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ABSTRACT  

In the classical shading algorithm according to Phong, the normal is interpolated across the scanline, requiring a 
computationally expensive normalization in the inner loop. In the simpli fied and faster method by Gouraud, the 
intensity is interpolated instead, leading to faster but less accurate shading. In this paper we use a third way of 
doing the interpolation, namely spherical li near interpolation of the normals across the scanline. This has been 
explored before, however, the shading computation requires the evaluation of a cosine in the inner loop and this 
is too expensive to be eff icient. By reformulating the original approach in a suitable way, De Moivre’s formula 
can be used directly for computing the intensity so that no normalization is needed. Hence, no trigonometric 
functions, divisions or square roots are necessary to compute in the inner loop. Unfortunately the setup for each 
scanline will be rather slow unless some eff icient reformulation of the necessary trigonometric calculations can 
be found. We suggest this problem for future research. 
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1. INTRODUCTION 
Shading is a graphical technique for rendering more 
realistic images of 3D objects. Two widely used 
techniques are known as Gouraud [Gou71] and 
Phong Shading [Pho75]. In Gouraud shading, the 
intensities at the vertices of the polygon are 
calculated first. Then bili near interpolation is used in 
order to obtain intermediate intensities at the interior 
of the polygon. In Phong shading, bi-linear 
interpolation of the normal vector is performed over 
the polygon in order to obtain intermediate normals 
on the interior of the polygon. These interpolated 
normals are then used in the lighting calculation both 
for the diffuse and specular light. Gouraud shading is 
much faster than Phong shading but suffers from the 

Mach band effect and handles specular reflections 
poorly.  Phong shading will produce more accurate 
highlights than Gouraud shading. However, vector 
interpolation is computationally expensive, since the 
interpolated normal must be normalized. Otherwise, 
the result will not be much different from Gouraud 
shading. The normalization process includes both a 
division and a square root and both are operations we 
would like to avoid in the inner loop. 
 
In this paper we will propose the use of a third 
approach, where the normals are interpolated linearly 
spherically over the scanline, i.e. with equal angle 
increments rather than equal li near increments. This 
will give shading of the same quality as Phong 
shading. Formulating this in an appropriate way, the 
normalization of interpolated normals can be avoided 
over each scanline. Hence, no division and square 
roots are necessary in the inner loop. However, 
trigonometric functions need to be computed in the 
inner loop. This paper will show that by 
reformulating the shading interpolation using De 
Moivre’s formula, these trigonometric functions can 
be eliminated and completely avoided in the inner 
loop. However, the normals on the edges must be 
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normalized. The resulting algorithm is fast in the 
inner loop for the per pixel computation. 
Nonetheless, it will still require extensive 
computations for the setup of each scanline and some 
solutions are proposed for future work in this paper. 

2. PREVIOUS WORK 
Kuijk and Blake [Kuij89] showed how angular 
interpolation could be used for faster Phong shading. 
They use spherical trigonometry to derive an 
equation for how both the normal and the vector in 
the direction to the light source varies over the 
polygon. A cosine has to be evaluated for each pixel. 
However, they propose a quadratic approximation 
that wil l make the evaluation faster.  Abbas et al. 
elaborates this idea further for a suitable hardware 
implementation. A number of other approaches have 
been introduced which does not use spherical 
interpolation. Nevertheless, they should be 
mentioned, since they are relatively fast. They are 
based on quadratic approximation of the shading 
curve and are therefore different from the 
interpolation approach described in this paper. 
Bishop and Weimer [Bis86] used a Taylor series 
expansion of the Phong equation in order to obtain a 
second order approximation.  Seiler [Sei98] and Lee 
and Jen [Lee01] elaborated an idea by Kirk and 
Voorhies [Kir90], which is based on the fact that a 
quadratic shading surface can be determined from six 
sample points over the polygon, (i.e. the intensity at 
the vertices and the edge midpoints). 

3. REFORMULAT ION OF THE 
SHADING COMPUTAT ION 
Shoemake [Sho85] showed how spherical li near 
interpolation (slerp) could be done, by using 
quaternions. The slerp-formula could also be used for 
rotating vectors. The spherical li near interpolation of 
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Note, that 
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•=θcos  and the trigonometric 

unity gives that θθ 2cos1sin −= . Hence, 
equation (3) can be rewritten as: 
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Finally we will show that the last term of equation 
(4) is actually the tangent vector received by 
applying the first step in the Gram-Schmidt 
orthogonalization algorithm [Nic95]: 
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, since it is required that the 

normals at the edges are normalized. The tangent 

vector tN
�

 is by definition orthogonal to aN
�

. Thus 

we have: 
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This is exactly what we have in the numerator of the 
last term in equation (4). We will now show that the 
denominator of the last term in equation (4) is 
actually the norm of the numerator. This implies that 
the term before sine in equation (4) must be the 
normalized tangent vector. The norm is: 
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Hence, we can write equation (1) as: 
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Shading by Angular I nterpolation 
One of the mentioned drawbacks with Phong shading 
is that it is necessary to normalize the normal at each 
pixel. Another effect of linear interpolation is that the 
angle between each normal on the scan line will not 
be the same. By using slerp both these problems are 
solved. However, it is necessary to evaluate both a 



sine and cosine in the inner loop using slerp. This is 
not necessary if the De Moivre’s formula is used, as 
we shall show in the next section. Nonetheless, we 
must first state what is necessary for using slerp on a 
scanline. 
 

