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Abstract

Many large scale volume visualization techniques are based on partitioning the data into bricks, which are stored
and rendered using mipmaps. To generate such mipmaps, in most cases an averaging is applied such that an
area in a lower mipmap level is presented by the areas’ average in the next higher mipmap level. Unfortunately,
this averaging results in the fact that mipmaps are not feature-preserving, as details are often lost. In this paper,
we discuss and compare mipmap modification schemes which have been developed to support feature-preserving
reconstruction during rendering. In particular, we focus on reconstruction schemes which are capable to support
anisotropic and non-linear reconstruction, as these are promising to preserve features that are often sacrificed
by averaging. The presented techniques are discussed in detail and are thoroughly compared in a quantitative and
qualitative analysis. We will discuss their impact on performance, memory footprint and visual quality with respect
to feature preservation. Based on the findings we present guidelines for generating and using mipmaps in various

visualization scenarios.

Keywords
Volume Rendering, Mipmapping

1 INTRODUCTION

Large data in volume visualization is a very common
case in modern visualization [1]. With current methods
of data acquisition the resolution of volume data gets
too big to be handled in a straightforward way, even on
modern graphics hardware. To be able to handle these
amounts of data, multi-resolution techniques are often
used. Besides plain bricking, most of these techniques
rely on downsampling at least parts of the volume to
achieve lower resolutions in more distant parts of the
volume [2]. This results in a smaller memory footprint
of the data to be rendered. Although we will compare
different three dimensional downsampling strategies to-
wards mipmapping, our results can also be applied to
other approaches in large volume rendering, especially
multi-resolution techniques. Mipmaps were originally
introduced in computer graphics for two dimensional
textures [3] and have later also been extended to volu-
metric data sets (e.g., [4]). Volume visualization ben-
efits from mipmapping, as it reduces aliasing problems
and at the same time lowers the amount of memory nec-
essary for rendering.

While most modern volume visualization algorithms
rely on mipmaps (or similar techniques for data down-
sampling) to support large data [2], mipmaps do not

ermission to make digital or hard copies of all or part o
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profif]
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires

rior specific permission and/or a fee.
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preserve the underlying data very well and thus details
are often lost. We identify two main reasons for this
loss: the representation of the entire data range of a cell
to a single average value, and the disregard of direc-
tional information during the averaging process. Due
to the importance of mipmapping in large-scale volume
visualization, we investigate and analyze mipmapping
modifications, which tackle these shortcomings. We
focus on those approaches which do maintain a low
memory footprint and enable a direct interactive trans-
fer function change, without requiring extra computa-
tions. We see those two criteria as essential capabilities
for a technique which shall be scalable to large-scale
data. Furthermore, as mipmapping can be considered
sufficient for the first downscaling level, where linear
interpolation would be used on the GPU, we primarily
focus on higher levels, where averaging forbids feature-
preservation in the final visualization.

In this paper, we compare two groups of mipmapping
techniques in order to investigate their impact on the
averaging and directional issues as mentioned above.
The first method is named ‘Non-Linear Reconstruction’
and uses an enhancement of mipmaps that not only
stores the average value of each lower resolution voxel
but also minimum and maximum values of the covered
area. During rendering, we use these values to recon-
struct a power function inside each voxel that tries to
resemble the intensity distribution.

With ‘Anisotropic Mipmaps’ we try to encode direc-
tional information in lower resolution volumes to be
able to better reconstruct anisotropy inside each voxel.
We use piecewise linear functions to achieve this which
are also evaluated during rendering. For each of these
techniques we compare different variants with respect
to performance, memory footprint and image quality.

ISSN 1213-6972
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Aneurysm (2563)
Medical (CT)

Male (5122 X 460)
Medical (CT)

Brain (128 x 256 x 109)
Medical (MRI)

SEGY (256°)
Seismic

Spherical (2563)
Synthetic

Table 1: Overview of the datasets used throughout the paper; the name, dimensions, and acquisition modality are
listed. The images show renderings of the highest resolution with the respective transfer functions applied.

2 RELATED WORK

Today, several different approaches exist to support ren-
dering of multi-resolution volumes. On a data struc-
ture level, octrees and kd-trees are widely used tech-
niques to handle large-scale volumetric data sets [2, 5].
Other techniques use hierarchical grids to represent the
data [6, 7]. In both cases mipmaps [3] are commonly
used for storing and downsampling the volume.

In the recent past several approaches have been put for-
ward to improve the visual quality of mipmapping by
trying to reconstruct the intensity distribution of the
region covered by the downsampled voxel. Such ap-
proaches are based on Gaussians [8] or sparse PDFs [9,
10]. The latter group of techniques uses a hierarchi-
cal representation of the data making use of Gaussians
to resemble the data range. This comes at the need
of performing calculations with every change in trans-
fer function. Independent of the method used to store
the intensity distribution, the memory footprint of these
methods is larger than with plain mipmaps. Therefore,
we have omitted these approaches from our compari-
son, as we aim for a low memory footprint while still
being able to edit the transfer function during render-
ing without a significant computational overhead. In-
stead, we investigate an improved aggregation tech-
nique which is similar to the Min-/Maxmaps used for
2D shadow mapping by Guennebaud et al. [11] and for
storing minimum and maximum positions of geometry
in Mipmaps by Carr et al. [12]. Thus, to reconstruct
the data distribution of each voxel, we use a volume
texture storing for each voxel the minimum, maximum,
and average values of the region they cover. We found
this relevant, because the usage of minimum and maxi-
mum values in volume rendering is a frequently used
approach. Lacroute and Levoy [13] for instance in-
troduced Min-Max Octrees in which each octree node
stores a minimum and maximum value of the contained
volume to allow empty space skipping. A similar con-
cept is used by Dong et al. [14]. As many of the fea-
tures suppressed in standard mipmapping have a direc-
tional nature, we also look into encoding the change
of intensity within a downsampled voxel by using a
technique similar to deep shadow mapping [15]. Thus,
anisotropic features can be captured with anisotropic
voxels [16, 17].

Kraus and Ertl [18] introduced an approach to down-
sampling that tried to preserve the topology of isosur-
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faces. Their memory requirements are the same as con-
ventional mipmapping, but there are cases where it is
not possible to preserve the topology, for example, if
there are more than one local minima or maxima in
the original resolution data that corresponds to a sin-
gle downsampled voxel. Later Kraus and Ertl have ad-
dressed a similar issue for downsampling RGBA vol-
ume data [19]. We have not included these approaches
in our evaluation, as the first one is intended for extract-
ing isosurfaces from a downsampled volume. While
some ideas as the need to preserve extreme intensity
values also apply to raycasting volumes this approach is
not entirely suitable. The latter technique is only appli-
cable to volumes that evaluate the transfer function as
a preprocessing step which we want to avoid, because
of the inability to change the transfer function without
recomputing the volume.

While we will not focus on compression techniques,
we would like to mention that they can be combined
with the tested techniques to further reduce the required
memory footprint. Often, for instance, wavelet repre-
sentations are used to compress large volumes and thus
reduce the loss of information [20, 21]. These or other
techniques, may also be combined with the approaches
discussed in this paper.

3 METHODOLOGY

The evaluation presented in this paper is motivated by
two common problems that arise when using mipmaps.
One problem that is also addressed in other papers is
the loss of information about the intensity distribution
due to averaging the voxels intensity values. We use
a simple non-linear reconstruction approach to address
this issue and show, that even under very harsh condi-
tions and high frequency transfer functions, we can pro-
vide convincing results. We have selected the method
described in Section 4.1 among the known techniques
addressing similar issues as it is simple to realize and
can be directly integrated into existing volume render-
ers. Furthermore, it fulfills our requirements with re-
spect to low memory footprint and the flexibility of
post-classification. Kraus and Ertl [18] point out the
importance of preserving the topology of isosurfaces
within the volume. This includes the ability to recon-
struct the extreme values for each downsampled voxel.
We do not target the generation of isosurfaces, but the
importance of keeping the extreme values for a better
reconstruction of intensity values is still applicable.
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The second problem when using mipmaps is that di-
rectional information is lost, also due to the averaging
which occurs in the process of generating the mipmaps.
To deal with this issue, we aim at evaluating how the
encoding of directional intensity changes can improve
feature preservation. The idea is to derive a more ac-
curate intensity value from this directional information,
to which we then apply the transfer function during ren-
dering. The underlying method for realizing this encod-
ing is described in Section 4.2.

In this paper, the i-th mipmap level is specified using
the convention ¢; where £ represents the full resolution
data. For each subsequent level ¢;; the resolution is
halved compared to the previous level ;.

By taking the two exemplary techniques into account,
we want to evaluate the impact of non-linear recon-
struction vs. anisotropic reconstruction, when using
mipmaps in volume rendering. Based on our own ob-
servations as well as the results reported in recent pa-
pers, e.g., [10], we consider the mipmap levels ¢y and
/1 (the highest and second highest resolution) sufficient
in terms of quality of the resulting image, and there-
fore focus on the higher levels. The representative ap-
proaches are implemented inside a basic raycaster for
volume data which incorporates early ray termination.

Our testing environment contains five different data sets
(see Table 1). We use several volumes from the med-
ical domain. We also include a seismic data set, and
one synthesized by using a simple spherical function
(as was also used by Younesy et al. [8]). These differ-
ent volumes represent a wide range of different appli-
cations. Transfer function design is discussed in Ap-
pendix A.

The measurements we used to determine the quality of
each technique in the different scenes are as follows.
We measure memory footprint and performance com-
pared to rendering a full resolution volume and the orig-
inal mipmapping. We also take into account the error
rates (PSNR) of the images in comparison to an image
produced using the highest resolution data as a ground
truth. In terms of quality we will look at different fea-
tures of the datasets that are visible if we render the
high resolution data and discuss how well these are pre-
served in downscaled renderings.

4 EVALUATED RECONSTRUCTION
TECHNIQUES

In this section, we describe the two techniques we use to
improve reconstruction of downsampled values in dif-
ferent situations. One technique aims to preserve the
intensity distribution of each downsampled voxel using
a non-linear function. We will call this technique ‘non-
linear reconstruction’. The other approach is to pre-
serve a directional distribution of values in downsam-
pled voxels. This technique will be called ‘anisotropic
reconstruction’.

4.1 Non-Linear Reconstruction

To reconstruct the intensity distribution of a downsam-
pled voxel in a non-linear manner, we want to find a

Volume 24, 2016
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Vmax A

Vavg -

Vmin

Xentry Xexit

Figure 1: Reconstruction function (red) inside a voxel
defined by the ray entry (Xenyy) end exit (xexjr) points
and the minimum (Vi ), maximum (vpyax) and average
(Vavg) values of the covered high resolution voxels in £p.

simple representation of that distribution encoded us-
ing low memory footprint. Using only three values —
the minimum, maximum, and average in a specified re-
gion, we fit a power function to these values covering
the interval between the minimum and the maximum
value while still preserving the average. To be able to
create such a representation during rendering we need
to preprocess the volume data and store for each down-
sampled voxel the minimum (Vpj,), maximum (Vpax),
and average (vavg) value of that voxel’s equivalent re-
gion in the original volume.

When ray-casting the volume represented by ¢, or
lower we use these values to reconstruct a non-linear
function representing the intensity distribution inside
each voxel. Younesy et al. [8] use a Gaussian to recon-
struct this value from the mean and standard deviation
values they store. They then use a preintegrated transfer
function to calculate the color value at each voxel. Our
method works without any precalculations directly
using the transfer function. To generate the final color
value we sample the reconstructed function, apply
the transfer function to each value, and composite the
colors using the scheme determined by the raycasting
algorithm. Therefore the reconstructed function is
interpreted as a one dimensional function along the
ray used to calculate the current pixels color. This
introduces an error as we have no actual information
about the locations of each value contained in the
intensity distribution, but imply these locations by
using our reconstruction. However, as Kraus and
Ertl have discovered [18], this omission of the actual
sample orders can be in most cases neglected. The
function we use for reconstruction, is a scaled power
function:

a

X — Xent
— = +Vmin 5 (D

X) = (Vmax — Vmi
f( ) ( e mm) Xexit — Xentry
where Xenyy is the rays entry point into the voxel and
Xexit 18 its exit point. The parameter a is determined
by the voxels average value (vayg) to ensure the average
of f(x) matches that of the voxel. Figure 1 illustrates
this function and the parameters used for its reconstruc-
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tion. This parameter is calculated on the fly during ray-
casting by solving the definition of the average value:

1 Xexit
g = [ fWd @
Xexit — Xentry JXentry
which gives us a as follows:
a :Vmax ~Vmin 1 3)

Vavg — Vmin

The impact of minimum, maximum and average value
on the shape of the function is illustrated in Figure 1.

The resulting function is then evaluated at different po-
sitions within the voxel and the transfer function is ap-
plied to these results. The final values are then com-
posited in a straightforward way by using front to back
composition. To further improve the coverage of the
intensity distribution inside the voxel we adapt the step
size we use to fit the function. The same step size is
used for the composition. In general we use values
that are evenly distributed across the intensity range,
whereby we use the minimum and maximum values
to determine the possible range of values. When sam-
pling the function at N different positions inside the
voxel we use the values v; (i = 0...N — 1) defined
as v; = y=7 (Vmax — Vmin) + Vmin and calculate the step
sizes needed to correctly weight those values during
composition. The corresponding sampling points for
the values v; are x; defined as:

b
N1

a

Xi = (xexit - xentry) ~+ Xentry 4)

With these points we use the following equation to
calculate the step sizes (A;) for ray-casting by using
the midpoints between two sampling points to separate
steps:

A — mi Xi+1 +Xi Xi+Xi-1
ji=mmn|{ ———— 7xentry — max , Xexit
2 2
(5)

Figure 2 illustrates the different v;, x; and A; determined
by a given function f (x).

To directly see the impact of the non-linear density dis-
tribution reconstruction, we will also evaluate the same
approach, whereby we replace the non-linear with a lin-
ear function. This approach only uses the minimum and
maximum values, and we will refer to it as ‘Linear Re-
construction’ throughout this paper.

4.2 Anisotropic Reconstruction

The second identified downside of plain mipmapping
is the fact, that directional features are not preserved.
To deal with this issue, intensity changes for selected
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Figure 2: Step sizes (blue) for raycasting a recon-
structed function (red) with N = 4 sampling points. The
sampled values v; are shown with their corresponding
sampling positions x;.

directions in each region would need to be encoded.
This idea forms the basis for the evaluated anisotropic
approach, where we — for each major axis within a
downsampled voxel — encode how the intensity changes
along the axis, and store this information as a piecewise
linear function. This approach requires an explicit pre-
processing step where intermediate axis functions are
computed and later encoded into piecewise linear func-
tions. These functions can later in the rendering part be
sampled and composited into intensity values. In the
following three subsections, we discuss how to com-
pute and encode the axis functions, as well as how to
combine values of the three piecewise linear functions
into one representative intensity value.

