

ISSN 1213-6972 Volume 13, Number 1-3, 2005

Journal of
WSCG

An international journal of algorithms, data structures and techniques for
computer graphics and visualization, surface meshing and modeling, global
illumination, computer vision, image processing and pattern recognition,
computational geometry, human interaction and virtual reality, animation,
multimedia systems and applications in parallel, distributed and mobile
environment.

EDITOR – IN - CHIEF

Václav Skala
University of West Bohemia

Journal of WSCG

Editor-in-Chief: Vaclav Skala
 University of West Bohemia, Univerzitni 8, Box 314
 306 14 Plzen
 Czech Republic
 skala@kiv.zcu.cz
Managing Editor: Vaclav Skala

Author Service Department & Distribution:

 Vaclav Skala UNION Agency
 Na Mazinach 9
 322 00 Plzen
 Czech Republic

Hardcopy: ISSN 1213 – 6972
CD ROM: ISSN 1213 – 6980
On-line: ISSN 1213 – 6964

WSCG 2005

International Programme Committee

Alexa, Marc (Germany)
Bajaj, Chandrajit (United States)
Bartz, Dirk (Germany)
Bekaert, Philippe (Belgium)
Benes, Bedrich (Mexico)
Bengtsson, Ewert (Sweden)
Bouatouch, Kadi (France)
Brodlie, Ken (United Kingdom)
Brunet, Pere (Spain)
Brunnet, Guido (Germany)
Clapworthy, Gordon (United Kingdom)
Coquillart, Sabine (France)
Debelov, Victor (Russia)
Deussen, Oliver (Germany)
du Buf, Hans (Portugal)
Ertl, Thomas (Germany)
Ferguson, Stuart (United Kingdom)
Floriani, Leila De (Italy)
Flusser, Jan (Czech Republic)
Goebel, Martin (Germany)
Haber, Jörg (Germany)
Harris, Mark (United Kingdom)
Hauser, Helwig (Austria)
Hege, Hans-Christian (Germany)
Chen, Min (United Kingdom)
Chrysanthou, Yiorgos (Cyprus)
Jansen, Frederik,W. (The Netherlands)
Jorge, Joaquim (Portugal)
Kakadiaris, Ioannis (United States)
Kalra, Prem (India)
Kjelldahl, Lars (Sweden)
Klein, Reinhard (Germany)
Klosowski, James T. (United States)
Kobbelt, Leif (Germany)
Kruijff, Ernst (Germany)
Magnor, Marcus (Germany)
Margala, Martin (United States)
Moccozet, Laurent (Switzerland)

Mudur, Sudhir,P. (Canada)
Mueller, Klaus (United States)
Muller, Heinrich (Germany)
Myszkowski, Karol (Germany)
O'Sullivan, Carol (Ireland)
Pasko, Alexander (Japan)
Peroche, Bernard (France)
Post, Frits H. (Netherlands)
Puech, Claude (France)
Puppo, Enrico (Italy)
Purgathofer, Werner (Austria)
Rauterberg, Matthias (Netherlands)
Rheingans, Penny (United States)
Rokita, Przemyslaw (Poland)
Rossignac, Jarek (United States)
Rudomin, Isaac (Mexico)
Sbert, Mateu (Spain)
Shamir, Ariel (Israel)
Schaller, Nan,C. (United States)
Schneider, Bengt-Olaf (United States)
Schumann, Heidrun (Germany)
Skala, Vaclav (Czech Republic)
Slusallek, Philipp (Germany)
Sochor, Jiri (Czech Republic)
Stuerzlinger, Wolfgang (Canada)
Sumanta, Pattanaik (United States)
Szirmay-Kalos, Laszlo (Hungary)
Taubin, Gabriel (United States)
Teschner, Matthias (Switzerland)
Theoharis, Theoharis (Greece)
Trahanias, Panos (Greece)
Velho, Luiz (Brazil)
Veltkamp, Remco (Netherlands)
Weiskopf, Daniel (Germany)
Westermann, Ruediger (Germany)
Wuethrich, Charles Albert (Germany)
Zara, Jiri (Czech Republic)
Zemcik, Pavel (Czech Republic)

WSCG 2005 Board of Reviewers

Adzhiev,V. (United Kingdom)
Alexa,M. (Germany)
Ammann,C. (Switzerland)
Anan,H. (United States)
Andreadis,I. (Greece)
Artusi,A. (Italy)
Aspragathos,N. (Greece)
Aveneau,L. (France)
Bajaj,C. (United States)
Bartz,D. (Germany)
Bekaert,P. (Belgium)
Benes,B. (Mexico)
Bengtsson,E. (Sweden)
Bieri,H. (Switzerland)
Bilbao,J. (Spain)
Bischoff,S. (Germany)
Bottino,A. (Italy)
Bouatouch,K. (France)
Bourdin,J. (France)
Brodlie,K. (United Kingdom)
Brunet,P. (Spain)
Brunnet,G. (Germany)
Buehler,K. (Austria)
Callieri,M. (Italy)
Clapworthy,G. (United Kingdom)
Coleman,S. (United Kingdom)
Coombe,G. (USA)
Coquillart,S. (France)
Daniel,M. (France)
de Aquiar,E. (Germany)
De Decker,B. (Belgium)
de Geus,K. (Brazil)
Debelov,V. (Russia)
del Rio,A. (Germany)
Deussen,O. (Germany)
Diehl,S. (Germany)
Dingliana,J. (Ireland)
Dmitriev,K. (Germany)
Doleisch,H. (Austria)
Dong,F. (United Kingdom)
Drakopoulos,V. (Greece)
du Buf,H. (Portugal)
Duce,D. (United Kingdom)
Durupina,F. (Turkey)
Egges,A. (Switzerland)
Eibl,M. (Germany)

Erbacher,R. (United States)
Ertl,T. (Germany)
FariaLopes,P. (Portugal)
Faudot,D. (France)
Feito,F. (Spain)
Ferguson,S. (United Kingdom)
Fernandes,A. (Portugal)
Fischer,J. (Germany)
Flaquer,J. (Spain)
Floriani,L. (Italy)
Flusser,J. (Czech Republic)
Gagalowicz,A. (France)
Galo,M. (Brazil)
Geraud,T. (France)
Giannini,F. (Italy)
Gudukbay,U. (Turkey)
Gutierrez,D. (Spain)
Haber,J. (Germany)
Hadwiger,M. (Austria)
Haro,A. (United States)
Harris,M. (United Kingdom)
Hast,A. (Sweden)
Hauser,H. (Austria)
Havran,V. (Germany)
Hege,H. (Germany)
Hladuvka,J. (Slovakia)
Horain,P. (France)
Hornung,A. (Germany)
Chen,M. (United Kingdom)
Chin,S. (Korea)
Chover,M. (Spain)
Chrysanthou,Y. (Cyprus)
Iwanowski,M. (Poland)
Jaillet,F. (France)
Jansen,F. (Netherlands)
Jeschke,S. (Germany)
JoanArinyo,R. (Spain)
Kalra,P. (India)
Kjelldahl,K. (Sweden)
Klosowski,J. (United States)
Kobbelt,L. (Germany)
Kolcun,A. (Czech Republic)
Koutek,M. (Netherlands)
Krolupper,F. (Czech Republic)
Kruijff,E. (Germany)
Larsen,B. (Denmark)

Leopoldseder,S. (Austria)
Lewis,J. (United States)
Lintu,A. (Germany)
Loizides,A. (Cyprus)
Loizides,A. (Cyprus)
Magnor,M. (Germany)
Maierhofer,S. (Austria)
Mandl,T. (Germany)
Mantler,S. (Austria)
Margala,M. (United States)
Marinov,M. (Germany)
Maughan,C. (USA)
McAllister,D. (USA)
McMenemy,K. (United Kingdom)
Mertens,T. (Belgium)
Moccozet,L. (Switzerland)
Mokhtari,M. (Canada)
Moltedo,L. (Italy)
Montrucchio,B. (Italy)
Moreton,H. (USA)
Mudur,S. (Canada)
Mueller,K. (United States)
Muller,H. (Germany)
Myszkowski,K. (Germany)
Neubauer,A. (Austria)
Nielsen,F. (Japan)
O'Sullivan,C. (Ireland)
Ozguc,B. (Turkey)
Pan,Z. (China)
Pandzic,I. (Croatia)
Pasko,A. (Japan)
Pedrini,H. (Brazil)
Perez,M. (Spain)
Peroche,B. (France)
Plemenos,D. (France)
Post,F. (Netherlands)
Prakash,E. (Singapore)
Pratikakis,I. (Greece)
Prikryl,J. (Czech Republic)
Puppo,E. (Italy)
Purgathofer,W. (Austria)
Rauterberg,M. (Netherlands)
Ravyse,I. (Belgium)
Renaud,c. (France)
Revelles,J. (Spain)
Rheingans,P. (United States)
Rodrigues,M. (United Kingdom)
Rokita,P. (Poland)
Rossignac,J. (United States)
Rudomin,I. (Mexico)
Sahli,H. (Belgium)

Sainz,M. (USA)
Sbert,M. (Spain)
Segura,R. (Spain)
Shamir,A. (Israel)
Schaller,N. (United States)
Schneider,B. (United States)
Scholz,V. (Germany)
Schumann,H. (Germany)
Sijbers,J. (Belgium)
Sips,M. (Germany)
Sirakov,N. (United States)
Sitte,R. (Australia)
Slusallek,P. (Germany)
Snoeyink,J. (United States)
Sochor,J. (Czech Republic)
Sorel,M. (Czech Republic)
Sroubek,F. (Czech Republic)
Stuerzlinger,W. (Canada)
Stylianou,G. (Cyprus)
Suarez Rivero,J. (Spain)
Sumanta,P. (United States)
Szekely,G. (Switzerland)
Szirmay-Kalos,L. (Hungary)
Tang,W. (United Kingdom)
Taubin,G. (United States)
Teschner,M. (Germany)
Theobald,C. (Germany)
Theoharis,T. (Greece)
Theußl,T. (Austria)
Tobler,R. (Austria)
Torres,J. (Spain)
Trahanias,P. (Greece)
Traxler,A. (Austria)
Van Laerhoven,T. (Belgium)
Velho,L. (Brazil)
Veltkamp,R. (Netherlands)
Vergeest,J. (Netherlands)
Vuorimaa,P. (Finland)
Weiskopf,D. (Germany)
Weiss,G. (Germany)
Westermann,R. (Germany)
Wu,S. (Brazil)
Wuethrich,C. (Germany)
Yilmaz,T. (Turkey)
Zach,C. (Austria)
Zachmann,G. (Germany)
Zara,J. (Czech Republic)
Zemcik,P. (Czech Republic)
Zhu,Y. (United States)
Zitova,B. (Czech Republic)

Journal of WSCG

Vol.13, No.1-3, 2005

Contents

No.1.

Ali,K., Hartmann,K., Strothotte,Th.: Label Layout for Interactive 3D Illustrations 1
Cuno,A., Esperanca,C., Cavalcanti,P.R., Farias,R.: 3D Free-form Modeling with Variational Surfaces 9
Erleben,K., Dohlmann,H., Sporring,J.: The Adaptive Thin Shell Tetrahedral Mesh 17
Benölken,P., Graf,H.: Direct Volume Rendering Unstructured Grids in a PC based VR Environment 25
Westenberg,M.A., Ertl,T.: Denoising 2-D Vector Fields by Vector Wavelet Thresholding 33

No.2.

Guthe,M., Borodin,P., Klein,R.: Fast and Accurate Hausdorff Distance Calculation between Meshes 41
Szirmay-Kalos,L., Antal,Gy., Sbert,M.: Go with the Winners Strategy in Path Tracing 49
Bendels,G.H., Klein,R., Samimi,M., Schmitz,A.: Statistical Shape Analysis for Computer Aided

Spine Deformity Detection
 57

Ilmonen,T., Reunanen,M., Kontio,P.: Broadcast GL: An Alternative Method for Distributing OpenGL
API Calls to Multiple Rendering Slaves

 65

Porcu,M.B., Sanna,N., Scateni,R.: Efficiently Keeping an Optimal Stripification over a CLOD Mesh 73

No.3.

Linsen,L., Karis,B.J., McPherson,E.G., Hamann,B.: Tree Growth Visualization 81
Wang,H., Wang,M., Hintz,T.,Wu,Q., He,X.: VSA-bades Fractal Image Compression 89
Huysmans,T., Sijbers,J., Verdonk,B.: Parametrization of Tubular Surfaces on the Cylinder 97
Luz,J.L.,Velho,L.; Carvalho,P.C.: Silhouette Enhanced Point-Based Rendering 105
Mercier,B., Meneveaux,D.: Shape from Silhouette: Image Pixels for Marching Cubes 112
Hu,J., You,S., Neumann,U.: Texture Painting from Video 119

Label Layout for Interactive 3D Illustrations

Kamran Ali, Knut Hartmann, and Thomas Strothotte
Department of Simulation and Graphics

Otto-von-Guericke University of Magdeburg
Universitätsplatz 2, D-39106 Magdeburg / Germany

{kamran, knut, tstr}@isg.cs.uni-magdeburg.de

ABSTRACT
Hand-made illustrations in scientific and technical textbooks commonly use internal and external labels or legends
to establish co-referential relation between pictorial elements and textual expressions. By analyzing the most
complex examples, we extracted several label layout styles and classified them. We propose a variety of real-time
label layout algorithms that aim to produce nice and clean layouts. In order to achieve a frame-coherent label
layout during user interactions, the algorithms consider layout decisions from previous frame. Moreover, several
evaluation criteria to measure the quality of static as well as dynamic label layouts are presented.

Keywords
Label-Layout, External Labeling, Text-Image Integration, Multi-Modal Presentations

1 INTRODUCTION
Interactive tutoring systems aim at presenting informa-
tion in the most effective way. The dual coding the-
ory [CP86] suggests that humans posses two indepen-
dent processing systems—one for visual and the other
for verbal elements. Hence, using two channels, more
material can be conveyed, but their content has to be
integrated mentally.
Human illustrators employ a number of techniques
to establishco-referential relation between visual and
verbal elements. Labels, legends, and figure captions
provide denotations, technical terms, and descriptions
for visual elements. However, their automated inte-
gration within an interactive 3D environment remains
a big challenge.
Text labels either overlay visual objects or placed out-
side (internal vs. external labels). Connecting lines
reveal co-referring external labels and visual objects,
whereasanchor points ease the identification of visual
objects. In this work, the termlabel layout refers to
the determination of the positions of anchor points and
external labels, which are linked with connecting lines

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The Journal of WSCG, Vol. 13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

using a specific line style. Moreover, the termgraphi-
cal model refers to a complex visual object with sepa-
rate individual visual objects.
We extracted requirements for several layout styles
which are prevalent in hand-made illustrations and
present techniques towards an automated generation
of label layouts in real-time. In order to achieve a
frame-coherent label layout during user interactions,
these algorithms consider layout decisions from the
previous frame. Moreover, the system facilitates auto-
matically generatedlegends for graphical models and
textual explanations for visual objects. The mental in-
tegration of information presented in 3D and legend
viewer is aided through a synchronized object selec-
tion and highlighting mechanism.
The paper starts by giving a review of related work
in Section 2. Section 3 states the requirements for
dynamic labeling system. In Section 4 several label
layout styles are classified. Section 5 presents the ar-
chitecture of our label layout system and provides the
algorithms to generate several layouts. Moreover, co-
herency aspects and the application of labels in leg-
ends are described. Section 6 states theevaluation cri-
teria to measure the quality of layouts. Finally, Sec-
tion 7 discusses directions of future research.

Fornix
 Thalamus

Body of corpum callosum

Septum pellucidum

Cingulate sulcus

Pingeal gland

Parieto-occipital sulcus

Posterior calcarine sulcus

Splenium of corpum callosum

Cuneaus

Cerebral aqueduct

Cerebellum

Choroid plexus

Medulla

Mamillary body
Pituitary gland
Optic chiasma

Hypothalamus

Genu of corpus callosum

Thalamic interconnexus

Interventricular foramen

Hypothalamic sulcus

Lamina terminalis

Lunula of semilunar cusp

Aortic valve, left semilunar cusp

Left coronary a.

Left coronary a.

ant. Interventricular br.

Interventricular septum,

membranous part

Myocardium

Chordae tendineae

Ant. papillary m.

Post.

papillary m.

Chordae

tendineae

Left ventricle

Left atrioventricular orifice

Left atrioventricular (mitral) valve, ant. cusp

Aortic valve, post. semilunar cusp

Aortic valve, right semilunar cusp

Right auricle

Left semilunar cusp

Nodulus of semilunar cusp

Right coronary a.

Pulmonary trunk

Sinus of aorta

Bulb of aorta

Figure 1: Variety in the layout styles (Source: [Rog92, p. 317] and [SPP97, p. 81]).

2 RELATED WORK
The label layout problem has received much attention
in non-interactive cartographic applications [CMS95]
where the labels have to be placed for point, line, and
area features. However, the label placement is inde-
pendent of the shape of graphical features and can be
unified for all kinds of features [KT98]. Finding the
optimal solution of the labeling problem (i.e., without
overlapping labels) is proven to be NP-hard [MS91].
Therefore, several approximation methods have been
developed to reduce the computational complexity.
A number of interactive multi-modal systems integrate
external labels into the visualization of geometric ob-
jects. But most of them rely on fixed regions for visual
and textual elements (e.g., [PRS97]) or a manual label
layout (e.g., [RSHS03]). Only a few solutions have
been proposed to integrate internal and/or external la-
bels into interactive 3D applications (e.g., [BFH01]),
but they lack the ability to generate a variety of lay-
outs which are often seen in hand-made illustrations.

3 REQUIREMENTS
In dynamic environments an effective layout must ful-
fill a number of requirements ([Imh75, FP99]):

Readability: Labels must not overlap,
Unambiguity: Labels clearly refer to their objects,
Pleasing: Prevent visual clutter,
Real-Time: Compute layouts at interactive rates,
Frame-Coherency: Prevent visual discontinuities,
Compaction: Reduce the layout area.

These requirements may conflict with each other and
with another demand:label as many visual objects as
possible. Some of these requirements can be evaluated
easily, whereas the extraction of criteria for the second
and third aspect is less obvious. We use several heuris-
tics to achieve a pleasant and unambiguous layout:

(i) Place anchor points over salient positions,
(ii) Place labels near to their corresponding objects,

(iii) Align labels mutually and with respect to the
graphical objects, and

(iv) Eliminate line crossings.

The label layout algorithms are incorporated into an
interactive application where visual discontinuities be-
tween subsequent frames must be avoided. Moreover,
the layouts should be as compact as possible to fit on
the limited screen space. Finally, the layout algorithms
have to cope with situations where some labels do not
fit into the given screen space. As the computation of
an optimal solution is NP-hard, several simple yet ef-
fective methods are proposed that can be carried out in
real-time.

4 LAYOUT STYLES
The material in this section is based on a manual anal-
ysis of label layouts in hand-drawn illustrations. For
this purpose, we chose anatomic atlases, anatomic
textbooks, and visual dictionaries because of their
making extensive use of external labels and due to the
extraordinary quality of their label layouts.
The manual analysis reveals that human illustrators
use a number of different label layout styles with style-
specific illustration techniques and properties (see Fig-
ure 1). Therefore, we classified them according to
their common properties (see Figure 2):

Straight-Line: Labels and anchor points are con-
nected with straight lines (see Figure 1-Right).
Orthogonal: Connecting lines are axis-aligned and
the bends are made at orthogonal angles (see Figure 1-
Left).
Flush Layout: Labels are assigned to distinct spatial
areas (see Figure 3-a):
• Flush Left-Right: Labels are placed on the left

and/or right side of the graphical model.
• Flush Top-Bottom: Labels are placed on the top

and/or bottom of the graphical model.
Circular Layout: Labels are aligned on the silhou-
ette of the graphical model in a circular fashion (see
Figure 3-b):
• Ring: Labels are placed at regular intervals on a

ring which encircles the graphical model.
• Radial : Labels are placed in radial form with re-

spect to a common origin.
• Silhouette-Based : Labels are placed near the sil-

houette of graphical model at positions closest to
their anchor points.

OrthogonalStraight-Line

Layout

Circular LayoutFlush Layout

Ring Radial
Silhouette-

Based
Left-Right Top-Bottom

OrthogonalOrthogonalStraight-LineStraight-Line

LayoutLayout

Circular LayoutFlush Layout

Ring Radial
Silhouette-

Based
Left-RightLeft-Right Top-BottomTop-Bottom

Figure 2: Layout Classification.

These styles are adopted in order to meet space re-
quirements, to bring conformity in different illustra-
tions, to maintain visual balance, and to ease reading.
The most interesting observation is that there are some
general but also several style-specific requirements.

5 AUTOMATED LABEL LAYOUT
In this section, the properties and constraints of labels,
anchor points, and connecting lines are defined. More-
over, we describe our approach towards the dynamic
layout of label in interactive systems.

5.1 Object Properties and Constraints
The amount of text displayed in labels can range from
one- or two-letter symbols to multi-line paragraphs.
However, most often labels comprise few words on a
single line. We classify labels into the following cate-
gories:

(a) Flush layouts combined withstraight-line or orthogonal
styles.

(b) Ring, radial andsilhouette-based layouts.

Figure 3: Examples of various layout styles.

(i) single-line (max. 50 characters),
(ii) multi-line labels, or

(iii) legend keys (max. 2 characters).

For labels of different sizes, more constraints are
needed to avoid label overlaps and line intersections.
Thus, achieving a balanced layout becomes more
problematic. Therefore, our layout strategy is re-
stricted to single-line labels and legend keys which
both have a fixed height and width. This constraint
enables us to represent labels aszero-sized points and
to maintain a minimal vertical and horizontal gap be-
tween them. Multi-line descriptions and legend text
are provided on request. They do not alter their po-
sitions and have a semi-transparent background. User
can pin them anywhere on the screen. The positions of
all kinds of labels, anchor points, and connecting lines
are specified in view-plane coordinates.
All objects are assigneddisplay priorities (that con-
sider projection size) anduser priorities. For complex
models, the labels can be filtered according to theirde-
gree of interest. If there is not enough place to display
all label, objects with the smallest priorities are chosen
and their labels are ignored.

5.2 System Architecture
Figure 4 presents an overview of our approach. The
content presented in labels is provided by an exter-
nal domain expert. The system works internally on
2D projection of 3D scene where individual visual
objects are color-coded uniquely (color-code image).
The rendered image is analyzed to determine visible
objects and anchor points. Layout-specific algorithms
determine initial positions for labels. Then label over-
laps are eliminated and line intersections are resolved.
If required, layout compaction is performed. Finally,
the labels are rendered with chosen decoration style on
top of the scene.

5.2.1 Domain Expert Initialization
The co-referential relation between textual annotations
and visual objects is established by using an external
knowledge base. When the system loads a 3D model,
the domain expert defines a color-coding scheme for
visual objects and provides textual descriptions.

5.2.2 Image Analysis
This module segmentscolor-code images. For every
rendered frame, it creates a list of all segments, their
sizes, extents, and colors (to identify the visual ob-
jects). For each visible object, it determines one an-
chor point. Since an anchor point is intended to sup-
port the identification of visual object and its distinc-
tion from the remaining objects, its position is cru-
cial to prevent co-referential mismatch. From observa-

Frame-
coherent

presentation

Label
Layout

Image
Analysis

Color-Code Rendering

Domain-Expert Initialization

Object Visibility

Anchor Point Calculation

Layout Compaction

Label Overlap &
Line Intersection Elimination

Initial Label Layout

Decoration

Annotation Rendering

Figure 4: System architecture.

tions, we define the following heuristics to determine
anchor points:

(a) They must overlay their corresponding objects.
(b) Place anchor points inside the biggest segments.
(c) Place them at the most internal locations of these

segments.
(d) Avoid clusters of anchor points.

Anchor Point Calculation: If the objects have ‘L’ or
‘U’ shape, neither the center of the bounding box nor
the centroid guarantee to fulfill the first condition. To
compute the most internal pixel in a segment, we apply
distance function on color-coded images. For every
pixel this function computes its distance to the closest
segment boundary and stores these values in adistance
image (see Figure 5-Right).
There are several variants of this function which em-
ploy different metrics: Euclidean, Manhattan, and
Chessboard.
The last two metrics are faster but less accurate. In
order to reduce the computational expense of the eu-
clidean metric, we adopt thepseudo euclidean met-
ric d34 [AdB88]1. The d34 metric assigns distance
value 3 to horizontal and vertical neighboring pixels;
the value 4 is assigned to diagonally connected pix-
els. We implemented a 2-pass algorithm to compute
distance image [RP68] using thed34 metric. For each
visual object a mask is placed over thedistance image
and the highest distance value is returned as anchor
point.

Elimination of Anchor Point Clusters: In order to
avoid referential mismatches or ambiguities, anchor
points should not form clusters. Therefore,repulsive

1An approximation which purely uses integer operations and
avoids square roots.

Figure 5:Color-code image (left) anddistance image
(right) with overlaid anchor points.

forces aim at separating anchor points by modifying
the distance image D. An anchor point at positionc
adds asubtractive function which is centered atc and
is applied to all pixelsp of its influence regionR:

Dp = Dp− f (||p−c||)∗k ; for p∈ R

wheref is a non-negative decreasing function,||p−c||
is the distance betweenp andc, andk is a scaling fac-
tor. The algorithm now determines thedistance im-
age D in a first phase. The second phase subsequently
computes anchor points for visual objects by selecting
the maximal distance values on their segments. After
selecting each anchor point, the values in thedistance
image around the anchor are modified by the subtrac-
tive function.
In Figure 6, the green and red curves denote distances
of two distinct visual objects to their segment bound-
aries. After placing an anchor point for the green ob-
ject, the subtractive function (in blue dotted line) digs a
valley intoD and forms a new peaks for the red object
(Peak 2 and 3). Finally, Peak 3 is selected as anchor
position since it now has the highest quality.

5.2.3 Label Layout
All style-specific algorithms instantiate a generalized
algorithm. In the following, we describe only the
layout specific realizations of generalized tasks. All
layout-specific algorithms strictly prevent label over-
laps and intersections of connecting lines. Moreover,
layouts can be made more compact. Our extensions to
achieve a frame-coherent label layout are presented in
the next section.

1

2

3

S
ubtractive

function

Figure 6: Separation of anchor points.

Generalized Algorithm: For a single frame,

1. Determine the positions of anchor points,
2. Determine the extents of empty space regions,
3. Allocate spatial regions for labels,
4. Compute an initial label layout,
5. Stack labels to eliminate overlap,
6. Resolve line intersections, and
7. Perform layout compaction.

All layout algorithms rely on the positions of anchor
points. In Task 2, the extent and locations of the four
biggest empty axis-aligned rectangles (left, right, top,
bottom) around the graphical model are computed, as
the flush layouts place labels solely in these regions.
The Tasks 3, 4, and 7 are style specific.

Flush-Left-Right Layout: Modifies Tasks 3, 4, and 5.

Allocate spatial regions for labels (Task 3):

(a) Sort anchor points according to thex direction,
(b) Choose apivot point (e.g., mean or median of an-

chor points), and
(c) Assign labels to the left and right region by com-

paring their anchors with the pivot point.

Compute an initial label layout (Task 4):

(a) Assign they position of anchor points toy position
of associated labels.

(b) Justify the labels on the bounding box of the
graphical model.

Stack labels to eliminate overlap (Task 5):

(a) A recursive algorithm assigns new positions to the
labels to eliminate label overlaps and minimize the
average vertical length of connecting lines.

For flush left andflush right layout, we assign to the
pivot element a minimal or maximal value. Forflush
top and flush bottom layout, the previous algorithm
works by exchanging horizontal and vertical direc-
tions. Later on, in top and bottom regions, labels are
stacked in vertical direction.

Radial Layout: Modifies Tasks 4 and 5.

Compute an initial label layout (Task 4):

(a) Select a center positiono (e.g., mean or median
of anchor points) and an appropriate radiusr for a
circleC which encloses the graphical model.

(b) Compute the radial projection of the anchor points
onC.

(c) Align the corresponding label on this position. La-
bels on left-half ofC are right-justified and labels
on right-half ofC are left-justified.

Stack labels up- or downwards to eliminate mutual la-
bel overlaps (Task 5).

The radial projection of anchor points produces no in-
tersections of connecting lines. However, labels can
overlap or lie very close to each other which is re-
solved by label stacking. An unbalanced distribution

of labels might cause huge label stacks and increase
the lengths of connecting lines. Thespring embedding
approach, which is described after the discussion of
the individual layout styles, improves the layout con-
siderably.

Ring Layout: Modifies only Task 4.

Compute an initial label layout (Task 4):
(a) Select a center positiono (e.g., mean or median

of anchor points) and an appropriate radiusr for a
circleC which encloses the graphical model.

(b) Choosen evenly spaced positionsP on the circle.
(c) Determine a bijective mapping from the label set

to P which minimizes the distance between labels
and their anchor points.

Since the labels are already evenly spaced, there is no
need to check for label overlaps for smalln and bigr.

Silhouette-Based Layout:Modifies Tasks 4 and 5.

Compute an initial label layout (Task 4):
(a) Compute the convex hull of the geometric model

and enlarge it (pre-processing step)
(b) Project the anchor points on the edges of the con-

vex hull silhouette boundaryS. Choose the closest
projection position to the anchor as label position.

Stack labels up- or downwards to eliminate mutual la-
bel overlaps (Task 5).

In our application the approximation of the silhouette
boundary with convex hulls achieved a better quality
compared to other bounding objects (e.g., circles or
bounding boxes). But also this approach suffers from
uneven label distribution. Again, the spring embed-
ding approach is used to improve this layout.

Spring Embedding Approach
To balance uneven label distribution inradial and
silhouette-based layouts, we use aforce directed ap-
proach [FR91] developed in graph drawing. We de-
fine arepulsive force between labels aiming to sepa-
rate the labels, and anattractive force that moves the
labels close to their anchor points. The configuration
is done in a circular fashion. Hence, it is based onan-
gles between the labels rather than ondistances. For
two labelsv andu, ∆r refers to an interior angle formed
by them with respect to circle centero. The repulsive
force fr is inverse proportional to∆r :

fr(∆r) = −k2/∆r

wherek is an ideal angle (e.g., 0.2 rad.) betweenv
andu. Moreover, we establish an attractive forcefa
between the labelsv and associated anchorsav. Let
positionpv be the radial projection ofav in radial lay-
out. The positionpv on the circular ring attracts the
label v. ∆a refers to the interior angle betweenv and
pv with respect too.

fa(∆a) = ∆2
a/k

1

6

2

3

5

4

1

6

2

3

5

4

Figure 7: Usingspring embedding to spread labels in
the circle. Before (left) and after configuration (right).

wherek is a tolerable angle (e.g., 0.2 rad.) betweenv
and pv. The algorithm configures the layout in many
iterations. The amount oftemperature t constrains the
label displacement. The highert, the bigger the dis-
placement. The algorithm starts at hight and cools
gradually. In each iteration, displacement angles for
each label are computed by summing repulsive and at-
tractive forces. After configuration, label overlaps are
resolved. In our system, spring embedding approach
can be performed in real-time as nearly 30 objects
are labeled. We found 20 to 30 iterations enough to
achieve an acceptable layout.
Figure 7 illustrates the spring embedding configura-
tion. Filled enumerated circles represent labels which
are arranged on a circle, whereas tiny filled circles
represent anchor points. Solid blue lines indicate re-
pulsive forces and dashed red lines indicate attractive
forces between labels and their ideal positions.

5.2.4 Line Intersection Elimination
To resolve intersections of connecting lines, the re-
striction onfixed size labels is a big advantage. For
any two intersecting lines, we can interchange their la-
bel positions without introducing new label overlaps:

Do until there are no intersections left
if any two connecting lines intersect

interchange their label positions

Orthogonal Layout
This style requires axis-aligned connecting lines with
bend at orthogonal angles. It can be combined with all
flush or circular layouts:

1. Compute label positions using any layout method,
2. Draw the connecting lines in orthogonal style.
3. Resolve intersections of orthogonal lines, and

The current implementation imposes two restrictions:
(i) only one bend is allowed (i.e., connecting lines can
employ a vertical and a horizontal segment) and (ii)
vertical segments connect anchor points and bends,
while horizontal segments connect bends and labels.
In order to detect line intersections in the orthogonal
layout, each horizontal segment is tested for intersec-
tion with all vertical segments. Every time an intersec-

Figure 8: Layout Compaction.

tion is found, the label positions are exchanged. This
procedure is continued until no intersections remain.

5.2.5 Layout Compaction
In order to keep the connecting lines short, this step
aims at moving the labels towards their anchor points.
We implemented two methods based upon the kind of
silhouette they use. The first method approximates the
silhouette of graphical model by a convex hull. It com-
putes intersections between connecting lines and the
edges of the convex hull and re-targets the labels on
the intersection points. Furthermore, label overlaps are
resolved analogue to Task 5 insilhouette-based layout
(see Figure 3-b).
The second compaction method uses the original sil-
houette boundary, and is preferred only forflush left-
right layout as the height of labels is much smaller
than the width. Each label in the left region is shifted
horizontally towards the right until it hits some fore-
ground pixel, or the horizontal distance between the
label and the anchor point becomes zero. This test is
performed using thecolor-code image. The labels are
placed with some margin to the final position. Simi-
larly, the labels in the right region are moved in. New
line intersections may arise which are again resolved.
After compaction, the labels in both sides closely fol-
low the boundary of the model, and the layout looks
more pleasing (see Figure 8).

5.2.6 Frame Coherent Presentation
Our discussion so far was restricted to static aspects.
In interactive systems the label layout has to be re-
computed after the user interacts. An independent lay-
out for individual frames without considering continu-
ity aspects results inlayout flickering. Jumping labels
and anchor points are both irritating and distracting.
In order to achieve aframe coherent label layout, our
algorithms are revised to consider the outcomes from
previous frames.

Stabilizing Anchor Points: All of the layout algo-
rithms rely heavily on the positions of anchor points.
Therefore, movements of anchor points might induce
a global change in the layout. To enhance the frame
coherency, a new heuristic for placing anchor points

A(t)

A(t+1)

B(t)

B(t+1)

movekeep

Figure 9: Stabilizing anchor points.

is added:If possible, keep the anchor points at their
previous locations. However, anchor points must not
leave the region of its corresponding visual object and
might now reside at a very poor position. In both cases,
the anchor points should shift.
In order to implement this new heuristics, we add an
attractive force which aims at keeping anchor points
close to their previous positions. For each anchor point
at positionc and its associated visual objectOi anad-
ditive function is applied on thedistance image D. It
affects the distance values for all pixelsp of the corre-
sponding object within an influence regionR:

Dp = Dp + f (||p−c||)∗k ; p∈ Oi

where f is a non-negative decreasing function,||p−
c|| is the distance betweenp andc; andk is a scaling
factor.
This function creates high peaks on previous anchor
positions and increases their probability for being se-
lected as new anchor points. In Figure 9, theA(t) and
B(t) refer to the anchor points of the green and red ob-
ject in framet. In the next framet + 1 the additive
function (in blue dotted line) modifiesD and creates
new peaks. The global maximaA(t) andA(t + 1) for
the green object are identical, so that its anchor point
remains stable. However, there is now a new global
maximumB(t + 1) for the red object, so that its an-
chor point moves to another location. This illustrates
how we try to retain old positions as long as they are
acceptable and jump to better candidates otherwise.

