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ABSTRACT

This paper presents a feature-based approach to piecewise planar modeling of architectural scenes from
an oriented image sequence. An improved line detection algorithm is presented, which uses vanishing
points to detect lines in the images and reconstruct them in 3D. Subsequently an extension of the 3D
Hough transform is presented which allows efficient and robust detection of planes in a set of 3D lines.
The detected planes and a dense point-set are used to reconstruct a piecewise planar building model.
The presented techniques are demonstrated on a real-world dataset.
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1 INTRODUCTION

Automatic building reconstruction from images is
a continuing goal of photogrammetry and com-
puter vision. In this paper we investigate algo-
rithms for the special case of piecewise planar re-
construction, which is an important part of the
problem, because most architectural scenes are
partly or completely bounded by planar patches.

We assume a recording setup in which each part of
the building we want to reconstruct is visible in at
least three images. This way of recording is com-
mon practice in close-range photogrammetry and
multi-image vision in order to provide sufficient
redundancy for automatic modeling algorithms.
Furthermore we assume that a dense matching of
the scene can be created. A wide range of dense
stereo-matching algorithms exist, e.g. [Koch96],
[Sara01].
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We use the algorithm described in [Zach02].

The reconstruction problem can be tackled with
two different strategies. The first one, originat-
ing in the computer graphics world, is to triangu-
late the unstructured point cloud obtained from
image-matching and apply a mesh-decimation
technique, e.g. [Schro92], [Hoppe93]. The main
drawback of mesh-based methods is that the prob-
lem of topologically correct triangulation in 3D
is not yet solved, especially in the presence of
noise. The second strategy is to directly de-
tect planes, using either the cloud of 3D features,
e.g. [Vosse99], or the gray-values of the images
[Schmi97]. Our approach follows the second strat-
egy. We see triangulation as a subsequent step,
which should be carried out using all available
information about the geometric structure of the
data to ensure correct results.

A problem when using automatically matched
point clouds is the high noise-level, especially in
geometrically complicated regions (such as for ex-
ample the center wall and the right wall in Figure
5). In these regions matching algorithms tend to
either produce noisy results (due to smoothness
constraints) or discard many points, leaving holes
whithout data. If a sufficiently dense set of lines
covers the modeled object (which is usually the
case for buildings) it is therefore advantageous to
extract and match lines instead of points and use



them as base features for plane detection. The set
of lines is naturally much sparser than the point
set, but it has a higher accuracy (in our exper-
iments the deviations from the wall plane were
about 3 times smaller for lines). This is due to
the fact that no smoothing occurs and that sev-
eral edge points (typically at least 20) contribute
to the construction of a line with their positions
and their gradient directions.

The paper is organized as follows: Sections 2 deals
with the detection and reconstruction of object
lines through line fitting and matching, which is
enhanced by using vanishing points. In section 3
we show how the 3D Hough transform can be ex-
tended to robustly detect planes in a cloud of 3D
lines. Section 4 shows how these planes are de-
limited using a dense pointcloud, and in section
5 we present results of the algorithm on a real-
world data set. Section 6 summarizes the pre-
sented strategy and gives an outlook on future
work.

2 LINE RECONSTRUCTION
Line extraction starts with a coarse extraction to
obtain an initial line-set. Vanishing points are ro-
bustly detected using this line-set, and with the
help of the vanishing points a more complete set
of lines is recovered. The procedure is indepen-
dently carried out for each image in the sequence.
Finally the 2D lines from all images are matched
to form a set of 3D lines.

Coarse Line Extraction
The input data for the primitive extraction are
chains of 2D edgels, where an edgel is an im-
age point with a large gradient. Edgel chains
are extracted at sub-pixel accuracy with the
method described by Rothwell [Rothw95]. For all
edgel chains collinear sections are searched with a
RANSAC approach [Fisch81]: pairs of points on
the chain are picked at random to generate hypo-
thetical line segments, and the number of inliers,
which support each segment up to a threshold,
is counted. The segment with the highest count
is considered the best hypothesis. Its parameters
are refined with a least-squares fit to the inliers.
The extracted lines are globally merged by link-
ing collinear segments originating from different
contour chains.

