
Efficient NURBS Rendering using View-Dependent
LOD and Normal Maps

Michael Guthe Reinhard Klein

University of Bonn
Institute of Computer Science II

Römerstraße 164
D-53177 Bonn, Germany

{guthe,rk}@cs.uni-bonn.de

ABSTRACT
Rendering large trimmed NURBS models with high quality at interactive frame rates is of great interest for
industry, since nearly all their models are designed on the basis of this surface type. Most existing approaches
transform the NURBS surfaces into polygonal representation and build static levels of detail. Unfortunately,
algorithms which keep the NURBS representation and generate view-dependent LOD on the fly suffer from the
problem, that they only calculate the geometric error of an approximation, but no care is taken of the
illumination artifacts introduced by the chosen view-dependent triangulation.
Normal maps have proven to be very accurate in providing better visual quality without increasing the
complexity of the geometry itself and thus solving this problem, but need much memory to store the normal
textures. In this paper we present a novel approach to apply normal maps to view-dependent NURBS rendering
with small memory and computational overhead. Additionally, we apply our approach to render isophotes and
environment maps such as reflection lines on view dependent triangulations with high visual fidelity.

Keywords
NURBS rendering, appearance-preserving LOD, normal maps, environment mapping, reflection lines

1. INTRODUCTION
The industrial design of models for prototyping and
production is nearly always performed with the
support of Computer Aided Design (CAD) geometric
modeling tools. The fundamental geometric entities
in such systems are trimmed Non-Uniform Rational
B-Splines (NURBS) due to their ability to
conveniently describe surfaces of almost any shape.
Since current graphics hardware does not support
direct rendering of trimmed NURBS in their original
representation, they need to be transformed e.g. into
a polygonal representation (tessellation). Rendering
these tessellations at high frame rates with high
quality is an important problem, as many models
from industry are very complex (thousands of

patches) and thus require millions of triangles for an
accurate visualization.
Reducing the number of triangles to be rendered can
be achieved by two main techniques:
• Culling techniques like view frustum, backface

and occlusion culling reduce the number of
triangles by deciding which are not visible.

• Level of detail (LOD) techniques try to
minimize the number of triangles before sending
them to the graphics pipeline.

Traditional NURBS rendering approaches which
support LOD generate a very fine triangulation at the
beginning which is stored along with a hierachy of
static LODs or a progressive representation.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

A more recent approach which generates the desired
LOD on the fly from the NURBS surface itself does
not take care of visual artifacts introduced by the
triangulation. The main problem is, that the only
error measure that can be used for realtime
applications to select the necessary LOD is an upper
bound of the geometric error. As the model is
rendered, the shading model is only evaluated at the
vertices of the current triangulation, leading to visual

artifacts, especially at highlights and when rendering
isophotes or reflection lines.

1.1 Main Contributions
In this paper we introduce a new method for
rendering complex trimmed NURBS surfaces with
high quality at interactive frames rates, by extending
a previous view-dependent LOD technique for
trimmed NURBS surfaces [GMK02] by the use of
normal maps.

The main advantages of our approach are:

• Using a special parametrization for the
normal map, the memory and computational
overhead are very small compared to
previous approaches.

• Software shading and hardware shading
with NVidia Register Combiners or ATI
Fragment Shaders to render the LODs with
normal mapping can be used.

• The algorithm supports the rendering of
environment maps, isophotes and reflection
lines in combination with view-dependent
LOD with high visual fidelity.

1.2 Paper Structure
The rest of the paper is organized as follows:
In section 2 results from related areas are discussed.
In section 3 we briefly describe the overall rendering
algorithms our extension is build on. Section 4
covers the description of our new algorithm and its
integration into the existing framework. In section 5
we report results and section 6 concludes and
describes future work.

