
Adaptive Tessellation of NURBS Surfaces

F.J. Espino1 M. B�oo1 M. Amor2 J.D. Bruguera1

1Department of Electronic and Computer Eng., University of Santiago de Compostela,

15782 Santiago de Compostela. Spain.

E-mail: fjavi, mboo, bruguerag@dec.usc.es

2Department of Electronics and Systems, University of A Coru~na,

15071 A Coru~na. Spain.

E-mail: margamor@udc.es

ABSTRACT

NURBS surfaces are widely used in computer graphics, due to their great accuracy of design
and reduced amount of data needed for representation. For real-time visualization, tessellation
algorithms are needed, as they make use of the actual graphics hardware through the conversion
of surfaces to triangle meshes. The existent algorithms for tessellation are only partially adaptive
because the tessellation inside each part of the surface is uniform (non adaptive). We propose
an algorithm that generates a mesh of triangles from a NURBS representation of the scene in a
fully adaptive way, that is, the resolution is locally selected in such a way that the number of
triangles to be processed is minimized without reducing the quality of the �nal image.

Keywords: Surface rendering, NURBS, B�ezier, tessellation, subdivision

1 INTRODUCTION
NURBS surfaces [Foley96, Piegl97] (Non Uni-
form - Rational B-Splines) are used in several
applications (CAD/CAM, virtual reality, anima-
tion, ...). Modelling complex geometries with
NURBS permits high quality results with low
storage requirements. Several methods have
been proposed for NURBS rendering [Foley96]:
ray tracing, pixel level subdivision, scan-line al-
gorithms, ... However, due to the great ad-
vances in triangle-rendering hardware, the strat-
egy mostly employed is the surface tessellation
[Rockw89, Kumar96, Moret01, YingL02], that
is, create a triangle mesh that approximates the
original surface.

There are di�erent methods [Rockw89, Kumar96]
and hardware proposals [Moret01] for NURBS
tessellation. All of them generate a triangle mesh
for each surface section (patch) of the object, so
the number of triangles per patch depends on
its features (
atness, view point, ...). This is
what we denote inter-patch adaptive tessellation.
However, the mesh generated for each patch is
regularly subdivided. This way, 
at areas are
fully subdivided and most of the triangles gener-

ated do not increase the quality of the image but
the computational load.

In this paper we present an algorithm for NURBS
surface tessellation. This algorithm generates an
initial coarse mesh [Rockw89, Kumar96] and sub-
divide it adaptively using local tests [Dogge00,
Amor02]. This way, we reduce the number of
triagles needed for obtaining a tessellation of
same quality by making the tessellation totally
adaptive, that is, in addition to the inter-patch
adaptive tessellation, the resolution of the mesh
in the patch is not constant. Thus, we can gen-
erate high quality meshes with fewer triangles.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

pro�t or commercial advantage and that copies bear this

notice and the full citacion on the �rst page. To copy oth-

erwise, or republish, to post on servers or to redistribute

to lists, requires prior speci�c permission and or a fee.

Journal of WSCG,Vol.11,No.1.,ISSN 1213-6972

WSCG'2003, February 3-7,2003, Plzen, Czech Republic.

Copyright UNION Agency - Science Press



This paper is organized as follows. In Section
2, the mathematical formulation of NURBS and
B�ezier surfaces (B�ezier surfaces are mathemati-
cally simpler than NURBS surfaces, so that the
algorithms for processing them are also simpler)
is given. Section 3 summarizes previous tessella-
tion methods presented in the bibliography. Sec-
tion 4 de�nes the proposed method for surface
tessellation and its di�erent steps. In section 5 we
analyze the results obtained with our proposal.
Finally, in section 6 we summarize the conclu-
sions.

2 PARAMETRIC SURFACES
Parametric surfaces, like NURBS and B�ezier
surfaces [Piegl97], are geometric objects whose
points in 3D space are calculated through the use
of a small set of points (control points) and func-
tions of real parameters u and v (blending func-
tions). In this section, the equations needed to
calculate points on the surface and normal vec-
tors are given.

