
Reviewing Traffic Classification

Silvio Valenti1,4, Dario Rossi1, Alberto Dainotti2,
Antonio Pescap̀e2, Alessandro Finamore3, Marco Mellia3

1 Telecom ParisTech, France –first.last@enst.fr
2 Universit̀a di Napoli Federico II, Italy –last@unina.it
3 Politecnico di Torino, Italy –first.last@polito.it

4 Current affiliation: Google, Inc.

Abstract. Traffic classification has received increasing attention in the last years.
It aims at offering the ability to automatically recognize the application that has
generated a given stream of packets from the direct and passive observation of
the individual packets, or stream of packets, flowing in the network. Thisability
is instrumental to a number of activities that are of extreme interest to carriers,
Internet service providers and network administrators in general. Indeed, traffic
classification is the basic block that is required to enable any traffic management
operations, from differentiating traffic pricing and treatment (e.g., policing, shap-
ing, etc.), to security operations (e.g., firewalling, filtering, anomaly detection,
etc.).
Up to few years ago, almost any Internet application was using well-known transport-
layer protocol ports that easily allowed its identification. More recently, the num-
ber of applications using random or non-standard ports has dramaticallyincreased
(e.g. Skype, BitTorrent, VPNs, etc.). Moreover, often network applications are
configured to use well-known protocol ports assigned to other applications (e.g.
TCP port 80 originally reserved for Web traffic) attempting to disguise theirpres-
ence.
For these reasons, and for the importance of correctly classifying traffic flows,
novel approaches based respectively on packet inspection, statistical and machine
learning techniques, and behavioral methods have been investigated and are be-
coming standard practice. In this chapter, we discuss the main trend in the field of
traffic classification and we describe some of the main proposals of the research
community.
We complete this chapter by developing two examples of behavioral classifiers:
both use supervised machine learning algorithms for classifications, buteach is
based on different features to describe the traffic. After presenting them, we com-
pare their performance using a large dataset, showing the benefits and drawback
of each approach.

1 Introduction

Traffic classification is the task of associating network traffic with the generating ap-
plication. Notice that the TCP/IP protocol stack, thanks toa clear repartition between
layers, is completely agnostic with respect to the application protocol or to the data
carried inside packets. This layered structure has been oneof the main reasons for the
success of the Internet; nevertheless, sometimes network operators, though logically at

Table 1.Taxonomy of traffic classification techniques

Approach Properties exploited Granularity Timeliness Comput. Cost

Port-based Transport-layer port
[49,50,53]

Fine grained First Packet Lightweight

Deep Packet
Inspection

Signatures in payload
[44,50,60]

Fine grained First payload Moderate, access
to packet payload

Stochastic
Packet
Inspection

Statistical properties of
payload [26,30,37]

Fine grained After a few packets
High, eventual
access to payload
of many packets

Statistical

Flow-level properties
[38,45,50,58]

Coarse grainedAfter flow terminationLightweight

Packet-level properties
[8,15]

Fine grained After few packets Lightweight

Behavioral
Host-level properties
[35,36,67]

Coarse grainedAfter flow terminationLightweight

Endpoint rate [7,28] Fine grained After a few seconds Lightweight

layer-3, would be happy to know to which application packetsbelong, in order to better
manage their network and to provide additional services to their customers. Traffic clas-
sification is also instrumental for all security operations, like filtering unwanted traffic,
or triggering alarms in case of an anomaly has been detected.

The information provided by traffic classification is extremely valuable, sometimes
fundamental, for quite a few networking operations [38,42,46,52]. For instance, a de-
tailed knowledge of the composition of traffic, as well as theidentification of trends in
application usage, is required by operators for a betternetwork design and provision-
ing. Quality of service(QoS) solutions [58], which prioritize and treat traffic differently
according to different criteria, need first to divide the traffic in different classes: identi-
fying the application to which packets belong is crucial when assigning them to a class.
In the same way, traffic classification enables differentiated classchargingor Service
Level Agreements (SLA) verification. Finally, some national governments expect ISPs
to performLawful Interception[6] of illegal or critical traffic, thus requiring them to
know exactly the type of content transmitted over their networks. Traffic classification
represents in fact the first step for activities such asanomaly detectionfor the identifi-
cation of malicious use of network resources, and for security operation in general, like
firewalling and filtering of unwanted traffic [53,56].

If, on the one hand, the applications of traffic classification are plentiful, on the other
hand, the challenges classifiers have to face are not to be outdone. First, they must deal
with an increasing amount of traffic as well as equally increasing transmission rates: to
cope with such speed and volume, researchers are looking forlightweight algorithms
with as little computational requirements as possible. Thetask is further exacerbated
by developers of network applications doing whatever in their power to hide traffic and
to elude control by operators: traffic encryption and encapsulation of data in other pro-
tocols are just the first two examples that come to mind. Therefore, researchers had to
come out with novel and unexpected ways for identifying traffic.

This Chapter is organized as follows. In Section 2, to provide the background of the
field, we define a taxonomy in which we highlight the most important contributions in
each category along with their most important characteristics. In Section 3 we discuss
the state of the art in the field of traffic classification. In Section 4 we describe the most
used machine-learning algorithms in the field of traffic classification. In Section 5 we
present two antipodean examples of traffic classification approaches, that we directly
compare in iSection 6. Section 7 ends the Chapter.

2 Traffic Classification: basic concepts and definitions

The large body of literature about traffic classification [7,8, 15, 20, 21, 26, 28, 30, 35,
36, 38, 44, 45, 49, 50, 50, 53, 58, 60, 67] is a further evidenceof the great interest of the
research community towards this topic. In the following, wewill present an overview
of the different approaches and methodologies that have been proposed by researchers
to solve this issue. It is important to underline that this isfar from being an attempt to
provide a comprehensive list of all papers in this field (which, given their number, would
be particularly tedious). Such a detailed reference can be found in a few surveys [38,52]
or in related community websites (e.g., [1]). Our aim is rather to identify the most
important research directions so far, as well as the most representative milestone works
and findings, to better highlight our contribution to this already deeply investigated
subject. Still, despite this huge research effort, the community has not put the last word
on traffic classification yet, as a number of challenges and questions still remain open.

To better structure this overview, we divide the classifiersin a few categories ac-
cording to the information on which they base the classification. This widely accepted
categorization, which reflects also the chronological evolution followed by research, is
summarized in Tab. 1. The table lists the most important works in each category along
with their most relevant characteristics. The most important properties of a traffic clas-
sifier, which determine its applicability to different network tasks [19], are:

Granularity We distinguish betweencoarse-grainedalgorithms, which recognize only
large family of protocols (e.g. P2P vs non P2P, HTTP vs Streaming) andfine-
grained classifiers, which, instead, try to identify the specific protocol (e.g. Bit-
Torrent vs eDonkey file-sharing), or even the specific application (e.g. PPlive vs
SopCast live streaming).

Timeliness Early classificationtechniques are able to quickly identify the traffic, after
a few packets, thus being suited for tasks requiring a promptreaction (e.g. security).
Late classificationalgorithms take longer to collect traffic properties, and insome
case they even have to wait for flow termination (i.e.,post mortemclassification):
such techniques are indicated for monitoring tasks, such ascharging.

Computational cost The processing power needed to inspect traffic and take the clas-
sification decision is an important factor when choosing a classification algorithm.
In the context of packet processing, the most expensive operation is usually packet
memory access, followed by regular expression matching.

3 State of the Art

In the first days of the Internet, identifying the application associated with some network
packets was not an issue whatsoever: protocols were assigned to well-known transport-
layer ports by IANA [2]. Therefore,Port-based classification[49, 50, 53] simply ex-
tracted such value from the packet header and then look it up in the table containing
the port-application associations. UnfortunatelyPort-basedclassification has become
largely unreliable [34, 50]. In fact, in order to circumventcontrol by ISPs, modern ap-
plications, especially P2P ones, either use non-standard ports, or pick a random port at
startup. Even worse, they hide themselves behind ports of other protocols – this might
enable bypassing firewalls as well. While port-based classification may still be reliable
for some portion of the traffic [38], nevertheless it will raise undetectable false-positive
(e.g., a non-legitimate application hiding beyond well-known port numbers) and false-
negative (e.g., a legitimate application running on non-standard ports) classifications.