2. RELATED WORK
2.1 Level of Detail
Creating levels of detail (LOD) for geometric objects
has become a common approach in the last decade, a
good overview of LOD techniques can be found in
[Lue01]. One of the early results by Hoppe [Hop96]
introduced progressive meshes and edge collapses.
This approach was improved to yield view-
dependent, progressive LODs by Xia et al. [XV96],
Hoppe [Hop97] and Klein [KK97][Kle98], while
Luebke et al. [LE97] introduced view-dependent
LOD for arbitrary topology. The vertex numbering
scheme introduced by El-Sana and Varshney [EV99]
encodes partial ordering of the simplifications steps
very efficiently. A recent publication proving the
efficiency of the view-dependent approach is
[Paj01].
The main drawback of these view-dependent LOD
techniques is the huge amount of memory needed to
store the hierarchy, see [FMP02].

2.2 Trimmed NURBS Rendering
Rendering trimmed NURBS surfaces has been a field
of great interest in the recent years. Different
approaches have been elaborated for visualization,
like ray-tracing [NSK90], pixel level subdivision
[SC88] or polygon tessellation [HB87][RHD89]
[FK90][KS99], of which the triangle based methods
are generally much faster especially due to recent
advances in graphics hardware. On a multiprocessor
system these triangulated models can be rendered at
interactive rates [BSGM02], but this requires
massive amounts of memory for storing the
hierarchical static levels of detail, since every vertex
of the finest triangulation needs approximately 65
Bytes of memory (including vertex normals)
[FMP02].
However, current approaches are able to render
trimmed NURBS at interactive frame rates by
combining several patches to so-called super-
surfaces. The approach made by Kumar et al.
[KMZH97] statically clusters sets of trimmed
NURBS patches that need to be sewn at runtime. A
more recent approach [GMK02] based on a
technique to repair CAD models [KBK02] provides a
more accurate visualization at higher frame rates by
using a non-manifold data structure to store the sewn
trimming curves between patches that are computed
in a preprocessing step and generate triangulations
on the fly.
The problem is that all the above approaches only
control the geometric error of the tessellation leading
to visible popping artifacts in the shading, when the
LOD of a patch changes. Furthermore, highlights of
distant surfaces are not rendered correctly. This
cannot be solved by Phong shading only, since the
surface normal does not change linearly over the
patch and thus information is missing. In priciple this
problem can be solved by choosing the adaptive
LOD based on a geometric and illumination based
criterion [KS99] but only at the cost of a higher
polygon number.

2.3 Normal Maps
The missing normal information of simplified
meshes needed for correct shading can be stored
easily in normal maps [COM98], which can be
shaded efficiently in software or on programmable
graphics hardware [TCRS00]. Recently Cole applied
normal maps to view-dependent level of detail
[Col01] and showed their efficiency. Using normal
maps dramatically reduces popping artifacts due to
incorrect shading, but generating a normal map
texture with fixed size for every patch like [COM98]
needs too much memory. Using a normal texture of
128x128 pixel for each of the approx. 8,000 patches
of our Volkswagen Golf model would require

375MB of texture memory. Note, that the sewing is not necessary if the
adjacency relations between boundary curves are
provided by the CAD-System. 2.4 Parametrizations

A few approaches to compress textures on polygonal
models without loss of quality have been proposed in
the recent years. Sloan et al. [SWB98] generate an
importance map for a given 2D parametrization and
warp this square texture to evenly distribute this
scalar field. Another approach approximating a 2D
image [TV91] uses a dynamic simulation, where grid
edge weights are set according to local image
content. This method was extended to 3D surfaces
Balmelli et al. [BTB02] and by Sander et al.
[SGSH02] using a pre integrated signal stretch
metric. They have proven to dramatically reduce
texture size compared to a non specialized
parametrization without loss of quality.