Stabilizing Label Layout: The assignment of labels
to spatial regions is a very crucial for the appearance
of a layout. In order to prevent frequent label jumps
between different regions, the pivot point of flush lay-
outs should also be stabilized. However, if it remains
steady for a long time while the user interaction con-
tinues, the numbers of labels per region can get very
unbalanced. To handle this problem, a pivot element
is nailed as long as it provides an acceptable ratio of
anchor points in two regions, otherwise it is set to new
location.

Label Animation: In order to prevent visual discon-
tinuities, changes of anchor points and label positions
are animated. We prefer aslow-in slow-out interpo-
lation. To avoid a distraction by floating labels within

Figure 10: Anorthogonal layout with NPR rendering.

user interactions, layouts can befrozen until a new sta-
ble point-of-view is chosen.

5.2.7 Decoration
By default, we use white as background color and
black as text color. For legends, different colors for
indices help to find the associated elements. We sug-
gest (i) to use dotted instead of solid lines (otherwise
strips between lines show up), (ii) to use line shadows,
and (iii) to decrease the color intensity of labels and
connecting lines during animations. The system facil-
itates the user to change the color, size, and style for
anchor points and connecting lines.
For creating abstract versions of illustrations, we inte-
grated a non-photorealistic rendering system [HIR+03].
Figure 10 shows the results with orthogonal layout
style. Long textual descriptions can be presented in
both 3D and in a separatelegend viewer. Object se-
lection and highlighting is synchronized in both views
(see Figure 11).

5.3 Selection of Layout Style
No layout is ideal under all circumstances, however,
the knowledge of their specific advantages and con-
straints helps to select an appropriate one. The choice
of a layout for external labeling depends largely on the
shape and orientation of visual object, the spatial dis-
tribution of anchor points, the amount and distribution
of free space available to insert labels, and personal
preference for a particular layout.
Determining a suitable layout automatically can be
very difficult. Therefore, layout selection is performed

Figure 11: Synchronized legend and 3D viewer.

by the user via real-time previews. It also gives the
user more freedom in choosing from a variety of avail-
able layouts if one layout does not look promising.

6 EVALUATION
An automatic evaluation of the label layouts can be
made on the basis of the following parameters (mainly
taken from the field of graph drawing [DBET+99]):

• Number of unlabeled visual objects,
• Number of line intersections,
• Number of label-label overlaps,
• Number of line-label overlap,
• Average length of connecting lines,
• Number of bends in connecting lines,
• Average number of labels which change positions

between frames,
• Average label displacement between frames,
• Illustration size and aspect ratio (1 is the best), and
• Frame rate.

Our system measures the values of evaluation param-
eters to help us in comparing the layouts at runtime.
Moreover, a user evaluation should consider the fol-
lowing parameters:

• Contrastive comparison of different layouts,
• Personal layout score (pleasing, symmetry),
• Distinguish automatically generated layouts from

hand-made ones,
• Time taken to match the co-referring labels and

visual objects, and
• Error rates in the matching process.

7 DISCUSSION AND FUTURE WORK
Thelayout compaction is currently performed in local
regions. Improved versions should consider the global
distribution of empty space and reduce the amount of
label stacking. In our approach, a single anchor point
is used for each object. Long, thin, and branched ob-
jects are often marked with multiple anchor points,
which are connected with branching connecting lines
(see Figure 1-Right). For bigger objects (area fea-
tures) internal labels should be used. Moreover, the
system should support the integration of multiple lay-
out style within an illustration. Finally, common se-
mantic classifications of visual objects should be visu-
alized throughlabeling grouping A full-fledged label-
ing system has to integrate all these aspect, and should
be based on the notion of relevance to select an appro-
priate label number and content dynamically.

REFERENCES
[AdB88] C. Arcelli and G.S. di Baja. Finding Local

Maxima in a Pseudo-Euclidean Distance Transform.
Computer Vision, Graphics, and Image Processing,
43(3):361–367, 1988.

[BFH01] B. Bell, S. Feiner, and T. Höllerer. View
Management for Virtual and Augmented Reality. In
Proc. of Symposium on User Interface Software and
Technology, pages 101–110, 2001.

[CMS95] J. Christensen, J. Marks, and S. Shieber. An
Empirical Study of Algorithms for Point-Feature Label
Placement.ACM Transactions on Graphics,
14(3):203–232, 1995.

[CP86] J.M. Clark and A. Paivio. Dual Coding Theory and
Education.Educational Psychology Review,
3(3):149–210, 1986.

[DBET+99] G. Di Battista, P. Eades, R. Tamassia, , and
I.G. Tollis. Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall, Upper Saddle
River, NJ, 1999.

[FP99] J.-D. Fekete and C. Plaisant. Excentric Labeling:
Dynamic Neighborhood Labeling for Data
Visualization. InProc. of SIGCHI, pages 512–519,
1999.

[FR91] T.M.J. Fruchterman and E.M. Reingold. Graph
Drawing by Force-Directed Placement.Software-
Practice and Experience, 21(11):1129–1164, 1991.

[HIR+03] N. Halper, T. Isenberg, F. Ritter,
B. Freudenberg, O. Meruvia, S. Schlechtweg, and Th.
Strothotte. OpenNPAR: A System for Developing,
Programming, and Designing Non-Photorealistic
Animation and Rendering. InProc. of Pacific
Graphics, pages 424–428, 2003.

[Imh75] E. Imhof. Positioning Names on Maps.The
American Cartographer, 2(2):128–144, 1975.

[KT98] K.G. Kakoulis and I.G. Tollis. A Unified
Approach to Labeling Graphical Features. InProc. of
the 14th Annual Symposium on Computational
Geometry, pages 347–356, 1998.

[MS91] J. Marks and S. Shieber. The Computational
Complexity of Cartographic Label Placement.
Technical Report TR-05-91, Center for Research in
Computing Technology, Harvard University, 1991.

[PRS97] B. Preim, A. Raab, and Th. Strothotte. Coherent
Zooming of Illustrations with 3D-Graphics and Text.
In Proc. of Graphics Interface, pages 105–113, 1997.

[Rog92] A.W. Rogers.Textbook of Anatomy. Churchill
Livingstone, Edinburgh, 1992.

[RP68] A. Rosenfeld and J. Pfaltz. Distance Functions in
Digital Pictures.Pattern Recognition, 1(1):33–61,
1968.

[RSHS03] F. Ritter, H. Sonnet, K. Hartmann, and Th.
Strothotte. Illustrative Shadows: Integrating 3D and
2D Information Displays. InProc. of Int. Conf. on
Intelligent User Interfaces, pages 166–173, 2003.

[SPP97] J. Sobotta, R. Putz, and R. Pabst, editors.Sobotta:
Atlas of Human Anatomy. Volume 2: Thorax,
Abdomen, Pelvis, Lower Limb. Williams & Wilkins,
Baltimure, 12. English edition, 1997.

3D Free-Form Modeling with Variational Surfaces

Alvaro Cuno, Claudio Esperança, Paulo Roma Cavalcanti, Ricardo Farias
Universidade Federal do Rio de Janeiro

Programa de Engenharia de Sistemas e Computação/COPPE
 Rio de Janeiro, Brazil

{alvaro, esperanc, roma, rfarias}@lcg.ufrj.br

ABSTRACT
We describe a free-form stroke-based modeling system where objects are primarily represented by means of
variational surfaces. Although similar systems have been described in recent years, our approach achieves both a
good performance and reduced surface leak problems by employing a coarse mesh as support for constraint
points. The prototype implements an adequate set of modeling operations, “undo” and “redo” facilities and a
clean interface capable of resolving ambiguities by means of suggestion thumbnails.

Keywords
Free-form modeling, stroke based modeling, RBFs.

1. INTRODUCTION
Typical 3D modeling systems are mostly designed to
handle the creation of technical models, i.e., objects
with precise measures or which must obey well-
defined geometric rules. Such systems are not well-
suited to handle so-called free-form models, which
can be regarded as 3D models akin to 2D free-hand
sketches. One reason for this is the fact that
interaction in 3D relies almost exclusively on 2D
projections, since the only feasible alternative for
effectively working in 3D space is by employing
costly and cumbersome virtual reality gear. Thus, the
user must ultimately manipulate 2D features in order
to accomplish 3D editing tasks.

Perhaps the most salient features of any given 3D
model are its edges and silhouette lines. Igarashi et
al. [Iga99] used this observation to build a prototype
3D free-form modeler called Teddy. In contrast with
common 3D modelers, Teddy is easy and intuitive
enough to be used even by small children. It relies on
a scheme by which free-hand drawing strokes
representing silhouette lines are used to build and
modify smooth closed surfaces. Teddy also innovates
over other 3D modelers by not using the standard

WIMP (Windows, Icons, Menus and Pointers)
interface paradigm. Rather, all interaction is based
upon stroke recognition and a very small number of
command buttons.

Another key aspect that must be addressed in the
construction of stroke-based interfaces is the
resolution of ambiguities that may arise during a
modeling session. For instance, a new stroke drawn
by the user may be interpreted either as the cue for
creating a new shell or as the profile of an extrusion
operation. Our system copes with this problem by
using a suggestive interface similar to the approach
described in [Iga01]. Namely, thumbnail images
representing the alternative results are displayed in a
corner of the main display window, which must then
be clicked by the user in order to select the desired
outcome.

The remainder of this paper is organized as follows.
Section 2 presents some relevant work related to the
problem at hand. An overall description of the
proposed system is presented in Section 3 and some
concepts of the variational surfaces are introduced in
Section 4. The involved algorithms are described in
detail in Section 5. Some key aspects of the
implementation are discussed in Section 6 and some
results and limitations are presented in Section 7.
Finally, some concluding remarks and suggestions
for future work can be found in Section 8.

2. RELATED WORK
In the last few years, several experimental systems
have been proposed which offer interfaces for the
specification and construction of different types of
three-dimensional scenes starting from 2D strokes
[Zel96, Tol99, Mar99, Coh99, Coh00, Tol01, Iga01,
Tai04]. Specially worthy of note is the Teddy system

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

proposed by Igarashi et al. [Iga99], which can be
used to create simple models with spherical topology
with only a few strokes. An initial model is created
by drawing a simple closed curve which is then
inflated resulting in a blob-like object such that the
curve approximates its silhouette. Additional strokes
can then be used to extrude protrusions, cut, bend or
smooth the model.

Modeling operations in Teddy are performed on a
polygonal mesh representation of the surface. Some
of these operations necessarily require the
subsequent use of smoothing algorithms on the
edited mesh. Nevertheless, some models end up with
undesirable protuberances and wrinkles due to
triangles with awkward characteristics. Besides,
Teddy does not support the creation of multiple
objects in the same scene and therefore operations to
combine these are unavailable.

Karpenko et al. [Kar02] deal with the problem of
undesired surface roughness by using Variational
Surfaces as the main representation scheme. These
surfaces are zero-sets of a class of implicit functions
known as RBF-based implicits. The term RBF -- or
Radial Basis Functions -- refers to the fact that the
basis functions used in the creation of the implicit are
radially symmetric. The key advantage of variational
surfaces lies in that they are naturally smooth, since
their construction can be regarded as an energy
minimization process. This, however, leads to other
problems. For instance, models with creases and tips
cannot be easily created. Also, the performance of
the system is heavily dependent on the number of
constraint points used in defining the implicit. This is
worsened by the fact that model editing operations
are performed using a great number of mesh vertices
produced by the visualization process.

Owada et al. [Owa03] present a system that generates
volumetric models from 2D strokes. Besides making
it possible to create, cut and extrude surface features,
their approach also allows the specification of
internal structures in the models with arbitrary
topology. The main disadvantage of that system is
that simple smooth surfaces can be modeled only
with high storage and computation costs.

Blobmaker [Ara03] is prototype system quite similar
to the one presented by Karpenko et al. Its main
contribution lies in the use of skeletons for model
construction. This allows the creation of objects with
arbitrary topology and an efficient application of
edition operations. However, the use of constraint
points positioned irregularly on the surface may lead
to surface leaks after a few modeling steps.

Recently, Tai et al. [Tai04] described a system based
on convolution surfaces for the construction of free-
form models starting from a silhouette curve. The

resulting shape has circular cross-section, but can be
conveniently modified through a sketched profile or
shape parameters. But, unlike the prototypes
discussed above, their system employs menus and
sliders in its modeling interface.

3. SYSTEM DESCRIPTION
The prototype system allows the user to quickly
create simple 3D models by drawing 2D strokes
directly on the system window. Once the model is
created, it can be further edited with operations such
as merging, extrusion and piercing, which are also
specified by inputting additional 2D strokes. Thus,
the execution of an operation depends solely on the
stroke form and where it was made, making it
unnecessary to press any button or select menu
options.

The user interface is composed of a design window
and five command buttons. The init button starts a
new modeling session, save saves the polygonal
mesh of the modeled object, undo cancels the effects
of the last operation, redo cancels the most recent
undo command, and the quit button exits the system.
Operations undo/redo work on a linear history of
editing operations starting at the most recent
invocation of the init command. This mechanism
enables the user to review all operations made during
a modeling session.

Input strokes are drawn by dragging the mouse with
the left button pressed. A model can be moved on the
xy plane by positioning the mouse over the model
and then dragging it with the right button pressed.
Translation along the z axis is accomplished in a
similar way, but the middle button is used instead.
Rotation uses an arc-ball interaction style: first, the
center of rotation is specified by clicking on the
model with the right button, the rotation angle and
direction is then input by dragging the mouse with
the right button.

Operations
A modeling session begins with an empty design
window. The user specifies the model silhouette to
be constructed by drawing a simple closed curve
with a single stroke. The system then constructs a
plausible 3D model based on the input silhouette.
This is accomplished by inflating the curve in both
directions by an amount proportional to its width,
this is, narrow areas will become thin regions while
wide areas generate fat regions [Iga99]. Figure 1
shows examples of input strokes and the
corresponding 3D models constructed by the system.

Object creation operations may be performed many
times, thus allowing the construction of scenes with
multiple objects (see Figure 1(d)).

Figure 1. (a), (b) and (c) Object creation

examples. (d) Scenes with multiple objects.

Figure 2. (a) Model merging. (b) Model piercing.

Model merging creates a new surface that
approximates two previously existing models which
are then discarded. The effect is to obtain a single
implicit representation that smoothly blends two
given shapes. The user commands this operation by
drawing a simple open stroke starting inside the first
input model and ending inside the second. The two
input models must overlap in space for this operation
to take place. Figure 2(a) shows an example.

The piercing operation can be used to make a hole in
a model. The user must first draw a closed curve
lying entirely inside the silhouette of the target
model. This stroke can be interpreted in two ways by
the system: either as a cue for performing a piercing
operation or as an auxiliary element for performing
an extrusion. At this point, the system will signal the
ambiguity by displaying in the upper-left corner of
the window a thumbnail image showing the result of
the piercing operation. The user must click on this
image in order to accept the operation (see Figure
2(b)). Any other action will trigger the other
interpretation.

Extrusion is a modeling operation which allows the
creation of a new protrusion on some part of a
model. The extruded feature is described by a profile
curve which is input as a simple open curve starting

and ending inside the model's silhouette but
extending beyond it. The area on which the
protrusion will be “glued” can be defined either
explicitly or implicitly. In the former case the gluing
area is delimited by a closed curve drawn previously
--see the preceding paragraph. In the latter case, the
gluing area will correspond to a roughly circular
region touching the two endpoints of the profile
curve. Figure 3 illustrates this operation.

Figure 3. Extrusion examples: (a) using a base

curve, and (b) automatic extrusion.

4. VARIATIONAL SURFACES
Although a through discussion of the math of
implicit object modeling is outside the scope of this
paper, for the sake of completeness, we try to lay
down a few key concepts below. The interested
reader is referred to the excellent introduction to the
subject in [Tur99a].

The term “Variational Surface” refers to the zero-set
of a RBF-based implicit function. Such functions are
used in the context of scattered data interpolation.
This is a problem where, given a set of n distinct
constraint points { } 3

21 ,,,, ℜ∈cccc nK and a set

of n function values{ }nvvv ,,, 21 K , it is sought a

smooth function ℜ→ℜ3:f such that

ii vcf =)(, for ni K1= . The smoothness criteria
usually involve some “deformation” energy that must
be minimized. This entails the solution of a linear
system with n equations. Solving this system is
perhaps the most computationally intensive part of
the system. We use a standard LU-decomposition
algorithm for this task.

A variational surface can be modeled simply by
choosing an adequate set of constraint points and
associated values. The most used approach requires
the placement of n/2 points with value equal to zero -
-these are known as boundary constraint points.
Another set of n/2 points are obtained by displacing
each boundary point by a small amount along the
direction of the estimated surface normal at that
point. These points, known as normal constraint
points, are associated with a small positive constant
w (see Figure 4).

Figure 4. The normal constraint points ni are
placed along the estimated normal vector at a
distance d from boundary constraint points qi.

The function f is such that f(x) < 0 for x inside the
curve and f(x) > 0 outside the curve.

Figure 5. (a) 2D input stroke. (b) Coarse
polygonal mesh of support for surface

specification (177 vertices and 350 triangles). (c)
Visualization of implicit surface f = 0, using

smooth shading and (d) the triangular mesh (3620
vertices and 7236 triangles)

Any standard method for visualizing implicit objects
can be used to render the modeled surface. In most
cases, a polygonization scheme is employed and the
resulting set of polygons is rendered using standard
graphics hardware. It should be noted, however, that
the polygonization scheme should be carefully
chosen in order to minimize the number of function
evaluations, since these are costly operations. We use
a hierarchical variant of the Marching Cubes
algorithm [Lor87].

5. ALGORITHMS

Creation
The creation algorithm consists essentially in
specifying an adequate set of constraint points based
on the user's input silhouette curve. The constraint
points are chosen to coincide with the vertices of a
coarse mesh built from the input stroke using an
inflation algorithm. Figure 5 illustrates a global idea
of the algorithm.

The construction of the coarse mesh follows the
method described in [Iga99]. We found that this
approach yields more pleasing results than the
simpler algorithm adopted in [Kar02].

Merging
The merging operation consists in creating a new
variational surface whose shape approximates the
union of two other given surfaces. The algorithm
consists of eliminating constraint points which are
contained in the intersection of the two input shapes.
Let us call h the resulting function and f and g the
two input functions. Then, h contains a boundary
constraint point x of f only if g(x) > 0. Similarly, h
contains a boundary constraint point y of g only if
f(y) > 0. Additionally, if a boundary constraint point
is eliminated in this process, then the corresponding
normal constraint point is also discarded. Figure 6
illustrates the idea.

Figure 6. Merging illustration in 2D. (a)
Constraint points positioned inside the

intersection of the models represented for f and g
are eliminated. (b) The new model represented by
function h is built with points that remained after

the elimination process.

Piercing
Let f be the function representing the model to be
edited, C the 2D closed curve drawn by the user
(represented by a simple polygon), and h the
resulting model from this operation. Then, the
piercing algorithm comprises the following steps:
1. Project each vertex Ci of C on the front-facing

triangles of the polygonized model surface. Let
Fi be the corresponding projected point. If the
projection of any Ci yields more than one
projected point, the piercing algorithm is
aborted.

2. Similarly, project the vertices of C on the back-
facing triangles of the polygonized model
surface and call Bi the resulting projected
vertices. As before, abort the algorithm if the
more than one projection point is found for any
given vertex.

3. Interpolate k evenly spaced points along each
line segment FiBi. Let us call such points Mj. In
our implementation, k = 3, i.e., three points are
generated between each pair of vertices Fi and
Bi.

4. Create an interpolating function g, which will be
built by the creation procedure, but using Fi, Bi
and Mj as boundary constraint points. The
surface orientation is defined by placing an
additional constraint point p placed at the
approximate center of the shape and mapped to a
negative value (-1 in our implementation). The
position of p is estimated by computing the
coordinate-wise average of all boundary
constraint points. If this point does not lie inside
curve C, then the piercing algorithm is aborted.

5. Perform the merging operation on f and g.

Explicit Extrusion
This type of extrusion is defined by two strokes: a
base curve drawn directly on the model surface
which defines the model area affected by the edition
process, and a profile stroke. If f is the input model
function, then the explicit extrusion is computed as
follows:
1. Project the base curve on the polygonized object

using the same rationale described in item 1 of
the previous Sub-section. Let us use C to refer to
this projected curve.

2. Project the profile curve on the plane that passes
through the base curve's barycenter and is
parallel to the viewing plane. Let us call P the
resulting curve.

3. Create an interpolating function g using the
vertices of C and P as boundary constraint
points. Additionally, estimate normal constraint
points by displacing the vertices of P outward.

4. Apply the merging operation to f and g.

Implicit Extrusion
This operation requires only an extrusion profile
[Kar02]. The procedure is the following:
1. Select the silhouette vertices of the model's

polygonized mesh vertices. A silhouette vertex is
any vertex incident on two triangles whose
normals point to opposite sides of the viewer
plane. Find S and E, the silhouette vertices
which are closest to the initial and end points of
the profile curve, respectively.

2. Project the extrusion profile curve on the plane
that passes by the middle point of line segment
SE and is parallel to the viewing plane.

3. Create an interpolating function g using the
vertices of the projected curve computed in the
previous step as boundary constraint points. For
each of these, add a normal constraint point by
displacing it outward with respected to the
curve.

4. Apply the merging operation between f and g.

6. IMPLEMENTATION DETAILS
The prototype system was written in the C++
language and the OpenGL library was used to render
the polygonized models. All example models shown
in this paper were built by the prototype system in a
PC equipped with a 1.3 GHz AMD-Duron processor
and 256 MB of main memory.
The system uses two main data structures: a scene
representation and a command list. The scene is the
model repository and the command list records the
history of a modeling session (Figure 7).
Every time a new modeling operation is issued by the
user, a corresponding command is inserted at the end
of the command list. Depending on the command
type, its execution can insert and/or remove models
from the scene. For instance, a command “merge”
will insert a new model in the scene, and will remove
the input models.

Figure 7. Main data structures of the system.

Figure 8. Stages for the command determination to execute starting from a 2D stroke.

Figure 9. System class hierarchy.

Thus, the Undo/Redo mechanism works by scanning
the command list in both directions replaying or
undoing the commands appropriately.
The system determines the command type to be
executed in response to the input 2D strokes using
the following three-step approach (see Figure 8):
1. The classification stage determines the stroke

type, i.e., simple or non-simple, closed or open.
2. Depending on the place where the stroke was

drawn and on its type, the inference stage creates
the appropriate command.

3. If an ambiguity is detected, the user is prompted
to choose the desired outcome. The resolution
stage then inserts the command in the list and
executes it.

This approach is based on the ambiguities resolution
proposal of Alvarado et al. [Alv2001].
A brief description of the system class hierarchy is
presented in Figure 9. The class attributes labeled
p_shape are pointers to models, while the absence of
the prefix p_ means a reference to the model itself.
Superclass Command is an abstract class with two
methods: execute() and undo(). Method execute()
executes the suitable actions for a command, while
method undo() undoes the actions done by method
execute(). For instance, in an extrusion operation,
undo() removes the resulting model from the
extrusion operation shape, and inserts the unextruded
model p_shape again.
Create is a class that implements the model creation
process. Extrude modifies the model pointed to by
p_shape generating a resulting model NewShape.

The same happens with class Pierce. Merge
produces a new shape NewShape starting from
models p_shape1 and p_shape2. Rigid motions
(rotations and translations) are implemented in class
Transformation.
Class Shape stores object geometry using two
representations: f, an analytical representation of a
RBF-based implicit function, and a triangle mesh
generated by applying a polygonization algorithm on
f.
Finally, class Scene contains a (possibly empty)
model list that is manipulated by methods insert()
and remove().

Figure 10. 3D models constructed with the

prototype system.

7. RESULTS AND LIMITATIONS
Figure 10 shows some models built with our
prototype system. They are smooth surfaces of
arbitrary topology and exhibit a loose “look” which
is characteristic of free-hand 2D drawings. The
interested reader may access

http://www.lcg.ufrj.br/Projetos/ffmodelling and
download some of these models in OFF format
[Ros89].
Due to the nature of the radial basis functions used in
the underlying representation of our system, models
with creases or sharp features cannot be created.
Also, sometimes the result of a modeling operation is
unintuitive. This is the case, for instance, when two
small objects containing relatively few constraint
points are merged (see Figure 11).
Another current limitation of the system lies in the
fact that the piercing operation cannot be applied
other than on relatively simple local geometries. For
instance, if the intended hole would pierce the
surface more than once, then the operation fails (see
Figure 12(a)). In some other cases, the hole fails to
properly pierce the model (Figure 12(b)).
Some modeling operations may incur in a problem
known as surface leak. This is due to the constraint
points being distributed irregularly. Figure 13
illustrates this problem. We deal with this problem
by using a coarse polygonal mesh introduced in the
model creation process (see the Creation sub-
section).

Figure 11. Merging two small models may yield

unintuitive results.

Figure 12. Limitations of the piercing operation.
(a) Piercing fails in complicated situations. (b)
Hole may fail to pierce the surface completely.

Figure 13. Surface leak problem. (a) Initial
interpolation. (b) Extrusion. (c) Leak after

extrusion.

8. CONCLUSIONS AND FUTURE
WORK
Free-form modeling supported by RBF-based
implicits enjoys quite a few advantages over

traditional approaches employing parametric
surfaces. In particular, the generated models are
naturally smooth and many intuitive modeling
operations can be implemented with relative ease. Its
foremost limitations can be attributed to the time
complexity of the scattered point interpolation
scheme used.
Therefore, a natural extension of the present work
consists of adopting more eficient interpolation
schemes such as the FastRBF [Car01], which will
enable our system to handle models with increased
complexity. This, in turn, will help us cope with the
surface leaking problems. Another venue that should
be explored is the adoption of a more careful
sampling strategy for the constraint points.
The set of modeling operations available in our
systems is somewhat limited still. We are working on
an enhanced algorithm for the piercing operation, as
well as other operations such as cutting and bending.
Regarding the visualization process, we are
experimenting with a novel polygonization approach
with some promising results (access
http://www.lcg.ufrj.br/Projetos/ffmodelling for
details).

9. ACKNOWLEDGMENTS
We are grateful to CNPq for providing financial
support for the first author.

10. REFERENCES
[Alv01] Alvarado, C. and Davis, R. Resolving

ambiguities to create a natural computer based
sketching environment. In Proceedings of IJCAI-
2001, pages 1365-1371.

[Ara03] Araujo, B. and Jorge, J. Blobmaker: Free-
form modeling with variational implicit surfaces.
In 12o Encontro Portugues de Computação
Grafica (EPCG) - 2003.

[Car01] Carr, J. C., Beatson, R. K., Cherrie, J. B.,
Mitchell, T. J., Fright, W. R., McCallum, B. C.,
and Evans, T. R. Reconstruction and
representation of 3D objects with radial basis
functions. In Proceedings of SIGGRAPH 2001,
pages 67-76. ACM Press. 2001.

[Coh00] Cohen, J. M., Hughes, F., and Zeleznik, R.
C. Harold: A world made of drawings. In
Proceedings of NPAR 2000, pages 83-90. ACM.

[Coh99] Cohen, J. M., Markosian, L., Zeleznik, R.
C., Hughes, J. F., and Barzel, R. An interface for
sketching 3D curves. In Proceedings of
Symposium on Interactive 3D Graphics, pages
17-21. ACM Press.

[Din02] Dinh, H. Q., Turk, G., and Slabaugh, G.
Reconstructing surfaces by volumetric
regularization using radial basis functions. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 24(10):1358-1371, 2002.

[Iga01] Igarashi, T. and Hughes, J. A suggestive
interface for 3D drawing. In Proceedings of ACM
UIST'01, pages 173-181, 2001. ACM Press.

[Iga99] Igarashi, T., Matsuoka, S., and Tanaka, H.
Teddy: A sketching interface for 3D freeform
design. In Proceedings of SIGGRAPH 99, pages
409-416. ACM Press.

[Kar02] Karpenko, O., Hughes, J. F., and Raskar, R.
Free-form sketching with variational implicit
surfaces. Computer Graphics Forum, 2002.

[Lor87] Lorensen, W. and Cline, H. Marching cubes:
a high resolution 3D surface construction
algorithm. Computer Graphics, 21(4):163-169,
1987.

[Mar99] Markosian, L., Cohen, J. M., Crulli, T., and
Hughes, J. Skin: a constructive approach to
modeling free-form shapes. In Proceedings of
SIGGRAPH 99, Annual Conference Series, pages
393-400. ACM Press, 1999.

[Owa03] Owada, S., Nielsen, F., Nakazawa, K., and
Igarashi, T. A sketching interface for modeling
the internal structures of 3D shapes. In
Proceedings of 3rd International Symposium on
Smart Graphics, pages 49-57. Springer, 2003.

[Ros89] Rost, R. J. (1989). A 3D object file format.
http://www.dcs.ed.ac.uk/home/mxr/gfx/3d/off.spec.
[Tai04] Tai, C., Zhang, H., and Fong, C. Prototype

modeling from sketched silhouettes based on
convolution surfaces. Computer Graphics Forum,
23(1):71-83, 2004.

[Tol99] Tolba, O., Dorsey, J., and McMillan, L.
Sketching with projective 2D strokes. In
Proceedings of the 12th annual ACM symposium
on UIST, pages 149-157, 1999.

[Tol01] Tolba, O., Dorsey, J., and McMillan, L. A
projective drawing system. In Proceedings of
2001 ACM Symposium on Interactive 3D
Graphics, pages 25-34, 2001.

[Tur99a] Turk, G. and O'Brien, J. Shape
transformation using variational implicit
functions. In Proceedings of SIGGRAPH 99,
pages 335-342, 1999.

[Tur99b] Turk, G. and O'Brien, J. Variational
implicit surfaces. Technical Report, Georgia
Institute of Technology, 1999.

[Tur02] Turk, G. and O'Brien, J. Modelling with
implicit surfaces that interpolate. ACM
Transactions on Graphics, pages 855-873, 2002.

[Zel96] Zeleznik, R. C., Herndon, K. P., and Hughes,
J. F. SKETCH: An interface for sketching 3D
scenes. In SIGGRAPH 96 Conference
Proceedings, pages 163-170, 1996

The Adaptive Thin Shell Tetrahedral Mesh

Kenny Erleben
Dept. of Computer Science,

University of Copenhagen,

Denmark

kenny@diku.dk

Henrik Dohlmann
3DLab, School of Dentistry,

University of Copenhagen,

Denmark

henrikd@lab3d.odont.ku.dk

Jon Sporring
Dept. of Computer Science,

University of Copenhagen,

Denmark

sporring@diku.dk

ABSTRACT

Tetrahedral meshes are often used for simulating deformable objects. Unlike engineering disciplines that often
focuses on accuracy, computer graphics is biased towards stable, robust, and fast methods. In that spirit we present
an approach for building an adaptive inward shell of the surface of an object. The goal is to device a simple and
fast algorithm capable of building a topologically consistent tetrahedral mesh. The tetrahedral mesh can be used
with several different simulation method, such as the finiteelement method (FEM), and the main contribution of
this paper is a novel tetrahedral mesh generation method based on adaptive surface extrusion.

Keywords
Tetrahedral Mesh, Erosion, Extrusion, Tessellation, Shell, Prism

1 INTRODUCTION
Given a 3D polygonal model created by a 3D artist, it is
often a challenge to create a spatial structure for simulat-
ing a deformable object. Creating a tetrahedral mesh of-
ten results in an enormous number of tetrahedra, hence
a more coarse tetrahedral mesh is often sought in order
to achieve real-time performance. In this paper a mesh
generation method is proposed, that works directly on
the surface of a mesh, avoids a constrained Delaunay
triangulation, is easy to implement, and yields a tetrahe-
dral count, which is linearly proportional with the num-
ber of mesh faces.
Given a watertight twofold boundary representation of
an object such as a connected triangular mesh, a prism
is generated for each triangle by extruding the triangle
inward. The result is a volumetric mesh consisting of
connected prisms. These prisms can easily be tessel-
lated into tetrahedra to create the first layer of the thin
shell tetrahedral mesh. Succeeding layers can be created
by recursively applying this approach. Figure 1 shows

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

(a) Teapot (b) Bowl

Figure 1: Cut-views showing the shell layers inside the
volumetric meshes generated with our method.

examples of thin shells from volumetric meshes.
Polygonal models are seldom twofold, but often suf-
fers from several kinds of degeneracies. The idea we
have illustrated is obviously capable of handling an open
boundary, but cases where edges share more than two
neighboring faces, or where edges self-loop, will gen-
erate prisms, which overlap or degenerate into a zero-
volume prisms. In such cases a mesh reconstruction al-
gorithm [NT03] must be applied first.
The suggested prism generation is reminiscent of an ero-
sion operation with a spherical structural element on the
polygonal model. The radius of the sphere corresponds
to the extrusion length. It is well known that working di-
rectly on the boundary representation [Set99] is fast and
simple, but topological problems arises easily such as
shocks [KTZ95]. The counter-part to shocks are degen-
erated prisms, that is prisms with less than 6 vertices.
These shocks turn out to be the limit on the extrusions
lengths.

B

A
 D

C

Figure 2: Degenerate prisms results from a too big in-
ward extrusion. This is an example of a swallow tail.

Existing tetrahedral mesh generation methods in the lit-
erature typically create an initial, blockified tetrahedral
mesh from a voxelization or signed distance map. Af-
terwards, nodes are iteratively repositioned, while tetra-
hedra are sub-sampled in-order to improve mesh qual-
ity [MT03, PS04, MBTF04]. In contrast to these meth-
ods, our is surface-based. An implementation of our
method presented is available at [Ope04].

