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ABSTRACT 

Aims 

Automation of downstream analysis may offer many potential benefits to routine histopathology. One area of interest 

for automation is in the scoring of multiple immunohistochemical markers in order to predict the patient's response to 

targeted therapies. Automated serial slide analysis of this kind requires robust registration to identify common tissue 

regions across sections. We present an automated method for co-localised scoring of Estrogen Receptor and 

Progesterone Receptor (ER/PR) in breast cancer core biopsies using whole slide images. 

 

Methods and Results 

Regions of tumour in a series of fifty consecutive breast core biopsies were identified by annotation on H&E whole 

slide images. Sequentially cut immunohistochemical stained sections were scored manually, before being digitally 

scanned and then exported into JPEG 2000 format. A two-stage registration process was performed to identify the 

annotated regions of interest in the  immunohistochemistry sections, which were then scored using the Allred system. 

Overall correlation between manual and automated scoring for ER and PR was 0.944 and 0.883 respectively, with 90% 

of ER and 80% of PR scores within in one point or less of agreement. 

 

Conclusions 

This proof of principle study indicates slide registration can be used as a basis for automation of the downstream 

analysis for clinically relevant biomarkers in the majority of cases. The approach is likely to be improved by 

implantation of safeguarding analysis steps post registration. 

 

Key Terms: Automation, Breast, Immunohistochemistry, Estrogen Receptors, Progesterone Receptors, Molecular 

Pathology 

Introduction 

The adoption of digital whole slide imaging for the analysis of histopathology slides (often referred to as digital 

pathology) presents novel opportunities for improving and increasing efficiency of the way pathologists work1. The 

increasing disease burden presented by the elderly population and escalating costs of treatment place growing demands 

on many clinical services to provide more for less, improvements in efficiency may prove to be key in achieving this 

goal. 
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Immunohistochemical (IHC) staining of oestrogen receptor (ER) and progesterone receptor (PR) is an essential part of 

the pathological assessment of breast carcinomas. Scoring is a visually estimated quantification of the reactivity of a 

given IHC marker, using qualities such as stain intensity and proportion. Scoring of these markers is known to predict 

response to hormonal treatment.2-4 ER and PR are both nuclear markers with similar expression properties, and thus the 

scoring process for both markers is identical. Visual scoring by a pathologist is subjective and therefore prone to both 

inter- and intra-observer variation5. It is also something that can consume much of a pathologist’s time, as they are 

required to re-examine the case after staining in order to provide the score. There have been a number of studies6-8 into 

automated scoring of these markers, however analysis has typically been restricted to single stain analysis, and 

supervised by the pathologist. Although helpful in improving consistency, such studies do not markedly reduce 

pathologist’s workload. Reliable co-localisation of regions of interest, that are known to contain tumour, across several 

sequentially cut sections theoretically allow for an almost entirely automated analysis of IHC staining expressions for 

multiple markers at a time. The pathologist would need only to identify the region of the tumour on the initial diagnostic 

section, and the equivalent regions of interest for the other sequentially cut sections could then be located and analysed 

automatically. This would thereby avoid the need for the case to be re-examined by the pathologist. 

 

In histopathology, the need to section the sample removes the spatial relationships between serial sections along the 

third dimension. This is significant when we wish to make multiple observations on the same sub-region of the tissue, 

such as when studying the expression profile of several IHC stains on a localised region of interest (ROI). As such, we 

require a robust method of bringing sections from different slides back into a common alignment, such that we can 

identify the same region of tissue across many sections. This is a process known as registration. Registration of this kind 

is approximately rigid, that is to say that we can align the two sections closely with just translation and rotation. This, 

however, does not consider the small physical distortions to the tissue that naturally occur during the sectioning process. 

While these are unlikely to have a noticeable impact on the scale of a whole section, small offsets from the rigid 

alignment are to be expected at a local level.  