NURBS surfaces are parametric surfaces evalu-
ated through equation [Piegl97]:

S(u; v) =

mX
i=0

nX
j=0

Ni;p(u)Nj;q(v)wi;jPi;j

mX
i=0

nX
j=0

Ni;p(u)Nj;q(v)wi;j

(1)

where Pi;j is an array of control points, wi;j

are the weights corresponding to each point, and
Ni;p(u) and Nj;q(v) are the (p,q)-degree polyno-
mials (u and v real values are de�ned by the knot
vectors U = f0; ::; 0; up+1; :::; ur�p�1; 1; :::; 1g and
V = f0; :::; 0; uq+1; :::; us�q�1; 1; :::; 1g).

Almost all NURBS rendering and tessellation al-
gorithms perform a NURBS to B�ezier conver-
sion, because the B�ezier formulation complexity
is lower, then the associated algorithms are sim-
pler. B�ezier surfaces are described through equa-
tion:

S(u; v) =

pX
i=0

qX
j=0

Bi;p(u)Bj;q(v)wi;jPi;j

pX
i=0

qX
j=0

Bi;p(u)Bj;q(v)wi;j

(2)

where Bi;p(u) and Bj;q(v) are the (p,q)-degree
Bernstein polynomials with 0 � u; v � 1. In
the conversion from NURBS to B�ezier represen-
tation, a NURBS surface is split into a set of

B�ezier surfaces. From now on we will call patch
to each B�ezier surface generated.

In addition to surface points, normal vectors to
the surface are also needed. These normal vec-
tors are used in di�erent algorithms such as shad-
ing operations [Foley96]. To evaluate the normal
vector to the surface in a point of parametric co-
ordinates (u0; v0):

NS(u0; v0) =

�
@S(u;v)

@u

�
u0;v0

�

�
@S(u;v)

@v

�
u0;v0����

�
@S(u;v)

@u

�
u0;v0

�

�
@S(u;v)

@v

�
u0;v0

����
(3)

where @S(u;v)
@u

is the tangent vector to the surface
in the u direction.

3 UNIFORM AND

INTER-PATCH ADAPTIVE

NURBS TESSELLATION

Tessellation is known as one of the main meth-
ods for parametric surface rendering. In this sec-
tion we summarize the main procedure used for
B�ezier surface tessellation, that we will use as the
starting point in our algorithm. Tessellation per-
formed by this method can be either uniform (the
same mesh resolution for all the �gure) or inter-
patch adaptive (each patch is tessellated with its
own resolution, but patches are not tessellated
adaptively in their local domain).

Almost all the B�ezier surface tessellation algo-
rithms [Rockw89, Kumar96] tessellates the sur-
faces in the parametric space, and perform the
following steps:

� Partition of parametric domain (u; v) in
nu � nv cells of size 1

nu
� 1

nv
(see Figure

1(a)). The parameters nu and nv may be
the same for all patches in a uniform tessel-
lation, or view-dependent and surface de-
pendent in an inter-patch adaptive tessel-
lation.

� Triangle generation. For a uniform tessel-
lation, each cell is decomposed in two tri-
angles, as shown in Figure 1(b). If the
tessellation is inter-patch adaptive (i.e., nu
and nv are di�erent for each B�ezier patch),
an additional step is required in order to
avoid cracks in the shared borders of the
patches. In this step, the four borders of



(0,0)

(0,1) (1,1)

(1,0)

(a) Parametric domain parti-
tion

(0,0)

(0,1) (1,1)

(1,0)

(b) Uniform tessellation

(0,0)

(0,1) (1,1)

(1,0)

(c) Inter-patch adaptive tes-
sellation

Figure 1: Tessellation in parametric space

the patch are considered as four individ-
ual B�ezier curves, and are partitioned inde-
pendently. This way, the inner cells of the
patch are transformed into triangles as in
the uniform tessellation case, while, in the
border of the patch, coving triangles are
generated following the scheme of Figure
1(c). The individual partitioning for each
bounding curve makes sure that shared bor-
ders are tessellated with the same number
of points, avoiding cracks and surface de-
fects in the �nal tessellation.

� The tessellation has been performed in the
parametric domain, so the �nal step is to
evaluate the Equations (2) and (3) in or-
der to obtain the Euclidean space points
and normal vectors, respectively. Either di-
rect evaluation or alternative methods like
forward-di�erences can be used [Foley96,
Moret01].