2 MINIMAX INWARD EXTRUSI-
ON

The thin shell layer is produced by extruding each tri-
angle in the mesh inwardly, thus producing prisms. We
will require the following three properties of the prisms:
No two prisms must intersect each other, prisms must
have volume larger than zero, and all prisms must be
convex. Unfortunately, even for a perfectly connected
twofold triangle mesh, too large inward extrusions will
cause problems as illustrated in Figure 2. In the fig-
ure, the large extrusion length causes prismsB andC
to become non-convex. Furthermore,A andD, B and
D, C andA, andB andC are overlapping. Fortunately,
these degenerate and unwanted prisms can be avoided
by reducing the extrusions. Thus, we must seek an up-
per bound on how far, we can extrude the triangle faces
inwardly without causing degenerate prisms.
To make the inward extrusion, we first compute the out-
ward, angle-weighted normals [AB03] for all vertices.
Then for a triangle consisting of three vertices~p1, ~p2,
and~p3, with angle weighted normals~n1,~n2, and~n3, the
inward extruded prism is defined by the six points:~p1,
~p2, and~p3, and

~q1(ε) = ~p1−~n1ε, (1)

~q2(ε) = ~p2−~n2ε, (2)

~q3(ε) = ~p3−~n3ε, (3)

whereε > 0 is the extrusion length. The notation is il-
lustrated in Figure 3. Clearlyε must be strictly posi-

p

1

p

2

p

3

q

1

q

2

q

3

n

1

n

2

n

3

n

q

Figure 3: The six points and pseudo normals defining
the prism and extrusion direction.

tive, however to further guarantee convexity and posi-
tive volume of the prisms, we will use the normal of the
extruded faces to generate an upper bound onε.
The direction of the normal of the extruded face,~nq, can
be found from~q1,~q2, and~q3, using the cross-product:

~nq(ε) = (~q2(ε)−~q1(ε))× (~q3(ε)−~q1(ε)) . (4)

By the distributive property of the cross product, we find
a second order polynomial inε,

~nq(ε) = ((~p2−~p1)× (~p3−~p1))
︸ ︷︷ ︸

~c

+((~p2−~p1)× (~n1−~n3)+ (~n1−~n2)× (~p3−~p1))
︸ ︷︷ ︸

~b

ε

+((~n1−~n2)× (~n1−~n3))
︸ ︷︷ ︸

~a

ε2

=~aε2 +~bε +~c. (5)

Observe that~c 6=~0, since its magnitude is equal to twice
the area of the triangle being extruded.
To ensure positive volume and convexity, it is sufficient
to ensure positivity of the dot product of the normal of
the extruded face,~nq, with the pseudo normals,~n1, ~n2,
and~n3. I.e. we must have that,

~n1 ·~nq(ε) > 0, (6)

~n2 ·~nq(ε) > 0, (7)

~n3 ·~nq(ε) > 0. (8)

Using (5), we may formulate the constraints as the fol-
lowing system of inequalities,





~n1 ·~a ~n1 ·~b ~n1 ·~c
~n2 ·~a ~n2 ·~b ~n2 ·~c
~n3 ·~a ~n3 ·~b ~n3 ·~c









ε2

ε
1



 > 0. (9)

The largest positiveε fulfilling the system of constraints
is the upper bound on the inward extrusion lengths. We
find the upper bound by solving for each row the roots
of the the second order polynomial inε. The three rows

(a) Propeller (b) Funnel

Figure 4: Close-up cut-views showing how a global ex-
trusion length causes thin shell layers.

yield a total of 6 roots. If no positive root exist, thenε =
∞, otherwiseε must be less than the smallest positive
root.
The three convexity constraints ensure that no neighbor-
ing prism will intersect each other, nor will the prism
turn its inside out, i.e. flipping the extruded face oppo-
site the original face. A global extrusion length for the
entire layer can be found by iterating over each prism.
The global extrusion length of the layer is found as

ε = min
(
ε0, . . . ,εn−1) , (10)

whereε i is the extrusion length for thei’th prism. Af-
terwards, it is a simple matter to compute the actual ex-
trusion and generating the prisms. In some cases us-
ing the maximum possible extrusion length of a prism
can degenerate it. The degenerated prism will have
a zero-area extruded face and is easily detected and
treated [ED04]. During triangulation degenerate prisms
can be dealt with by insertion of an extra internal corner
point.

3 ADAPTIVE EXTRUSION
Badly shaped surface triangles can in some cases cause
an inefficient small global extrusion length, as illus-
trated in Figure 4. This is caused by the global optimiza-
tion in (10), in which a single prism near high curvature
will dictate the thickness of the entire layer. Multiple
layers will give an impression of a solid or dense object,
but will introduce a large number of tetrahedra. The thin
shell also causes the tetrahedra to turn into slivers, if the
global extrusion length is too small. To overcome such
inefficient thin shell layers, we propose to use an adap-
tive extrusion length.
To calculate the adaptive extrusion length, a surface ver-
tex is assigned an extrusion length equal to the minimum
extrusion length of the neighboring prisms, of which the
vertex is part. Thus for vertex,v

εv = min
p∈P(v)

ε p, (11)

whereP(v) denotes the set of all prisms, of whichv is
part. Choosing the size of the adaptive extrusion length

(a) Propeller (b) Teapot

(c) Bowl (d) Funnel

Figure 5: Adaptive extrusion length using (11) causes
self intersection of the thin shell layers.

in this way does not violate the convexity requirement to
the prisms, since given a convex prism, one can always
shrink any one of the extrusion lines without destroying
convexity.
Nevertheless, this is a local solution, and as is shown
in Figure 5, vertices with large extrusion lengths causes
self-intersections with opposing faces. Our remedy is to
use a root-search method to search for a smaller layer
thickness without self-collisions. The idea is to re-cast
the problem into a simulation formulation, where the ex-
trusion length is thought of as a time parameter of an
evolving surface. Thus we seek the point in time, where
the evolving surface touches itself from opposite sides.
The simulation loop consist simply of the following two
steps:

• Perform collision detection,

• Update the extrusion length values.

These are repeated for a fixed number of iterations.
For each extrusion line we will keep a minimum value
of the extrusion lengthεmin, a maximum value of the ex-
trusion lengthεmax, and a current value of the extursion
lengthε. The interval[εmin,εmax] represents the range of
values, where we look for a solution forε. Initially the
value of the minimum, maximum, and current extrusion
length are all set equal to (11). During the search for a
solution, the minimum and current extrusion length val-
ues will be changed, but the maximum length value is
left unchanged.
The parameterεmin is the largest value that will not de-
stroy the convexity requirement and is therefore always
changed to a value that guarantees non-penetration. The
parameterε is the next guess for a non-penetrating ex-
trusion line, and it is set to the half-way point between
εmin andεmax.

A spatial grid data structure [TBHPG03] is used to per-
form collision detection. During a first pass the axis
aligned bounding boxes of all the extrusion lines are
mapped into the spatial grid, and then in a second pass
the axis aligned bounding boxes of the prisms are used
to query for overlap with the extrusion lines. Whenever
an overlap is found a penetration test is performed be-
tween the prism and extrusion line, The brute-force pen-
etration test consist of testing, whether the extrusion line
penetrates the five faces of the prism. This can be op-
timized to perform only penetration testing against the
original surface face and the extruded face of the prism.
If the extrusion line originates from a vertex shared with
the prism, then the penetration test is ignored.
Upon having completed the collision query, a set of col-
liding extrusion lines and prisms are returned. Now we
iterate over all these pairs, and mark each extrusion line,
while finding the intersection point with the surface and
extruded faces of the prism. If the distance to the inter-
section point from the originating surface vertex is lower
than the minimum extrusion length, then the minimum
extrusion length of the vertex is updated to this distance.
If a non-penetrating extrusion line is found, then the cur-
rent extrusion lengthε yields a new possible value for
the minimum extrusion lengthεmin. However instead
of simply setting the minimum extrusion length equal
to the current extrusion length, our experiments indicate
that it is better to down-scale the value of current extru-
sion length, before assigning it to the minimum extru-
sion length. This is because, it is likely that the extrusion
lines on the opposite side of the shell layer also will in-
crease their minimum extrusion lengths. Down-scaling
their values will reduce the chance for the growing ex-
trusion lines to cause a self-collision.
Figure 6 shows a pseudo-code version of the simulation
loop, which iteratively adjusts the extrusion lengths.
Upon completion of the last iteration of the simulation
loop, the value ofεmin and notε is used as the extrusion
length, since onlyεmin is guaranteed not to cause any
self-collisions. Figure 7 shows close-ups of cut-views
of volumetric meshes generated using the iteratively ad-
justed adaptive extrusion length method. Notice that
the adaptive extrusion length is small near sharp rigdes,
and at flat regions the adaptive extrusion length are in-
creased to the point, where the extruded surface meets
with prisms from the opposite of the object.

4 PRISM TESSELLATION
For solid state simulations it is convenient to have ob-
jects on tetrahedra form, hence we will tesselate our
prisms into tetrahedra. Due to space limitations, we
will have to disregard degeneracies, these are however
treated in details in [ED04]. For non-degenerate prisms
having 6 corners, 3 is the minimum number of tetrahe-
dra we can tesselate the prism into, and this tesselation

for i=1 to max iteration do
Results R = collision(lines,prisms)
for each (line,prism) in R do

let p be originating point of line
let v be intersection point of line
εmin(line) = min(εmin(line),dist(p,v))
mark(line) = true

next (line,prism)
for each line in lines do

if not mark(line) then
tmp = ε(line)*0.9;
if tmp > εmin(line) then

εmin(line) = min(tmp,εmax(line))
end if

end if
tmp = (ε(line) + εmin(line))/2
ε(line) = min(εmax(line),tmp)
q(line) = p(line) - n(line) * ε(line)
mark(line) = false

next line
next i

Figure 6: Pseudo-code for iterative adjustment of adap-
tive extrusion length.

(a) Propeller (b) Teapot

(c) Bowl (d) Funnel

Figure 7: Close-ups of volumetric mesh cut-views,
showing the effect of the iteratively adjusted adap-
tive extrusion length, which gives a thick and non-
overlapping layer.

Figure 8: A Prism iteratively tessellated into 3 tetrahe-
dra from left to right. It is helpful to imagine that the
rightmost face has been inwardly extruded to produce
the leftmost face. The yellow tetrahedra illustrate the
iteratively produced tetrahedra.

Falling (F)

Rising (R)

Falling (F)

Figure 9: Classification of prism sides as falling (F) or
rising (R).

is illustrated in Figure 8. For methods such as Finite
Element Modelling (FEM) it is useful for neighbouring
prisms to be tesselated such that the generated triangular
faces match. We call this tesselation consistency, and it
results in a global combinatorial problem.
A prism can be tesselated into three tetrahedra in 6 dif-
ferent ways. In order to classify the 6 types of tesse-
lations, we will mark the rectangular sides of a prism
as falling (F) or rising (R). The edge type depends on
whether the tesselation edge is falling or rising as we
travel along the extruded prism face in counter clock
wise manner. This is illustrated in Figure 9. We ob-
serve that our tetrahedra tesselation strategy will always
have two prism sides of the same type, and the last side
of opposite type. Thus we can only have 6 different pat-
terns tabulated in Table 1. The consistency requirement
implies that if one side of a prism is marked asF , then

F R R
R F R
R R F
R F F
F R F
F F R

Table 1: The 6 three-tetrahedra tesselation types.

F

R
 F

R

R

F

R

R

F

F

R

F

Figure 10: Tesselation example. A simple 3D sur-
face mesh (a tetrahedron) as seen parallel to the sur-
face normal. The letters R/F denotes the choice of Ris-
ing/Falling triangulation of the prism sides, which can-
not be seen in this projection.

F

R
 F

R

F

F

R

F

F

Figure 11: Inconsistent tesselation example. The middle
prism will have the same type on all sides, which is not
possible.

the neighboring prism will have marked the same side
asR. In short, no neighboring prisms will have a side
marked with the same type. A simple tesselation exam-
ple is shown in Figure 10.
Our algorithm for ensuring global consistency is as fol-
lows: We start at a single prism and choose one of the 6
tesselation types. Then we visit the neighboring prisms
and choose a tesselation, which is consistent with neigh-
boring prisms already tesselated.
With this algorithm, inconsistency may arise as shown
in Figure 11. Here, the middle prism is the last prism
to be visited. Clearly, it is impossible to assign a tes-
selation type to the prism, since all three sides should
have the same type. This can be repaired by picking
one of the neighboring prisms and flipping the type of
its shared edge. This action will not change the type of
any of the edges marked with arrows in Figure 11. In
this case no further inconsistencies are introduced, and
the repairing action of the example does not have large
scale effect.
Fixing inconsistency locally is attractive, since it limits
the computation time, but there is no guarantee that a lo-
cal solution always can be found. An example of a non-
local problem is the dead-lock shown in the top of Fig-
ure 12. In this example, none of the edges shared with
the inconsistent prism can be flipped without creating
an inconsistent neighboring prism, since all the edges
marked with arrows are of the same type. The solu-

R

R
 F

R

R

F

R

R

F

R

R
 F

R

R

F

R

R

F

F

F
 R

Figure 12: Top picture shows a inconsistent tesselation
in a dead-lock. The bottom picture shows that incon-
sistency problem have been propagated to neighboring
prisms further away by extended the region where we
search for possible edge flips.

R

R
 F

F

R

F

R

R

R

R

F
 R

R

R
 F

Figure 13: The rippling solution to the dead-locked case
shown in Figure 12.

tion to the problem is shown in the bottom of Figure 12.
We let the inconsistency ripple as water waves over to
neighboring prisms, in a search for a single prism, where
an edge flip does not give rise to a new inconsistency.
When such a prism is encountered, we track the trajec-
tory of the ripple wave-front back to the originating in-
consistent prism and flip all shared edges lying on this
path. The result of the rippling for this specific case is
shown in Figure 13. Notice that two edges are flipped,
which are the edges lying on the path from the unas-
signed prism to the prism that could be flipped. Also
notice that all edges marked with arrows are unaffected
by the rippling action. This property ensures that the rip-
pling action will not cause inconsistencies in any prisms
elsewhere in the mesh.
A pseudo-code of the tesselation-pattern-finding algo-
rithm is shown in Figure 14. It is our experience

algorithm tesselation-pattern()
Queue Q
Push first prism onto Q
While Q not empty do

Prism p= pop(Q)
mark p as visited
N = neighboring prisms of p
if N is not tesselated then
pick random pattern of p

else if consistent pattern with N
assign consistent pattern to p

else
if exist n∈ N that can be flipped

flip type of shared edge with p
assign constent pattern to p

else
perform-rippling

end if
end if
for all unvisited n∈ N do

push(Q,n)
next n

End while
End algorithm

Figure 14: Pseudo-code for determining tesselation pat-
tern.

that the rippling distance rarely exceeds more than 1–2
faces [ED04]. The tesselation algorithm is thus a com-
putational cheap and fast solution to an unpleasant prob-
lem.

5 RESULTS
The adaptive thin tetrahedral shell mesh method has
been tested on several surface meshes, 14 of these sur-
face meshes are shown in Figure 15, and number of iter-
ations and total running time for these meshes are listed
in Table 2. In [ED04] the time-complexity of the actual
tesselation was shown to scale linearly with the num-
ber of faces in the original surface mesh. The running
time is therefore clearly dependent on the shape of the
original surface mesh. As can be seen from the table,
surface meshes with small thin structures have the worst
running time. This is because in every second iteration
of the iterative adjustment of the extrusion length, ex-
trusion lines in these thin regions are increased, leading
to penetrations. In the succeding iteration the extrusion
lines are shortened to remove the penetration. This os-
cillating behaviour only slowly converges towards a so-
lution.
Figure 16 shows plots of the number of collisions per
iteration. The plots indicate that the iterative adjustment
of the adaptive extrusion lengths converges toward a so-
lution, when given enough iterations. The plots how-
ever also indicate that the number of collisions is not a
strictly monotone decreasing function. It is thus difficult
to say anything conclusive about the convergence rate.
Cut-views of the generated tetrahedral meshes can be

Figure 15: The 14 original surface meshes.

|F| |I | time(secs.)
box 12 1 0.01
cylinder 48 1 0.01
pointy 96 100 0.42
diku 288 100 2.95
tube 512 1 0.15
sphere 760 1 0.26
teapot 1056 76 14.05
propeller 1200 72 19.89
funnel 1280 45 13.89
cow 1500 100 37.03
bend 1604 1 0.74
bowl 2680 85 136.75
torus 3072 1 1.49
knot 5760 1 5.94

Table 2: Performance Statistics using Iterative Adjust-
ment. Maximum iteration count was set to 100 in all 14
test cases. The|F |-column gives the face count of the
meshes, and the|I |-column shows the number of itera-
tions.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000
Collisions per iteration

iteration

co
lli

si
on

s

pointy
propeller
bowl
funnel
cow
diku
teapot

Figure 16: Collisions detected in each iteration.
Collision-free test cases are not shown.

seen in Figure 1, 7, and 17. A user specified global max-
imum extrusion length was used, hence not all tetrahe-
dral meshes fill out the inside void. The figures clearly
show that the adaptive method is capable of filling out
the inside of a surface mesh much more efficiently than
the global extrusion length solution.

6 DISCUSSION
In this paper we have presented results showing that it is
possible to generate a thin adaptive shell without topo-
logical errors. Our results show that the adaptive thin
shell tetrahedral mesh generation method is versatile,
robust, simple to implement, and yields useful results.
For the proposed consistent tesselation, we have not yet
proven that it is always possible to find a consistent pat-
tern of rising and falling tesselation edges. Neverthe-

Figure 17: Cut-views of a few selected meshes.

less, we have not yet encountered difficulties with the
method, and we believe that the combinatorial problem
of finding a consistent tesselation pattern is tractable.
We leave the proof for future work.
Lastly the iterative adjustment of the adaptive extrusion
lengths can be improved in two ways. Firstly, the con-
vergence rate could be improved to yield faster running
times. Secondly, as seen in Figure 1, 7, and 17 some
prisms seem to loose the race in increasing their extru-
sion lengths, before the algorithm terminates. The effect
is most noticely seen in case of the bowl mesh, where
some prisms could be extruded more to reduce empty
space inside the mesh. We leave both these problems
for future work.

References
[AB03] Henrik Aanæs and J. Andreas Bærentzen.

Pseudo–normals for signed distance
computation. InProceedings of VISION,
MODELING, AND VISUALIZATION, 2003.

[ED04] Kenny Erleben and Henrik Dohlmann. The thin
shell tetrahedral mesh. In Søren Ingvor Olsen,
editor,Proceedings of DSAGM, pages 94–102,
August 2004.

[KTZ95] Benjamin B. Kimia, Allan R. Tannenbaum, and
Steven W. Zucker. Shapes, shocks, and
deformations I: The components of
two-dimensional shape and reaction-diffusion
space.International Journal of Computer
Vision, 15:189–224, 1995.

[MBTF04] N. Molino, R. Bridson, J. Teran, and R. Fedkiw.
Adaptive physics based tetrahedral mesh
generation using level sets. (in review), 2004.

[MT03] M. Müller and M. Teschner. Volumetric meshes
for real-time medical simulations. InProc.
BVM (Bildverarbeitung für die Medizin), pages
279–283, Erlangen Germany, March 2003.

[NT03] Fakir S. Nooruddin and Greg Turk.
Simplification and repair of polygonal models
using volumetric techniques.IEEE
Transactions on Visualization and Computer
Graphics, 9(2):191–205, 2003.

[Ope04] OpenTissue, 2004. http://www.opentissue.org.

[PS04] Per-Olof Persson and Gilbert Strang. A simple
mesh generator in matlab.SIAM Review,
46(2):329–345, June 2004.

[Set99] James A. Sethian.Level Set Methods and Fast
Marching Methods. Evolving Interfaces in
Computational Geometry, Fluid Mechanics,
Computer Vision, and Materials Science.
Cambridge University Press, 1999. Cambridge
Monograph on Applied and Computational
Mathematics.

[TBHPG03] M. Teschner, M. Müller B. Heidelberger,
D. Pomeranets, and M. Gross. Optimized
spatial hashing for collision detection of
deformable objects. InProc. Vision, Modeling,
Visualization, pages 47–54, Munich, Germany,
November 2003.

Direct Volume Rendering of Unstructured Grids
in a PC based VR Environment

Paul Benölken
Fraunhofer IWU

Reichenhainer Straße 88
09126 Chemnitz

paul.benoelken@t-online.de

Holger Graf
Fraunhofer IGD

Fraunhofer Straße 5
64283 Darmstadt

holger.graf@igd.fhg.de

ABSTRACT
In this paper we present our solution for fast, direct volume rendering of unstructured grids on standard PC
workstations. We describe our modification of the incremental slicing approach for achieving high performance
as well as the application of geometry-compression methods for minimizing the memory requirements.
Furthermore, we show our implementation for the interactive modification of transfer functions (classification) in
a virtual reality environment by using 3D interaction widgets. Finally we present and discuss the results, we
achieved with our application in a VR environment.

Keywords
Direct Volume Rendering, Unstructured Grids, Geometry Compression, Virtual Reality

1. INTRODUCTION
Direct volume rendering of unstructured 3D scalar
fields has been the subject of a number of research
activities and publications over the past decade.
Many efforts are directed towards improving the
rendering performance by parallelization or
efficiently using graphics hardware. Although great
advances have been reported, many techniques are
either restricted to handling fixed cell types and
optical models or require massive parallel computing
facilities for achieving sufficient frame rates.
However, due to the increasing power and wide
availability of consumer graphic boards, different
volume rendering algorithms have been implemented
on standard PC hardware. Nevertheless, the existing
solutions still do not fully match the requirements of
interactive applications like those required in virtual
reality environments.
Beside interactive visualization, the classification of
the scalar field by generating transfer functions plays
an important role for the volume rendering process.

A favourable transfer function exposes the important
data structures and hides the non relevant parts of the
dataset. Frequently used are opacity functions
assigning colors and opacities based on scalar values.
Many datasets contain complex structures with
overlapping scalar values. Here the application of
opacity functions frequently fails. Different
techniques have been developed within the last years
for visualizing more details by applying
multidimensional transfer functions as well as for
providing more convenient user interfaces. However
the classification of unstructured volume data is not
addressed.

2. Related Work
Besides different optimizations and parallelization for
improving software solutions like ray castings
[Lev90] or splatting techniques [Wes90], several
research activities addressed the exploitation of the
graphics hardware as in [WE97]. Cell projections like
the projected tetrahedra (PT) method [ST90] have
become one of the most popular methods for
hardware accelerated volume rendering.

Different approaches have been considered for
improving the image quality [SBM94], [GRS+02],
[RE02] as well as for achieving higher frame rates by
accelerating the required cell sorting [Wil92],
[SMW98], [CKM+99]. Other hardware accelerated
methods like [WKE02] avoid the sorting process by
applying an emissive optical model and exploiting the
vertex programming facilities of current graphic
boards for implementing a view-independent cell
projection. Nevertheless, besides tetrahedral
elements, unstructured grids resulting from finite

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

element computations frequently contain different
polyhedral elements (e.g. prisms, hexahedra etc.).
Hence applying the PT algorithm for such grid types
requires a tetrahedral decomposition of each cell,
which in turn increases the amount of cells to be
processed and thus reduces the overall performance.
Hence, the recently presented approaches extend the
original PT algorithm for processing different kind of
polyhedra. Roettger and Ertl [RE03] analyse the
maximum performance of PC graphic accelerators
like the NVIDIA GeForce series of cards and apply
an emissive optical model for achieving fast
renderings.

Although several accelerations and improvements
were successfully applied as in [Mor04], the
performance of these algorithms is still below the
interactive frame rates achievable for regular grids.
Hence alternative solutions presented by [Wes01]
and [WE01] implement different strategies for re-
sampling unstructured volume data onto cartesian
grids in a preprocessing step. Interactive performance
is gained by employing texture based volume
rendering on the re-sampled dataset. Nevertheless,
these solutions are constrained by the available
texture memory on the graphic boards. Larger
datasets or higher resolutions are processed by
splitting the cartesian grids into multiple blocks
(bricks). However, due to the limited bandwidth, data
transfer from the CPU main memory to the GPU
texture memory results in performance losses.

Another solution, proposed by Max et al. [MWSC03]
implements cell projections (including cell sorting)
and slicing methods. Both methods are parallelized
for improving the performance and supplemented
with anti-aliasing techniques for handling small cells.

Further research activities are focused on the
definition and manipulations of transfer functions.
Typical graphical user interfaces are restricted to
opacity functions. Modification of the opacity
functions are done by moving control points of the
2D graph. He et al. [HHKP96] apply genetic
algorithms for finding good transfer functions. In an
iterative process the user selects the desired mapping
from an automatically generated population of small
thumbnail renderings. Marks et al. [MAB+97]
propose a Design Gallery as a visual interface to the
space of possible transfer functions. An image
difference metric is used for arranging different
renderings, from which the user selects the most
appealing one. A more data-centric approach was
presented by Kindlmann et al. [KD98]. Their semi-
automatic method exploits the relationship between
data values and their first and second derivatives in
direction of the gradient, for detecting material
boundaries. Further approaches define the transfer
functions based on the principal curvatures

reconstructed from the input data [HKG00] or apply
dynamic programming for a template based
adjustment of transfer functions [RSHSG00]. Kniss et
al. [KKC01] use a direct manipulation widget in a
desktop environment for specifying multidimensional
transfer functions based on data value, gradient
magnitude, and the second directional derivative.
Botha and Post [BP02] presented a fast method based
on slice-based preview for finding an appropriate
transfer function.

3. Interactive Direct Volume Rendering
As shown by Chopra and Meyer [CM02] fast
visualizations are feasible by using incremental
slicing. Performance improvements have been
achieved by avoiding redundant computations and
replacing the active cell and active edge list in the
original algorithm of Yagel et al. [YRLN96] with an
active region list. Inspired by the mentioned slicing
method of Max et al., our solution finally skips the
computation of the active region list which originally
was required for each change of the view direction.

Two different modes have been implemented for
computing the set of volume slices. In interactive
mode for each of the three X, Y, Z axes a set of slices
is computed in a preprocessing step with a predefined
slice distance. Since artifacts might become visible
from intermediate view points, we additionally
employ an immediate mode which computes a set of
slices from the current view direction when the rotary
motion stops.
3.1 Computation of Volume Slices
Given an unstructured grid with Nn node coordinates
ni {n0 ... nNn-1} and Nc grid elements ci {c0 ... cNc-1}
the geometry and topology of each cell ci is defined
by a list of cell nodes {nci}, where each cell node
refers to a specific node coordinate ni.
Starting with a given distance Δz of slicing planes and
a view direction xview the number of required slices
Nslices as well as the start and endpoints, zstart and zend

in object space are calculated. Afterwards, the slice
computation proceeds in the following way:

1. for each node ni

compute and store the node distance dni to the
viewplane p = zend.

2. for each cell ci

for each cell node nci

a.) compute the slice index
si = dni /(zend – zstart)Nslices

b.) determine the min/max slice index
smin and smax

c.) for each slice index si  {smin . . . smax}
compute and store the slice polygons fsi

In step 2c we applied a variant of the marching cube
method for incrementally slicing the volumetric cells.
Each cell node is classified as “0” or “1” depending
on the sign of the node distance dnci. Since in step 1
the viewplane distance dni was calculated for each
grid node, the required computations of the specific
slice-point distances dnci for each cell node nci simplify
to

dnci = dni + Δz (si + 1).
The generated bit sequence is used as an index into a
lookup table, which identifies the cell edge for the
vertex interpolation of the slice polygon. Different
lookup tables are maintained for identifying the
specific (e.g. tetra or hexa) polyhedron intersections.
Hence a decomposition into tetrahedral elements is
not anymore required. Finally each polygon set of a
specific slice is stored into an indexed list PLN

as

illustrated in figure 1. Therefore the computation of
active region lists is skipped.

Figure 1: Structure of the indexed polygon list for
storing the slice polygons.

Besides the polygon data, the indexed list structure
contains empty slices, which are indicated by a NIL-
pointer, so that intermediate slices can be inserted or
skipped.
3.2 Semi Adaptive Slicing
The computation of volume slices allows fast direct
volume renderings of unstructured grids. However
the optimal choice of the slice distance Δz is still a
problem of such slicing techniques. Small details are
missed, if the slice distance was chosen too large,
whereas small values of Δz result into over sampling.
According to Chopra [CM02], no details are missed,
if the distance Δz is chosen to be neither greater nor
equal to the smallest edge emin of the dataset.
However, this approach results into extreme large
amounts of polygons, which are hardly processed in
real-time. Hence Max et al. propose the usage of
splatting methods or cell projections for all those
cells, which have been missed by the slicing
operations.

An alternative approach is the semi adaptive
computation of volume slices. For this purpose, a set
of equidistant slices is created using our previously
described method. In this first step, all elements
which have been successfully sliced, are marked as
processed. Afterwards the number of slice regions is
doubled and the described slicing procedure is
applied to the remaining unprocessed cells with the
adapted slice distance Δzi. This step is repeated until
either all elements or a predefined percentage has
been sliced. Within each iteration step, a separate
indexed polygon list PLNi is built. Afterwards the
polygon list of the previous step PLNi-1 is completed
with the new generated one. This operation is
accomplished by simple pointer operations by
exploiting the previously mentioned indexed list
structure.

This approach enables the generation of slice stacks
with varying resolutions in z-direction. Additional
slices may be inserted or skipped in a background
process. Hence different levels of detail could be
dynamically generated according to the user defined
scaling and zooming operations.

3.3 Interactive Classification
An efficient visual analysis of the volume dataset
requires an interactive classification and hence direct
manipulation of the transfer function. Beside an
immediate update of the scalar field visualization, the
representation of the transfer functions is another
important factor for gaining insight into the dataset
and its value distribution.

Usually multi-dimensional transfer functions offer a
higher flexibility for detecting and exposing
characteristic structures. Nevertheless the creation of
a meaningful representation for more than three
independent parameters is not trivial. Therefore our
implementation was restricted on 2D transfer-
functions which appeared to be a good compromise

Figure 2: The interaction panel with the 3D
classification widget and sliders for interactive

manipulation of the transfer function.

between the flexibility of multi-dimensional transfer-
functions and one-dimensional opacity assignments.

Since one of our aims was the integration into a VR
environment, a 3D representation of the transfer
function appeared to be a natural extension for 3D
interactions and visualizations.

Figure 2 shows the interaction panel with the 3D
classification widget and the sliders we implemented
for visualizing and manipulating 2D transfer
functions. The transfer function is drawn as a height
field by mapping scalar values and gradient
magnitudes onto the tablet plane, whereas the opacity
(alpha) values define the height of the palette.

Direct manipulations are supported by using a 6DOF
interaction pen for changing individual alpha values.
Since this interaction is strongly influenced by the
assignment of alpha and height values, we examined
different mappings. Tests with linear mappings
showed significant correlations for lower alpha
values, whereas changes of higher alpha values are
reflected by minor changes in the scalar field
visualization. A better reflection of small alpha
values was achieved by employing a logarithmic
mapping with basis b using the following formula:

h = ln((b-1) α + 1) / ln(b)

Where h is the computed height value and α indicates
the corresponding transparency. The inverse function
is used for obtaining the transparency from the user
defined height value, which is:

α = (bh-1) / (b-1).

Indirect manipulations of the transfer function are
accomplished by moving one of the 3D sliders on the
interaction panel. Different operations have been
implemented for changing the global transparency as
well as for highlighting edges and material
boundaries by adjusting gradient weights. Another
operation supports the selection of specific regions by
specifying mean and range of the gradient-value
domain. Further interaction buttons have been
integrated, for storing the current transfer function,
for loading the settings from a previous session, as
well as for performing undo and redo operations on
the current transfer function. A list of transfer
functions is used for tracking the changes within a
session.
The Classification is accomplished by storing the
transfer functions as 2D texture maps. The scalar
values and gradient values are transferred to the
implemented fragment program which applies texture
mapping by taking the scalar values and gradient
magnitudes as texture coordinates for determining the
fragment color and finally performs the lighting
calculations.

4. Our Solution
This chapter describes our realization of an
interactive direct volume rendering system. It gives
an overview of the architecture and some
optimization strategies which are used in order to
optimize the data handling on common PCs.

4.1 Architectural View
Figure 3 shows the client-server architecture of our
application. Memory and CPU intensive tasks like the
slicing of the grid and the computation of gradient
values are performed by the server.

The rendering client is in charge of requesting the
processed data from the server and rendering the
generated stack of polygon slices (stack processing)
as well as for performing per fragment operations as
lightning or texture reads using its Graphics
Processing Unit or GPU. Furthermore, the rendering
client handles the user interactions like changes in the
view direction and manipulation of the transfer
function.

An optional compression and decompression of the
slice stacks can be applied for limiting the memory
requirements and obtaining an efficient usage of the
available bandwidth.

4.2 Geometry Compression
One of the requirements for the above mentioned
method to interactively render unstructured grids is
the storage of the computed polygon sets. Depending
on the underlying grid resolution and the selected
slice distance, the required storage space might easily
exceed the capacities of common workstations.
Hence for limiting the memory requirements of our
method, we integrated vector quantization and scalar
normalization operations. In our implementation we
used 16 Bit shorts for storing vertex coordinates and
8 Bit unsigned char values for each normal
component and scalar values.

Figure 3. Client-Server architecture for direct
volume rendering

Thus the required memory was reduced by a factor of
2 compared to the original floating point size. Since
the coding of the vertex positions consists of a
translation and a scaling operation, the subsequent
decoding is easily accomplished by the graphics
hardware.
As already pointed out by Deering [Dee95], the
resulting accuracy after decoding the compressed
data, is usually sufficient for display purposes.
An additional reduction of the data size is achieved
by transferring the individual slice polygons into
indexed face sets, which are efficiently displayed
using OpenGL vertex arrays. With this elimination of
redundant vertex information and the mentioned
quantization operation we achieved a reduction of the
polygon slices by 25% of the original data size.
Further reductions have been achieved by integrating
a compression scheme, which we successfully applied
for arbitrary polygon sets from CAD models [BS02].
The algorithm encodes a polygonal mesh into a byte
sequence which is finally compressed using Huffman
encodings. We applied this method to the computed
polygon slices and achieved a reduction of below 10
percent of the original size, on different slice sets.

5. Results
Our implementation was tested in our VR
environment with different datasets and PC
workstations. Figure 4 shows the interactive direct
volume rendering of the space shuttle flow field in
our VR environment.

The classification of the volume data and hence the
manipulation of the underlying transfer function is
done by directly changing the 3D classification
widget with the 6DOF interaction pen or by using the
3D menu elements on the interaction panel. The
position and orientation of the dataset is controlled by
the user by placing the tracked artifact object with its
tracking sensors in the VR environment.

The evaluation of our method was done using
different datasets with different sizes and cell
elements. The shuttle dataset shown in figure 4
consists of 226800 nodes and 215512 hexaedron-
elements. Figure 5 shows the result from a simulation
of a polymere injection of a single nozzle, which was
displayed using our direct volume rendering
method. .

The datasets consists of 87754 nodes, 223936 tetra
elements and 26900 hexahedrons. Figure 6 shows the
result of our direct volume rendering method with the
bluntfin dataset. The dataset consists of 40960 nodes
and 37479 hexaedron elements.

Some benchmarks have been driven in order to
validate our approach. Figure 7 shows the timings of
the slicing and quantization operation, which we
achieved for the used datasets with different slice
numbers.

Figure 6: Direct volume rendering of the bluntfin
dataset.

Figure 5: Direct volume rendering of a polymer
injection from a single nozzle

Figure 4: Interactive direct volume rendering the
space shuttle flow field in a VR environment.

The measurements were performed on a mobile PC
equipped with a 3,06 GHz Intel CPU, 512MB main
memory and a Windows XP operating system.

The performance of the slicing and quantization
operation is strongly related to the size of the dataset
and the number volume slices, as shown in the
diagram below. The computation of detailed slice sets
is done very quickly for small datasets whereas the
calculation for large datasets requires a delay of up to
three seconds. However, after the slice computation
is completed, the display and blending of the slice
stacks is performed by the graphics hardware.
Figure 8 summarizes the framerates we achieved for
rendering and lighting the mentioned datasets using
axis aligned slices with different slice distances and
hence polygon numbers. The measurements have
been carried out on a windows PC equipped with a
2,8 GHz Intel CPU, 1GB main memory and an
NVIDIA GeForce FX 5900 graphics board with
128MB video memory.

The diagram shows the strong dependency of the
achieved display performance from the number of
polygons which have to be processed by the graphics
hardware. As expected, small polygon sets are
displayed with high framerates, wheras the display
time slows down with the increasing number of
polygons such that the limits of these graphicscards
will be at approx. 1 million polygons.

Hence the performance of the presented approach is
predominantly defined by the rastering and blending
capabilities of the graphics hardware.

6. Conclusion
Our solution allows fast direct volume renderings of
unstructured grids on a standard PC platform. The
slicing algorithm quickly generates polygon slices for
small datasets. Larger datasets can be processed by
generating axis aligned slice sets in a preprocessing
step. Alternatively slice sets with a reduced z-
resolution might be used for previewing during the
user interaction, while additional slices are computed
in a background process.

