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ABSTRACT

We present a 3D data streaming approach for remote walkthroughs, that integrates local optimization tech-
niques for realtime rendering with prefetching techniques for remote scene graphs. Especially culling
methods, that don’t possess frame to frame coherence, can successfully be combined with remote scene
databases, if the prefetching algorithm is adapted accordingly. We present a quantitative transmission pol-
icy, that takes the limited bandwidth of the network and the limited memory available at the client computer
into account.
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1 INTRODUCTION

The VRVis application research on virtual habitat
aims on the automatic three dimensional, photoreal-
istic modeling of urban, suburban and rural areas and
on the organisation, simulation and visualisation of
this data. The goal of one project at the VRVis cen-
ter is the acquisition of high resolution data for the
city of Graz. The facades of historical and otherwise
prominent buildings will be modeled from terrestrial
images and laser scanner data, and the less important
buildings are represented by a block model extracted
from aerial images. A user navigating through this
virtual city should be able to view close-ups of de-
tailed facades and to overview the whole city as well.
An impression of the initial data set for the city of
Graz is given in Figure 1.

Since the data set used to visualize the City of Graz is
far too large to fit into main memory, we decided to
utilize an approach for remote walkthrough and fly-
over settings. Within our visualization system load-
ing, indexing and server side caching of data is han-
dled by a relational DBMS, that resides on a server
machine. This server can operate several clients us-
ing network connections with different bandwidths.

On the client side visualizing complex urban data sets
with current graphics hardware still needs a lot of
rendering optimizations. If realtime rendering is tar-
geted, the visual quality of the rendered urban scene

Figure 1: A view on the inner city of Graz

is mostly limited by two factors: By the speed of
the server in conjunction with the network bandwidth,
and by the rendering capability of the client itself.

In order to maximize the visual quality within a re-
altime rendering setting we have to take these factors
into account to guide the communication between the
client and the server. Further we need to combine var-
ious rendering techniques such as level of detail man-
agement, impostor generation and rendering, visibil-
ity culling, efficient texture handling and others with
techniques to retrieve relevant data from a huge data



set residing on a slow secondary storage.

We utilize an approach based on the estimation and
optimization of certain quantities. This is in con-
trast to other approaches, that emphasize qualita-
tive heuristics often based on a predefined sematics
of the objects within the scene (e.g. area of inter-
est [Hesin98], [Schma97]).

This work is a first step towards a visualization frame-
work that fits our requirements.

2 BACKGROUND

2.1 Frame rate control

Even with current 3D graphics hardware rendering
large data sets still needs acceleration techniques to
achieve sufficient high frame rates. Acceleration
schemes essentially choose the objects from the com-
plete data set, that should be drawn in the next frame,
and the appropriate rendering method, dependend on
the current viewing parameters. In [Funkh93] a sys-
tem that guarantees minimal frame rates is discussed.

Some of these techniques have an impact on the vi-
sual quality of the rendered scenes, others are loss-
less in this respect. More important we distinguish
between acceleration methods, that comprise spatial
coherence, if the viewing parameters change slightly,
and methods that produce very different results for
nearby viewing parameters.

A very basic rendering optimization isview frustum
culling. Only objects, that are at least partially within
the current viewing frustum, need to be rendered.
This technique directly depends on the viewing pa-
rameters.

In densely occluded scenes like urban walkthrough
scenariousocclusion culling techniques[Telle91],
[Cohen00] can further reduce the amount of geometry
to be rendered without loss in the visual quality. The
space of view positions is partitioned into view cells
and the set of visible objects from every view cell is
computed. Therefore for a given view position the set
of unoccluded objects can be determined and after-
wards combined with view frustum culling to obtain
the set of actually visible objects. Occlusion culling
is usually not very effective in fly over settings.

Culling methods reduce the amount of data to be ren-
dered, but this can still be too much to guarantee the
frame rate requirements. The remaining acceleration
techniques choose the rendering method for objects,
that assures a suitable visual quality. Unlike culling

methods these techniques may reduce the visual qual-
ity of the rendered image. These methods represent a
trade-off between image quality and rendering speed.

Level of detail management [Clark76] and image
based rendering [Macie95] replace the object’s full
geometry with a representation, that is faster to ren-
der. Since our data set has a huge spatially extension,
we employ the LOD-R-tree concept [Kofle98] for a
combined indexing and LOD management system.