4.2.1 Computing Axis Functions

To compute the axis functions, we begin by studying
each of the major axes of a voxel which we intend to
downsample (Fig. 3a). The three axes are split into
stacks of 2D slices (Fig. 3b), and the mean of each slice
is calculated and stored to represent the overall inten-
sity at this location (Fig. 3c). This is always done at
the highest possible resolution inside of the region of
voxels to capture as many details as possible of the un-
derlying data.

4.2.2 Encoding Axis Functions

With the axis functions represented as lists of N inten-
sity values (Fig. 3c), we aim to compress these using a
piecewise linear function PWLF. In our case, a piece-
wise linear function is a function that sparsely stores
a set of 2D sample-points (x,y) and the function value
can be evaluated at any position x using linear interpo-
lation between the neighbouring points of x. In order
to encode the list of intensity values into a PWLF, we
employ the following greedy algorithm:

1. We initialize the PWLF (Fig. 3d) by adding the full
set of axis intensity values with their corresponding
positional values along the axis.
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N
1 4 i
(a) The targeted voxel and (b) The data is divided

its data that is about to un-
dergo downsampling.

along the axis into slices
containing M x N samples.

Intensity

3

(c) The mean intensity of
each slice is computed
and stored with its local
position x within the voxel
region as an intermediate
list of pairwise points.

(d) The pairs of (x, inten-
sity) are added to a piece-
wise linear function and is
padded with copies (yel-
low) of the first and last
points to aid the computa-
tion in the next step.

(e) In an iterative process,
the point within the set that
has the lowest cost is re-
moved. The cost is cal-
culated as the triangular

(f) The process is stopped
when a targeted num-
ber of points has been
reached or the error of
removing the next point

area between its neigh- above a certain threshold.

bouring points.

Figure 3: The preprocessing step of computing a piece-
wise linear function that approximates the intensity val-
ues along one major axis.

2. We then remove the point in the set which is deemed
as the least destructive to overall shape of the func-
tion using a cost metric (Fig. 3e). The cost of re-
moving a point is equal to the triangular area which
spans the point and its two closest neighbours before
and after removal of this point.

3. Step 2 is repeated until we are left with a desired
amount of points (Fig. 3f).

4.2.3  Sub-sampling Anisotropic Voxels

When traversing the voxels a sub-sampling approach is
used to reconstruct the intensity values within the voxel
using the piecewise linear functions stored within it (see
Fig. 4). The input arguments for the PWLFss are the lo-
cal coordinates (x,y,z € [0, 1]) of the sub-sample within
the frame of the voxel. The intensity values (Eq. 7)
returned by the three PWLFs are then combined into
one single intensity value using the dot product of the
squared viewing vector d and intensity values v(x) as
shown in Eq. 6
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Figure 4: A sub-sample (Light-blue dot) along the tra-
versed ray (Blue) is being composited into a represen-
tative value of the intensity within a voxel by using the
piecewise linear functions that provide the directional
in intensity along each major axis.

intensity(x) = dot(d ©d,v(x)) (6)
where
v(x) = {PWLF(xy),PWLF,(x,),PWLF,(x;)} . (7)
The major downside of this technique is that it does not
allow trilinear interpolation. If trilinear interpolation is
used, the resulting intensity values from all of the piece-
wise linear functions will be averaged over the neigh-
bouring region of the voxel thus resulting in an average
intensity, almost indistinguishable from plain mipmap-
ping. This forces us to only use values from within the
traversed voxel disregarding the neighbourhood of it.
The visual impact of this is that the boundaries of the
voxels can be seen in most of the cases.

5 EVALUATION

In this section we analyze the impact of the mipmap
shortcomings resulting from the area averaging and
the non-directional reconstruction. We do so by
comparing standard mipmapping against non-linear
and anisotropic reconstruction, as they have been
described in the previous section. The achieved
results are evaluated quantitatively and qualitatively.
A more comprehensive list of results can be found in
Appendix B.

5.1 Quantitative Evaluation

The presented techniques are meant to produce better
images than standard mipmapping while still using less
GPU memory and being faster as compared to ren-
dering the highest resolution data. For performance
measurements we ray-casted the volume data with a
screen resolution of 1280 x 720 with the volume fit-
ting roughly to the screen, whereby we have used the
same images in the subsequent error analysis. The re-
sults of the performance evaluation, as summarized in
Table 2, have been measured on a 3.60 GHz Intel i7
Haswell system with 16GB RAM and a NVIDIA GTX
980 GPU.

As it can be seen in Table 2, the results of non-linear re-
construction highly depends on the size of the volume.
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Dataset H Non-Linear | Anisotropic ‘ Mipmaps ‘
Aneurysm ({3) 76% 60% 122%
Male (43) 232% 51% 385%
Brain ({2) 69% 16% 109%
Spherical (¢3) 138% 90% 207%
SEGY (42) 102% 16% 150%

Table 2: Performance measurements of different tech-
niques relative to rendering at the original resolution
(€p). A value of 200% signifies that the technique is
twice as fast as the reference, while a value of 50%
signifies that only half the speed of the reference was
achieved.

For volumes that use a lot of memory (see Table 1) in
the first place texture fetches are more expensive (due
to cache misses) and a reduction of the volumes’ reso-
lution improves the frame rates drastically. For lower
resolution volumes this is not the case, and the com-
putation time overhead for the evaluation of the recon-
structed function seems to have more impact. The ren-
dering performance of the ‘Spherical’ data set is in gen-
eral rather high, as the chosen transfer function makes
the volume appear very dense which triggers the early
ray termination.

The performance results of the anisotropic voxels seem
worse than rendering the high resolution data, this is
due to a bigger number of texture fetches which are
needed to retrieve the data of the piecewise linear func-
tions. The memory requirements for the anisotropic
voxels is noticeably larger than with the other tech-
niques, but has been implemented in a very naive way
where one voxel stores three unique piecewise linear
functions. In practice, many of the piecewise linear
functions are identical or very similar, which makes
them a good candidate for lossless or lossy compres-
sion through clustering.

With no compression applied the memory requirements
for the tested techniques directly depend on the reso-
lution of the original data. The piecewise linear func-
tions of the anisotropic mipmaps are always represented
using eight 8-bit integers per pixel — four for position
and four for intensity. The non-linear reconstruction on
the other hand uses the same bit-depth as the original
volume. Thus, the memory requirements of the recon-
struction methods (as well as regular mipmapping) are
a fixed percentage of the original memory (118% for
non-linear reconstruction, 116% for linear reconstruc-
tion and 114% for regular mipmapping), whereas the
anisotropic mipmaps use 156% of the original data sets
memory for 8-bit volumes. The percentage gets lower
for higher bit-depths of the original volume due to the
used 8-bit quantization.

The more interesting figures are the error measurements
of the rendered final images. The images can be seen
in Appendix B. We calculated the Peak Signal to Noise
Ratio (PSNR) of the resulting images, by taking into
account the images produced with the high resolution
data sets as a ground truth. We measured these values
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for both, a high resolution (1280 x 720 Pixels) as well
as a low resolution (128 x 72) image. The high reso-
lution was chosen to be able to clearly see differences
and errors introduced by both types of methods. The
lower resolution represents the actual size of the images
when the size of one voxel in the data set should corre-
spond to the size of one pixel, whereby the mipmap lev-
els have been chosen accordingly. To avoid aliasing we
use downsampled versions of the high resolution im-
ages. The results are shown in Table 3.

In general, the lower resolution images show better
quality with respect to the PSNR because quality
shortcomings depending on the resolution are avoided.
These differences can be seen best for the anisotropic
mipmaps as this technique does not support interpola-
tion and thus produces ‘blocky’ results when rendering
them in a resolution higher than they are meant for.
When comparing the different reconstruction tech-
niques the non-linear reconstruction provides the best
results in nearly all cases. The exception is the Spher-
ical data set where the intensity values are linear with
the distance from the center. The linear reconstruction
ensures that this linearity is preserved well while the
non-linear reconstruction might introduce some errors.

a) Reference ¢ b) Mipmaps ¢,

c¢) Non-Linear ¢, d) Anisotropic ¢,
Flgure 5 : The Aneurysm dataset, rendered at its origi-
nal resolution £ (a) and at resolution ¢, for the down-
sampled methods. It shows a region with a lot of high
frequency details.

5.2 Qualitative Evaluation

By visually comparing the results of the different tech-
niques we can make assumptions about how to address
mipmapping problems in general. In Figures 5 and 7
the plain mipmapping clearly shows a loss of informa-
tion. In Figure 5b the high frequency details are lost
due to averaging. The most obvious case is the seismic
data set. There nearly all information is lost as can be
seen in Figure 7b. When looking at the Spherical data
set in Figure 6b most features seem to be preserved.
However, when taking a closer look the colors observed
seem to be exaggerated and are shifted towards the cor-
ners of the volume.
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Non-Linear Linear Anisotropic Mipmaps
Dataset . . . .
high low high low high low high low
Resolution | Resolution | Resolution | Resolution | Resolution | Resolution | Resolution | Resolution

Aneurysm (¢) 20.62 dB 22.18 dB 16.23 dB 17.00 dB 24.49 dB 30.35dB 23.82 dB 26.95 dB
Male (¢3) 21.02 dB 22.25dB 18.13 dB 18.84 dB 22.86 dB 24.78 dB 18.96 dB 19.78 dB
Brain (£) 26.20 dB 28.33 dB 23.60 dB 24.77 dB 25.05 dB 26.60 dB 23.27 dB 24.79 dB
Spherical (¢3) 23.04 dB 27.45 dB 24.09 dB 28.88 dB 19.93 dB 23.52dB 22.02 dB 26.04 dB
SEGY (Top) (¢2) 22.23dB 22.96 dB 21.36 dB 21.98 dB 26.97 dB 32.04 dB 17.69 dB 17.97 dB

Table 3: Error ratios (PSNR) of different techniques, datasets and resolutions.

a) Reference ¢ b) Mipmaps ¢3

c) Non-Linear /3 d) Anisotropic /3
Flgure 6. The Sphere dataset, rendered at its original
resolution £ (a) and at resolution #3 for the downsam-
pled methods. The fading to grey in Non-Linear recon-
struction (c) is an expected artifact to avoid aliasing.

From a qualitative point of view, the anisotropic
voxels seem to preserve details better over the plain
mipmapping technique, but have the downside of
looking ‘blocky’. This ‘blockiness’ comes from the
fact that doing trilinear interpolation is too expensive
in terms of performance to be practical, and if applied,
the intensity is again averaged over the neighbouring
region and the result ends up being indistinguishable
from mipmapping. A similar problem arises when
the different directions need to be interpolated due to
a view that is not parallel to the volumes coordinate
axes. This can be seen clearly in the geological data
set. When choosing a view that is parallel to the
volumes up coordinate as can be seen in Figure 7c the
results are very similar to the reference image. When
dealing with high frequencies as in the Aneurysm
data set, anisotropic approaches also generate a good
reconstruction of most details as can be observed in
Figure 5d. The worst scenario is presented in Figure 6d.
Here, preservation of the anisotropy is not important in
the final rendering as the volume is very dense. Due
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a) Reference ¢y, (b) Mipmaps ¢, (c) Anisotropic ¢,
Frgure 7: The SEGY dataset, rendered from a top view
at its original resolution ¢ (a) and at resolution ¢, for
the downsampled methods. Plain mipmapping does not
preserve the structure of this dataset. From this perspec-
tive the Anisotropic Mipmapping (c) provides results
that are very similar to the reference image.

to the interpolation of axis functions the result is very
similar to the plain mipmapping.

When studying the non-linear reconstruction ap-
proaches, the different regions classified by the transfer
function are well preserved. Due to the lower resolution
of the volume these areas seem bigger in all cases. This
can be seen especially well in Figure Sc where the high
frequency details are rendered as bigger structures.
This also leads to more saturated colors in nearly all
of the results achieved using this approach. Several
images show that preserving not only the extreme
values but also the average value is important to create
convincing results. In nearly all cases the non-linear
reconstruction which preserves the average value
provides results that are closer to the ground truth. The
only exception is the synthetic Spherical data set which
only contains intensity values linear in respect to the
distance to the volumes center. This explains the close
fit that a linear reconstruction provides.

5.3 Guidelines

We have seen different approaches which in general
provide better quality compared to plain mipmapping
depending on the type of data and the transfer function
used. Based on these observations we provide guide-
lines for using the mentioned approaches in different
scenarios.

As mentioned above the non-linear reconstruction ex-
aggerates the color saturation. Generally the regions
colored by a transfer function are the ones with features
that the observer wishes to emphasize. This may prove
useful in cases like seismic visualization to use these
or similar approaches to be able to observe all details

ISSN 1213-6972



Journal of WSCG

in the volume. The same applies to medical datasets
where it may be crucial for the observer not to miss any
details of significance. In these cases using a non-linear
reconstruction will benefit the visualization.

In the cases where you want to preserve high frequen-
cies within data sets, an anisotropic approach may be
a viable option. And if the data set contains intensi-
ties layered along one major direction, an anisotropic
approach may also provide better results.

If rendering speed is the top priority plain mipmaps
are the most obvious choice to use due to the native
hardware integration existent in all modern GPUs. The
Non-Linear Reconstruction provides reasonable speed
especially with bigger datasets while providing an im-
proved image quality.

When dealing with large volumes the overall difference
in memory between plain mipmaps and techniques bet-
ter preserving the intensity distribution of downsampled
voxels is very small. Using such a technique may be a
viable option in those cases.

6 CONCLUSION & FUTURE WORK

We have discussed two shortcomings of plain mipmaps
and evaluated techniques that address these using dif-
ferent data sets from different domains together with
transfer functions that have been designed to visualize
interesting features in these volumes. As a conclusion
of the conducted evaluation, we can say that all tested
approaches can be implemented as an improvement to
plain mipmapping. Also, conserving the intensity dis-
tribution of a downsampled voxel looks like a very
promising approach that is applicable in the general
case. An anisotropic approach also provides promis-
ing results but lacks hardware support and a proper so-
lution for feature preserving interpolation in the tech-
nique presented in this paper. The different strengths of
the provided techniques calls for a combination of both
approaches that should provide a reconstruction of the
intensity distribution of downsampled voxels as well as
a directional component.

In our opinion, the ideal technique for mipmaps in vol-
umetric visualization should fulfill three important re-
quirements. First, it should preserve the intensity dis-
tribution of all the data contained within the region of
the voxel. Second, it should utilize the GPU’s hardware
support for interpolation when fetching data. And third,
the intensity distribution contained within the voxel
should be able to be integrated with the transfer func-
tion in an efficient manner enabling interactive editing
of the transfer function together with interactive frame
rates.