To overcome this problem,Payload-based classifiers[26,30,44,50,60] were pro-
posed. They inspect the content of packets well beyond the transport layer headers,
looking for distinctive hints of an application protocol inpacket payloads. We actually
split this family of classification algorithms in two subcategories,Deep packet inspec-
tion (DPI) techniques that try to match a deterministic set of signatures or regular ex-
pressions against packet payload, andStochastic packet inspection(SPI), rather looking
at the statistical properties of packet content.

DPI has long provided extremely accurate results [50] and has been implemented
in several commercial software products as well as in open source projects [4] and in
the Linux kernel firewall implementation [3]. The payload ofpackets is searched for
known patterns, keywords or regular expressions which are characteristic of a given
protocol: the website of [3] contains a comprehensive listsof well known patterns.
Additionally, DPI is often used in intrusion detection systems [53] as a preliminary step
to the identification of network anomalies. Besides being extremely accurate, DPI has
been proved to be effective from the very first payload packets of a session [5,54], thus
being particularly convenient for early classification.

Despite its numerous advantages, DPI has some significant drawbacks. First the
computational cost is generally high, as several accesses to packet memory are needed
and memory speed is long known to represent the bottleneck ofmodern architectures [66].
String and regular expression matching represent an additional cost as well: although
there exist several efficient algorithms and data structures for both string matching and
regular expression, hardware implementation (e.g. FPGA),ad hoc coprocessors (e.g.
DFA) possibly massively parallel (e.g., GPU) are often required to keep up with current
transmission speed [41]. These hardware-based approacheshave been analyzed and
used to improve the performance of machine learning algorithms, traffic classification
approaches, and platforms for network security [11,32,43,62,64,68] Yet, it is worth not-
ing that while [64] estimate that the amount of GPUs power canprocess up to 40 Gbps
worth of traffic, bottlenecks in the communication subsystem between the main CPU
and the GPU crushes the actual performance down to a mere 5.2 Gbps [64]. Similarly,
Network Processors [43] and [62] achieve 3.5 Gbps and 6 Gbps of aggregated traffic
rate at most. As we will see, statistical classification outperforms these classification
rates without requiring special hardware. Another drawback of DPI is that keywords or

patterns usually need to be derived manually by visual inspection of packets, implying
a very cumbersome and error prone trial and error process. Last but not least, DPI fails
by design in the case of encrypted or obfuscated traffic.

Stochastic packet inspection (SPI) tries to solve some of these issues, for instance by
providing methods to automatically compute distinctive patterns for a given protocol.
As an example, authors of [44] define Common Substring Graphs(CSG): an efficient
data structure to identify a common string pattern in packets. Other works instead di-
rectly apply statistical tools to packet payload: authors of [30] directly use the values
of the first payload bytes as features for machine learning algorithms; in [26], instead,
a Pearson Chi-square test is used to study the randomness of the first payload bytes, to
build a model of the syntax of the protocol spoken by the application. Additionally, this
last algorithm is able to deal with protocols with partiallyencrypted payload, such as
Skype or P2P-TV applications.

Authors of [37], instead, propose a fast algorithm to calculate the entropy of the
first payload bytes, by means of which they are able to identify the type of content:
low, medium and high values of the entropy respectively correspond to text, binary and
encrypted content. Authors argue that, even if this is a veryrough repartition of traffic
and moreover some applications are very likely to use all of these kinds of content,
nonetheless such information might reveal useful to prioritize some content over the
others (e.g. in enterprise environments, binary transferscorresponding to application
updates to fix bugs deserve an high priority). Yet, SPI is still greedy in terms of com-
putational resources, requiring several accesses to packet payload, though with simpler
operations (i.e., no pattern matching).

While both [26, 37] use entropy-based classification, a notable difference is repre-
sented by the fact that in [26] entropy is computed for chunksof dataacrossa stream
of packets, while [37] computes entropy over chunkswhitin the same packet.

Statistical classification [8, 9, 15, 17, 18, 45, 48, 58, 65] is based on the rationale
that, being the nature of the services extremely diverse (e.g., Web vs VoIP), so will
be the corresponding traffic (e.g., short packets bursts of full-data packets vs long,
steady throughput flows composed of small-packets). Such classifiers exploit several
flow-level measurements, a.k.a.features, to characterize the traffic of the different ap-
plications [45,48,58]: a comprehensive list of a large number of possible traffic discrim-
inators can be found in the technical report [47]. Finally, to perform the actual classi-
fication, statistical classifiers apply data mining techniques to these measurements, in
particular machine learning algorithms.

Unlike payload-based techniques, these algorithms are usually very lightweight, as
they do not access packet payload and can also leverage information from flow-level
monitors such as [12]. Another important advantage is that they can be applied to en-
crypted traffic, as they simply do not care what the content ofpackets is. Nevertheless,
these benefits are counterbalanced by a decrease in accuracywith respect to DPI tech-
niques, which is why statistical-based algorithms have notevolved to commercial prod-
ucts yet. Still, researchers claim that in the near future operators will be willing to pay
the cost of a few errors for a much lighter classification process.

We can further divide this class of algorithms in a few subclasses according to the
data mining techniques employed and to the protocol layer ofthe features used. Con-

cerning the first criterion, on one hand, unsupervised clustering of traffic flows [45]
(e.g., by means of the K-means algorithm) does not require training and allows to group
flows with similar features together, possibly identifyingnovel unexpected behaviors;
on the other hand, supervised machine learning techniques [38,65] (e.g., based on Naive
Bayes, C4.5 or Support Vector Machines) need to be trained with already classified
flows, but are able to provide a precise labeling of traffic. Regarding the protocol layer,
we have classifiers employing only flow-level features [48] (e.g., duration, total number
of bytes transferred, average packet-size), as opposed to algorithms using packet-level
features [8, 15] (e.g., size and direction of the very first packets of a flow). The for-
mer ones are usually capable of late (in some cases onlypost-mortem), coarse-grained
classification, whereas the latter ones can achieve early, fine-grained classification.

Finally, Behavioral classification[35, 36, 67] moves the point of observation fur-
ther up in the network stack, and looks at the whole traffic received by a host, or an
(IP:port) endpoint, in the network. By the sole examinationof the generated traffic pat-
terns (e.g., how many hosts are contacted, with which transport layer protocol, on how
many different ports) behavioral classifiers try to identify the application running on
the target host. The idea is that different applications generate different patterns: for
instance, a P2P host will contact many different peers typically using a single port for
each host, whereas a Web server will be contacted by different clients with multiple
parallel connections.

Some works [35, 67] characterize the pattern of traffic at different levels of detail
(e.g., social, functional and application) and employ heuristics (such as the number
of distinct ports contacted, or transport-layer protocolsused) to recognize the class of
the application running on a host (e.g., P2P vs HTTP). Works taking the behavioral
approach to its extreme analyze the graph of connections between endpoints [31, 33],
showing that P2P and client-server application generate extremely different connection
patterns and graphs. They prove also that such information can be leveraged to clas-
sify the traffic of these classes of services even in the network core. A second group of
studies [7, 28], instead, propose some clever metrics tailored for a specific target traf-
fic, with the purpose of capturing the most relevant properties of network applications.
Combining these metrics with the discriminative power of machine learning algorithms
yields extremely promising results. The Abacus classifier [7] belongs to this last family
of algorithms, and it is the first algorithm able to provide a fine-grained classification of
P2P applications.

Behavioral classifiers have the same advantages of statistical-based classifiers, be-
ing lightweight and avoiding access to packet payload, but are usually able to achieve
the same accuracy with even less information. Such properties make them the perfect
candidate for the most constrained settings. Moreover given the current tendency to-
ward flow-level monitors such as NetFlow [12], the possibility to operate on the sole
basis of behavioral characteristics is a very desirable property for classifiers.

We wrap up this overview with an overall consideration on theapplicability of clas-
sifiers. With few exceptions such as [24], the wide majority of the classification algo-
rithms proposed in literature cannot be directly applied tothe network core. Limitations
can be either intrinsic to themethodology(e.g., behavioral classification typically fo-
cuses on endpoint [67] or end-hosts [36] activity), or be tied to thecomputational com-

plexity (e.g., DPI [26, 44, 50, 60] cannot cope with the tremendous amount of traffic in
the network core), or tostate scalability(e.g., flow-based classification [45,48] requires
to keep a prohibitive amount of per-flow state in the core), orto path changes(path in-
stabilities or load balancing techniques can make early classifications techniques such
as [8, 15] fail in the core). At the same time, we point out thatclassifying traffic at the
network ingress point is a reasonable choice for ISPs: indeed, traffic can be classified
and tagged at the access (e.g., DiffServ IP TOS field, MPLS, etc.), on which basis a
differential treatment can then be applied by a simple, stateless and scalable core (e.g.,
according to the class of application.). We investigate deeper this issue in the second
part of this dissertation.

