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ABSTRACT 
Rendering large trimmed NURBS models with high quality at interactive frame rates is of great interest for 
industry, since nearly all their models are designed on the basis of this surface type. Most existing approaches 
transform the NURBS surfaces into polygonal representation and build static levels of detail. Unfortunately, 
algorithms which keep the NURBS representation and generate view-dependent LOD on the fly suffer from the 
problem, that they only calculate the geometric error of an approximation, but no care is taken of the 
illumination artifacts introduced by the chosen view-dependent triangulation. 
Normal maps have proven to be very accurate in providing better visual quality without increasing the 
complexity of the geometry itself and thus solving this problem, but need much memory to store the normal 
textures. In this paper we present a novel approach to apply normal maps to view-dependent NURBS rendering 
with small memory and computational overhead. Additionally, we apply our approach to render isophotes and 
environment maps such as reflection lines on view dependent triangulations with high visual fidelity. 
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1. INTRODUCTION 
The industrial design of models for prototyping and 
production is nearly always performed with the 
support of Computer Aided Design (CAD) geometric 
modeling tools. The fundamental geometric entities 
in such systems are trimmed Non-Uniform Rational 
B-Splines (NURBS) due to their ability to 
conveniently describe surfaces of almost any shape. 
Since current graphics hardware does not support 
direct rendering of trimmed NURBS in their original 
representation, they need to be transformed e.g. into 
a polygonal representation (tessellation). Rendering 
these tessellations at high frame rates with high 
quality is an important problem, as many models 
from industry are very complex (thousands of 

patches) and thus require millions of triangles for an 
accurate visualization. 
Reducing the number of triangles to be rendered can 
be achieved by two main techniques: 
• Culling techniques like view frustum, backface 

and occlusion culling reduce the number of 
triangles by deciding which are not visible. 

• Level of detail (LOD) techniques try to 
minimize the number of triangles before sending 
them to the graphics pipeline. 

Traditional NURBS rendering approaches which 
support LOD generate a very fine triangulation at the 
beginning which is stored along with a hierachy of 
static LODs or a progressive representation. 
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A more recent approach which generates the desired 
LOD on the fly from the NURBS surface itself does 
not take care of visual artifacts introduced by the 
triangulation. The main problem is, that the only 
error measure that can be used for realtime 
applications to select the necessary LOD is an upper 
bound of the geometric error. As the model is 
rendered, the shading model is only evaluated at the 
vertices of the current triangulation, leading to visual 



artifacts, especially at highlights and when rendering 
isophotes or reflection lines. 

1.1 Main Contributions 
In this paper we introduce a new method for 
rendering complex trimmed NURBS surfaces with 
high quality at interactive frames rates, by extending 
a previous view-dependent LOD technique for 
trimmed NURBS surfaces [GMK02] by the use of 
normal maps. 

The main advantages of our approach are: 

• Using a special parametrization for the 
normal map, the memory and computational 
overhead are very small compared to 
previous approaches. 

• Software shading and hardware shading 
with NVidia Register Combiners or ATI 
Fragment Shaders to render the LODs with 
normal mapping can be used. 

• The algorithm supports the rendering of 
environment maps, isophotes and reflection 
lines in combination with view-dependent 
LOD with high visual fidelity. 

1.2 Paper Structure 
The rest of the paper is organized as follows: 
In section 2 results from related areas are discussed. 
In section 3 we briefly describe the overall rendering 
algorithms our extension is build on. Section 4 
covers the description of our new algorithm and its 
integration into the existing framework. In section 5 
we report results and section 6 concludes and 
describes future work. 