The conversion of the trimming curves and the
sewing are the most time consuming parts of the
preprocessing, but the generated data can be stored
efficiently on disc.
The interactive rendering stage consists of four
phases:
1. computation of the acceptable, view-dependent

geometric error per patch
2. selection of the view dependent LOD in the

Seam Graph
3. culling of invisible patches
4. adaptive, view-dependent tessellation of those

visible NURBS surfaces which require updates All methods in this field have in common that they
generate a piecewise linear parametrization on a
surface. This parametrization can be stored
efficiently for polygonal meshes as texture
coordinates of the vertices. But storing this
information in addition to the existing NURBS
parametrization again results in a high memory
overhead.

3.1 Seam Graph
The trimming curves are first approximated with a
given geometric error in 3D space and then sewn
together into a non-manifold graph. The Seam Graph
data structure [GMK02] was designed to handle a
multi resolution representation of non-manifold
surfaces. The idea is to store a non-manifold surface
as set of manifold surfaces (patches) which are sewn
at non-manifold boundary edges. The vertices of the
edges represent the sewing points in Euclidean space.
Each vertex holds a pointer to each adjacent patch.
Then a multi resolution representation of the edges is
generated using standard edge collapse operations. If
all boundary vertices of a patch are collapsed during
simplification the patch itself also disappears. In this
case the inner of the patch must not be triangulated
further.

3. NURBS RENDERER FRAMEWORK
In the following we briefly describe the NURBS
renderer framework. The overall algorithm to render
a soup of trimmed NURBS patches can be divided
into a preprocessing stage and an interactive
rendering stage. The main data structure of this
algorithm is the Seam Graph. It consists of all
trimming curves of the NURBS patches that were
sewn together in the preprocessing step (figure 1).

Figure 1. Example of a Seam Graph

The cost function used for simplification of the Seam
Graph is the one-sided Hausdorff distance described
in [KLS96]. Since this error measure has a high
computational complexity, the cost computation is
split into two parts by first calculating an upper
bound for the error and only computing the one-sided
Hausdorff distance, when an edge is chosen for
collapse. The upper bound for the error is the sum of
distances of the actual edge and its 1-ring to the
original edges and to the simplified edges.

This preprocessing stage consists of four phases:
1. reading a set of trimmed NURBS patches

without neighbourhood information 3.2 Rendering
2. conversion of trimming curves into poly-lines

guaranteeing an upper approximation error
bound

3.2.1 Culling
Since the algorithm keeps separate patches, standard
culling techniques [MH99] can easily be applied on
the patches, thus reducing the number of patches that
have to be triangulated and the number of rendered
triangles.

3. sewing of adjacent poly-lines with an error in
order of magnitude of the modeling tolerance

4. generation of a multiresolution representation of
these sewn poly-lines resulting in the
hierarchical Seam Graph

3.2.2 LOD Selection
 () ()()

() ()()()

2

2

2

1i i j j

i i j j

u ,v u ,v

S u ,v , u ,vi , j Edges

E ,
′ ′ ′ ′−

′ ′ ′ ′∈

 
= − 

 
∑ Before selecting the view-dependent LOD for the

Seam Graph, an upper bound ε of the geometric
error is calculated for every patch. A single LOD is
chosen for the whole patch, since a view dependent
triangulation of a patch would require the traversal of
the approximation-tree of every patch for every
frame. Furthermore, since the patches are relatively
small the perspective transformation can be
neglected. Nevertheless, for each patch a individual
LOD is chosen.

where () () ()()
b

a

S a,b n ds arccos n a n b ,′′ ′= ≈ ⋅∫ ′

which is similar to the edge length distortion energy
[DMA02]. This similarity is due to the fact that
S(a,b) can be interpreted as the arclength between
two normals on the unit sphere.
To compute this reparametrization, we use a regular
grid in the parameter space of the patch as base
geometry. To minimize the energy we minimize the
local energy of every vertex with respect to each
vertex of its 1-ring [DMA02], until a given threshold
is reached. During this minimization the border of
the parametrization is fixed on a rectangle.