Vanishing Point Detection
When parallel 3D lines are projected with a per-
spective camera, their images intersect in a vanish-

ing point (VP). Various methods have been pro-
posed for detecting the principal VPs of an image,
e.g. [Tuyte98], [van d98] and [Schaf00].

We use the the method presented by Rother in
[Rothe00], which can be described as a variant
of the Hough transform directly using the image
plane as accumulator space. For details see the
original paper. For typical architectural scenes
one VP for vertical lines and one or two VPs for
horizontal lines are extracted. However, the ap-
proach can be extended to a higher number of
vanishing points, if necessary.

Advanced Line Extraction

Once the locations of the VPs are known, they
can be used to extract more line segments pointing
towards each VP. An example is shown in Figure
1.

First, another edge extraction is performed using
a low gradient threshold in order to detect weaker
edgels, too. From the large number of resulting
edgels only those are kept, which are oriented to-
wards one of the VPs.

The edgels are then grouped into collinear sets
with a line-sweeping algorithm: a line is swept
through the image, rotating around the VP, and
for each line position the edgels within a perpen-
dicular threshold are selected. The process is il-
lustrated in Figure 2. To efficiently perform the
sweep all edgels are sorted according to their po-
lar angle w.r.t. the VP. If in a particular position
the line has the polar angle α, the inliers are the
edgels with a polar angle of α ± ε. The step an-
gle for sweeping is determined from the distance
threshold for inliers.

Sets of collinear edgels without large gaps are con-
nected to line segments, and redundant or over-
lapping segments are merged, resulting in a new
edgel-set with new endpoints for each remaining
segment. The final line parameters are found with
a least-squares fit to the new edgel-set.

With the known image orientations, the 2D mage
line segments can be matched to 3D line segments.
For details on this step we refer to the work of
Schmid and Zisserman [Schmi97].

The proposed method significantly improves the
completeness of the line set: for the example pre-
sented in section 5, matching the line segments
found with coarse line extraction yielded 134 3D
line segments. Matching the results of the refined
extraction process yielded 296 line segments, an
improvement by 120%.



(a) vanishing points (b) image lines

Figure 1: Line extraction using vanishing points (a) Vanishing points detected with the help of the line
segments from coarse line extraction. (b) Line segments found with the sweeping method. The image
shows the inner court of the Minorite monastery in the historic center of Graz. The 3D results for the
dataset are shown in Figure 4.

3 PLANE DETECTION
In the following we describe in detail how the
Hough transform can be used for plane detection
in a cloud of lines. The section starts with a brief
review of fundamentals of the Hough transform
(HT), then introduces the theory of the 3D Hough
transform of line segments, and finally gives some
remarks about the practical implementation.

Notation in the following sections:

The HT is based on a mapping between object
space and a parameter space. Object space is de-
noted with the letter R and an index for the num-
ber of dimensions, parameter space is denoted by
H. The HT thus is a mapping Ri 7−→ Hj . Geo-
metric entities in R are denoted by boldface cap-
ital letters, e.g. a point P. The same entities
mapped to H are denoted by the same letters in
lowercase, without serifs, e.g. P 7−→ p.

Review of the Hough Transform
The 2D Hough transform [Hough62] is a well-
known algorithm for robust feature detection in
images. The basic idea is to map points, e.g.
edgels, to a parameter space. In the simplest case,
each point P(xP , yP ) is mapped to a curve p in
H2(α, r) using the line equation

p : r = x cos α + y sinα (1)

Note that the polar form of the line equation is
used, because it avoids the singularity for verti-
cal lines (and the related problem of non-uniform

scale), which occurs in the standard line-equation
y = kx + d.