2. RELATED WORK 
2.1 Level of Detail 
Creating levels of detail (LOD) for geometric objects 
has become a common approach in the last decade, a 
good overview of LOD techniques can be found in 
[Lue01]. One of the early results by Hoppe [Hop96] 
introduced progressive meshes and edge collapses. 
This approach was improved to yield view-
dependent, progressive LODs by Xia et al. [XV96], 
Hoppe [Hop97] and Klein [KK97][Kle98], while 
Luebke et al. [LE97] introduced view-dependent 
LOD for arbitrary topology. The vertex numbering 
scheme introduced by El-Sana and Varshney [EV99] 
encodes partial ordering of the simplifications steps 
very efficiently. A recent publication proving the 
efficiency of the view-dependent approach is 
[Paj01]. 
The main drawback of these view-dependent LOD 
techniques is the huge amount of memory needed to 
store the hierarchy, see [FMP02]. 

2.2 Trimmed NURBS Rendering 
Rendering trimmed NURBS surfaces has been a field 
of great interest in the recent years. Different 
approaches have been elaborated for visualization, 
like ray-tracing [NSK90], pixel level subdivision 
[SC88] or polygon tessellation [HB87][RHD89] 
[FK90][KS99], of which the triangle based methods 
are generally much faster especially due to recent 
advances in graphics hardware. On a multiprocessor 
system these triangulated models can be rendered at 
interactive rates [BSGM02], but this requires 
massive amounts of memory for storing the 
hierarchical static levels of detail, since every vertex 
of the finest triangulation needs approximately 65 
Bytes of memory (including vertex normals) 
[FMP02]. 
However, current approaches are able to render 
trimmed NURBS at interactive frame rates by 
combining several patches to so-called super-
surfaces. The approach made by Kumar et al. 
[KMZH97] statically clusters sets of trimmed 
NURBS patches that need to be sewn at runtime. A 
more recent approach [GMK02] based on a 
technique to repair CAD models [KBK02] provides a 
more accurate visualization at higher frame rates by 
using a non-manifold data structure to store the sewn 
trimming curves between patches that are computed 
in a preprocessing step and generate triangulations 
on the fly. 
The problem is that all the above approaches only 
control the geometric error of the tessellation leading 
to visible popping artifacts in the shading, when the 
LOD of a patch changes. Furthermore, highlights of 
distant surfaces are not rendered correctly. This 
cannot be solved by Phong shading only, since the 
surface normal does not change linearly over the 
patch and thus information is missing. In priciple this 
problem can be solved by choosing the adaptive 
LOD based on a geometric and illumination based  
criterion [KS99] but only at the cost of a higher 
polygon number. 

2.3 Normal Maps 
The missing normal information of simplified 
meshes needed for correct shading can be stored 
easily in normal maps [COM98], which can be 
shaded efficiently in software or on programmable 
graphics hardware [TCRS00]. Recently Cole applied 
normal maps to view-dependent level of detail 
[Col01] and showed their efficiency. Using normal 
maps dramatically reduces popping artifacts due to 
incorrect shading, but generating a normal map 
texture with fixed size for every patch like [COM98] 
needs too much memory. Using a normal texture of 
128x128 pixel for each of the approx. 8,000 patches 
of our Volkswagen Golf model would require 



375MB of texture memory. Note, that the sewing is not necessary if the 
adjacency relations between boundary curves are 
provided by the CAD-System. 2.4 Parametrizations 

A few approaches to compress textures on polygonal 
models without loss of quality have been proposed in 
the recent years. Sloan et al. [SWB98] generate an 
importance map for a given 2D parametrization and 
warp this square texture to evenly distribute this 
scalar field. Another approach approximating a 2D 
image [TV91] uses a dynamic simulation, where grid 
edge weights are set according to local image 
content. This method was extended to 3D surfaces 
Balmelli et al. [BTB02] and by Sander et al. 
[SGSH02] using a pre integrated signal stretch 
metric. They have proven to dramatically reduce 
texture size compared to a non specialized 
parametrization without loss of quality. 