4 FULLY ADAPTIVE NURBS

TESSELLATION
The method we propose performs tessellation of
B�ezier patches with variable resolution inside the
patch. This permits the use of meshes with a
lower number of triangles for the same visualiza-
tion quality. This method performs tessellation
in two steps: �rst, an initial coarse tessellation
is produced (section 3); in a second step, the ini-
tial mesh is processed in order to subdivide those
regions that do not approximate the original im-
age.

The algorithm proceeds as shown in Figure 2. As

Calculate initial mesh;
List=initial mesh;
while(List!=empty) f

Extract triangle(List);
Test(edge1,edge2,edge3);
if(test=TRUE)

render triangle;
else f

subdivide triangle;
List new triangles;

g
g

Figure 2: Fully adaptive tessellation algorithm

an initial step, a triangle list is created in order
to store the triangles of the initial tessellation.
Each triangle is de�ned by three vertices, and
each vertex by eight coordinates: two parametric
coordinates (u, v), three space coordinates (x, y,
z) and three coordinates of the normal vector to
the surface (nx, ny, nz). Once the initial mesh is
stored and a loop is started, in each iteration, a
triangle from the list is processed; a test is per-
formed for each triangle edge and, in case one or
more edges do not pass the test (i.e., the qual-
ity of the tessellation is not good enough in the
analyzed region), the triangle is subdivided and
the resulting triangles are stored in the list for fu-
ture processing. If the test is passed by the three
edges, the triangle is sent to be rendered. This
loop iterates until the list is empty, meaning that
the whole patch is rendered.



V1
V2

V3

V12

V23V13

Subdivision 1 edge

Subdivision 2 edges

Subdivision 3 edges

z

Figure 3: Triangle subdivision

In the next section, the di�erent steps of the algo-
rithm are explained and the di�erent tests that
we use to subdivide the patch are enumerated
and explained.

4.1 Initial Tessellation
In order to obtain an initial mesh, a partition
in parametric domain is performed (section 3).
This partition may be uniform (the same for ev-
ery patch) or inter-patch adaptive (di�erent for
each patch).

If the initial mesh is uniform, the parametric co-
ordinates are the same for every patch, so tes-
sellation is immediate. For instance, if the initial
mesh is made of two triangles, the mesh would be
de�ned by points ff(0,0), (1,0), (1,1)g, f(0,0),
(1,1), (0,1)gg. The rest of the coordinates (x, y,
z, nx, ny, nz) are computed through Equations
(2) and (3).

If the initial tessellation is inter-patch adaptive
(as is the one shown in Figure 1(c)), the number
of triangles of each patch depends on the view
point and the surface shape. As in the uniform
case, the space coordinates and normal vectors
are calculated through Equations (2) and (3).

4.2 Fully Adaptive Patch

Subdivision
Taking the initial mesh as a starting point, the
triangle edges are examined using tests and a de-
cision about the insertion of a new vertex in the
edge is made. If one or more edges are subdi-
vided, this will result in two or more triangles
that will be analyzed again until all tests are
passed. The testing of each edge is done in two
steps: the calculation of the new vertex, and the
test itself, which will decide whether the new ver-
tex is going to be inserted.

V12

V1

V2
V3

V4
V5

V6

V7

V8 V9

V10

Figure 4: First order neighbors of edge V1 � V2

The parametric coordinates of the new vertex are
calculated using the vertices of the edge. The
new point is the middle point in parametric space

(V12 = (u1;v1)+(u2;v2)
2 ). The rest of the coordi-

nates are calculated through the evaluation of the
B�ezier equations (Equations (2) and (3)).

Each triangle has to be tested in order to de-
cide on the insertion of the new vertices. These
tests use the edge information and the neighbors
vertices information to calculate the edge-surface
distance. The tests give a boolean result for each
edge. Depending on these three values, the trian-
gle is subdivided using the scheme shown in Fig-
ure 3. In this �gure the subdivision schemes for
one, two and three inserted vertices are shown.
Note that the subdivision of two edges results in
three possibilities. The subdivision scheme pro-
ducing an additional vertex z was not considered
in this paper since it produces the same quality
with a higher computational cost than the other
schemes.