2.2 Rendering over a Network

In our opinion, rendering over a network, where the
complete data set for the scenery resides on a remote
computer, is not substantially different from render-
ing data sets, that are too large to fit into main mem-
ory and have to be paged in from a secondary storage.
The remote rendering setting allows the data set to be
shared among the client in contrast to the local ren-
dering setting with paging.

Thus we view the server in the remote rendering set-
ting as some kind of secondary storage with a band-
width that is order of magnitudes slower than local
hard disks.

The rendering system is faced with 2 decision prob-
lems: Which data should be retrieved over the net-
work and what should be rendered from the directly
available data in the client cache for the next frame?
Basically these two challenges can be treated inde-
pendendly, such that the requests to the server for data
retrieval are not directly related to the needs of real-
time rendering.

Nevertheless rendering acceleration techniques
should guide the communication with the server.

2.3 Streaming for Remote Walkthroughs

Our framework is strongly inspired by the work done
by Teler and Lischinsky [Teler01]. They formulated
the remote walkthrough setting as an optimization
problem as follows: For a known path of the viewer,
optimize the visual quality along this path. More for-
mally: Let the walkthrough start at timet = 0 and
end at timeT . For every objecti there exists a set
of different representationsrij . These can be various
levels of detail, impostors etc. For a given viewing
parameter~v, that consists essentially of position and
viewing direction, we can estimate the influence on
the visual quality ifrij is rendered. This quantity is
called thebenefitbij(~v) of rij . As in [Funkh93] the
benefit is a product of the following factors:



• The accuracyis a measure, how well the ren-
dering of the representation is compared to the
rendering of the full model.

• Thevisibility determines, how much of the ob-
ject is seen. Visibility determination is based
on view frustum culling and occlusion culling.

• Not every object in the scenery has the same
importanceto the viewer. Usually the viewer
focuses objects in the center of the viewport,
but importance calculation depends strongly on
the field of application.

• Switching between different representations for
the same object may cause noticeable arti-
facts and therefore the switching should be as
smooth as possible.

These factors are estimated with empirically found
formulas based on the relative position of the ob-
ject to the viewer. Details are given in [Funkh93]
and [Teler01].

Since the representations are available at the client
side only after retrieving it from the server, the set
Ri(t) of representations for objecti at timet is lim-
ited: ∑

i

∑
j∈Ri(t)

dij ≤ t, (1)

wheredij is the time needed to retrieverij . Further
we define the maximum benefitbti(~v) of the represen-
tations of objecti available at the client side at timet
as

bti(~v) = max
j∈Ri(t)

bij(~v)

Assuming that the path~vt is known in advance, the
task is now to optimize the cumulative benefit along
this path:

Maximize
∑
i

∫ T

t=0

bti(~vt) dt subject to Eq. 1

The solution of this problem is a sequence of re-
trievals. Since the representations are retrieved se-
quentially, the optimization problem can be reduced
to a sequence of one-step decision problems: Let
t0, . . . , tm be the decision times. At timetk, maxi-
mize ∑

i

∫ T

t=tk

max(bti(~vt)− b
tk
i (~vt), 0) dt, (2)

again subject to Eq. 1. Eq. 2 is called theadded ben-
efit integral. Hence we will writea 	 b instead of
max(a− b, 0) for convenience. Solving this problem
the scheduler knows, which representation should be
retrieved next. The greedy strategy for the scheduler

is the selection of thatrij , that maximizes the added
benefit to cost ratio

1
dij

∫ T

t=tk

bij(~vt)	 btki (~vt) dt.

Since we don’t know the true viewing parameters at
time t, we utilize a prediction of the future path based
on the motion of the user in the recent past. If we
expect that the predicted path is valid for some time
interval [tk, tk + δ], then the scheduler would choose
thatrij , that maximizes

1
dij

∫ tk+δ

t=tk

bij(~vt)	 btki (~vt) att(t− tk) dt.

Hereatt(·) is some attenuation function, that possi-
bly assigns less weight to the more distant future, thus
expressing the lower confidence about temporally dis-
tant predictions. Since we deal with the uncertainty of
the predicted paths in a different way as described in
the next section, we assume, thatatt ≡ 1.

Within this framework it is implicitly assumed, that
streaming over a network is the only limiting bottle-
neck in the visualization system. Neither the memory
available to the client nor the rendering capabilities of
the client influences the scheduling.