The conversion of the trimming curves and the 
sewing are the most time consuming parts of the 
preprocessing, but the generated data can be stored 
efficiently on disc. 
The interactive rendering stage consists of four 
phases: 
1. computation of the acceptable, view-dependent 

geometric error per patch 
2. selection of the view dependent LOD in the 

Seam Graph 
3. culling of invisible patches 
4. adaptive, view-dependent tessellation of those 

visible NURBS surfaces which require updates All methods in this field have in common that they 
generate a piecewise linear parametrization on a 
surface. This parametrization can be stored 
efficiently for polygonal meshes as texture 
coordinates of the vertices. But storing this 
information in addition to the existing NURBS 
parametrization again results in a high memory 
overhead. 

3.1 Seam Graph 
The trimming curves are first approximated with a 
given geometric error in 3D space and then sewn 
together into a non-manifold graph. The Seam Graph 
data structure [GMK02] was designed to handle a 
multi resolution representation of non-manifold 
surfaces. The idea is to store a non-manifold surface 
as set of manifold surfaces (patches) which are sewn 
at non-manifold boundary edges. The vertices of the 
edges represent the sewing points in Euclidean space. 
Each vertex holds a pointer to each adjacent patch. 
Then a multi resolution representation of the edges is 
generated using standard edge collapse operations. If 
all boundary vertices of a patch are collapsed during 
simplification the patch itself also disappears. In this 
case the inner of the patch must not be triangulated 
further. 

3. NURBS RENDERER FRAMEWORK 
In the following we briefly describe the NURBS 
renderer framework. The overall algorithm to render 
a soup of trimmed NURBS patches can be divided 
into a preprocessing stage and an interactive 
rendering stage. The main data structure of this 
algorithm is the Seam Graph. It consists of all 
trimming curves of the NURBS patches that were 
sewn together in the preprocessing step (figure 1). 

Figure 1. Example of a Seam Graph

The cost function used for simplification of the Seam 
Graph is the one-sided Hausdorff distance described 
in [KLS96]. Since this error measure has a high 
computational complexity, the cost computation is 
split into two parts by first calculating an upper 
bound for the error and only computing the one-sided 
Hausdorff distance, when an edge is chosen for 
collapse. The upper bound for the error is the sum of 
distances of the actual edge and its 1-ring to the 
original edges and to the simplified edges. 

This preprocessing stage consists of four phases: 
1. reading a set of trimmed NURBS patches 

without neighbourhood information 3.2 Rendering 
2. conversion of trimming curves into poly-lines 

guaranteeing an upper approximation error 
bound 

3.2.1 Culling 
Since the algorithm keeps separate patches, standard 
culling techniques [MH99] can easily be applied on 
the patches, thus reducing the number of patches that 
have to be triangulated and the number of rendered 
triangles. 

3. sewing of adjacent poly-lines with an error in 
order of magnitude of the modeling tolerance 

4. generation of a multiresolution representation of 
these sewn poly-lines resulting in the 
hierarchical Seam Graph 



3.2.2 LOD Selection 
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Seam Graph, an upper bound ε of the geometric 
error is calculated for every patch. A single LOD is 
chosen for the whole patch, since a view dependent 
triangulation of a patch would require the traversal of 
the approximation-tree of every patch for every 
frame. Furthermore, since the patches are relatively 
small the perspective transformation can be 
neglected. Nevertheless, for each patch a individual 
LOD is chosen.  
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which is similar to the edge length distortion energy 
[DMA02]. This similarity is due to the fact that 
S(a,b) can be interpreted as the arclength between 
two normals on the unit sphere. 
To compute this reparametrization, we use a regular 
grid in the parameter space of the patch as base 
geometry. To minimize the energy we minimize the 
local energy of every vertex with respect to each 
vertex of its 1-ring [DMA02], until a given threshold 
is reached. During this minimization the border of 
the parametrization is fixed on a rectangle. 