 

We present a simultaneous ER/PR automated scoring method, built upon a two-stage registration process that aligns 

serial tissue sections. This allows the system to co-locate the same region of interest for multiple sections from the same 

sample, and thus provide like-for-like scores for corresponding tumour areas in both sections. The automatic ER/PR 

scoring follows the protocols outlined in the Allred Scoring system,9 a scoring system used in regular clinical practice. 

We show that our method achieves good correlation with the pathologist's own scores on a common set of breast cases.  
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Materials and Methods 

Ethics, Tissue Samples, Staining and Image Acquisition 

Ethical approval for this study was granted by the National Research Ethics Service - Dulwich Committee 

12/LO/0993. 

A series of 50 consecutive breast core biopsies positive for primary breast carcinoma were used for this study. Once the 

diagnosis had been made sequential sections were cut at a thickness of 5 microns: For each case, a Haematoxylin and 

Eosin (H&E) section was taken and stained using the Sakura Tissue-Tek Prisma staining 

machine (Sakura Finetek Europe B.V. KvK / Chamber of Commerce Leiden 28065449). In addition, a 

pair of serial sections were stained with oestrogen receptor ER(SP1) and progesterone receptor PR(1E2) antibodies, 

respectively, using an automated Ventana BenchMark immunostaining machine. Staining was carried out according to 

the manufacturer’s instructions and visualized using the manufacturer’s recommended 3,3’ diaminobenzidine (DAB) 

visualization kit Ventana iVIEWTM DAB (Ventana Medical Systems Inc Roche Group, 1910 Innovation park, Tuscon 

AZ85755 USA). Antibodies were commercially supplied pre-diluted and pre-treated by Ventana 

Medical Systems Inc. Positive control tissue from previously stained breast cancer cases was 

included on the test section. Negative controls were performed on sequential sections using the same staining 

method with the exception of the primary antibody. Sections were consistently taken in the following order: 

1. H&E 

2. ER 

3. PR 

The cases included in this study were selected before the full adoption of digital pathology, consequently the reporting 

pathologist scored the ER/PR stained sections on glass, using the Allred scoring system. All the slides were then 

digitised using the Omnyx VL120 (Omnyx LLC 1251 Waterfront Place, Pittsburgh PA15222 USA) slide scanner. 

Slides were scanned with a resolution of 0.275µm/pixel, to produce the equivalent of a 40× magnification. Regions of 

tumour were then annotated on the digitised H&E section by a second pathologist, who had not viewed the case before 

and did not view the immunohistochemistry. Images were then converted from a proprietary format into JPEG 2000 

format and exported for analysis by the automated algorithm.  

 

Section Registration: 

It is not possible to automatically identify a common scoring area on both the ER and PR sections from a given case 
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without first re-aligning the sections with each other. Consequently, automated registration of the sections was required 

before scoring could take place. The section registration was coarsely a two-stage process: an initial approximate 

alignment, followed by a series of small corrective alignments. The approximate alignment was made on the basis of 

the external boundary of the section, while the corrective alignments were made by matching common structures of the 

registered sections, such as fat and clusters of nuclei. The flow of the registration algorithm is shown as a block diagram 

in Figure 1. 

 

Approximate Registration 

We initially aligned the boundaries of tissue sections by matching their points of locally maximal curvature.10 Curvature 

is a feature that can vary depending on the resolution, or the level of detail, at which the curve is observed, which is 

illustrated in Figure 2. Curvature Scale Space (CSS)11 is a representation of a polygon's curvature across a set of 

decreasing resolutions, simulated by smoothing the polygon with Gaussian filters of increasing sigma. Figure 3 

demonstrates the maxima of curvature found at different resolutions.  

 

We used a CSS representation of the section's boundary to identify points of locally maximal curvature at different 

levels of detail. It is likely that for similar shapes, such as the boundaries of serial tissue sections, the points of the 

curvature maxima will be at similar locations on each boundary for all but the highest resolutions. Thus, it should be 

possible to find a close match between the sets of curvature maxima from the two boundaries.  Finding that match will 

allow us to generate the best-fit rigid transformation for registration. Matching between maxima can be thought of as an 

assignment problem and was solved using the Hungarian algorithm.12 It should be noted that this approach may produce 

many equally good registration candidates if the sections external boundary is rotationally symmetric, such as for 

circular sections commonly used on tissue microarrays. This, however, was not the case for the diagnostic breast core 

biopsies used within our study. 