The parameter pairs (α, r) on p correspond to the
lines of the pencil through P. If several points lie
on a straight line S, their corresponding curves in
H2 will intersect in a single point which yields the
parameters (αS , rS) of S.

Each image line gives one such intersection point.
The intersection points are found by subdividing
H2 into a regular raster, accumulating the num-
ber of curves passing through each raster cell and
searching through the raster for local maxima.

The idea has been extended to 3D-space [Vosse99],
[Bian99]. A point P(xP , yP , zP ) then defines a
surface p:

p :
r = x cos α + y cos β + z cos γ where

cos2 α + cos2 β + cos2 γ = 1
(2)

in H3(α, β, r), and the voxels with the highest
count of passing surfaces correspond to parame-
ter triples of planes through many points.

3D Hough Transform of Lines
Since we want to fit planes to the set of re-
constructed 3D lines, the 3D Hough Transform
has to be extended to lines. The HT does not
seem to have been used with lines as input, per-
haps because only recently reliable line-matching
strategies have been presented, e.g. [Schmi97],
[Heuel01].
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Figure 2: Line extraction using vanishing points. (a) Line sweeping around the vanishing point. A
triangular search space (light gray area) containing the edgels oriented towards the VP is intersected
with a rectangular region (dark gray) which satisfies the perpendicular distance criterion. (b) Grouping
of detected line segments. All segments inside the valid region (light gray area) are projected onto the
reference segment (black) to determine new endpoints for the reference segment.

The idea is straightforward: A line segment S in
R3 is defined by its two endpoints Pi and Pj .
These endpoints map to surfaces pi and pj in H3

as given by equation 2. Any plane which contains
S must contain both points, thus the valid triples
of plane parameters lie on the intersection curve
s = pi ∩ pj . The parameter triples (α, β, r) on
s correspond to the planes of the pencil through
S. The 3D Hough transform of a line segment is
illustrated in Figure 3.

If several straight line segments S1 . . .Sn lie on
a common plane E, the corresponding curves
s1 . . . sn intersect in one point (αE , βE , rE), the
parameter triple for E. For each Si we thus only
have to increment the voxels which lie on si.

Implementation Issues
Parameter r is the signed normal distance of the
plane from the origin, as can be easily verified us-
ing Equation (2). The complete range of possi-
ble parameters in H3 is therefore given by α, β ∈
[−90◦,+90◦] and r ∈ [−dmax, dmax], where di is
the unsigned distance of a point Pi from the co-
ordinate origin. To achieve an unbiased angular
distribution in H, the origin of the object coordi-
nate system should be set to the center of gravity
of the line cloud.

Different strategies have been investigated to find
local maxima in H. An overview can be found in
[Illin88]. In our implementation three criteria are
used. A point is accepted as local maximum if the
following conditions are true:

• the accumulator value N(α, β, r) is greater
than a threshold rmin (to filter out peaks due

to noise)

• N(α, β, r) is a local maximum in a (u×u×v)
neighborhood, i.e. a peak, and

• the estimated local curvature N(α, β, r)′′ is
greater than a threshold kmin, i.e. the peak
is well-defined.

The HT is computationally efficient. Computa-
tion time grows with order O(m2n), where m is
the number of steps in α and β (the angular res-
olution), and n is the number of lines. Time con-
sumption thus depends linearly on the number of
features. On the other hand not only computa-
tion time, but also memory consumption grows
quadratically with the angular resolution. The
usual bottleneck is the memory needed to store
the parameter voxel space.

We empirically use a quantization of H3 of 2 de-
grees for α and β. The number of steps in r is
computed using Nr = 1

3
dmax

sP
, where sP is the esti-

mated standard deviation of the lines’ endpoints.
This reflects that a line supports a plane, if its
endpoints lie on the plane within ±3sP . The pa-
rameter space thus has (90× 90×Nr) voxels.