The LOD selection of the Seam Graph now uses 
these patch errors to select the view-dependent LOD 
by choosing the lowest error of all visible adjacent 
patches as error for every vertex. If a vertex has no 
visible adjacent patches it is not visible itself and 
thus skipped. 

To provide a good starting parametrization we first 
calculate the maximum signal over the patch in u- 
and v-direction (Sumax and Svmax, respectively) to 
determine the size of the normal texture. Afterwards, 
we compute a simple 1D signal stretch 
parametrization Pu and Pv along u and v, 
respectively. 

3.2.3 On the fly Triangulation of the patches 
After selecting the appropriate view dependent LOD 
of the Seam Graph the inner of the individual patches 
is triangulated on the fly. To reduce the number of 
generated triangles without increasing the 
computation cost, a kd-tree is used to store the 
geometric error of the current subdivision of a patch 
as well as the parameter line where the next 
subdivision is applied. To find this line, first the 
point on the surface with maximum distance to the 
current subdivision is computed and then the tree cell 
is subdivided along a u or v parameter line through 
this point. In such a way must faster convergence is 
achieved than using a simple quad-tree for 
subdivision. After subdividing the parameter space 
the trimming is performed by the edges of the Seam 
Graph and the resulting trimmed kd-tree patches are 
triangulated. Finally, the parameter vertices are 
mapped to 3D space directly using the NURBS 
surface. 
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Where i and j denote the indices of grid points on 
parameter domain. These 1D parametrizations Pu 
and Pv are combined to Pi,j = (Pui,j Pvi,j) (see figure 
2) and the minimization is started. 

4. NORMAL MAPS  

P

Pu Pv

4.1 Parametrization 
In addition to the intrinsic parametrization of the 
NURBS patches, we apply a specialized 
reparametrization  of the normal texture t : ′Ω → Ω
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Figure 2. Generating start parametrization 

4.2 Approx. by NURBS parametrization 
The problem with this piecewise linear signal stretch 
parametrization is that we have to store it on a per 
vertex basis, which results in additional storage cost. 
To overcome this problem we approximate the 
piecewise linear parametrization by a higher order 
NURBS parametrization [PT97] over the same 

that is unit changes of the normals correspond to unit 
distances of the parameter values in . ′Ω

This behaviour is resembled by the following 
discrete energy: 



knotvector as the surface patch itself. In this way we 
have two NURBS patches q and t on the same 
parameter domain. 
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This is reasonable, as the changes of the normals in 
general are smooth on most NURBS models. 
However if a NURBS patch has discontinuities the 
signal stretch in this area is high and thus the 
smoothing is hardly visible. The advantage of this 
approximation is, that it reduces the storage costs and 
furthermore, the evaluation of the texture coordinates 
can be done using the same basis functions for both 
the geometric data and the texture data. Instead of 3D 
geometry vectors, 5D geometry and texture vectors 
used. To find this NURBS approximation of the 
signal stretch parametrization we use a standard 
approximation algorithm for NURBS surfaces 
described in [PT97]. 

Figure 3. Register Combiner setup 

The parametrization of each NURBS patch without 
using adjacency may lead to filtering artifacts due to 
discontinuities in shading and material. Since we use 
the Seam Graph structure and thus preserve the 
boundaries of the NURBS patches up to a visible 
error of half a pixel, these artifacts are greatly 
reduced compared to standard simplification 
techniques. Nevertheless, better filtering is subject of 
further research. 

4.3 Shading 
We implemented two different shading algorithms. 
The first calculates the shading in software by setting 
up a lookup table of the 8192 discrete normals for 
every material using the Phong lighting model and 
then generating a light map texture by performing a 
lookup for every pixel of the normal  map texture. 
The second performs the shading in hardware with 
NVidia’s Register Combiners or ATI’s Fragment 
Shaders. Figure 3 shows the setup for Phong shading 
with different exponents. The dashed lines at the 
input registers denote whether the alpha value is used 
or not. Note that the diffuse and specular color values 
need to be multiplied with the lightsource color 
before rendering. 
When using software shading, the renderer is limited 
to 8192 different normals, because of the high 
computation cost of the phong rendering equation. 
When using hardware shading, more normals are 
possible, but the phong exponent has a limited set of 
values (eg. 2, 4, 8, and 16 when using a GeForce3 
and single pass rendering). Furthermore, software 

shading allows the use of any shading equation like 
Lambertian or BRDFs using a lookup table. 