Finally we must deal with a transversal aspect of traffic classification. The hetero-
geneity of approaches, the lack of a common dataset and of a widely approved method-
ology, all contribute to make the comparison of classification algorithms a daunting
task [59]. In fact, to date, most of the comparison effort hasaddressed the investiga-
tion of different machine learning techniques [8, 23, 65], using the same set of features
and the same set of traces. Only recently, a few works have specifically taken into
account the comparison problem [10, 38, 42, 52]. The authorsof [52] present a qualita-
tive overview of several machine learning based classification algorithms. On the other
hand, in [38] the authors compare three different approaches (i.e., based on signatures,
flow statistics and host behavior) on the same set of traces, highlighting both advantages
and limitations of the examined methods. A similar study is carried also in [42], where
authors evaluate spatial and temporal portability of a port-based, a DPI and a flow-based
classifier.

4 Machine-Learning Algorithms for Traffic Classification

In this section we will briefly introduce the problem of traffic classification in machine
learning theory (with a particular focus on the algorithms we actually employed to
exemplify the traffic classification performance in 6), all falling in the category of
supervised classification.

There is a whole field of research on machine learning theory which is dedicated to
supervised classification [40], hence it is not possible to include a complete reference in
this chapter. Moreover, instead of improving the classification algorithms themselves,
we rather aim at taking advantage of our knowledge of networkapplications to identify
good properties, or features, for their characterization.However, some basic concepts
are required to correctly understand how we applied machinelearning to traffic classi-
fication.

A supervised classification algorithm produces a functionf , the classifier, able to
associate some input data, usually a vectorx of numerical attributesxi calledfeatures,
to an output valuec, the class label, taken from a listC of possible ones. To build such
a mapping function, which can be arbitrary complex, the machine learning algorithm
needs some examples of already labeled data, thetraining set, i.e. a set of couples(x, c)
from which it learnshow to classify new data. In our case the featuresxi are distinctive
properties of the traffic we want to classify, while the classlabel c is the application
associated with such traffic.

nB

Trained

model

Training
set

Training traffic
protocol A

...

Training traffic
protocol X

Sampler

n

nB

Sampler

n

...

A
Compute features Sampling Model building

Training traffic
protocol A

Training traffic
protocol X

Oracle

Ground truth

Oracle

Ground truth

Validation

Training

Learning

Analysis

Analysis

Apply trained

model

Classification

A
B
C
DA

Classification

results

Classification

Analysis

Analysis

Compute features

Proto

X

Proto

X

A B C

%

Evaluate accuracy

Fig. 1.Common workflow of supervised classification.

From a high-level perspective, supervised classification consists of three consecu-
tive phases which are depicted in Fig. 1. During thetraining phasethe algorithm is fed
with the training set which contains our reference data, thealready classified training
points. The selection of the training points is a fundamental one, with an important
impact on the classifier performance. Extra care must be taken to select enough repre-
sentative points to allow the classifier to build a meaningful model; however, including
too many points is known to degenerate inoverfitting, where a model is too finely tuned
and becomes “picky”, unable to recognize samples which are just slightly different from
the training ones.

Notice that, preliminary to the training phase, anoracle is used to associate the
protocol label with the traffic signatures. Oracle labels are considered accurate, thus
representing theground truthof the classification. Finding a reliable ground truth for
traffic classification is a research topic on its own, with nottrivial technical and privacy
issues and was investigated by a few works [16,29].

The second step is theclassification phase, where we apply the classifier to some
new samples, thetest set, which must be disjoint from the training set. Finally a third
phase is needed tovalidate the results, comparing the classifiers outcome against the
reference ground truth. This last phase allows to assess theexpected performance when
deploying the classifier in operational networks.

In this chapter we describe two of the supervised classification algorithms most
used in traffic classification literature, namelySupport Vector MachinesandClassifi-
cation trees. This choice is not only based on their large use in the literature of traffic
classification, but as they are recognized as having the largest discriminative power in
the machine learning community. Specifically, classification accuracy of Support Vec-
tor Machines and Classification trees has been compared in [38, 61]: Support Vector
Machines exhibit the best classification performance in [38], while in [61] the authors

show the superior performance ofClassification trees. As for the complexity of these
approaches,

As for the complexity of these techniques, authors in [22] show how statistical clas-
sification based onClassification treescan sustain a throughput in excess of 10 Gbps on
off-the-shelf hardware, thus outperforming the current state of the art employing GPUs
for DPI classification [43, 62, 64]. The next subsections further elaborate the computa-
tional complexity of each technique.

4.1 Support Vector Machine

Support Vector Machine (SVM), first proposed by Vapnik [13],is a binary supervised
classification algorithm which transforms a non-linear classification problem in a linear
one, by means of what is called a “kernel trick”. In the following we intuitively ex-
plain how SVM works and refer the reader to [14, 65] for a more formal and complete
description of the algorithm.

SVM interprets the training samples as points in a multi-dimensional vector space,
whose coordinates are the components of the feature vectorx. Ideally we would like
to find a set of surfaces, partitioning this space and perfectly separating points belong-
ing to different classes. However, especially if the problem is non-linear, points might
be spread out in the space thus describing extremely complexsurface difficult, when
not impossible, to find in a reasonable time. The key idea of SVM is then to map, by
means of a kernel function, the training points in a newly transformed space, usually
with higher or even infinite dimensionality, where points can be separated by the easi-
est surface possible, an hyperplane. In the target space, SVM must basically solve the
optimization problem of finding the hyperplane which (i) separates points belonging
to different classes and (ii) has the maximum distance from points of either class. The
training samples that fall on the margin and identify the hyperplane are calledSupport
Vectors(SV).

At the end of the training phase SVM produces a model, which ismade up of the
parameters of the kernel function and of a collection of the support vectors describing
the partitioning of the target space. During the classification phase, SVM simply clas-
sifies new points according to the portion of space they fall into, hence classification
is much less computationally expensive than training. Since natively SVM is a binary
classifier, some workaround is needed to cope with multi-class classification problems.
The strategy often adopted is theone-versus-one, where a model for each pair of classes
is built and the classification decision is based on a majority voting of all binary models.

Support Vector Machines have proved to be an effective algorithm yielding good
performance out-of-the-box without much tuning, especially in complex feature spaces,
and has showed particularly good performance in the field of traffic classification [38,
65]. Several kernel functions are available in literature but usually Gaussian kernel ex-
hibits the best accuracy. One drawback of SVM is that models in the multidimensional
space cannot be interpreted by human beings and it is not possible to really understand
the reason why a model is good or bad. Another, more important, drawback is that the
classification process may still require a fair amount of computation. Specifically, the
number of operations to be performed is linear in the number of SVs (i.e., the represen-

tative samples) per each class. When the number of classes is large (say, in the order of
100s or 1000s applications), the computational cost can be prohibitive

4.2 Decision Trees

Decision Trees [39] represent a completely orthogonal approach to the classification
problem, using a tree structure to map the observation inputto a classification outcome.
Again, being this a supervised classification algorithms, we have the same three phases:
training, testing and validation.

During the training phase the algorithm builds the tree structure from the sample
points: each intermediate node (a.k.a. split node) represents a branch based on the value
of one feature, while each leaf represents a classification outcome. The classification
process, instead, consists basically in traversing the tree from the root to the leaves
with a new sample, choosing the path at each intermediate node according to the crite-
ria individuated by the training phase. Like in SVM, the classification process is way
more lightweight than the learning phase. One big advantageof this algorithm over
SVM is that the tree can be easily read and eventually interpreted to understand how
the algorithms leverages the features for the classification. Another advantage is that
classification is based on conditional tests and if-then-else branches, which make it
computationally very efficient with respect to SVM.

Literature on this subject contains quite a few decision tree building algorithms,
which differ in the way they identify the feature and threshold value for the intermediate
split nodes. The best known example of classification tree isthe C4.5 algorithm [39],
which bases such selection on the notion ofInformation Gain. This is a metric from
information theory which measures how much information about the application label
is carried by each features, or, in other words, how much the knowledge of a feature tells
you about the value of the label. We delay a formal definition of the information gain
metric to the next chapter, where we take advantage of it for feature selection purposes.
After calculating the information gain of each feature for the training set points, C4.5
picks as splitting feature for each node the one which maximizes such a score: this
strategy of using the most helpful attributes at each step isparticular efficient, yielding
trees of very limited depth (since the most critical split nodes are located toward the top
of the tree), which further simplify the computational requirement.