4 PLANE RECONSTRUCTION

To detect the boundaries of the planar patches we
need dense coverage of the building, whereas accu-
racy is not that important. We therefore go back
to the matched point cloud. The inliers to each de-
tected plane are determined, then the plane is sub-
divided into a regular grid and transformed to a
binary image, where cells containing points are set



(a) 3D line segment (b) Hough-transformed segment

Figure 3: Hough transform of a line segment. (a) line segment in R3 with the endpoints P1(1, 1, 1) and
P2(2, 0, 2). (b) the corresponding surfaces p1 and p2 in H3. The black intersection line is the Hough-
transformed segment s. Note that p1, p2 and s are not continuous: α and β are the angles between the
point-vector P and the x- and y-axis, respectively, thus they must fulfill |α|+ |β| ≥ 90◦.

(a) top view (b) front view (c) reconstructed planes

Figure 4: Results for the ’Minorite monastery’ dataset. (a), (b) Two views of the reconstructed 3D line
set. 362 3D-lines were matched, of which 355 are correct. (c) Reconstructed object planes. See also
Figure 1.

to 1 and empty cells are set to 0. An iterative me-
dian filter is applied to determine the solid areas of
the image, then an edge-tracing algorithm is used
to find the boundaries of planar object patches.
An Examples are shown in Figures 4 and 5.

5 EXAMPLES

The described algorithms have been successfully
tested with several real-world datasets. Two of
these datasets serve as examples to demonstrate
the results: the Minorite monastery already shown
in Figures 1 and 4, and the inner court of the
’Landhaus’ in the historic center of Graz.

For the ’Landhaus’ dataset a sequence of 5 im-
ages was used. The images were acquired with a

calibrated hand-held camera with a resolution of
2160×1440 Pixels. Lines were extracted from the
images and reconstructed as described in section
2. A total of 296 3D-lines were matched, of which
289 are correct. 10 planar patches in 7 planes were
recovered with the method described in section 3,
all of which are correct. The 2 smallest of the 9
planes visible in the sequence were missed: the
heavily foreshortened sidewall of the tower and
the roof of the staircase, which is partially oc-
cluded by decorations. Several patches of the back
wall in the center could not be reconstructed due
to the lack of reliable matches. A dense set of
55968 matched points was used for delimiting the
patches, of which 39237 are incident to one of the
detected planes. The results are summarized in



(a) recorded image with detected lines (b) dense set of 3D points

(c) original and filtered border of the roof (d) Reconstructed object planes

Figure 5: Results for example dataset ’Landhaus’. (a) One out of 5 images used for the experiment. (b)
The camera positions and a dense set of unstructured object points obtained by image orientation and
matching. Points were assigned the gray-value of the central image to give a better visual impression.
(c) The binary maps used for delimitation of the roof plane. (d) 3D view of the reconstructed planar
patches and the respective inlier points. Gray-value variations within one patch encode fitting residuals:
darker points have higher residuals.

Figure 5. Note that the wall on the right side
could only be reconstructed when using lines as
base features, because the point cloud is too noisy
to give the necessary support for a plane, with the
HT as well as with RANSAC fitting.

6 CONCLUSION

Summary
We have described algorithms for automatic
feature-based architectural reconstruction from
images and demonstrated them on a real-world ex-
ample. The key ideas of the presented approach
are an improved technique for finding line features
in images, which is based on line sweeping around

automatically detected vanishing points, and the
extension of the 3D Hough transform to lines.

Future Work

An important improvement to the algorithm will
be to use a weighted combination of lines and
points for the plane-fitting process in order to ex-
ploit both the precision of lines and the large num-
ber of points. Another possible improvement is to
use vanishing points not only for line detection in
the images, but also to enforce the direction and
the parallelity of all lines pointing to a common
vanishing point at the stage of line matching. A
further idea is to use circular and elliptic arcs in



addition to straight lines. A single conic already
defines a plane, so that additional support for the
detected planes can be expected.
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