The LOD selection of the Seam Graph now uses
these patch errors to select the view-dependent LOD
by choosing the lowest error of all visible adjacent
patches as error for every vertex. If a vertex has no
visible adjacent patches it is not visible itself and
thus skipped.

To provide a good starting parametrization we first
calculate the maximum signal over the patch in u-
and v-direction (Sumax and Svmax, respectively) to
determine the size of the normal texture. Afterwards,
we compute a simple 1D signal stretch
parametrization Pu and Pv along u and v,
respectively.

3.2.3 On the fly Triangulation of the patches
After selecting the appropriate view dependent LOD
of the Seam Graph the inner of the individual patches
is triangulated on the fly. To reduce the number of
generated triangles without increasing the
computation cost, a kd-tree is used to store the
geometric error of the current subdivision of a patch
as well as the parameter line where the next
subdivision is applied. To find this line, first the
point on the surface with maximum distance to the
current subdivision is computed and then the tree cell
is subdivided along a u or v parameter line through
this point. In such a way must faster convergence is
achieved than using a simple quad-tree for
subdivision. After subdividing the parameter space
the trimming is performed by the edges of the Seam
Graph and the resulting trimmed kd-tree patches are
triangulated. Finally, the parameter vertices are
mapped to 3D space directly using the NURBS
surface.

() ()

0 0

1 1

1 1

1 1

1 1

0 0i , , j

i , j i , j i , j i , j i , j i , j
n m

i i , j j i , j
j i

max i max ji ...m j ...n

j i
max max

i , j i ,k i , j k , j
k ki j

Su Sv
Su S(a ,a) Sv S(a ,a)

Su Su Sv Sv

Su max Su Sv max Sv

Su Sv
Pu Su Pv Sv

Su Sv

− −

= =

= =

= =

= =
= =

= =

= =

= =

∑ ∑

∑ ∑

Where i and j denote the indices of grid points on
parameter domain. These 1D parametrizations Pu
and Pv are combined to Pi,j = (Pui,j Pvi,j) (see figure
2) and the minimization is started.

4. NORMAL MAPS

P

Pu Pv

4.1 Parametrization
In addition to the intrinsic parametrization of the
NURBS patches, we apply a specialized
reparametrization of the normal texture t : ′Ω → Ω

 () () ()
() ()

2 u v

u v

q u ,v q u ,v
q u ,v q u ,v

n : S , u,v ×

×
Ω → →

such that

and

n n t′=

1n′
n
u
n
v

′∂
∂

′∂
∂

 
= ∇ ≈ 

 
,

Figure 2. Generating start parametrization

4.2 Approx. by NURBS parametrization
The problem with this piecewise linear signal stretch
parametrization is that we have to store it on a per
vertex basis, which results in additional storage cost.
To overcome this problem we approximate the
piecewise linear parametrization by a higher order
NURBS parametrization [PT97] over the same

that is unit changes of the normals correspond to unit
distances of the parameter values in . ′Ω

This behaviour is resembled by the following
discrete energy:

knotvector as the surface patch itself. In this way we
have two NURBS patches q and t on the same
parameter domain.

ZERO

AB

CD

A B

C D

AB +
(1-A)C +

D

 halfway
 vector
 normal
 map
 direction
 of light
 diffuse
 color
 specular
 color

const color 0

texture 0

const color 1

primary color

second color

input registers

 RGB A

A

B

C

D

general
combiner 0

A

B

C

D

final
combiner

RGB

Alpha

fragment

A

B

C

D

general
combiner 1

 RGB A

-

AB

A

B

C

D

general
combiner 2, …, n

E

F
EF

-

() () ()

() () ()