As it seems to be more important to preserve the inten-
sity distribution in a correct way rather than to store the
directional intensity changes within a voxel an interest-
ing approach would be to approximate this distribution
by using piecewise linear functions. On the other hand
the directional interpolation problems of Anisotropic
Mipmaps could be tackled encoding directional inten-
sity using spherical harmonics.
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ABSTRACT

Analyzing and visualizing the whole genome sequence is very important to finding genetic evolution. Many
researchers have used 2D or 3D DNA random walk plots to study short DNA sequences. However, visualizing a
whole genome sequence is difficult because of overlapping, self-intersection, and biases. In this paper, we propose
a 3D graphical representation of a whole-genome sequence based on a random walk plot. Our 3D graphical
representation can reduce the overlaps or biases that can occur during the visualization of large sequences by using
the 2D or 3D DNA walk plot algorithm. We visualized and compared data on the whole genomes of 10 species,
including humans and anthropoid apes. In our experiment, the 3D graphical representation showed similarities

between humans and apes and differences between other species.

Keywords

DNA visualization, random walk, DNA similarity

1 MOTIVATION

By the late 1990s, genetic maps were developed by us-
ing genome projects based on Sanger’s method of gene
analysis. A great deal of research was carried out. Since
then, next-generation sequence (NGS) techniques such
as Roche 454 and Illumina have been developed, and
mass gene data have become available. Now, gene data
consisting of billions of base points can be obtained in
only a few hours. Obtaining gene data has become more
easier. Gene analysis plays an important role in under-
standing biological features such as genetic expression
and diversity and in the medical diagnosis, prevention,
and treatment of genetic illnesses.

The Bio information in genetic material is decided by
order of base composition, geneticists analyze what bio
information is retained on particular sequence of partic-
ular position by comparing the order of encoded gene
information. The most popular analysis method for
gene information stored as data is the alignment algo-
rithm. After the reference sequences are read, they are
compared with the query sequence that the user wants
to understand. Thus, not only the similarity score but
also similar points between the two sequences and indel

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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mutations can be confirmed. The alignment algorithm
provides the advantage of detailed information about
the characteristics or mutation of a gene. However, it re-
quires many computational operations running at O(n?)
times and a large amount of memory space. This makes
it difficult to analyze considerably long sequences like
a whole genome.

In contrast, analysis methods based on static compo-
nents are used for obtaining rough gene information.
These methods use statistical features such as the pro-
portion and distribution of A, G, T, and C. Statistical re-
sults can be obtained from a single pass of reading the
gene information. However, as the amount of gene data
increases, the overall statistical proportion of the gene
information converges to one point. Consequently, it is
difficult to obtain feature points of long sequences and
confirm details of the sequence.

We propose a visualization method of the geometric
space that uses random walk with base sequences con-
sisting of character strings. The computed DNA se-
quence information by preprocessing can be rapidly vi-
sualized, and the visualization results make it easy for
the user to check the structure of the DNA base se-
quence.

2 RELATED WORK

2.1 Visualization for Sequence Data

Sequence data are a set of ordered data that change
with time, such as economic indicators or weather, and
order- dependent data such as documents and DNA
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base sequences. The most common type of sequence
data is the time series, which is utilized to study the
current state or predict the future state. Research in
this field is based on correlation analysis of collected
information with an associative relationship but un-
known rules, such as between the stock price and in-
terest rate or between the temperature, humidity, and
weather. Most sequence data processing involves col-
lecting and analyzing a great deal of data. The given
data are mostly stored and managed in a text or com-
pressed format. Examining such huge amounts of data
directly has a high computational cost. Developing a
more efficient method for data visualization is an im-
portant topic of research.

To determine the correlation between data more effec-
tively, Alencar et al. [1] and Krstajic et al. [2] proposed
methods for comparing different types of data at a time
by compressing the memory space. In addition, Graells
and Jaimes [3] presented a method for visually grasp-
ing the data progress by compressing data that are not
chosen by the user as a significant part with a helical
form. Thakur and Hanson [4] suggested a visualization
tool based on location information to compare the data
trends among regions.

2.2 Genomic Analysis

As previously stated, the DNA base sequence is bio-
information encrypted in the form of bases. It is typ-
ical sequence data because biological features are de-
termined by the order of bases. By analyzing the func-
tion of the encrypted base sequence, the characteristics
can be obtained through a comparison with other well-
known base sequences.

A typical analytical comparison of the base sequences
involves using a tool based on the alignment algorithm,
such as BLAST [5], Bowtie [6], or BWA[7] to grasp the
similarity between the two sequences. Such tools even-
tually determine the similarity by using the alignment
algorithm, which was described by Smith and Water-
man [8]. However, the algorithm has a space complex-
ity of O(n?). Thus, the longer the base sequence length,
the greater the required computing time and memory
space.

(a) Genome Browser (b) Tablet
Figure 1: The web based visualization tool (a) Genome Browser and
also visualization tool but provides mapping result (b) Tablet. Using
these visualization tool, we can check the detail information about
genome, but grasp of the whole structure of DNA base sequence is
difficult.
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Research has also been carried out on analyzing base
sequence information by visualizing the results of base
sequence analysis is also carried out. Genome Browser
[9, 10] visualizes various genome analysis results that
can immediately be obtained from a website. The
Tablet tool [11] provides the mapping result based on
Bowtie or BWA in visual form for the user. These vi-
sualization tools give very detailed analysis results but
cannot provide information about the overall features of
the genome.

2.3 Random Walk Visualization Model

The random walk plot is a visualization technique that
allocates states to features of the data and represents
the change in states with the coordinates according to
the priority so that users can easily visualize the data
contents. Overall, a two-dimensional walk plot is visu-
alized with four states. The characters A, G, T, C are
allocated to the DNA base sequences of each state to
confirm the overall form of the genome universally.

The process of DNA visualization by using a two-
dimensional walk plot is as follows.

1. Read the base sequences from the DNA data.
2. Convert the base to unit vectors.

3. Visualize the sequence by using the unit vectors.

The unit vector can be represented with various
form which depends on the setting of direction for
‘A,G’,T’,‘C’, in case of WS-curve, the ith base of
sequence is S;, the unit vector Unit"5(i) is defined as
follows:

(-1, 0) if S;=A
WS/ ( 0,+1) if Si=G
Unit"> (i) = (41, 0) if S=T (1)
(0,—1) if Si=C

And then finally visualize the result of the sum of unit
vector in order of base reading.

A two-dimensional random walk generally visualizes
a sequence by mapping A, G, T, and C in each direc-
tion, as discussed earlier. This produces three main va-
rieties: the WS-curve, RY-curve, and MK-curve. These
depend on which bases are allocated in directly oppo-
site directions of each other. The RY-curve allocates
puRine(R = A, G) and pYrimidine(Y = C, T) as com-
plementary relations. The MK-curve assigns aMino(M
= A, C) and Keto (K = G, T) as complementary rela-
tions. The WS-curve allocates Weak (W = A, T) and
Strong (S = G, C) as complementary relations. The
two bases are combined in a double helix. The visu-
alization results change depending on how we set the
complementary axis, even if the same sequence is used.
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Authors Dimensions Main characteristics
Kim et al. [12] 2 visualization in polygon form using K-Convex and comparison.
Liao and Ding [13] 3 Allocate the z axis with time and visualize the 1*1*1 space with a walk plot form and

compute the entropy of those results to compare the similarity between genomes.

Bai et al.[14] 1 Read the base sequences, combine the complementary form into the genome as per
the classifications of WS, RY, MK, visualize according to he order of sequences,
and convert the results into entropy to compare the similarity between genomes.

Loetal. [15] 3 Define the unit vector of A, G, C, T as a tetrahedron in a three-dimensional space
and visualize the DNA.

Xie and Mo [16] 3 Add the axis representing the order of the sequence to the previous two-dimensional

walk plot and visualize the DNA. With the additional axis, the beginning and
end points of RY, MK, and WS provide the number of each base A, G, T, and C.

Table 1: Characteristics of DNA visualization and analysis research using a random walk plot

@}
Q

G

T C T
(a) RY-Curve (b) WS-Curve (c) MK-Curve

Figure 2: 2 dimensional walk plot.

Thus, we generally utilize all three curves to compare
sequences. However, the genome bases A and T are
generally much more common than G and C. If the se-
quence length is too long, the visualization result of the
sequence tends to become lopsided.

The WS-curve, RY-curve, and MK-curve are each di-
vided into four kinds depending on how the comple-
mentary axis is selected. For example, besides the
above unit vector, the WS-curve is divided into four
kinds depending on the directions of A, T, and G, C:

(—1, 0) if Si=A

swon )0 F1) if §;=G
Unit>” (i) = (+1,0) if Si=T 2)

(0,-1) if S;=cC

These graphs are used to prevent different resulting val-
ues depending on the three curves of the axis when
computing similarities or dissimilarities. Thus, the vi-
sualization results for the walk plot vary with the con-
version method from each base to the unit vector. Many
studies have examined methods for effective visualiza-
tion. Table 1 introduces different studies on how to uti-
lize the random walk plot.

There have been many studies on visualization with
a three-dimensional random walk based on the con-
cepts for a two-dimensional random walk. The biggest
problem with the two-dimensional random walk is the
loss of data by the two bases in the opposite direc-
tions. To prevent such a problem, many studies have
allocated the z axis as a time stamp. Liao and Ding
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[13] represented the z axis as 1 —i/1 so that the whole
sequence appears in the space between (0,0,0) and
(1,1,1) instead of showing just a simple cumulative
sum of vectors about A, G, T, C. By representing the
whole sequence in a given space, comparison results
such as the similarity can be numerically expressed by
0 <= Similarity /Dissimilarity(x) <= 1. However, the
longer the sequence, the more difficult it is for the user
to understand the visualization results. Xie and Mo [16]
visualized the data by adding an axis to the basic two-
dimensional visualization method and increasing the
additional axis value for each base pair. Thus, just the
location of the end point of the random walk provides
the rate of each base (A, G, T, and C), and entropy can
help with determining the similarity between different
sequences. However, a longer sequence, causes the axis
representing the order of base pairs to be out of propor-
tion to the other axis, and the visualization results are
too compressed for massive sequences.

To avert the loss of base information, Lo et al. [15]
mapped each base to each vertex of a tetrahedron in
three dimensions instead of to the axes x and y. This
method has the advantage of effectively representing
the sequence characteristics, but the features of a base
cannot be clearly shown in each direction. In addition,
information is lost by the other three bases.

3 NEW VISUALIZATION MODEL

3.1 Usefulness of Three-dimensional
Walk Plot Visualization

Random walk visualization is useful for visualizing
DNA data in string form to make the results easier to
understand. However, previous research focused on
short DNA data lengths; their methods present draw-
backs for visualizing long sequences. For example, ta-
ble 2 presents the rate of the 2-mer base of human chro-
mosome 1.

The ratio of the base pairs AT and GC was about
19.23%. The visualization process based on the WS-
Curve incurred heavy data losses. To prevent this prob-
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2mer bp ratio 2mer bp ratio
AA 21,411,841 9.50% CcC 12,264,137 5.44%
GG 12.274.467 5.45% TT 21,464,952 9.53%
AC(CA) 29,523,084 13.11% AT(TA) 31,095,833 13.80%
AG(GA) 27,699,140 12.30% | CG(GC) 12,235,412 5.43%
CT(TC) 27,746,387 12.32% GT(TG) 29,565,347 13.12%
Table 2: The rate of two pair of base in Human chromosome
U
BaseSequence  ACCIGAAGTGTACGAC

T
Converted Sequence VC X U A U Z Z Z WVX U V

Figure 3: The transition process of sequence. Read the sequence with
overlapped form per 2-mer unit. Through this process, we can find
the complementary ‘AT(TA)’, ‘GC(CG)’ in sequence.

lem, other curves such as the MK-curve and RY-curve
are used to check the sequence. However, A and T are
generally more common than G and C, so a longer se-
quence makes the graph form more lopsided. Thus,
this approach is inappropriate for visualizing long se-
quences. Three-dimensional visualization tries to re-
duce this problem by using a time axis, but a long se-
quence makes the time axis too big. It is difficult to
grasp the visualization results at a glance. In this pa-
per, we propose a new three-dimensional visualization
method to improve the visualization results for a long
DNA sequence. To reduce the loss of data, which is
the repeated sections of AT and GC, we can represent
that repetition through the z axis if the sequences AT
and GC are repeated. Thus, we can get the same re-
sults of existing two-dimensional visualizations by us-
ing orthogonal projection for the XY plane with our
new method, and we can check for loss of information
caused by repetition of the AT and GC bases by viewing
the results from another angle.

3.2 Proposed Walk Plot Procedure

To determine the AT and GC parts in DNA sequence
data more easily, we reset the relation between the unit
vector and each base, as given in Table 3, based on ex-
isting definitions given in section 2.

2mer Symbol Vector 2mer Symbol Vector

AA A (2,0,0) | AG(GA) U (1,1,0
AC(CA) A% (1,-1,0) AT(TA) w (0,0,-2)

CcCc C (0,-2,0) | CG(GC) X (0,0,+2)
CT(TC) A (-1,-1,0) GG G (0,2,0)
GT(TG) z (-1,1,0) TT T (-2,0,0)

Table 3: Reset the vector for visualization of 3 dimensional random
walk.

As indicated in Table 3, to detect AT and GC in the se-
quence, we combine the base pairs and convert the se-
quence into coordinates. In order to prevent the wrong
combination of 2-mer unit bases, the base pairs are read
in overlapped form, as shown in Figure 3.

The base pairs AT and GC are represented on the z
axis. The other base pairs are represented as the sum
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T
Figure 4: The phenomenon that simplification of widespread data of
visualization result on limited screen. To visualize the whole data in
limited space, the random walk such as (b) is simplified into (a).

of two unit vectors for each base, as given by the WS-
curve method. After the vector transition for DNA
genome data information, those vectors are visualized
in three-dimensional space. The method of visualiza-
tion is the same as that of two-dimensional visualiza-
tion, where the sum of vector values is computed ac-
cording to the order of sequences and the results are
connected with a line to provide the final visualization
result. For the random walk plot R,the beginning point
is R(0) = (Xo,Y0,Z0) Xo = Yo = Zo = 0). Unit (i) is
the converted value of the ith 2mer of the unit vector.
The ith point R(i) = (X;,Y;,Z;) of the random walk plot
is computed as follows:

R(i) = R(i— 1)+ Unit* (i) = iUnit3d(i) (3)
0

3.3 Simplification and Normalization of
the 3D Walk Plot

When trying to visualize a base sequence bigger than
100 Mbp like a chromosome with random walk, the
screen size is more limited than the range of coordinates
represented on the walk plot. Thus, it is impossible to
represent the whole sequence. Usually, when represent-
ing these values with such a wide range in coordinates
on a screen, the points in a certain range are generally
simplified into one pixel, as shown in Figure 4.

