usually capable of late (in some casespmsiymorterfy coarse-grained
classification, whereas the latter ones can achieve eandygfiained classification.

Finally, Behavioral classification[35, 36, 67] moves the point of observation fur-
ther up in the network stack, and looks at the whole traffieined by a host, or an
(IP:port) endpoint, in the network. By the sole examinatidithe generated traffic pat-
terns (e.g., how many hosts are contacted, with which tah$gyer protocol, on how
many different ports) behavioral classifiers try to idgntifie application running on
the target host. The idea is that different applicationsegate different patterns: for
instance, a P2P host will contact many different peers llyizising a single port for
each host, whereas a Web server will be contacted by diffetents with multiple
parallel connections.

Some works [35, 67] characterize the pattern of traffic gedéht levels of detail
(e.g., social, functional and application) and employ migs (such as the number
of distinct ports contacted, or transport-layer protoeaed) to recognize the class of
the application running on a host (e.g., P2P vs HTTP). Woaking the behavioral
approach to its extreme analyze the graph of connectiongeket endpoints [31, 33],
showing that P2P and client-server application generdtereely different connection
patterns and graphs. They prove also that such informatorbe leveraged to clas-
sify the traffic of these classes of services even in the ndétaare. A second group of
studies [7, 28], instead, propose some clever metricsréailéor a specific target traf-
fic, with the purpose of capturing the most relevant propsrtif network applications.
Combining these metrics with the discriminative power othiae learning algorithms
yields extremely promising results. The Abacus classifigbglongs to this last family
of algorithms, and it is the first algorithm able to providereefigrained classification of
P2P applications.

Behavioral classifiers have the same advantages of statibtased classifiers, be-
ing lightweight and avoiding access to packet payload, beiugually able to achieve
the same accuracy with even less information. Such pra&semiake them the perfect
candidate for the most constrained settings. Moreovemgilie current tendency to-
ward flow-level monitors such as NetFlow [12], the posdipito operate on the sole
basis of behavioral characteristics is a very desirablpgnty for classifiers.

We wrap up this overview with an overall consideration onapplicability of clas-
sifiers. With few exceptions such as [24], the wide majorityhe classification algo-
rithms proposed in literature cannot be directly applietheonetwork core. Limitations
can be either intrinsic to thmethodologye.g., behavioral classification typically fo-
cuses on endpoint [67] or end-hosts [36] activity), or bd t@thecomputational com-

plexity (e.g., DPI [26, 44, 50, 60] cannot cope with the tremendousuarnof traffic in
the network core), or tetate scalability(e.g., flow-based classification [45,48] requires
to keep a prohibitive amount of per-flow state in the core}pgrath changeg¢path in-
stabilities or load balancing techniques can make earlysifiaations techniques such
as [8, 15] fail in the core). At the same time, we point out ttiassifying traffic at the
network ingress point is a reasonable choice for ISPs: ohdeaffic can be classified
and tagged at the access (e.g., DiffServ IP TOS field, MPLS), &tn which basis a
differential treatment can then be applied by a simplegktas and scalable core (e.g.,
according to the class of application.). We investigatepde¢his issue in the second
part of this dissertation.

Finally we must deal with a transversal aspect of trafficsifastion. The hetero-
geneity of approaches, the lack of a common dataset and afeyapproved method-
ology, all contribute to make the comparison of classifaatalgorithms a daunting
task [59]. In fact, to date, most of the comparison effort hddressed the investiga-
tion of different machine learning techniques [8, 23, 65]jng the same set of features
and the same set of traces. Only recently, a few works haveifigadly taken into
account the comparison problem [10, 38, 42,52]. The authidis2] present a qualita-
tive overview of several machine learning based classifioatigorithms. On the other
hand, in [38] the authors compare three different appraaite, based on signatures,
flow statistics and host behavior) on the same set of traggdjdhting both advantages
and limitations of the examined methods. A similar studyagied also in [42], where
authors evaluate spatial and temporal portability of a-paged, a DPI and a flow-based
classifier.

4 Machine-Learning Algorithms for Traffic Classification

In this section we will briefly introduce the problem of traffilassification in machine
learning theory (with a particular focus on the algorithmes actually employed to
exemplify the traffic classification performance in 6), alllihg in the category of
supervised classification

There is a whole field of research on machine learning thedigiwis dedicated to
supervised classification [40], hence it is not possiblatiLide a complete reference in
this chapter. Moreover, instead of improving the clasdificaalgorithms themselves,
we rather aim at taking advantage of our knowledge of netapgKications to identify
good properties, or features, for their characterizatidmwvever, some basic concepts
are required to correctly understand how we applied madeeraing to traffic classi-
fication.

A supervised classification algorithm produces a functfothe classifier able to
associate some input data, usually a vegtof numerical attributeg; calledfeatures
to an output value, the class label, taken from a liSt of possible ones. To build such
a mapping function, which can be arbitrary complex, the rireckearning algorithm
needs some examples of already labeled dataraheng set i.e. a set of couplei, ¢)
from which itlearnshow to classify new data. In our case the featurgare distinctive
properties of the traffic we want to classify, while the clég®el ¢ is the application
associated with such traffic.

Training

Training trafﬁc Analysis Sampler o
protocol A > I Training
set
o, @O\»ﬁ — ==
N Trained
model
Oracle Analy5|s Sampler
Training traffic ; %»ﬁ . | A
protocol X
Ground truth Compute features Sampling Model building
Classification Validation

Analysis

Training traffic

X protocol A

g

Oracle

_»)Proto
X
Classification
results

Analysis |—>
R

Compute features

Apply trained
model

Training traffic
protocol X

Evaluate accuracy Ground truth

Fig. 1. Common workflow of supervised classification.

From a high-level perspective, supervised classificatmmsists of three consecu-
tive phases which are depicted in Fig. 1. Duringtileéning phasethe algorithm is fed
with the training set which contains our reference dataatheady classified training
points. The selection of the training points is a fundameote, with an important
impact on the classifier performance. Extra care must bentitkeelect enough repre-
sentative points to allow the classifier to build a meanihgfadel; however, including
too many points is known to degenerateirerfitting where a model is too finely tuned
and becomes “picky”, unable to recognize samples whichustes|ightly different from
the training ones.

Notice that, preliminary to the training phase, amacle is used to associate the
protocol label with the traffic signatures. Oracle labels eonsidered accurate, thus
representing thground truthof the classification. Finding a reliable ground truth for
traffic classification is a research topic on its own, with tnieial technical and privacy
issues and was investigated by a few works [16, 29].

The second step is thaassification phasewvhere we apply the classifier to some
new samples, thtest setwhich must be disjoint from the training set. Finally a thir
phase is needed telidatethe results, comparing the classifiers outcome against the
reference ground truth. This last phase allows to assegxfeeted performance when
deploying the classifier in operational networks.