3

0 0

2

0 0

u v

u v

u v

u v

m m
i ,k j ,k i , ji j

m m
i ,k j ,k i , ji j

q :

q u,v B u B v Q

t :

t u,v B u B v T

= =

= =

Ω →

=

Ω →

=

∑ ∑

∑ ∑
This is reasonable, as the changes of the normals in
general are smooth on most NURBS models.
However if a NURBS patch has discontinuities the
signal stretch in this area is high and thus the
smoothing is hardly visible. The advantage of this
approximation is, that it reduces the storage costs and
furthermore, the evaluation of the texture coordinates
can be done using the same basis functions for both
the geometric data and the texture data. Instead of 3D
geometry vectors, 5D geometry and texture vectors
used. To find this NURBS approximation of the
signal stretch parametrization we use a standard
approximation algorithm for NURBS surfaces
described in [PT97].

Figure 3. Register Combiner setup

The parametrization of each NURBS patch without
using adjacency may lead to filtering artifacts due to
discontinuities in shading and material. Since we use
the Seam Graph structure and thus preserve the
boundaries of the NURBS patches up to a visible
error of half a pixel, these artifacts are greatly
reduced compared to standard simplification
techniques. Nevertheless, better filtering is subject of
further research.

4.3 Shading
We implemented two different shading algorithms.
The first calculates the shading in software by setting
up a lookup table of the 8192 discrete normals for
every material using the Phong lighting model and
then generating a light map texture by performing a
lookup for every pixel of the normal map texture.
The second performs the shading in hardware with
NVidia’s Register Combiners or ATI’s Fragment
Shaders. Figure 3 shows the setup for Phong shading
with different exponents. The dashed lines at the
input registers denote whether the alpha value is used
or not. Note that the diffuse and specular color values
need to be multiplied with the lightsource color
before rendering.
When using software shading, the renderer is limited
to 8192 different normals, because of the high
computation cost of the phong rendering equation.
When using hardware shading, more normals are
possible, but the phong exponent has a limited set of
values (eg. 2, 4, 8, and 16 when using a GeForce3
and single pass rendering). Furthermore, software

shading allows the use of any shading equation like
Lambertian or BRDFs using a lookup table.

4.4 Load Balancing
As in [GMK02] load balancing between consecutive
frames is achieved by restricting the number of
updated and triangulated patches per frame to
guarantee constant frame rates. During triangulation
a vertex split or edge collapse is only allowed if this
operation does not exceed the allowed number of
updated triangles per frame. Every triangulation has
a valid range between the maximum error of the
current binary-tree leafs (ε min) and the minimum
error of their parents (ε max). Thus a patch only needs
to be triangulated if its desired error ε lies outside
this range. These are recursively selected for
triangulation by a weight function w:

 w /
()2

0 els

min min

max max

/ ,
,

, e

ε ε ε ε
ε ε ε

 <


= ≥



ε

When normal maps are used the angle α with
minimum |cosα | is computed during back-face
culling using the normal cone of the patch. Since
sinα is the relation between the geometric and the
visible error, the weight function changes to:

()()2max 1 sin

0 e

min min

max max

, / ,

,
, lse

w /

ε α ε ε ε

ε ε ε

 ⋅ <

= ≥



ε

As in [GMK02] we extent the weight function to
update culled patches only if calculation time is left
to:

patch visible
1 1 patch culled
w,

w
/ w,

′ =  −

Triangulation is stopped if all patches have a weight
of zero, or the new patch would increase the number
of tessellated triangles above a given threshold.
The update is restricted to at most 1,000 new and
10,000 updated parameter space triangles per frame
(see [GMK02] for details). If the visible error ε vis
exceeds 1 pixel unit, the number of new triangles is
modified to be 1,000 · ε vis reducing the error at the
cost of lower frame rates. The visible error is
calculated by following function:

()
()

all patches

all patches

max OpenGL lighting

max sin normal maps

min

vis
min

/

/

ε ε
ε

ε α ε

= 
⋅

This reduces the visible error when using normal
maps and thus increases the frame rate.
Additionally we extent the load balancing to the
Seam Graph for large models. Since the desired error
of Seam Graph vertices is temporally coherent, the
active vertices can be split into three groups:

1. vertices that need to be split
2. vertices that can be collapsed
3. vertices with correct error

The vertices in group 1 and 2 are checked every
frame to prevent unnecessary splits and collapses,
but only 1,000 of the vertices in the third group are
checked per frame.