 

Registration Refinement 

The approximate registration step described above produced the initial alignment. This alignment is a rigid 

transformation or rather, a transformation composed only of translation and rotation. A further refinement step was then 

applied on top of the initial alignment, to produce the final alignment. This step was intended to correct instances where 

the approximate transformation was incorrect at a local level. The registration refinement was performed again each 

time that the field of view (FOV) is changed, to ensure that the best alignment was always presented to the scoring 
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algorithm. This method aligned the tissue sections based upon their inner structure, isolating tissue structures, such as 

glands and nuclei clusters, and attempting to find correspondence between them.  

 

We assume that our initial alignment is correct at a low resolution, and thus is already close to the optimal alignment. 

The refinement registration step should therefore produce a transformation that is close to our initial alignment.  

 

In contrast to the initial alignment, the optimal alignment is likely to be non-rigid and non-linear. However, this is only 

the case on the scale of a whole section and, for smaller FOVs at a high resolution, the non-linearities are likely to be 

minor and difficult to distinguish. Therefore, for the type of FOVs used in scoring, the corrective alignment was 

modelled as a rigid transformation that varies slightly from our initial alignment. 

 

This design decision has two key advantages. First, rigid alignments are less complex and are therefore faster to 

compute. Secondly, non-linear transformations have the potential to distort the tissue, perhaps in a way that does not 

accurately reflect the biological structure of the tissue. This is not true of rigid transformations, which preserve 

structure. 

 

 

Automatic ER/PR Scoring 

The automated Allred Scoring was performed using a newly developed algorithm. For each case, the ER/PR sections 

were co-registered to a H&E slide in the case. The H&E slide contained an annotation, specifying a region of tumour to 

be scored by the algorithm, necessitating registration between the H&E section and the ER/PR section. Consequently, 

the ER/PR sections were only scored by the algorithm in the tissue regions corresponding to the areas annotated by the 

pathologist on the case’s corresponding H&E slide. 

 

The complete pipeline of the algorithm, outlined in Figure 4, was modelled on the Allred Scoring System.9 This system 

categorises the IHC stain intensities into four groups: unstained, weak, intermediate, and strong and assesses the 

proportion of neoplastic nuclei stained. It is important to note that, while there are guidelines for these groups, the 

scoring is ultimately at the discretion of the pathologist. As such, there are no strict definitions for the boundaries 

between the groups. For this work we defined the thresholds for the IHC stain intensity groups as shown in Figure 5. 

The values for the boundaries were determined empirically by sampling pixels from control tissue sections belonging to 
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each stain group. 

 

Only the staining on nuclei within the tissue were scored. In addition, for ER/PR scoring, we are only interested in the 

staining that occurs to tumour nuclei. On occasion the IHC stain binds to non-tumour nuclei,13-15 but this has no 

relevance to the score and should be ignored. Therefore, to ensure that only the correct parts of the tissue are being 

scored, the tumour nuclei must be isolated from the remaining tissue. To achieve this we employed two detectors, a 

tumour region detector and a nuclei detector. Each detector produced a binary mask and the intersection of the two 

masks yielded our desired result, the tumour nuclei regions. 

 

In certain cases, the human visual system may identify a region as purely strongly stained, but a closer inspection of the 

visual field shows a much wider variety of stain intensities. In some cases, this can interfere with the scoring process, as 

the stain group with the numerical majority may not necessarily appear as the dominant stain. Therefore, rather than 

using the DAB channel directly, we first pre-processed the channel to reduce the variation of the stain intensity within 

each nucleus. Figure 6 demonstrates the reduction of the intensity variation for strongly stained nuclei as a result of this 

pre-processing step. 