4.4 Load Balancing 
As in [GMK02] load balancing between consecutive 
frames is achieved by restricting the number of 
updated and triangulated patches per frame to 
guarantee constant frame rates. During triangulation 
a vertex split or edge collapse is only allowed if this 
operation does not exceed the allowed number of 
updated triangles per frame. Every triangulation has 
a valid range between the maximum error of the 
current binary-tree leafs ( ε min) and the minimum 
error of their parents ( ε max). Thus a patch only needs 
to be triangulated if its desired error ε lies outside 
this range. These are recursively selected for 
triangulation by a weight function w: 
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When normal maps are used the angle α  with 
minimum |cosα | is computed during back-face 
culling using the normal cone of the patch. Since 
sinα  is the relation between the geometric and the 
visible error, the weight function changes to: 
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update culled patches only if calculation time is left 
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Triangulation is stopped if all patches have a weight 
of zero, or the new patch would increase the number 
of tessellated triangles above a given threshold. 
The update is restricted to at most 1,000 new and 
10,000 updated parameter space triangles per frame 
(see [GMK02] for details). If the visible error ε vis 
exceeds 1 pixel unit, the number of new triangles is 
modified to be 1,000 · ε vis reducing the error at the 
cost of lower frame rates. The visible error is 
calculated by following function: 
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all patches
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max sin normal maps

min
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This reduces the visible error when using normal 
maps and thus increases the frame rate. 
Additionally we extent the load balancing to the 
Seam Graph for large models. Since the desired error 
of Seam Graph vertices is temporally coherent, the 
active vertices can be split into three groups: 

1. vertices that need to be split 
2. vertices that can be collapsed 
3. vertices with correct error 

The vertices in group 1 and 2 are checked every 
frame to prevent unnecessary splits and collapses, 
but only 1,000 of the vertices in the third group are 
checked per frame. 

4.5 Env. mapping & Reflection lines 
Environment mapping is only implemented in 
software so far and is a simple alteration of the 
shading lookup table. 
For each material the environment map is prefiltered 
with the according Phong exponent and an 
environment map for diffuse lighting is calculated. 
Instead of evaluating a shading model, the reflected 
ray depending on the normal and the viewing 
direction is calculated and two texture lookups are 
conducted: one in the diffuse texture with the normal 
and one in the specular texture of the material with 
the reflected ray. 

5. RESULTS 
The quality of the approximation is calculated as the 
sum of square distances weighted with the local area 
of the samples [SGSH02], where the deviation of the 
normal signal between the signal stretch compressed 
normal map is calculated in degree. 
Since we use 8192 normals for software shading, 
leading to a resolution of  2.8125°, we choose 
multiples of this resolution for the signal stretch 
resolution in our normal map texture. Table 1 shows 
the signal approximation error, with hardware 
shading (left of the slash) and software shading 

(right), for different sampling resolutions using the 
grid directly and its NURBS Texture Surface 
[GVW00] approximation using the same knot 
vectors. The grid resolution used is 16x16 cells. 

 wheel rims car body comp. car 
materials 1 1 9
patches 302 1,620 8,036

signal stretch resolution: 5.625° 
texture size 97x1024 195x1024 1282x1024
SAE grid 2.73°/2.93° 2.07°/2.24° 2.15°/2.36°
SAE Nurbs 2.87°/2.93° 2.07°/2.30° 2.15°/2.36°

signal stretch resolution: 11.25° 
texture size 37x1024 101x1024 643x1024
SAE grid 4.77°/4.97° 2.76°/2.89° 3.33°/3.46°
SAE Nurbs 4.85°/4.89° 2.75°/2.89° 3.33°/3.49°