As shown before the methods processes unstructured
grids with mixed tetra- and hexaedral elements and is
easily extended for handling further elements. A
tetrahedral decomposition is not anymore required so
that the amount of cell elements to be processed is
strongly reduced which in turn leads to faster
computations. The implemented compression
methods additionally reduce the memory
requirements so that the available bandwidth is more
efficiently used.

Moreover, the method allows an improved balancing
of the workload between GPU and CPU and hence an
improved overall performance. In contrast to this the
load of view-independent tetra-projections is
predominantly on the GPU. Furthermore the semi-
adaptive slicing approach offers an efficient
alternative for displaying small grid cells without
generating inadequate amounts of polygons.
Finally the created modules support the interactive
visualization and classification of volume data in a
VR environment. The developed 3D interaction
facilities enable a direct and convenient manipulation
of the transfer function as well as an intuitive
navigation in virtual environments.

7. Outlook
The presented work currently allows the presentation
of static volume data. Further work should
concentrate on the inclusion of dynamic and time
variant simulation data. With some modifications this
method can be used for colourised and opacity
animated renderings of scalar fields, which values
change over time. Using a time invariant geometry
the interpolation weights resulting from the slicing
operations as well as the indices of affected grid
nodes can be stored in addition to the vertex data.
During the following time steps only the indexed
nodes and the interpolation weights have to be
transferred to the GPU which eventually performs the
interpolation via a vertex program.

Figure 7: Timings for slicing the datasets with
different slice numbers.

Figure 8: Framerates for rendering and lighting
axis aligned slices with different polygon numbers
using a view port of 1024 × 768.

 REFERENCES
[BS02] P. Benölken and A. Stork. Geometry

compression for collaborative CAD
applications. In Ralph H. u.a. Stelzer,
editor, CAD 2002. Proceedings :
Corporate Engineering Research,
pages 121-129.

[BP02] C.P. Botha and F.H. Post. New technique
for transfer function speci-fication in direct
volume rendering using real-time visual
feedback. In Proc. of the SPIE Int.
Symposium on Medical Imaging, volume
4681, 2002.

[CKM+99] J. Comba, J. T. Klosowski, N.L. Max,
J.S.B. Mitchell, C.T. Silva, and P.L.
Williams. Fast polyhedral cell sorting
interactive rendering of unstructured grids.
In Computer Graphics Forum (Proc.
Eurographics ’99), volume 18, pages 369–
376, 1999.

[CM02] Prashant Chopra and Joerg Meyer.
Incremental slicing revisited: Accelerated
volume rendering of unstructured meshes.
In Proceedings of IASTED Visualization,
Imaging, and Image Processing 2002,
pages 533–538, Sept. 9-12 2002.

[Dee95] Deering, M 1995. Geometry Compression
Proceedings SIGGRAPH, 1995.

[GRS+02] Stefan Guthe, Stefan Roettger, Andreas
Schieber, Wolfgang Straßer, and Thomas
Ertl. High-quality unstructured volume
rendering on the pc platform. In ACM
Siggraph/Eurographics Hardware
Workshop, 2002.

[HHKP96] T. He, L. Hong, A. Kaufman, and H.
Pfister. Generation of transfer functions
with stochastic search techniques. In
Proceedings IEEE Visualiztaion,
pages 227–234. IEEE, 1996.

[HKG00] J. Hladuvka, A. König, and E. Gröller.
Curvature-based transfer functions for
direct volume rendering. In Spring
Conference on Computer Graphics
(SCCG 2000), pages 58–65, 2000.

[KD98] G. Kindlmann and J.W. Durkin. Semi-
automatic generation of transfer functions
for direct volume rendering. In IEEE
Symposium On Volume Visualization,
pages 79–86. IEEE, 1998.

[KKC01] J. Kniss, G. Kindlmann, and C.Hansen.
Interactive volume rendering using multi-
dimensional transfer functions and direct
manipulation widgets. In Proceedings

IEEE Visualization 2001, pages 255–
262. IEEE, 2001.

[Lev90] M. Levoy. E±cient ray tracing of volume
data. ACM Transactions on Graphics, 9
(3): 245-261, July 1990.

[MAB+97] J. Marks, B. Andalman, P.A. Beardsley,
H. Pfister, et al. Design galleries: A
general approach to setting parameters for
computer graphics and animation. In ACM
Computer Graphics (SIGGRAPH ’97
Proceedings), pages 389–400. ACM,
August 1997.

[Mor04] Kenneth Dean Moreland. Fast High
Accuracy Volume Rendering. Dissertation,
The University of New Mexico, 2004.

[MWSC03] Nelson Max, Peter Williams, Claudio
Silva, and Richard Cook. Volume
rendering for curvilinear and unstructured
grids. In Computer Graphics International,
2003.

[RE02] S. Roettger and T. Ertl. A two-step approach
for interactive preintegrated volume
rendering of unstructured grids. In
Proceedings of IEEE Volume Visualization
and Graphics Symposium 2002, pages 23–
28, October 2002.

[RE03] S. Roettger and T. Ertl. Cell projection of
convex polyhedra. In Proceedings of the
2003 Eurographics/IEEE TVCG
Workshop on Volume graphics, page
103108. ACM, 2003.

[RSHSG00] C. Rezk-Salama, P. Hastreiter, J.
Scherer, and G. Greiner. Automatic
adjustment of transfer functions for 3d
volume visualization. In Proc. Vision,
Modelling, and Visualization (VMV),
pages 357–364, 2000.

[SBM94] C. M. Stein, B. G. Becker, and N. L. Max.
Sorting and hardware assisted rendering
rendering for volume visualization. In
Symposium on Volume Visualization,
pages 83–89, 1994.

[SMW98] C. Silva, J. Mitchell, and P. Williams. An
interactive time visibility ordering
algorithm for cell complexes. In ACM /
IEEE Symposium on Volume
Visualization, pages 15–22, 1998.

[ST90] P. Shirley and A. Tuchman. A polygonal
approximation to direct scalar volume
rendering. In Computer Graphics (San
Diego Workshop on Volume
Visualization), volume 24, pages 63–70,
1990.

[WE97] R. Westermann and T. Ertl. Rendering and
re-sampling unstructured volume data by
polygon drawing. Technical Report 17,
Universität Erlangen-Nürnberg, 1997.

[WE01] Manfred Weiler and Thomas Ertl.
Hardware-software-balanced resampling
for the interactive visualization of
unstructured grids. In Proceedings of
the conference on Visualization ’01, pages
199 – 206. IEEE Computer Society, 2001.

[Wes90] L. Westover. Footprint evaluation for
volume rendering. In Computer Graphics,
volume 24, page 367-376, 1990.

[Wes01] R. Westermann. The rendering of
unstructured grids revisited. In
Eurographics/ IEEE Symposium on

Visualization 2001, pages 65–74,
2001.

[Wil92] P. Williams. Visibility ordering meshed
polyhedra. In ACM Transaction on
Graphics, volume 11, pages 103–126,
1992.

[WKE02] Manfred Weiler, Martin Kraus, and
Thomas Ertl. Hardware-based view-
independent cell projection. In IEEE
Symposium on Volume Visualization,
pages 13 - 22, 2002.

[YRLN96] R. Yagel, D. Reead, P. Law, A. Shihh,
and Shareef N. Hardware assisted volume
rendering of unsructured grids by
incremental slicing. In 1996 Volume
Visualization Symposium, pages 55-62.
IEEE Computer Society Press, 1996.

Denoising 2-D Vector Fields by Vector Wavelet
Thresholding

Michel A. Westenberg and Thomas Ertl
Institute for Visualization and Interactive Systems, University of Stuttgart

Universitätsstr. 38
70569 Stuttgart, Germany

{westenberg, ertl}@vis.uni-stuttgart.de

ABSTRACT
Noise reduction is an important preprocessing step for many visualization techniques that make use of feature
extraction. We propose a method for denoising 2-D vector fields that are corrupted by additive noise. The method
is based on the vector wavelet transform, which transforms a vector input signal to wavelet coefficients that are
also vectors. We introduce modifications to scalar wavelet coefficient thresholding for dealing with vector-valued
coefficients. We compare our wavelet-based denoising method with Gaussian filtering, and test the effect of these
methods on the signal-to-noise ratio (SNR) of the vector fields before and after denoising. We also compare
our method with component-wise scalar wavelet thresholding. Furthermore, we use a vortex measure to study
the performances of the methods for retaining relevant details for visualization. The results show that for very
low SNR, Gaussian filtering with large kernels has a slightly better performance than the wavelet-based method
in terms of SNR. For larger SNR, the wavelet-based method outperforms Gaussian filtering, because Gaussian
filtering removes small details that are preserved by the wavelet-based method. Component-wise denoising has a
lower performance than our method.

Keywords
Denoising, flow visualization, multiwavelets, wavelets.

1. INTRODUCTION
Data acquired by physical measurements are often cor-
rupted by noise. In fluid mechanics, such data may be
obtained by, for instance, particle image velocimetry
(PIV). This is a technique that provides global veloc-
ity measurements by recording the position over time
of small tracer particles inserted into the flow [Pra00].
Noise in the recorded images is a source of errors in
PIV measurements, and it can result in spurious vec-
tors or global noise in the reconstructed vector field.
The spurious vectors can be repaired by averaging or
median filtering, however, the global noise requires a
different removal method.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG 2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency Science Press

The process of removing noise is called denoising, and
its goal is to suppress the noise while retaining the rel-
evant details. A commonly used denoising method is
smoothing by Gaussian filtering. However, this does
not only affect the noise, but also may destroy small
features in the data.

Better performance is usually obtained by a smoothing
technique that is edge-preserving, such as anisotropic
diffusion [Per90]. This technique has been extended
for smoothing orientation fields [Per98], but it has
not been tested in a practical application, and has not
been evaluated on directional fields. Another success-
ful iterative method for image denoising is based on
minimizing the total variation of the image subject to
constraints that involve the noise statistics [Rud92].
This approach has been extended to vector-valued
functions, and has been used for denoising color im-
ages [Blo98]. In a recent paper, this method was used
for the reconstruction of flow velocity images acquired
by magnetic resonance velocity imaging [Ng03]. Such
images are used in the study of cardiovascular function
by analyzing the blood flow patterns and their inter-
action with cardiovascular structure. Noise has detri-

mental effects on this analysis, and it is very important
that features in the data are retained by the denoising
method.

Another class of denoising methods is based on thresh-
olding of wavelet coefficients, an idea introduced
about one decade ago by Donoho [Don95]. Since
then, much work has been done in this area, and
many wavelet-based denoising methods have been
proposed for scalar signals [Str01], natural images
[Cha00, Sim96], and medical images [Piž03, Win04],
to name a few.

The purpose of this paper is to report on work in
progress on denoising 2-D vector data that are cor-
rupted by additive noise. Our method performs thresh-
olding on wavelet coefficients that are obtained by a
so-called vector wavelet transform [Xia96]. This is
an extension of the scalar wavelet transform that deals
with vector data, and it maps vector data to wavelet co-
efficients that are also vectors. It is important to note
that the vector wavelet transform is different from a
component-wise scalar wavelet transform, and that the
mathematical foundation is based on multiwavelets.
We introduce extensions to the scalar wavelet-based
denoising technique, in order to be able to deal with
the vector-valued coefficients.

The organization of this paper is as follows. Sec-
tion 2 discusses the mathematical background of vec-
tor wavelets, and describes the algorithm to compute
the vector wavelet transform efficiently. In Section 3
we briefly describe wavelet-based denoising of scalar
data, and we introduce our modifications for dealing
with vector data. Section 4 compares the results of
vector wavelet-based denoising and Gaussian smooth-
ing, and we perform an experiment with component-
based scalar wavelet denoising. Finally, we draw con-
clusions in Section 5 and discuss future work.

2. VECTOR WAVELETS
The concept of a vector wavelet transform has ex-
isted for about a decade, and the theory follows scalar
wavelet theory closely [Xia96]. Vector wavelet trans-
forms are based on so-called multiwavelets, which ex-
pand a scalar function by several scaling functions and
wavelet functions rather than by a single pair. In the
following, we briefly describe multiwavelets, and we
refer the readers to the papers [Tan99] and [Xia96] for
full details.

2.1 Multiwavelets
A biorthogonal multiwavelet basis consists of a multi-
scaling function vectorΦ(t) := [φ1(t), . . . ,φr(t)]T and
its dual Φ̃(t) := [φ̃1(t), . . . , φ̃r(t)]T, with r an integer,

andxT denoting the transpose ofx. Typically, r = 2 or
r = 3 in practical applications with 2-D and 3-D vec-
tor fields, respectively. These multiscaling functions
satisfy the two-scale dilation equations

Φ(t) =
√

2∑
n

HnΦ(2t−n),

Φ̃(t) =
√

2∑
n

H̃nΦ̃(2t−n),
(1)

in which Hn and H̃n are real-valuedr × r matrix se-
quences. The multiwavelet functionsΨ(t) and Ψ̃(t)
are associated with the multiscaling functions by the
two-scale wavelet equations

Ψ(t) =
√

2∑
n

GnΦ(2t−n),

Ψ̃(t) =
√

2∑
n

G̃nΦ̃(2t−n),
(2)

in which Gn andG̃n are also real-valuedr × r matrix
sequences.

The expansion of an input vector signalf T(t) on a
biorthogonal multiwavelet basis is given by

f T(t) = ∑
k

(cM
k)TΦM,k(t)+

M

∑
j=1

∑
k

(d j
k)

TΨ j,k(t),

Φ j,k(t) = 2− j/2Φ(2− j t−k),

Ψ j,k(t) = 2− j/2Ψ(2− j t−k),

(3)

whereM denotes the depth of the decomposition. The
coefficientscM

k andd j
k are called approximation coef-

ficients and detail coefficients, respectively, as in the
scalar case. Note that these coefficients are nowr ×1
column vectors.

2.2 Fast vector wavelet transform
Given coefficient sequencesHn, Gn, H̃n, andG̃n that
arer× r matrices, and which satisfy the perfect recon-
struction conditions, we can compute the 1-D discrete
vector wavelet transform of the input sequencec0 by
the pyramid algorithm of Mallat. The main difference
with the scalar algorithm is that scalar multiplications
are replaced by matrix-vector multiplications. TheM-
level wavelet decomposition computes the coefficients
c j

k andd j
k as

c j
k = ∑

n
H̃n−2kc

j−1
n d j

k = ∑
n

G̃n−2kc
j−1
n . (4)

Reconstruction is computed as

c j−1
k = ∑

n
HT

k−2nc j
n +∑

n
GT

k−2nd j
n. (5)

The extension to a 2-D transform is done in the stan-
dard way by applying the 1-D transform to the rows

c3 d3,1

d3,3d3,2 d2,1

d2,3d2,2

d1,1

d1,3d1,2

Figure 1. Coefficients of a three level 2-D (vector)
wavelet transform.

and columns. The wavelet transform forM levels then
results in approximation coefficientscM

k,l and three sets

of detail coefficientsd j,τ
k,l , j = 1, . . . ,M, τ = {1,2,3}.

The coefficients are ordered as shown in Fig. 1.

2.3 Filter coefficients
In principle, the filter coefficients of the multiwavelets
available from the literature could be used for comput-
ing the vector wavelet transform. However, it turns out
that the performance for vector signal processing ap-
plications is poor [Fow02]. The source of the problem
lies in the fact that constant input signals are not pre-
served when performing a reconstruction from wavelet
approximation coefficients only. Constant in the con-
text of vector fields means that all vectors point in
the same direction. Intuitively, one would expect a
constant signal, however, most multiwavelets result in
an oscillatory distortion. This means that the coeffi-
cientscM

k,l do not consist of a low resolution approxi-
mation of the original data. This is rather disturbing,
as most denoising and compression schemes preserve
the approximation coefficients and discard detail coef-
ficients.

Fowler and Hua [Fow02] have proposed a scheme to
design filter coefficients that define a multiwavelet ba-
sis that does not suffer from the problem mentioned
above. The resulting wavelets are known by the name
omnidirectionally balanced symmetric-antisymmetric
(OBSA); part of this name refers to the constraints for-
mulated for the construction process. In the remainder
of this paper, we will use the OBSA 5-3 and OBSA 7-5
filters. The numbers denote the lengths of the coeffi-
cient sequencesHn andH̃n, respectively.

3. WAVELET-BASED DENOISING
We assume that the noise isadditive, and has a normal
distribution with zero mean and varianceσ2

n , denoted
asN(0,σ2

n). Wavelet-based denoising methods in the
1-D scalar case then work in three steps. (1) Compute
an M-level wavelet transform. (2) Modify the detail

coefficientsd j
k, j = 1, . . . ,M, by a threshold function.

The approximation coefficientscM
k are not modified.

(3) Compute the inverse wavelet transform. The ex-
tension to higher dimensions is straightforward.

There are two popular threshold functions in use: hard
and soft thresholding. Both set the coefficients below
the thresholdT to zero. Hard thresholding retains the
coefficients above the threshold unaltered. Soft thresh-
olding, also called shrinkage, reduces the amplitude of
the coefficients aboveT as follows

ηT(x) = sgn(x) ·max(|x|−T,0). (6)

For image denoising, soft thresholding generally
yields more visually pleasing results than hard thresh-
olding, and it is therefore the preferred choice.

Many methods have been proposed to select a good
thresholdT, a number of which are contained in the
WaveLab software [Buc95]. In this paper, we use a
method called BayesShrink [Cha00], which computes
a data-driven estimate ofT for each set of detail coef-
ficientsd j,τ

k,l , τ = {1,2,3} independently. This method
was proposed for image denoising, and it is based on
the observation that the detail coefficients in a subband
of a natural image can be characterized by a gener-
alized Gaussian distribution (GGD) [Mal89, Sim96].
The probability density function is given by

p(x) =
[

νη(ν ,σ)
2Γ(1/ν)

]
e−[η(ν ,σ)|x|]ν , (7)

with

η(ν ,σ) =
1
σ

√
Γ(3/ν)
Γ(1/ν)

, (8)

whereΓ(x) denotes the gamma function. The shape
parameterν controls the exponential rate of decay. A
Gaussian distribution is obtained byν = 2. The pa-
rameterσ is the standard deviation.

We have observed that the individual components of
the vector detail coefficients also follow a GGD. Fig-
ure 2 shows parts of the histograms of the second-level
vector detail coefficientsd2,1

k,l , d2,2
k,l , andd2,3

k,l of a slice
of a hurricane data set as an example. The top row
shows the histograms of the first components of the
vectors, and the bottom row shows the histograms of
the second components. All these histograms can be
qualitatively described by a GGD. It is therefore valid
to use the BayesShrink method.

We can now describe our modifications to the scalar
wavelet-based denoising scheme for dealing with vec-
tor data. Calculations that involve the absolute value
of a scalar coefficient now use the vector magnitude of

−4 −2 0 2 4
0

500

1000

1500

2000

2500

−2 0 2
0

500

1000

1500

2000

−2 0 2
0

500

1000

1500

2000

2500

−4 −2 0 2 4
0

500

1000

1500

2000

2500

−2 0 2
0

500

1000

1500

2000

2500

−2 0 2
0

500

1000

1500

2000

2500

Figure 2. Histograms of vector wavelet detail co-
efficients at level 2 of an example data set. His-
tograms of the first vector components are on the
top row and of the second components on the bot-
tom row. From left to right are d2,1

k,l , d2,2
k,l , and d2,3

k,l ,
respectively. All histograms can be described qual-
itatively by a generalized Gaussian distribution.

that coefficient. Furthermore, we define the variance
σ2 of anN×N vector fieldvk,l as

σ
2 =

1
rN2

N

∑
k=1

N

∑
l=1

||vk,l − v̄||2, (9)

where the average ¯v is a vector that contains the
component-wise averages ofvk,l , and|| · || denotes the
Euclidian norm. This definition includes a division by
r, the number of components of the vectors, for the
following reason. If a vector field contains only noise,
i.e., each component contains noise distributed as nor-
mal N(0,σ2), the equation above will yield precisely
σ2.

The threshold is dependent on the varianceσ̂2
d of the

coefficientsd j,τ
k,l under consideration and the global

noise varianceσ2. If the noise characteristics of the
data acquisition process are known, it may be possible
to determine the global noise variance from that infor-
mation. Alternatively, the global noise variance can be
estimated from the detail coefficientsd1,3

k,l by the robust
median estimator [Cha00]:

σ̂ =
median(|d1,3

k,l |)
0.6745

. (10)

Finally, the thresholdT is computed as

T =
σ̂2√

max(σ̂2
d − σ̂2,0)

. (11)

If the denominator in this equation becomes equal to
zero, the thresholdT becomes∞, and all coefficients
are assigned the zero vector.

For our method, we adapted the soft thresholding
method such that it shrinks the vector magnitudes. We
define the modified soft thresholding~ηT(x) for a vec-
tor x as

~ηT(x) = x · max(|x|−T,0)
|x|

. (12)

When|x|= 0, we set~ηT(x) = [0,0]T.

4. RESULTS
We conducted a series of experiments in which noise
of known standard deviation was added to a slice
(490× 490) of a hurricane data set, consisting of 2-
component velocity vectors, see Fig. 3(a). The re-
sulting noisy vector fields had signal-to-noise ratios
(SNR) of{5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. An
example rendering of the vector magnitudes of a noisy
vector field with SNR= 10 is shown in Fig. 3(b). The
SNR is expressed in dB and computed from the stan-
dard deviationsσ (data) andσn (noise) as

SNR= 20log10
σ

σn
.

To provide some intuition, an SNR around 40 dB is
considered acceptable in image processing.

We applied our wavelet-based denoising method to the
resulting noisy vector fields, using the biorthogonal
OBSA 5-3 and OBSA 7-5 multiwavelets. The depth of
the wavelet decomposition was fixed to three. We also
performed filtering with Gaussian kernels of various
widths. The width of the Gaussian kernel is described
by its width in pixels at half of the maximum of the
height of the Gaussian, a measure called Full Width
at Half Maximum (FWHM). For example, a Gaussian
filter with FWHM = 5 contains 13 pixels when sam-
pled between−3σ and 3σ . Filter values beyond 3σ
are negligibly small, and are therefore not used.

Example renderings of the vector magnitudes of the
results of both Gaussian filtering and our method are
shown in Fig. 3(c) and Fig. 3(d), respectively. The
noisy input vector data had SNR= 10 (Fig. 3(b)), a
high noise level at which the standard deviation of the
noise is about one-third the standard deviation of the
data. Qualitatively, both output images look similar,
although the Gaussian filtered data appears to be more
smooth, due to the large filter kernel used. The per-
formance of the methods is comparable, as they both
yield similar output signal-to-noise ratios.

Figure 4 shows the output SNR plotted against the in-
put SNR. The plot shows that Gaussian filtering with
large kernels performs slightly better than the wavelet-
based method for very low SNRs. For an SNR be-
tween 15 and 20 dB, both methods show similar per-
formance. For larger SNRs, the Gaussian filtering

(a) (b)

(c) (d)

Figure 3. The images show color-encoded vector
magnitudes; red corresponds to high velocities and
dark blue to low velocities. (a) Noise-free test data.
(b) Noisy test data with SNR= 10. (c) Result af-
ter denoising by Gaussian filtering with FWHM 5.
The filtered data has SNR= 23.4. (d) Result after
denoising by wavelet coefficient thresholding. The
resulting data has SNR= 22.3.

method smooths to strongly, and for SNRs above 30
dB, the output SNR is actually lower than the input
SNR. The wavelet-based method does not have this
problem, and the output SNR is in the worst case equal
to the input SNR. We also performed the experiment
(results not included) with the OBSA 5-3 wavelet, and
its performance is similar to the performance of the
OBSA 7-5 wavelet. However, the performance for
low SNR is worse, which can be explained by the fact
that the OBSA 5-3 wavelet is not as smooth as the
OBSA 7-5 wavelet.

For comparison, we implemented component-based
scalar wavelet-based denoising, i.e. we treated each
component of the vector field as a scalar data set,
and applied scalar denoising. We used a fourth-
order B-spline wavelet [Chu92] as a basic wavelet.
It is clear that component-wise denoising has a con-
sistently lower performance than a vector-based ap-
proach for the wavelets we tested, see Fig. 4. We pre-
sume this is due to possibility of changing the orienta-
tion of a vector when its components are thresholded
independently. A more extensive investigation is nec-
essary to see if this is indeed the cause of the lower
performance.

5 10 15 20 25 30 35 40 45 50

15

20

25

30

35

40

45

50

Input SNR [dB]

O
ut

pu
t S

N
R

 [d
B

]

OBSA 7−5
FWHM 2
FWHM 3
FWHM 4
FWHM 5
Component−based

Figure 4. The output SNR plotted against the in-
put SNR of wavelet-based denoising (OBSA 7-5)
and Gaussian filtering (FWHM) with filters of in-
creasing width. Also plotted is the performance
of scalar wavelet-based denoising of the individual
vector components independently of each other.

5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

Input SNR [dB]

O
ut

pu
t M

S
E

OBSA 7−5
FWHM 2
FWHM 3
FWHM 4
FWHM 5
Component−based

Figure 5. Output MSE plotted against the input
SNR of wavelet-based denoising (OBSA 7-5) and
Gaussian filtering (FWHM) with filters of increas-
ing width. Also plotted is the performance of scalar
wavelet-based denoising of the individual vector
components independently of each other.

We also computed the mean square errors (MSE) be-
tween the original data and the denoised data, and the
results are shown in Fig. 5. The vertical axis is on a
logarithmic scale. The plot confirms that Gaussian fil-
tering smooths too much when the noise level is low,
which results in an MSE that is almost two orders of
magnitude larger in comparison with our method.

Although the SNR is a good measure for the overall
performance, it is not suitable to measure how well
local features are retained. A problem, however, is that

(a) (b) (c)

Figure 7. Detail images of a larger coherent feature
in the data, selected from the larger structures in
the upper left quadrants of the images in the third
row of Fig. 6. (a) Noise-free data. (b) Gaussian fil-
tering. (c) Wavelet-based denoising. Note how the
small vertical structure on the left disappears with
Gaussian filtering.

we do not actually have suitable quantitative measures,
therefore, we render an image of the feature of interest,
and make a visual assessment of the performance. Our
feature of interest is a measure of vorticity, commonly
referred to as theλ2-definition [Jeo95]. The method
computes the eigenvaluesλ1, λ2, andλ3, λ1≥ λ2≥ λ3,
of the matrix

M =
[

J+JT

2

]2

+
[

J−JT

2

]2

. (13)

Here,J is the velocity gradient tensor. Vortex cores are
defined as the points whereλ2 is negative.

Figure 6 shows color-encoded (blue to red)λ2 val-
ues in a selected range for some of the generated
noisy vector fields (left column), and the results of de-
noising these data sets by Gaussian filtering and our
method. The middle column shows the best results
obtained by Gaussian filtering, and the right column
shows the results of our method using the OBSA 7-5
multiwavelets. The SNR is displayed below each im-
age, as well as the filter size of the Gaussian kernel,
and the percentage of wavelet coefficients that remain
after thresholding. These percentages are indicative of
the power of wavelets to capture relevant features with
only a small number of coefficients.

For the high SNR input (almost noise free), Gaussian
filtering misses details, especially in the areas with fine
detail. An example of loss of detail is shown in Fig. 7,
in which a small vertical structure is visible in the orig-
inal data (Fig. 7(a)), which is lost by Gaussian filtering
(Fig. 7(b)), but retained by our wavelet-based method
(Fig. 7(c)).

We have seen that for high noise levels, Gaussian fil-
tering performs better, because stronger low-pass fil-
tering is needed. However, this is also possible to
perform with our method. It appears that the thresh-
old selection process underestimates the noise level,

(a) (b)

(c) (d)

Figure 8. Denoising of the noisy vector data with
SNR= 10. All images show color-encodedλ2 val-
ues in a selected range. (a) Rendering of the noise-
free data. (b) Result of Gaussian filtering with
FWHM 5. (c) Wavelet-based denoising with au-
tomatic threshold selection. The threshold is such
that 5% of the largest detail coefficients remain af-
ter thresholding. (d) Wavelet-based denoising with
the threshold lowered to a value such that only 2%
of the largest detail coefficients are retained.

and that a lower threshold value is necessary. We per-
formed a simple experiment with the noisy vector data
with SNR= 10 to see if it is possible to improve the
output of our method, and the results are shown in
Fig. 8. Theλ2 values of the noise-free data are shown
in Fig. 8(a). We repeat the results of Gaussian filtering
and our method in Fig. 8(b) and Fig. 8(c), respectively.
Our method retains about 5% of the largest detail co-
efficients. When we lower the threshold such that only
2% of the largest coefficients are retained, we obtain
the image shown in Fig. 8(d). The SNR improves only
slightly to SNR= 22.5, but the visual appearance of
the features is much improved, and we also see a re-
duction of artifacts, i.e., features introduced that were
not in the original noise-free data. Although this shows
that it is possible to obtain a more ‘smooth’ result with
our method, the problem is that this approach intro-
duces a parameter (the number of coefficients to re-
tain) in the method.

Noisy inputs Gaussian filtering Wavelet denoising

SNR= 10 FWHM 5; SNR= 23.4 OBSA 7-5; SNR= 22.3; 5.1%

SNR= 25 FWHM 2; SNR= 29.8 OBSA 7-5; SNR= 29.4; 16.8%

SNR= 50 FWHM 2; SNR= 31.7 OBSA 7-5; SNR= 50.4; 70.4%

Figure 6. Results of denoising using Gaussian filtering and wavelet-based denoising. All images show color-
encodedλ2 values in a selected range. Left column: noisy input data of various signal-to-noise ratios.
Middle column: results of Gaussian filtering using the filter with the best performance. Right column:
wavelet-based denoising with the OBSA 7-5 multiwavelets. The depth of the wavelet decomposition was
fixed at three levels. The resulting SNR after denoising is shown below the images. Additionally, the right
column shows the percentage of remaining wavelet detail coefficients.

5. DISCUSSION
We have proposed a denoising method for 2-D vec-
tor fields that are corrupted by additive noise. The
method is an extension of scalar wavelet-based denois-
ing techniques to vector data, and makes use of a vec-
tor wavelet transform.

We have shown that the proposed method outperforms
Gaussian smoothing for low to moderate noise levels.
For very high noise levels, the wavelet threshold se-
lection appears to underestimate the noise level, and
in such case, Gaussian filtering performs better. How-
ever, by adapting the threshold, we have demonstrated
that the result can be improved. This should be in-
vestigated in a more systematic way, and it would be
interesting to see if other wavelet coefficient threshold
selection schemes produce better results.

We have also performed a simple experiment in which
we used scalar denoising applied to the vector com-
ponents independently. The result of this experiment
shows that it is necessary to treat the vector compo-
nents in a coupled way. It would be possible to use
a component-wise scalar wavelet transform combined
with our proposed vector coefficient thresholding. We
expect, however, that the performance will still be
lower, since the vector wavelet transform already con-
siders the coupling of the vector components during
the decomposition phase.

Currently, we are working on an extension to vec-
tors with three components. This is challenging, since
most research has focussed on multiwavelet design
for vectors of only two components. This extension
would open up the possibility of denoising 3-D vec-
tor fields, and could also result in a promising denois-
ing method for diffusion-tensor MRI volumetric data.
It may also be useful for the study of cardiovascular
function, and a comparison with the method proposed
by Ng [Ng03], should be made. Finally, it is neces-
sary to evaluate the method on PVI data sets, which is
ongoing work.

6. ACKNOWLEDGEMENTS
This research was funded by the project SFB 382 of
the German Research Foundation (DFG), and by the
Alexander von Humboldt Foundation with a Hum-
boldt Research Fellowship for the first author.

7. REFERENCES
[Blo98] Blomgren, P. and Chan, T. F. Color TV: total

variation methods for restoration of vector-valued
images.IEEE Trans. Image Processing, 7(3):304–309,
1998.

[Buc95] Buckheit, J. B. and Donoho, D. L. WaveLab and

reproducible research. Technical Report 474, Dept. of
Statistics, Stanford University, 1995.

[Cha00] Chang, S. G., Yu, B., and Vetterli, M. Adaptive
wavelet thresholding for image denoising and
compression.IEEE Trans. Image Processing,
9(9):1532–1546, 2000.

[Chu92] Chui, C. K.An Introduction to Wavelets.
Academic Press, 1992.

[Don95] Donoho, D. L. De-noising by soft thresholding.
IEEE Trans. Information Theory, 41:613–627, May
1995.

[Fow02] Fowler, J. E. and Hua, L. Wavelet transforms for
vector fields using omnidirectionally balanced
multiwavelets.IEEE Trans. Signal Processing,
50:3018–3027, 2002.

[Jeo95] Jeong, J. and Hussain, F. On the identification of a
vortex.J. Fluid Mechanics, 285:69–94, 1995.

[Mal89] Mallat, S. G. A theory for multiresolution signal
decomposition: the wavelet representation.IEEE Trans.
Pattern Analysis and Machine Intelligence,
11(7):674–693, 1989.

[Ng03] Ng, Y.-H. P. and Yang, G.-Z. Vector-valued image
restoration with applications to magnetic resonance
velocity imaging.J. WSCG, 11(2):338–345, 2003.

[Per90] Perona, P. and Malik, J. Scale-space and edge
detection using anisotropic diffusion.IEEE Trans.
Pattern Analysis and Machine Intelligence,
12(7):629–639, 1990.

[Per98] Perona, P. Orientation diffusions.IEEE Trans.
Image Processing, 7(3):457–467, 1998.

[Piž03] Pǐzurica, A., Philips, W., Lemahieu, I., and
Acheroy, M. A versatile wavelet domain noise filtration
technique for medical imaging.IEEE Trans. Medical
Imaging, 22(3):323–331, 2003.

[Pra00] Prasad, A. K. Particle image velocimetry.Current
Science, 79(1):51–60, 2000.

[Rud92] Rudin, L. I., Osher, S., and Fatemi, E. Nonlinear
total variation based noise removal algorithms.Physica
D, 60:259–268, 1992.

[Sim96] Simoncelli, E. P. and Adelson, E. H. Noise
removal via Bayesian wavelet coring. InProc. IEEE Int.
Conf. Image Processing, volume 1, pages 379–382,
Lausanne, Switzerland, September 16–19 1996.

[Str01] Strela, V. and Walden, A. T. Signal and image
denoising via wavelet thresholding: Orthogonal and
biorthogonal, scalar and multiple wavelet transforms. In
Fitzgerald, W. F., Smith, R. L., Walden, A. T., and
Young, P. C., editors,Nonlinear and Nonstationary
Signal Processing. Cambridge University Press, 2001.

[Tan99] Tan, H. H., Shen, L.-X., and Tham, J. Y. New
biorthogonal multiwavelets for image compression.
Signal Processing, 79(1):45–65, 1999.

[Win04] Wink, A. M. and Roerdink, J. B. T. M. Denoising
functional MR images: a comparison of wavelet
denoising and Gaussian smoothing.IEEE Trans. Medical
Imaging, 23(3):374–387, 2004.

[Xia96] Xia, X.-G. and Suter, B. W. Vector-valued
wavelets and vector filter banks.IEEE Trans. Signal
Processing, 44(3):508–518, 1996.