3 THE BENEFIT INTEGRAL REVISITED

A worst case scenario In this section we argue, that
maximizing the added benefit integral in Eq. 2 is not
sufficient for our urban visualization system. Imagine
the following situation: The user is navigating on the
ground and inspecting the facades in a close up view,
thus most buildings are occluded. While navigating
the user approaches the facade of a historical build-
ing and the predicted path suggests, that the texture
of this particular facade should be refined. Since this
texture is large, it needs some time to be transmitted
over the network. In the mean time, the user possibly
changes his intention and probably moves straight up-
wards above the roofs.

Now the scheduler is faced with two options:

1. Occluded objects are not retrieved during the
navigation on the ground. This yields poor vi-
sual quality of the objects at some distance, if
the new viewpoint is above the roofs, in case
the network bandwidth is too small to retrieve
the necessary objects fast enough.

2. Representations of occluded objects are re-
trieved during the pure walkthrough navigation.
If the user continues his walkthrough, the visual
quality of the facades is unnecessarily low.



The main point is, that the path prediction is not per-
fect and the user may change his path suddenly while
a representation is retrieved. Since the path predic-
tion becomes more uncertain in the more distant fu-
ture, one may use some weighting in the benefit inte-
gral in Eq. 2. But such a weighting scheme doesn’t
help, since the only effect is, that long term planning
is mostly inhibited and the scheduler is not guided to
prefetch crucial data.

Augmenting the objective function We would like
a scheduling policy with the following property:
Maximize the visual quality along the predicted path
while maintaining a sufficient quality, if the predic-
tion fails. Thus we claim, that theworst case benefit

W t(ε) := min

{∑
i

bti(~v) : ~v ∈ N(~vt, ε)

}
(3)

is as close to some achievable benefit as possible.
N(~vt, ε) is some neighbourhood of~vt discussed later.
We will denote this constraint rather informally as

W t(ε) ≥ Q. (4)

Eq. 2 together with Eq. 1 and this additional constraint
for a suitableε forms a new optimization problem.
We can observe the following properties of this prob-
lem:

1. At startup time of the client (t = 0), no solu-
tion is feasible. Therefore an auxiliary problem
has to be solved to satisfy the worst case benefit
constraint Eq. 4.

2. Fulfilling the worst case benefit constraint the
client would retain every representation it re-
ceives during the walkthrough. Thus the client
may exhaust the memory resources and an ad-
ditional constraint to limit the memory con-
sumption by the client is required. Letmij de-
note the memory required for representationrij
andM the total available memory at the client
side, then we must postulate, that∑

i

∑
j∈Ri(t)

mij ≤M. (5)

Note that this constraint is not a ‘hard’ one.
It only expresses, that the size of the resident
set of objects at the client side is limited. The
scheduler is still free to discard already re-
trieved representations. The implication of this
is considered in Section 4.

3. Q depends on the bandwidth of the network
and the memory available to the client. If the
bandwidth or the local memory are enlarged,

the image quality even in the worst case should
increase.Q depends on the current viewing po-
sition, too: In less complex regions it is simpler
to approach the best achievable benefit than in
regions with high complexity. Therefore Eq. 4
shouldn’t be read literally.

Instead of optimizing the added benefit integral with
three constraints, we lift the worst case benefit con-
straint into the objective function. The new objective
function is now

α

δ

∑
i

∫ tk+δ

t=tk

bti(~vt) dt+ (1− α)W t(ε) (6)

α is essentially a Lagrangian multiplier and needs to
be determined by the appropriate min-max problem.
Usuallyα will be assigned empirically, depending on
the expected accuracy of the path prediction method.
The added benefit integral is normalized (divided by
δ) to obtain the expected gain along the predicted
path.

The NeighbourhoodN(~vt, ε) Since the next deci-
sion by the scheduler is made at timetk + dij , the
user has timeε = dij to move completely in a differ-
ent way than predicted or to look in a different direc-
tion. The viewing position and direction that can be
reached in this time depends on the maximal transla-
tional velocityϑ and the maximal angular velocityω.
All possible viewing parameters at timetk + dij are
gathered in the setN(~vt, dij).

The shape ofN(~vt, dij) depends on the interaction
facilities of the viewing interface. E.g. if the user
interface allows either to rotate the viewing direction
or to move forward along a straight line, then the set
of accessible viewing positions within periodε is part
of a spiral shape.

Instead of using the true neighbourhood we enlarge
this set, such that it consists of all viewing parameters,
where the view point has distance less thanϑε to ~vt
and the viewing direction change isωε at most.

The Impact of the Augmented Objective Function
Integrating the worst case benefit into the objective
function has the benefit, that rendering optimizations
can guide the scheduling, that don’t have a frame
to frame coherence. Consider view frustum culling:
Modifiying the viewing direction changes the set of
visible objects within few frames. Thus every re-
mote rendering system requires some prefetching of
objects, that are within an enlarged view frustum.