5 Two antipodean examples.

In this section, we overview a couple of techniques we propose for the online classifi-
cation of traffic generated by P2P applications (and, possibly, non-P2P application as
well).

We mainly consider two approaches with radically differentdesigns. One approach,
named Kiss [25, 26], ispayloadbased: it inspects the packet payload to automatically
gather a stochastic description of the content, thus inferring thesyntaxof the applica-
tion protocol rather than payloadsemantic. The other approach, named Abacus [7,63],
is insteadbehavioral: it analyzes the transport level exchanges of P2P applications,
discriminating between differentprotocol dynamics.

1.00 1.00 1.00 1.00

0.99 0.97 1.00 0.99

0.66 0.38 1.00 0.72

1.00 1.00 1.00 1.00

0.51 0.86 0.83

1.00 0.96 1.00 0.70

0 4 8 12

(a) Joost

0.98 0.98 0.51 0.29

1.00 0.96 0.30 0.30

0.77 0.31 0.30 0.23

0.30 0.25 0.21 0.22

0.92 0.55 0.95 0.95

1.00 0.57 0.55 0.36

0 4 8 12

(b) SopCast

0.31 0.27 0.07 0.04

0.97 0.96 0.04 0.04

0.15 0.07 0.04 0.04

0.04 0.03 0.01 0.02

0.19 0.11 0.19 0.19

0.19 0.11 0.10 0.08

0 4 8 12

(c) TVAnts

0.80 0.77 0.73 0.74

0.89 0.79 0.20 0.11

0.69 0.68 0.70 0.64

0.28 0.14 0.16 0.68

0.69 0.68 0.70 0.69

0.69 0.68 0.67 0.65

0 4 8 12

(d) PPLive

Fig. 2. Mean kiss signatures, 24 chunks of 4 bits each (higher value and lighter color correspond
to higher determinism)

Both Kiss and Abacus achieve very reliable classification but, in reason of their
different design, have their pros and cons. For instance, payload-based classification
fails when data is fully encrypted (e.g., IPsec, or encrypted TCP exchanges), while the
behavioral classifier is unable to classify a single flow (i.e., as protocol dynamics need
the observation of multiple flows). A detailed comparison ofboth techniques is reported
in Sec. 6

5.1 Kiss: Stochastic payload-based classification

High-level idea The first approach we consider is based on the analysis of packet
payload, trying to detect the syntax of the application protocol, rather that its semantic.
The process is better understood by contrasting it with DPI,which typically searches
keywords to identify a specific protocol. With a human analogy, this corresponds to
trying to recognize the foreign language of an overheard conversation by searching for
known words from a small dictionary (e.g., “Thanks” for English language, “Merci” for
French, “Grazie” for Italian and so on).

The intuition behind Kiss is that application-layer protocols can however be iden-
tified by statistically characterizing the stream of bytes observed in a flow of packets.
Kiss automatically builds protocol signatures by measuring entropy (or Chi-Square test)
of the packet payload. Considering the previous analogy, this process is like recogniz-
ing the foreign language by considering only the cacophony of the conversation, letting
the protocol syntax emerge, while discarding its actual semantic.

Fig. 2 reports examples of mean Kiss signatures for popular P2P-TV applications
like PPLive, SopCast, TVAnts and Joost that we will use oftenas examples in this
Chapter (and for the comparison in Sec. 6). The picture represents the application
layer header, where each group of 4 bits is individually considered: for each group, the
amount of entropy is quantified by means of a Chi-Square testχ2 with respect to the
uniform distribution. The syntax of the header is easy to interpret: lowχ2 scores hint
to high randomness of the corresponding group of bit, due to obfuscation or encryp-
tion; highχ2 scores instead are characteristic of deterministic fields,such as addresses
or identifiers; intermediate values correspond to changingfields, such as counters and
flags, or groups of bits that are split across field boundaries. As protocol languages are
different, Kiss signatures allow to easily distinguish between applications as emerges
from Fig. 2.

Formal signature definition Syntax description is achieved by using a simple Chi-
Square like test. The test originally estimates the goodness-of-fit between observed
samples of a random variable and a given theoretical distribution. Assume that the
possible outcomes of an experiment areK different values. LetOk be the empirical
frequencies of the observed values, out ofC total observations (

∑

k Ok = C). LetEk

be the number of expected observations ofk for the theoretical distributionEk = C ·pk
with pk the probability of valuek. Given thatC is large, the distribution of the random
variable:

X =

K
∑

k=1

(Ok − Ek)
2

Ek

(1)

that represents the distance between the observed empirical and theoretical distribu-
tions, can be approximated by a Chi-Square, orχ2, distribution withK − 1 degrees
of freedom. In the classical goodness of fit test, the values of X are compared with
the typical values of a Chi-Square distributed random variable: the frequent occurrence
of low probability values is interpreted as an indication ofa bad fitting. In Kiss, we
build a similar experiment analyzing the content of groups of bits taken from the packet
payload we want to classify.

Chi-Square signatures are built fromstreamsof packets. The firstN bytes of each
packet payload are divided intoG groupsof b consecutive bits each; a groupg can take
integer values in[0, 2b−1]. From packets of the same stream, we collect, for each group
g, the number of observations of each valuei ∈ [0, 2b − 1]; denote it byO(g)

i . We then
define a window ofC packets, in which we compute:

Xg =
2b−1
∑

i=0

(

O
(g)
i − E

(g)
i

)2

E
(g)
i

(2)

and collect them in the Kiss signature vector (where, by default, N = 12, G = 24, b =
4, C = 80):

X = [X1, X2, · · · , XG] (3)

Once the signatures are computed, one possibility to characterize a given protocol is
to estimate the expected distribution{E(g)

i } for each groupg, so that the set of signa-
tures are created by describing the expected distribution of the protocols of interest in
the database. During the classification process then, the observed groupg distribution
{O

(g)
i } must be compared to each of the{E(g)

i } in the database, for example using the
Chi-square test to select the most likely distribution. However, this process ends up in
being very complex, since (2) must be computed for each protocol of interest.

In addition to the high complexity, the comparison with reference distributions fails
when the application protocol includes constant values which are randomly extracted
for each flow. For example, consider a randomly extracted “flow ID” in a group. Con-
sider two flows, one used for training and one for testing, generated by the same appli-
cation. Let the training flow packets take the value 12 in thatgroup. Let the test flow
packets take instead the value 1 in the same group. Clearly, the comparison of the two
observed distributions does not pass the Chi-square test, and the test flow is not correctly
classified as using the same protocol as the training flow.

 0
 0.2
 0.4
 0.6
 0.8

 1

Experiment Time [∆T steps]

Joost
n6

SopCast

n4

TVants

n1

PPlive

n0

Fig. 3. Temporal evolution of Abacus signatures. Darker color correspondto low order bins,
carrying less traffic. Bins are exponential so thatXi ∝ 2

i, and a mark denotes the most likely
bin.

For the above reasons, we propose to simply compare the distance between the ob-
served values and a reference distribution, which we chooseas the uniform distribution,
i.e.,E(g)

i = E = C
2b

. In the previous example, the group randomness of the two flows
have the sameX value, that identify a “constant” field, independently of the actual value
of that group. In other terms, we use a Chi-Square like test tomeasure the randomness
of groups of bits, as an implicit estimate of the source entropy.

5.2 Abacus: Fine-grained behavioral classification

High-level idea The Abacus classifier leverages instead on the observation that ap-
plications perform different concurrent activities at thesame time. Considering for the
sake of the example P2P applications, one activity, namelysignaling, is needed for the
maintenance of the P2P infrastructure and is common to all applications. Still, P2P ap-
plications differ in the way they actually perform the signaling task, as this is affected
by the overlay topology and design (e.g., DHT lookup versus an unstructured flooding
search) and by implementation details (e.g., packet size, timers, number of concurrent
threads.)

Thedata-exchangeactivity in instead related to the type of offered service (e.g., file
sharing, content, VoIP, VoD, live streaming, etc.). Again,applications are remarkably
different, both considering implementation details (e.g., codec, transport layer, neigh-
borhood size, etc.) or the offered service (e.g., low and relatively stable throughput for
P2P-VoIP, higher but still relatively stable aggregated incoming throughput for P2P-
VoD and TV, largely variable throughput for file-sharing, etc).