4.5 Env. mapping & Reflection lines
Environment mapping is only implemented in
software so far and is a simple alteration of the
shading lookup table.
For each material the environment map is prefiltered
with the according Phong exponent and an
environment map for diffuse lighting is calculated.
Instead of evaluating a shading model, the reflected
ray depending on the normal and the viewing
direction is calculated and two texture lookups are
conducted: one in the diffuse texture with the normal
and one in the specular texture of the material with
the reflected ray.

5. RESULTS
The quality of the approximation is calculated as the
sum of square distances weighted with the local area
of the samples [SGSH02], where the deviation of the
normal signal between the signal stretch compressed
normal map is calculated in degree.
Since we use 8192 normals for software shading,
leading to a resolution of 2.8125°, we choose
multiples of this resolution for the signal stretch
resolution in our normal map texture. Table 1 shows
the signal approximation error, with hardware
shading (left of the slash) and software shading

(right), for different sampling resolutions using the
grid directly and its NURBS Texture Surface
[GVW00] approximation using the same knot
vectors. The grid resolution used is 16x16 cells.

 wheel rims car body comp. car
materials 1 1 9
patches 302 1,620 8,036

signal stretch resolution: 5.625°
texture size 97x1024 195x1024 1282x1024
SAE grid 2.73°/2.93° 2.07°/2.24° 2.15°/2.36°
SAE Nurbs 2.87°/2.93° 2.07°/2.30° 2.15°/2.36°

signal stretch resolution: 11.25°
texture size 37x1024 101x1024 643x1024
SAE grid 4.77°/4.97° 2.76°/2.89° 3.33°/3.46°
SAE Nurbs 4.85°/4.89° 2.75°/2.89° 3.33°/3.49°

Table 1. Results of NURBS normal maps at
different resolutions

The best relation between signal approximation error
(SAE) and texture size is at a signal stretch resolution
of 11.25°. Note that the NURBS approximation even
leads to a lower SAE than the grid in some cases.
Storing the signal stretch grid needs 2312 Bytes per
surface (17.7MB for the complete car), while the
NURBS needs only approx. 200 Bytes per surface
(1.5MB for the complete car).
The minimization of the signal stretch grid takes 39.4
iterations on average per surface for the Volkswagen
Golf model with a threshold of 0.1 pixel and a
resolution of 11.25° per pixel using our start
parametrization. Note that using a uniform grid as
start parametrization leads to 56.6 iterations per
surface.
The preprocessing times and rendering statistics for
the complete car model are shown in table 2.

 OpenGL normal maps
preprocessing 436 sec 1348 sec
max. triangles 46,896 48,556
avg. fps 13.420 10.181
max. error 2.716 3.098
memory 103.1MB 107.1MB
Table 2. Results of different shading algorithms

The software shader can render approx. 1,000
materials per second. Furthermore, some extra time
is needed to compute texture coordinates. The
additional memory allocation is 200 Bytes per
surface for signal stretch parametrization and 3KByte
per line of normal map textures (2556KB) and
2KByte per line used (1286KB) for normal indices.
Figure 4 shows the visible geometric error and the
frame rates of OpenGL and hardware normal map
shading while rendering the animation.
When using hardware normal map shading the only
computational overhead is caused by computing the
texture coordinates. Furthermore, the memory

allocation is reduced compared to software shading,
because only normal map textures are needed, which
require 3KByte per line (2556KB).
The difference in the visible error is low, since it is a
geometric and not shading dependent error. Figure 5
and 6 show a frame from the rendered animation
using OpenGL shading and with normal map
shading. The visual enhancement is clearly visible at
high curvature regions like the curved parts of the
wheel rim.