 

Following extraction of the ER/PR stained tumour nuclear regions, the proportion of the nuclei that belong to each of 

the four aforementioned stain categories was calculated by extracting all tumour nuclei pixels and binning them into the 

four categories according to their intensities in the processed IHC stain channel. The number of pixels in each bin was 

recorded and the values were then normalised such that their sum was 1, which thereby produced our estimate for the 

proportions of nuclei in each stain category.  

 

The two parts of the Allred score were computed from the estimated proportions of each stain intensity, using the 

protocol as defined by the College of American Pathologists,9 which is outlined in Tables 1a and 1b. The term 

“positively stained” refers to nuclei that are either weakly, intermediately, or strongly stained, and thus was calculated 

as the sum of those three respective proportions.  

 

One minor alteration to the protocol was the introduction of a minimum proportion threshold for positively stained 

nuclei. If the proportion of positively stained nuclei was estimated as less than 0.01%, then the field of view was 

automatically scored as 0. This measure was introduced to address the possibility of a small collection of pixels being 
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falsely assessed as stained. In most cases these pixels had no influence on the result because of their low frequency, 

however in negative cases there are no other stained pixels and thus their influence was far more pronounced. For our 

chosen FOV parameters, 0.01% of the total nuclei pixels would amount to an area much smaller than a single nucleus, 

and thus the addition of this threshold was unlikely to cause underscoring. 

 

The automated scoring process was performed independently on twenty random, non-overlapping visual fields at a 

resolution equivalent to a 20x magnification. The modal score was taken as the final score for the annotated region. If 

two or more scores were equally popular then a further five visual fields were selected and scored, this process was 

repeated until the deadlock was resolved. For validation, the automated scoring result was compared with a manual 

score from a single pathologist on the same section. The pathologist performing the manual scoring was not the same as 

the pathologist providing the tumour region annotation. 
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Results 

Automated and manual scoring was performed on a set of 50 patient cases, each containing one slide for ER and one 

slide for PR, using the processes outlined above. Neither the pathologist performing manual scoring nor the individual 

running the automated scoring algorithm were given access to the scores from their experimental counterpart until all 

scoring was finalised. Figure 7 shows the initial results of the pathologist's scoring compared to that of the automated 

approach. In all 50 cases the registration and scoring algorithm successfully identified and scored the ROI identified by 

the pathologist. 

 

In 80% of ER slides and 54% of PR slides, the algorithm scored exactly the same as the pathologist.  In addition, for 

90% of ER slides and 78% of PR slides the algorithm's score was within one of the pathologist's score. For this 

experiment Allred scores of 2 were considered as being within one of a score of 0. The mean absolute error of the 

automatic scoring was found to be 0.40 for the ER sections and 0.92 for the PR sections, resulting in a mean error of 

0.66 across both ER and PR sections. For the purpose of these calculations scores of 0 were changed to 1 in order to 

ensure equal numerical spacing between the possible scores. 

 

The correlation between pathologist’s scores and automated scores was 0.881, demonstrating significance to a p value 

of <0.001. Correlation for the scoring of just ER sections was 0.922, with a p value of <0.001. Correlation for the 

scoring of just PR sections was 0.840, with a p value of <0.001. 

 

In the initial scoring results, a number of discrepancies were observed between pathologist's and algorithm's scores, in 

some cases resulting in a different diagnostic outcome. Scoring differences that were diagnostically significant were 

subsequently recorded and flagged for further review. Reviewed slides were sent to a different pathologist for rescoring. 

To prevent potential bias, the pathologist performing rescoring was not made aware of the scores produced by the 

algorithm and  original pathologist. In addition, the algorithm's FOV scores were checked to identify any potential 

issues in the automated scoring. A summary of the inconsistent slides is presented in Table 2, with a potential root cause 

of the scoring disagreement listed alongside each slide. 