In this chapter we describe two of the supervised classidicatlgorithms most
used in traffic classification literature, name&wypport Vector Machineand Classifi-
cation trees This choice is not only based on their large use in the liteeaof traffic
classification, but as they are recognized as having thedadjscriminative power in
the machine learning community. Specifically, classifamatccuracy of Support Vec-
tor Machines and Classification trees has been compared8n613 Support Vector
Machines exhibit the best classification performance i, [@8ile in [61] the authors

show the superior performance Gfassification treesAs for the complexity of these
approaches,

As for the complexity of these techniques, authors in [22}show statistical clas-
sification based o@lassification treesan sustain a throughput in excess of 10 Gbps on
off-the-shelf hardware, thus outperforming the curreatesof the art employing GPUs
for DPI classification [43, 62, 64]. The next subsectionshfer elaborate the computa-
tional complexity of each technique.

4.1 Support Vector Machine

Support Vector Machine (SVM), first proposed by Vapnik [1i8]a binary supervised
classification algorithm which transforms a non-lineasslfication problem in a linear
one, by means of what is called a “kernel trick”. In the follogy we intuitively ex-
plain how SVM works and refer the reader to [14, 65] for a mamerfal and complete
description of the algorithm.

SVM interprets the training samples as points in a multiatisional vector space,
whose coordinates are the components of the feature vectdeally we would like
to find a set of surfaces, partitioning this space and pdyfseparating points belong-
ing to different classes. However, especially if the prabis non-linear, points might
be spread out in the space thus describing extremely conspigace difficult, when
not impossible, to find in a reasonable time. The key idea d1S¥then to map, by
means of a kernel function, the training points in a newlysfarmed space, usually
with higher or even infinite dimensionality, where pointsdge separated by the easi-
est surface possible, an hyperplane. In the target spadd, rBi¥st basically solve the
optimization problem of finding the hyperplane which (i) aegtes points belonging
to different classes and (ii) has the maximum distance fromtp of either class. The
training samples that fall on the margin and identify thedmgtane are calle8upport
Vectors(SV).

At the end of the training phase SVM produces a model, whichasge up of the
parameters of the kernel function and of a collection of tngert vectors describing
the partitioning of the target space. During the classificephase, SVM simply clas-
sifies new points according to the portion of space they fatl,ihence classification
is much less computationally expensive than training. Simatively SVM is a binary
classifier, some workaround is needed to cope with mulsctdassification problems.
The strategy often adopted is thee-versus-onevhere a model for each pair of classes
is built and the classification decision is based on a mgjedting of all binary models.

Support Vector Machines have proved to be an effective glgoryielding good
performance out-of-the-box without much tuning, espécialcomplex feature spaces,
and has showed particularly good performance in the fieldadfi¢ classification [38,
65]. Several kernel functions are available in literaturedsually Gaussian kernel ex-
hibits the best accuracy. One drawback of SVM is that modetse multidimensional
space cannot be interpreted by human beings and it is nabpeogs really understand
the reason why a model is good or bad. Another, more importiatvback is that the
classification process may still require a fair amount of paotation. Specifically, the
number of operations to be performed is linear in the numb8is (i.e., the represen-

tative samples) per each class. When the number of classegés(bay, in the order of
100s or 1000s applications), the computational cost candighptive

4.2 Decision Trees

Decision Trees [39] represent a completely orthogonal Ggagr to the classification
problem, using a tree structure to map the observation toptlassification outcome.
Again, being this a supervised classification algorithmshave the same three phases:
training, testing and validation.

During the training phase the algorithm builds the treecstme from the sample
points: each intermediate node (a.k.a. split node) reptesebranch based on the value
of one feature, while each leaf represents a classificatiwcome. The classification
process, instead, consists basically in traversing the fo@m the root to the leaves
with a new sample, choosing the path at each intermediate accbrding to the crite-
ria individuated by the training phase. Like in SVM, the clfisation process is way
more lightweight than the learning phase. One big advantédhis algorithm over
SVM is that the tree can be easily read and eventually intéggdrto understand how
the algorithms leverages the features for the classificatdmother advantage is that
classification is based on conditional tests and if-thee-éranches, which make it
computationally very efficient with respect to SVM.

Literature on this subject contains quite a few decisioe trailding algorithms,
which differ in the way they identify the feature and threlshalue for the intermediate
split nodes. The best known example of classification trebd<C4.5 algorithm [39],
which bases such selection on the notiorrdbrmation Gain This is a metric from
information theory which measures how much informationtattbe application label
is carried by each features, or, in other words, how muchtiowledge of a feature tells
you about the value of the label. We delay a formal definitibthe information gain
metric to the next chapter, where we take advantage of iefatuire selection purposes.
After calculating the information gain of each feature foe training set points, C4.5
picks as splitting feature for each node the one which madmisuch a score: this
strategy of using the most helpful attributes at each stepriscular efficient, yielding
trees of very limited depth (since the most critical splitlas are located toward the top
of the tree), which further simplify the computational régment.

5 Two antipodean examples.

In this section, we overview a couple of techniques we pregosthe online classifi-
cation of traffic generated by P2P applications (and, pbssion-P2P application as
well).

We mainly consider two approaches with radically differéesigns. One approach,
named Kiss [25, 26], ipayloadbased: it inspects the packet payload to automatically
gather a stochastic description of the content, thus iinfgithe syntaxof the applica-
tion protocol rather than payloagmantic The other approach, named Abacus [7, 63],
is insteadbehavioral it analyzes the transport level exchanges of P2P appicsiti
discriminating between differeptrotocol dynamics

0 4 8 12
100 Loo

099
072

051 0.86 083
070

o | 0w | 0w | oe

(a) Joost (b) SopCast (c) TVAnts (d) PPLive

Fig. 2. Mean kiss signatures, 24 chunks of 4 bits each (higher value and lighteroorrespond
to higher determinism)

Both Kiss and Abacus achieve very reliable classificatiot) ioureason of their
different design, have their pros and cons. For instancdppd-based classification
fails when data is fully encrypted (e.g., IPsec, or encigdi€P exchanges), while the
behavioral classifier is unable to classify a single flow. (ies protocol dynamics need
the observation of multiple flows). A detailed comparisobath techniques is reported
in Sec. 6

5.1 Kiss: Stochastic payload-based classification

High-level idea The first approach we consider is based on the analysis ofepack
payload, trying to detect the syntax of the application qeot, rather that its semantic.
The process is better understood by contrasting it with Bfich typically searches
keywords to identify a specific protocol. With a human angdgis corresponds to
trying to recognize the foreign language of an overheard@ation by searching for
known words from a small dictionary (e.g., “Thanks” for Eisgllanguage, “Merci” for
French, “Grazie” for Italian and so on).