However, reading these many points with little influ-
ence on the results and reflecting them in the visual-
ization greatly wastes time and memory space during
operation. Therefore, we fixed the screen size and de-
veloped a simplification preprocess for the vector tran-
sition time to reduce the unnecessary operation and pro-
cessing time.

The ith point of walk plot R is R(i), and the screen range
of visualization is [—v,v]. Then, the simplification re-
sults can be defined as follows:

1. Find the maximum value max(R) from the absolute
values of the X, y, z components for each point of R.

2. Determine  the range of  simplification
ran = max(R) /v by using the maximum value.
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3. Convert all points of R into the simplified point
R'(i) = R(i)/ran by using the range of simplifica-
tion ran.

4. Remove the continuous overlapping points among
the converted points R'(i).

The preprocess to simplify all of the points in the range
ran into one point, as shown in Figure 4, reduces the
number of points that need to be visualized. As ex-
plained before, however, in the case of DNA base se-
quences, A and T are generally more common than
G and C. Thus, all curves excluding the WS-Curve
have lopsided visualization results. This problem is
also encountered for the z axis of the three-dimensional
walk plot, which is determined by combining the high-
frequency base AT (TA) and low-frequency base GC
(CG). The rate of AT is 13.80%, which is much higher
than that of GC (5.43%), as given in Table 2. This im-
balance in the range of data slightly differs for each
base sequence of the chromosome. However, simi-
lar trends can also be observed in the chromosomes of
other species besides humans. In the case of short se-
quences, this does not greatly affect the result. How-
ever, with longer sequences, the range of the z axis
is much bigger than that of the x and y axes. This
makes the results difficult for the user to check. Table
4 presents the resulting maximum values of each axis
for human chromosomes 1-5 based on the computed
results for the walk plot R.

The z axis has a much larger value than the x and y
axes. Because of this difference in the range of data,
when the whole sequence is visualized, the changes in
the x and y axes are too slight compared to that of the
z axis. Thus, it is difficult to sense the changes in x
and y. To solve this problem, when we simplify the
data, we compute the ranges of simplification for x, y,
and z independently. We defined this process as the
normalization of the three-dimensional walk plot. The
maximum values among the absolute values of the x
and y components in the walk plot R are maxxy (R). The
maximum value of the z component is maxz(R), and
the view size for visualization is v. Then, the results of
normalizing each point can be defined as follows:

Rregular(i) = (Xi mavay(R)’ Yimax;),(R), Z; max‘;(R) ) (€]

In the preprocess, when we simplify a long base se-
quence by using the normalization method in advance,
it is cumbersome to change the screen size or check the
detailed information because the preprocess needs to
be run again. However, if we visualize a chromosome
of 100 Mbp in three-dimensional space in the range of
[—400,400], the number of points is reduced to below
ﬁ (this slightly differs depending on the range of data
and direction of progress), so the visualization results
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can be quickly obtained. Furthermore, if the screen size
is fixed, the data can be visualized without computing
each point by always using the preprocess results.

4 COMPARISON AND 3D VISUAL
SHAPE

The walk plot results generated by simplification can be
visualized on three-dimensional coordinates as a set of
points. A simple method to grasp the similarity within a
set of points is comparing the similarity of the polygon
with the form containing all of the points. However,
finding areas with a polygon form that contains all of
the points and comparing these areas are not easy to do.

In this section, we compare orthographic projection
planes such as XY, YZ, and XZ instead of comparing
the visualization results in three-dimensional space to
reduce the complicated computation and compare the
results more easily. To effectively determine the area on
the two-dimensional space and compare the area gener-
ated by each sequence, we assumed a "beta" shape. The
similarity comparison method uses this beta shape.

Finding the area that contains the results of the walk
plot is very important to comparing similarities based
on the visualization result. In the case of a relatively
dense area, if there are slight mutations in each se-
quence, they will be recognized as different. In con-
trast, if the area is too large, the results will not demon-
strate the characteristics of the sequence. The sim-
plest method for finding the area that contains all of the
points on the two-dimensional plane is to use a bound-
ing box or convex hull. The bounding box can define an
area more easily if the maximum and minimum values
of each coordinate are found. However, this tetragonal
area is too rough to comprehend the characteristics of
sequences.

The convex hull is the connection of the outermost
points to make the smallest hull that includes all of the
points. The convex hull provides a more concrete area
than the bounding box but uses the outermost points; if
there are many large empty spaces, it cannot consider
the problem, as shown in Figure 5(a).

The alpha hull (alpha shape) [17, 18] was proposed in
1983 and is shown in Figure 5(b). This involves first
selecting two points and drawing a circle with the radius
of alpha. If there are no points in the circle, the two
points are connected. This continues until the area that
contains all points is found.

The alpha hull is robust against empty spaces that can-
not be considered by the convex hull. The expected
area can be determined by regulating the range with the
o value.

However, the alpha hull requires a computation time of
O(nlogn) for n points. When there are many points,
like in a long sequence, the computation time becomes
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Chrl Chr2 Chr3 Chr4 Chr5
Max_X 233,197 121,923 215,564 126,126 218,859
Max_y 112,716 106,743 87,480 74,728 90,302
Max_7Z | 18,589,777 | 14,769,847 | 19,379,909 | 20,991,662 | 17,923,569

No.2

Table 4: The result of the maximum value of each axis for human chromosome 1-5 which is computed result for walk plot R The maximum
values of the axis of x and y are similar to each other, but the z axis has dozens of time as big value as X, y.

(a) Convex-Hull (b) Alpha-Hull

Figure 5: The example of Convex Hull (a) and Alpha-Hull(b). In the
case of Convex-Hull (a),Because it uses outer-most points, if there
are much big empty space, it can’t consider this. Alpha-Hull, on the
other hand, it can extract much detailed area using circle with a radius
of alpha.

excessive. The alpha hull algorithm also prints edges
that connect the two outermost points of the area. This
result is not sorted, so additional computation is needed.

4.1 Beta Shape Similarity Algorithm

In this section, we propose a new algorithm for finding
the area by comparing the visualization result with the
above alpha hull. The alpha hull method generates the
result in edge form by comparing the results located in
o with each other. However, the beta shape searches
the coordinate space and prints the dot-marked coordi-
nate space in matrix form. The beta shape method takes
a computation time of O(n?) to search n % n space be-
cause the search space is the visualization of the vertex
coordinates. As previously explained about simplifying
the method for the walk plot, if there are many vertices
and the range of coordinates is limited, the visualization
time for the beta shape method is less than that for the
alpha hull method. The process to obtain the beta shape
is defined as follows:

1. Mark the visualization results with two-dimensional
matrix coordinates as mat|[x][y] = 1.

2. Search the whole coordinate space for the marked
vertices.

3. Check if there are other marked vertices within the
range of (i — 3, j) and (i+ 3, j). The location of the
marked vertex is found by searching (i, j).

4. If there are other marked vertices, fill the empty
space by checking the range of (i, j).
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Figure 6: The example of generation process when the beta value is
5. Find the marked point (i, j) on the orthogonal projected walk plot
as (a), and find the other marked point in the axis of x, y direction
within the limit of 8 range. If there is another point in the 8 range,
it fills the empty space with marked points as (c). Those process (b),
(c) are repeated until there no space to be filled more. Figure (d) is
final result for (a) using Beta-shape when f§ = 5.

Figure 6 presents the above process. The range of 3
is searched in the x and y axis directions, as shown in
Figure 6(b). The empty space is filled, and coordinates
of the area containing the vertices are stored to compute
the whole area. Through this process, we can determine
the area that includes the visualization result within a
computation time of O(n?).

4.2 Comparing the Similarity of Walk
Plots by Using the Beta Shape

Comparing the area on three-dimensional coordinates
is a difficult problem, so we computed the similarity by
using the results of orthogonal projection for each three
walk plots on the two-dimensional planes XY, YZ, and
XZ. If the two beta shapes beta,, beta;, are generated
from the two base sequences a, b that are orthogonally
projected onto a single two-dimensional plane k, we
can get a broad outline of similarity by computing their
overlapping area. The similarity of the areas beta, and
beta, is defined in equation (5):

Y (beta, Nbetay)

Y betay, ®)

.k
Simy,, =

On the left-hand side, Y. (beta, Nbetay) is the size of
the overlapping areas of beta, and beta;,. This equation
can be used to determine how much of a overlaps with
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b. If most of beta, overlaps with betay, this may be
only a small part of betay, so the two areas may not be
similar to each other. Therefore, to compare the sim-
ilarity of two areas, we should consider Simﬁb,Sim’ga.
After considering this point, we defined the similarity

between beta, and betay, as follows:

2ok \2 ok 2
Simk(a,b)\/(&m“b) ;(Stmba) ©)

By using equation 6, we can compute the visualization
results on a three-dimensional walk plot and get
the similarity rate Sim(a,b) between different two
sequences. The similarity rate for each plane can
be represented as a vector with three components
(Sim*Y (a,b), Sim"%(a,b), Sim*?(a,b)) that are orthog-
onally projected on the XY, YZ, and XZ planes. By
using the sizes of the vector values, we computed the
similarity of two sequences with the rate Sim(a,b).
The computed results are given below.

Sim(A,B) = \/ (Sim* (a,b))2 + (Sim"%(a.b))? + (Sim¥* (a,b))?
!

5 EXPERIMENT
5.1 Environment and Testing Data

The two main techniques were a visualization model for
base sequences of 10 Mbp on a three-dimensional walk
plot by using the simplification method and a compar-
ison model based on the beta shape by using the visu-
alization results. Using the simplification method, we
could visualize the base sequences of 10 Mbp within
a very short time on the three-dimensional walk plot
and compare the visualization results of two sequences
more intuitively. To represent the results as numerical
values, we compared the result of two bases with the
beta shape. To visualize the three-dimensional walk
plot in real time, we developed a web service system
based on Web-GI Language.

All of the data used for the experiment were obtained
from UCSC [10] and NCBI [19]. We obtained the
human chromosome data from the Human Genome
Project; "homo sapiens gr 37" is offered free by UCSC
[10]. The chromosome data of three apes (gorilla,
chimpanzee, orangutan) and other species (milk cow,
dog, green monkey, chicken, rat, pig) were obtained
from the taxonomy in NCBI [19]. The average chro-
mosome length was approximately 30-250 Mbp, and
261 chromosomes were used. The sex chromosomes
were too short, so they were not selected for analysis.
Table 5 presents the data for this experiment.

5.2 Visualization Results

5.2.1 Verification of the DNA Visualization Re-
sult with the Proposed Method

We checked if the three-dimensional walk plot visual-
ization results could be used to distinguish the charac-
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(a) Human Chromosome 1 (b) Human Chromosome 2

(c) IMbp Random Sequence (d) 100Mbp Random Sequence

Figure 7: The visualization results of human chromosome(GR37) 1,
2 are (a), (b). And those of randomly generated sequences which has
1Mbp, 100Mbp are (c), (d). The walk plots of random sequences are
lumpy generally, but those of human chromosome are scattered. We
hereby can figure out that the chromosome data has certain pattern
which is distinguished from random sequences.

teristics of real genomes. To judge the utility of the
visualization result, we set three standard judgments
based on other research about visualization-based walk
plots [15]:

e Are the characteristics of the base sequences repre-
sented in the three-dimensional walk plot results?

e Is it possible to distinguish the different base se-
quences from each other by using the visualization
results?

e Isitpossible to check similar sequences against each
other by using the visualization results?

To confirm the base sequences form the visualization
results, we generated the human chromosome (GR37)
1, 2 and random sequences by using the visualization
tool, as shown in Figure 7. The random sequences were
provide by a random number generator in quantities of
1 and 100 Mbp. We then compared the results of both
sequences. The total view size was limited to [-400,
400] in the preprocess for all experiments.

When we compared the human chromosomes 1 and 2,
chromosome 1 was spread out densely, but chromo-
some 2 was distributed widely. Thus, they had different
characteristics. For the random sequences created by
the random number generator, the results were gener-
ally lumpy (Figures 7(c) and (d)), but the results of the
human chromosome were not. Thus, we confirmed that
the human chromosome has certain rules for genome
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sequence ID scientific name name Number of chromosome notes

s01 Bos taurus milk cow 38 -

s02 Canis lupus familiaris dog 38 -

s03 Chlorocebus sabaeus | green monkey 29 -

s04 Gallus gallus chicken except 28(32) 29,30,31,32

s05 Gorilla gorilla gorilla gorilla 23 chromosome 2A, 2B
s06 Homo sapiens human 22 -

s07 Mus musculus rat 19 -

s08 Pan troglodytes chimpanzee 23 chromosome 2A, 2B
s09 Pongo abelii orangutan 23 chromosome 2A, 2B
s10 Sus scrofa pig 18 -

Table 5: The table shows the information of DNA Chromosome sequences with each sort which are used for experiment. The information for
the mitochondria and X,Y Chromosome which is related with gender is excepted for this experiment.

construction, and those characteristics were revealed by
the walk plot.

Dist Z: 1400

Figure 8: The comparison result of visualization for random sequence
which has 100Mbp and gorilla. In case of random sequence, the visu-
alization result is represented with overlapped form as (d). Also the
visualization result of random sequence has more lumpy than the go-
rilla chromosome 2A which has similar size with random sequence.
That way, we can confirm that the DNA sequence is not irregular data.

To get more precise results, when we compare the vi-
sualization results of two sequences on screen, we con-
sidered the scale of the gorilla chromosome 2A with a
similar size to that of a random sequence, as shown in
Figure 8. For the gorilla chromosome 2A, the whole
sequence length was approximately 111 Mbp, which
was different from the random sequence by 10%. How-
ever, the random sequence was expressed at a point on
the coordinate plane in lumpy form, and there were no
changes in the walk plot. On the other hand, the go-
rilla chromosome showed large changes within the data
range.
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Figure 9 compares the results of human chromosome 1
and chromosome 1 of the dog and chimpanzee. The two
chromosomes clearly had different visual results, as
shown in Figure 9(a). This result was true not only for
the dog but also for all species excluding the apes. On
the other hand, the chimpanzee chromosome 1, which
is known to have similar genome information as hu-
man chromosome 1, had similar visualization results.
The chromosomes of other apes such as the gorilla and
orangutan also had generally similar results.

(@ 1of and (b) CI 1of and chi

Figure 9: The comparison result of the chromosome 1 of human and
dog, chimpanzee. The chromosome of human and dog is quite differ-
ent as (a), but the chromosome of human and chimpanzee, which is
known that more than 90% of chromosome is similar, is also highly
similar.

5.2.2 Verification of the Similarity of Genome
Information by Using the Beta Shape

By using the above three-dimensional walk plot
method, as shown in Figure 9, we compared the
information of base sequences with different genome
information according to the visualization results
for validation. The chromosomes of the human and
apes, which are known to be quite similar, were also
checked and showed only small differences. We
computed the similarity of the visualization results of
two different sequences by using the beta shape and
verified the comparison method for similarity based
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on the results. The similarity comparison method was
verified according to the following criterion:

e Isit possible to confirm the degree of similarity with
numerical values by using the similarity comparison
method?