Essentially the same is true for occlusion culling. Yet
occluded objects may become visible after a slight



change of the viewing position. To compensate for
errors of the path prediction some kind of prefetch-
ing of potentially visible objects is needed again. Our
objective function takes care of these strategies im-
plicitly.

Of course, distance based LODs and impostered in
the far field are much less sensitive to a failure of the
path prediction as long as the maximum velocity of
the viewer is rather limited.

4 THE GREEDY SCHEDULING POLICY

We ignore the problem of heap fragmentation and as-
sume that the available memoryM can be used thor-
oughly without any unused memory holes due to frag-
mentation.

Benefit Gains and Losses The increase of the ben-
efit of objecti after retrieving the representationrij is
the benefit gain:

∆bti = α∆btij + (1− α)∆b̃tij , (7)

where

∆btij =
1
δ

∫ t+δ

t

bij(~vt)	 bti(~vt) dτ

and

∆b̃tij = min{bij(~v)	 bti(~v) : ~v ∈ N(~vt, dij)}.

Here∆btij estimates the expected added benefit along

the predicted path and∆b̃tij measures the added ben-
efit in the case of a completely wrong prediction. Dis-
carding the representationrij by the client may result
in a loss of−∆btij in the estimated visual quality.

Selecting the Next Object to Retrieve Due to the
memory restriction the retrieval of a new representa-
tion may require some representations to be discarded
on the client side. Ifrij is a candidate for retrieval, the
setDt

ij of discarded objects must satisfy

M −
∑

ri′j′ /∈Dtij

mi′j′ ≥ mij . (8)

The gain of receivingrij must be compared with the
loss of discardingDt

ij . Determining the optimal set
Dt
ij yields to a nested optimization problem, therefore

the following greedy algorithm is applied: Sort the
representations resident at the client according to the
estimated loss to memory size ratio−∆bti′j′/mi′j′

and insert them in ascending order intoDt
ij until Eq. 8

is satisfied. Often it may happen, that many represen-
tations resident at the client have a loss of zero. In this
case an LRU (least recently used) scheme can be ap-
plied to discard objects, that are probably not useful
in the near future.

To choose the representation to retrieve next, compute
the net return

∆btij −
∑

ri′j′∈Dtij

bti′j′ . (9)

If the net return is negative for all candidates, a down-
load will result in a decrease of the objective function.
Therefore the scheduler postpones this decision for a
predetermined duration and no communication over
the network takes place. Otherwise the scheduler ini-
tiates the retrieval of the representation with the best
net return to transmission time ratio.

5 IMPLEMENTATION ISSUES

So far we didn’t mention, wether the scheduler resides
at the client or at the server. Since the server is respon-
sible for multiple clients, we assume, that every client
has its own scheduler and the transmissions are ini-
tiated by the client. This approach fits well with the
use of a database management system on the server.
Thus, we suppose that any data required by the sched-
uler (like the transmission timesdij for every object)
is available at the client side instantly. In real settings,
this data will be sent over the network as well, but we
ignore the impact of these transmission on the actual
scheduling.

As already mentioned in 2.2 we propose an indepen-
dent scheduler to achieve constant frame rates. Nev-
ertheless the scheduler responsible for the network
communication should somehow prefer representa-
tions that are faster to render. Imagine a distant land-
scape, that is modeled as a regular mesh and assume,
that the scheduler may retrieve a corresponding im-
poster or the mesh itself, both with approximately the
same transmission time and the same benefit. The im-
postor is usually preferable to speed up rendering of
the frames. One heuristical solution is to augment the
benefitbij with an additional factor, that expresses the
geometric complexity to image quality ratio. An ex-
act solution is not feasible, because it requires solving
a nested optimization problem.

The evaluation of the added benefit integral is dis-
cussed in [Teler01]. It remains to describe the es-
timation of the worst case benefit. In Section 3 we
already discussed the setN(~vt, ε) of viewing param-
eters, that can be accessed during navigation in the
worst case. At first, estimation of the worst case ben-
efit involves the computation of visibility. Since our



occlusion culling system is based on a precomputed
PVS (potentially visible set from a view cell) algo-
rithm, the set of objects visible fromN(~vt, ε) can be
estimated as the union the PVS of every view cell, that
is within distanceϑε from ~vt. If ωε < π, view frus-
tum culling with an enlarged frustum can be applied
additionally.