Such difference are so striking, that it is actually possible to finely differentiate be-
tween different P2P applications offering the same service: in what follows, we make
an explanatory example on P2P-TV applications. We again consider P2P-TV appli-
cations and contrast the possible ways in which they implement the live TV service.
Concerning video transfers, for example, some applicationmay prefer to download
most of the video content from a few peers, establishing long-lived flows with them,
whereas other applications may prefer to download short fixed-sized “chunks” of video
from many peers at the same time. Similarly, some application may implement a very
aggressive network probing and discovering policy, constantly sending small-size mes-
sages to many different peers, while others may simply contact a few super-peers from
which they receive information about the P2P overlay. Continuing our human analogy,

we may say that some peers will be “shy” and contact a few peers, possibly download-
ing most of the data from them, while others will be “easy-going” and contact many
peers, possibly downloading a few data from each.

These differences are shown in Fig. 3, which depicts the temporal evolution of (a
simplified version of) the signature used for traffic classification. To capture the above
differences, we asses the shyness of a peerP by gauging the proportion of peers that
send toP a given amount of traffic in the rangeXi = [X−

i , X+
i]. We then evaluate

an empirical probability mass functionpi (pmf) by normalizing the countni of peers
sendingx ∈ Xi traffic (e.g., packets or bytes), and by ordering the bins such that
X+

i−i ≤ X−

i , i.e. low order bins contain less traffic.
In Fig. 3, darker colors correspond to lower bins, and bins are staggered so that they

extend to 1 (due to pmf): for the sake of readability, the mostlikely (i.e., argmaxini)
bin is indicated with a textbox. From Fig. 3, it can be seen that each application has a
behavior that, although not stationary over time, is however remarkably different from
all the others.

Formal signature definition In the following, we restrict our attention to UDP traffic,
although endpoint identification can be extended to applications relying on TCP at the
transport layer as well5. Let us consider the traffic received by an arbitrary end-point
p = (IP, port) during an interval of duration∆T . We evaluate the amount of informa-
tion received byp simply as the number of receivedpackets(although the concept can
be extended to the amount ofbytes, to build more precise signatures [57]).

We partition the spaceN of the number of packets sent top by another peer into
Bn + 1 bins of exponential-size with base 2:I0 = (0, 1], Ii = (2i−1, 2i] for i =
1, . . . , Bn−1 andIBn

= (2Bn−1,∞]. For each∆T interval, we count the numberNi

of peers that sent top a number of packetsn ∈ Ii; i.e., N0 counts the number of
peers that sent exactly 1 packet top during∆T ; N1 the number of peers that sent 2
packets;N2 the number of peers that sent 3 or 4 packets and, finally,NBn

the number
of peers that sent at least2Bn−1 + 1 packets top. Let K denote the total number
of peers that contactedp in the interval. The behavioral signature is then defined as
n = (n0, . . . , nBn

) ∈ R
Bn+1, where:

ni =
Ni

∑Bn

j=0 Nj

=
Ni

K
(4)

Sincen has been derived from the pure count of exchanged packets, wename it
“Abacus”, which is also a shorthand for “Automated Behavioral Application Classifi-
cation Using Signatures”. Formally, the signaturen is the observed probability mass
function (pmf) of the number of peers that sent a given numberof packets top in a time
interval of duration∆T (where by default∆T = 5, B = 8).

5 In case TCP is used, the client TCP port is ephemeral, i.e., randomly selected by the Operating
System for each TCP connection. The TCP case would require more complex algorithms in
case of trafficgeneratedfrom a specific peer, since ephemeral ports differ among flows gener-
ated by the same peer. However, the problem vanishes by focusing on the downlink direction:
in this case, we aggregate all trafficreceivedby a TCP server port, that is the same for all flows
of any given peer.

Table 2.Datasets used for the comparison

Dataset DurationFlows BytesEndpoints
Napa-WUT 180 min 73k 7Gb 25k

Operator 2006 (op06)45 min 785k 4Gb 135k
Operator 2007 (op07)30 min 319k 2Gb 114k

This function is discretized according to the exponential bins described above. The
choice of exponential width bins reduces the size of the signature, while keeping the
most significant information that can be provided by the pmf.In fact, as the binning
is much finer for short number of packets, short flows with evena small difference in
the number of packets are likely to end up (e.g. flows composedby a single packet, two
packets and three packets are counted respectively in the componentn0, n1 andn2). On
the contrary, longer flows are coarsely grouped together in the higher bins. Intuitively it
is more valuable to distinguish between short flows (e.g., distinguishing between single-
packet probes versus short signaling exchanges spanning several packets), while there is
no gain in having an extreme accuracy when considering long flows (e.g., distinguishing
between 500 or 501 packet long flows). This intuition is discussed in [7], where we
examine the impact of different binning strategies.

6 Kiss vs Abacus

At last, we perform a comparison of both approaches, at several levels. To dress a2π ra-
dians view6, we consider not only the (i) classification results, but also (ii) functional as
well as (iii) complexity aspects. To perform the comparisonof the classification results,
we consider a common subset of traffic, namely that usual set of P2P-TV applications.

In brief, the algorithms are comparable in terms of accuracyin classifying P2P-TV
applications, at least regarding the percentage of correctly classified bytes. Differences
instead emerged when we compared the computational cost of the classifiers: with this
respect, Abacus outperforms Kiss, because of the simplicity of the features employed to
characterize the traffic. Conversely, Kiss is much more general, as it can classify other
types of applications as well.

6.1 Methodology

We evaluate the two classifiers on the traffic generated by thecommon set of P2P-
TV applications, namely PPLive, TVAnts, SopCast and Joost.Furthermore we use two
distinct sets of traces to asses two different aspects of ourclassifiers.

The first set was gathered during a large-scale active experiment performed in the
context of the Napa-Wine European project [51]. For each application we conduct an
hour-long experiment where several machines provided by the project partners run the

6 Well, I assume that since “360◦ degree” is a common saying for everybody, “2π radians”
should not be an uncommon saying among scientists and engineers.

Table 3.Classification results: Bytewise confusion matrix for Abacus (left) and Kiss (right)

Abacus Kiss

un un nc

99.33 - - 0.11 0.56 99.97 - - - 0.01 0.02

0.01 99.95 - - 0.04 - 99.96 - - 0.03 0.01

0.01 0.09 99.85 0.02 0.03 - - 99.98 - 0.01 0.01

- - 99.98 0.02 - - - 99.98 0.01 0.01
op06 1.02 - 0.58 0.5597.85 - 0.07 - 0.08 98.45 1.4
op07 3.03 - 0.71 0.2596.01 - 0.08 0.74 0.0596.262.87

=PPLive, =Tvants, =Sopcast, =Joost, un=Unknown, nc=not-classified

software and captured the generated traffic. The machines involved were carefully con-
figured in such a way that no other interfering application was running on them, so that
the traces contain P2P-TV traffic only. This set, available to the research community
in [51] is used both to train the classifiers and to evaluate their performance in identify-
ing the different P2P-TV applications.

The second dataset consists of two real-traffic traces collected in 2006 and 2007
on the network of a large Italian ISP. This operator providesits customers with un-
controlled Internet access (i.e., it allows them to run any kind of application, from web
browsing to file-sharing), as well as telephony and streaming services over IP. Given the
extremely rich set of channels available through the ISP streaming services, customers
are not inclined to use P2P-TV applications and actually no such traffic is present in
the traces. We verified this by means of a classic DPI classifier as well as by manual
inspection of the traces. This set has the purpose of assessing the number of false alarms
raised by the classifiers when dealing with non P2P-TV traffic. We report in Tab. 2 the
main characteristics of the traces.

To compare the classification results, we employ thediffinder tool [55], as al-
ready done in [10]. This simple software takes as input the logs from different classifiers
with the list of flows and the associated classification outcome. Then, it calculates as
output several aggregate metrics, such as the percentage ofagreement of the classifiers
in terms of both flows and bytes, as well as a detailed list of the differently classified
flows enabling further analysis.