Fast and Accurate Hausdorff Distance Calculation
between Meshes

Michael Guthe

guthe@cs.uni-bonn.de

Pavel Borodin
University of Bonn

Institute of Computer Science II
Römerstraße 164

D-53117, Bonn, Germany

borodin@cs.uni-bonn.de

Reinhard Klein

rk@cs.uni-bonn.de

ABSTRACT
Complex models generated e.g. with a laser range scanner often consist of several thousand or million triangles.
For efficient rendering this high number of primitives has to be reduced. An important property of mesh
reduction – or simplification – algorithms used for rendering is the control over the introduced geometric error.
In general, the better this control is, the slower the simplification algorithm becomes. This is especially a
problem for out-of-core simplification, since the processing time quickly reaches several hours for high-quality
simplification.
In this paper we present a new efficient algorithm to measure the Hausdorff distance between two meshes by
sampling the meshes only in regions of high distance. In addition to comparing two arbitrary meshes, this
algorithm can also be applied to check the Hausdorff error between the simplified and original meshes during
simplification. By using this information to accept or reject a simplification operation, this method allows fast
simplification while guaranteeing a user-specified geometric error.

Keywords
Mesh comparison, Hausdorff error measurement, mesh simplification.

1. INTRODUCTION
Today, polygonal meshes have become ubiquitous as
three-dimensional geometric representation of
objects in computer graphics and some engineering
applications. They are used for rendering of objects
in a broad range of disciplines like medical imaging,
scientific visualization, computer aided design
(CAD), movie industry, etc. New acquisition
techniques allow the generation of highly detailed
objects with a permanently increasing polygon count.
The handling of huge scenes composed of these
high-resolution models rapidly approaches the
computational capabilities of any graphics hardware.
Therefore, level-of-detail techniques become
inevitable. In order to build such level-of-detail

representations many simplification algorithms exist
that produce high-quality approximations of complex
models with a reasonable amount of polygons.

However, for many applications it is very important
to have precise control over the geometric error
introduced by simplification. The common way to
provide an accurate error control, which can be used
to calculate image space errors during visualization,
is to measure the Hausdorff distance between the
simplified and original meshes. However, this
distance can only be approximated by sampling, and
therefore, the better the accuracy is, the slower the
measurement algorithm becomes. When used to steer
simplification, the performance of the simplification
algorithm is reduced accordingly.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

The main contribution of this work is an efficient
algorithm to measure and update the Hausdorff
distance between a simplified mesh and the original
model. The superior speed of our approach is mainly
due to its ability to quickly determine regions of high
geometric distance (or during simplification, regions
where the distance is above the desired value) and
adapt sampling there.

2. PREVIOUS WORK
Since mesh simplification is one of the fundamental
techniques used for polygonal meshes, there is an
extensive amount of different methods. Since there
are detailed reviews of simplification algorithms (e.g.
[Lue01]), we give only a short overview of the most
related methods.

Rossignac and Borrel [Ros93] introduced the family
of vertex clustering methods. Although very fast,
their algorithm and its derivative methods (e.g.
[Low97]) allow almost no control over the error (it is
bound by the cell size), and the reduction rate is quite
low in flat parts of the model.

Cohen et al. [Coh96] developed simplification
envelopes to guarantee fidelity bounds while
enforcing local and global topology. The
simplification envelopes consist of two offset
surfaces at some distance ε from the original
surface. Since these envelopes are not allowed to
self-intersect, ε is decreased at high curvature
regions. By keeping the simplified surface inside
these envelopes, the algorithm can guarantee a
geometric deviation of at most ε , and additionally it
checks that the surface does not self-intersect. While
this algorithm has the advantage to guarantee a
geometric error bound, it is quite slow and requires
an orientable manifold for the construction of the
offset surfaces. Zelinka and Garland [Zel02]
modified this approach by using permission grids –
spatial occupancy grids, where an operation is only
performed if all cells that are intersected by the new
triangles are allowed to be occupied. Although the
algorithm is much faster than [Coh96] and doesn’t
need an orientable manifold mesh, the simplified
model often contains much more triangles due to the
discrete grid and the fact that the Manhattan distance
is used instead of the Euclidean.

The vertex pair contraction operation introduced at
the same time by Popović and Hoppe [Pop97] and
Garland and Heckbert [Gar97] has become the most
common operation and is used in many
simplification methods. In conjunction with the
quadric error metric introduced in that work, it offers
flexible control over the quality, still at very high
reduction speed. However, the quadric metric mostly
overestimates the real geometric error which results
in non-optimal reduction rates and the need to
measure the exact error after simplification.

Klein et al. [Kle96] first used the Hausdorff distance
between the original and simplified mesh to control
the simplification error, although with significant
computational effort. In [Bor03a] Borodin et al. have
produced high-quality results by combining
generalized pair contractions – an extension of the

vertex pair contraction – with the control of the
distance between the original and simplified models
during the whole simplification process.

In the area of mesh comparison, Cignoni et al.
[Cig98] introduced the first method dedicated
exclusively to measurement of errors on simplified
surfaces, which allows to compare quality of
different simplification methods. Another method,
presented by Aspert et al. [Asp02], is more efficient
in terms of speed at the cost of higher memory use.
Both algorithms are based on sampling of the
geometry of the two models to be compared, where
the sampling density depends on the desired
accuracy. In order to double the accuracy the number
of samples needs to be multiplied by four. Therefore,
these algorithms quickly become slow for higher
accuracy.

3. TERMINOLOGY
First we define the distance between a
point on a surface and another surface

(d p,S ′)
p S S ′ as:

 () (
p S

d p,S min d p, p
′ ′∈

)′ ′= ,

where ()d p, p′ is the Euclidian distance between

two points in . 3E
The geometric distance – also called one-sided or
single-sided Hausdorff distance – between two
surfaces and S S ′ is then defined as:

() (
p S

d S ,S max d p,S
∈

)′ ′=

Note, that this distance is not symmetric in general,
i.e. () ()d S ,S d S ,S′ ′≠ . The symmetrical Hausdorff
distance is defined as:

() () ()()sd S ,S max d S ,S ,d S ,S′ ′= ′

This value gives more accurate measure of the
distance between two surfaces by preventing the
possible underestimation, which can appear if using
only one-sided distances.

4. MESH COMPARISON
The main idea of our new mesh comparison
algorithm is to adapt the sampling density used for
distance calculation to the actual geometric deviation
in the corresponding area. Hereby, the main goal is to
draw samples only in those regions where the
maximum distance between both objects is expected.

To achieve this, we first make two observations:

• Since the Hausdorff distance is defined as the
maximum of the distances of all points on both
meshes to the other mesh, we should avoid
sampling in areas, where they are closer to each

other than the actual – yet unknown – Hausdorff
distance. This can be achieved by comparing
coarse voxelizations of the two objects,
considering triangles within voxels of high
distance first, and stopping comparison, when
the already found distance is larger than the
highest possible distance between remaining
voxels.

In order to consider cells containing triangles with
larger distance first, the octree traversal is steered
using a priority queue. This queue contains the
already processed octree cells sorted by their
maximum geometric distance.

When a leaf cell is reached during traversal, we
collect all contained triangles and insert them into the
same priority queue as the cells, again according to
their maximum possible geometric distance.
Depending on their minimum distance we again
update the Hausdorff distance. To prevent multiple
insertions of the same triangle into the priority queue,
we mark triangles and process only those yet
unmarked. The traversal and therefore the whole
algorithm stops if either the queue becomes empty
(e.g. when both meshes are identical) or the
maximum possible distance of all remaining cells and
triangles is less than the already found Hausdorff
distance. The main algorithm to calculate the
Hausdorff distance is shown in Fig. 1.

• When processing triangles inside a voxel cell,
we only need to subsample a triangle, if its
geometric distance can be larger than the already
found maximum. This can only happen, if any of
its vertices is farther away from the other mesh
than one of its interior points, or if any of these
distances exceeds the maximum. Therefore, a
tight upper bound of a triangle-to-mesh distance
is required.

Data Structures
To quickly determine the regions of high geometric
distance we sort the triangles of both meshes into two
voxel grids respectively. Note, that later on in our
algorithms – similarly to [Cig98] and [Asp02] – this
grid is also used to quickly find the closest point on
one of the meshes for a given sample point.

 MinError=0

AddToQueue(RootCellA)

AddToQueue(RootCellB)

while(QueueNotEmpty)

 GetCellWithHighestMaxDistance

 UpdateMinError

 if(LeafNode)

 InsertTrianglesIntoQueue

 else

 InsertChildrenIntoQueue

return minError

Figure 1. Main algorithm to calculate the
Hausdorff distance.

The grid dimensions depend on the objects’
bounding boxes and the number of triangles. We aim
to have 10 triangles per occupied cell in average.
This can be achieved approximately by calculating
the number of required cells for a cube tessellated
with the same number of triangles as is in the larger
mesh. This leads to a resolution 10 6

trianglesr ⋅= . To
avoid memory problems we restrict ourselves to
resolutions of . 3256

Cell-Based Distance To speed up finding voxels of high distances
between both voxelizations we use an octree
structure for each of them, build upon the entries
within the grids. In order to get full octrees we allow
only resolutions of . 2 2 2n n n× ×

To quickly find the closest cell, when traversing the
octree from a node to its children, we store all indices
of occupied cells, for which the minimum distance
was less than the maximum distance to the closest
cell. Then we need to check only the children of
these cells when calculating the distances of the
cells’ child nodes. Note, that for the root nodes
calculating the closest cells and the distances is
trivial.

Main Algorithm
Initially, we set the current Hausdorff distance to
zero. We start traversing the octree structures of both
meshes simultaneously, measuring the distance of
each cell to all other cells on the same level in order
to find the closest one in the other mesh. If for the
current cell the closest other cell is found, we can
calculate the minimum and maximum distances
between two points inside these cells. If the
minimum distance is larger than the current
Hausdorff distance, we update the Hausdorff
distance accordingly. If the maximum distance is less
than or equal to the current Hausdorff distance,
traversal of the subtree is skipped.

To simplify the distance calculation, we use the
bounding box of the union of both meshes to
construct the grid. Furthermore, we restrict ourselves
to cubic grid cells, which further simplifies the
distance calculation to calculations based on the cell
coordinates.

Distance of a Triangle
To calculate lower and upper bounds for the
geometric distance between a triangle and the other
mesh, we first need to calculate the distances of its
vertices. If a vertex is inside the currently processed
grid cell, we can use its stored closest cells to find
candidate triangles for the next surface point in the
other mesh. If it is outside the current cell, we
descend the hierarchy again to find the occupied cells
closest to the current vertex. Then we calculate
distances to all triangles starting with those contained
in the closest cell. When the distance to the closest
point found so far is closer than the distance to the
remaining cells, the distance of the currently
processed vertex is found. To prevent multiple
distance calculations for the same triangle, we store
the indices of triangles and collect only the
unprocessed triangles from each cell.

After the distances for the three vertices of the
current triangle are calculated, we know that the
minimum geometric distance of the triangle is the
maximum of the vertex distances i iV P− , and the
maximum geometric distance is at most the
maximum of the vertex distances and the distances of
the triangle barycentre to the three vertex base
points (see Fig. 2).

B
iP

1P

2P

3P

1V

2V

3V

B

Figure 2. Minimum and maximum geometric
distances of a triangle.

Therefore, we can determine the possible interval of
the geometric distance as: d

()

()

3

1

3

1

i i mini

min ii

d max V P d

d max H ,max B P

=

=

≥ − =

≤ −


.



Additionally, no point on the triangle can be farther
away from the other mesh than its vertices from any
of the base points, and thus

 ()
3 3

1 1 i ji j
d min max V P .

= =

 ≤ − 
 

If the closest points of all three vertices lie on the
same triangle (see Fig. 3), the maximum vertex
distance is already the geometric distance of the
current triangle. Otherwise, the triangle is inserted

into the priority queue. Note, that we have to take
care about the fact that the closest point may lie on
several triangles (if it falls onto an edge or into a
vertex).

1P

2P

3P

1V

2V

3V
Figure 3. Exact geometric distance of a triangle.

When a triangle from the queue is processed, it is
subdivided and the distances for its children are
calculated. To prevent repeated calculation of the
closest point/triangle for the same vertex, we
calculate them for the three new vertices during
subdivision. Then we only need to calculate the
minimum and maximum possible distances before
eventually storing the child triangles in the priority
queue. The subdivision algorithm is shown in Fig. 4.

 CalculateSubdivisionBasePoints
for(allChildTriangles)

 minDistance=max(vertexDistances)

 if(AllBasePointsOnSameTriangle)

 maxDistance=minDistance

 else

 maxDistance=max(barycenterDistances)

 InsertIntoQueue

Figure 4. Subdivision sampling algorithm.
Note, that calculating the base points and checking if
they all lie on the same triangle is also necessary,
when a leaf cell is processed in order to add all
contained triangles to the queue.

5. APPLICATION TO
SIMPLIFICATION
To control the Hausdorff error during simplification,
only the part of the mesh affected by the current
operation needs to be considered. Therefore, the
affected triangles of the simplified mesh are directly
inserted into the queue, and the error measurement
for the original model is restricted to the region
around these triangles using their common bounding
box. Since the error of neighbouring triangles in the
original model may also be affected, we need to
extend this bounding box by the current Hausdorff
error.

Furthermore, it is not necessary to calculate the exact
geometric error, but only to check if it is below a
user-specified threshold. Therefore, we do not need

to insert cells or triangles, for which the maximum
possible distance is below this threshold, into the
queue, and thus refine sampling only in regions,
where the error may be above this value.
Analogously, if the minimum error found so far is
above this threshold, we can immediately stop the
calculation and reject the simplification operation.
When calculating the geometric error of a triangle,
we can also immediately stop searching for the base
points as soon as we found one that is closer than
the desired error minus the maximum length of the
two edges adjacent to the current vertex (according
to the triangle inequation no vertex can be farther
from a point than the distance of any vertex to this
point plus the distance to this vertex).

iP

The fact that only an accept/reject decision is
required to decide, if a simplification operation will
be performed, allows for some additional simple tests
to quickly find an answer in most cases.

The simplification algorithm delivering the best
trade-off between speed and quality of the simplified
model is the one based on the quadric error metric
[Gar97]. Choosing this simplification algorithm as
base for our method, we get the additional advantage:
the error quadric gives an (admittedly sometimes
largely overestimated) upper bound for the Hausdorff
error and can thus be used as a criterion to accept an
operation without further tests.

Then two additional simple tests are possible to
quickly reject an operation. First, the distance of the
new vertex to the simplified mesh before the current
edge collapse operation is calculated. If this exceeds
twice the desired Hausdorff error ε , the operation
can be rejected. Note, that exceeding of 2ε is
required due to possible configurations similar to the
one shown in Fig. 5.

 new vertex

 original mesh

 simplified mesh

Figure 5. Quick reject tests.
If the operation passed this test, the distance from the
new vertex to the original mesh is calculated. If this
exceeds the specified threshold, the operation is also
rejected. These two tests have the advantage that they
quickly reject many operations and no update of the
grid is required for their calculation.

When an operation passed these two tests without
being rejected, the grid and octree of the simplified
model are updated. If the operation has not been
accepted by the quadric test, the Hausdorff distance
between the updated meshes is calculated. When the
operation is rejected by the Hausdorff error check,

the vertex is split again, updating the grid and octree
of the simplified mesh, and the operation is removed
from the simplification queue. The overall pipeline
of the error-checking algorithm is shown in Fig. 6.

new vertex → simplified mesh

new vertex → original mesh

quadric error

simplified region ↔ original mesh

accept reject

fail

fail

fail

fail

pass

pass

pass

pass

Figure 6. Error testing pipeline.
If the simplification queue is empty, all possible
collapse operations that do not exceed the specified
Hausdorff error have been performed.

6. RESULTS
Since our algorithm is applicable to both, measuring
distances between meshes and controlling the
introduced Hausdorff error during simplification, we
compare it to previous approaches in both fields. We
ran all tests on a PC with an Athlon 3000+ and 2 GB
of main memory.

Mesh Comparison
To demonstrate the advantages of our algorithm, we
compare its computation time with the two standard
tools for measuring the Hausdorff distance: Metro
[Cig98] (version 4.0) and MESH [Asp02] (version
1.12). The models used for evaluation are shown in

Figure 7. Models used for mesh comparison.

Fig. 7; the numbers of their vertices and triangles are
listed in Tab. 1.

Figure 9. Computation times of error-measuring
algorithms.

Model # triangles # vertices
Bunny (orig.) 69,451 34,834

Bunny (simpl.) 1,001 553

Coffee set 69,696 34,860

Without lid 60,936 30,480
Table 1. Models used for mesh comparison.

Tab. 2 shows the comparison in computation time of
the three algorithms with an accuracy of 0 0 of
the model diameter.

1. %
since it ran out of memory and Metro needs more
than a day to compare the simplified and original
bunny at . 0 001. %

 Metro MESH Our alg.
Bunny 1,406 sec 395 sec 2.7 sec

Coffee set 13,008 sec 1,396 sec 2.1 sec Error Control
In the field of error control during simplification, we
compare our method with two simplification
algorithms that guarantee a user-specified geometric
error: simplification envelopes [Coh96] and high-
quality simplification [Bor03a] (using the out-of-core
simplification [Bor03b], when necessary). For
comparison, we use different scanned objects from
the Stanford 3D Scanning Repository [Sta3D] and
the Digital Michelangelo Project [DigMi] shown in
Fig. 10 and Tab. 3.

Table 2. Computation times of error-measuring
algorithms.

At this accuracy our algorithm is several orders of
magnitude faster than Metro and MESH, since we
sample the mesh surface densely in regions of high
geometric distance only. This is especially visible,
when comparing the coffee set with and without lid,
as shown in Fig. 8, where only samples in the region
of the highest Hausdorff distance were taken.

Figure 8. Visited octree cells and taken samples
for coffee set scene with and without lid.

Fig. 9 shows a detailed plot of the computation times
of the three algorithms, when comparing the
simplified bunny with the original model, using
different accuracies ranging from 1 of the
bounding box diameter (practically useless) to

 (very accurate).

%

0 001. %
Figure 10. Models used for simplification. It is clearly visible, that in contrast to both Metro and

MESH, the computation time of our algorithm
depends only very little on the desired accuracy.
Note, that comparing the meshes with accuracy
higher than 0 0 was not possible using MESH,

1. %

Tab. 4 compares the computation times of the two
mentioned simplification algorithms with our
approach. For all models and algorithms the same
simplification errors (1 and 0 1 of the model
diameter) were used. The Hausdorff distance of 1

% . %
%

Model # triangles # vertices
Bunny 69,451 34,834

Dragon 871,414 437,645

Buddha 1,087,474 543,652

David 2mm 7,227,031 3,614,098
Table 3. Models used for simplification.

is especially interesting for out-of-core simplification
using hierarchical partitioning (e.g. [Bor03b]), since
it is close to the resolution of 128

e used for each
octree cell.

 [Coh96] [Bor03a] our alg.
1%ε =

Bunny 1:12 1:25 0:52

Dragon n.a. 27:58 6:48

Buddha n.a. 25:271 12:37

David 2mm n.a. 3:01:431 1:06:22

0 1. %ε =

Bunny 0:46 0:46 1:28

Dragon n.a. 15:37 14:59

Buddha n.a. 24:081 21:13

David 2mm n.a. 3:00:031 1:51:56
Table 4. Computation times of simplification

algorithms.
Note, that the simplification envelopes restricts only
the geometric error from the simplified model to the
original, which is sufficient for rendering, but may
cause inaccuracies for other applications like
collision detection. Similarly, the high-quality
simplification guarantees an upper bound for the
geometric error from the original to the simplified
model only, and thus may close large holes in the
model, which is not always desired. Additionally, the
accuracy is low, since only samples at vertex
positions are taken. If out-of-core simplification is
used, the error is only guaranteed to lie between 4

5 ε
and ε . This means that a more aggressive
simplification would be possible without exceeding
the threshold.
The computation time of the simplification envelopes
is similar to the one of the high-quality
simplification, but the algorithm requires orientable
manifold meshes, and therefore worked only for the
bunny model. Although our algorithm guarantees the
Hausdorff distance to be below a specified threshold,
the performance is even better than the simplification

envelopes and the high-quality simplification for
larger models and/or simplification errors.

7. CONCLUSION
We have presented an efficient algorithm to measure
the geometric distances and the Hausdorff distance
between two meshes. Our approach is much faster
than existing algorithms for reasonable accuracies
(i.e. less than of the model diameter), since it
needs to refine sampling only in regions of high
distance and thus hardly depends on the required
accuracy. This is accomplished by using a bi-
hierarchical search algorithm to quickly find regions
of possibly high geometric distances.

0 01. %

Furthermore, we have shown that our algorithm can
also be applied to increase performance, efficiency,
and accuracy of error-bounded simplification by
using a chain of simple accept/reject tests to quickly
determine, if exact evaluation of the Hausdorff
distance is necessary. Instead of measuring the
distance, we can stop traversing the hierarchy, when
the minimum possible error is above the desired
threshold, or the maximum possible is below. Using
this technique, our approach is up to four times as
fast as comparable algorithms when drastically
simplifying the model.

8. ACKNOWLEDGEMENTS
We thank the Stanford 3D Scanning Repository and
the Digital Michelangelo Project for providing us
with the models. The coffee set model is courtesy of
Renzo Del Fabbro.

9. REFERENCES
[Asp02] Aspert, N. Santa-Cruz, D., and Ebrahimi T.

MESH: measuring errors between surfaces using
the Hausdorff distance. Proc. of the IEEE
International Conference on Multimedia and
Expo, pp. 705-708, 2002.

[Bor03a] Borodin, P., Gumhold, S., Guthe, M., and
Klein, R. High-quality simplification with
generalized pair contractions. Proc. of GraphiCon
’03, pp. 147-154, 2003.

[Bor03b] Borodin, P., Guthe, M., and Klein, R. Out-
of-core simplification with guaranteed error
tolerance. Proc. of Vision, Modeling and
Visualisation ’03, pp. 309-316, 2003.

[Cig98] Cignoni, P., Rocchini, C., and Scopigno, R.
Metro: measuring error on simplified surfaces.
Computer Graphics Forum, vol. 17, no. 2, pp.
167-174, 1998.

[Coh96] Cohen, J., Varshney, A., Manocha, D.,
Turk, G., Weber, H., Agarwal, P., Brooks, F., and
Wright, W. Simplification envelopes. Computer

1 Out-of-core simplification [Bor03b].

Graphics (Proc. of SIGGRAPH ’96) 30, pp. 119-
128, 1996.

[DigMi] The Digital Michelangelo Project.
http://www-graphics.stanford.edu/projects/mich.

[Gar97] Garland, M. and Heckbert, P. S. Surface
simplification using quadric error metrics.
Computer Graphics (Proc. of SIGGRAPH ’97)
31, pp. 209-216, 1997.

[Kle96] Klein, R., Liebich, G., and Straßer, W. Mesh
reduction with error control. Proc. of IEEE
Visualization ’96, pp. 311-318, 1996.

[Low97] Low, K.-L. and Tan, T.-S. Model
simplification using vertex-clustering. Proc. of
Symposium on Interactive 3D Graphics, pp. 75-
81, 1997.

[Lue01] Luebke, D. A Developer’s Survey of
Polygonal Simplification Algorithms. IEEE

Computer Graphics and Applications, 21(3), pp.
24-35. 2001.

[Pop96] Popović, J. and Hoppe, H. Progressive
simplicial complexes. Computer Graphics (Proc.
of SIGGRAPH ’97) 31, pp. 217-224, 1997.

[Ros93] Rossignac, J. and Borrel, P. Multi-resolution
approximations for rendering. Modeling in
Computer Graphics, pp. 455-465, 1993.

[Sta3D] The Stanford 3D Scanning Repository.
http://www-graphics.stanford.edu/data/3dscanrep.

[Zel02] Zelinka, S. and Garland, M. Permission
grids: practical, error-bounded simplification.
ACM Transactions on Graphics, 21(2), pp. 1-25,
2002

Go with the Winners Strategy in Path Tracing 1

László Szirmay-Kalos, György Antal Mateu Sbert

Dept. of Control Eng. and Information Tech. Inst. of Applied Math. and Informatics
TU Budapest, Budapest University of Girona, Girona

Magyar Tudósok krt. 2., H-1117, Hungary Campus Montilivi, E-17071, Spain
szirmay@iit.bme.hu, gy antal@yahoo.com mateu@ima.udg.es

ABSTRACT

This paper proposes a new random walk strategy that minimizes the variance of the estimate
using statistical estimations of local and global features of the scene. Based on the local and
global properties, the algorithm decides at each point whether a Russian-roulette like random
termination is worth performing, or on the contrary, we should split the path into several child
paths. In this sense the algorithm is similar to the go-with-the-winners strategy invented in general
Monte Carlo context. However, instead of establishing thresholds to make decisions, we compute
the number of child paths on a continuous level and show that Russian roulette can be interpreted
as a kind of splitting using fractional number of children. The new method is built into a path
tracing algorithm, and a minimum cost heuristic is proposed for choosing the number of reflected
rays. Comparing it with the classical path tracing approach we concluded that the new method
reduced the variance significantly.

Keywords: Global illumination, random walk, Monte Carlo methods.

1 Introduction

Random walk global illumination algorithms eval-
uate an infinite sequence of integrals of the follow-
ing form:

Lr =
∫

Ω1

w1 ·

Le +

∫

Ω2

w2 · (Le + . . .) dω2


 dω1

(1)
where Lr is the reflected radiance, Le is the emis-
sion, w is the scattering density, usually expressed
as the product of the BRDF and the cosine of the
orientation angle, and Ωi is the set of directions
of possible illumination.

When the first outer integral is estimated by
Monte Carlo techniques n1 random directions are
obtained with a probability density p1, and the

1Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or
a fee. The Journal of WSCG, Vol.13, ISSN 1213-6964.
WSCG’2005, January 31-February 4, 2005 Plzen, Czech
Republic. Copyright UNION Agency - Science Press

following quadrature is computed

L̂r =
1
n1
·

n1∑

i=1

w1(ωi
1)

p1(ωi
1)
· Lin

i =
n1∑

i=1

W i
1 · Lin

i .

where Lin
i = Le

i + Lr
i is the sum of the emission

and the reflected radiance at the hit point of the
traced ray. If n1 > 1, then the random path is
split into n1 paths at this point. When n1 =
1 splitting does not happen. Term w1(ω

i
1)

p1(ωi
1)
· Le

can be immediately added to the estimate, but
the computation of reflected radiance Lr

i poses a
similar integration problem, which can be solved
by repeating the same procedure. Each step l we
add nl number of Wl ·Le terms to the quadrature,
where potential Wl can be expressed in a product
form

Wl = Wl−1 · 1
nl
· wl(ωi

l)
pl(ωi

l)
. (2)

Sampling a random direction is not the only way
to estimate Lr in a point if a random approxima-
tion of the radiance function is available in the
scene. Taking this random approximation as the
real radiance and computing its reflection by de-
terministic connections also lead to the estimate
of all remaining terms of the infinite Neumann
series. This corresponds to joining the path with

the results of other paths obtained earlier. Fi-
nally, we might decide not to continue the com-
putation of the path. This is called termination.

As we walk along the random path, we make a
decision at in each step. Should we spawn new
random rays, or should we estimate the reflected
radiance directly? If random rays are sampled,
what is their optimal number? Each of these de-
cisions results in a term in the integral quadra-
ture and also an error in the estimate. The com-
plete rendering algorithm will evaluate many re-
cursive integrals with a lot of random paths, thus
we make a lot of decisions that affect both the
error of the integral quadratures and the total
computation time. In this paper we propose an
approach that minimizes this total computation
error and keeps the computational time low.

Section 2 reviews the previous work, and particu-
larly the go-with-the-winners strategy. In section
3 we present a theoretical analysis of the simul-
taneous application of Russian roulette, splitting
and joining, and extend the concept of the go-
with-the-winners strategy to use continuous scale.
Then in section 4 the cost-variance optimization
is discussed. Finally, in section 5 we present a
minimum cost heuristic for choosing the number
of reflected rays in stochastic ray tracing.

2 Previous work

Path splitting, joining and termination have been
intuitively and partially applied in several ran-
dom walk global illumination algorithms.

Russian-roulette[AK90] terminates the walk ran-
domly. When the path is terminated, no de-
terministic estimation takes place, and the illu-
mination of this point is supposed to be zero.
The probability of the random termination is the
albedo of the visited point, or the luminance of
the albedo in case of spectral rendering. In order
to compensate the not computed terms, when the
integrand is really computed, it is divided by the
continuation probability. There are several prob-
lems of classical Russian-roulette. It increases
the variance inversely proportional to the con-
tinuation probability. On the other hand, spec-
tral rendering poses another problem to Russian
roulette, where the contributions are transferred
on different wavelengths simultaneously, but the
continuation probability should obviously remain
a scalar value. If this scalar is the luminance of
the albedo, then the estimation can be very poor
if the spectrum of the reflection does not coin-

cide with the transferred potential. For example,
when a path visits first a red, then a green surface,
then the contribution will be zero, but this is not
recognized by Russian-roulette. These problems
have been pointed out in [SSKK03].

The variance introduced by Russian roulette can
also be reduced by setting the termination prob-
ability globally and not locally. It means that
the continuation probability is the average albedo
of the whole scene, and not the local albedo.
Such approach was used by Keller [Kel97], when
the continuation probability has been determined
separately, and also in ray-based stochastic iter-
ation algorithms, where the contraction ratio of
the integral operator has been determined on the
fly [SK99]. However, global termination proba-
bility may also cause infinite variance.

In random walk algorithms that reuse light paths,
we also have a random estimate of the incom-
ing illumination, which can be obtained without
continuing the random walk. The acquisition of
this estimate may require data-structure searches
(photon-map [JC95, Chr00], irradiance caching
[WRC88], discontinuity buffer [WKB+02]) or
tracing deterministic shadow rays (bi-directional
path tracing [LW93, VG95], virtual light sources
algorithm [Kel97, WKB+02], and path reuse
[BSH02]).

The benefits of path termination, splitting and
joining can also be combined. In path reuse meth-
ods, paths are terminated by Russian-roulette,
and its visited points are joined with other paths.
Since such methods may generate a complete
path in many different ways a clever weighting
scheme should be applied, as proposed by multi-
ple importance sampling [Vea97].

Considering these, we can conclude that termina-
tion, splitting and joining have already shown up
in many different random walk algorithms, and
even their intuitive optimal combination has been
emerged. On the other hand, Bolin and Meyer
[BM97] analyzed the variance of Russian-roulette
and splitting.

In this paper we follow this direction of the pre-
vious work in order to find optimal termina-
tion/splitting/joining, which results in the small-
est error. This work has been inspired by a gen-
eral Monte Carlo strategy called go with the win-
ners [AV94, Gra01] that can include many ap-
proaches dealing with termination and splitting
[Kah56]. In this method, the decision is made ac-
cording to the accumulated potential W , which

is compared with two predefined constants W−

and W+ (W− < W+). If W < W−, then Rus-
sian roulette is executed with probability W/W−.
If W− ≤ W < W+, then the path is extended by
a single ray. If W+ ≤ W , then the random path
splits to n subpaths (say n = 10), and the poten-
tial is divided by n.

3 Random walks with termination, split-
ting and joining

Suppose that l−1 steps of the random walk have
already been computed and we are facing the de-
cision of what to do having potential Wl−1. If the
walk is continued, then Wl needs to be found, and
nl estimates of reflected radiance L̂r

l are added
to the quadrature. If the walk is not continued,
then the estimate should cover all l, l+1, . . . steps,
which can also be added to the quadrature. The
random termination can also be imagined simi-
larly to splitting, but now we use nl ≤ 1 num-
ber of random directions in average. The aver-
age value comes from the fact that sometimes the
path is not continued at all.

At a given point of the random walk, parame-
ter nl must be determined to minimize the error.
Each sample contributes to the square error of
the integral quadrature proportionally to its own
square error, which equals to the variance in the
unbiased case, and to the sum of the variance and
the square of the bias in the biased case. Thus
the decision should be made to minimize the in-
troduced error.

The variance computation is discussed for split-
ting and random termination separately.

3.1 Splitting: nl ≥ 1

When nl random directions are used, the estima-
tor of the contribution of paths of length l is

L̂r
l = Wl−1 · 1

nl
·

nl∑

i=1

wl(ωi
l)

pl(ωi
l)
· Lin

i ,

where ωi
l is the ith random sample of integrand

variable ωl, and pl(ωi
l) is the probability density

of obtaining this sample. This means breaking
the paths to nl children, where child i has

W i
l = Wl−1 · 1

nl
· wl(ωi

l)
pl(ωi

l)

potential, and W i
l ·Lin

i is the contribution of this
path. When using this formula in practical algo-
rithms, we can usually assume that pl mimics wl,

i.e. where wl is non-zero, their ratio wl/pl = al

is — at least approximately — constant. This
constant is the probability that the light is not
absorbed, and is called the albedo.

The variance of this contribution is:

W 2
l−1

n2
l

·D2

[
wl

pl
· Lin

]
=

W 2
l−1

n2
l

· a2
l ·D2

[
Lin

]
.

The total variance of the family of nl samples
obtained by splitting the path is nl times this
variance since the children can be assumed to be
independently generated. Thus the total variance
of the family of paths is:

W 2
l−1

nl
· a2

l ·D2
[
Lin

]
. (3)

3.2 Random termination: nl < 1

In this case the average number of samples to con-
tinue a path is less than 1. It corresponds to the
case when the probability of path continuation is
nl. When no random sample is taken, the result
of all remaining steps — i.e. the contribution of
paths of length l, l + 1, . . . — is estimated by a
known constant value, for example by 0 as sug-
gested by Russian-roulette. To be general, let us
assume that we have a random estimate L̂, which
is available without spawning random rays. The
expected value of estimate L̂ may or may not be
equal to the exact integral value Lr, which can be
expressed by bias ∆L in this estimation:

E[L̂] = Lr + ∆L, Lr = E

[
wl

pl
· Lin

]
.

When the walk is decided to be terminated, we
use available estimate L̂. If the walk is continued,
then a linear combination of actually computed
radiance Wl−1 ·wl/pl · Lin and estimate Wl−1 · L̂
is inserted in the estimator, that is, we use

Wl−1 ·
(

α · wl

pl
· Lin + β · L̂

)
.

The α and β values of this linear combination
can be determined from the requirement that the
expected value of this estimator should be correct:

nl ·Wl−1 ·
(

α · E
[
wl

pl
· Lin

]
+ β · E

[
L̂

])
+

(1− nl) ·Wl−1 · E
[
L̂

]
=

Wl−1 · Lr · (1− (1− α− β) · nl)+

Wl−1 ·∆L · (1− (1− β) · nl).

Note that the cases of continuation and termina-
tion have been weighted with nl and 1 − nl, re-
spectively, since these are their probabilities. To
make this estimate unbiased, it should be equal
to Wl−1 ·Lr, thus α+β = 1 should hold, and the
following term should be zero

Wl−1 ·∆L · (1− α · nl).

Even if L̂ is biased (i.e. ∆L is not zero), the bias
of the random walk estimate can be made zero
by setting α = 1/nl. Using this assumption, the
variance of the estimate is

nl ·W 2
l−1 · E




(
wl/pl · Lin

nl
− (1− nl) · L̂

nl

)2

 +

(1− nl) ·W 2
l−1 · E

[
L̂

]2

−W 2
l−1 · (Lr)2 =

(
1
nl
− 1

)
·W 2

l−1 · E
[(

wl

pl
· Lin − L̂

)2
]

+

W 2
l−1 ·D2

[
wl

pl
· Lin

]
.