The intuition behind Kiss is that application-layer prattsccan however be iden-
tified by statistically characterizing the stream of byteserved in a flow of packets.
Kiss automatically builds protocol signatures by measuentropy (or Chi-Square test)
of the packet payload. Considering the previous analoggypitocess is like recogniz-
ing the foreign language by considering only the cacophditiyeoconversation, letting
the protocol syntax emerge, while discarding its actualeseio.

Fig. 2 reports examples of mean Kiss signatures for pop &PV applications
like PPLive, SopCast, TVAnts and Joost that we will use oftsnexamples in this
Chapter (and for the comparison in Sec. 6). The picture semts the application
layer header, where each group of 4 bits is individually abered: for each group, the
amount of entropy is quantified by means of a Chi-Squareyt&stith respect to the
uniform distribution. The syntax of the header is easy terintet: lowy? scores hint
to high randomness of the corresponding group of bit, duebfaszation or encryp-
tion; high x? scores instead are characteristic of deterministic fisldsh as addresses
or identifiers; intermediate values correspond to chanfjeids, such as counters and
flags, or groups of bits that are split across field boundafieprotocol languages are
different, Kiss signatures allow to easily distinguishvbe¢n applications as emerges
from Fig. 2.

Formal signature definition Syntax description is achieved by using a simple Chi-
Square like test. The test originally estimates the goatoésit between observed
samples of a random variable and a given theoretical digioib. Assume that the
possible outcomes of an experiment @fedifferent values. LeQ,, be the empirical
frequencies of the observed values, outCbfotal observations)C, Oy = C). Let E,

be the number of expected observation &dr the theoretical distributiofr;, = C'- py,
with p;, the probability of valué:. Given thatC' is large, the distribution of the random
variable:

K N 2
x=¥ (O EkEk) (1)
k=1

that represents the distance between the observed erhpinidaheoretical distribu-
tions, can be approximated by a Chi-Squarey®r distribution with X' — 1 degrees
of freedom. In the classical goodness of fit test, the valdeX are compared with
the typical values of a Chi-Square distributed random Weiathe frequent occurrence
of low probability values is interpreted as an indicationaobad fitting. In Kiss, we
build a similar experiment analyzing the content of groujdsits taken from the packet
payload we want to classify.

Chi-Square signatures are built frastreamsof packets. The firsiV bytes of each
packet payload are divided int® groupsof b consecutive bits each; a grogan take
integer values i, 2° — 1]. From packets of the same stream, we collect, for each group

g, the number of observations of each value [0, 2° — 1]; denote it byOEg). We then
define a window of” packets, in which we compute:

o1 (OZ@ B E§g>)2

Xg=>Y_

(2
=0 El(g)

and collect them in the Kiss signature vector (where, bywef&y = 12, G = 24,b =
4,C = 80):

X =[Xy, Xy, -+, Xg| 3)

Once the signatures are computed, one possibility to cteiae a given protocol is
to estimate the expected distributi({)EZ-(g)} for each groupy, so that the set of signha-
tures are created by describing the expected distributidheoprotocols of interest in
the database. During the classification process then, theredd groupy distribution
{o§9>} must be compared to each of tthg)} in the database, for example using the
Chi-square test to select the most likely distribution. léwer, this process ends up in
being very complex, since (2) must be computed for each pobtaf interest.

In addition to the high complexity, the comparison with refece distributions fails
when the application protocol includes constant valueskvlare randomly extracted
for each flow. For example, consider a randomly extractedv‘fd” in a group. Con-
sider two flows, one used for training and one for testingegated by the same appli-
cation. Let the training flow packets take the value 12 in traup. Let the test flow
packets take instead the value 1 in the same group. Clelagly,damparison of the two
observed distributions does not pass the Chi-square tektha test flow is not correctly
classified as using the same protocol as the training flow.

SopCast TVants PPlive

s G I

Experiment Time [AT steps]

Fig. 3. Temporal evolution of Abacus signatures. Darker color corresgoridw order bins,
carrying less traffic. Bins are exponential so that < 2°, and a mark denotes the most likely
bin.

For the above reasons, we propose to simply compare theckisksetween the ob-
served values and a reference distribution, which we chassige uniform distribution,
i.e.,Ei(g) =F = 2% In the previous example, the group randomness of the twesflow
have the samd& value, that identify a “constant” field, independently of tictual value
of that group. In other terms, we use a Chi-Square like testaasure the randomness
of groups of bits, as an implicit estimate of the source qutro

5.2 Abacus: Fine-grained behavioral classification

High-level idea The Abacus classifier leverages instead on the observatairnap-
plications perform different concurrent activities at game time. Considering for the
sake of the example P2P applications, one activity, nasiglyaling is needed for the
maintenance of the P2P infrastructure and is common to plicgtions. Still, P2P ap-
plications differ in the way they actually perform the sifing task, as this is affected
by the overlay topology and design (e.g., DHT lookup versusrestructured flooding
search) and by implementation details (e.g., packet siners, number of concurrent
threads.)

Thedata-exchangactivity in instead related to the type of offered servicg (dile
sharing, content, VoIP, VoD, live streaming, etc.). Agaipplications are remarkably
different, both considering implementation details (ecgdec, transport layer, neigh-
borhood size, etc.) or the offered service (e.g., low aratikely stable throughput for
P2P-\olP, higher but still relatively stable aggregatecbiming throughput for P2P-
VoD and TV, largely variable throughput for file-sharingg)et

Such difference are so striking, that it is actually posstblfinely differentiate be-
tween different P2P applications offering the same senwicerhat follows, we make
an explanatory example on P2P-TV applications. We agaisiden P2P-TV appli-
cations and contrast the possible ways in which they impiertiee live TV service.
Concerning video transfers, for example, some applicatiayy prefer to download
most of the video content from a few peers, establishing-lomegl flows with them,
whereas other applications may prefer to download shod{fseed “chunks” of video
from many peers at the same time. Similarly, some applicatiay implement a very
aggressive network probing and discovering policy, carttasending small-size mes-
sages to many different peers, while others may simply coatéew super-peers from
which they receive information about the P2P overlay. Guaritig our human analogy,

we may say that some peers will be “shy” and contact a few ppessibly download-
ing most of the data from them, while others will be “easyrggiand contact many
peers, possibly downloading a few data from each.