6.2 Classification results

Tab. 3 reports the accuracy achieved by the two classifiers onthe test traces using Sup-
port Vector Machines (SVM) [14] as learning technique. Eachtable is organized in a
confusion-matrix fashion where rows correspond to real traffic i.e. the expected out-
come, while columns report the possible classification results. For each table, the upper
part is related to the Napa-Wine traces while the lower part is dedicated to the operator
traces. The values in bold on the main diagonal of the tables express therecall, a metric

Table 4.Functional comparison of Abacus and Kiss

Characteristic Abacus Kiss
Classification Branch Behavioral Stocastic Payload Inspection
Classification Entity Endpoint Endpoint/Flow
Input Format Netflow-like Packet trace
Target Grain Fine grained Fine grained
Protocol Family P2P-TV Any
Rejection Criterion Threshold/Train-based Train-based
Train-set Size Big (4000 smp.) Small(300 smp.)
Time Responsiveness Deterministic(5sec) Stochastic(early 80pkts)
Network Deploy Edge Edge/Backbone

commonly used to evaluate classification performance, defined as the ratio of true posi-
tives over the sum of true positives and false negatives. The“unknown” column counts
the percentage of traffic which was recognized as not being P2P-TV traffic, while the
column “not classified” accounts for the percentage of traffic that Kiss cannot classify
(as it needs at leastC = 80 packets for any endpoint).

Is easy to grasp that both the classifiers are extremely accurate, as most of the bytes
are correctly classified (flow accuracy is analyzed in [27]).For the Napa-Wine traces
the percentage of true positives exceeds 99% for all the considered applications. For the
operator traces, again the percentage of true negatives exceeds 96% for all traces, with
Kiss showing a overall slightly better performance. These results demonstrate that even
an extremely lightweight behavioral classification mechanism, such as the one adopted
in Abacus, can achieve the same precision of an accurate payload based classifier.

6.3 Functional comparison

In the previous section we have shown that the classifiers actually have similar perfor-
mance for the identification of the target applications as well as the “unknown” traffic.
Nevertheless, they are based on very different approaches,both presenting pros and
cons, which need to be all carefully taken into account and that are summarized in
Tab. 4.

The most important difference is the classification technique used. Even if both
classifiers are statistical, they work at different levels and clearly belong to different
families of classification algorithms. Abacus is a behavioral classifier since it builds a
statistical representation of the pattern of traffic generated by an endpoint, starting from
transport-level data. Conversely, Kiss derives a statistical description of the application
protocol by inspecting packet-level data, so it is a payload-based classifier.

The first consequence of this different approach lies in typeand volume of informa-
tion needed for the classification. In particular, Abacus takes as input just a measure-
ment of the traffic rate of the flows directed to an endpoint, interms of both bytes and
packets. Not only this represents an extremely small amountof information, but it could
also be gathered by a Netflow monitor, so that no packet trace has to be inspected by

the classification engine itself. On the other hand, Kiss must necessarily access packet
payload for feature computation: this constitutes a more expensive operation, even if
only the first 12 bytes are sufficient to achieve a high classification accuracy.

Despite the different input data, both classifiers work at a fine-grained level, i.e.,
they can identify the specific application related to each flow and not just the class of
applications. This consideration may appear obvious for a payload-based classifier such
as Kiss, but it is one of the strength of Abacus over other behavioral classifiers which
are usually capable only of a coarse grained classification.Clearly, Abacus pays the
simplicity of its approach in terms of possible target traffic, as its classification process
relies on some specific properties of P2P traffic. On the contrary, Kiss is more general, it
makes no particular assumptions on its target traffic and canbe applied to any protocol.
Indeed, it successfully classifies not only other P2P applications (e.g., eDonkey Skype,
etc.), but traditional client-server applications (e.g.,DNS, RTP, etc.) as well.

Another important distinguishing element is the rejectioncriterion. Abacus defines
an hypersphere for each target class and measures the distance of each classified point
from the center of the associated hypersphere by means of theBhattacharyya distance.
Then, by employing a threshold-based rejection criterion,a point is label as “unknown”
when its distance from the center exceeds a given value. Instead Kiss exploits a multi-
class SVM model where all the classes, included the unknown,are represented in the
training set. If this approach makes Kiss very flexible, the characterization of the classes
can be critical especially for the unknown since it is important that the training set
contains samples from all possible protocols other than thetarget ones.

We also notice that there is an order of magnitude of difference in the size of the
training set used by the classifiers. In fact, we trained Abacus with 4000 samples per
class (although in some tests we experimented the same classification performance even
with smaller training sets) while Kiss needs only about 300 samples per class. On the
other hand, Kiss needs at least 80 packets generated from (ordirected to) an endpoint
in order to classify it. This may seem a strong constraint but[26] actually shows that
the percentage of not supported traffic is negligible, at least in terms of bytes.

Finally, for what concerns the network deployment, Abacus needs all the traffic
received by the endpoint to characterize its behavior. Therefore, it is only effective
when placed at the edge of the network, where all traffic directed to an host transits.
Conversely, in the network core Abacus would likely see onlya portion of this traffic,
so gathering an incomplete representation of an endpoint behavior, which in turn could
result in an inaccurate classification. Kiss, instead, is more robust with respect to the
deployment position. In fact, by inspecting packet payload, it can operate even on a
limited portion of the traffic generated by an endpoint, provided that the requirement on
the minimum number of packets is satisfied.

6.4 Computational cost

To complete the classifiers comparison, we provide an analysis of the requirements in
terms of both memory occupation and computational cost. We calculate these metrics
from the formal algorithm specification, so that our evaluation is independent from spe-
cific hardware platforms or code optimizations. Tab. 5 compares the costs in a general
case, reporting in the bottom portion specific figures for thedefault parameters.

Table 5.Computational complexity and resource requirements comparison

Abacus Kiss
Memory
allocation

2F counters 2
bG counters

Packet
processing

EP state = hash(IPd, portd)
FL state = EP state.hash(IPs, ports)
FL state.pkts ++
FL state.bytes += pkt size

EP state = hash(IPd, portd)
for g = 1 to G do

Pg = payload[g]
EP state.O[g][Pg]++

end for

Tot. op. 2 lup + 2sim (2G+1)lup + Gsim

Feature
extraction

EP state = hash(IPd, portd)
for all FL state in EP state.hash do

p[log2(FL state.pkts)] += 1
b[log2(FL state.bytes)] += 1

end for
N = count(keys(EP state.hash))
for all i = 0 to B do

p[i] /= N
b[i] /= N

end for

E = C/2b (precomputed)
for g = 1 to G do

Chi[g] = 0
for i = 0 to 2b do

Chi[g] +=
(EP state.O[g][i]-E)2

end for
Chi[g] /= E

end for

Tot. op. (4F+2B+1)lup + 2(F+B)com + 3Fsim 2
b+1G lup + Gcom + (3·2b+1)Gsim

Memory
allocation

320 bytes 384 bytes

Packet
processing

2 lup + 2sim 49lup + 24sim

Feature
extraction

177lup + 96com + 120sim 768lup + 24com + 1176sim

Default params:B=8, F=40 Default params:G=24, b=4

lup=lookup,com=complex operation,sim=simple operation

Memory footprint is mainly related to the data structures used to compute the statis-
tics. Kiss requires a table ofG · 2b counters for each endpoint to collect the observed
frequencies employed in the chi-square computation. For the default parameters, i.e.
G = 24 chunks ofb = 4 bits, each endpoint requires 384 counters. Abacus, instead,
requires two counters for each flow related to an endpoint, sothe total amount of mem-
ory is not fixed but it depends on the number of flows per endpoint. As an example,
Fig. 4-(a) reports, for the two operator traces, the CDF of the number of flows seen by
each endpoint in consecutive windows of 5 seconds, the default duration of the Abacus
time-window. It can be observed that the 90th percentile in the worst case is nearly 40
flows. By using this value as a worst case estimate of the number of flows for a generic
endpoint, we can say that2 · #Flows = 80 counters are required for each endpoint.
This value is very small compared to Kiss requirements but for a complete comparison

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

Flows @ 5sec

C
D

F
C

D
F

op06
op07
joost

pplive
sopcast

tvants

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

time @ 80pkt

C
D

F

op06
op07
joost

pplive
sopcast

tvants

(b)

Fig. 4. Cumulative distribution function of (a) number of flows per endpoint and(b) duration of
a 80 packet snapshot for the operator traces

we also need to consider the counters dimension. As Kiss useswindows of 80 packets,
its counters assume values in the interval[0, 80] so single byte counters are sufficient.
Using the default parameters, this means 384 bytes for each endpoint. Instead, the coun-
ters of Abacus do not have a specific interval so, using a worstcase scenario of 4 bytes
for each counter, we can say that 320 bytes are associated to each endpoint. In con-
clusion, in the worst case, the two classifiers require a comparable amount of memory
though on average Abacus requires less memory than Kiss.

