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ABSTRACT 

This paper describes a new method for analysis/synthesis of textures using a non-parametric multi-resolution 
approach able to reproduce efficiently the generative stochastic process of a wide class of real texture images. 
This is realized through a new data structure the Antipole Tree and a suitable research strategy able to outperform 
both the classical linear full-search heuristic and the TSVQ (Tree Structure Vector Quantization) acceleration 
used in previous related works. Experimental results performed on an exhaustive set of textures [VisTex] show 
the effectiveness of the proposed approach.  
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1. INTRODUCTION 
The exciting world of “texture”, with its different 
application and results (texture classification, 
discrimination, retrieval, mapping and/or rendering) 
represent only a partial view of the various lines of 
research and application fields. Among others, to be 
able to realize fast and effective algorithm for texture 
synthesis, with high performance both in term of real 
time generation and perceived quality is a fascinating 
goal. Two different strategies or lines of research 
have been followed in the literature. The more 
ambitious one tries to “learn”, with a proper set of 
filters, the underlying stochastic model ([Cro83]) of 
an input texture; the synthesis is then obtained by a 
suitable sampling. The main drawback of these 
methodologies is the computational complexity that 
tends to be impractical for real-time applications 
[Wu00]. More efficient techniques tend to properly 
match texture features ([Por00]), measured at 
different resolution levels ([Bur83]): a series of 
heuristics are used without explicitly derive a real 
mathematical model. In [Heg95] and [Deb97] 
impressive results using marginal histograms of 
image pyramids and maintaining cross-scale 

dependencies are obtained (see also [Bat00a], 
[Bat01b]).  

More recently [Efr99] and [Wey00] pointed out a 
series of simple but effective techniques showing 
excellent results on large class of textures. In 
particular the work presented in [Wey00] has been 
furtherly generalized in [Her01] to realize a 
computational framework where analogies between 
pairs of images can be deduced. Other techniques 
such as those presented in [Xu01b] combine together 
smart patch merging. This paper describes a series of 
possible solutions trying to improve existing 
algorithmic solutions by making use of advanced 
approximated search data structures. The procedural 
approach described in [Wey00] applies a 
multiresolution technique tracking neighborhood 
dependence level by level. The synthesis is realized 
using a classical sampling strategy over the data 
collected in the analysis phase. The entire process is 
then accelerated using a TSVQ  (Tree Structure 
Vector Quantization)  [Ger92]. We claim that the 
overall computation time needed to perform a full-
search sampling strategy can be avoided using 
suitable advanced data structures and searching 
strategies. In our approach, image pixels are grouped 
into clusters of bounded radius by an efficient 
clustering algorithm: the Antipole Tree Clustering 
[Can02b], which belongs to the class of the “bisector 
trees” [Cha01]. The clustering probability model of 
spatial neighborhoods derived from a texture was 
introduced for the first time by [Pop93]. Our 
clustering algorithm works in such a way that “far” 
elements lie in different clusters. The algorithm is 
able to find such a pair (A, B) (called Antipole) in 
linear time. Finally, elements of the sets are 
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partitioned according to their proximity to one of the 
two Antipole endpoints (A, B). This top-down 
recursive splitting procedure will produce a binary 
tree whose leaves are the final clusters. Once the 
Antipole Tree data structure is built an efficient 
nearest neighbor search algorithm is developed and 
used in our framework. Experimental results show the 
improvement with respect to the sampling process 
described in [Wey00] in term of computation time 
with respect to the full-search strategy while 
maintaining the same final quality.  The paper is 
structured as follows. The next Section introduces the 
Antipole clustering strategy and describes an 

algorithm for the nearest neighbor problem 
comparing performances of different techniques. 
Section 3 shows the experiments results obtained 
with the proposed solution while a conclusions 
Section tracks direction for future works and 
research.  

2. ANTIPOLE STRATEGY AND TSVQ 
The Wei-Levoy algorithm [Wey00] uses the locality 
and stationarity properties of the textures to 
synthesize an image by a raster scan order. Each pixel 
in the input sample is mapped into the pixel of the 
nearest neighborhood vector (see Fig. 1). The input 
consists of an example texture patch together with a 
random noise image having the desired size of the 
output image. The algorithm modifies this random 
noise to make it looks like the given example. Since 
this process is computationally expensive, multi-
resolution pyramids and quantization acceleration are 
used (see [Ash01], [Bil01], [Wey02]). In particular a 
speed-up is obtained using TSVQ [Ger92], which 
takes as input a set of training vectors and generates a 
binary tree of codebooks having a depth specified by 
the user, which will be representative of the dataset. 
First the process finds a centroid c of the training 
vector and uses it as root of the tree. After that, the 
same centroid c and a properly perturbated centroid 
are chosen as children of the root. The process 
proceeds recursively until the specified depth is 
reached. In [Wey02] the approximation introduced 
considers a variable number of training codebooks 
allowing also a limited backtracking in the tree 
traversal to trade-off between computation time and 

