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ABSTRACT

This article deals with ambiguous surface digitizations by dilation inn-dimensional space. The digitization
of a sufficiently regular surface is separating but not necessarily minimal. We will determine conditions
under which the supercover and the grid intersection digitizations are discrete surfaces. It will also be
proven that non-overlapping domains do not solve the problem of simple points in digitizations. No matter
how the digitizationdomain is chosen there will occur ambiguous cases which have to be treated differently.
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1 Introduction

In raster graphics continuous objects are represented
by discrete sets. Usually they are considered to be
the digitization of existing or synthetic continuous ob-
jects. These discrete objects can only partially reflect
the properties of the original continuous objects. Ide-
ally, important features or properties of a continuous
object should be found in appropriate discrete coun-
terparts. The preservation of properties has been stud-
ied on various classes of objects [Veerl93, Agraw97].
Our previous work [Linck01] determined conditions
under which the separation property of surfaces is pre-
served. Another important aspect of digitizations is
the occurrence of ambiguities. Algorithms usually
force uniqueness by half-open digitization domains
[Cohen95, Cohen96] and special rules for the remain-
ing ambiguous cases. Although such problems can
easily be overcome in practice, these special cases
cause major problems in the mathematical study of
digitizations.

This paper is outlined as follows: The next section
recalls basic definitions. Section 3 deals with simple
points in digitized hyperplanes. We determine condi-
tions under which simple points do not occur. In Sec-
tion 4, we study digitizations by dilations with half-
open domains and prove that they will always cause
special cases.
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2 Basic Definitions

In raster graphicsn-dimensional digital images aren-
dimensional arrays of integer values. If these values
are only 0 and 1 we speak ofbinary digital images.
Discrete objectsare subsets ofZn, that is the set of
points which are associated with the value 1. An el-
ementz 2 Zn is known as agrid point. Its Voronoi
setV(z), the set of all points inRn which are at least
as close toz as to any other grid point, forms a closed
axes-alignedn-dimensional unit cube with centerz.
These sets are calledpixels in 2D andvoxelsin 3D.
Two n-dimensional Voronoi sets can share a point, a
straight line segment, up to an(n � 1)-dimensional
cube. This fact leads to a definition of neighborhood.

Two grid pointsz; z0 2Zn are said to bek-neighbors
(0 � k � n � 1) if dim(V(z) \V(z0)) � k. A se-
quence(z0; : : : ; zl) of points of an objectA � Zn

is said to be ak-arc from z0 to zl in A if succes-
sive elements arek-neighbors. An objectA � Zn

is k-connectedif there exists ak-arc fromz to z0 for
any pointsz; z0 2 Zn. A k-componentof A � Zn

is defined as a maximalk-connected non-empty sub-
set ofA. A discrete objectA � Zn is said to be
k-separatingif the backgroundZnnA consists of ex-
actly twok-components. Ak-separating objectA is
minimal if A n fzg is notk-separating for allz 2 A.
A k-separating surface is a minimalk-separating ob-
ject. For point setsA;B thedilationA � B is given
byA� B = fa+ b : a 2 A; b 2 Bg.



Digitization is the transformation of a continuous ob-
ject into a discrete one. An important class are dig-
itizations by dilation. A grid point belongs to the
digitization, if and only if a fixed set, the so-called
domain, translated to this grid point hits the con-
tinuous objects. Thedigitization by dilation�D

� :
}(Rn) ! }(Zn) with domainD � Rn is defined
as�D

�(A) = fz 2Zn : A \Dz 6= ;g for every con-
tinuous objectA � Rn. A digitization by dilation
with domainD = V(0) is calledsupercover digiti-
zationand indicated by�SC. Let Li (1 � i � n)
be the straight line segment obtained by intersecting
the i-th coordinate axis withV(0). The digitization
with domainD =

Sn

i=1 Li is calledgrid intersection
digitization�GI.