Computational cost can be evaluated comparing three tasks:the operations per-
formed on each packet, the operations needed to compute the signatures and the op-
erations needed to classify them. Tab. 5 reports the pseudo code of the first two tasks
for both classifiers, specifying also the total amount of operations needed for each task.
The operations are divided in three categories and considered separately as they have
different costs:lup for memory lookup operations,com for complex operations (i.e.,
floating point operations),simfor simple operations (i.e., integer operations).

Let us first focus on the packet processing phase, which presents many constraints
from a practical point of view, as it should operate at line speed. In this phase, Abacus
needs 2 memory lookup operations, to access its internal structures, and 2 integer incre-
ments per packet. Kiss, instead, needs2G + 1 = 49 lookup operations, half of which
are accesses to packet payload. Then, Kiss must computeG integer increments. Since
memory read operations are the most time consuming, we can conclude that Abacus
should be approximately 20 times faster than Kiss in this phase.

The evaluation of the signature extraction process insteadis more complex. First of
all, since the number of flows associated to an endpoint is notfixed, the Abacus cost is
not deterministic but, like in the memory occupation case, we can consider 40 flows as
a worst case scenario. For the lookup operations, ConsideringB = 8, Abacus requires
a total of 177 operations, while Kiss needs 768 operations, i.e., nearly four times as
many. For the arithmetic operations, Abacus needs 96 floating point and 120 integer
operations, while Kiss needs 24 floating point and 1176 integer operations.

Abacus produces signatures every∆T = 5 seconds, while Kiss signatures are pro-
cessed everyC = 80 packets. To estimate the frequency of the Kiss calculation,in
Fig. 4(b) we show the CDF of the amount of time needed to collect 80 packets for an
endpoint: on average, a new signature is computed every 2 seconds. This means that
Kiss calculate feature more frequently than Abacus: i.e., it is more reactive but obvi-
ously also more resource consuming.

Finally, the complexity of the classification task depends on the number of features
per signature, since both classifiers are based on a SVM decision process. The Kiss
signature is composed, by default, ofG = 24 features, while the Abacus signature
contains 16 features: also from this point of view Abacus appears lighter than Kiss.

6.5 Summary of comparison

We have described, analyzed and compared Kiss and Abacus, two different approaches
for the classification of P2P-TV traffic. We provided not onlya quantitative evaluation
of the algorithm performance by testing them on a common set of traces, but also a more
insightful discussion of the differences deriving from thetwo followed paradigms.

The algorithms prove to be comparable in terms of accuracy inclassifying P2P-TV
applications, at least regarding the percentage of correctly classified bytes. Differences
emerge also when we compared the computational cost of the classifiers. With this
respect, Abacus outperforms Kiss, because of the simplicity of the features employed
to characterize the traffic. Conversely, Kiss is much more general, as it can classify
other types of applications as well.

7 Conclusion

In this Chapter we have reviewed literature in the field of traffic classification, a topic
which has increased a lot in relevance during last years. Traffic classification is the
building block to enable visibility into the traffic carriedby the network, and this it
is the key element to empower and implement any traffic management mechanisms:
service differentiation, network design and engineering,security, accounting, etc., are
all based on the assumption to be able to classify traffic.

Research on Internet traffic classification has produced creative and novel approaches.
Yet, as described in this Chapter, there is still room for improvements and contribu-
tions in the light of classification techniques and platforms, ground truth, comparison
approaches, etc. In particular, the natural evolution of the Internet in which novel appli-
cations, protocols and habits are born, proliferate and die, calls for a continuous need
to update traffic classification methodologies. This is particular critical considering se-
curity aspects in which every bit, byte and packet must be checked.

References

1. CAIDA, The Cooperative Association for Internet Data Analysis.http://www.caida.
org/research/traffic-analysis/classification-overview/.

2. IANA, List of assigned port numbers.http://www.iana.org/assignments/
port-numbers,.

3. l7filter, Application layer packet classifier for Linux. http://l7-filter.
clearfoundation.com/,.

4. Tstat,http://tstat.tlc.polito.it.
5. G. Aceto, A. Dainotti, W. d. Donato, and A. Pescapè. Portload: Taking the best of two

worlds in traffic classification. InINFOCOM IEEE Conference on Computer Communica-
tions Workshops, 2010, pages 1–5, 15 2010.

6. F. Bakerand, B. Fosterand, and C. Sharp. Cisco Architecture forLawful Intercept in IP
Networks. IETF RFC 3924(Informational), Oct 2004.

7. Paola Bermolen, Marco Mellia, Michela Meo, Dario Rossi, and Silvio Valenti. Abacus: Ac-
curate behavioral classification of P2P-TV traffic.Elsevier Computer Networks, 55(6):1394
– 1411, 2011.

8. Laurent Bernaille, Renata Teixeira, and Kave Salamatian. Early application identification.
In Proc. of ACM CoNEXT 2006, Lisboa, PT, December 2006.

9. V. Carela-Espaoll, P. Barlet-Ros, M. Sole-Simo, A. Dainotti, W. de Donato, and A. Pescapè.
K-dimensional trees for continuous traffic classification. pages 141–154, 2010.

10. N. Cascarano, F. Risso, A. Este, F. Gringoli, L. Salgarelli, A. Finamore, and M. Mellia.
Comparing P2PTV Traffic Classifiers. InCommunications (ICC), 2010 IEEE International
Conference on, pages 1 –6, may 2010.

11. Niccolo Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. infant: Nfa pattern
matching on gpgpu devices.Computer Communication Review, 40(5):20–26, 2010.

12. B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informational),
Oct 2004.

13. Corinna Cortes and Vladimir Vapnik. Support-vector networks.Machine Learning, 20:273–
297, 1995.

14. Nello Cristianini and John Shawe-Taylor.An introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, New York, NY, 1999.

15. Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli. Traffic classifica-
tion through simple statistical fingerprinting.ACM SIGCOMM Computer Communication
Review, 37(1):5–16, January 2007.

16. Alberto Dainotti, Walter de Donato, and Antonio Pescapé. Tie: A community-oriented traffic
classification platform. InTraffic Monitoring and Analysis, volume 5537 ofLecture Notes in
Computer Science, pages 64–74. 2009.

17. Alberto Dainotti, Walter de Donato, Antonio Pescapè, and Pierluigi Salvo Rossi. Classifica-
tion of network traffic via packet-level hidden markov models. pages 1–5, 30 2008 2008.

18. Alberto Dainotti, Antonio Pescapè, and Hyun chul Kim. Traffic classification through joint
distributions of packet-level statistics. InGLOBECOM, pages 1–6, 2011.

19. Alberto Dainotti, Antonio Pescapé, and K.C. Claffy. Issues and future directions in traffic
classification.Network, IEEE, 26(1):35 –40, january-february 2012.

20. Alberto Dainotti, Antonio Pescapè, and Carlo Sansone. Early classification of network traffic
through multi-classification. InTMA, pages 122–135, 2011.

21. Alberto Dainotti, Antonio Pescapè, Carlo Sansone, and Antonio Quintavalle. Using a be-
haviour knowledge space approach for detecting unknown ip traffic flows. In MCS, pages
360–369, 2011.

22. Pedro M. Santiago del Ro, Dario Rossi, Francesco Gringoli, Lorenzo Nava, Luca Salgar-
elli, and Javier Aracil. Wire-speed statistical classification of network traffic on commodity
hardware. In ACM IMC 2012.

23. Jeffrey Erman, Martin Arlitt, and Anirban Mahanti. Traffic classification using clustering
algorithms. InMineNet ’06: Mining network data (MineNet) Workshop at ACM SIGCOMM
’06, Pisa, Italy, 2006.

24. Jeffrey Erman, Anirban Mahanti, Martin Arlitt, and Carey Williamson. Identifying and dis-
criminating between web and peer-to-peer traffic in the network core. InProceedings of
the 16th international conference on World Wide Web, WWW ’07, pages 883–892, Banff,
Alberta, Canada, 2007.

25. A. Finamore, M. Mellia, M. Meo, and D. Rossi. Kiss: Stochastic packet inspection. InTraffic
Measurement and Analysis (TMA), Springer-Verlag LNCS 5537, pages 117–125, May 2009.

26. Alessandro Finamore, Marco Mellia, Michela Meo, and Dario Rossi. Kiss: Stochastic packet
inspection classifier for udp traffic.IEEE/ACM Transaction on Networking, 18(5):1505–
1515, 2010.