Several tests we have employed have been used in
adaptive subdivision of meshes based on displace-
ment maps [Dogge00, Amor02]; however, exten-
sion to B�ezier surfaces has not been done. Next,
these tests and several new tests are presented.
The �rst group of tests is made of tests that use
the normal vectors of the edge vertices and neigh-
bors, while the second group use the mesh infor-
mation for measuring the 
atness of the mesh in
the region. Both tests measure whether the mesh
is smooth enough in the region around the ana-
lyzed edge or not.

4.3 Normal Deviation
Normal comparison tests calculate the normal
vector deviation between the analyzed points and



V
2

V
1

V
12

N
12

N
2

N
1

S

Figure 5: One edge test

its neighbors. The purpose of using these tests is
to ensure that normal vectors of adjacent vertices
are not too di�erent, avoiding a bad shading in
the rendered mesh.

There are several options for performing the com-
parison. Next, the proposed tests are summa-
rized, beginning with tests that only use local
edge information (vertices V1, V12, and V2 in the
Figure 4) and generalizing these tests for using
information of all the �rst order neighbors (ver-
tices V1 to V10 in the Figure 4).

4.3.1 One-edge normal test

The easiest way for normal comparison is using
the local edge information (i.e., vertices V1, V12
and V2 shown in Figure 5) and comparing nor-
mal vectors (N1, N2 and N12) using coordinates
comparison, according to:

Test1 = (jN1 �N12j > t1) OR (jN2 �N12j > t1)
(4)

where t1 is a threshold. If one coordinate of vec-
tors (N1 �N12) or (N2 �N12) is larger than the
threshold, the test is not passed, and the edge
V1 � V2 is subdivided inserting the point V12.

4.3.2 One-edge complementary test

A modi�cation of this test is developed in
[Amor02]. This modi�cation makes an additional
comparison between the normal vectors of the
edge vertices:

Test2 = (jN1�N2j > t2) (5)

where t2 is a threshold di�erent to t1. This way,
the modi�ed test is the combination of Test1 and
Test2:

Test12 = Test1 OR Test2 (6)

i.e., if one of the tests (Test1 or Test2) is greater
than its own threshold, the new vertex is inserted.

4.3.3 Two triangle test

This test uses local edge information and the two
vertices of the triangles sharing the edge (V6 and
V10 in Figure 4). The test is:

Test3 = (jN12 �N 0j) > t3 (7)

where N 0 = N1+N2+N6+N10

4

4.3.4 First order neighbors test

The most general case uses all the �rst order
neighbors (vertices V1 and V10 in Figure 4) in
the comparison. The test uses the following ex-
pression:

Test4 = (jN12 �N 00j) > t4 (8)

where N 00 =
Pn

i=1
Ni

n
and n is the number of �rst

order neighbors.

4.4 Flat Tests

The 
at tests use the spatial coordinates of the
triangle vertices for testing the 
atness of the
mesh. If the region near an edge is 
at, the inser-
tion of a new vertex does not increase the quality
of the mesh. In the following subsections, sev-
eral methods that test the 
atness of the mesh in
the region near a vertex are presented. From the
most straightforward, that use local edge infor-
mation, to the more complex, that use neighbor
information.

4.4.1 Vector deviation 
at test

To ensure that the mesh is 
at enough, the dis-
tance between the new vertex V12 (see Figure 5)
to the edge of the triangle where the new vertex
may be inserted is measured. This test computes
the normalized vector jV1�V2j and the dot prod-
uct of this vector with jV12 � V1j and jV12 � V2j.
This way, though vertex-edge distance is not di-
rectly measured, we calculate the deviation be-
tween the vectors that point to the new vertex
and the edge vector. The test consist of the fol-
lowing steps:

1. Calculation and normalization of vectors
A = V1�V2, B = V12�V1 and C = V12�V2.

2. Computation of the unsigned dot products
jB �Aj and jC � Aj.



(a) Teacup (b) Single patch (c) Teapot

Figure 6: Sample meshes

3. Comparison between the dot products and
a threshold tf1 . If one of them is smaller
than the threshold, the new vertex is in-
serted. The test can be represented by the
equation:

flat = (jB � Aj < tf1)