 

Figure 8 shows the results of scoring following review. In 80% of ER slides and 56% of PR slides, the algorithm scored 

exactly the same as the pathologist. For 90% of ER slides and 80% of PR slides, the algorithm's score was within one of 

the pathologist's score. The mean absolute error of the automatic scoring was found to be 0.36 for the ER sections and 
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0.80 for the PR sections, resulting in a mean error of 0.58 across both ER and PR sections. 

 

The correlation between pathologist’s scores and automated scores was 0.914, demonstrating significance to a p value 

of <0.001. Correlation for the scoring of just ER sections was 0.944, with a p value of <0.001. Correlation for the 

scoring of just PR sections was 0.883, with a p value of <0.001. 

 

The kappa agreement measure for the pathologist and algorithm scores was 0.601 for ER slides, 

0.464 for PR slides, and 0.535 for the combined set of slides. Caution should be taken when 

interpreting basic kappa statistics for Allred scoring, as all disagreements are treated equally in the 

calculation. Clearly this is not the case, as certain disagreements in scoring are likely result in 

different therapies, for instance Allred scores of 0 and 8, whereas for other disagreements this is far 

less likely, such as Allred scores of 7 and 8. Therefore, we also calculated the weighted kappa 

statistics, where larger and potentially diagnostically significant disagreements were weighted more 

heavily, as shown below: 

 

Wi,j = 1   if |Pi - Aj| > 1 

Wi,j = 0.5  if |Pi - Aj| = 1 

Wi,j = 0   if |Pi - Aj| = 0 

 

Where Wi,j is the weight on the disagreement between pathologist score Pi and algorithm score Aj. 

For the purpose of calculation Allred scores of 0 were converted to 1 to ensure uniform spacing of 

the scoring range. Under this weighting we calculated kappa agreement of 0.753 for ER slides, 

0.676 for PR slides, and 0.7177 for the combined set of slides. 

 

The entire scoring process typically takes around 2 seconds per slide, which includes the time taken for registration. 
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Discussion 

In this study, we have demonstrated a two stage system for co-registration of sequential cut histopathology sections, and 

illustrated how such an approach can be used to provide automation of both the co-localisation of regions of interest and 

the scoring of ER and PR in these regions. We have shown in another work16 that the system is capable of high quality 

registration of multi-IHC and is able to update the alignment when necessary, such as when the initial approximate 

alignment has not produced the best registration at a local level. 

 

The automated system showed a high level of agreement with the pathologist, comparable with that of the inter-

observer agreement between two pathologists. A correlation of 0.85 for ER and 0.87 for PR has been shown for the 

agreement between pathologists on a set of 74 resected breast cancer specimens17. Pathologist error rates as high as 24% 

have also been reported18. One study found pathologist vs. pathologist kappa agreements of 0.57 for ER and 0.51 for 

PR, however this value dropped to 0.42 for ER and 0.36 for PR when comparing pathologists from different 

laboratories19. 

 

The use of algorithms to prevent scoring in benign background epithelium as opposed to tumour was successful in 

avoiding false positive scoring. The pathologist is still required to identify the tumour area to be scored as a region of 

interest in order to distinguish invasive carcinoma from in-situ disease. One problem of this approach is likely to occur 

in cases exhibiting heterogeneous staining, where areas of the tumour selected may, for a variety of reasons, stain very 

differently to other areas of the tumour. An example of heterogeneous staining is shown in Figure 9a. This may result in 

mis-scores by the algorithm in situations where the initial region selected by the pathologist is not representative of the 

entire section, two examples of which were found in our data. Errors of this type could potentially be prevented by the 

addition of a fail-safe algorithm, which would perform tumour segmentation outside of the marked region of interest 

and then assess whether the staining and score were consistent with the marked region. We would recommend that 

cases failing the verification process for staining homogeneity be referred for further manual analysis. 