This formula can be used to obtain the variance
for a given nl. Note that if L̂ is not far from an
unbiased estimator, i.e. L̂ ≈ Lr = E

[
wl

pl
· Lin

]
,

then

E

[(
wl

pl
· Lin − L̂

)2
]
≈ E

[(
wl

pl
· Lin − Lr

)2
]

,

which equals to D2
[

wl

pl
· Lin

]
, and thus the vari-

ance is approximately

W 2
l−1

nl
·D2

[
wl

pl
· Lin

]
=

W 2
l−1

nl
· a2

l ·D2
[
Lin

]
.

Note that the variance has the same formula as
derived for the case of splitting (equation 3).

3.3 Estimation of D2
[
Lin

]

We face the problem that incoming radiance Lin

is a random variable and is not known. The vari-
ance of Lin can come from two different sources.
On the one hand, for fixed ω, the incoming radi-
ance is estimated by continuing the random walk,
which obtains the estimate by random simula-
tion. On the other hand, even if we exactly knew

the conditional expectation L̃in(ω) of Lin(ω) for
fixed incoming direction ω, then the variation of
this expectation for different incoming directions
would be another source of the error. Formally,
we can write

D2
[
Lin

]
= E

[(
Lin − E

[
Lin

])2
]

=

∫

Ω

E
[(

Lin − E
[
Lin

])2 | ω
]
· pl(ω)dω =

∫

Ω

E

[(
Lin(ω)− L̃in(ω)

)2
]
· pl(ω) dω +

∫

Ω

(
L̃in(ω)− E

[
Lin

])2

· pl(ω) dω.

The first term in this sum describes how well the
algorithm can estimate the radiance of a single
point, and is approximated by a global constant
VR. The second term, on the other hand, repre-
sents how quickly the incoming radiance changes
in the domain of the random directions, which
is prescribed by the local BRDF. For instance, if
the examined point is an ideal mirror, then BRDF
sampling samples just a single direction, and the
second term is zero. Generally, the second term
gets bigger as the size of the set of possible di-
rections grows. As can be shown the dependence
is quadratic, that is, the second term is propor-
tional to the square of the size of the directional
domain. Let us consider a simple, Phong-like
BRDF with shininess parameter s. Diffuse and
mirror like materials can be imagined as special
cases of s = 0 and s = ∞, respectively. The size
of the domain of a Phong-like BRDF is 2π/(s+1)
[LW94], thus the second term is approximated by
VV /(s + 1)2, where VV is a general global con-
stant.

Summarizing, the total variance of the children
of a single parent is approximated as

W 2
l−1

nl
· a2

l ·
(

VR +
VV

(sl + 1)2

)
.

4 Variance-cost optimization

In the previous section we determined the vari-
ance associated with splitting and random termi-
nation with incoming radiance estimation. The
variance is inversely proportional to value n,
which stands for the average number of contin-
ued path at this point. On the other hand, if
ray tracing is responsible for a major part of the

computation time, then the cost is proportional
to n. The goal is to obtain the most accurate re-
sult paying the lowest cost, that is, to minimize
the total variance of the result with a constraint
on the total number of rays. Formally, the opti-
mization goal has the form

∑

k

∑

l

σ2
k,l/nk,l,

where k considers each light path and l each ray
of a path, and

σ2
k,l = D2

[
Wk,l−1 · wk,l

pk,l
· Lin

k

]
≈

W 2
k,l−1 · a2

k,l ·
(

VR +
VV

(sk,l + 1)2

)
,

with constraint
∑

k

∑
l nk,l = N , where nk,l is the

average number of paths leaving the lth sample
point of path k, and N is the total number of
rays used to compute the whole image. Using the
Lagrange multiplier method, we have to find the
minimum of

∑

k

∑

l

σ2
k,l

nk,l
+ λ ·

(∑

k

∑

l

nk,l −N

)
.

Making the partial derivatives equal to zero, we
obtain

nk,l = N · σk,l∑
k′

∑
l′ σk′,l′

.

It means that at each visited point number of
child rays nl should be proportional to

Wk,l−1 · ak,l ·
√

VR +
VV

(sk,l + 1)2
.

We could establish only a requirement of propor-
tionality, and parameters VR and VV are left free.
These parameters depend on the scene proper-
ties and may also be subjects for statistical es-
timation. On the other hand, we can follow a
simple intuition. Assume that the accumulated
potential and the albedo are maximum, that is
Wl−1 · al = 1. If the surface is an ideal mirror,
i.e. sl = ∞, then a reasonable way to continue
the path randomly with exactly one child. On
the other hand, if the surface is purely diffuse,
i.e. sl = 0, and we may require the maximum
number of children equal to nmax. The optimal
selection of nmax depends also on the properties of
the scene. For example, if the illumination in the
scene is homogeneous, i.e. a point receives simi-
lar illumination from all directions, then nmax is
1. As the illumination gets more and more hetero-
geneous, nmax is worth increasing. We used value
10 in the implementation, which seems to be a

good choice for practical scenes. From these two
requirements, VR and VV can be obtained, and
the general formula for the number of children is

nk,l = Wk,l−1 · ak,l ·
√

1 +
n2

max − 1
(sk,l + 1)2

. (4)

If the material model consists of several different
elementary materials (e.g. diffuse + specular),
then the number of children should be computed
separately using the albedo of the elementary
BRDFs, and then the results should be added.

5 Variance based Go with the Winners
Strategy

We propose a path tracing algorithm that is
driven by the theoretical results of previous sec-
tions. Note that if path tracing used only BRDF
sampling, then the probability of hitting small
light sources would be very small. In order to
avoid this problem, the illumination of small light
sources is directly estimated at each point of the
random walk. This technique, which is called next
event estimation or direct light source computa-
tion, is also incorporated into both the reference
and the new algorithm.

At each visited point number of child rays nl is
computed according to equation 4. If the com-
puted nl turns out to be less than 1, then the
child ray is traced only with probability nl. If
we decide not to trace the child ray, then esti-
mate L̂ is used instead. If according to the ran-
dom decision, we have to trace a child ray, then
(1 − nl)/nl · L̂ is subtracted from the result. On
the other hand, if the computed nl is greater than
1, we find the nearest integer and spawn nl child
rays from this point. The potential passed with
a child ray is divided by nl.

The first problem that needs to be solved is to
find an approximation of radiance L̂. We could
use, for example, a photon map, or a statistical
estimation gained during the computation of pre-
vious paths. In the implementation we made a
direct estimation in the following way [SSKK03].

Suppose that the scene is closed. In this case, we
can approximate the average reflected radiance in
the scene, which can be regarded as an estimate
for L̂. Note that we use the reflected radiance
here, since the direct illumination is computed
separately by next event simulation. The total

emitted power of the light sources is

Φe =
∫

S

∫

Ω

Le(~x, ω) · cos θ d~xdω

where S is the set of all surface points, Le is
the emitted radiance and θ is the angle between
the direction of the emission and the surface nor-
mal. This emitted power will be multiplied by the
albedo at each reflection. Suppose that the aver-
age albedo in the scene is ã. The reflected power
in the scene is the sum of the single reflection,
double reflection, etc., that is:

Φr ≈ Φe · (ã + ã2 + . . .) =
ãΦe

1− ã
.

From the average power, we can obtain the aver-
age radiance:

L̂(~x, ω) ≈ 1
πS

· ãΦe

1− ã
.

Formula 4 contains the accumulated potential of
the path, Wl−1. The computation of Wl−1 poses
no particular problem, as we increase the length
of the path, the potential is updated according
to equation 2. However, we have to take into
account that in the global illumination problem
the potential is not scalar, but a vector whose el-
ements correspond to the wavelengths on which
the computation is carried out. These vectors are
multiplied as diadic products, that is, the result
is also a vector of the same dimension, whose ele-
ments are the products of the respective elements
in the two operands.

The albedo showing up in equation 4 is available
as a local material property, as well as shininess
parameter sl. Note that the albedo also depends
on the wavelength, thus diadic product is applied
when it is multiplied with the potential.

The modified versions of equations 4 and 2 for
the spectral case, denoting the diadic product by
◦ and the luminance of a spectrum by L, is:

nk,l = L(Wk,l−1 ◦ ak,l) ·
√

1 +
n2

max − 1
(sk,l + 1)2

,

Wl =
Wl−1 ◦ wl(ωi

l)
nl · pl(ωi

l)
.

6 Simulation results

The proposed variance based go with the winner
strategy has been implemented in a path tracing

algorithm. The results are compared with the
classical path tracing applying Russian roulette.
The termination probability was set equal to the
local albedo. In both algorithms we included di-
rect light source computation (next event simula-
tion) to handle small light sources.

To make the comparison fair, we allowed the two
algorithms to use the same number of rays to
compute the image. The new method distributed
the available rays differently for pixels and for the
different levels of recursion, aiming at the goal to
place more rays at higher variance domains. We
were surprised that when the two methods traced
the same number of rays, the go-with-the-winner
solution was about 20% faster. A possible ex-
planation is that the new method applies much
less recursive calls to generate child rays, and the
rays resulted from splitting are much more coher-
ent, thus the new method automatically provides
better cache utilization. The rendering times
were measured in the open source RenderX.NET
[Ant04] global illumination framework, that is a
software package written completely in C# tar-
geting the .NET platform.

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 0 5 10 15 20 25

million rays

RMS Error

Path Tracer
Variance Based Go with the Winner

Figure 1: Relative error curves obtained
with the original path tracing algorithm
and the proposed method for the Cornell
Girl scene.

The computed images are shown by figures 2 and
3, which demonstrate the superior performance
of the new method. On the one hand, examin-
ing the error curves (figure 1) we can conclude
that the new method can provide the same error
level using about 30-50% less rays. The improved
image quality is due to several features. The new
method distributes the variance evenly in the pix-
els of the image, and does not devote unnecessary
amount of computation to simpler parts. On the
other hand, splitting allows to reuse path seg-
ments, which also saves time and make the saved
time available to generate additional paths.

path tracing go with the winner

Figure 2: Comparison of classical path tracing with Russian-roulette and path tracing using the
go with the winner strategy for a Cornell Girl scene. Both images have been obtained by casting 9
million rays. The image resolution is 300× 300.

path tracing go with the winner
2 million rays, 19 sec 2 million rays, 15 sec

path tracing go with the winner go with the winner
10 million rays, 104 sec 10 million rays, 76 sec 111 million rays, reference

Figure 3: Comparison of classical path tracing with Russian-roulette and path tracing using the go
with the winner strategy for the “Table with vases” scene. The image resolution is 300× 300.

7 Conclusions

This paper proposed an extended go with the win-
ner strategy to improve random walk global illu-
mination algorithms. The basic idea is that at
each visited point the variance caused by tracing
the next random ray is estimated, and we split
or randomly terminate the path to maintain a
roughly constant variance in all steps. The vari-
ance estimation seems complicated at the first
glance, but the implementation of the method
is still straightforward. Having a random walk
global illumination program, the required modifi-
cations are trivial to implement. The simple for-
mula of equation 4 should be included, and based
on the result several random rays should be gen-
erated, or if it is smaller than 1, this value will be
the continuation probability of Russian roulette.

According to our measurements, this simple
change can speed up the calculation by about 30-
50% due to the better distribution of rays, and
other 20% speed up is due to reducing the num-
ber of recursive calls and making the rays more
coherent.

8 Acknowledgements

This work has been supported by the Game-
Tools FP6-004363 EU project, OTKA ref. No.:
T042735, by TIN 2004-07451-C03-01, and by the
Spanish-Hungarian Action Fund. The scenes
have been modeled by Maya that was generously
donated by AliasWavefront.

REFERENCES

[AK90] J. Arvo and D. Kirk. Particle transport
and image synthesis. In SIGGRAPH ’90
Proceedings, pages 63–66, 1990.

[Ant04] Gy. Antal. RenderX.NET. 2004.
http://www.sourceforge.com/projects/
renderx-net.

[AV94] D. Aldous and U. Vazirani. Go with the
winners algorithms. In Proc. 35th IEEE
Symp. on Foundations of Computer Sci-
ence, 1994.

[BM97] M. R. Bolin and G. W. Meyer. An error
metric for Monte Carlo ray tracing. In Ren-
dering Techniques ’97, pages 57–68, 1997.

[BSH02] P. Bekaert, M. Sbert, and J. Halton. Ac-
celerating path tracing by re-using paths.

In Proceedings of Workshop on Rendering,
pages 125–134, 2002.

[Chr00] P. Christensen. Faster photon map
global illumination. Journal of Graphics
Tools, 4(3):1–10, 2000.

[Gra01] P. Grassberger. Go with the winners: a
general monte carlo strategy. In Proceed-
ings der CCP2001), 2001.

[JC95] H. W. Jensen and N. J. Christensen. Pho-
ton maps in bidirectional Monte Carlo ray
tracing of complex objects. Computers and
Graphics, 19(2):215–224, 1995.

[Kah56] H. Kahn. Use of different monte carlo
sampling techniques. In Symposium on
Monte Carlo Method, 1956.

[Kel97] A. Keller. Instant radiosity. SIGGRAPH
’97 Proceedings, pages 49–55, 1997.

[LW93] E. Lafortune and Y. D. Willems. Bi-
directional path-tracing. In Compugraph-
ics ’93, pages 145–153, Alvor, 1993.

[LW94] E. Lafortune and Y. D. Willems. Using
the modified Phong reflectance model for
physically based rendering. Technical Re-
port RP-CW-197, Department of Comput-
ing Science, K.U. Leuven, 1994.

[SK99] L. Szirmay-Kalos. Stochastic iteration
for non-diffuse global illumination. Com-
puter Graphics Forum (Eurographics’99),
18(3):233–244, 1999.

[SSKK03] L. Szécsi, L. Szirmay-Kalos, and
C. Kelemen. Variance reduction for
russian-roulette. Journal of WSCG, 11,
2003.

[Vea97] E. Veach. Robust Monte Carlo Methods
for Light Transport Simulation. PhD the-
sis, Stanford University, 1997.

[VG95] E. Veach and L. Guibas. Optimally
combining sampling techniques for Monte
Carlo rendering. In ACM SIGGRAPH ’95
Proceedings, pages 419–428, 1995.

[WKB+02] I. Wald, T. Kollig, C. Benthin,
A. Keller, and P. Slussalek. Interactive
global illumination using fast ray tracing.
In 13th Eurographics Workshop on Render-
ing, 2002.

[WRC88] G. J. Ward, F. M. Rubinstein, and
R. D. Clear. A ray-tracing solution for
diffuse interreflection. Computer Graphics,
22(4):85–92, 1988.

Statistical Shape Analysis for Computer Aided
Spine Deformity Detection

Gerhard H. Bendels Reinhard Klein

University of Bonn

Institute of Computer Science II

Computer Graphics

Römerstraße 164

D-53117 Bonn, Germany

Mandana Samimi Alfred Schmitz

University of Bonn

Department of Orthopaedics

Sigmund-Freud Straße 25

D-53105 Bonn, Germany

ABSTRACT

In this paper we describe a medical application where we exploit surface properties (measured in form of 3D-Range
scans of the human back) to derive a-priori unknown additional properties of the proband, that otherwise can only
be acquired using multiple x-ray recordings or volumetric scans as CT or MRI. On the basis of 274 data sets,
we perform classification using statistical shape analysis methods. Consistent parameterization and alignment is
achieved on the basis of only few anatomic landmarks. As our choice of landmarks is easy to detect on the human
body, our approach is feasible for screening applications that can be expected to have much impact on the early
detection and later treatment of spine deformities, in particular scoliosis.

Keywords Statistical Shape Analysis, PCA, Medical Assistance, Scoliosis

1 Introduction and Previous Work
Anthropometric investigations offer interesting approa-
ches to determine etiologic factors of trunk deformi-
ties in children. Idiopathic scoliosis is the common
spine deformity in prepuberal children [AD85]. Some
anthropometric parameters are known as risk factors
for developing scoliosis or for scoliosis progressing
[HKHDL94, LLFP98, NHSP93, NSL+85]. Early de-
tection of these risk factors could help to prevent de-
veloping or progressing of scoliosis by early onset
of therapy. Therefore there is a need for screening
investigations. In previous studies, anthropometric
data was collected mostly by manual measurements
[LLFP98, NHSP93]. That means that anthropometric
studies are time-consuming and require high person-
nel expenditures. In screening programs we need an
efficient perception and evaluation of anthropometri-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

cal data without high personnel costs. Due to its non-
invasiveness, accuracy and acquisition speed, record-
ing range-images with laser range scanners seems ap-
propriate for such screening applications [SGWS02].

Figure 1: Conventional radiograph (A) and Magnetic res-
onance (MR) total spine imaging (B,C), exhibiting the flat-
tening effect of probands being in a supine position during
recording.[SJK+01]

The non-invasiveness is of particular importance, since
X-ray studies to verify clinical findings in patients with
scoliosis and other deformities of the spine are associ-
ated with considerable radiation exposure as well as a
variety of other problems, particularly as regards as-
sessing disease progression. As close monitoring of
the scoliosis is required when the greatest growth of
the spine occurs, around puberty and early adoles-
cence, there are obvious concerns that repeated radi-
ographs result in an excessive radiation burden, espe-
cially to the developing breast tissue in girls. Nash et
al. [NGBP79] estimated that 22 radiographic exami-
nations are performed in the course of scoliosis man-
agement.
Therefore, there is a necessity for techniques to reduce
the frequency in which x-ray recordings have to be
made – if not render them unnecessary. In medical ap-
plications, there has consequently been an increasing
effort replacing the x-ray examination by other tech-
niques. Inter alia, researchers have investigated MRI-
techniques [SJK+01] to assess, visualize, and monitor
scoliotic spine deformities. Nevertheless these tech-
niques are not always suitable: Due to the expensive-
ness and time-intensity of the data acquisition proce-
dure this method is not feasible in screening applica-
tions. Moreover, during the CT- or MRT-data acqui-
sition process the proband is in a supine position (see
figure 1). This way, e.g. leg length discrepancy, a po-
tent cause for postural scoliosis, is not easily detected,
whereas apparent if the proband is in an upright posi-
tion.
Hence, in the course of the past few years a number
of alternative, supplementary spinal diagnostic proce-
dures have been developed which are based on analy-
sis of the surface of the back: Photogrammetry/raster
stereometry [LHH+98, DH94], opTRImetric system,
ISIS system, video raster stereometry (formetrics),
ultrasound-guided spine analysis (Zebris) and ultra-
sound topometry [AMVK00, RS85]. In particular,
[DH94] has used structured light to reconstruct the sur-
face of the proband’s back, and produced promising
results in assessing the degree of scoliosis, although –
lacking anatomical landmarks by which the data sets
can be robustly aligned – with yet large error margins.

Not only in medical applications, also in the area of
computer graphics, creating computable models of the
human body or parts thereof has fascinated researchers
over the past decades. As the human eye is especially
sensitive in detecting unrealistically modelled human
bodies, modelling particularly faces from scratch is
an almost infeasible task. Therefore, anthropometric
data acquired on or from real human beings has been
used for modelling. In [DMS98] statistical distribu-
tion of a collection of predetermined facial measure-
ments is used to determine the likelihood of a mod-

elled face, thereby effectively restricting the range of
allowable models to constraints derived from a set of
input faces. Also focussing on faces, Blanz and Vetter
introduced the much celebrated morphable face model
[BV99]. Key contribution of their approach is deriving
a full correspondence between dense polygonal mesh
approximations to the faces using texture information
and optical flow techniques. With the face meshes in
full correspondence, they perform a principal compo-
nent analysis identifying correlation and the amount of
variation contained in the set of input prototype faces.
Although faces seem to be of particular interest to the
research community, also the whole body has been
subject to research [SMT03, ACP03]. Allen et al.
[ACP03] present a human body model that was gen-
erated using full body scans acquired in the CAESAR
project. The main challenge here was to derive the full
correspondence between the body scans. To this end,
markers were attached to the probands before scan-
ning. Consistent parametrization was then achieved
by fitting a predetermined template mesh to the body
scan, where the objective function to be minimized
during fitting evaluated the misalignment of the given
marker point positions as well as the misalignment of
automatically detected geometric features.
Our approach is similar to [BV99] and [ACP03] in the
sense, that we aim at deriving a model of the human
back such that important information concerning the
spine deformity can be won from the 3D-surface in-
formation only. Nevertheless, focussing on this appli-
cation field, our approach is conceptually simpler and
very easy to implement. Moreover, our approach relies
only on the use of few anatomic landmarks to derive
both a robust correspondence between surface points
and a robust alignment method. A further important
aspect is that we, in contrast to previous approaches,
exploit machine learning techniques for classification.

The rest of the paper is organized as follows: We will
describe the data acquisition process in section 2. The
alignment process required to normalize the data be-
fore it can be statistically analysed (section 4) is de-
scribed in detail in section 3. After the presentation of
the results achieved with our approach (section 5), the
paper is concluded with final remarks and some hints
at future directions of research in section 6.

2 Data Acquisition
Our data basis consists of 3D-scans taken from 109
patients, part of which undergoing scoliosis treatment,
others only monitoring. Additionally, in a medical
screening cooperation with a local school, we have
scanned 165 pupils with no known spine deformity (as
they have not been undergoing orthopedic examination
beforehand).

Figure 2: Anatomic landmarks are labelled by an or-
thopedist. Geometric positions of the landmarks allow
consistent coarse mesh generation.

Before scanning, every proband was examined by an
orthopedist specialized on spine deformity, who also
labelled anatomic landmarks with adhesive markers.
These anatomic landmarks (see also figure 2) were
chosen for anatomical expressivity and robust detec-
tion:

• The spinous process of C7 (2)

• The acromial angle (0,4)

• The superior angle of the scapula (1,3)

• The inferior angle of the scapula (5,6)

• The spinous process of L4 (8)

• The posterior superior iliac spine (7,9)

Note that despite recent advances in 3D-Feature de-
tection the placement of a few marker points to label
anatomic landmarks cannot be replaced by automatic
feature detection mechanisms as some anatomic land-
marks (especially the posterior superior iliac spine and
the spinous process of L4) are often covered by soft
tissue and are hence not visible in the surface data.
This is of particular hindrance in the case of corpu-
lent probands. On the other hand, labelling can be per-
formed not only by specialized physicians but also by
trained personnel, such as teachers in schools – a fact
that is vital if our system is to be applied in screen-
ing applications. During the data acquisition we let
physicians do the labelling in order to be able to use
their classification statement in the statistical learning
stage.
The anatomic landmarks themselves form the vertices
for a coarse mesh approximation of the back sur-
face recorded in the range scans. In order to capture
the geometric variability contained in the back sur-
face, we construct additional landmarks for our mesh.
Following the nomenclature from [DM98], we call

these Pseudo Landmarks. In order to produce consis-
tently parameterized meshes for the whole set of range
images needed for the statistic analysis, we perform
semi-uniform subdivision on the coarse mesh (see fig-
ure 3), updating the geometry information with infor-
mation from the range images. Please note that other

Figure 3: The coarse mesh is semi-uniformly subdivided
to produce additional Pseudo Landmarks for the statistical
analysis, thereby constructing a consistently parameterized
surface approximation.

approaches for mesh re-parametrization as suggested
e.g. in [PSS01],[KS04] or [SAPH04] are also feasible
at this stage of our algorithm. But, benefitting from
the basically planar geometry of the human back, we
found this very simple approach of semi-uniform sub-
division to be sufficient for our the ensuing applica-
tion, the statistical analysis. For more complex geome-
tries, e.g. if consistent meshes have to be derived for
the entire torso, other strategies will have to be applied.
Of course, it is also possible to fit an appropriate tem-
plate mesh to the range images, as was suggested in
[ACP03].

Notation
Suppose we have m data sets (shapes). In each data
set, we have k corresponding feature points (land-
marks) in 3-space. Each shape can therefore be rep-
resented as an (k× 3)-shape configuration matrix Xi,
i = 1, ...,m, where the j-th row xi

j , j = 1, ..., k de-
notes the position of the j-th landmark. The respective
components of the landmark vector xi

j are denoted by
xi

j , yi
j , and zi

j . We suppress the shape index i in case
the meaning is clear from the context.

3 Shape Alignment
In order to be able to perform statistical analysis on
the shape represented by the landmark coordinates, we
need to somehow separate shape variability, that we
want to detect, from other sources of variation in the
data, e.g. scaling or position in space, that are mean-
ingless for our application. Therefore the input data
sets have to be aligned and normalized to make them
invariant with respect to the corresponding set of trans-
formations. Although in general this transformation
set can be chosen arbitrarily [RDRD04], we choose
as invariance set the set of Euclidean similarity trans-
formations, since, according to the shape definition of

Figure 4: Illustration of the shape space after the reconstruction stage: 25 random examples of the overall 274 reconstructed
consistent meshes

Figure 5: Two identical shapes only differing w.r.t. their ro-
tation (blue and yellow, solid). Without alignment, the mean
shape (green, dashed) defined by the arithmetic mean of the
respective landmarks would be considerably smaller in size
– and even degenerate to a point, had the rotation been about
180 degrees.

Kendall [Ken77], a shape is all the geometrical infor-
mation that remains when location, scale, and rota-
tional effects are filtered out. This means that for each
shape X, we have to find an appropriate scale s(X),
translation d(X), and rotation R(X).
In our algorithm, we will use an alignment approach
that combines ideas of two classic alignment ap-
proaches, both of which we will shortly describe in the
following. For a more thorough covering of alignment
approaches, the reader is referred to the extensive lit-
erature in this field, e.g. [DM98, Boo86, Sch66], and
[Goo91]. A nice introduction is also given in [SG02].

According to Bookstein [Boo84, Boo86] invariance
with respect to the Euclidean similarity transforma-
tions can be achieved for planar shapes by translat-
ing, rotating and scaling each shape such that a pair of
landmarks (the so-called baseline) is mapped to pre-
determined positions. The major drawback of this ap-
proach is that it is very sensitive to errors in the base-
line landmarks and also, if these are determined au-
tomatically, e.g. as points of maximal curvature or as

having the maximum distance, to misidentification.

Therefore, a more robust alignment approach has be-
come popular under the name Procrustean Analysis
[Sch66]. The basic idea in Procrustean analysis is
to find the required similarity transformations through
objective function minimization. This objective func-
tion can be defined choosing an appropriate shape
distance measure and an appropriate reference shape,
with respect to which the distance measure is evalu-
ated. One popular choice for the reference shape is the
mean shape

X =
1
m

m∑
i=1

Xi,

where on the right hand side, the Xi have to be aligned
in order to be able to compute the ”true” mean shape.
To solve this hen-and-egg problem, defining the ref-
erence shape and aligning the shape configurations is
usually understood as an iterative process of aligning
all data sets to an estimated mean shape Z, updating
the mean X and iterating:

findMean(X1, . . . ,Xm,Z)
while Z changes do

for all i = 1, . . . , m do
align Xi with Z;

end for
update Z;

end while

An obvious choice for the shape distance measure, re-
quired to qualify the optimality of a transformation, is
the sum of the squared distances between the corre-

Figure 6: The mean value X and the reconstruction of an example configuration using the denoted numbers of components.

sponding landmarks:

D(X,Y)2 =
k∑

j=1

(xj − yj)2

As this is the same distance measure that is used in
the registration of two point sets using the original
iterative closest pairs (ICP)-Algorithm, this distance
measure leads to a method that is just as susceptive
to run into local minima for all but good initial posi-
tions. Hence, using this distance measure, shapes have
to be roughly pre-aligned, to avoid misalignments. In
addition to that, this approach is especially suitable if
applied to data sets with uniform landmark confidence,
whereas in our case, especially landmarks 2 and 8 (see
2) are of higher confidence compared to the remaining
landmarks.
Hence we propose a hybrid approach to compute the
similarity transformations given by (s,d,R):

Translation invariance is achieved by moving the
centre of gravity to the origin, i.e. for a configuration
X we compute the centroid

d(X) =
1
k

k∑
j=1

xj .

This transformation can conveniently be performed
by pre-multiplying X by the k × k-centring matrix
C = Ik− 1

k1k1T
k , where Ik is the k×k identity matrix

and 1k is the k-vector of ones.

Gaining rotation invariance is a two-stage procedure
in our approach: First, each shape is rotated such that
the best-fitting plane of the landmarks in three-space
(in a least-squares sense) is rotated to the plane defined

by z = 0. Since the first stage does not yet determine a
unique rotation, a second rotation (around the z-axis)
is determined for the second stage. Accounting for
the varying confidence in the landmarks, we define a
generalized bookstein baseline as the best fitting line
to the set of points given by{

p2, p8,
1

2
(p7 + p9),

1

6
(p0 + p1 + p3 + p4 + p5 + p6)

}
(see figure 2). This special baseline selection was mo-
tivated by the fact that the landmarks 2 and 8 (spinous
process of C7 and L4), and to a lesser extent landmarks
7 and 9 (posterior superior iliac spine) can be detected
very confidently and more robustly than the others.
In the second stage, we therefore rotate each shape
such that the projection of this baseline to the plane
z = 0 is rotated to be parallel to the y-axis.
Please note, that the parameters for the described simi-
larity transformations can very conveniently computed
by applying a principal component analysis to the set
of anatomic landmarks (for the first stage) or to the set
of points described above (for the second stage).
Scale invariance is simply obtained by setting the
Euclidean distance between landmarks 2 and 8 to be
of unit length.

4 Statistical Analysis
After the shape alignment, the set of shape configu-
rations, consisting of the coordinates of the anatomic
and the pseudo landmarks, is fit to be analysed by stan-
dard statistical analysis methods. In the following, the
shapes will be represented as (3k)-dimensional col-
umn vectors, which are for simplicity also denoted by
Xi, i = 1, . . . ,m, as they contain exactly the same
information as the (k × 3)-configuration matrices.

In order to reduce dimensionality of the data set for en-
suing classification steps we perform a principal com-
ponent analysis (PCA) on the set of configurations.
As a result from the PCA, we get a set of vectors
e1, . . . , e3k with ||ei|| = 1, ∀i = 1, . . . , 3k, and
scalars λ1, . . . , λ3k with λi ≥ λi−1, ∀i = 2, . . . , 3k
as the eigenvectors and eigenvalues of the correspond-
ing covariance matrix

S =
1
m

m∑
i=1

(Xi −X)(Xi −X)T ,

where X is the mean shape (see section 3). The prin-
cipal components ei form a basis of the shape space
spanned by the input configurations, and hence we
have for any shape configuration X and a suitable
weight vector w = w(X) ∈ Rm

X = X +
m∑

i=1

wiei,

leading to w(X) being an alternative representation of
X in the PCA-space.

Figure 7: The first 30 main components contribute to over
99 % of the variation in the input data

As can be seen from figure 7 the first 30 components
represent already 99 percent of the variation contained
in the respective sets (see also figure 6). Therefore, we
truncate the weight vectors w after the 30th compo-
nent, neglecting the contribution of the principal com-
ponents e31 to e3k.

Support Vector Machine Approach
Having dramatically reduced the dimension of the data
vectors, we are now ready to apply Support Vector Ma-
chine classification to our data.

The concept of support vector machines, introduced
in [BGV92] and [Vap98] is to find separating planes
in high-dimensional vector spaces of labelled sam-
ple data. In our setting, the data vectors (w, `) con-
sist of the PCA weight vectors wi, i = 1, . . . ,m

of the back (called instances) and appropriate labels
` ∈ −1, 1 declaring if the corresponding proband was
”affected by spine deformity” or ”no abnormality de-
tected” (NAD). The basic idea is then, that the classi-
fication function

f : R3k 7→ {−1, 1}

is known for a certain set of instances, called the learn-
ing set, and unknown otherwise. In our setting, we use
linear discriminants a.k.a. perceptron as classification
function:

f(w) = 〈u,w〉+ b,

where u and b are the parameters that have to be
learned from the training examples in the learning set.
In addition to that, we have also investigated the effect
of decision functions non-linear in w, i.e.

f(w) =
N∑

ν=1

ανK(wν ,w) + b,

where N is the number of instances in the learning set
and K the radial basis function

K(wν ,w) = exp(−γ||wν −w||2)

with γ > 0. The decision rule is defined to be sgn(f).
As stated before, we investigated the statistical co-
herence of an overall set of single shot scans of 274
probands, 109 of which were attending scoliosis con-
sultations, the remaining 165 with no a-priori known
spine deformity. All probands have been examined
and the data sets have correspondingly been labelled
”affected” or ”NAD”. On the basis of this data, we
have performed a cross-validation test [CST03], with
a preceding grid search for appropriate parameters,
as suggested in [HCL04]. For a detailed descrip-
tion of the maximum margin training algorithm, see
[BGV92].

5 Results and Conclusions
In this paper, we have described a medical application
in which we exploited range images of the human back
to derive a computer aided spine deformity detection
system. To this end, we recorded an extensive set of
range scans of probands with a small set of marked
feature points. These feature point markers represent
landmarks that cannot be detected by automatic 3d
feature detection, as they are often covered by soft tis-
sue, esp. for corpulent probands, but are easy to be
found on the real human body. Using these landmarks
for consistent parameterization of the polygonal mesh
approximations and for aligning the shapes prior to the
statistical analysis, we achieved the good results given
in table 1, which is in the order of precision a special-
ized physician would achieve in a screening applica-
tion and constitutes an improvement over the current

Folds �Precision
linear rbf

2 92,4812 92,8571
5 92,1053 92,4812

10 92,1053 92,4812
20 92,1053 92,8571
50 92,1053 92,8571

Table 1: Results of the cross validation test using lin-
ear or radial basis function-based decision functions.
”#Folds” denotes the number of subsets the set of all
instances is divided into. (#Folds-1) of these sub-
sets are used for learning, the remaining 1 for testing.
”�Precision” gives the average percentage of correctly
classified instances.

state-of-the-art. This stresses the feasibility of our ap-
proach for screening applications, as the markers can
easily be applied by trained personnel (e.g. teachers in
school) whereas traditional medical classification has
to be performed by specialized physicians.
To separate shape variability from variation in pose or
scale, the consistently parameterized data sets are nor-
malized in our approach using a novel alignment pro-
cedure that is, while benefitting from ideas both of the
so-called Procrustean analysis and the alignment using
Bookstein-coordinates, simple in concept and easy to
implement.
Although so far we applied statistical analysis in an
inter-proband manner, i.e. giving insight over ones
shape characteristics in comparison to the shape space
of human backs, our method can naturally be extended
to an intra-proband examination: By validating recur-
rent range scanning of one proband, our morphable
back model can be used to assess the impact and ef-
fect of scoliosis treatment using braces or surgery, and
hence serve as a monitoring tool.

6 Future Work
The results achieved from the classification algorithm
are encouraging such that we expect the methods pre-
sented in this paper to deliver not only qualitative
but also quantitative results. The results also prove
that surface topography would reflect Cobb angle1 sta-
tus with sufficient reliability, but the error margins
achieved in previous approaches [GKM+01] are yet
wide. We believe that with our approach, reliability
and precision of surface-deduced Cobb angle estima-
tion can be significantly increased.

1The Cobb Angle is the classical measure to describe scoliosis
quantitatively as depicted in fig. 1.

Acknowledgements
We would like to thank Ruwen Schnabel for fruitful
discussions and for his implementation of the SVM
classification.