To confirm this criterion, we performed a comparative
experiment to check whether the results of the similar-
ity comparison using the beta shape met this require-
ment. Table 6 presents the computed similarity for each
chromosome 1 introduced in Table 5.

In the case of the human (S06), other apes were very
similar in the order of S08, S05, and S09, as given in
Table 6. In addition, the comparison results were bet-
ter with the human than with the other species. Fig-
ure 10 shows the visualization results of chromosome
1 for the human and gorilla. Figure 10(a) shows a
three-dimensional walk plot. Compared with the hu-
man, the front part of the gorilla sequence was weighted
towards the y axis, but the general forms were very sim-
ilar. The similarity between the two base sequences
could be checked more concretely when their results
were orthogonally projected on the (b) XY, (c) XZ, and
(d) YZ planes. There was no difference between the
two sequence in the orthogonal projection on the XZ
plane. For the orthogonal projections in the XY and YZ
planes, the random walk was slightly weighted towards
the y axis, but the general forms were quite similar.
However, the orangutan (S09) was similar to the other
apes but also had no difference with the other species.

6 CONCLUSION

The base sequences, which contain the DNA infor-
mation, are data in character string form. To check
such data visually, related research based upon previous
visualization methods of two- and three-dimensional
walk plots is actively ongoing. Many methods of com-
parison between two difference sequences have been
proposed based on the walk plot characteristics.

This visualization method using base sequences can vi-
sualize the sequence in a short amount of time, and
the characteristics of the base sequences can be intu-
itively analyzed from the visualization result without
the use of complicated algorithms such as the alignment
method. Because previous research usually focused on
short base sequences with special functions such as in-
sulin and the 3-globin base, these methods are inappli-
cable to long base sequences of 10 Mbp.

We proposed a new three-dimensional visualization
method for long sequences of more than 10 Mbp. The
advantages of our proposed visualization method are
as follows:

e It can visualize quite long sequence data such as
chromosomes.
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(a) Chromosome 1 of human and gorilla (b) X-Y orthogonal projection

(c) X-Z orthogonal projection (d) Y-Z orthogonal projection

Figure 10: The comparison result of the chromosome 1 of human and
gorilla (a). And the result of orthogonal projection on plane of XY (b),
XZ(d), YZ(d). Compared with human, in the case of gorilla, the front
part of sequence is weighted towards y axis but the general form is
very similar to each other. Those characteristics are more revealed at
the result of orthogonal projection on 2 dimensional plane.

e If there are no changes to the screen size or sequence
data, it can visualize the sequence in a short time
by reducing the number of points that are generated
with each base point and that need to be visualized
through a preprocess.

e It can reveal more specific characteristics than pre-
vious visualization methods by using the z axis for
bases such as AT (TA) and GC (CG); such informa-
tion is lost with the WS-curve method.

e It can compare massive amounts of base sequences
like a chromosome in a short amount of time through
our proposed beta shape comparison.

We expect that our proposed method can be used to
grasp the relation between long sequences in a short
amount of time without comparison-based alignment,
which would reduce the computation cost and con-
tribute to evolutionary research. Because DNA in-
formation necessarily contains mutation, deletion, and
metastasis, the following requires further study:

e Searching for partial similarity in the visualization
results of base sequences.

e Determining high levels of similarity by comparing
visualization results at various scales.

e Separating parts with high and low levels of similar-
ity when visually comparing two sequences.
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s01 s02 s03 s04 s05 s06 s07 s08 s09 s10
sO1 | 1.000 | 0.135 | 0.187 | 0.024 | 0.051 | 0.130 | 0.236 | 0.104 | 0.164 | 0.180
s02 1.000 | 0.190 | 0.083 | 0.061 | 0.129 | 0.201 | 0.138 | 0.163 | 0.112
s03 1.000 | 0.032 | 0.127 | 0.179 | 0.220 | 0.159 | 0.207 | 0.162
s04 1.000 | 0.080 | 0.073 | 0.140 | 0.060 | 0.171 | 0.053
s05 1.000 | 0.345 | 0.143 | 0.299 | 0.192 | 0.174
s06 1.000 | 0.181 | 0.535 | 0.267 | 0.214
s07 1.000 | 0.206 | 0.198 | 0.200
s08 1.000 | 0.249 | 0.223
s09 1.000 | 0.166
s10 1.000

Table 6: The comparative result for chromosome 1 of each sort, when = 10. The similarity between apes(s05, s08, s09) and human(s06) is
relatively high.
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ABSTRACT

Images have rarely been used for psychological behavior analysis or for person identification in the information
technology domain of research. In this paper, we present one of the first methods that allows to accurately predict
gender from a collection of person’s favorite images. We select 56 image aesthetic features, and propose a mixture
of expert models consisting of support vector machine, K-nearest neighbor and Decision tree. Final decision
is taken based on the weighted combination of probability generated by individual classifiers. We introduce a
genetic algorithm based method to improve the prediction accuracy of the model, which allows us to find the best
combination of feature subset in 56D binary search space. Moreover, feature dimension is reduced significantly that
decreases the testing time. Finally, three weights of the prediction model are adjusted using genetic algorithm in 3D
real-number search space. Experimental results conducted on a true image database of 24000 images provided by
120 Flickr users. The experimental results demonstrate superiority of the proposed method over other approaches

for gender prediction from perceptual image aesthetics preferences.

Keywords

Perceptual image features; Gender prediction; Image aesthetic features; Ensemble of classifiers; Probability; Ge-

netic Algorithm

1 INTRODUCTION

Traditionally in computer graphics and image process-
ing domains, images are used for classification [liv03,
Lee03], visual data exploration [Moll4], landmark
recognition [Pril3], pose estimation [Tew15] or im-
age reconstruction [Skal3]. However, images have
rarely been used for psychological behavior analysis or
for person identification in the information technology
domain. In this paper, we address this gap and study ef-
fects of human aesthetic perception, expressed through
choice of favorite images, onto behavior and gender
recognition of a person. Recently, it has been shown
that a person’s visual preferences can be measured us-
ing image aesthetic features and his or her favorite im-
ages [Lov14]. Moreover, there are differences between
male and female neural correlation of aesthetic prefer-
ences [Cel09]. A study on website appearance con-
curred with the fact that males and females have differ-
ences in aesthetics perception [Mos06, Mos07]. This
research motivates us to look deeper into the possibil-
ity of gender identification from a set of individual’s
favorite images.

Preliminary research on gender recognition was
recently conducted in the Biometric Technologies
Lab at the University of Calgary. It was relying on
aesthetic preferences, tested on a database of 120 Flickr
[F1i04] users, and has been accepted for publication
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to ICCI*CC 2016 [Azal6]. The main novelty of
the current work is in proposing to use the genetic
algorithm to improve the prediction accuracy. While
both the preliminary and the current research use the
same set of aesthetic features tested on the Flickr image
database, the newly proposed method uses genetic
algorithm (GA) for best feature subset selection, as
well as choosing the best weighted combination of the
three classifiers. This, in turn, and allows to achieve
a higher accuracy of a gender recognition, compared
both to similar research and the recently developed
algorithm [Azal6].

This paper is organized as follows. Section 2 presents
the literature review on social behavioral biometric and
gender prediction research. The proposed methodology
of gender prediction is described in Section 3. Section
4 presents the experiment conducted on Flickr users.
Finally, discussions and future directions are outlined
in Section 5.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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2 LITERATURE REVIEW

In the area of biometric, most of the research on person
identification and gender estimation is conducted
through processing of images or videos. A person’s
walking pattern (or gait) is a popular trait for identifica-
tion and gender estimation where video data is collected
using conventional surveillance camera or KINECT
depth camera [Ahml5a, Ahm15b, Gurll]. Another
large domain is the processing of face image for recog-
nition and gender estimation [Sull5, Danl6, kuk04].
Besides that, social activities of a person can be used
for identification and gender prediction which are
known as social behavioral biometrics [Mad14]. In the
recent years, with the rise of popularity of on-line social
networks (OSN), such as Pinterest [Pin10] and Flickr
[F1i04], more and more users sharing their views,
choices and preferences in the form of images and
videos. In the OSN Flickr [Fli04], people share their
favorite images that contain a person’s visual aesthetic
preferences. A 2012 research proved that it is indeed
possible to establish an identity of a person experiment
from Flickr user’s image preferences [Lov12]. They
extracted contextual and perceptual image aesthetic
features and generated a template for each Flickr user
based on those features using LASSO regression. An
improved version of this method was introduced two
years later [Lov14]. By incorporating more distinctive
image aesthetic features, they reported 96% accuracy
at rank 20. Instead of LASSO regression, authors
in [Segl4] applied counting grid model and support
vector machine (SVM) to generate template, which
resulted in 98% accuracy in Flickr user identification
experiment conducted on the same database.

Gender is one of the common demographic features
used as a soft trait in the area of human authentica-
tion biometric [Gavl3, Danl6]. Gender prediction
from the context of social behavioral biometric has (if
ever) rarely been explored in literature. Very recently,
authors in [Qual4] used image based OSN Pinterest
[Pin10] to predict gender from user’s image posting be-
havior and image contextual features. They applied a
bag of visual word model to identify the difference be-
tween male and female users. They conducted their ex-
periment on 160 users (80 male and 80 female) from
Pinterest, and depicted 72% accuracy in gender predic-
tion. One of the shortcomings of the approach is that
it used 33 board categories of Pinterest (posting behav-
ior) as features for gender prediction, which makes the
method very limited to a specific OSN. In this paper,
we propose a gender prediction method where gender
is predicted from a person’s favorite list of images only.
To make the method OSN independent, user’s posting
behavior is ignored as a feature. For experiment, we
use the 200 Flickr users database (contains 40000 im-
ages) provided by one of the authors from the article
[Lov12]. We have done a preliminary research on gen-
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der prediction using image aesthetics [Azal6] which
shows 76.65% accuracy over the same database. In
this paper, we present a different methodology which
results in the improvement over the preliminary work.
We use genetic algorithm for feature selection, as well
as weight adjustment of the prediction model, which
allows to reach approximately 83% accuracy of gender
prediction. This is higher than all of the current state of
the art methods (by 6% to 12%). Also, it’s worth not-
ing that unlike typical biometric identification based on
much more concretely defined data (i.e. ear, palm, face,
gait etc), gender identification is based on the soft bio-
metric features which makes it a much harder problem.

3 METHODOLOGY

The detail description of the proposed gender predic-
tion method is provided in the following subsections.

3.1 Collection of Aesthetic Features

The proposed gender prediction method uses a per-
son’s aesthetics as a cue to his or her gender predic-
tion. Different types of aesthetic features were in-
troduced by researchers for the purpose of automatic
image ranking [Aydl5, Marll, Rit06, Jial0O], image
classification [Xial3, Jan10] and person identification
[Lovl2, Lov14]. After a comprehensive review, we
identify five categories of image aesthetic features that
are mostly found in existing articles: 1) image con-
tent; 2) composition; 3) texture; 4) color and 5) im-
age parameters. Detail description of all these features
can be found in the previous works. For simplicity of
implementation, we use a subset of the above features
[Azal6] composed of image composition, texture, color
and parameter features in our proposed model. The
length of the features vector is 56. Brief description
of the features are provided in Table 1 with assigned
feature number.

Performance of a machine learning based model de-
pends on the feature vector used in their training and
testing. Convergence of decision boundary relies on the
features. Some features are highly distinctive, and are
sufficient to describe the model efficiently. On the other
hand, some features are unnecessary which increase the
training and testing time, as well as move the decision
boundary away from the best position. So, the feature
selection is a crucial step for our prediction model also.
In the subsection 3.3, we describe the feature selection
step used in the proposed prediction model. After the
selection step, we identify a set of distinctive features
for each classifier (in the mixture of expert model) that
maximizes their classification accuracy, and speeds up
the testing time by reducing dimension of the feature
space. In the supervised learning phase, we train each
classifier of our ensemble using the selected features.
We group the images into two labels or classes: male

ISSN 1213-6972



Journal of WSCG

Feature | Brief description

N Average intensity of V channel in HSV image

b Average intensity of S channel in HSV image

i Standard deviation of V channel in HSV image
fa Standard deviation of S channel in HSV image
fs Entropy of RGB image

fe Aspect ratio of the image

f Rule of thirds in H channel

I3 Rule of thirds in S channel

fo Rule of thirds in V channel

S0 Hue Circular Variance

fu Canny edge pixel count

fi2 Emotion based: Pleasure

f13 Emotion based: Arousal

fia Emotion based: Dominance

fis Colorfulness

fi6 Tamura directionality

S17 Tamura contrast

fi8 Wavelet Textures in H channel: level 3

S19 Wavelet Textures in H channel: level 2

J20 Wavelet Textures in H channel: level 1

S Sum of fis, f19, f20

f Wavelet Textures in S channel: level 3

3 Wavelet Textures in S channel: level 2

foa Wavelet Textures in S channel: level 1

f2s Sum of £, f23, f24

f26 Wavelet Textures in V channel: level 3

fa1 Wavelet Textures in V channel: level 2

S8 Wavelet Textures in V channel: level 1

S29 Sum of f36, f27, f28

f30 low depth of field: H channel

fu low depth of field: S channel

3 low depth of field: V channel

33 GLCM texture features in H channel: Contrast
Sfa GLCM texture features in H channel: Correlation
f3s GLCM texture features in H channel: Energy

f36 GLCM texture features in H channel: Homogeneity
31 GLCM texture features in S channel: Contrast
/38 GLCM texture features in S channel: Correlation
f39 GLCM texture features in S channel: Energy

f40 GLCM texture features in S channel: Homogeneity
Ja1 GLCM texture features in V channel: Contrast
fa2 GLCM texture features in V channel: Correlation
f13 GLCM texture features in V channel: Energy

Jaa GLCM texture features in V channel: Homogeneity
fas Color pixels in HSV image: Black

fa6 Color pixels in HSV image: White

a7 Color pixels in HSV image: Gray

fa8 Color pixels in HSV image: Red

Sa9 Color pixels in HSV image: Orange

fs0 Color pixels in HSV image: Yellow

fs1 Color pixels in HSV image: Green

fs2 Color pixels in HSV image: Cyan

fs3 Color pixels in HSV image: Blue

Ssa Color pixels in HSV image: Purple

fss Color pixels in HSV image: Magenta

/56 Color pixels in HSV image: Pink

Table 1: All the image aesthetic features [Azal6] con-
sidered in our prediction model.

and female. During training each classifier, we ignore
the user information (only consider it as a two class
classification problem). Later, these trained classifiers
are used in the proposed model to predict gender from
a person’s bag of favorite images. Figure 1 shows the
steps of feature selection and training phase. In the fig-
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ure, Sy and Sy means set of images selected by female
and male persons respectively.