OR (jC �Aj < tf1) (9)

4.4.2 Local 
at test
An alternative way to test the 
atness around
a vertex is to compare the tangent vector with
the normal vector to the analyzed vertex. If the
region around the vertex is 
at, both vector are
perpendicular (dot product is zero). The steps
are:

1. Calculation and normalization of vector
U = jV1 � V2j.

2. Calculation of the unsigned dot products of
U with normal vectors of the two vertices
of the edge (U �N1 and U �N2).

3. Comparison between both dot products
and the threshold tf2 . If one of them is
greater than the threshold, the edge is sub-
divided and V12 inserted. The test is sum-
marized by the following equation:

flat2 = (jU �N1j > tf2)

OR (jU �N2j > tf2) (10)

4.4.3 First order neighbors 
at-test: The
umbrella operator

The test de�ned in Equation (10) is a particular
case of a more general test that uses �rst order

neighbors of the analyzed edge. This test makes
use of the umbrella operator [Kobbe98, Amor02].
This operator is de�ned by:

U(V ) =
1

n

n�1X
i=0

Vi � V (11)

where V is the vertex whose 
atness is being an-
alyzed and Vi the neighbor points.

The testing of the 
atness can be calculated using
the dot product of U(V ) and the normal vector
to the analyzed vertex. The steps of this test are:

1. Calculation and normalization of the um-
brella operator over the points V = V1 and
V = V2. The operators are U1 and U2.

2. Dot product of normalized operators and
the normal vectors (U1 �N1 y U2 �N2).

3. Comparison between the dot product and
the threshold tf3 . If it is greater than the
threshold, the new vertex is inserted.

5 RESULTS
We have simulated our algorithm implementing
it in C and using a set of sample �gures to check
the performance of our proposal. From the sim-
ulation we measure the number of triangles of
the tessellation and an estimation of the result-
ing mesh quality.

The implementation of the algorithm follows the
scheme of Figure 2. First a list is generated with
the triangles of the initial mesh, and then, they



Figure
Test1 Test12 Flat1 Flat2

Triangles Error Triangles Error Triangles Error Triangles Error

teacup

2648 0.008172 2464 0.008233 1986 0.009654 2352 0.009533

3638 0.007525 4402 0.006612 2978 0.008714 7882 0.003332

12400 0.002838 15458 0.002967 17052 0.001603 27076 0.001536

single patch

140 0.050421 250 0.045949 150 0.048982 240 0.023283

320 0.043934 360 0.016169 260 0.022560 600 0.009515

920 0.008081 1140 0.007554 820 0.005343 1550 0.003017

teapot

2876 0.026105 3312 0.024850 2394 0.026016 2942 0.023627

5916 0.019524 5360 0.019492 3790 0.022476 9036 0.007757

18584 0.006190 21244 0.006119 16994 0.005242 33154 0.002527

Table 2: Tessellation results

(a) Resulting Mesh for teacup (b) Resulting Mesh for sin-
gle patch

(c) Resulting Mesh for teapot

Figure 7: Resulting meshes for Flat2 test

Figure Triangles Error

teacup 1300 0.0109
single patch 50 0.1022

teapot 1200 0.0311

Table 1: Initial meshes triangles and error

are processed sequentially, storing in the list the
triangles resulting from subdivision, and render-
ing those that don't need subdivision.

The results associated to the tests based on
neighbor information (Equations (7), (8) and um-
brella operator) are not included in this anal-
ysis due to the quality of the �nal images ob-
tained is similar to the one obtained with the
tests based on local information; but the imple-
mentation cost is larger.

We analyze two features: The mesh error and the
number of triangles. The mesh error is an esti-
mation of the distance between the real surface

(a uniform tessellation with a very high number
of triangles per patch) and the resulting mesh.
The objective is the generation of the minimum
number of triangles without reducing the quality
of the �nal image. The threshold is selected as a
tradeo� between number of triangles and error.