References
[ACP03] Brett Allen, Brian Curless, and Zoran

Popovic. The space of human body shapes:
reconstruction and parameterization from
range scans. ACM Trans. Graph.,
22(3):587–594, 2003.

[AD85] I.A. Archer and R.A. Dickson. Stature and
idiopathic scoliosis. a prospective study.
Journal of Bone Joint Surg, 67:185–188,
1985.

[AMVK00] V. Asamoah, H. Mellerowicz, J. Venus, and
C. Klockner. Measuring the surface of the
back. value in diagnosis of spinal diseases.
Orthopade, 29:480–489, 2000.

[BGV92] Bernhard E. Boser, Isabelle M. Guyon, and
Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of
the fifth annual workshop on Computational
learning theory, pages 144–152. ACM Press,
1992.

[Boo84] F.L. Bookstein. A statistical mehod for
biological shape comparisons. Journal of
Theoretical Biology, 107:475–520, 1984.

[Boo86] F.L. Bookstein. Size and shape spaces for
landmark data in two dimensions (with
discussion). Statistical Science, 1:181–242,
1986.

[BV99] Volker Blanz and Thomas Vetter. A
morphable model for the synthesis of 3d
faces. In Proceedings of the 26th annual
conference on Computer graphics and
interactive techniques, pages 187–194. ACM
Press/Addison-Wesley Publishing Co., 1999.

[CST03] Nello Cristianini and John Shawe-Taylor.
Support vector and kernel methods.
Intelligent data analysis, pages 169–197,
2003.

[DH94] B. Drerup and E. Hierholzer. Back shape
measurement using video rasterstereography
and three-dimensional reconstruction of
spinal shape. Clinical Biomechanics,
9(1):28–36, 1994.

[DM98] I. L. Dryden and Kanti V. Mardia. Statistical
Shape Analysis. John Wiley and Sons, 1998.

[DMS98] Douglas DeCarlo, Dimitris Metaxas, and
Matthew Stone. An anthropometric face
model using variational techniques. In
Proceedings of the 25th annual conference on
Computer graphics and interactive
techniques, pages 67–74. ACM Press, 1998.

[GKM+01] C.J. Goldberg, M. Kaliszer, D.P. Moore, E.E.
Fogarty, and F.E. Dowling. Surface
topography, cobb angles, and cosmetic
change in scoliosis. Spine, 26:E55–63., 2001.

[Goo91] C. Goodall. Procrustes methods in the
statistical analysis of shape. Journal Royal
Statistical Society Series B-Methodological,
53(2):285–339, 1991.

[HCL04] Chih-Wei Hsu, Chih-Chung Chang, and
Chih-Jen Lin. A practical guide to support
vector classification.
http://www.csie.ntu.edu.tw/ cjlin/libsvm/index.html,
2004.

[HKHDL94] A.A. Hazebroek-Kampschreur, A. Hofman,
A.P. Dijk, and B. Ling. Determinants of trunk
abnormalities in adolescence. Int J
Epidemiol, 23:1242–1247, 1994.

[Ken77] D.G. Kendall. The diffusion of shape.
advances in applied probability., 1977.

[KS04] Vladislav Kraevoy and Alla Sheffer.
Cross-parameterization and compatible
remeshing of 3d models. ACM Trans.
Graph., 23(3):861–869, 2004.

[LHH+98] U. Liljenqvist, H. Halm, E. Hierholzer,
B. Drerup B, and M. Weiland. 3-dimensional
surface measurement of spinal deformities
with video rasterstereography. Z. Orthop Ihre
Grenzgeb, 136:57–64, 1998.

[LLFP98] R. LeBlanc, H. Labelle, F. Forest, and
B. Poitras. Morphologic discrimination
among healthy subjects and patients with
progressive and nonprogressive adolescent
idiopathic scoliosis. Spine, 23:1109–1115,
1998.

[NGBP79] C.L. Nash, E.C. Gregg, R.H. Brown, and
K. Pillai. Risks of exposure to x-rays in
patients undergoing long-term treatment for
scoliosis. The Journal of Bone and Joint
Surgery, 61(3):371–374, 1979.

[NHSP93] M. Nissinen, M. Heliovaara, J. Seitsamo, and
M. Poussa. Trunk asymmetry, posture,
growth, and risk of scoliosis. a three-year
follow-up of finnish prepubertal school
children. Spine, 18:8–13, 1993.

[NSL+85] H. Normelli, J. Sevastik, G. Ljung, S. Aaro,
and A.M. Jonsson-Soderstrom.
Anthropometric data relating to normal and
scoliotic scandinavian girls. Spine,
10:123–126, 1985.

[PSS01] Emil Praun, Wim Sweldens, and Peter
Schroeder. Consistent mesh
parameterizations. In Proceedings of the 28th
annual conference on Computer graphics
and interactive techniques, pages 179–184.
ACM Press, 2001.

[RDRD04] B. Romaniuk, M. Desvignes, M. Revenu, and
M.-J. Deshayes. Shape variability and spatial
relationships modeling in statistical pattern
recognition. Pattern Recognition Letters,
25(2):239–247, 2004.

[RS85] A. Rohlmann and J. Siraky. Reproducibility
of surface measurements of the back using
the optrimetric method. Z Orthop Ihre
Grenzgeb, 123:205–212, 1985.

[SAPH04] John Schreiner, Arul Asirvatham, Emil
Praun, and Hugues Hoppe. Inter-surface
mapping. ACM Trans. Graph.,
23(3):870–877, 2004.

[Sch66] Peter H. Schoenemann. A generalized
solution of the orthogonal procrustes
problem. Psychometrika, 31:1–10, 1966.

[SG02] M. B. Stegmann and D. D. Gomez. A brief
introduction to statistical shape analysis,
March 2002. Images, annotations and data
reports are placed in the enclosed zip-file.

[SGWS02] Alfred Schmitz, H. Gabel, H.R. Weiss, and
Ottmar Schmitt. Anthropometric 3d-body
scanning in idiopathic scoliosis. Z Orthop
Ihre Grenzgeb, 140:632–636, 2002.

[SJK+01] Alfred Schmitz, Ursula E. Jaeger, Roy
Koenig, Joerg Kandyba, Ulrich A. Wagner,
Juergen Giesecke, and Ottmar Schmitt. A
new mri technique for imaging scoliosis in
the sagittal plane. European Spine Journal,
10(2):114–117, April 2001. Issn: 0940-6719
(Paper) 1432-0932 (Online).

[SMT03] Hyewon Seo and Nadia Magnenat-Thalmann.
An automatic modeling of human bodies
from sizing parameters. In Proceedings of the
2003 symposium on Interactive 3D graphics,
pages 19–26. ACM Press, 2003.

[Vap98] V.N. Vapnik. Statistical learnig theory.
Wiley, New York, 1998.

Broadcast GL: An Alternative Method for Distributing
OpenGL API Calls to Multiple Rendering Slaves

Tommi Ilmonen Markku Reunanen Petteri Kontio
Helsinki Univ. of Technology Helsinki Univ. of Technology Helsinki Univ. of Technology

Telecommunications Software Telecommunications Software Telecommunications Software
and Multimedia Laboratory and Multimedia Laboratory and Multimedia Laboratory

Tommi.Ilmonen@tml.hut.fi marq@tml.hut.fi jpkontio@tml.hut.fi

ABSTRACT

This paper describes the use of UDP/IP broadcast for distributing OpenGL API calls. We present an overview
of the system and benchmark its performance against other common distribution methods. The use of network
broadcasts makes this approach highly scalable. The method was found effective for applications that need to
transmit changing vertex arrays or textures frequently.

Keywords
Distributed rendering, OpenGL, Virtual Reality

1 INTRODUCTION

There are numerous situations where one needs to ren-
der the same 3D graphics divided to multiple displays
in real time. Figure 1 shows a typical example of a
virtual reality (VR) environment with multiple video
walls.

Figure 1. A VR setup with multiple walls

Traditionally such situations have been handled by us-
ing a single high-performance computer with several
graphics outputs. Recently a number of projects have
utilized low-cost PC hardware for this purpose — us-
ing a cluster of commodity PCs to render all the walls.
A similar change from an SGI Onyx2 server to a clus-
ter of commodity PCs was the motivation behind the
development of Broadcast GL as well.

2 BACKGROUND

Typically the most efficient way to accomplish high
frame rates is to write applications that can be dis-
tributed and only send minimal amount of application
data to the renderers. In these cases the application
copies must produce identical behavior in all situa-
tions, which requires the programmer to write the ap-
plication to support multiple hosts.
This is difficult if the application has a complex inter-
nal logic with plenty of user interaction. An alterna-
tive method of distributing the application is to spread
the graphics API calls (OpenGL, DirectX) to multiple
renderers. This is typically rather easy, since a nor-
mal 3D application already uses those calls to render
its graphics. If these API calls can be distributed ef-
fectively to multiple rendering hosts, there is no need
to rewrite the application. Since our software uses
OpenGL, we are interested in distributing the OpenGL
calls (glVertex3f, glBegin, glEnd etc.).
There are already several methods to spread OpenGL
calls to multiple renderers. Staadt et al. have written
an overview of different methods and analyzed their
performance[Sta03a].

• GLX is the standard that is used in most UNIX-
based operating systems that support the X win-
dowing system [Wom98a]. GLX-based cluster-
ing integrates seamlessly to the windowing envi-
ronment and it works without additional toolk-
its. For efficient multi-display rendering the ren-
derer must be parallelized with one rendering
thread per display pipe. There are toolkits that
manage GLX contexts and set up projections
matrices, for example VR Juggler [Jus98a].

• Chromium is a distributed 3D graphics system
that uses the OpenGL-API to render graphics
on multiple slaves [Hum02a]. Chromium op-
timizes the network usage by culling primitives
before sending them over the network.

• Multi-display systems offered by Hewlett-
Packard use a broadcasting method similar to
ours. The method is briefly described in [Lef]
but no benchmarks or in-depth details are pro-
vided. In addition to multi-display systems the
architecture has been used in single-display en-
vironments to distribute the rendering load be-
tween multiple computers.

3 BROADCAST GL

Both GLX and Chromium transmit the rendering com-
mands over a unicast TCP/IP connection. This ap-
proach is far from optimal if the same rendering com-
mands need to be spread to multiple slaves. In this case
both Chromium and GLX waste network resources by
sending the information many times over. An example
of such situation is a cluster of PCs rendering multiple
walls of a VR installation: all the walls receive almost
identical rendering commands, apart from the projec-
tion matrices.
Broadcast GL (BGL) solves this problem by using a
broadcast technique to transmit the OpenGL API calls.
As a result the BGL needs to send the graphics only
once and each slave gets a copy of the rendering infor-
mation.
Besides taking full advantage of the network re-
sources this approach also simplifies the programming
work, while the application can be completely single-
threaded and still take full advantage of the multiple
slaves. This is a relevant detail since most applica-
tion programmers prefer writing non-threaded code.
Potentially difficult problems such as thread synchro-
nization and interlocking are avoided.
With the approach chosen in BGL we can implement
only a subset of the OpenGL API. In practice the func-
tions that return some data from the OpenGL system
are currently only partially implemented. In theory

all OpenGL functionality can be implemented, but the
implementation of certain calls would be inefficient.
The subset that is implemented works by caching a
copy of the data in the application machine.

Due to its architecture BGL has strict requirements
about the underlying network architecture. First of the
network must support UDP multicast or broadcast. In
practice this rules out wide-area networks. The net-
work should also be fast and reliable. In practice these
limitations imply the use of a cluster in local-area net-
work with a number of computers connected via a
switch.

4 IMPLEMENTATION

BGL uses a client-server architecture (following
Staadt’s taxonomy [Sta03a]). The application func-
tions as a client that broadcasts BGL command byte
stream (binary encoded OpenGL API calls) to the
rendering servers over a UDP/IP socket. The slaves
are independent rendering applications that receive the
BGL byte stream and convert it back into OpenGL API
calls. As a return channel each slave has a dedicated
TCP/IP connection. BGL overview is shown in Fig-
ure 2.

Figure 2. The networking architecture used in
BGL. The rendering slaves can be either in the

same machine or distributed across the network.

From the application perspective, BGL is little more
than an OpenGL implementation, having the network
transmission hidden behind the standard OpenGL API.
Special BGL calls are used when OpenGL does not de-
fine calls that are necessary for applications. Examples
of these needs are window handling, buffer swaps and
selecting the rendering slave.
The BGL encoder library consists of functions
that implement the OpenGL API (glVertex3f,
glNormal3f etc.). The encoding functions store a
number of bytes into a local data buffer. The data
buffer can contain as much data as the system can fit
into a single UDP packet. Once the packet is filled it
is sent to the network.

Since OpenGL applications occasionally need to read
back variables from the OpenGL implementation,
BGL encoder keeps a local copy of some states. In
practice this means that the current transformation ma-
trices are kept in the encoder and they can be queried
with normal glGetFloatv, glGetDoublev and
glGetIntegerv functions.

BGL Specific Functions

The are also special BGL functions, such as OpenGL
initialization and buffer swaps, that are needed to con-
trol behavior that is outside the basic OpenGL API,
but needed by all applications. Below is a list of the
BGL-specific functions that are visible to the applica-
tion programmer.

• bglInit(const char * address) —
This function initializes the BGL data transmis-
sion layer and connects to the slaves using the
argument address.

• bglQuit() — This function shuts down the
slaves and the data transmission layer.

• bglSwapBuffers() swaps the OpenGL
buffers.

• bglCreateWindow(int flags) creates
an OpenGL window .

• bglResizeWindow(int w, int h) re-
sizes the OpenGL window.

• bglMoveWindow(int w, int h) moves
the OpenGL window.

• bglSelectRenderer(int id) instructs
the selected slave(s) to listen to the broadcast.

• bglDeSelectRenderer(int id) in-
structs the selected slave(s) to ignore the broad-
cast.

A typical way to use the “select” and “deselect” func-
tions is in setting separate transformations for each
renderer, for example:

// No one is listening now:

bglDeSelectRenderer(-1);

// Slaves with id 1 are listening:

bglSelectRenderer(1);

//Slaves with id 1 and 2 are listening:

bglSelectRenderer(2);

// Translate the geometry in slaves 1 and 2:

glTranslatef(0, 0, 1);

// All slaves are listening again

bglSelectRenderer(-1);

// Now we can render the scene

Send & Return Channels

When sending data over a socket we have to choose
between UDP/IP and TCP/IP. UDP is a connection-
less protocol that does not guarantee that all data that
is transmitted gets to target, nor does it guarantee that
the data arrives in the correct order. TCP/IP in turn
provides a reliable connection, but with higher con-
nection overhead.

In BGL the OpenGL data is sent over a UDP/IP socket
since UDP offers lightweight broadcast and multicast
features. TCP is used as the return channel protocol
since return data rates are much lower, meaning that
we can use a slower and more reliable connection.

Replies

If the application sends data at an excessive rate to the
slaves it can overflow their UDP buffers, i.e. data ar-
rives faster than it can be consumed. To avoid this
the BGL requests replies from the slaves at fixed in-
tervals (equal to ”buffer flush” in [Lef]). The slaves
then answer that they have received the reply request
and once BGL has received all the replies it can con-
tinue transmission. For example BGL might send a
reply request after sending 16 packets. After trans-
mitting the request, BGL will send a few more pack-
ets and then collect the replies from all the slaves. If
the replies were collected immediately the renderers
would have to empty their buffers before they could
receive more data. This asynchronous approach helps
us keep a buffer of rendering content in the slaves, re-
sulting in higher performance.

Figure 3. Asynchronous reply mechanism.

The reply system is also used when the appli-
cation calls functions glFlush, glFinish or
bglSwapBuffers. Each of these functions return
only after all the slaves have replied. In the case of
bglSwapBuffers the system first makes sure that
all the slaves have done their rendering work and then
issues a command to swap buffers.

Scalability

In BGL the data transfers are highly asymmetric. To
render one frame the application may send out sev-
eral megabytes of data, while the renderers’ replies
use only a fraction of that. The following calcula-
tion, which matches the benchmark setup below, gives
a real-world example of the asymmetry.

When using UDP packets with 4096 bytes per packet
and UPD buffers of 256 kilobytes, BGL application
sends reply queries to the renderers at every 19 pack-
ets, resulting in 77824 bytes per reply request. Each
reply packet uses 4 bytes, thus the downstream traf-
fic takes roughly 19000 times more bandwidth. Since
each renderer requires a separate reply connection this
ratio is overly optimistic, but even with 1000 render-
ers the application sends out 19 times more data than it
receives. The amount of data sent does not depend on
the number of slaves, unless the slaves are controlled
individually, as was done in the transformation exam-
ple above. As long as the used network is reliable,
new renderers can be added with minimal performance
loss.

Recovering from Transmission Errors

UDP connections are inherently unreliable. The pack-
ets can be lost or they may arrive in the wrong order to
the recipient. Altough we are using a very reliable net-
work both error cases do occur. Since OpenGL does
not tolerate missing commands these errors must be
corrected in the transport layer. Both TCP and UDP
guarantee the correctness of the transmitted packets,
so there’s no need to build an additional bit-level error
correction mechanism.

BGL uses the TCP return channel to report missing
packets. When a renderer receives a packet with un-
expected counter value it puts the packet to a store the
notifies the master that a packet was missing. The mas-
ter in turn keeps the latest UDP packets in a ring-buffer
and retransmits the missing packet. This error correc-
tion is not enough in the cases where a renderer loses
multiple packets (including packets with reply com-
mands). To handle these situations the master retrans-
mits packets automatically if the renderers do no reply
within a given time interval.

Together these strategies guarantee that the transmis-
sion errors are corrected as long as at least some
amount of packets reach the renderers. We have tested
the system by intentionally losing packets. The error
recovery works correctly even when 80 % of all trans-
mitted packets are lost.

Internal Structure

BGL is composed of two parts. The application library
(libBGL) implements the OpenGL API and the BGL-
specific extra functions. This library contains OpenGL
encoding functions and data transport layer. The ren-
derer is a stand-alone application that also includes the
transport layer and OpenGL decoding functions.
The OpenGL API has been originally designed to be
easily streamable. This makes encoding and decoding
the API calls fairly easy. In BGL most OpenGL func-
tions are defined with one-line macros. Writing the
encoding and decoding layers took only two days.
The data transport layer is more demanding for the
programmer. Finding the most effective way to use
network resources took more time than implementa-
tion of decoding library. This part is also more eas-
ily broken by networking anomalies that may not have
been present when the system was first tested.

5 BENCHMARKS

BGL was benchmarked against Chromium and a
GLX-based graphics distribution mechanism. The
OpenGL distribution platforms are detailed below:

1. GLX-based threaded renderer: This system
uses a separate rendering thread for each
X11 display, thus rendering two windows per
thread. This system is similar to the VR Jug-
gler OpenGL application framework [Jus98a].
Based on informal tests, our GLX-distribution
system has performance characteristics similar
to the VR Juggler implementation.

2. Chromium: We used Chromium version 1.7.
Chromium’s tilesort SPU was used for the
graphics distribution and the render SPU for
viewing the graphics. The tilesort SPU culls
polygon faces before sending rendering com-
mands to the network, thus decreasing the net-
work load.

3. BGL: The application was linked with the BGL
encoder library and a small projection man-
agement library. We used a normal broadcast
address 10.0.0.255:10001 to deliver the
broadcast from the application to the renderers.

All the described methods were tested in the following
three test cases:

1. Display of a real-world architectural model, ren-
dered with display lists. This benchmark repre-
sents a typical static model, for example a back-
ground scene in computer games. A part of the
scene is shown in Figure 4.

2. Display of a real-world architectural model, ren-
dered without display lists, i.e. in immediate
mode. This benchmark represents volatile data
sets — for example objects under deformation
cannot be compiled into display lists.

3. Texture streaming. This benchmark represents a
case where texture animation is made by stream-
ing a new (sub)texture into the hardware at each
frame. Such approach is commonly used when a
video stream is embedded into OpenGL graph-
ics. In our test the size of the RGB texture was
320 by 240 pixels (225 kB). A screenshot of this
test is in Figure 5.

Figure 4. A screenshot of the architectural scene
used in tests 1 and 2. The scene has 96733

triangles. All lighting is done with texture maps.

Figure 5. A screenshot of the video player test
software.

Tests 2 and 3 are bandwidth-intensive, while test 1
stresses the graphics pipeline. During the tests we
measured the following metrics:

1. Frame rate (frames per second, fps)

2. Network traffic in the application computer
(megabytes per second)

3. Application computer load (percentage of CPU
resources used)

In the test the scene was rendered on four render-
ing computers. Each computer displayed two separate
OpenGL windows, representing the left and right eye
views. The window size was 1024 x 1024 pixels. Each
window had a different projection matrix, matching a
typical four-wall Cave setup similar to Figure 1. Ad-
ditional tests were run on an SGI Onyx2 system and a
single desktop PC. The SGI rendered the graphics into
four stereo windows resulting in a render load equal to
the PC cluster tests. These tests were ran to compare
the performance of the PC cluster to the retiring sys-
tem. The stand-alone PC in turn rendered the graphics
into two windows, providing an estimate of the highest
achievable frame rate.
The test setup was composed of five Linux-based com-
puters — an application PC and four rendering ma-
chines. Each computer had a 2.8 GHz Intel P4 CPU,
an integrated gigabit Ethernet controller and an NVidia
FX5900 graphics card. The PCs were running Linux
kernels from the series 2.4 and 2.6. The SGI-based
system was an Onyx2 with two IR2 pipelines and eight
200 MHz R10000 CPUs. The test results have been
collected to Tables 1–3.

Test Architecture GLX Chromium BGL
1 1 GB 2.8 37 19

100 MB 1.62 46 15
PC/Local 16 - -
SGI/Local 1.3 - -

2 1 GB 0.87 2.4 4.2
100 MB 0.10 0.32 0.82
PC/Local 24 - -
SGI/Local 1.8 - -

3 1 GB 7.5 10 105
100 MB 3.1 1.8 24
PC/Local 150 - -
SGI/Local 20 - -

Table 1. Frame rates for three tests in gigabit and
100 Megabit networks (frames per second).

Test Network GLX Chromium BGL
1 1 GB 25 4 0.48

100 MB 0.38 5.3 0.47
2 1 GB 95 87 55

100 MB 12 12 12
3 1 GB 7.5 46 29

100 MB 6.4 11 9

Table 2. Network traffic (Megabytes transmitted
per second).

Test Network GLX Chromium BGL
1 1 GB 44 20 2

100 MB 6 20 2
2 1 GB 70 45 35

100 MB 10 10 1.5
3 1 GB 6 24 18

100 MB 6 7.5 5

Table 3. Application computer CPU load.

The CPU load of the application is split into user-space
load and kernel-space load. The CPU loads were mea-
sured with ”top” -program that is part of standard Unix
command set. This measurement is complicated by the
fact that the definition of CPU load is not an obvious
measure on modern hyper-threading CPU’s. In this
case we took the CPU idle time from ”top” and calcu-
lated the application load from it. The idle time rep-
resents how much time the CPU has left to run other
applications. These load values are shown in table 3.

While the above benchmarks measure run-time perfor-
mance there are other aspects that are important for the
application programmer as well. A summary of these
aspects has been collected to Table 4.

System GLX Chromium BGL
Network Poor Moderate High

scalability
OpenGL Good Moderate Moderate

compliance
Ease of Poor* Good Good

programming

Table 4. Qualitative differences between different
approaches

* Requires threaded rendering into multiple GLX
contexts.

It is worth noting that the test setup differs from
Staadt’s. We are running a single centralized applica-
tion with distributed graphics, while Staadt’s tests also
included distributed applications [Sta03a].

In addition to the system benchmarks we ran a small-
scale scalability test. Test 2 (immediate mode render-
ing of the architectural model) was run on one to four
rendering computers. Tests 1 and 3 were discarded be-
cause they were too dependent on pure rendering or
network speed and would not have given meaningful
results about scalability. The graph shown in Figure 6
displays the frame rates obtained in this test.

Figure 6. The effect of added rendering computers
on the frame rate.

Analysis of the Benchmarks

The benchmarks above show that BGL, in many
test cases, outperforms both the standard GLX-based
graphics distribution and Chromium. In these tests
Chromium could often use its culling algorithms to
lower the network traffic. If one thinks about the usage
in a fully immersive six-wall Cave, this culling can-
not eventually do more than ensure that the same data
is not sent from the application to the renderers more
than once. Since there are two windows with nearly
identical views for each wall, the vertex data will be
sent twice unless the software can recognize the over-
lap.
In test 1 Chromium did extremely well and surpassed
even the local GLX rendering. This is apparently due
to its heavy culling methods that could discard even
complete display lists. BGL proved its scalability by
providing approximately the same frame rate as the
single PC.
BGL was clearly the fastest system in tests 2 and 3, de-
livering higher frame rates with lower CPU load and
lower network stress. In test 3 both Chromium and
GLX were forced to send the texture eight times to the
renderers, resulting in roughly eight times more data
traffic per frame.
The 100 Megabit Ethernet was easily saturated by all
systems. Surprisingly, none of the systems could sat-
urate the gigabit Ethernet in any of the test cases. It
seems that the computers have trouble moving data
over the network at such high rates. Also it seems that
in the renderer computers the OpenGL usage has neg-
ative effect on the networking performance, probably
because both require bus resources that are mutually
exclusive.
The performance of the GLX-based distribution was in
most cases disappointing. Especially, one would ex-
pect that GLX-distribution would run well with dis-
play lists, but this was not the case. This problem

might be caused by networking issues or problems
within NVidia’s GLX implementation. We have ex-
perienced similar performace problems when using
VR Juggler in our test configuration. When run lo-
cally the GLX code worked fine, both in the SGI tests
and in the stand-alone PC test.

When we compare the performance of the network
rendering against rendering the same graphics locally
we can see that with display lists (test 1) the local ren-
dering is in fact slower. In immediate mode (test 2) the
local rendering is significantly faster while the video
streaming (test 3) application is 50 % faster when ran
locally.

The BGL-based PC-cluster outperforms our old SGI-
system in all the tests. While this information is
not particularly surprising, it created significant con-
fidence to the new platform. The scalability of the sys-
tem is good (Figure 6). In gigabit network the frame
rate dropped only 15 % when the number of renderers
was changed from 1 to 4. In the fully saturated 100
MB network the number of renderers made no differ-
ence.

6 DISCUSSION

As the BGL implementation matures, it allows for sev-
eral interesting applications. Because of the scalabil-
ity of the approach, large rendering clusters can be
built without significantly increasing the load of the
the application computer. The broadcast graphics can
be viewed across the network in different visualization
devices, such as an ordinary monitor, head-mounted
display or a Cave, whereas for the application code the
final output device bears very little importance. The
method somewhat resembles the traditional radio and
TV broadcasting and could be even used for similar
purposes in the form of a "3D television". Large-scale
broadcasting for various bandwidths cannot be han-
dled by a single computer, thus creating a need for a
proxy or other middleware solution.

The current BGL implementation can store the
OpenGL command stream to a file. This feature was
created mostly as a debugging aid, but it could also
be used as a 3D video format. The resulting files can
readily be compressed with ordinary tools such as gzip
and even further with more advanced techniques such
as texture compression.

In its current state, BGL features only a bare-bone
OpenGL implementation. Full OpenGL compliance
is in practice difficult to achieve, mainly because the
OpenGL state is distributed over a cluster of nodes.
Frequent state queries from the nodes is also likely to
cause performance loss due to the stalling of the ren-
dering stream.

At the moment one badly behaving renderer can stall
the whole cluster. This clearly means that the synchro-
nization should be studied further. We suspect that
once the network latency and synchronization are han-
dled better, the overall throughput of the system will
increase considerably. The symmetry of the rendering
computers is vital to good performance since the slow-
est node effectively dictates the overall frame rate.

The tests that were conducted did not incorporate gen-
locking or any synchronization to display updates.
This choice was intentional because we wanted to
measure the maximum throughput possible with each
of the systems. In practise such constraints are often
present and slow down the frame rate. For example a
double-buffered 100 Hz sychronized display typically
limits the steady frame rates to 100, 50, 25 FPS and so
on. Hardware genlocking should not affect the frame
rate but a software-based approach such as SoftGen-
Lock [All03a] does because it introduces additional
system load.

7 CONCLUSIONS

We have presented and evaluated an alternative
method to distribute graphics API calls to multiple ren-
dering computers. By using the broadcast/multicast
networking we have managed to ensure the same
graphics data is not sent more than once across the
network, regardless of the number of renderers. The
current BGL implementation is far from perfect and
we will continue to improve it.

In the light of the benchmark results it seems obvious
that none of the OpenGL distribution systems is in all
cases better than the others. Rather, the best choice
depends on the application, computers used and the
network characteristics. Obviously the best use cases
for BGL are data-intensive applications that require
good scalability to multiple displays. Furthermore, the
simple single-thread application logic allows for easy
adaptation of existing desktop OpenGL software.

References

[All03a] Allard, J., Gouranton, V., Lamarque, G., Melin,
E., Raffin, B. Softgenlock: Active Stereo
and Genlock for PC Cluster. in Proceedings
of the Joint IPT/EGVE’03 Workshop, Zurich,
Switzerland, May 2003.

[Hum02a] Humphreys, G., Houston, M., Ng, R., Frank,
R., Ahern, S., Kirchner, P.D., Klosowski, J.T.
Chromium: A Stream-Processing Framework
for Interactive Rendering on Clusters. in ACM

Transactions on Graphics (TOG) , Proceed-
ings of the 29th annual conference on Com-
puter graphics and interactive techniques, Vol-
ume 21, Issue 3, 2002.

[Jus98a] Just, C., Bierbaum, A., Baker, A., and Cruz-
Neira, C. VR Juggler: A Framework for Vir-
tual Reality Development. 2nd Immersive Pro-
jection Technology Workshop (IPT98), Ames,
Iowa, May 1998.

[Lef] Lefebre, K. An Exploration of the Architecture

Behind HP’s New Immersive Visualization So-
lutions. Hewlett-Packard Company.

[Sta03a] Staadt, O.G., Walker, J., Nuber, C., Hamann, B.
A survey and performance analysis of software
platforms for interactive cluster-based multi-
screen rendering. in Proceedings of the work-
shop on Virtual environments 2003.

[Wom98a] Womack, P., Leech, J. (eds.). OpenGL Graph-
ics with the X Window System. Version 1.3,
October 19, 1998.

Efficiently Keeping an Optimal
Stripification over a CLOD Mesh

Massimiliano B. Porcu

Dip.to Matematica e Informatica
Università di Cagliari

Via Ospedale, 72
I-09124, Cagliari, Italy

massi@dsf.unica.it

Nicola Sanna
Dip.to Matematica e Informatica

Università di Cagliari
Via Ospedale, 72

I-09124, Cagliari, Italy

nsanna@unica.it

Riccardo Scateni
Dip.to Matematica e Informatica

Università di Cagliari
Via Ospedale, 72

I-09124, Cagliari, Italy

riccardo@unica.it

ABSTRACT
In this paper we present an algorithm of simple implementation but very effective that guarantees to keep an optimal
stripification (in term of frames per seconds) over a progressive mesh. The algorithm builds on-the-fly the stripification
on a mesh at a selected level-of-details (LOD) using the stripifications built, during a pre-processing stage, at the lowest
and highest LODs. To reach this goal the algorithm uses two different operations on the dual graph of the mesh: when the
user changes the mesh resolution the mesh+strips local configuration is looked up in a table and, after a vertex split opera-
tion, the strips are rearranged accordingly, immediately after a sequence of special topological operation called “tunnel-
ing” with short tunnel length are started till the number of isolated triangles in the mesh get under 10% of the total num-
ber of strips. Moreover, when the user select a relevant LOD it can trigger a tunnelling with higher tunnel length to opti-
mize the stripification. Using these operations we are able to keep the progressive mesh stripified in a time of the same
order of magnitude of the time needed to change the resolution and, only if required, to perform a time-demanding opti-
mization. Only the stripifications generated by explicit user requests are stored to serve as optimal starting points for fur-
ther inspection. In this way we can always feed the graphics board with a triangle strip representation of the mesh at any
LOD.
The results we present demonstrate that we can tightly couple each sequence of vertex splits used to increase the resolu-
tion of the progressive mesh with: a simple rearrangement of the strips followed by a very cheap stripification search with
a predetermined strategy. A strong feature of the method is that the local rearrangement leads to an implementation that
keeps almost constant the execution time. The results of the visualization benchmarks are very good: comparing the ren-
dering of the stripified (using this strategy) and the non stripified meshes we can, on average, double the frames per sec-
onds rate.

Keywords
Geometry compression – Stripification – Progressive meshes.

1. Introduction
Three different lines of research are active in trying to
improve the management of large meshes: developing
efficient algorithms for the compression of the meshes
representation; improving the methods for the construc-
tion of a multiresolution data structure and easily select a
mesh among all the ones stored in the structure; develop-

ing efficient ways to best render these meshes on current
computer graphics hardware.
A good example of the first type of investigation is repre-
sented by the Edgebreaker algorithm and all its im-
provements [Tau98, Ros99, Paj00, Gan02]. This kind of algo-
rithms allow to lossless encode meshes and collection of
meshes (simplicial complexes) of any type using a re-
duced number (even less than two) of bits per vertex. The
methods start from a seed triangle and grow on the free
frontier (the boundary with other triangles not already
encoded) till all the triangles are encoded.
The most popular method for building multiresolution
structure is the progressive mesh method (PM) and all its
improvements [Hop96, Hop97, Pop97, Hop98, Paj00]. Its great
popularity derives also from the fact to be available as
part of Microsoft's DirectX since the release 5.0.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Another way to try to compress the geometrical represen-
tation of a triangle mesh is the attempt to reduce the
throughput between the CPU and the Graphics Process-
ing Unit (GPU). The most common and diffused way to
reach this goal is to rearrange the information describing
each single triangle in the mesh in structured forms as the
triangle strips and the triangle fans [Hae03].
A triangle strip is a set of connected triangles where a
new vertex implicitly defines a new triangle. Triangle
strips are used to accelerate the rendering of objects rep-
resented as triangle meshes, in a pre-processing stage the
mesh is partitioned in a set of triangle strips (each of one
can possibly be composed of one single triangle) and
then each strip is passed to the GPU for rendering. The
advantage of the strip representation over rendering each
triangle separately, is that it makes it theoretically possi-
ble to reduce the number of vertices sent to the GPU
from 3n (where n is the number of triangles in the mesh)
to n+2 in the best case.

In this work we couple a selection and a stripifica-
tion technique: the choice of a LOD over a PM with a
method to accelerate its rendering.

The rest of this work is organized as follows: in sec-
tion 2 we briefly go over the previous work done in ge-
ometry compression, focusing on selection methods and
stripification algorithms; we then show, in section 3, the
relations existing between the triangle mesh and its dual
graph, introduce the tunnelling operator and explain how
to build a stripification over the lowest resolution LOD of
a progressive mesh; section 4 is dedicated to detail how
the stripification is kept consistent while varying the
LOD in the progressive mesh; in section 5 we show the
results we obtained using our algorithm on a mesh we
acquired from cultural heritage manufacts; and, finally, in
section 0 we draw our conclusions and describe the fu-
ture evolutions of this work.