final image quality. In our approach a positive cluster 
radius σ, is used to guarantee that pixels with a 
similar neighborhood lie in the same cluster. The 
Antipole clustering of bounded radius [Can02b] is 
performed by a top-down procedure starting from a 
given finite set of points S which checks if a given 
splitting condition is satisfied. If this is not the case 
then splitting is not performed and the given subset is 
a cluster. The computation of an approximate 
centroid [Can02] having an approximated distance 
less than σ from every point in the cluster is hence 
performed. Otherwise, a suitable pair of points (A, B) 
of S called Antipole is generated and the set is 
partitioned by assigning each point of the splitting 
subset to the closest endpoint of the Antipole (A, B). 
 
Nearest-Neighobor(Tree T , Object Q, Threshold t,

OutputObj OUT )

1 if (T:Leaf = FALSE) then

2 DA  Check(Q; T:Al; t; OUT );
3 DB  Check(Q; T:Ar; t; OUT );
4 Q:Dv  Q:Dv [ fDA; DBg

5 if(DA � DB) then

6 NN-Visit(T:left , T:right , Q, t, OUT ,
T:Rad l , T:Radr , DA, DB);

7 else

8 NN-Visit(T:right , T:left , Q, t, OUT ,
T:Radr , T:Rad l , DB , DA);

9 end if;

10 else

11 VisitCluster(T:Cluster, Q, t, OUT );
12 end if;
13 end Nearest-Neighbor.

NN-Visit(Tree A, Tree B, Object Q, Threshold t,
OutputObj OUT , Radius RadA,
Radius RadB , Distance DA, Distance DB)

1 if (DA < t+RadA) then

2 Nearest-Neighobor(A; Q t; OUT );
3 end if;
4 if (DB < t+RadB) then

5 Nearest-Neighobor(B; Q t; OUT );
6 end if;
7 end if;
8 end NN-Visit.

 
VisitCluster(Cluster Cluster , Object Q,

Threshold t)

1 Q:Dv  Q:Dv [ f Check(Q; Cluster:C t; OUT ) g;
2 for each O 2 Cluster:CList do

3 if Triangularity(O, Q, OUT , t) = FALSE then

4 Check(Q; O; t; OUT );
5 end if;
6 end for each;
7 end VisitCluster.

Check(Object Q, Object O, Threshold t, OutputObj OUT )

1 DO  dist(Q;O);
2 if (DO < t) then
3 t DO ;
4 OUT = O;
5 end if;
6 return DO ;
7 end Check.

 
Figure 2 – Pseudo code of the NEAREST-NEIGHBOR, 
VISITCLUSTER and CHECK procedure. 
 

Figure 1 - Typical shape of the neighbourhood 
used in the analysis/synthesis process (on the 
left). Each synthesized pixel, as showed in the 
magnified texture (in the middle), is determined 
by suitable analyzing its neighbourhood.  



Approximate-Nearest-Neighbor(Tree T , Object Q)

1 if (T:Leaf = FALSE) then

2 DA  Dist(Q; T:Al;);
3 DB  Dist(Q; T:Ar ;);
4 if(DA � DB) then

5 Approximate-Nearest-Neighbor(T:left , Q);
6 else

7 Approximate-Nearest-Neighbor(T:right Q);
8 end if;

9 else

10 return T:Cluster:Centroid;
11 end if;
12 end Approximate-Nearest-Neighbor.

 

The Antipole algorithm has been successfully applied 
in a Mobile Wireless Network Problem [Fer02]. 
Once the data structure is built a suitable nearest 
neighbor algorithm can be designed around it. Fig. 2 
contains the pseudo-code relative to the nearest 
neighbor search performed on the corresponding 
Antipole Tree built by the Antipole Clustering 
strategy. The search, starting from the root, proceeds 
by following the path in the tree, which guarantees 
that the nearest cluster centroid is found pruning the 
impossible branches. A backtracking search explores 
the remaining branches of the tree to obtain a correct 
answer. At each step the distance between the query 
object and the nearest neighbor is bounded by a 
threshold t. At the beginning of the process t is 
initialized to +∞. During the search, an overall speed-
up is obtained by using the triangle inequality. In 
order to do that, during the Antipole data structure 
construction, for each introduced object O a vector 
ODV of all distances from O to each Antipole element 
in the unique path followed by O from the root to its 
final cluster is maintained. A similar QDV is generated 
also for each query Q. The procedure 
TRIANGULARITY   will check if exists an element 1 ≤ i 
≤ min(|QDv |, |ODV |) such that t <  QDV[i] - ODV[i]. If 
the condition is verified then the object O will be 
discarded. On the other hand if such a condition is 
not verified we need to compute the distance between 
the object O and the query Q in order to decide if the 
element can be in the output set. Notice that the 
Antipole indexing organize the data in such a way 
that linear scanning during the search may be 
avoided. This results in a faster nearest neighbor 
search procedure with respect to the linear Nearest 
Neighbor search. As suggested in [Wey02] a suitable 
acceleration of the Antipole Tree Search described 
above can be obtained by introducing an 
approximated nearest neighbor search  (see Fig. 3). 
This modified approximating procedure follows the 
path in the tree, which minimizes the distance from 
the query, returning the centroid of the cluster 
contained in the leaf node. This approximated nearest 
neighbor search is fully competitive with the TSVQ 
acceleration producing in many cases better results.  
 