3 Simple Points in Surface Digitizations

A continuous or discrete surface without boundary
can be characterized as a minimal separating set: If
S is a surface without boundary, then its complement
SC consists of exactly two components and the re-
moval of any surface point destroys this property.

Theorem 1. A k-separating setS �Zn (0 � k < n)
is minimal iff every pointz 2 S is a k-neighbor of
eachk-component ofSC .

Proof. Let S � Zn be ak-separating. The twok-
component ofSC shall be denoted byA andB. Let
us first assume thatS is minimal. By definitionA [
B [ fzg must be ak-connected set for everyz 2 S.
Hence, there exists ak-path between every two points
in A [ B [ fzg. In particular, there arek-paths from
z to every point inA andB. Consequently,z is a
k-neighbor ofA andB. Conversely, ifz 2 S is a
k-neighbor ofA andB then the setA [ B [ fzg is
trivially k-connected.

Cohen-Or et al. [Cohen95, Cohen96] and Andres et
al. [Andre97] investigated the supercover digitization
of straight lines in 2D and planes in 3D. They came
to the conclusion that the supercover of some lines or
planes are not minimal. Both groups proposed refined
digitizations schemes to overcome such situations. As
shown in the 2D examples (Fig. 1) the supercover and
the grid intersection digitization are not necessarily
minimal. The supercover of a straight line inR2 is a
1-separating surface, except if the line passes through
a corner of one, and thus four, pixel. In this case the
result is not minimal because each of these four pixels
has more than two 1-neighbors. Andres called these
configurationsbubbles[Andre99]. We will refer to
them assimple points. In general, a simple point of a
discrete object can be removed without changing the
topological properties of the object. In the case of

Figure 1: The supercover and the grid intersec-
tion digitization of a straight line is not neces-
sarily minimal.

surface digitizations, a simple point is one that can be
removed from the digitization without violating the
separation property.

Simple points occur in both schemes because two
neighbored digitization domains can have common
points. Letz andz0 be two different points inZn. If
z andz0 are0-neighbors then their Voronoi setsV(z)
andV(z0), which are equal to the domain of the su-
percover translated to these points, are not disjoint.
For n-neighbored grid points the translations of the
domainD =

Sn

i=1Li consists of a common point,
i.e.Dz \Dz0 6= ;.

Theorem 2. LetH be a hyperplane inRn. Its super-
cover�SC(H) is a minimal0-separating set if and
only if z � (0:5; : : : ; 0:5) 62 H for every grid point
z 2Zn.

Proof. LetH be a hyperplane inRn. A andB denote
the two components ofZn n �SC(H). The first di-
rection will be proven by reductio ad absurdum, the
other part of the proof is straight forward.
We assume first that the supercover�SC(H) is a
minimal 0-separating set and that there exists a point
z 2 Z

n with z � (0:5; : : : ; 0:5) 2 H. Conse-
quently, all2n grid points whose Voronoi sets contain
the vertexz� (0:5; : : : ; 0:5) belong to the supercover
�SC(H). H hits at least two of these voxels only on
their boundary. Without loss of generality we can as-
sume that one of them isz. Otherwise we rename the
axes accordingly. Now we obtainH\ int(V(z)) = ;,
whereint denotes theinterior of a closed set. Because
of Theorem 1 the pointz has the0-neighborsa 2 A

and b 2 B in each component of the background.
Since a; b 62 �SC(H), we haveV(a) \ H = ;
andV(b) \ H = ;. Parts of the boundary of the
voxel V(z) are not hit by the hyperplaneH, i. e.
V(a)\V(z)\H = ; andV(b)\V(z)\H = ;. In fact,
H must separate the voxelV(z) into two continuous
components whereeach of them contains one of these
boundary segmentsV(a)\V(z)andV(b)\V(z). This
is a contradiction toH \ int(V(z)) = ;.