3.2 Prediction Model

In this paper, we use the same prediction model that we
proposed in [Azal6] for gender prediction using per-
ceptual image aesthetic features. The model is a mix-
ture of experts [Mikl1, Dym05] where decision (prob-
ability of being female) of three well known binary
classifiers: support vector machine (SVM), decision
tree (D-Tree) and k-nearest-neighbor (KNN) are com-
bined to make the final prediction [The08]. Here, each
individual classifier is trained based on different fea-
ture spaces (having different dimensions) which make
them distinct from each other. So combining their re-
sults minimizes the final prediction error. Figure 2
shows the block diagram of the prediction model. In the
model, the probability of a person being female (ij-”ix)

is calculated based on the weighted (w', w' and wm)
combination of individual probabilities (Pf, Py and Py )

generated by each classifier. The equation for P;Z”'x is as
follows '

P}nix = W,P} + W//P]/r/ + WWP}H . (1)

The positive weight values multiplied with each classi-
fier’s prediction define the influence of individual clas-
sifier. Assigning higher weight to a classifier means
it is contributed more than others. Moreover, negative
weight value is possible in the case where one classifier
needs to minimize the error of higher weighted classi-
fier. In the subsectlon 3. 4 we descnbe the process of
adjusting values of w, w' and w" using genetic algo-
rithm. Finally, the decision of gender is taken using
Pji”"x and PP If P}”ix > P then the person is female.
If Py > P"™ then the person is male. The model takes
random decision in the case of equal probability. In our
experiment, we consider this case as “undecided”, and
include it in the classification error.

3.3 Searching Best Feature Subset

Initially, we select all the aforementioned 56 features to
train each classifier. We use the fine-tuned classifiers
to ensure maximum accuracy as individual, as well as
in the mixture of expert model. The way of fine-tuning
is described in details at the experiment section. Table
2 shows the classification accuracy, number of selected
features and overall testing time. Among them decision
tree shows highest performance having 72.50% classi-
fication accuracy.

Instead of using all features, we need to find a subset of
features that maximizes the prediction. One of the naive
approach can be the brute force algorithm: checking all
2N combinations of features where N is the number of
features. In our case, N = 56 and each checking means
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Figure 1: High level view of the feature selection and training phase.
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Figure 2: Block diagram of the gender prediction model.

Classifiers | Number of Gender Overall
selected prediction testing time
Features (out accuracy (in seconds)
of 56) (%)

D-tree All 56 72.50 1.43

SVM All 56 70.83 14.48

KNN All 56 66.67 33.28

Table 2: Performance of individual classifier when all
56 features are selected.

2 fold cross validation using 24000 x N feature ma-
trix. So it is not feasible, even impossible to run the
brute force algorithm. One of the best way of feature se-
lection is binary chromosome based genetic algorithm
(GA) [Ray00]. Genetic algorithm is a stochastic search
process for an optimal solution to a given problem. It
can find the optimal or near optimal solution within a
reasonable GA generations [Eng05]. For feature selec-
tion, we use binary chromosome of length 56 (56 di-
mensional binary search space) as an individual in the
population where one bit represents one gene. Binary
1 means the corresponding feature is selected, binary 0
means the corresponding feature is not selected. We

Volume 24, 2016

run the GA algorithm for each classifier for 50 gen-
erations considering gender prediction error as fitness
function. The parameter settings of the GA algorithm
is provided in Section 4. Figure 3 shows the graph
of GA generations (x-axis) vs prediction error (y-axis)
for each classifiers. A black dot is the best individual
(having minimum error), and a red dot is the average of
fitness value of all individuals in a specific generation.
From these graphs, we see that as the generation passes
it minimizes the fitness values among all the individ-
ual in the population. We take the chromosome of the
best individual and select the features according to the
chromosome bit pattern. Table 3 shows all the features
selected by GA for each classifiers. Here, the feature
number is according to Table 1.

Next, we apply the selected features (using GA) to train
and test each classifier individually. Table 4 shows that
the classifier’s performance increases in terms of fea-
ture reduction, testing time, as well as prediction ac-
curacy after selecting features by GA. In Figure 4, a
horizontal bar chart depicts the improvement for each
classifier. The prediction accuracy of KNN, SVM and
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Figure 3: Graph shows the best fitness values (black
dots) and the mean of population fitness values (red
dots) over 50 generations. We see that best fitness value
minimizes as the generation passes. Here the fitness
value is the prediction error scaled to the range O-1.
Three graphs for the (a) Decision tree, (b) Support vec-
tor machine, and (c) K-nearest neighbor. At the top of
each graph, the best fitness value and the mean fitness
value of 50th generation are also provided.

D-tree are improved by 12.5%, 5.84% and 5.83%, re-
spectively. Also the dimension of the feature spaces
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and the overall testing times are minimized noticeably
(see Table 2 and 4).

Classifiers
D-tree

Selected features by GA for each classifier.
1,2,3,6,7,10, 11, 13, 16, 17, 18, 20, 24,
26, 27, 30, 31, 35, 36, 37, 38, 39, 41, 42, 44,
46,47, 49, 51,52, 53, 55, 56

3,5,6,7,11, 12, 14, 15, 16, 17, 19, 20, 23,
24,29, 31, 33, 34,41, 43, 44, 46, 47, 51, 52,
53,54,55

3,4,5,6,7,10, 14, 18, 19, 20, 21, 22, 24,
28, 29, 30, 32, 34, 37, 39, 43, 44, 46, 47, 48,
49, 50, 52, 54, 55, 56

Table 3: Selected features by GA for each classifier.

SVM

KNN

Classifiers | Number of Gender Overall
selected prediction testing time
Features (out accuracy (in seconds)
of 56) (%)

D-tree 34 78.33 1.13

SVM 28 76.67 13.10

KNN 31 79.17 20.48

Table 4: Showing the performance of individual classi-
fier when features are selected by GA.

Prediction accuracy (%)

KNN (FEATURES SELECTED BY GA) 79.17
KNN (ALL FEATURES)
SVM (FEATURES SELECTED BY GA) 76.67
SVM (ALL FEATURES)
DTREE (FEATURES SELECTED BY GA) 78.33

DTREE (ALL FEATURES)

60.00 65.00 70.00 75.00 80.00 85.00

Figure 4: Bar chart showing the significant improve-
ment of prediction accuracy after using GA based fea-
ture selection

3.4 Weight Adjustment Using GA

The key contribution of this paper is in the use of ge-
netic algorithm (GA) for feature selection and weight
assignment. In the mixture of expert models, we com-
bine three classifiers by using simple weighted sum of
the individual prediction. Before taking the final de-
cision, the weighted probability is rescaled to O to 1.
Assigning appropriate weights gives the benefit of us-
ing ensemble. Each weight controls the influence of in-
dividual prediction, as well as overall ensemble perfor-
mance. Finding appropriate weights is a crucial step. In
the experiment section, we show that assigning weights
based on the partial participation and separate perfor-
mance doesn’t help to improve the model performance.
Even it reaches only the maximum among classifiers.
Moreover, empirically assigning weight values is not
a trivial task because of large search space and highly
non-linear function (ensemble accuracy). Due to three
weights w/, w' and wm, our search space become 3D
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floating number. To find the best values of weights that
minimizes prediction error, we use genetic algorithm
where a chromosome consists of three genes (floating
point number) [Fli04]. Parameter settings of GA are
provided in the experiment section. After 50 genera-
tions, GA gives 82.50% prediction accuracy at weight
vector (w/, w”, wm) = (-1, 2.33, 0.88) where w/, w' and
w" are the weights associated with D-tree, KNN and
SVM respectively. Figure 5 shows the GA graph for
weight adjustment. The axis setup of the graph is same
as graphs in Figure 3.

Best: 17.5 Mean: 17.5833
28

* +  Bestfitness
s #  Mean fitness
26 4
*
* %
24
E}
= *
= * %
2 21 *y .
@ *
=
= * *
= * * o o%
20 * * Yo w i
£ . * ko, ¥
sessesesrrssstsrsane * * »
oy *
D e
18 %
sessssrestt
16 L L L L L L L L L s
0 5 10 15 20 25 30 35 40 45 50

Generation

Figure 5: GA Graph showing Generation vs Fitness
value (prediction error) for the purpose of weights ad-
justment.

4 EXPERIMENT

In our experiment, we consider a real database of 40000
color images collected from 200 Flickr users along with
their profile reference. Each user provided 200 im-
ages from his or her favorite picture collection in OSN
Flickr. Out of 200, we collect the gender information of
120 users: 60 male and 60 female. We conduct exper-
iment on these 120 user’s gender information and their
24000 favorite images. This is the same database used
in [Azal6] for gender prediction experiment. Accord-
ing to [Lov14], duplicate images across users are less
than 0.05%. The images are in different file format and
resolution. Before using them into our experiment, we
convert all images into JPEG file format. Then we ex-
tract all 56 features from these 24000 images, and make
a data matrix of size 24000 x 57. The 57th column
contains the gender information of the Flickr users con-
sidering real-number O as male and 1 as female. Starts
from row 1, consecutive 200 feature vectors are from a
single user’s 200 images. For implementation, we use
MATLAB 2012 with image processing, machine learn-
ing and global optimization toolbox [Mat94], and a
workstation having AMD A8-7410 APU 2.2 GHz pro-
cessor with 8 GB RAM. Experimental setups, results
and analysis are described in the following subsections.
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4.1 Experimental Setup

In every stages of the proposed method, we evaluate
each classifier and the prediction model based on aver-
age accuracy of 2 fold cross validation [Crol6]. More-
over, the fitness function in the GA is average misclas-
sification error of 2 fold cross validation. We partition
the whole image database into two folds, where fold
1 contains 12000 images from 30 male and 30 female
persons, and fold 2 contains rest of the 12000 images
from remaining 30 male and 30 female persons. There
is no overlapping between these two folds. In any train-
ing and testing phase, we first train the model with fold
1, and test with fold 2. Then again train with fold 2 and
test with fold 1. Finally, the average accuracy of fold 1
and fold 2 is considered as overall accuracy of a single
classifier or the prediction model.

Before using three classifiers: SVM, KNN and D-tree
in the mixture of expert models, we fine-tune them to
ensure maximum performance as individual. For fine-
tuning we apply iterative approach. In KNN classifier,
one of the sensitive parameter is number-of-neighbor.
We evaluate KNN for a range of number-of-neighbor
values, and choose the number-of-neighbor where
KNN shows maximum accuracy. Figure 6 shows the
line graph of KNN for the number-of-neighbor range
1 to 50. Similarly, we iteratively fine-tune SVM (RBF
kernel) and D-tree for their sensitive parameters sigma
and minimum-leaf, respectively.

Number-of-Neighbor VS Classification accuracy
70.00

65.00 Maximum accuracy at
number of neighbor 24

60.00

Accuracy %

55.00
50.00

45.00
1 3 5 7 9111315171921 232527 29 31 33 3537 39 41 43 4547 49

Number-of-Neighbor

Figure 6: Line graph showing the iterative fine-tuning
of KNN for the parameter number-of-neighbor.

In the proposed prediction method, we use genetic al-
gorithm (GA) for feature selection and weight adjust-
ment. In GA, several parameters are associated with it
[Gen16]. Fine-tuning some of them may produce more
optimal result, as well as speed up the GA execution.
For simplicity, we keep most of the parameters to its
default value as per MATLAB function documentation.
Moreover, iterative approach is not a good way to tune
GA because of stochastic nature. For same reason, we
run GA multiple times for feature selection and weight
adjustment, and keep the best result. Table 5 shows all
the parameter values of three classifiers and the genetic
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algorithm used in the experiment. Other parameters are
set to their default value as per MATLAB function doc-
umentation.

Classifiers / GA Parameter settings

KNN Number of neighbors: 24.

D-tree Minimum-leaf: 34.

SVM Non-linear kernel: Radial Basis Function

(RBF); Sigma value of RBF: 2.9; Maximum
iteration: 30000.

GA Population type: bit-string (during feature
selection) and double-vector (during weight
adjustment), Population size: 20, Fitness
limit: 0.05; Generations: 50.

Table 5: Parameter settings for each binary classifier
and GA.

4.2 Experimental Results

At first, we assign different combination of weights in
the equation (1) considering either zero or one as weight
value. For weight combination (0, 0, 1), (0, 1, 0), and
(1, 0, 0), the prediction model actually shows individ-
ual performance of SVM, KNN and D-tree. As separate
classifier, KNN performs maximum (79.17%) among
them. Table 6 shows the prediction accuracy, male
and female counting, as well as count of undecided
cases for different weight combinations. In the table,
we see that pair combinations (1, 1, 0), (0, 1, 1) and
(1, 0, 1) show degraded performance of 77.50% which
is less than the maximum performed classifier within
the pair. After observing each case, we found that in
few cases when a well formed classifier gives correct
prediction with marginal probability (0.51 to 0.55), the
other one gives incorrect prediction with low probabil-
ity (0.45 to 0.49). So weighted probability drops below
0.5. Due to similar reason, the prediction model shows
more degraded performance for the weight vector (1, 1,
1). Another weight assignment can be based on rank-
ing of individual performance. According to classifi-
cation accuracy, we rank D-tree, KNN and SVM as 2,
3, and 1. After assigning these rankings as weights in
the prediction model, we get 79.17% accuracy which
is equal to the best individual performance by KNN.
Even after increasing the weight value of top two clas-
sifiers, it doesn’t show any improvement in accuracy
(see the Table 6 for weight vector (3, 4, 1)). Over-
all, weight assignment based on performance and par-
ticipation doesn’t show good results. To find the best
combination of weights for this non-linear function, we
apply genetic algorithm. After 50 generations, it gives
the weight vector (-1, 2.33, 0.88) which brings 82.50%
of prediction accuracy (99 users out of 120) with zero
undecided situation. Here, the noticeable weight value
is negative 1 for D-tree, which actually minimizes the
female prediction error done by KNN.

For comparing the proposed method, we select our pre-
vious image aesthetic based gender prediction method
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[Azal6] as the best result reported so far in the litera-
ture on the subject. We applied greedy feature selection
and ranking based weight adjustment which reported
76.65% of accuracy over the same database. The over-
all testing time (all 120 users) of the method [Azal6]
is 12 seconds, whereas the proposed method takes 21.6
seconds. The number of features (after GA selection
process) used in the proposed method is higher than
the method in [Azal6]. Experimentally we find that
the testing time of KNN increases with the number of
features. The required memory for both of these meth-
ods is approximately 13.62 MB, because they using the
same prediction model. The memory effect of increased
number of features in the proposed method is insignifi-
cant. Another image based gender prediction method is
[Qual4], which considered favorite images and posting
behavior of OSN Pinterest [Pin10] users, and reported
accuracy is 72% [Qual4]. The required time and mem-
ory for the system is not reported by the authors. Fig-
ure 7 shows the performance of [Azal6] with rank-
ing based weight assignment, and the proposed method
with same weight assignment, as well as after weight
adjustment using GA. The proposed method shows fur-
ther close to 83% gender prediction accuracy and thus
proves the superiority of the currently proposed method
over the existing approaches.