27. Alessandro Finamore, Michela Meo, Dario Rossi, and Silvio Valenti. Kiss to Abacus: A
Comparison of P2P-TV Traffic Classifiers. InTraffic Monitoring and Analysis, Springer
Lecture Notes in Computer Science, volume 6003, pages 115–126. 2010.

28. Tom Z. J. Fu, Yan Hu, Xingang Shi, Dah-Ming Chiu, and John C. S. Lui. PBS: Periodic
Behavioral Spectrum of P2P Applications. InProc. of PAM ’09, Seoul, South Korea, Apr
2009.

29. F. Gringoli, Luca Salgarelli, M. Dusi, N. Cascarano, F. Risso, and k. c. claffy. GT: picking
up the truth from the ground for internet traffic.ACM SIGCOMM Comput. Commun. Rev.,
39(5):12–18, 2009.

30. Patrick Haffner, Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. ACAS: automated
construction of application signatures. InACM SIGCOMM Workshop on Mining Network
Data (Minenet’05), Philadelphia, PA, August 2005.

31. Marios Iliofotou, Prashanth Pappu, Michalis Faloutsos, Michael Mitzenmacher, Sumeet
Singh, and George Varghese. Network monitoring using traffic dispersion graphs (tdgs).
In Proc. of IMC ’07, San Diego, California, USA, 2007.

32. M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K.S. Park. Kargus: a
highly-scalable software-based intrusion detection system. 2012.

33. Yu Jin, Nick Duffield, Patrick Haffner, Subhabrata Sen, and Zhi-Li Zhang. Inferring appli-
cations at the network layer using collective traffic statistics.SIGMETRICS Perform. Eval.
Rev., 38, June 2010.

34. T. Karagiannis, A. Broido, N. Brownlee, kc klaffy, and M. Faloutsos. Is P2P dying or just
hiding? InIEEE GLOBECOM ’04., Dallas, Texas, US, 2004.

35. Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and Kc claffy. Transport layer
identification of P2P traffic. In4th ACM SIGCOMM Internet Measurement Conference
(IMC’04), Taormina, IT, October 2004.

36. Thomas Karagiannis, Konstantina Papagiannaki, Nina Taft, and Michalis Faloutsos. Profil-
ing the end host. InProceedings of the 8th international conference on Passive and active
network measurement, PAM’07, Louvain-la-Neuve, Belgium, 2007.

37. Amir R. Khakpour and Alex X. Liu. High-speed flow nature identification. In Proceedings
of the 2009 29th IEEE International Conference on Distributed Computing Systems, ICDCS
’09, 2009.

38. H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K.Lee. Internet traffic
classification demystified: myths, caveats, and the best practices. InProc. of ACM CoNEXT
2008, Madrid, Spain, 2008.

39. Ron Kohavi and Ross Quinlan. Decision tree discovery. InIN HANDBOOK OF DATA
MINING AND KNOWLEDGE DISCOVERY, pages 267–276. University Press, 1999.

40. S. B. Kotsiantis. Supervised machine learning: A review of classification techniques. InPro-
ceeding of the 2007 conference on Emerging Artificial Intelligence Applications in Computer
Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Re-
trieval and Pervasive Technologies, pages 3–24, Amsterdam, The Netherlands, The Nether-
lands, 2007. IOS Press.

41. Sailesh Kumar and Patrick Crowley. Algorithms to accelerate multiple regular expressions
matching for deep packet inspection. InIn Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM06), pages 339–350, 2006.

42. W. Li, M. Canini, A. W. Moore, and R. Bolla. Efficient application identification and the
temporal and spatial stability of classification schema.Computer Networks, 53(6):790–809,
2009.

43. Y. Liu, D. Xu, L. Sun, and D. Liu. Accurate traffic classification with multi-threaded proces-
sors. InIEEE International Symposium on Knowledge Acquisition and Modeling Workshop
(KAM) 2008.

44. Justin Ma, Kirill Levchenko, Christian Kreibich, Stefan Savage, andGeoffrey M. Voelker.
Unexpected means of protocol inference. In6th ACM SIGCOMM Internet Measurement
Conference (IMC’06), Rio de Janeiro, BR, October 2006.

45. Anthony Mcgregor, Mark Hall, Perry Lorier, and James Brunskill.Flow clustering using
machine learning techniques. InPAM’04, Antibes Juan-les-Pins, Fr., April 2004.

46. Marco Mellia, Antonio Pescapè, and Luca Salgarelli. Traffic classification and its applica-
tions to modern networks.Computer Networks, 53(6):759–760, 2009.

47. A. Moore, D. Zuev, and M. Crogan. Discriminators for use in flow-based classification.
Technical report, University of Cambridge, 2005.

48. Andrew W. Moore and Denis Zuev. Internet traffic classification using bayesian analysis
techniques. InACM SIGMETRICS ’05, Banff, Alberta, Canada, 2005.

49. David Moore, Ken Keys, Ryan Koga, Edouard Lagache, and K. C. Claffy. The coralreef
software suite as a tool for system and network administrators. InProceedings of the 15th
USENIX conference on System administration, San Diego, California, 2001.

50. Moore, Andrew. W. and Papagiannaki, Konstantina. Toward the Accurate Identification of
Network Applications. InPassive and Active Measurement (PAM’05), Boston, MA, US,
March 2005.

51. Napa-Wine.http://www.napa-wine.eu/.
52. T. T. T. Nguyen and G. Armitage. A survey of techniques for internet traffic classification

using machine learning.IEEE Communications Surveys & Tutorials, 10(4):56–76, 2008.
53. Vern Paxson. Bro: a system for detecting network intruders in real-time. Elsevier Comput.

Netw., 31:2435–2463, December 1999.
54. F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus. Lightweight, payload-based

traffic classification: An experimental evaluation. InProc. of IEEE ICC ’08, May 2008.
55. F. Risso and N. Cascarano. Diffinder available athttp://netgroup.polito.it/

research-projects/l7-traffic-classification.
56. Martin Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of the

13th USENIX conference on System administration, LISA ’99, pages 229–238, Berkeley,
CA, USA, 1999. USENIX Association.

57. Dario Rossi and Silvio Valenti. Fine-grained traffic classification with Netflow data. In
TRaffic Analysis and Classification (TRAC) Workshop at IWCMC ’10, Caen, France, Jun
2010.

58. Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nick Duffield. Class-of-service
mapping for QoS: a statistical signature-based approach to IP traffic classification. InACM
SIGCOMM Internet Measurement Conference (IMC’04), Taormina, IT, October 2004.

59. L. Salgarelli, F. Gringoli, and T. Karagiannis. Comparing traffic classifiers.ACM SIGCOMM
Comp. Comm. Rev., 37(3):65–68, 2007.

60. Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. Accurate, scalable in-network iden-
tification of p2p traffic using application signatures. In13th international conference on
World Wide Web (WWW’04), New York, NY, US, May 2004.

61. Yeon sup Lim, Hyunchul Kim, Jiwoong Jeong, Chong kwon Kim, TedTaekyoung Kwon, and
Yanghee Choi. Internet traffic classification demystified: on the sources of the discriminative
power. InCoNEXT, page 9, 2010.

62. G. Szab́o, I. Gódor, A. Veres, S. Malomsoky, and S. Molnár. Traffic classification over Gbit
speed with commodity hardware.IEEE J. Communications Software and Systems, 5, 2010.

63. Silvio Valenti, Dario Rossi, Michela Meo, Marco Mellia, and Paola Bermolen. Accurate,
Fine-Grained Classification of P2P-TV Applications by Simply Counting Packets. InProc.
of International Workshop on Traffic Monitoring and Analysis (TMA ’09), Springer Lecture
Notes on Computer Science, volume 5537, pages 84–92, Aachen, Germany, 2009.

64. Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. Midea: a multi-parallel
intrusion detection architecture. InACM Conference on Computer and Communications
Security, pages 297–308, 2011.

65. N. Williams, S. Zander, and G. Armitage. A preliminary performancecomparison of five
machine learning algorithms for practical IP traffic flow classification.ACM SIGCOMM
CCR, 36(5):5–16, 2006.

66. Wm. A. Wulf and Sally A. Mckee. Hitting the memory wall: Implications of theobvious.
Computer Architecture News, 23:20–24, 1995.

67. Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. Profiling internet backbone traffic:
behavior models and applications.ACM SIGCOMM Comput. Commun. Rev., 35(4):169–
180, 2005.

68. Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and Qunfeng Dong.
Gpu-based nfa implementation for memory efficient high speed regularexpression matching.
In PPOPP, pages 129–140, 2012.