Note that both images were rendered at a resolution
of 1024x768 and have a visible geometric error of
0.67 pixel.
When using OpenGL shading, the appearance of the
patches is not considered leading to visible artifacts
(see magnified region in figure 5).
The normal map shading is appearance-preserving

and thus renders visually correct shading (see
magnified region in figure 6).
Finally figure 7 shows a wheel rim rendered with
isophotes and a reflection lines environment texture,
which are important tools for surface interrogation.

The videos of the rendered animation are presented
at http://cg.cs.uni-bonn.de/project-pages/opensg-
plus/videos/.

6. CONCLUSION & FUTURE WORK
In this paper we presented a novel method to
efficiently add normal maps to NURBS models by
employing a signal stretch technique for the normals
and modifying it to produce texture control points.
We showed that our method works very well as
extension to an existing NURBS visualization system
and improves the visual quality without significantly
reducing the frame rate. As an addition to normal
map shading in software and hardware, we
implemented environment mapping into our shader
giving designers important feedback with reflection
line environment maps.
As future work we will implement the environment
mapping in the hardware shader and explore
different approaches to prevent filtering artifacts of
the material textures and normal maps caused by the
LOD algorithm.

7. ACKNOWLEDGMENTS
This project was partially funded by the German
Ministry of Education and Research under the
project of OpenSG Plus.

We thank Volkswagen and DaimlerChrysler for
providing us with the trimmed NURBS models.

Figure 7. Wheel rim rendered with isophotes
and reflection lines

Figure 5. Image from animation using
OpenGL shading

(a) results using OpenGL shading

Figure 4. Visible error and frame rates of
different algorithms

(b) results using hardware normal map shading

Figure 6. Image from animation using normal
maps 8. REFERENCES

 [BSGM02] W. V. Baxter, A. Sud, N. K.
Govindaraju, and D. Manocha, Gigawalk:
Interactive walkthrough of complex
environments, 2002.

[BTB02] L. Balmelli, G. Taubin, and F. Bernadini,
Space-Optimized Texture Maps. Computer
Graphics Forum 21(3), pp.411-420, 2002.

http://cg.cs.uni-bonn.de/project-pages/opensg-plus/videos/
http://cg.cs.uni-bonn.de/project-pages/opensg-plus/videos/

[Col01] F. Cole, View Dependent Appearance
Preserving Simplification. Computer Graphics
Special Topics, 2001.

[COM98] J. Cohen, M. Olano, and D. Manocha,
Appearance-Preserving Simplification.
Proceedings of SIGGRAPH ’98, in Computer
Graphics, Annual Conference Series, 1998.

[DMA02] M. Desbrun, M. Meyer, and P. Alliez,
Intrinsic Parametrizations of Surface Meshes.
Computer Graphics Forum 21(2), 2002.

[EV99] J. El-Sana and A. Varshney, Generalized
view-dependant simplification. Computer
Graphics Forum 18(3), pp.83-94, 1999.

[FK90] D. R. Forsey and R. V. Klassen, An adaptive
subdivision algorithm for crack prevention in the
display of parametric surfaces. In Graphics
Interfaces ’90, pp.1-8, 1990.

[FMP02] L. D. Floriani, P. Magillo, and D. S. E.
Puppo, A multi-resolution topological
representation for non-manifold meshes. in 7th
ACM Symposium on Solid Modeling and
Applications, 2002.

 [GMK02] M. Guthe, J. Meseth, and R. Klein, Fast
and memory efficient view-dependant trimmed
NURBS rendering. In Pacific Graphics 2002, pp.
204-213, 2002.

[GVW00] H. Grahn, T. Volk, and H. J. Wolters,
NURBS in VRML. In Proceedings of the
Web3D-VRML 2000 fifth symposium on Virtual
reality modeling language, pp.35-43, 2000.