Let us now assume thatz � (0:5; : : : ; 0:5) 62 H

for every grid pointz 2 Zn. Hence,H does not
hit any vertex of any voxelV(z) that belongs to the
supercover. Consequently, the hyperplaneH sepa-
rates every voxelV(z) into two continuous compo-
nents. InV(z) there exists at least one pair of op-
posite vertices that belong to different components.
Again without loss of generality, these vertices are
z � (0:5; : : : ; 0:5) andz � (�0:5; : : : ;�0:5). Then,
the pointsz � (1; : : : ; 1) andz � (�1; : : : ;�1) are
0-neighbors ofz. One of them belongs to setA and
the other to setB. This proves that�SC(H) is mini-
mal.

This theorem says that simple points occur if and only
if there exist two0-neighborsz; z0 2Zn such that the
hyperplaneH hits only the common boundary of the
translated digitization domainsDz andDz0 and not
their interior. A similar relationship holds for the grid
intersection digitization. The domainD of the grid
intersection digitization was the bundle of the coor-
dinate axes intersected withV(0). Do denotes the in-
tersection ofD with int(V(0)),which is essentiallyD
without the end points ofeach straight line segment.

Theorem 3. Let H be a hyperplane inRn. Its grid
intersection digitization�GI(H) is not a minimal
(n � 1)-separating set iff there exist two(n � 1)-
neighborsz; z0 2 Zn such that(Dz \ Dz0 ) � H,
Do
z \H = ; andDo

z0 \H = ;.

Proof. Let H be a hyperplane inRn. HA andHB

denote the two continuous components ofRnnH as-
sociated withA andB, the two discrete components
ofZn n�GI(H). Again, the first part will be proven
by reductio ad absurdum.
Let us assume that�GI(H) is not a minimal(n�1)-
separating set then there must exist a pointz 2
�GI(H) that has no(n � 1)-neighbors in, say, the
componentA. Without loss of generality, we sup-
pose that the first coordinate axis is the major axis
of H, which is the coordinate axis with the largest
coefficient in the hyperplane equation [Klett85], and
the pointsz = (0; : : : ; 0) andz0 = (1; 0; : : : ; 0) be-
long to�GI(H). This means thatH hitsDz andDz0 .
Since the first axis is the major axis,H can only hit
the point(0:5; 0; : : : ; 0) and no points ofD0

z andD0
z0 .

Conversely, we assume that there exist two(n � 1)-
neighborsz; z0 2 Zn such that(Dz \ Dz0 ) � H,
Do
z \ H = ; and Do

z0 \ H = ;. Without loss
of generality, we suppose thatz = (0; : : : ; 0) and
z0 = (1; 0; : : : ; 0) and that the componentHA con-
tains the pointz andz0 2 HB. The hyperplane hits
the point(0:5; 0; : : : ; 0), which belongs to both do-
mainsDz andDz0 . FurtherH does not hit any other
point of the domains. The only(n� 1)-neighbor ofz
which is contained in the continuous componentHB

is z0, but z0 does belong to�(H). Hence,z has

Figure 2: Critical situation for the modified su-
percover and grid intersection digitization.

no (n � 1)-neighbor inB and�GI(H) is not min-
imal.

As a consequence of this section simple points in the
supercover and the grid intersection digitization of a
hyperplaneH � Rn can be easily determined. A
point z 2 �SC(H) is simple ifH hits the digitiza-
tion domainDz only in non-unique points, i.e. in
points which also belong to the domain of a neigh-
bored point.