These differences are shown in Fig. 3, which depicts the ¢eah@volution of (a
simplified version of) the signature used for traffic classifion. To capture the above
differences, we asses the shyness of a f&by gauging the proportion of peers that
send toP a given amount of traffic in the rang¥; = [X, , X;"]. We then evaluate
an empirical probability mass functign (pmf) by normalizing the count; of peers
sendingz € X; traffic (e.g., packets or bytes), and by ordering the bins dhat
X7, < X, i.e. low order bins contain less traffic.

In Fig. 3, darker colors correspond to lower bins, and biestaggered so that they
extend to 1 (due to pmf): for the sake of readability, the niigsty (i.e., argmaxn;)
bin is indicated with a textbox. From Fig. 3, it can be seen #ah application has a
behavior that, although not stationary over time, is howeemarkably different from
all the others.

Formal signature definition In the following, we restrict our attention to UDP traffic,
although endpoint identification can be extended to apipdica relying on TCP at the
transport layer as wéll Let us consider the traffic received by an arbitrary endvpoi
p = (I P, port) during an interval of duratiod\T". We evaluate the amount of informa-
tion received by simply as the number of receivedicketgalthough the concept can
be extended to the amountloftes to build more precise signatures [57]).

We patrtition the spac®l of the number of packets sent poby another peer into
B,, + 1 bins of exponential-size with base 25 = (0,1], I; = (21,2 fori =
1,...,B, 1 andIg, = (2B~ oo]. For eachAT interval, we count the numbey;
of peers that sent tp a number of packeta € I;; i.e., Ny counts the number of
peers that sent exactly 1 packetgtauring AT; N; the number of peers that sent 2
packets;N, the number of peers that sent 3 or 4 packets and, fin&lly, the number
of peers that sent at lea®f~—! + 1 packets top. Let K denote the total number
of peers that contacted in the interval. The behavioral signature is then defined as
n = (ng,...,ng,) € RB~+1 where:

N; N;

n; = —Bn ~ e (4)
Zj:O N; K

Sincen has been derived from the pure count of exchanged packetsame it
“Abacus”, which is also a shorthand for “Automated Behazidkpplication Classifi-
cation Using Signatures”. Formally, the signaturés the observed probability mass
function (pmf) of the number of peers that sent a given nurobpackets t@ in a time
interval of durationAT' (where by defaulA7T = 5, B = 8).

5 In case TCP is used, the client TCP port is ephemeral, i.e., randotattes: by the Operating
System for each TCP connection. The TCP case would require mongl@oalgorithms in
case of traffigeneratedrom a specific peer, since ephemeral ports differ among flowsrgene
ated by the same peer. However, the problem vanishes by focusing dowhlink direction:
in this case, we aggregate all traffeceivedoy a TCP server port, that is the same for all flows
of any given peer.

Table 2. Datasets used for the comparison

Dataset Duration Flows Bytes Endpoints
Napa-WUT 180 min| 73k | 7Gb| 25k
Operator 2006 (op06)45 min | 785k| 4Gb| 135k
Operator 2007 (op07)30 min | 319k | 2Gb| 114k

This function is discretized according to the exponentiasliescribed above. The
choice of exponential width bins reduces the size of theatige, while keeping the
most significant information that can be provided by the pmffact, as the binning
is much finer for short number of packets, short flows with exesmall difference in
the number of packets are likely to end up (e.g. flows compbgedsingle packet, two
packets and three packets are counted respectively in theatenty, n; andns). On
the contrary, longer flows are coarsely grouped togethdrdarigher bins. Intuitively it
is more valuable to distinguish between short flows (e.gtirjuishing between single-
packet probes versus short signaling exchanges spanvagabpackets), while there is
no gain in having an extreme accuracy when considering lomgf(e.g., distinguishing
between 500 or 501 packet long flows). This intuition is désad in [7], where we
examine the impact of different binning strategies.

6 Kiss vs Abacus

At last, we perform a comparison of both approaches, at ablexels. To dress 2r ra-
dians view, we consider not only the (i) classification results, bub &g functional as
well as (iii) complexity aspects. To perform the comparisbthe classification results,
we consider a common subset of traffic, namely that usualf$&2B-TV applications.

In brief, the algorithms are comparable in terms of accumajassifying P2P-TV
applications, at least regarding the percentage of cdyreletssified bytes. Differences
instead emerged when we compared the computational cdst afassifiers: with this
respect, Abacus outperforms Kiss, because of the simpti€the features employed to
characterize the traffic. Conversely, Kiss is much more g#nas it can classify other
types of applications as well.

6.1 Methodology

We evaluate the two classifiers on the traffic generated byctinemon set of P2P-
TV applications, namely PPLive, TVAnts, SopCast and Jdastthermore we use two
distinct sets of traces to asses two different aspects aflassifiers.

The first set was gathered during a large-scale active earpatiperformed in the
context of the Napa-Wine European project [51]. For eacHiegtjpn we conduct an
hour-long experiment where several machines provided &pthject partners run the

5 Well, | assume that since “36Qdegree” is a common saying for everybody2# radians”
should not be an uncommon saying among scientists and engineers.

Table 3. Classification results: Bytewise confusion matrix for Abacus (left) and Kight)

Abacus Kiss

e ©® 8 L|ldey ®@ B8 o
@ 99.33 - - 0.11 0.56 [99.97 - - - 0.01 0.02
Ei’ 0.01 99.95 - - 0.04 - 9996 - - 0.03 0.01
@ 0.01 0.0999.850.02 0.03 - - 9998 - 0.01 0.01
& - - 99.98 0.02 - - - 99.98 0.01 0.01
op0g 1.02 - 058 0559785 | - 0.07 - 0.0898451.4
op073.03 - 0.71 0.2596.01 | - 0.08 0.74 0.0596.262.87

"o’ :PPLive,ﬁ’:Tvants,@ :Sopcast&:Joost, un=Unknown, nc=not-classified

software and captured the generated traffic. The machineléd were carefully con-
figured in such a way that no other interfering applicatiors waning on them, so that
the traces contain P2P-TV traffic only. This set, availabl¢he research community
in [51] is used both to train the classifiers and to evaluage frerformance in identify-
ing the different P2P-TV applications.

The second dataset consists of two real-traffic tracesatetlein 2006 and 2007
on the network of a large Italian ISP. This operator providgessustomers with un-
controlled Internet access (i.e., it allows them to run aing lof application, from web
browsing to file-sharing), as well as telephony and stregrsé@mvices over IP. Given the
extremely rich set of channels available through the IS&asting services, customers
are not inclined to use P2P-TV applications and actually uwh graffic is present in
the traces. We verified this by means of a classic DPI classifiavell as by manual
inspection of the traces. This set has the purpose of asgehsi number of false alarms
raised by the classifiers when dealing with non P2P-TV traffie report in Tab. 2 the
main characteristics of the traces.