First we need the angle between aN
�

and bN
�

, which 

is denoted:  
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If a scan line has k  pixels then the angle between 

each new interpolated normal denoted θK  is: 
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Subsequently we rewrite equation (10) into a form 
which suites our incremental scanline shading 
scheme: 
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where n  is the n'th pixel along the scanline currently 
being shaded.  As noted by Duff [ Duf79], it is 
possible to make the computation more eff iciently by 

computing the dot product LN
��

•  directly instead of 
interpolating the normal and then computing the dot 
product. 

 
This is also possible for spherically interpolated 
shading. For the diffuse intensity the computation is: 
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This will make the computation noticeably faster 
since we will compute scalars instead of vectors. 
However, it will still be rather slow since the sine 
and cosine functions are even more computationally 
expensive than the original division and square root 
in ordinary normalization. Obviously, this approach 
will only be useful if we can derive a faster way of 
evaluating equation (14) along a scanline. 

The De Moivre’s formula 
Complex numbers are defined in an orthogonal 
system where the base vectors are [1,0] and [0,i].  
Hence, they could be regarded as 2D vectors in 
euclidian space, if we let: 
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 The De Moivre’s formula states that: 
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Note that the right part of equation (18) is similar to 
equation (13) in the way that both have a cosine and 
sine term, which are multiplied with vectors that are 
orthogonal to each other.  

 Let Z be a complex number computed by: 
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Furthermore, we treat complex numbers as if they 
were vectors in 2D-space. The diffuse intensity is 
computed by the dot product between such a vector 
and an ordinary vector, which in this case is the 
intensities. The dot product is: 
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Expanding the right part gives: 
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This is exactly the same as equation (11) if we 

substitute φ  with θK . Thus, we can compute the 

diffuse intensity as: 

n
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The total cost for computing the diffuse intensity is 
one complex multiplication and one dot product. 
Moreover, the complex multiplication or square is 
computed by: 
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Thus, the total cost is six multiplications and one 
addition and one subtraction for each pixel. 

4. DISCUSSION 
The approach that is proposed in this paper is not an 
approximating scheme like the quadratic shading 
approaches mentioned in the previous work section. 
It is truly an interpolating scheme, which interpolates 
the normal via angular interpolation and then the 
intensity is computed. The quadratic schemes will be 
very fast in the inner loop but a substantial setup is 
required for each polygon. The setup for the 
proposed approach will be quite small for each 
polygon. However, there is a substantial setup before 
each scanline. Moreover, it will be very fast for the 
inner loop since there are no divisions and square 
roots involved. If a hardware implementation of the 
proposed scheme is made, then the total 
computational cost could be reduced, by 
implementing a complex multiplication and a dot 
product directly in hardware. Unfortunately, most of 
the speedup gained, will be lost by having to use the 
inverse cosine, sine and cosine functions in the setup 
for each scanline. This problem should be solved. 



One solution would be to use table lookups. 
However, we are currently investigating the use of 
Maclaurin polynomials for approximation of the 
trigonometric functions needed.  

It is also important to solve the problem when θ is 
small , since 

tN
�

 is not defined for θ=0. A simple 

solution would be to let Z=(1,0) for θ<ε, where ε is a 
threshold value. 

The specular light can be computed in a similar way. 
The Z computed for the diffuse light can of course be 
reused for the specular light. 

It should also be noted that De Moivre’s formula 
could be used to interpolate normals directly:  

n
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However, this approach could not compete with 
doing rotation using a rotation matrix. 

Modern graphics processors come with 
programmable pixel shaders. In order to be able to 
use the flexibilit y provided by these, it is required 
that a normal is available for each pixel. If f ast 
evaluation of trigonometric functions could be done, 
by using Maclaurin polynomials, then it would even 
be feasible to use a rotation matrix for normal 
interpolation in hardware. 

The shading curve produced by spherically 
interpolated shading will be almost identical to the 
curve obtained by using Phong shading. In figure 1, 
the difference in intensity between Phong shading 
and spherical li near interpolated shading is plotted. 
The curve obtained is sinus like. Note the scale on 
the y-axis, the difference is quite small and will i n 
practice not be visible. It is therefore no point in 
comparing shaded images. Nonetheless, a shaded 
torus using slerp for both the diffuse and specular 
light is shown in figure 2. 

It should also be pointed out that the interpolation 
scheme presented is using a distant light source. How 
point light sources could be implemented using the 
proposed algorithm should be ascertained in future 
research. 

  

Figure 1. Difference in intensity between 
Phong shading and shading using slerp.  

5. CONCLUSIONS 
By using spherical li near interpolation of the normal, 
or rather the shading curve together with De 
Moivre’s formula, it is possible to get a shading 
interpolation along the scanline, which does not 
include any square roots or divisions. However, in 
order to make this approach useful, there are still 
some computations that must be made more eff icient. 
We propose this as a research problem in this paper, 
and we believe that Maclaurin polynomials could be 
used for this purpose.  

 

Figure 2. A Torus shaded using slerp. 
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