Estimating the worst case accuracy of a representa-
tion within N(~vt, ε) depends on the type of formula
for accuracy calculation. Usually the minimal benefit
is realized on the boundary ofN(~vt, ε) and indepen-
dent of the viewing direction. Thus, we are faced with
a minimization problem on a circle around the current
viewing position~vt, which often can be solved easily.
E.g. the accuracy estimation for LOD representations
in [Teler01] is based on the distance of the object to
the viewing position. Therefore the worst accurary
for LOD objects is attained at the closest position to
the considered object withinN(~vt, ε). The situation
is quite similar for impostors, since their accuracy de-
pends on the relative position of the viewer to the po-
sition the impostor was generated for.

So far we considered only representations for single
objects. Especially far field impostors are not gen-
erated for individual objects but for several spatially
related objects at once. Therefore impostors usually
affect the benefit values of several objects and thus
the framework has to be slightly generalized to take
this into account. The same is true for our LOD-
R-tree concept, since the transmitted LOD geometry
may represent several buildings.

Finally we have to estimate the transmission durations
dij . We assume, thatdij correlates strongly with the
size of the transmitted representation and we add a
fixed duration for communication overhead. IfMij

bytes are transmitted forrij , thendij = cMij + τ .
Mij must not be equal tomij , because transmitted
data may be compressed or otherwise different from
the memory representation. The two parametersc and
τ can be estimated from few test transmissions done
in the initialization phase of the client.

Spatial Indexing Benefit computation involves the
determination, wether an object overlaps with an en-
larged viewing frustum. Doing this with a linear
search is not feasible for a large data set, thus an ac-
celeration scheme for geometric queries must be em-
ployed. Usually some hierarchical method is utilized.
We currently use an R-tree [Guttm84] for spatially or-
ganizing the scene. Due to the large size of the spatial
index the full R-tree is located at a server, that is not
necessarily identical with the scene database server.
The client requests and caches parts of this tree, as it
is required during traversal of the scene.

In the future this R-tree will be replaced with a read-
only hierarchical index, that additionally stores LOD
representations of its subtrees in its inner nodes. This
way simplified geometry for objects can be retrieved
during the traversal of the spatial index without the
need to visit unnecessary leaf nodes.

This shortened traversal must be consistent with the
scheduling policy. If the tree traversal stops too early
an unsuitable coarse LOD representation might be re-
turned. On the other hand, unnecessary visits of nodes
should be minimized. The solution is quite simple:
We assume, that the LOD representations stored at the
inner nodes are visually perfect if viewed at least from
a certain distance. This distance is known for every
node in advance. The representation stored in an in-
ner node is good enough, if the viewing position has
at least this distance to the corresponding objects until
the next decision is made, regardless of the movement
of the viewer.

The same considerations must be taken into account
for other spatially organized objects like view depen-
dend ground textures and terrain meshes.

6 CONCLUSION AND FUTURE WORK

We have presented a framework for streaming scenes
in a remote fly over setting. Currently this framework
still is of theoretic nature and experiments to investi-
gate the actual properties of the scheduler need to be
done. Integrating this framework into our software is
ongoing work.

Nevertheless this framework can serve as a starting
point for prefetching algorithms part of remote ren-
dering systems, since it is not specific to any field
of application and contains general applicable quan-
tities.

Further work is needed to tackle the visual artifacts,
that appear, whenever visible objects change their rep-
resentation. Currently we are uncertain if hysteresis
reduction can be done solely within our framework
or if it is beyond the scope and should be handled
separately. Using a hysteresis factor in the benefit
value the scheduler will prefer less drastic changes
in representations, but ignores the fact, that represen-
tations should be allowed to change significantly for
currently invisible objects.

The integration of partial traversal of spatial indices
with benefit estimation is one step to reduce the time
required by the scheduler itself. If the user navigates
permanently, our initial implementation of the sched-
uler uses a lot of time to evaluate the benefit func-
tion. Whenever the user rests the system reuses al-



ready computed benefit values to speed up the deci-
sion process. If we need to reuse the benefit values
in case of permanent movement, we can substituteε
(see section 3) withmax(dij , D), whereD denotes
some duration. Thus, the benefits need to be evalu-
ated everyD time units at most. Perhaps additional
acceleration schemes based on frame to frame coher-
ence can be exploited to speed up scheduling.

This work has been done in the VRVis research center,
Graz and Vienna/Austria (http://www.vrvis.at), which
is partly funded by the Austrian government research
program Kplus.
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