To compare the classification results, we employadhéf i nder tool [55], as al-
ready done in [10]. This simple software takes as input the foom different classifiers
with the list of flows and the associated classification omeoThen, it calculates as
output several aggregate metrics, such as the percentaggeesfiment of the classifiers
in terms of both flows and bytes, as well as a detailed list efdifferently classified
flows enabling further analysis.

6.2 Classification results

Tab. 3 reports the accuracy achieved by the two classifietsetest traces using Sup-
port Vector Machines (SVM) [14] as learning technique. Etadfie is organized in a
confusion-matrix fashion where rows correspond to redfitrae. the expected out-
come, while columns report the possible classificationltedsor each table, the upper
part is related to the Napa-Wine traces while the lower gagedicated to the operator
traces. The values in bold on the main diagonal of the talxeiess theecall, a metric

Table 4. Functional comparison of Abacus and Kiss

Characteristic Abacus Kiss
Classification Branch Behavioral Stocastic Payload Inspectipn
Classification Entity Endpoint Endpoint/Flow

Input Format Netflow-like Packet trace

Target Grain Fine grained Fine grained

Protocol Family P2P-TV Any

Rejection Criterion |Threshold/Train-based Train-based
Train-set Size Big (4000 smp.) Small (300 smp.)

Time Responsiveness Deterministic(5sec) | Stochastidearly 80pkts)
Network Deploy Edge Edge/Backbone

commonly used to evaluate classification performance, eiéfis the ratio of true posi-
tives over the sum of true positives and false negatives.diienown” column counts
the percentage of traffic which was recognized as not beify P2 traffic, while the
column “not classified” accounts for the percentage of tdffat Kiss cannot classify
(as it needs at leagt = 80 packets for any endpoint).

Is easy to grasp that both the classifiers are extremely aieg s most of the bytes
are correctly classified (flow accuracy is analyzed in [2FYt the Napa-Wine traces
the percentage of true positives exceeds 99% for all thaaeresl applications. For the
operator traces, again the percentage of true negativee@s®6% for all traces, with
Kiss showing a overall slightly better performance. Theseiits demonstrate that even
an extremely lightweight behavioral classification medsian) such as the one adopted
in Abacus, can achieve the same precision of an accurategmhpbsed classifier.

6.3 Functional comparison

In the previous section we have shown that the classifietmbythave similar perfor-
mance for the identification of the target applications al agethe “unknown” traffic.
Nevertheless, they are based on very different approabtlotis,presenting pros and
cons, which need to be all carefully taken into account amd #ne summarized in
Tab. 4.

The most important difference is the classification techeigsed. Even if both
classifiers are statistical, they work at different leveid @&learly belong to different
families of classification algorithms. Abacus is a behaliafassifier since it builds a
statistical representation of the pattern of traffic geteetdy an endpoint, starting from
transport-level data. Conversely, Kiss derives a stasistiescription of the application
protocol by inspecting packet-level data, so it is a paylbased classifier.

The first consequence of this different approach lies in gymkvolume of informa-
tion needed for the classification. In particular, Abaclkesaas input just a measure-
ment of the traffic rate of the flows directed to an endpointemms of both bytes and
packets. Not only this represents an extremely small amafuntormation, but it could
also be gathered by a Netflow monitor, so that no packet trasadbe inspected by

the classification engine itself. On the other hand, Kisstmasessarily access packet
payload for feature computation: this constitutes a mopepsive operation, even if
only the first 12 bytes are sufficient to achieve a high clasgifin accuracy.

Despite the different input data, both classifiers work ana-firained level, i.e.,
they can identify the specific application related to eacl #md not just the class of
applications. This consideration may appear obvious f@ydgad-based classifier such
as Kiss, but it is one of the strength of Abacus over otherWieha classifiers which
are usually capable only of a coarse grained classifica@tearly, Abacus pays the
simplicity of its approach in terms of possible target t@aféis its classification process
relies on some specific properties of P2P traffic. On the aontKiss is more general, it
makes no particular assumptions on its target traffic andeapplied to any protocol.
Indeed, it successfully classifies not only other P2P agfitios (e.g., eDonkey Skype,
etc.), but traditional client-server applications (e@NS, RTP, etc.) as well.

Another important distinguishing element is the rejectioiterion. Abacus defines
an hypersphere for each target class and measures thecdistia@ach classified point
from the center of the associated hypersphere by means Bhitacharyya distance.
Then, by employing a threshold-based rejection critergogint is label as “unknown”
when its distance from the center exceeds a given valuedd¥iss exploits a multi-
class SVM model where all the classes, included the unknavenrepresented in the
training set. If this approach makes Kiss very flexible, tharacterization of the classes
can be critical especially for the unknown since it is impattthat the training set
contains samples from all possible protocols other thataimget ones.

We also notice that there is an order of magnitude of diffeeein the size of the
training set used by the classifiers. In fact, we trained Abagith 4000 samples per
class (although in some tests we experimented the saméicktssn performance even
with smaller training sets) while Kiss needs only about 3@Mgles per class. On the
other hand, Kiss needs at least 80 packets generated frogiréoted to) an endpoint
in order to classify it. This may seem a strong constraint[Bé} actually shows that
the percentage of not supported traffic is negligible, adtleaterms of bytes.

Finally, for what concerns the network deployment, Abacesds all the traffic
received by the endpoint to characterize its behavior. dfbee, it is only effective
when placed at the edge of the network, where all traffic tii¢o an host transits.
Conversely, in the network core Abacus would likely see @portion of this traffic,
so gathering an incomplete representation of an endpoiraviar, which in turn could
result in an inaccurate classification. Kiss, instead, isemobust with respect to the
deployment position. In fact, by inspecting packet payldadan operate even on a
limited portion of the traffic generated by an endpoint, jded that the requirement on
the minimum number of packets is satisfied.

6.4 Computational cost

To complete the classifiers comparison, we provide an aisatythe requirements in
terms of both memory occupation and computational cost. &l&utate these metrics
from the formal algorithm specification, so that our evahrats independent from spe-
cific hardware platforms or code optimizations. Tab. 5 corepdhe costs in a general
case, reporting in the bottom portion specific figures fordefault parameters.