Table 1. Results of NURBS normal maps at 
different resolutions 

The best relation between signal approximation error 
(SAE) and texture size is at a signal stretch resolution 
of 11.25°. Note that the NURBS approximation even 
leads to a lower SAE than the grid in some cases. 
Storing the signal stretch grid needs 2312 Bytes per 
surface (17.7MB for the complete car), while the 
NURBS needs only approx. 200 Bytes per surface 
(1.5MB for the complete car). 
The minimization of the signal stretch grid takes 39.4 
iterations on average per surface for the Volkswagen 
Golf model with a threshold of  0.1 pixel and a 
resolution of 11.25° per pixel using our start 
parametrization. Note that using a uniform grid as 
start parametrization leads to 56.6 iterations per 
surface. 
The preprocessing times and rendering statistics for 
the complete car model are shown in table 2. 

 OpenGL normal maps 
preprocessing 436 sec 1348 sec
max. triangles 46,896 48,556
avg. fps 13.420 10.181
max. error 2.716 3.098
memory 103.1MB 107.1MB
Table 2. Results of different shading algorithms 

The software shader can render approx. 1,000 
materials per second. Furthermore, some extra time 
is needed to compute texture coordinates. The 
additional memory allocation is 200 Bytes per 
surface for signal stretch parametrization and 3KByte 
per line of normal map textures (2556KB) and 
2KByte per line used (1286KB) for normal indices. 
Figure 4 shows the visible geometric error and the 
frame rates of OpenGL and hardware normal map 
shading while rendering the animation. 
When using hardware normal map shading the only 
computational overhead is caused by computing the 
texture coordinates. Furthermore, the memory 



allocation is reduced compared to software shading, 
because only normal map textures are needed, which 
require 3KByte per line (2556KB). 
The difference in the visible error is low, since it is a 
geometric and not shading dependent error. Figure 5 
and 6 show a frame from the rendered animation 
using OpenGL shading and with normal map 
shading. The visual enhancement is clearly visible at 
high curvature regions like the curved parts of the 
wheel rim. 

Note that both images were rendered at a resolution 
of 1024x768 and have a visible geometric error of 
0.67 pixel. 
When using OpenGL shading, the appearance of the 
patches is not considered leading to visible artifacts 
(see magnified region in figure 5). 
The normal map shading is appearance-preserving 

and thus renders visually correct shading (see 
magnified region in figure 6). 
Finally figure 7 shows a wheel rim rendered with 
isophotes and a reflection lines environment texture, 
which are important tools for surface interrogation. 

The videos of the rendered animation are presented 
at http://cg.cs.uni-bonn.de/project-pages/opensg-
plus/videos/. 

6. CONCLUSION & FUTURE WORK 
In this paper we presented a novel method to 
efficiently add normal maps to NURBS models by 
employing a signal stretch technique for the normals 
and modifying it to produce texture control points. 
We showed that our method works very well as 
extension to an existing NURBS visualization system 
and improves the visual quality without significantly 
reducing the frame rate. As an addition to normal 
map shading in software and hardware, we 
implemented environment mapping into our shader 
giving designers important feedback with reflection 
line environment maps. 
As future work we will implement the environment 
mapping in the hardware shader and explore 
different approaches to prevent filtering artifacts of 
the material textures and normal maps caused by the 
LOD algorithm. 
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Figure 7. Wheel rim rendered with isophotes 
and reflection lines 

Figure 5. Image from animation using 
OpenGL shading 

(a) results using OpenGL shading

Figure 4. Visible error and frame rates of 
different algorithms 

(b) results using hardware normal map shading

Figure 6. Image from animation using normal 
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