Prediction accuracy %

PROPOSED METHOD WITH GA BASED
WEIGHT ASSIGNMENT

PROPOSED METHOD WITH RANKING BASED
WEIGHT ASSIGNMENT

[AZA16] WITH RANKING BASED WEIGHT
ASSIGNMENT

72.00 74.00 76.00 78.00 80.00 82.00 84.00

Figure 7: Bar chart showing the accuracy of the pro-
posed gender prediction method and the method in ar-
ticle [Azal®6].

S CONCLUSIONS AND FUTURE
WORKS

In this paper, we propose a new method to predict
gender from a person’s favorite images. We consider
56 image aesthetic features from existing literatures,
and a mixture of expert models consisting of SVM,
KNN and D-tree. Final decision is taken based on
the weighted combination of probability generated by
individual classifiers. To improve the prediction ac-
curacy of the model, we find the best combination of
feature subset using genetic algorithm in 56D binary
search space. Moreover, feature dimension is reduced
significantly that decreases the testing time. Finally,
three weights of the prediction model are adjusted us-
ing genetic algorithm in 3D real-number search space.
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Weights No. of Undecided No. of correct male No. of correct female Accuracy
Watree s WinnsWsvm) situation (out of 120) prediction (out of 60) prediction (out of 60) (%)
(0,0,1) 0 41 51 76.67
(1,0,0) 2 48 46 78.33
(0,1,0) 2 53 42 79.17
(1,1,0) 0 50 43 77.50
(1,0,1) 1 44 49 77.50
(0,1,1) 0 47 46 77.50
(1,1,1) 3 46 46 76.67
(2,3,1) 0 49 46 79.17
(3.4.1) 0 49 46 79.17
(-1, 2.33, 0.88) 0 53 46 82.50

Table 6: Prediction performance for different weighted combination of three binary classifiers.

Experiment is conducted on a real image database of
24000 images provided by 120 Flickr users. The pro-
posed method shows 82.50% accuracy in gender pre-
diction. As our future work, we will incorporate con-
textual image aesthetic features to improve the pre-
diction accuracy. Investigation will be needed to see
the performance of other machine learning algorithms
to make sophisticated and well performed prediction
model. Moreover, fine-tuning of GA parameters can
be applied to hope for better weight adjustment.
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ABSTRACT

This paper shows that it is possible to train large and deep convolutional neural networks (CNN) for JPEG compres-
sion artifacts reduction, and that such networks can provide significantly better reconstruction quality compared to
previously used smaller networks as well as to any other state-of-the-art methods. We were able to train networks
with 8 layers in a single step and in relatively short time by combining residual learning, skip architecture, and
symmetric weight initialization. We provide further insights into convolution networks for JPEG artifact reduction
by evaluating three different objectives, generalization with respect to training dataset size, and generalization with

respect to JPEG quality level.
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1 INTRODUCTION

This work presents a novel method of image restora-
tion using convolutional networks that represents a sig-
nificant advancement compared to the state-of-the-art
methods. We study the direct approach in which
a fully convolutional network accepts a degraded im-
age as input and outputs a high quality image. By
making a number of important improvements regard-
ing the network architecture, initialization, and train-
ing, we are able to train large and deep networks for
JPEG compression artifact reduction which surpass the
state-of-the-art in this task. The networks predict a
residual image [16] describing changes to be applied

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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to the input image, and they incorporate skip connec-
tions [[18] which allow information to bypass the mid-
dle layers. We reduce the "saturation" of ReL.U units in
deeper layers by centering filters during network initial-
ization which allows us to use significantly faster learn-
ing rates.

Lossy image compression achieves high compression
ratios through elimination of information that does
not contribute to human perception of images, or
contributes as little as possible. Due to the limitations
of the human visual system, such loss of information
may be acceptable in many scenarios but the introduced
visual artifacts become unacceptable at higher com-
pression ratios. The primary methods currently used
for lossy image compression include JPEG and JPEG
2000. This paper focuses on the JPEG compression
method [13] and the degradation it causes. The JPEG
compression chain consists of a block-based discrete
cosine transform (DCT), followed by a quantization
step utilizing a quantization matrix, and an entropy
coding. The decompression follows this process in
reverse order.
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Blocking, blurring, and ringing artifacts are typical ex-
amples of image degradation caused by the lossy com-
pression methods. Considering the JPEG method, the
degradation is the result of information loss in the DCT
coefficient quantization step. More specifically, the
blocking artifacts are caused by the grid segmentation
into 8 x 8 cells employed in the JPEG standard and the
resulting discontinuities at the cell edges. The ringing
artifacts (or the Gibbs phenomenon) are induced os-
cillations caused by removal of high frequencies dur-
ing the quantization. The removal of high frequen-
cies causes blurring as well, but the blurring is less no-
ticeable compared to the ringing artifacts. Blocking is
mostly noticeable in low-frequency regions, while the
ringing artifacts are especially well noticeable around
sharp edges.

The convolutional networks have to learn to recognize
the compression artifacts and fill them appropriately
with respect to the neighboring image content. In this
sense, the networks incorporate both the data term and
prior regularization term of standard image restoration
techniques, and they can make use of correlations be-
tween image content and the image degradation.

Convolutional networks have been successfully used
in many image restoration tasks including super res-
olution [4} [16], denoising [15], structured noise re-
moval [6], non-blind deconvolution [21} [30]], blind de-
convolution in specific image domains [12, 24], and
sub-tasks of blind deconvolution [20]. Our work was
mostly inspired by the large deblurring networks of
Hradis et al. [12]], and by Kim et al. [16] who showed
that residual learning together with good weight initial-
ization enabled training of large convolutional networks
for super resolution. We extend the work of Dong et
al. [4] who achieved state-of-the-art compression arti-
fact reduction even with very small convolutional net-
works. However, they were not able to scale up their
networks due to problems with training convergence.

2 RELATED WORK

A large number of methods designed to reduce com-
pression artifacts exist ranging from relatively simple
and fast hand-designed filters to fully probabilistic im-
age restoration methods with complex priors [29] and
methods which rely on advanced machine learning ap-
proaches [4].

Simple deblocking and artifact removal postprocess-
ing filters are included in most image and video view-
ing software. For example, the FFmpeg framework in-
cludes the simple postprocessing (spp) filter [[19] which
simply re-applies JPEG compression to the shifted ver-
sions of the already-compressed image, and averages
the results. The spp filter uses the quantization ma-
trix (compression quality) of the original compressed
image as the matrix has to be stored with the image
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to allow for decompression. Pointwise Shape-Adaptive
DCT (SA-DCT) [[7, 18], in which the thresholded or at-
tenuated transform coefficients are used to reconstruct
a local estimate of the signal within the adaptive-shape
support, is currently considered the state-of-the-art de-
blocking method. However, similarly to other deblock-
ing methods, SA-DCT overly smooths images and it is
not bale to sharpen edges. In video compression do-
main, advanced in-loop filters (deblocking and SAO
filters) known from video compression standards like
H.264 or H.265 are obligatorily applied. A completely
different deblocking approach was presented in [31],
where the authors applied DCT-based lapped transform
on the signal already in the DCT domain in order to
undo the harm done by the DCT domain processing.
However, the video in-loop deblocking methods, SA-
DCT deblocking (only to estimate parameters), and
methods derived from the lapped DCT rely on the cog-
nizance of the DCT grid. Unlike these methods, the
method proposed in this paper is able to process images
without such knowledge.

This work focuses on application of convolutional net-
works to reconstruction of images corrupted by JPEG
compression artifacts. Convolutional networks belong
to an extensively studied domain of deep learning [2].
Recent results in several machine learning tasks show
that deep architectures are able to learn the high level
abstractions necessary for a wide range of vision tasks
including face recognition [25], object detection [9],
scene classification [[17]], pose estimation [26], image
captioning [27], and various image restoration tasks [4}
16, 15 16l 21} 30% [12] 24} 20]. Today, convolutional
networks based approaches show the state-of-the-art re-
sults in many computer vision fields.

Small networks were historically used in image de-
noising and other tasks. On the other hand, deep and
large fully convolutional networks have become only
recently important in this field. Burger et al. [3] used
feed forward three layer neural network for image de-
noising. While there were attempts to use neural net-
works for denoising before, Burger er al. showed that
this approach can produce state-of-the-art results when
trained on a sufficiently large dataset.

A non-blind deconvolution method of Schuler et
al. [21] uses a regularized inversion of the blur kernel
in Fourier domain followed by a multi-layer perceptron
(MLP) based denoising step. The shortcoming of the
approach is that a separate MLP models have to be
trained for different blur kernels, as a general models
trained for multiple blur kernels provide inferior
reconstruction quality. Schuler et al. [20] introduced a
learning based approach to blind deconvolution. They
perform a regression from the blurred image towards
the source blur kernel. The neural network itself is
trained to extract image features useful for estimation
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of the blur point spread function. Sun er al. [23]
presented CNN-based approach for non-uniform mo-
tion blur removal which classified image patches into
closed set of blur kernel types. The local classification
outputs were used as input to a Markov random field
model which estimates the dense non-uniform motion
blur field over the whole image. Hradis et al. [12]
trained CNNs composed of only convolutional layers
and rectified linear units (ReLU) to directly map
blurred and noisy images of text images to high quality
clean images. The approach was extended by Svoboda
et al. [24] who demonstrated high quality deblurring
reconstructions for car license plates in a real-life traffic
surveillance system. Their results show that a single
CNN can be trained for a full range of motion blurs
expected to appear in a specific traffic surveillance
camera resulting in a robust and fast system.

Dong et al. [4] introduced super-resolution convolu-
tional neural network (SRCNN) to deal with the ill-
posed problem of super-resolution. The SRCNN is de-
signed according the classical sparse coding methods —
the three layers of SRCNN consist of feature extrac-
tion layer, a high dimensional mapping layer, and a
final reconstruction layer. The very deep CNN based
super-resolution method proposed by Kim et al. [16]
builds on the work of Dong et al. [4] and it shows that
deep networks for super-resolution can be trained when
proper guidelines are followed. They initialized net-
works properly and they used so-called residual learn-
ing in which the network predicts how the input im-
age should be changed instead of predicting the desired
image directly. Residual learning appears to be very
important in super-resolution. The resulting 20 layers
deep networks trained with adjustable gradient clipping
significantly outperform previous approaches. How-
ever, it is unclear how effective residual learning would
be in other image processing tasks where the networks
inputs and outputs are not correlated that strongly as in
super-resolution. We follow this approach in our work
on JPEG reconstruction.

Convolutional networks have previously been used for
suppressing compression artifacts by Dong et al. [3l],
who proposed a compact and efficient CNN based on
SRCNN - artifacts removing convolutional network
(AR-CNN). AR-CNN extends the original architecture
of SRCNN with feature enhancement layers. The net-
work training consist of two stages — a shallow network
is trained first and it is used as an initialization for a
final 4 layer CNN. As reported in the paper, this two
stage approach improved results due to training diffi-
culties encountered when training the full 4 layer net-
work from scratch. The authors also state that they aim
to achieve feature enhancement instead of just making
the CNN deeper. They argue that although the deeper
SRCNN introduces a better regressor between the low-
level features and the reconstruction, the bottleneck lies
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on the features. Thus the extracting layer is augmented
by the enhancement layer which together may provide
better feature extractor.

We adapt the idea of residual learning [16] for the
JPEG compression artifact removal based on CNN. We
follow the assumption "deeper is better" and we try
to learn our deep residual CNNs in a single step by
creating a new recipe including initialization, network
architecture, and high learning rates. The resulting
networks significantly outperform the classical JPEG
compression artifact removal methods, as well as, the
AR-CNN [5] on common dataset measured by PSNR,
specialized deblocking assessment measure PSNR-B,
and SSIM.

3 CNNIMAGE ENHANCEMENT

In computer vision, CNNs are most extensively stud-
ied in the context of classification, semantic class seg-
mentation, object detection, and captioning where the
networks are often constrained to a fixed input size.
This is due to the fully connected layers which are used
as the final layers in order to aggregate information
from a whole image. In low level image processing
(but not limited to it), the so-called fully convolutional
neural networks [18] (FCN) are preferred as they be-
have as non-linear convolutional operators — they pro-
cess each image position the same way and they can be
applied to images of arbitrary sizeﬂ The architecture
of fully convolutional networks is limited to convolu-
tional operations (linear convolution, so-called decon-
volution, local response normalization, and local pool-
ing) and element-wise operations. Most image process-
ing networks use only convolutions and element-wise
non-linearities (ReLU, sigmoid, tanh) [12} 24} |5 [16] |4}
21, 20]. In the case that no pooling and no deconvolu-
tion layer is used, the size of the input is reduced only
by size of the convolution layer kernels (by the size of
receptive field).

The fully convolutional networks F used in our work
consist of an input data layer Fp, convolutional layers
Fy, where 0 < ¢ < L with Fy weights represented as con-
volutional kernels W, with their biases b,, and element-
wise max operations (ReLU) as follows:

F(y)=y
Fy(y) = max (0, Wy Fy_1 (y) + by)
F(y)=WpxF1(y)+bL

(D

Where y is the distorted input image and F(y) is the
restored output image.

In practice, the minimum size of processed images is con-
strained by the receptive field size of the network.
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Figure 1: Illustration of a network with direct architec-
ture.

We use the standard mean squared error (MSE) objec-
tive function

1 n
S Y NFG) 3. )
i=1

which is often used for general image enhancement.
It is computed on a training data represented as pairs
(yi,xi), 0 < i < n, where y; represents the reconstructed
image and x; its corresponding clean image.

Direct mapping objective. In direct mapping shown
in Figure [T] the networks learn to transform corrupted
images directly to clean images. This approach leads
to high quality results in specific low level image pro-
cessing tasks i.e. in blind and non-blind deconvolu-
tion for text denoising or motion deblurring [12} 24], in
super-resolution [4] or JPEG compression artifacts re-
duction [5]]. Direct mapping forces the network to trans-
fer the whole image through all its layers until it reaches
the output. The learning of such autoencoder-like map-
ping in situations where the input images are highly cor-
related with the desired outputs may be wasteful espe-
cially for large and deep networks. It may be one of the
main reasons why Dong et al. [5] were not able to scale
up their networks and why they required approximately
107 iterations to train their AR-CNN. Similar problems
were reported by Kim et al. [16].

Residual objective. The residual objective was origi-
nally introduced for super-resolution [16] where the in-
put and output images are highly correlated. Instead
of learning to predict the output image, the network in
residual learning learns the changes which should be
applied to the input image — it predicts the residual im-
age r =y — X between the distorted y and latent high-
quality image £. The residual learning scheme is de-
picted in Figure2] Kim ez al. [16] were able to speed up

il

Figure 2: Illustration of a network with skip architec-
ture and residual loss.
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the training by large factor of (up to 10*x) with resid-
ual learning and it allowed them to learn much deeper
networks — 20 layers vs. 3 in [4] and 4 in [J5].