Table 5. Computational complexity and resource requirements comparison

Abacus Kiss
Memory 2F counters 2°G counters
allocation
EP_state = hash(IP,, porty)
EPstate = hash(IPy, portg) forg = 1 to Gdo
Packet FL.state = EPstate. hash(IPs, ports) P, = payl oad[g]
. FLstate. pkts ++) EPstate. J g] [Py] ++
processing FL.state. bytes += pkt _si ze end for
Tot. op. 2lup + 2sim (2G+L)lup + Gsim
EPstate = hash(IPy, porta)
for all FLstate in EPstate. hash do E = C/Eb (preconput ed)
p[loga(FLstate.pkts)] +=1 for g—l_toGdo
b[log>(FL.state.bytes)] += 1 Chifg] =0
end for for |_=0t02 do
Featur? N = count (keys(EP_st at e. hash)) Chi[g] +=) 9
extraction |for all i =0 to B do (EPstate.dqg][i]-B)
pli] /=N end for
bli] /=N Ghilg] /=E
end for end for
Tot.op. | (4F+2B+1)lup + 2(F+B)com + 3Fsim | 2°TIGlup + Geom + (3-2°+1)Gsim
Memory 320 bytes 384 bytes
allocation
Packet 2lup + 2sim 49]up + 24sim
processing
Feature 177lup + 96com + 120sim 768lup + 24com + 1176sim
extraction
Default paramsB=8, F=40 Default paramsG=24, b=4

lup=lookup,com=complex operatiorsim=simple operation

Memory footprint is mainly related to the data structuresdi® compute the statis-
tics. Kiss requires a table @ - 2° counters for each endpoint to collect the observed
frequencies employed in the chi-square computation. Fod#gfault parameters, i.e.
G = 24 chunks ofb = 4 bits, each endpoint requires 384 counters. Abacus, instead
requires two counters for each flow related to an endpoirthetotal amount of mem-
ory is not fixed but it depends on the number of flows per endpdis an example,
Fig. 4-(a) reports, for the two operator traces, the CDF efrtamber of flows seen by
each endpoint in consecutive windows of 5 seconds, the Wefiaation of the Abacus
time-window. It can be observed that the 90th percentilééwtorst case is nearly 40
flows. By using this value as a worst case estimate of the nuoflflews for a generic
endpoint, we can say that- # Flows = 80 counters are required for each endpoint.
This value is very small compared to Kiss requirements huafocomplete comparison

CDF

7 5 N 0.8
0.6 |- o K I 1 L 06
t L XXX & op06 — {1 A 3 /. op06 g
04 % - op07 —- 4 © o4l ¥ X op07 ———- |
| F * joost —+ L e joost - —+ -
+ e pplive ->- | L y pplive ---%--- |
0.2 | /*M sopcast k- | 02 ;—;—;%fi/ﬂ sopcast — ¥—
o Er T i AT, vants O 0 Be=atEr] . tvangs — O -
1 10 100 0.1 1 10
Flows @ 5sec time @ 80pkt
(a) (b)

Fig. 4. Cumulative distribution function of (a) number of flows per endpoint @y)cduration of
a 80 packet snapshot for the operator traces

we also need to consider the counters dimension. As Kisswise®ws of 80 packets,
its counters assume values in the intef@aR0] so single byte counters are sufficient.
Using the default parameters, this means 384 bytes for emtgoet. Instead, the coun-
ters of Abacus do not have a specific interval so, using a veaist scenario of 4 bytes
for each counter, we can say that 320 bytes are associatethoeadpoint. In con-
clusion, in the worst case, the two classifiers require a esaipge amount of memory
though on average Abacus requires less memory than Kiss.

Computational cost can be evaluated comparing three tés&soperations per-
formed on each packet, the operations needed to computégthetiges and the op-
erations needed to classify them. Tab. 5 reports the pseut af the first two tasks
for both classifiers, specifying also the total amount ofrafiens needed for each task.
The operations are divided in three categories and corsidaparately as they have
different costsiup for memory lookup operationgomfor complex operations (i.e.,
floating point operationskimfor simple operations (i.e., integer operations).

Let us first focus on the packet processing phase, which mpiesgany constraints
from a practical point of view, as it should operate at lineesh In this phase, Abacus
needs 2 memory lookup operations, to access its internaitstes, and 2 integer incre-
ments per packet. Kiss, instead, ne@ds+ 1 = 49 lookup operations, half of which
are accesses to packet payload. Then, Kiss must compirnteger increments. Since
memory read operations are the most time consuming, we aaoiucte that Abacus
should be approximately 20 times faster than Kiss in thispha

The evaluation of the signature extraction process insteambre complex. First of
all, since the number of flows associated to an endpoint ifixexd, the Abacus cost is
not deterministic but, like in the memory occupation case can consider 40 flows as
a worst case scenario. For the lookup operations, Cons@&i= 8, Abacus requires
a total of 177 operations, while Kiss needs 768 operatioas, riearly four times as
many. For the arithmetic operations, Abacus needs 96 flpatint and 120 integer
operations, while Kiss needs 24 floating point and 1176 attegerations.

Abacus produces signatures evel§y’' = 5 seconds, while Kiss signatures are pro-
cessed every' = 80 packets. To estimate the frequency of the Kiss calculation,
Fig. 4(b) we show the CDF of the amount of time needed to co88gackets for an
endpoint: on average, a new signature is computed everydhdecThis means that
Kiss calculate feature more frequently than Abacus: ites imore reactive but obvi-
ously also more resource consuming.

Finally, the complexity of the classification task dependshe number of features
per signature, since both classifiers are based on a SVMidegsocess. The Kiss
signature is composed, by default, Gf = 24 features, while the Abacus signature
contains 16 features: also from this point of view Abacuseapg lighter than Kiss.

6.5 Summary of comparison

We have described, analyzed and compared Kiss and Abacudjffarent approaches
for the classification of P2P-TV traffic. We provided not oalguantitative evaluation
of the algorithm performance by testing them on a commonfsedees, but also a more
insightful discussion of the differences deriving from thw followed paradigms.

The algorithms prove to be comparable in terms of accuraciassifying P2P-TV
applications, at least regarding the percentage of cdyreletssified bytes. Differences
emerge also when we compared the computational cost of #ssifiers. With this
respect, Abacus outperforms Kiss, because of the simplbcithe features employed
to characterize the traffic. Conversely, Kiss is much moneegd, as it can classify
other types of applications as well.

7 Conclusion

In this Chapter we have reviewed literature in the field officalassification, a topic
which has increased a lot in relevance during last yeardfid@dassification is the
building block to enable visibility into the traffic carridaly the network, and this it
is the key element to empower and implement any traffic manage mechanisms:
service differentiation, network design and engineergegurity, accounting, etc., are
all based on the assumption to be able to classify traffic.

Research on Internet traffic classification has producetigesand novel approaches.
Yet, as described in this Chapter, there is still room forrovpments and contribu-
tions in the light of classification techniques and platfeymround truth, comparison
approaches, etc. In particular, the natural evolution efititernet in which novel appli-
cations, protocols and habits are born, proliferate andadits for a continuous need
to update traffic classification methodologies. This isipal&r critical considering se-
curity aspects in which every bit, byte and packet must belaua:

References

1. CAIDA, The Cooperative Association for Internet Data Analysist p: / / www. cai da.
org/research/traffic-anal ysis/classification-overview.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

IANA, List of assigned port numbers.http://ww. i ana. or g/ assi gnnent s/
port - nunbers,.