 

Section thickness is an important consideration in serial section registration, IHC scoring, or any other cross-slide 

analysis task. Thicker sections are less likely to have common tissue structures across many serial sections, and it will 

therefore be more difficult to score the exact same tissue region for each marker as parts of the region may not be 

present on other sections. It may also be more difficult to perform registration if the method relies on common tissue 

structures, such as is the case for our registration refinement method. For our data, it was found that the chosen section 
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thickness of 5µm does not appear to cause any issues of this kind. 

 

In two cases, over-scoring was seen in negative (pathologist score 0). These were the result of poor stain separation, 

which resulted in the system overestimating the quantity of IHC staining on the section. These two cases are the result 

of the algorithm selecting fields of view with minimal staining of any kind, which could potentially be addressed by 

introducing further restrictions on the visual fields used to estimate the Allred score. 

 

One large source of errors arose from scoring the raw IHC channel, for slides that were given a score of 8 by the 

pathologist. These were often scored as 7 by the algorithm. This was because the algorithm was scoring the slide as a 2 

for intensity, instead of 3. The reason for this is due to the way the human eye observes intensity. Often the regions that 

are visually discerned as strongly stained are actually composed of pixels with many different stain intensities, as shown 

in Figure 6. In such cases, despite the clear presence of a strong stain intensity, pixels with intermediate staining may in 

fact be numerically more frequent than the strongly stained pixels. In other words, the stain group with the numerically 

predominant intensity is not always the visually predominant intensity. This problem can be addressed by adopting the 

previously discussed filtering steps on the IHC channel, which were designed to increase the intensity of stain pixels 

that are surrounded by strong staining. It may prove to be the case that precise pixel stain intensities give a better 

prediction of response to steroid receptor targeted therapy than the conventional semi-quantitative visual analysis on 

relative intensity. This, however, is beyond the scope of this study, which is focused on emulation of the established 

methods of human visual assessment. 

 

For four slides the algorithm was able to identify possible faults in the original pathologist's scores, as shown by the 

notable improvement of pathologist-algorithm scoring agreement following a review of discrepancies in the initial 

scoring results. This in itself can be seen as a potential example of the use of automated scoring for the purposes of 

verification of manual scores. In a diagnostic workflow where manual scoring is preferred, such a scoring algorithm 

could still potentially be used as a means of identifying possible mis-scores. In situations where the pathologist and 

algorithm's scores do not agree, such a case could then automatically be assigned to an additional pathologist for further 

analysis. 

 

The three remaining discrepant slides, listed in Table 2, were all instances of poor slide quality. For the slide with an 

out-of-focus WSI, the blurring caused the DAB stain to appear much less intense, as can be seen in Figure 9b. Thus, the 
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algorithm estimated Allred intensity score to be a lower value than if the image had been in focus. This was purely an 

issue with the slide's scanning and subsequent digitisation, and thus was simply resolved by rescanning the slide and 

performing automated scoring on the new WSI.  

 

The DAB stain's failure to bind to an area of this tissue on one slide had produced an artefactual shadow of negative 

staining, which is shown in Figure 9c. The presence of this shadow had the effect of lowering the estimated proportion 

scores, and thus produced a lower overall Allred score.  

 

The dark artefacts, shown on the section in Figure 9d, were caused during the slide preparation when drying the back of 

the coverslip. The dark regions are, in some cases, falsely identified as IHC staining, which resulted in an 

overestimation of the proportion of positive nuclei, and thus the proportion score. 

 

The aforementioned slide quality issues highlight a clear need for accurate quality assurance algorithms within any 

future automated diagnostic workflow. This will allow unsuitable WSIs to be identified and replaced at an early stage, 

thereby preventing possible false calls from downstream algorithms. Automated detection of out-of-focus regions on a 

slide is one potential quality assurance algorithm that could be employed prior to automated scoring. 