Edge emphasized objective. Mean square error used
in many image restoration methods does not necessar-
ily correlate well with the image quality perceived by
humans. With convolutional networks, it is relatively
easy to use more perceptually valid error measures as
objective functions, as long as they can be efficiently
differentiated (e.g. SSIM). We decided to add partial
first derivatives of the image to the loss function in a
form of vertical and horizontal Sobel kernels. This is
achieved by adding the objective function computed on
image derivatives calculated by Sobel kernels G as

1 n
=Y G F (i) = G- (3)
i=1

Our assumption is that the addition of the first deriva-
tives should force the network to focus specifically on
high frequency structures such as edges, ringing arti-
facts, and block artifacts and it could lead to percep-
tually better reconstructions. The combined edge em-
phasized loss can be easily implemented in all exist-
ing convolutional network frameworks by defining the
derivative Sobel kernels as a convolutional layer with
predefined fixed filters. The network utilizing such ob-
jective function is shown in Figure 3]

Symmetric weight initialization. = Weights in con-
volutional networks are usually initialized by sampling
from some simple distribution (e.g. Gaussian or uni-
form) with mean equal to 0. The zero mean is desir-
able as it prevents mean offsets of activations to propa-
gate through the layers. In case the mean was not zero,
any mean offset in input values would result in non-zero
mean of output activations which could force the ReLU
non-linearities to get fully stuck either in the positive
linear interval or, even worse, in the negative interval
where gradients are not propagated rendering the unit

useless.
!
% 20| —
2 10
v
7y N
. \

Reconstruction

| [ :

i Loss direct Loss Sobel
‘ mapping edges
)

I
Label bl < g
/

Figure 3: Illustration of a network with edge preserving
loss.
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Layer | 1 2 3 4(+1) 5 6(+1) 7 8
Filter size | 11 x 11 3x3 3x3 3x3 1x1 5x5 1x1 5x5
Channels 32 64 64 64(+432) 64 64(+32) 128 1
Table 1: L8 architecture — filter size and number of channels for each layer.
Although the weights are sampled from a distribution Layer ‘ 1 2 3 4
with zero mean, the means of individual convolutional - -
Filter size | 11 x 11 3x3 3x3 5x5

filters are not zero due to the fact that they are a fi-
nite sample from the distribution. These random offsets
together with the positive offset of ReLLU activations
cause units in deeper layers to become more likely to
be either permanently turned off or turned on, which
increases sparsity of the activations and increases ef-
fective mean offsets of the deeper layers. The result is
that that majority of units in deep layers become almost
useless right after the initialization.

Some activation normalization methods, such as "batch
normalization" [14], can eliminate the saturation
problem, but the normalization introduces noise during
training which is not desirable for image restoration
networks.

We eliminate this problem by explicitly forcing individ-
ual filters to have zero mean during initialization. Such
initialization allows us to use significantly higher initial
learning rates, especially together with residual learn-
ing, and it results in trained networks with significantly
fewer saturated neurons.

We could explicitly force all filters to have zero mean
during the whole training. Such constraint almost en-
tirely eliminates any potential for unit saturation, but it
prevents networks to utilize the DC component of input
signals. Although we were able to achieve reasonably
good results with this constraint in our preliminary ex-
periments, we did not find it necessary and it was not
used in the experiments presented in this paper.

Skip architecture. Deeper networks may have prob-
lems with exploding and vanishing gradients and they
may take a long time to learn to efficiently propagate
information through large number of layers. The prob-
lems with the gradients can be eliminated by proper ini-
tialization [10]]. The problems with propagating infor-
mation through many layers can be alleviated by by-
passing some layers [18] or by letting layers to learn
residual of their inputs [L1]. The skip architecture with
the residual objective function is shown in Figure 2]

We employ a skip architecture similarly to Long et
al. [18]]. We feed activations of the first convolutional
layer to some deeper layers bypassing the layers in-
between. Unlike Long et al. 18] who add the activa-
tions together, we concatenate them. The goal of the
skip architecture is to allow the network to pass geo-
metric information easily from the input to the output,
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Channels 48 64 64 1

Table 2: L4 architecture — filter size and number of
channels for each layer.

and to allow for more complex reasoning about the im-
age content in the middle layers (e.g. what is an artifact
and what local context information should be used to
repair the artifacts.

Network architectures. This paper presents two dif-
ferent FCN architectures which use only convolutional
units and ReLU non-linearities. The first architecture
denoted as L4 is relatively small with four layers de-
fined in Table 2] The second network, denoted as L8,
has eight layers and it utilizes the skip architecture by
concatenating activation of the first layer with activa-
tions of the fourth and sixth layers. The exact definition
of L8 is in Table |1} The receptive fields of L4 and L8
are 19 x 19 and 25 x 25, respectively.

4 EXPERIMENTAL RESULTS

All the experiments were computed on images from
BSDS500 [1]] and LIVE1 [22]] datasets. The networks
were trained solely on the merged train and test part of
BSDS500 which contain 400 images. The images were
transformed to gray-scale using the YCbCr color model
by keeping the luma component — Y only. Although
the networks can process color images, we evaluate on
gray-scale images because we focus on the ringing and
blocking artifacts and not on the chromatic distortions.
The gray-scale images were compressed with the MAT-
LAB JPEG encoder into six disjoint sets according the
JPEG quality. Specifically, we use images compressed
with the quality 10, 20, 30, 40, 50, and 60.

The networks were evaluated on the test set from
BSDS500 which includes 100 high quality compressed
images and on the LIVEI dataset containing 29 color
images (uncompressed BMP format). All the evalua-
tion images were transformed to gray-scale the same
way as the training images and compressed using the
same encoder.

Several metrics for objectively assessing perceptual
quality of images exist. We use PSNR, PSNR-B, and
SSIM. Generally, the most commonly used quality
metric is the mean squared error (MSE). This quantity
is computed by averaging squared intensity differences
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Q10 Q20
method PSNR PSNR-B SSIM PSNR PSNR-B SSIM
distorted 27.77 25.33 0.791 30.07 27.57 0.868
spp 28.37 27.77 0.806 30.49 29.22 0.877
SA-DCT 28.65 28.01 0.809 30.81 29.82 0.878
AR-CNN 28.98 28.70 0.822 31.29 30.76 0.887
L4 Residual 29.08 28.71 0.824 31.42 30.83 0.890
L8 Residual - - - 31.51 30.92 0.891

Table 3: Image reconstruction quality on LIVE]1 test dataset for JPEG quality 10 and 20.

Q10 Q20
method PSNR PSNR-B SSIM PSNR PSNR-B SSIM
distorted 27.58 24.97 0.769 29.72 26.97 0.852
spp 28.13 27.49 0.782 30.11 28.68 0.859
AR-CNN 28.74 28.38 0.796 30.80 30.08 0.868
L4 Residual 28.75 28.29 0.800 30.90 30.13 0.871
L8 Residual - - - 30.99 30.19 0.872

Table 4: Image reconstruction quality on BSDS500 test dataset for JPEG quality 10 and 20.

(a) distorted (b) AR-CNN (c) LO8 (d) original

Figure 4: Illustrative comparison of reconstruction quality on lighthouse3 image from LIVE1 dataset, for JPEG
quality 20.
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Figure 5: Generalization ability of L4 networks trained with Normal, Residual, and Edge preserving objectives for
different JPEG quality levels.
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of the distorted image and the reference image. The
quantity is often expressed in a logarithmic scale as
the peak signal-to-noise ratio (PSNR). Unfortunately,
PSNR and MSE are not necessarily correlated well
with perceptual quality. The structural similarity
index (SSIM) [28] that compares local patterns of
pixel intensities should be better correlated with
perceptual quality. Since we focus on JPEG artifacts
which include blocking artifacts, a block-sensitive
metric referred to as the PSNR-B [32] should provide
additional insights. PSNR-B modifies the original
PSNR by including an additional blocking effect factor
(BEF). Some experiments report IPSNR which is a
PSNR increase compared to PSNR of the degraded
image. IPSNR is more stable across different dataset
and it directly reflects the quality improvement.

We compare our results to AR-CNN [3], to the widely
regarded deblocking oriented SA-DCT [7, 18]], and to a
simple postprocessing filter spp included in the FFm-
peg framework [19]. While L4 was used in most ex-
periments and it was trained for various compression
quality levels, L8 was trained only for quality 20. If not
stated otherwise, the residual version of networks was
used.

The L4 and L8 networks were trained on mini-batches
of 64 64 x 64 patches and 4 128 x 128 patches respec-
tively. The patches were randomly sampled from train-
ing images. The number of training iterations was fixed
to 250 K which is significantly less compared to AR-
CNN’s 107 iterations. The learning rate was scaled
down by factor of 2 every 50 K iterations. The net-
works were initialized by the Xavier initialization [[10]]
in the first three layers, and a Gaussian initialization
with lower variation was used in the final layer. The
learning rate of the last layer was set ten times smaller
than for the other layers.

Artifacts reduction quality. The results of artifacts
removal on LIVE1 dataset with JPEG quality 10 and
20 are shown in Table Bl The results on the BSDS500
test set are presented in Table @ L8 outperforms all
other methods with significantly higher scores in all
three quality measures. L4 which performs worse com-
pared to L8, still surpasses the other methods in most
cases even though it is much small and computation-
ally efficient compared to L8. Examples of resulting
images are presented in Figure 4]

JPEG quality generalization. We evaluated the ability
of the trained networks to generalize to a different com-
pression quality by training L4 on one quality and eval-
uating on other qualities (L4Q10 trained for quality 10,
L4Q20 for quality 20, etc up to L4Q60). To asses the
ability of CNNs to handle multiple compression quali-
ties in a single model, we trained a single L4 network on
all the qualities together (L4Q10-Q60). The results in
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Figure 6: Training development of L4 with different
training objectives.

Figure [5] show that L4Q10-Q60 provides stable results
across the quality range. However, the quality-specific
networks perform better for their respective qualities.
The quality-specific networks generalize only to similar
qualities. In practice, a single network should easily be
able to handle smaller quality ranges (e.g. 10-20 qual-
ity points wide) when trained on data from the whole
range.

Impact of learning objective. ~We compare L4 net-
works trained for direct mapping, residual, and edge
preserving loss. Although the architecture and initial-
ization of all the L4 networks were the same, we had to
select suitable learning rates (Ir) and weight decay coef-
ficients (wd) by performing grid search for each learn-
ing objective separately. The chosen values are for di-
rect mapping Ir 0.4, wd 5 x 1077, for residual learning
Ir 8, wd 5 x 1077, and for edge preserving objective Ir
0.05, wd 5 x 10’4E] The values were chosen on JPEG
quality 10 and they were used for all other qualities.

The progress of learning is shown in Figure [6] The
residual network converges much faster compared to
the direct mapping network. The results on LIVEI
measured by PSNR, PSNR-B and SSIM are in Table@

Figure [/| shows 1st layer filters of the networks during
different stages of training. All the networks formed
reasonable-looking filters. = The residual network

Objective PSNR PSNR-B SSIM
Distorted 27.58 24.97 0.769
Direct mapping 28.99 28.66 0.820
Edge preserving 28.69 28.40 0.813
Residual learn. 29.08 28.71 0.824

Table 5: Results of L4 networks with different objec-
tives on LIVEI dataset with quality 10.

2 In our experiments, the loss was normalized by the number of

output pixels. This scaling influences the scale of gradients
and results in relatively high learning rates and low weight
decay coefficients.
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Figure 7: Filters from the first layer of L4 networks
with normal/residual/edge preserving objective at dif-
ferent stages of training. Iterations are showed below
the images.

formed more complex higher frequency filters com-
pared to the other networks. The edge preserving
network learned a number of low-pass filters which
are probably needed to transfer the general image
appearance through the network — these filters are
missing in the residual network. The filters of the
normal direct mapping network remain noisy, which
could be due to different weight decay coefficient the
low learning rate, or their combination.

The results show that the residual learning is beneficial
for JPEG artifact reduction in terms of resulting recon-
struction quality and training speed. On the other hand,
the edge preserving objective does not improve result-
ing quality noticeably in the case of L4.

Dataset size. The quality of reconstruction achieved
by larger networks may suffer due to inadequate size
of a training set. In order to asses how the L4 and L8
behave with respect to training set size, we trained the
residual versions of the networks on 4, 16, 64, 256, and
400 images from the training set. The L4 and L8 net-
works contain approx 70 K and 220 K learnable param-
eters respectively which suggests that L8 should require
larger training set for the same generalization. Figure|[g]
shows results on the different training sets and corre-
sponding results on the independent test set. Both net-
works clearly overfit on the smaller datasets. L8 overfits
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Figure 8: Generalization for different sized train set.

significantly more and it would require more images to
reach proper generalization, while L4 seems to reach
perfect generalization already on the relatively small
dataset of 400 images.

Speed. Using cuDNN v3 implementation of convo-
lutions on GeForce GTX 780, we were able to pro-
cess 1 Mpx images in 220 ms with network L4 and in
1052 ms with L8. The L4 and L8 networks require ap-
proximately 140 K and 440 K floating point operations
per pixel, respectivelyEl

S CONCLUSIONS

In this work, we show that it is possible to train large
and deep networks for JPEG artifacts removal which
outperform previous state-of-the-art results of smaller
networks. We combine the residual learning by Kim et
al. [16], skip architecture [18], and symmetric weight
initialization which allowed us to successfully train net-
works with 8 layers.

We compare networks with three different objectives
— direct mapping, residual learning, and edge preserv-
ing. The best reconstruction results are provided by the
residual learning.

3 The networks, processed images, and implementations are

available at
http://www.fit.vutbr.cz/~ihradis/CNN-Deblur/
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We further investigate the network ability to general-
ize across different compression JPEG quality levels.
Our results show that it is possible to use one network
trained for several qualities as an acceptable trade-off.

Finally, we evaluate generalization of the networks with
respect to training set size. The results suggest that
small networks similar to L4 (20 K parameters) can be
safely trained on the BSD dataset. However, the gener-
alization of L8 (100 K parameters) and larger networks
is not guaranteed on this small dataset and a larger com-
mon dataset should be compiled to allow fair and con-
sistent evaluation in the future.

In a future work, we intend to apply convolutional
networks to other compression methods, for example,
JPEG 2000, JPEG XR, or WebP. Next, we would like to
train convolutional networks to reconstruct images di-
rectly from the JPEG coefficients which should provide
the networks with significant clues as to which image
elements are and which are not artifacts. The receptive
field even of the L8 network is still relatively small and
we expect that it should be possible to reach higher re-
construction quality by increasing the receptive field or
by providing context information by other means.
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