   
(a) (b) (c) 

3. EXPERIMENTAL RESULTS 
This Section reports all the experimental results 
obtained with the proposed approach with respect to 
the work of [Wey00]. Figure 4 shows a synthesized 
texture obtained respectively with the linear full-
search strategy and by Antipole strategy. As reported 
in the previous Section the Antipole strategy speeds-
up the process, without data loss. The notation 
{R1xC1,1},…{RixCi,kj}…,{RmxCm,kn} indicates 
multiresolution n levels each with neighbor size RixCi 
at the top level merged with the previous kj-1 levels 
each one having neighborhood size Ri -2 x Ci-2,…., 
Ri -2*( kj-1) x Ci-2*( kj-1). For example the 
expression {7x7,1}{9x9,2} means: synthesise 2 
levels multiresolution with the first level neighbour 
size 7x7 and the second level neighbour 9x9 merged 
with the previous level with neighbour size 7x7. The 
algorithm was implemented in ANSI C and all 
experiments were carried out on a PC PIII 900Mhz 
on Linux OS, using the [VisTex] database. Each 
running time as reported in [Wey00] is referred to the 
synthesis process obtained starting from a random 
equalized noise image. The timing comparison has 
been realized, using different neighborhood, single 
level and multiresolution. In all cases the running 
time of the Antipole strategy was better than the 
classical full search. 

Images Neighboor Full  Antipole Gain (%) 
{5x5,1} 728 44 93,96 
{7x7,1} 1386 69 95,02 

{5x5,1}{5x5,2} 1260 84 93,33  
Texture {7x7,1}{7x7,2} 2580 206 92,02 

{3x3,1} 221 38 82,81 
{9x9,1} 2820 427 84,86 

{5x5,1}{5x5,2} 1260 205 83,73  
Flowers {5x5,1}{7x7,2} 2520 428 83,02 

{5x5,1} 728 179 75,41 
{9x9,1} 2820 1145 59,40 

 
Money {3x3,1}{5x5,2} 1221 374 69,37 

Table 1 - Running time comparison, in seconds, 
between full search (third column) and Antipole data 
structure (fourth column). The second column 
describes the size of each neighbor at each level. 
Percentage gain is reported on the last column 

Table 1, reports some results, showing the average time 
and the corresponding percentage gain obtained over 

Figure 4 - Synthesized images obtained by 
classical full search (b) and Antipole Tree Search 
(c) from input images (a) using {5x5,1} 
neighborhood. Figure 3 – APPROXIMATE NEAREST NEIGHBOR 

search via Antipole Tree. 



several textures. The results presented in Table 1 show 
that the Antipole Clustering running time over distinct 
textures may be different. This means that the 
underlying vector space distribution generated during 
the synthesis process also affects the performance of the 
proposed method. The running time of the Antipole 
Tree reported in Table 1 includes the building time of 
the tree which takes only a few seconds. The TSVQ 
acceleration used by ([Wey00], [Wey02]), is able to run 
two orders of magnitude faster than the full search. It 
works well, over a large dataset of texture, but 
introduces some approximation. As shown in [Ash01], 
the textures that are composed of various small objects 
do not give output images of good quality (e.g. leaves, 
flowers, etc.). In many cases only the full neighborhood 
search guarantees satisfactory results. Fig. 5 shows a 
series of examples with comparisons with the TSVQ 
acceleration. The TSVQ tree is constructed using the 
maximum number of codewords as suggested in 
[Wey00]1. Our proposed acceleration technique seems 
to be more robust, as shown in Fig. 5. The acceleration 
allows a further time gain ranging from 70% to 90% 
with respect to the exact Antipole search (see:  
http://alpha.dmi.unict.it/~texture/  for more details). 

Figure 5  - A comparison between the Antipole exact 
search (second column), approximate Antipole search 
(third column), TSVQ search (last column).  

4. CONCLUSIONS  
In this paper we proposed a novel approach for texture 
synthesis using the Antipole Tree Data structure. Future 
work includes the study of new approximation 
strategies and indexing methods together with the 
introduction of new heuristics and sampling strategies 
to solve some shortcomings of the current method 
([Ash01], [Cha01], [Her01]).  
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