. I7filter, Application layer packet classifier for Linux. http://17-filter.

cl ear foundati on. coni ,.

. Tstathttp://tstat.tlc.polito.it.
. G. Aceto, A. Dainotti, W. d. Donato, and A. PeseapPortload: Taking the best of two

worlds in traffic classification. IINFOCOM IEEE Conference on Computer Communica-
tions Workshops, 201pages 1-5, 15 2010.

. F. Bakerand, B. Fosterand, and C. Sharp. Cisco Architecturkdeful Intercept in IP

Networks. IETF RFC 3924(Informational), Oct 2004.

. Paola Bermolen, Marco Mellia, Michela Meo, Dario Rossi, and Silvio \falé&bacus: Ac-

curate behavioral classification of P2P-TV traffieisevier Computer Network85(6):1394
—1411, 2011.

. Laurent Bernaille, Renata Teixeira, and Kave Salamatian. Early apphcidentification.

In Proc. of ACM CoNEXT 20Qé.isboa, PT, December 2006.

. V. Carela-Espaoll, P. Barlet-Ros, M. Sole-Simo, A. Dainotti, W. deddorand A. Pescap

K-dimensional trees for continuous traffic classification. pages 154,-2010.

N. Cascarano, F. Risso, A. Este, F. Gringoli, L. Salgarelli, A. For@nand M. Mellia.
Comparing P2PTV Traffic Classifiers. @ommunications (ICC), 2010 IEEE International
Conference onpages 1 -6, may 2010.

Niccolo Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccaisto.Snfant: Nfa pattern
matching on gpgpu device&omputer Communication Revigdd(5):20-26, 2010.

B. Claise. Cisco Systems NetFlow Services Export Version 9. RBZ @aformational),
Oct 2004.

Corinna Cortes and Vladimir Vapnik. Support-vector netwolkkachine Learning20:273—
297, 1995.

Nello Cristianini and John Shawe-Tayl@n introduction to Support Vector Machines and
Other Kernel-based Learning MethodSambridge University Press, New York, NY, 1999.
Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salljarraffic classifica-
tion through simple statistical fingerprintingdCM SIGCOMM Computer Communication
Review 37(1):5-16, January 2007.

Alberto Dainotti, Walter de Donato, and Antonio Pegzalie: A community-oriented traffic
classification platform. Ifraffic Monitoring and Analysisrolume 5537 of_ecture Notes in
Computer Sciencages 64—74. 2009.

Alberto Dainotti, Walter de Donato, Antonio Peseaand Pierluigi Salvo Rossi. Classifica-
tion of network traffic via packet-level hidden markov models. pagés 36 2008 2008.
Alberto Dainotti, Antonio Pescapand Hyun chul Kim. Traffic classification through joint
distributions of packet-level statistics. GLOBECOM pages 1-6, 2011.

Alberto Dainotti, Antonio Pescapand K.C. Claffy. Issues and future directions in traffic
classification.Network, IEEE 26(1):35 —40, january-february 2012.

Alberto Dainotti, Antonio Pescéapand Carlo Sansone. Early classification of network traffic
through multi-classification. ITMA, pages 122-135, 2011.

Alberto Dainotti, Antonio Pescap Carlo Sansone, and Antonio Quintavalle. Using a be-
haviour knowledge space approach for detecting unknown ip trafficsfldn MCS pages
360-369, 2011.

Pedro M. Santiago del Ro, Dario Rossi, Francesco Gringoli, zor&fava, Luca Salgar-
elli, and Javier Aracil. Wire-speed statistical classification of network trafficommodity
hardware. In ACM IMC 2012.

Jeffrey Erman, Martin Arlitt, and Anirban Mahanti. Traffic classifica using clustering
algorithms. InMineNet '06: Mining network data (MineNet) Workshop at ACM SIGCOMM
‘06, Pisa, Italy, 2006.

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

. Jeffrey Erman, Anirban Mahanti, Martin Arlitt, and Carey Williamsaogenitifying and dis-
criminating between web and peer-to-peer traffic in the network corePrdneedings of
the 16th international conference on World Wide WaBbVW 07, pages 883-892, Banff,
Alberta, Canada, 2007.

A. Finamore, M. Mellia, M. Meo, and D. Rossi. Kiss: Stochastic peiclspection. InTraffic
Measurement and Analysis (TMA), Springer-Verlag LNCS 5p&@es 117-125, May 2009.
Alessandro Finamore, Marco Mellia, Michela Meo, and Dario Rodsk:FStochastic packet
inspection classifier for udp trafficl EEE/ACM Transaction on Networking8(5):1505—
1515, 2010.

Alessandro Finamore, Michela Meo, Dario Rossi, and Silvio Valenti.s KisAbacus: A
Comparison of P2P-TV Traffic Classifiers. Tmaffic Monitoring and Analysis, Springer
Lecture Notes in Computer Sciengelume 6003, pages 115-126. 2010.

Tom Z. J. Fu, Yan Hu, Xingang Shi, Dah-Ming Chiu, and John C.%. IPBS: Periodic
Behavioral Spectrum of P2P Applications. Pmoc. of PAM '09 Seoul, South Korea, Apr
20009.

F. Gringoli, Luca Salgarelli, M. Dusi, N. Cascarano, F. Risso, ard &laffy. GT: picking
up the truth from the ground for internet traffidfCM SIGCOMM Comput. Commun. Rev.
39(5):12-18, 2009.

Patrick Haffner, Subhabrata Sen, Oliver Spatscheck, andrbeinyang. ACAS: automated
construction of application signatures. ACM SIGCOMM Workshop on Mining Network
Data (Minenet’05) Philadelphia, PA, August 2005.

Marios lliofotou, Prashanth Pappu, Michalis Faloutsos, Michael Miteeher, Sumeet
Singh, and George Varghese. Network monitoring using traffic diggegraphs (tdgs).
In Proc. of IMC "07, San Diego, California, USA, 2007.

M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, an®.KPark. Kargus: a
highly-scalable software-based intrusion detection system. 2012.

Yu Jin, Nick Duffield, Patrick Haffner, Subhabrata Sen, and 4t#Hang. Inferring appli-
cations at the network layer using collective traffic statist86GMETRICS Perform. Eval.
Rey, 38, June 2010.

T. Karagiannis, A. Broido, N. Brownlee, kc klaffy, and M. Falmgs Is P2P dying or just
hiding? InIEEE GLOBECOM '04.Dallas, Texas, US, 2004.

Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and Kdyclafransport layer
identification of P2P traffic. Imth ACM SIGCOMM Internet Measurement Conference
(IMC’04), Taormina, IT, October 2004.

Thomas Karagiannis, Konstantina Papagiannaki, Nina Taft, ancaMidfaloutsos. Profil-
ing the end host. IfProceedings of the 8th international conference on Passive and active
network measuremerPAM’07, Louvain-la-Neuve, Belgium, 2007.

Amir R. Khakpour and Alex X. Liu. High-speed flow nature identification Proceedings
of the 2009 29th IEEE International Conference on Distributed ComputystegsICDCS
‘09, 2009.

H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, andli€e. Internet traffic
classification demystified: myths, caveats, and the best practic€so¢nof ACM CoNEXT
2008 Madrid, Spain, 2008.

Ron Kohavi and Ross Quinlan. Decision tree discoveryINIHANDBOOK OF DATA
MINING AND KNOWLEDGE DISCOVERYWages 267—-276. University Press, 1999.

S. B. Kotsiantis. Supervised machine learning: A review of clasgditgechniques. IPro-
ceeding of the 2007 conference on Emerging Artificial Intelligence Agpitain Computer
Engineering: Real Word Al Systems with Applications in eHealth, HCI, tndétion Re-
trieval and Pervasive Technologigzages 3—-24, Amsterdam, The Netherlands, The Nether-
lands, 2007. 10S Press.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Sailesh Kumar and Patrick Crowley. Algorithms to accelerate multipldaegxpressions
matching for deep packet inspection linProceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication (SIGCOMMp@&yes 339-350, 2006.

W. Li, M. Canini, A. W. Moore, and R. Bolla. Efficient application idem#iion and the
temporal and spatial stability of classification sche@amputer Network$3(6):790-809,
20009.

Y. Liu, D. Xu, L. Sun, and D. Liu. Accurate traffic classification withiitirthreaded proces-
sors. InIEEE International Symposium on Knowledge Acquisition and Modelind$kiop
(KAM) 2008.

Justin Ma, Kirill Levchenko, Christian Kreibich, Stefan Savage, Grdffrey M. Voelker.
Unexpected means of protocol inference. 6th ACM SIGCOMM Internet Measurement
Conference (IMC'06)Rio de Janeiro, BR, October 2006.

Anthony Mcgregor, Mark Hall, Perry Lorier, and James Brunsklow clustering using
machine learning techniques. RAM’'04, Antibes Juan-les-Pins, Fr., April 2004.

Marco Mellia, Antonio Pesca&p and Luca Salgarelli. Traffic classification and its applica-
tions to modern networksComputer Network$3(6):759-760, 2009.

A. Moore, D. Zuev, and M. Crogan. Discriminators for use in flumsed classification.
Technical report, University of Cambridge, 2005.

Andrew W. Moore and Denis Zuev. Internet traffic classificationgi®ayesian analysis
technigues. IACM SIGMETRICS '05Banff, Alberta, Canada, 2005.

David Moore, Ken Keys, Ryan Koga, Edouard Lagache, and.kCl&ffy. The coralreef
software suite as a tool for system and network administrator®rdoeedings of the 15th
USENIX conference on System administrati®an Diego, California, 2001.

Moore, Andrew. W. and Papagiannaki, Konstantina. Toward tloeirate Identification of
Network Applications. InPassive and Active Measurement (PAM’0Bpston, MA, US,
March 2005.

Napa-Wineht t p: / / ww. napa- wi ne. eu/ .

T. T. T. Nguyen and G. Armitage. A survey of techniques for irgetraffic classification
using machine learnindEEE Communications Surveys & Tutorial€(4):56-76, 2008.
Vern Paxson. Bro: a system for detecting network intruders irtiraal- Elsevier Comput.
Netw, 31:2435-2463, December 1999.

F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus. Lightwejgtayload-based
traffic classification: An experimental evaluation.Rroc. of IEEE ICC '08 May 2008.

F. Risso and N. Cascarano. Diffinder availabldtat p: / / net group. polito.it/
research-projects/17-traffic-classification.

Martin Roesch. Snort - lightweight intrusion detection for networksPrbceedings of the
13th USENIX conference on System administratldSA '99, pages 229-238, Berkeley,
CA, USA, 1999. USENIX Association.

Dario Rossi and Silvio Valenti. Fine-grained traffic classification wittflske data. In
TRaffic Analysis and Classification (TRAC) Workshop at IWCMGC Q#en, France, Jun
2010.

Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nifikl®. Class-of-service
mapping for QoS: a statistical signature-based approach to IP trafsifatation. INnACM
SIGCOMM Internet Measurement Conference (IMC;0&ormina, IT, October 2004.

L. Salgarelli, F. Gringoli, and T. Karagiannis. Comparing trafficsifeers. ACM SIGCOMM
Comp. Comm. Re\87(3):65-68, 2007.

Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. #ecacalable in-network iden-
tification of p2p traffic using application signatures. 18th international conference on
World Wide Web (WWW’'04New York, NY, US, May 2004.

61.

62.

63.

64.

65.

66.

67.

68.

Yeon sup Lim, Hyunchul Kim, Jiwoong Jeong, Chong kwon Kim, Taekyoung Kwon, and
Yanghee Choi. Internet traffic classification demystified: on the sewf#ae discriminative
power. INCoNEXT page 9, 2010.

G. Szab, |. Godor, A. Veres, S. Malomsoky, and S. Mam Traffic classification over Ghit
speed with commaodity hardwartEEE J. Communications Software and Systesn2010.
Silvio Valenti, Dario Rossi, Michela Meo, Marco Mellia, and Paola BermolAccurate,
Fine-Grained Classification of P2P-TV Applications by Simply Counting BeckinProc.
of International Workshop on Traffic Monitoring and Analysis (TMA);0pringer Lecture
Notes on Computer Sciena®mlume 5537, pages 84-92, Aachen, Germany, 2009.
Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris loannidis. Btidemulti-parallel
intrusion detection architecture. WCM Conference on Computer and Communications
Security pages 297-308, 2011.

N. Williams, S. Zander, and G. Armitage. A preliminary performacoeparison of five
machine learning algorithms for practical IP traffic flow classificatighCM SIGCOMM
CCR 36(5):5-16, 2006.

Wm. A. Wulf and Sally A. Mckee. Hitting the memory wall: Implications of thiavious.
Computer Architecture New23:20—-24, 1995.

Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. Profiling in&trbackbone traffic:
behavior models and application®8\CM SIGCOMM Comput. Commun. Re85(4):169—
180, 2005.

Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang §esnd Qunfeng Dong.
Gpu-based nfa implementation for memory efficient high speed reggaession matching.
In PPOPR pages 129-140, 2012.