[HB87] B. von Herzen and A. H. Barr, Accurate
Triangulations of Deformed Intersecting
Surfaces. In ACM SIGGRAPH, pp.103-110,
1987.

[Hop96] H. Hoppe, Progressive meshes. Computer
Graphics 30, pp.99-108, 1996.

[Hop97] H. Hoppe, View-dependent refinement of
progressive meshes. Computer Graphics 31,
pp.189-198, 1997.

[KBK02] F. Kahlesz, A. Balazs, and R. Klein,
Multiresolution rendering by sewing trimmed
NURBS surfaces. in 7th ACM Symposium on
Solid Modeling and Applications 2002, pp.281-
288, 2002.

[KK97] R. Klein and J. Krämer, Multiresolution
representations for surface meshes. In
Proceedings of the SCCG, pp.57-66, 1997.

[Kle98] R. Klein, Multiresolution representations for
surface meshes based on the vertex decimation
method. Computers and Graphics, 22(1), pp.13-
26, 1998.

[KLS96] R. Klein, G. Liebich, and W. Straßer, Mesh
reduction with error control. In IEEE
Visualization ’96, pp.311-318, 1996.

[KMZH97] S. Kumar, D. Manocha, H. Zhang, and
K. E. Hoff, Accelerated walkthrough of large
spline models. in 1997 Symposium on Interactive
3D Graphics, pp.91-102, 1997.

[KS99] R. Klein, A. Schilling, Efficient rendering of
multiresolution meshes with guaranteed image
quality. in The Visual Computer 99, 1999.

[LE97] D. Luebke and C. Erikson, View-dependent
simplification of arbitrary polygonal
environments. Computer Graphics 31, pp.199-
208, 1997.

[Lue01] D. Luebke, A developer’s survey of polygon
simplification algorithms. In IEEE CG & A,
pp.24-35, 2001.

[MH99] T. A. Moeller and E. Haines, Real Time
Rendering. A K Peters Ltd., 1st edition, 1999.

[NSK90] T. Nishita, T. W. Sederberg, and M.
Kakimoto, Ray tracing trimmed rational surface
patches. in Computer Graphics 24, pp.337-345,
1990.

[Paj01] R. Pajarola, Fastmesh: Efficient view-
dependent meshing. In Pacific Graphics 2001, pp.
22-30, 2001.

[PT97] L. Piegl and W. Tiller, The NURBS Book,
Second Edition. Springer, 1997.

[RHD89] A. Rockwood, K. Heaton, and T. Davis,
Real-Time Rendering of Trimmed Surfaces. In
ACM SIGGRAPH Proceedings 23(3), pp.149-
156, 1989.

[SC88] M. Shanz and S.-L. Chang, Rendering
trimmed NURBS with adaptive forward
differencing. In Computer Graphics 22, pp.189-
198, August 1988.

[SGSH02] P. V. Sander, S. J. Gortler, J. Snyder, and
H. Hoppe, Signal-Specialized Parametrization,
13th Eurographics Workshop on Rendering,
2002.

[SWB98] P.-P. Sloan, D. Weinstein, and J.
Brederson, Importance driven texture coordinate
optimization. Computer Graphics Forum 17(3),
pp.97-104, 1998.

[TCRS00] M. Tarini, P. Cignoni, C. Rocchini, and R.
Scopigno, Real Time, Accurate, Multi-Featured
Rendering of Bump Mapped Surfaces. Computer
Graphics Forum 19, 2000.

[TV91] D. Terzopoulos and M. Vasilescu, Sampling
and reconstruction with adaptive meshes. CVPR
1991, pp.70-75, 1991.

[XV96] J. C. Xia and A. Varshney, Dynamic view-
dependent simplification for polygonal models. In
IEEE Visualization ’96, pp.335-344, 1996.