4 Avoiding Simple Points

Digitization algorithms try to avoid simple points by
using half-open digitization domains, so-calledre-
duced voxels[Cohen95, Cohen96]. However, there
are still ambiguous situations which have to be treated
as special cases. We want to illustrate these situations
in 2D. A digitization with the half open unit square
as domain (Fig. 2, left) will produce thinner results
than the supercover digitization, but there are cases
in which the digitization is too thin. This happens
when a line with slope in the first quadrant passes
through a vertex of a pixel. Adding one more point
to the domain will solve the problems for this class of
straight lines, but in other cases the resulting digitiza-
tion will not be minimal because of the overlapping
domains. On the other hand (Fig. 2, right), the modi-
fied grid intersection with two half-open straight line
segments as domain fails if a line with slope 1 hits
the mid-points between two grid points. For the grid
intersection digitization of hyperplanes it suffices to
determine the intersections with the grid lines along
the major [Klett85]. Algorithms force uniqueness in
ambiguous cases by giving one of the axes a higher
priority.

The next theorem proves thatambiguity cannot be
avoided. No matter how the domain is chosen, there
exists always hyperplanes whose digitization will ei-
ther be not minimal or not separating. It states that it
is impossible to find non-overlapping digitization do-
mains such that the digitization is compatible with all



motions that mapZn ontoZn. We finally need to in-
troduce the notiontessellationof the spaceRn, which
is a collection of sets that cover the space without gaps
or overlaps.

Theorem 4. There exists no tessellationfDz : z 2
Z
ng ofRn which is compatible with the group of mo-

tions inZn.

Proof. Let MZ;n denote the set of all motions in the
Euclidean spaceRn that mapZn ontoZn and let
fDz : z 2 Zng be a tessellation ofRn. The tessel-
lationD is compatible withMZ;n iff �(Dz) = D�(z)

for every z.
We assume thatD � V(0) and that the collection
fDz : z 2Zng consists ofRn with mutually disjoint
sets. Letx 2 D be a point inD which is also lo-
cated on theboundaryof theV(0), x 2 bd(V(0)).
Without loss of generality,x can be written asx =
(0:5; x2; : : : ; xn). Any reflection in the Euclidean
space is a motion. The reflection� on the hyper-
plane that is orthogonal to the first coordinate and
passes through the point(0:5; 0; : : : ; 0) clearly maps
Z
n ontoZn, so� 2 MZ;n, and� (x) = x. Because

of x 2 D(0;::: ;0), the condition� (0) = (1; 0; : : : ; 0)
and the compatibility, we obtain� (D0) = D(1;0;::: ;0)

which is a contradiction. Thus, there exists not tessel-
lation with the assumed properties.

Consequently, a modified supercover with a half open
domain will not be compatible withMZ;n, no matter
how the domain is chosen. Non-overlapping domains
D � V(0) are incompatible if they have points on
the boundary ofV(0). This is particularly true for a
grid intersection digitization with a set of half-open
line segments as domain. Thus half-open domains
will not avoid ambiguous cases for these digitizations.
There are always locations of hyperplanes such that
their digitization is either too thin or too thick, that is
not separating or not minimal, respectively.

The number of voxels in a digitized object is count-
able and so is the number of intersection of a surface
with points that cause simple points under digitiza-
tion. Consequently, the surface can be translated by a
vector of arbitrarily small length such that the result-
ing surface does not hit any of these critical points
in Rn. There exists a small enough� > 0, such
that �D(S � ��), the digitization of the translate of
a surfaceS � Rn by a vector�� (j��j < �), is equal
to the digitization�D0(S) with the half-open domain
D0 = D \ [�0:5; 0:5)n.

As a consequence, for the general study of digitiza-
tions, their properties and their effect on given classes
of objects, it is not necessary to deal with every spe-
cial case or ambiguity caused by common points of
two domains.

5 Summary And Future Work

In this article we studied simple points in the super-
cover and the grid intersection digitization of hyper-
planes inn-dimensional space. It has been proven that
ambiguity in surface digitizations cannot be avoided
and the use of half-open domains will always cause
special cases which have to be treated differently.
This paper is part of a series on surface digitizations
[Linck00, Linck01] and its result is important for our
further research. We are currently investigating strate-
gies to eliminate simple points in digitized surfaces.
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