In Figure 6 the sample meshes we employed are
shown (similar results were obtained with other
meshes). The number of triangles and mesh er-
rors of the initial meshes are shown in Table 1.
The number of triangles is determined by the
number of patches per image (26 patches for Fig-
ure 6(a), 1 for Figure 6(b) and 24 for Figure 6(c))
where 50 triangles per patch were considered in
the initial uniform tessellation. The objective is
reducing the error by means of an adaptive sub-
division so that the number of triangles is mini-
mally increased.

The mesh error and number of triangles are
shown in Table 2. Speci�cally, the table shows
the number of triangles and the error for each
sample mesh and for each test considered. As



expected, if the number of triangles is increased,
the error diminishes for all tests under analysis.

The results for the four tests show that the sam-
pled meshes are adaptively subdivided. This way,
the number of triangles generated can be chosen
by the user in function of the desired quality of
the �nal image. Although the performance of all
tests is good, tests based on 
atness (Flat1 and
Flat2 in the table) are slightly better; that is, for
a similar number of triangles the error is smaller.

In Figure 7 the adaptively subdivided meshes
(with low number of triangles) employing the
Flat2 test are shown. In the three �gures, it can
be clearly observed that regions of higher curva-
ture are subdivided with more triangles. Then,
our method tessellates surfaces in a fully adap-
tive way; so that the number of triangles depend
on the surface curvature.

6 CONCLUSIONS

In this paper we have presented a fully adaptive
tessellation method for NURBS. It is well known
that the quality of 
at regions is not improved
by incrementing the number of triangles. Based
on this fact, we have proposed an adaptive sub-
division method that analyzes the 
atness of the
meshes and permits to reduce the number of tri-
angles in areas with smooth curvature. That is,
the number of triangles depends on the surface
curvature.

We have checked tests based on the analysis of
normal and tangent vectors to the surface in
a neighborhood of the area to be subdivided.
Among these tests we have checked tests using
only local information (two vertices) and tests
using �rst order neighborhood information (more
than two vertices). Similar results are obtained
in both cases but the computational load of the
local tests is lower.

Among the tests based on local information bet-
ter results are obtained when the 
atness proper-
ties are directly analyzed using the tangent and
normal vectors.

Our method shows that the NURBS surfaces can
be adaptively tessellated in an eÆcient way using
tests that have been previously proposed only for
adaptive subdivision of triangle meshes based on
displacement maps.

7 ACKNOWLEDGMENTS
This work was supported in part by the Min-
istry of Science and Technology of Spain under
contract MCYT-FEDER TIC2001-3694-C02-01.
M. Amor has been supported in part by research
funds of the University of A Coru~na (Spain).

REFERENCES

[Amor02] M. Amor and M. B�oo. Adaptive Tes-
sellation of Triangle Meshes According to
the Displacement Map. Technical report,
Universidad de Santiago de Compostela,
http://www.ac.usc.es, 2002.

[Dogge00] M. Dogget and J. Hirche. Adaptive
View Dependent Tessellation of Displace-
ment Maps. Siggraph/Eurographics Work-
shop on Graphics Hardware, pages 59{66,
144, 2000.

[Foley96] J.D. Foley. Computer Graphics: Prin-
ciples and Practice. Ed. Addison-Wesley,
1996.

[Kobbe98] L. Kobbelt, S. Campagna, J. Vorstz,
and H.P. Seidel. Interactive Multi-
Resolution Modeling on Arbitrary Meshes.
SIGGRAPH '98 Conference Proceedings,
pages 105{114, 1998.

[Kumar96] S. Kumar, D. Manocha, and A. Las-
tra. Interactive display of large NURBS
models. IEEE Transactions on Visual-
ization and Computer Graphics, 2(4):323{
336, 1996.

[Moret01] H. Moreton. Watertight Tessellation
Using Forward Di�erencing. ACM Sig-
graph/Eurographics Workshop on Graph-
ics Hardware, pages 25{32, 2001.

[Piegl97] L. Piegl and W. Tiller. The NURBS
Book. Ed. Springer, 1997.

[Rockw89] A. Rockwood, K. Heaton, and
T. Davis. Real-Time Rendering of
Trimmed Surfaces. In ACM Siggraph,
pages 107{117, 1989.

[YingL02] M. YingLiang and T. Hewitt. Adap-
tive Tessellation for Trimmed NURBS Sur-
face. Eurographics, 2002.