 

In conclusion, we have shown that automated registration of regions of interest identified by the reporting pathologist, 

and the assessment of ER and PR is feasible. Our findings indicate that, in a laboratory using WSIs for reporting of 

breast cancer cases, the pathologist need only examine the slide once at the time of diagnosis. The post-diagnosis 

analysis of IHC markers can be devolved to image analysis systems, that are able to locate a common region of interest 

by registration of sequentially cut sections. The strategy has the scope to improve both consistency of scoring and 

efficient use of healthcare resources. 
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Predominant Stain Intensity Intensity Score 

No Stain 0 

Mostly Weakly Stained 1 

Mostly Intermediately Stained 2 

Mostly Strongly Stained 3 

 

Table 1a: A summary of the intensity scoring criteria for the Allred scoring system.  
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Percentage of Positively 

StainedNote 1  Nuclei 

Proportion Score 

0% – ≤0.1% 0 

0.1% – ≤1% 1 

1% – ≤10% 2 

10% – ≤33% 3 

33% – ≤66% 4 

66% – 100% 5 

 

Table 1b: A summary of the proportion scoring criteria used for the Allred scoring system.  

 

                                                             
  Note 1Positively stained nuclei refer to all IHC stained tumour nuclei, regardless of their intensity. 
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Case Stain Notes 

U20 ER Heterogeneous staining. 

U42 PR Heterogeneous staining. 

U05 ER Overestimated DAB staining due to poor stain 

separation. 

U16 PR Overestimated DAB staining due to poor stain 

separation. 

U03 PR Disagreement in scores by original and reviewing 

pathologist. 

U45 ER Disagreement in scores by original and reviewing 

pathologist. 

U45 PR Disagreement in scores by original and reviewing 

pathologist. 

U48 PR Disagreement in scores by original and reviewing 

pathologist. 

U15 PR Slide is out of focus. Algorithm re-scored on re-

scanned slide. 

U12 PR Artefactual shadow on slide. 

U01 PR Overestimated DAB staining due to dark artefacts on 

slide. 

 

Table 2: A summary of the slides with large Pathologist-Algorithm scoring disagreements. 
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Figure Legends 

Figure 1: A block diagram showing the overall flow of the automated registration and scoring procedure. Please refer to 

Figure 4 for further details on the automated ER/PR scoring algorithm. 

Figure 2: A demonstration of curvature as a multi-resolution feature. The curve segment shown has two types of 

curvature maxima: the high resolution bumps and the low resolution turn across the entire curve, each 

maxima is highlighted by a red circle. 

Figure 3: A demonstration of curvature maxima of the given tissue boundary extracted at different resolutions, each 

shown with a red circle. Lower resolution curves are generated by Gaussian smoothing the original. Top-

left shows the original section image. 

Figure 4: A block diagram showing the details of the automated ER/PR scoring algorithm. 

Figure 5: An illustration of the boundaries between each stain intensity group, used by the 

automated scoring algorithm. Locations of the boundaries were determined empirically 

using control tissue samples. 

Figure 6: A diagram demonstrating the intensity variation of strongly stained nuclei, both before 

and after a specialised filtering operation. The filtering operation is intended to reduce the 

amount of variation of staining within each nucleus. 

Figure 7: Scatter plots showing the results of the automatic ER/PR scoring, compared to the 

pathologist's manual scores. Size of the dot is proportional to the number of cases with the 

given Pathologist-Algorithm score pair, the number of cases is also placed alongside the 

dot. All results between the solid green lines have the same score as the pathologist. All 

results between the dotted red lines are within one of the pathologist’s score. 

Figure 8: Scatter plots showing the results of the automatic ER/PR scoring compared to the 

pathologist's manual scores following re-scoring of discrepant sections. Size of the dot is 

proportional to the number of cases with the given Pathologist-Algorithm score pair, the 

number of cases is also placed alongside the dot. All results between the solid green lines 

have the same score as the pathologist. All results between the dotted red lines are within 

one of the pathologist’s score. 
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Figure 9: Examples of potential sources of scoring discrepancies between the pathologist and 

algorithm. a) Heterogeneous staining. b) Out of focus WSI. c) Artefectual shadow. d) 

Dark artefacts caused by drying back of coverslip. 
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