2. Previous Work
Deering [Dee95] was the first to introduce the term

geometry compression, to describe a set of techniques
capable of reducing the space occupancy of a generalized
triangle mesh statistically encoding XYZ positions, RGB
colors and normals. These techniques operate mainly on
the geometry of the mesh (i.e., the positions and the at-
tributes of the vertices) relying on the triangle mesh struc-
ture to compress the information on the topology (i.e.,
how the vertices are connected to form the triangles).
Since the goal of the work was to suggest a series of dif-
ferent operations the designer can perform to reduce the
space occupancy of a triangle mesh, there wasn't any
conclusion on the real possibility to move on the graphics
board some of these stages.

Even if it is quite a rough classification, since there can be
found many mixing approaches, we can divide the ge-
ometry compression methods in three main families:

• Compression methods. Allow to reduce the data
needed to represent a mesh; they are well suited
for transmitting and/or archiving the meshes;

• Selection methods. Allow to select the resolution
that best fits the graphics hardware available for
rendering; they are well suited for transmission
with a preview effect; they are used to select a rep-
resentation of the object described by the mesh,
given a triangle/frame-rate budget;

• Rendering accelerating methods Allow to reduce
the time spent in sending the information describ-
ing the mesh from the CPU to the GPU thus result-
ing in getting a higher frames per second rate with-
out changing the number of triangles of the mesh
(its geometry).

Compression Methods
After Deering [Dee95] several subsequent works [Tau98,
Tou98], centered their attention on the problem of com-
pressing the description of the topology arriving at a rele-
vant result with the Edgebreaker method [Ros99, RsS99]
which claims to reach less than two bits per triangle to
encode a planar mesh homeomorphic to a disc.
All these techniques need a decompression stage that is
not yet implemented in commercial graphics hardware,
even using new programmable boards. This means that
they are very efficient for transmission and archiving but
cannot be used for feeding the GPU.
It is worth to mention that a useful consequence of the
Edgebreaker encoding is the easy production of triangle
strips while processing and decoding the compressed
dataset [RsS99].

Selection Methods
Many authors presented solutions to generate multireso-
lution structures from an original mesh allowing the user
to select a given LOD. We just limit ourselves to remind
it’s possible to divide the methods presenting a fixed
number of LODs (usually less than ten) from the meth-
ods ranging on a continuous variation of LODs
(CLODs).
Even if we don’t want to rehearse all these works let’s
just briefly remind the main characteristics of the one we
used in our implementation.
Progressive meshes (PM) represent the most popular type
of continuous LOD meshes. They allow the users to eas-
ily encode a complex mesh using a single topological
operation (Figure 1) called edge collapse (EC) and its
complement, vertex split (VS). On the PM is possible to
perform two different but equally important tasks: to
select the representation best fit for the available hard-
ware, and to progressively transmit the mesh.

Figure 1: The two complementary operations per-

formed on a progressive mesh
The original proposal [Hop96] has been refined during the
last years: a hybrid compression and selection scheme
trying to get the best of Edgebreaker compression and
progressive meshes [Paj00], a further improvement, in
term of bits per vertex [All01], and the extension of these
techniques to arbitrary simplicial complexes [Gan02].
In our implementation we built a PM representation from
the original following the longest edge rule: we collapse
edges in order of decreasing length. We decided to use
such a simple approach since the pre-processing in which
we build the PM can be changed without affecting the
rest of the process and, at this stage of development, we
wanted to focus on the stripification scheme.

Stripification Techniques
The greatest advantage in using triangle strips consists of
the availability of such a primitive in the OpenGL graph-
ics library. Generating the stripification of a mesh means
to be able to feed the GPU with the obtained structure
without any further effort. It is actually to point out that
OpenGL supports, without any vertex replication, only
the sequential triangle strips. Generalized strips could
thus bring to send more than once some vertices to the
GPU.
Rearranging the order in which the vertices are stored is
the typical way to face the problem of reducing the CPU-
GPU throughput. The strips obtained are smaller than the
original mesh when coming to the final rendering since,
while the single triangle needs 3 vertices for its visualiza-
tion to be sent to the GPU, the sequential triangle strip
needs n+2 vertices to be sent to the GPU to render n tri-
angles, and the generalized triangle strip n+s+2 where s
is the number of swaps. The optimal single sequential
strip encoding the whole mesh would reduce the number
of vertices sent to the GPU by a factor of three.
Several papers illustrate geometrical and topological
properties of a stripification [Ark96] and many variations
of algorithms to partition a triangle mesh in strips [Eva96,
Cho97, Ise01, Est02]. The most relevant work coupling mul-
tiresolution structure and stripification techniques is due
to El-Sana et al. [ElS99, ElS00]. They introduce a data
structure called Skip Strip that is used to generate the
triangles strips. The method maintains a stripified pro-
gressive mesh during the refinement and coarsening
process. This is an approach similar to the one we pro-
pose, but it relies on a much more complex data structure.

Working on the Dual Graph
Each triangle mesh can be alternatively represented by its
dual graph. It is a graph in which each node is associated
to a triangle of the original mesh and an edge represents
an adjacency relation. One trivial property of such a
graph is that each node has, at most, three incident arcs.
In case the original mesh is homeomorphic to a sphere
and has genus 1, each node has exactly three incident
arcs.
It is quite common to use this representation to elaborate
stripification algorithms: it allows to use a regular and
compact data structure to represent the mesh and one can
use all the results obtained from the graph theory. Unfor-
tunately it has been proven [Ark96,. Gar76] that a problem
equivalent to searching the optimal single strip (finding a
Hamiltonian path on the dual graph) is an NP-complete
problem, thus the stripification process should be based
on local heuristics.
Two approaches for finding a stripification on the mesh's
dual graph have been proposed: one is to compute a
spanning tree on the dual graph, partition it into triangle
strips, and then concatenate these strips into larger ones
[Tou98], the second one is the so-called tunnelling algo-
rithm and it is explained in detail in section 3.

3. Triangle Strip over the Progressive Mesh
Let us first briefly summarize the steps our method per-
forms to keep the stripification at its best. They are:

1. Build the PM over the given mesh;
2. Build the stripification on the lowest LOD

meshes using the procedure detailed in section 3;
3. Move over the PM performing either a vertex split

operation (VS) on the mesh to increase the LOD or
an edge collapse (EC) to decrease the LOD;

4. Rearrange the stripification using topological op-
erations described in section 4;

5. Minimize the isolated triangles generated at the
previous step using the tunnelling algorithm with
short paths;

6. Build an optimal stripification using the tunnelling
algorithm with longer paths, on demand and store it
in the stripification data structure.

The step number 1 and 2 are pre-processing steps, we
perform them on the mesh and then we can store the re-
sults in two supplementary data files, one for the PM and
another one for the stripifications.

The Tunnelling Algorithm
The tunnelling algorithm, as initially proposed by Stewart
[Ste01] and substantially improved by Porcu and Scateni
[Por03], performs the stripification of the mesh using a
simple topological operation on its dual graph.

EC

VS
vt

vs
vl vr vl vr vs

To do so we need to think the graph edges as colored in
two possible ways (see Figure 2):
• solid edges linking nodes associated to triangles in

the same strip;

• dashed edges linking nodes associated to adjacent
triangles not belonging to the same strip.

Figure 2: A stripified mesh (each color encodes a dif-

ferent strip) and its dual graph.
In every node there are, at most, two incident solid edges.
The nodes with only one incident solid edge are terminal
nodes (corresponding to terminal triangles of the stripifi-
cation). The nodes with three incident dashed nodes cor-
respond to isolated triangles in the stripification.
The first step of the operation consists, then, of searching
a special kind of path in the graph called a tunnel. A tun-
nel is an alternating sequence of solid and dashed edges,
starting and ending with a dashed edge, connecting two
terminal nodes. Its length is always odd and we denote by
k-tunnel a tunnel of length k.
If a tunnel is found, the second step consists, simply, of
complementing the path, that is, changing each solid edge
in a dashed edge and vice-versa. After this operation the
number of solid paths (strips in the triangulation) on the
graph is reduced by one. See Figure 3 for example.

Figure 3: An example of tunnelling. In the top row a
1-tunnel is found; in the bottom row there are no 1-

tunnels but only a 3-tunnel. Notice that the number of
strips decreases from three to two after the first op-

eration and to one after the second.

This technique can be used both to improve an existing
stripification or to create a stripification from scratch. In
the latter case the starting dual graph will have only
dashed edges and every path of length one can be chosen
as a tunnel. It is worthwhile to point out that isolated tri-
angles are always considered as terminal nodes of a one-
triangle strip.
The main problem when implementing the algorithm is
the possibility that the graph traversal for tunnelling could
select paths that, when complemented, would generate
loops. It is thus necessary to follow two additional rules
(we call them the no-loop rules) during the tunnel search
to avoid this situation:
1. The last edge in a tunnel cannot connect two nodes

belonging to the same strip (see Figure 4).

2. When a non-final dashed edge, e say, in the tunnel
joins two nodes belonging to the same strip, the next
solid edge should go back in the direction of the
leading node of e (see Figure 5).

To be able to respect the no-loop rules, we need to distin-
guish between the different strips in the graph. This is
done tagging each node of the graph (triangle) with an
identifier corresponding to the strips it belongs to.

Figure 4: An incorrect tunnelling that generates a

loop.

e

e

Figure 5: The non-final edge e in the tunnel joins two
nodes belonging to the same strip. Of the two next

possible steps, we must select the one corresponding
to the direction that comes back to the leading node of
e (bottom row), otherwise it will generate a loop (top
row). One such step always exists because the leading

and trailing nodes of e are in the same strip.

The only minor drawback of the tunnelling algorithm is
that we are not able to keep the strips sequential, we are
forced to use generalized strips and then introduce swap
operations. This is to the fact that by its definition, the
tunnelling operation change the turns in the graph.
A sequential strip (Figure 6.a) is, in the dual graph, a path
of solid edges in which, at each node, we alternatively
make a left and right turn. When tunnelling over the
graph it is not possible to keep the strips sequential and
we are thus obliged to use generalized strips (Figure 6.b).

2

1
3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

(a)

2

1
3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 5 7 8 9 8 10 8 11 5 3

(b)
Figure 6:A sequential strip (a) and a generalized one

(b). For both we list the vertices to be sent to the CPU.
The extra vertices (swaps) are in red. The grey edges

mark the wrong turns.

4. Strip Rearrangement
The core of the algorithm is the rearrangement (a graph
expansion or contraction) of the stripification when
changing LOD. There are two method to consecutive
operations applied to recolor the augmented graph: the
first one is totally local to the triangle loop where the new
vertex has been inserted and uses a look-up table; the
second is glocal, it consists in launching a tunnelling on
the modified stripification with a predefined stop rule.

First Step: Using a Look-up Table
We classified many different configurations that can be
used to restructure the strips after a VS. Each single VS
split operation insert two new triangles in the mesh, and
three new edges in the dual graph.
We actually completed the task only for 4-vertices (loops
of length 4 in the dual graph), where the VS can lead to
two different topologies: two 4-vertices (two 4-loops
sharing an edge) or a 3-vertex plus a 5-vertex (a 3-loop
and a 5-loop sharing an edge). In this case all the possible
configuration (9+9) allow graph recoloring without iso-
lated triangles. In Figure 11 we list the nine configura-

tions of the 4-loop transforming in a 3-loop plus 5-loop.
Each couple of new triangles can be assigned to a single
triangle strip, increasing its size by two. As it is possible
to notice from the figure the strip section added is always
a sequential one.
When dealing with higher degree vertices (longer loops)
the cases increase rapidly. Splitting a 6-vertex, the most
commonly found in triangular mesh, can lead to three
different topologies: a 3-vertex plus a 7-vertex, a 4-vertex
plus a 6-vertex and two 5-vertices. The problem is that, in
this case, we are no longer able to always recolor the
graph without leaving isolated triangles. We can see in
Figure 7 a split with complete recolor while in Figure 8
there is a split leaving an isolated triangle. With 8-
vertices, that appear very seldom in triangular meshes, we
can be obliged even to leave both the inserted triangles
isolated.

Figure 7: An example of possible graph recoloring

after a VS.

Figure 8: A configuration where the graph recoloring
after a VS leaves an isolated triangle (marked grey).

In Figure 9 we can appreciate how the mechanism works.
Passing from a LOD to a finer one the strip form stays
more or less the same while its average length increases
and a lot of isolated triangles appear.

Figure 9: A close-up view of a local rearrangement

performed on the Dea madre dataset.

Second Step: Using the Tunnelling Operator
Extensive benchmarks performed over different datasets,
of different genus and size resulted in a percentage of
recoloring operations introducing isolated triangles quite

constant: it varies in the range 45%-50%. In other words
this corresponds to the insertion of an isolated triangle
every second VS operation.
We thus need to repair the strips structure using what we
have called a glocal tunnelling. The tunnelling operation
is performed transparently from the user, and uses the
isolated triangles as seeds for searching very short tunnels
(starting from 1-tunnels). Since we apply the global op-
erator in a local surrounding of these triangles we can say
that it is used glocally. The tunnelling is then iterated until
the number of isolated triangles reach a number that is
smaller than 10\% of the total number of strips. This
value is quite empirical: we noticed that when reaching
this ratio, the frames per second rate almost doubles at
any resolution for any dataset we used.
In Figure 10 we can appreciate how the rearrangement
via the tunnelling works. The strips are completely re-
structured, there are many less isolated triangles and the
average length increase while the maximal length tends
to decrease.

Figure 10: A close-up view of a rearrangement per-
formed on the Dea madre dataset using a tunneling

operation.
At any stage the user has the possibility to invoke the
stripification process explicitly, specifying the maximal
tunnel length. We decided to leave this possibility more
for completeness than for real need. It is, in fact, quite
difficult to significantly improve the results obtained
automatically.

5. Results and Discussion
We have performed all our benchmark on a PC with

a Pentium IV 1.5 GHz CPU with 512 MB of RAM, and
a NVIDIA GeForce TI 4600 GPU with 128 MB of
RAM.

For sake of simplicity we present here only the results
obtained on the largest dataset we used.
In Table 1 we list the characteristics of the obtained stripi-
fications. We can notice that the number of isolated trian-
gles depends more on the tunnel length than on the over-
all number of triangles in the mesh.

Maximal tunnel length LOD% Only local 5 9 13

6.139 1.676 841 489
4.456 489 140 46 13
12.11 44.38 88.44 152.10
17.592 3.025 1.536 869
9.017 496 141 52 27
8.77 51.04 88.13 147.59

27.766 5.115 2.617 1.489
11.741 785 281 107 52
10.70 58.13 113.62 199.70

Table 1: In each cell the first row shows the number
of strips, the second the number of isolated tri's and

the last the mean strip length.
In Table 2 we show the time, in seconds, used to refine
the stripification obtained with only local refinement. We
remind that the cost of the local refinement is included in
the cost of performing a resolution change.

Maximal tunnel length LOD% 5 9 13
13 6.484 4.438 5.312
27 4.360 1.750 2.579
52 8.750 5.155 4.156

Table 2: Time in seconds to refine the stripifications.

Average Cache Miss Ratio
The number of vertex cache misses plays a fundamental
role in rendering efficiency [Dee95]. If we want to
achieve a good rendering sequence than, the Average
Cache Miss Ratio (ACMR), whose value ranges from 0.5
to 3, should be kept as low as possible. To get this goal,
several reordering algorithms has been proposed, for
standard meshes [Cho97], triangle stripes [Hop99] and
progressive meshes [Bog02].
We evaluated ACMR for several data set, using stripes
generated with our system using the tunnelling algorithm.
Without any kind of reordering mechanism, ACMR is
~0.7 for a cache of 32 positions for all data sets, com-
pared to a typical ACMR of ~1.0 for standard stripifica-
tion procedures. This suggests that stripes calculated with
tunnelling algorithm have a built-in cache friendly atti-
tude.
In Table 3 several ACMR values for different data sets
are listed, depending on cache size.
The tunnelling algorithm behaves well because of the
stripes’ shape. As one can see, for instance, in Figure 12,
stripes appear to be packed instead of being elongated as
usual. This preserves locality also in vertex ordering and
then cache friendly behavior.

Cache size Data Set 16 32 64
Oilpump 0.77 0.70 0.64

David 0.78 0.71 0.68
Dea Madre 0.78 0.71 0.67
Table 3: ACMR values for three different data sets

based on the cache size.

6. Conclusions and Future Work
We presented a simple but very effective algorithm al-
lowing to compute an optimal stripification on a progres-
sive mesh. Optimal, in this context, means to at least
double the frames per second rate with respect to non
stripified mesh.
The method we used is a two steps one: first we recolor
the dual graph of the mesh using a look-up table and then
we transparently launch a tunneling algorithm with a
short tunnel length.
We are already planning to get a better insight about the
look-up table. As we already mentioned we are not able
to automatically avoid the creation of isolated triangles
only looking at the strips passing through the loop of
triangles sharing the vertex to split. We think that extend-
ing the analysis also to the neighbor triangles (say, the
triangles that can be reached from the split vertex travers-
ing two edges) can help to increase the number of recol-
oring without creation of isolated triangles.
Another line of development regards a better analysis of
the capabilities of vertex arrays on the GPU. At present
we don't clip the triangle strips in chunks the best fit on
the arrays and we should insert a further parameter in the
visualization tool to take this into account.
The last improvement we are planning is on the fine tun-
ing of the rendering. At present we can select the LOD
and then verify the fps obtainable. In the next release it
will be possible to set the fps budget and let the system
select the possible LOD visualizable.

Acknowledgements
The Dea madre dataset was obtained from tridimensional
scans of manufacts exposed at the Museo Archeologico
Nazionale in Cagliari. We are indebted to its director,
Carlo Tronchetti, for letting us use these digital data and
to the VCG of the ISTI-CNR in Pisa for the hardware
and software used in the acquisition and reconstruction.
We thank Daniele Vacca for his work on the visualiza-
tion tool.

7. References
[All01] Alliez P. and Desbrun M. Progressive compression for lossless

transmission of triangle meshes. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages
195–202. ACM Press, 2001.

[Ark96] Arkin E. M., Held M., Mitchell J. S. B., and Skiena, S. S. Ham-
iltonian triangulations for fast rendering. The Visual Computer 12,
9 (1996), 429–444.

[Bog02] Bogomjakov A. and Gotsman, C. Universal Rendering Se-
quences for Transparent Vertex Caching of Progressive Meshes. In
Computer Graphics Forum 21 , 2 (June2002)

[Cho97] Chow M. M. Optimized geometry compression for real-time
rendering. In IEEE Visualization ’97 (Nov. 1997), pp. 346–354.

[Dee95] Deering, M.F. Geometry Compression. In Proceedings of SIG-
GRAPH 95, pp. 13–20.

[ElS00] El-Sana, J., Evans, F., Kalaiah, A., Varshney, A., Skiena, S., and
Azanli, E. Efficiently computing and updating triangle strips for
real-time rendering. Computer-Aided Design 32, 13 (Oct. 2000),
753–772.

[ElS99] El-Sana J. A., Azanli E., and Varshney A. Skip strips: Maintain-
ing triangle strips for view dependent rendering. In IEEE Visualiza-
tion ’99 (Oct. 1999), pp. 131–138.

[Est02] Estkowski R., Mitchell J. S. B., and Xiang, X. Optimal decom-
position of polygonal models into triangle strips. In Proceedings of
the eighteenth annual symposium on Computational geometry
(2002), ACM Press, pp. 254–263.

[Eva96] Evans F., Skiena S. S., and Varshney A. Optimizing triangle
strips for fast rendering. In IEEE Visualization ’96 (Oct. 1996), pp.
319–326.

[Gan02] Gandoin P.M. and Devillers O. PROGRESSIVE LOSSLESS
COMPRESSION OF ARBITRARY SIMPLICIAL COMPLEXES.
In 2002 Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, San Antonio, Texas, ACM
Press, pp. 372–379.

[Gar76] Garey M. R., Johnson D. S., and Tarjan R. E. The planar hamil-
tonian circuit problem is NP-complete. SIAM Journal of Computing
5, 4 (Dec 1976), 704–714.

[Hae03] Haeyoung L., Desbrun M. and Schröder, P. Progressive encod-
ing of complex isosurfaces. In ACM Trans. Graph. 22, 3, pp. 471–
476.

[Hop96] Hoppe H. Progressive meshes. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques,
1996, ACM Press, pp. 99–108.

[Hop97] Hoppe, H. View-Dependent Refinement of Progressive Meshes.
In Proceedings of SIGGRAPH 97, pp. 189–198.

[Hop98] Hoppe, H. Efficient implementation of progressive meshes. In
Computers & Graphics 22, 1, pp. 27–36.

[Hop99] Hoppe, H. Optimization of mesh locality for transparent vertex
caching. In Proceedings of SIGGRAPH 99 (Aug. 1999), Computer
Graphics Proceedings, Annual Conference Series, pp. 269–276.

[Ise01] Isenburg M. Triangle strip compression. Computer Graphics
Forum 20, 2 (2001), 91–101.

[Paj00] Pajarola R. and Rossignac J. Compressed Progressive Meshes.
In 2000 IEEE Transactions on Visualization and Computer Graphics
6, 1 (Jan. - Mar. 2000), pp. 79–93.

[Pop97] Popovic J. and Hoppe H. Progressive Simplicial Complexes. In
Proceedings of SIGGRAPH 97, pp. 217–224.

[Por03] Porcu M. and Scateni R. An Iterative Stripification Algorithm
Based on Dual Graph Operations. In Proceedings of Eurographics
2003 (short presentations) (Sep. 2003) pp. 69–75.

[Ros99] Rossignac J. Edgebreaker: Connectivity Compression for
Triangle Meshes. In 1999 IEEE Transactions on Visualization and
Computer Graphics 5, 1 (Jan. - Mar. 1999), pp. 47–61.

[RsS99] Rossignac J. and Szymczak A. Wrap&Zip decompression of the
connectivity of triangle meshes compressed with Edgebreaker. In
Computational Geometry 14, 1-3 (1999), pp. 119–135.

[Spe97] Speckmann B. and Snoeyink J. Easy triangle strips for TIN
terrain models. In Canadian Conference on Computational Geome-
try (1997), pp. 239–244.

[Ste01] Stewart A. J. Tunneling for triangle strips in continuous level-
of-detail meshes. In Graphics Interface (June 2001), pp. 91–100.

[Tau98] Taubin G. and Rossignac J. Geometric Compression Through
Topological Surgery. In 1998 ACM Transactions on Graphics 17, 2
(Apr. 1998), pp. 84–115.

[Tou98] Touma C. and Gotsman C. Triangle Mesh Compression. In
Graphics Interface '98 (Jun. 98), pp. 26–34.

 [Xia99] Xiang X., Held M., and Mitchell J. S. B. Fast and effective
stripification of polygonal surface models. In 1999 ACM Sympo-
sium on Interactive 3D Graphics (Apr. 1999), pp. 71–78.

Figure 11: The graph rewriting rules to apply when inserting a new vertex with a VS operation. In each couple,
on the left the configuration before the VS (the vertex to be split is marked in red), on the right the configuration

after the VS (the new inserted vertex is marked in blue).

Figure 12: An example of LOD change on the “Dea madre” dataset. From left to right: the 9% LOD optimally

stripified (51,511 tri's and 10 strips); the 13% LOD obtained from the 9% one only with local mesh restructuring
operations (this and the subsequent are meshes of 74,381 tri's, 6,139 strips with 4,456 isolated tri's); the same

mesh after a 6-tunnels search (1,676 strips with 489 isolated tri's); after a 10-tunnels search and graph recoloring
(841 strips with 140 isolated tri's); after a 14-tunnels search and graph recoloring (489 strips with 46 isolated

tri's).

Tree Growth Visualization

Lars Linsen†∗ Brian J. Karis† E. Gregory McPherson‡ Bernd Hamann†

† Institute for Data Analysis and Visualization (IDAV)
Department of Computer Science

University of California, Davis
∗ Department of Mathematics and Computer Science
Ernst-Moritz-Arndt-Universität Greifswald, Germany

‡ USDA Forest Service, Pacific Southwest Research Station
Department of Environmental Horticulture

University of California, Davis

ABSTRACT

In computer graphics, models describing the fractal branching structure of trees typically exploit the modularity of
tree structures. The models are based on local production rules, which are applied iteratively and simultaneously to
create a complex branching system. The objective is to generate three-dimensional scenes of often many realistic-
looking and non-identical trees. Our goal, instead, is to visualize the growth of a prototypical tree of certain
species. It is supposed to look realistic but, more importantly, has to conform with real, measured data. We
construct a tree model being similar to existing ones and extend it by coupling the branching production rules with
dynamic tree-growth rules. The latter are based on equations derived from measured street tree data for London
Plane tree (Platanus acerifolia) such as tree height, diameter-at-breast-height, crown height, crown diameter, and
leaf area. We map the global, measured parameters to the local parameters used in the tree model. The mapping
couples knowledge from plant biology and arboriculture, as we deal with trees that are trained and manipulated to
achieve desired forms and functions within highly urbanized environments.

Keywords
Tree Growth, Animation, L-systems, Scientific Visualization.

1 Introduction

Several methods exist in computer graphics to describe
and model computer-generated trees. Their common
goal is to generate, from scratch, photorealistic images
of many trees of a selected species. The trees are de-
signed to appear as natural as possible, one species at a
time. Many trees of one species should vary in appear-
ance, so that together they resemble a naturally grown
forest stand.

Few approaches have tackled the animation of trees
growing over time, as the growing process of a plant

∗linsen@uni-greifswald.de
† zeroprey@gmail.com, hamann@cs.ucdavis.edu
‡ egmcpherson@ucdavis.edu

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers or to re-
distribute to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol. 13, ISSN 1213-6964
WSCG 2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency - Science Press

is complex and many biological phenomena need to be
considered. To verify and validate tree models, authors
typically refer to the human eye, which is easy to fool.
The generated images are supposed to appear “natu-
ral”, i. e., as if they were exact copies of trees as they
occur in natural settings. To our knowledge, none of
these approaches verify their tree models by quantita-
tively comparing tree dimensions and other parameters
with measured data from actual trees.

We generate tree growth animations from tree dimen-
sions measured by scientists with the USDA Forest
Service, Center for Urban Forest Research at the Uni-
versity of California, Davis. Their street tree growth
study considered parameters such as tree height, crown
height, crown diameter, diameter-at-breast-height, and
leaf area. The study was conducted in Modesto, Cali-
fornia and led to equations for predicting these param-
eters and their correlation. Tree growth equations were
used with numerical models to estimate the annual
benefits for pollutant uptake, energy savings, rainfall
interception, carbon dioxide sequestration, and prop-
erty value increase. We describe the study and mea-
sured parameters in Section 3.

When modeling a tree with a computer system, the
structure of the tree is usually described procedu-

rally, where the model comprises information about
the branching system such as branch length, branching
angle and twist, or fractal dimension. Typically, the
modularity of tree branching structures is exploited by
defining local production rules, that are applied itera-
tively to create complex branching systems. The tree
model parameters are local and the production rules
are applied to each branch individually, while the mea-
sured parameters from the study are global, describ-
ing the overall shape and appearance of the tree. In
Section 4, we describe the tree model we have chosen
for our purposes; and in Section 5, we describe how
the globally measured parameters are mapped to pa-
rameters locally controlling tree growth (using the tree
model) and how the tree is grown in an animation.

2 Related Work

Computer graphics has been using formal descriptions
for the modeling, simulation, and rendering of trees
and plants for decades. The formal description is typ-
ically based on local production rules. Starting from
the trunk of a tree, the production rules generate new
branches and are applied iteratively to the individual
parts of the tree until the desired branching structure
is reached. This method of generating plants is based
on the assumption of plant modularity, which leads to
repeated patterns being observed throughout the plant
structure. The production rules are typically “context-
free” or “context-sensitive” in the context of formal
languages.

The most common representative of such formal de-
scriptions for tree modeling is the so-called L-system
or Lindenmayer-system, named after the theoretical bi-
ologist Aristid Lindenmayer who introduced the con-
cept in [Lin68]. Prusinkiewicz and Lindenmayer de-
veloped many algorithms to model different species
with different characteristics, all based on L-systems
[PL90]. One major development was the introduction
of parametric L-systems, where the production rules
depend on the values of some locally stored and up-
dated parameters. Other authors picked up on their
methods and developed them further. Examples can
be found in [AK85, Blo85, LD99]. In [FH79], a tree
model is discussed that maximizes total leaf area while
varying the branching geometry. A survey of existing
L-system approaches is given in [PHMH95].

In [PHHM97], more emphasis is given to how the L-
system model applies to nature. Life, death and repro-
duction are discussed, as well as information flow in
growing plants. Also, the influence of the environment
on the growth of plants is considered.

For computer graphics applications such as computer-
animated movies or video games, the main objective
of modeling plants is to generate a scene being highly
realistic. Stochastic tree models have been introduced
to simulate variety within one species. The individual
plants can be organized in a sophisticated way to create
forests or fields [CSHD03] and even entire ecosystems

[DCSD02].

The methods mentioned above are mainly targeted to-
ward the generation of static tree models. To ani-
mate plant development, L-systems can be extended
to dL-systems or differential L-systems, as introduced
in [PHM93]. The production rules of dL-systems are
parametric, where the values of the parameters are de-
fined as the solution of differential equations. Re-
cently, implicit surface representations for growing
trees were used in [GMW04]. Inverse modeling tech-
niques were used to define the tree structure and its
development.

3 Tree Parameters

The study of street tree species underlying our method
was conducted by the Center for Urban Forest Re-
search. Tree size, management, and site conditions
were measured for twelve common street tree species
in the San Joaquin Valley city of Modesto, California.
However, for the tree growth visualization described
in this paper, we focus on one species, namely, the
London Plane tree (Platanus x acerifolia). The 27 ran-
domly sampled London Plane trees were planted from
two to 89 years ago. The study is described in detail in
[PMM01].

Data collected for each tree during June through
September 1998 include species, age, address,
diameter-at-breast-height, tree height, crown diame-
ter in two directions (maximum and minimum axis),
height to the base of crown, and leaf area. Observa-
tional data include a visual estimate of crown shape,
pruning level, tree condition code, and planting loca-
tion (front lawn, planting strip, or sidewalk cutout).

Condition code was calculated as per the Guide for
Plant Appraisal (Council of Tree and Landscape Ap-
praisers 1992). Pruning level estimation, distinguish-
ing between no pruning, less than 10% of crown
pruned, 10% to 39% pruned, and 40% or more pruned,
was based on total percentage of crown removed due
to crown raising, reduction, thinning, and heading dur-
ing the last four-year pruning cycle. As trees matured,
pruning included crown raising. Mature tree mainte-
nance typically consisted of crown cleaning and thin-
ning.

Two digital photos of each tree crown, taken at perpen-
dicular angles (chosen to provide an unobstructed view
of the crown) were used to estimate leaf area using
an image processing method [PM98, PM03]. Ages of
trees for which age data were missing or entered incor-
rectly in the database, were verified through searching
handwritten planting records, interviewing residents
and city arborists, or increment coring to count growth
rings. Crown height was calculated by subtracting the
bole height (distance to base of crown) from total tree
height.

Typically, street tree databases include diameter-at-
breast-height size classes but rarely any age infor-
mation for each tree. Therefore, in this study only

diameter-at-breast-height was regressed on age; all
other variables were regressed on diameter-at-breast-
height (DBH), enabling users to predict the other di-
mensions using measures of diameter-at-breast-height
alone. Three curve-fitting models were tested to a
small sample of healthy trees. A logarithmic regres-
sion model provided the best fit for predicting all pa-
rameters except leaf area, for which a non-linear ex-
ponential model was used. The resulting functions for
DBH, height, crown diameter, crown height, and leaf
area of the London Plane trees are shown in Figure 1.

In the following, we refer to these functions as
fDBH(t), fH(t), fCD(t), fCH (t), and fLA(t), respec-
tively, where parameter t is time. Visual observation
of the data revealed increasing variability with age and
size of the trees. Therefore, we assumed the error to
be multiplicative as is indicated by the confidence in-
tervals shown in the graphs. A complete description of
the analysis and models, including the necessary stan-
dard error of estimates, response sample mean and cor-
relation values needed for calculating confidence in-
tervals are available on the Center for Urban Forest
Research website1.

4 Tree Model

The canonical parts of a branching structure are bifur-
cations and branches. In plant science, they are re-
ferred to as nodes and internodes, respectively. Due
to the modularity of nodes and internodes, repeating
patterns, and the fractal structure of trees, computer
models typically use iteratively, simultaneously, and
locally applied production rules to generate complex
branching structures. Thus, the entire tree can be gen-
erated based on local operations and local parameters.

A branch or internode is defined by its length l, diam-
eter d, start point s, and direction l, as shown in Figure
2(a). A bifurcation or node is defined by the angles
φi between the axes of the parent branch and the child
branches and by the ratios in length li

l0
and diameter

di
d0

between the parent branch and the child branches,
i = 1,2, as shown in Figure 2(b). When one of the
child branches bifurcates again, it will, in general, not
lie in the same plane but in a plane of different ori-
entation. The change in orientation is defined by the
divergence or twisting angle θi, i = 1,2. In addition to
the nodes and internodes, there are leaves and flowers.
No production rules are applied to leaves and flowers,
but they can grow in size s. In our application, we
only require leaves, but for other applications flowers
can be integrated in the same way.

We use a parametric L-system to describe our tree
model. The chosen parametric L-system can be de-
fined as a context-free or context-sensitive grammar
G = (V,T,S,Π), where the set of variables V consists
of branches B(l,d,s, l) and the trunk T (l,d,s, l), the set
of terminals T consists of leaves L(s), the start symbol

1http://wcufre.ucdavis.edu

(a)

l l

s

d (b) d

l

0

0

d1

d 2

l1 l2

φ2
φ1

Figure 2: Branching structure consists of internodes
(a) and nodes (b).

is the trunk T (l,d,s, l), and a set of production rules,
which are defined in the remainder of the paper. The
trunk is, in principle, also a branch, but its parameter
values cannot be derived from a parent branch, as there
is none, which requires us to treat the trunk separately.

The branching structure is stored in a binary tree. In
nature, there may occur, for example, ternary branch-
ing, but we are applying our methods to urban street
trees that are frequently pruned. Since ternary branch-
ing is not beneficial for robust and balanced tree
growth, such structures are regularly removed during
pruning.

Each branch in the binary tree stores length l and diam-
eter d. Start point s and direction l are not stored in a
global coordinate system, but are computed in a local
coordinate system with respect to the parent branch.
Thus, each branch stores an orientation in form of a bi-
furcation angle φ and a divergence angle θ . To control
growth of branches over time, we also store its time of
creation t0 and some growth factors, whose use is ex-
plained in the subsequent section. Growth can be lim-
ited by storing maximum length and diameter, which
are, again, computed from the parameters of the parent
branch.

5 Tree Growth

To grow a tree, we have to extend the static L-system
tree model by introducing a continuous time dimen-
sion. Prusinkiewicz et al. [PHM93] enhanced para-
metric L-systems by solving differential equations to
update local parameters. This so-called dL-system
treats the solving of differential equations in the same
way as the application of update rules. Thus, depend-
ing on the values of the considered parameters either
production rules are applied or differential equations
are solved for these parameters.

Since we are using measured values and since our goal
is to visualize the measured data, there is no need to
define plausible differential equations. Instead, we can
directly incorporate the functions derived in Section 3

Figure 1: Experimental data for diameter-at-breast-height (DBH), height, crown diameter, crown height, and leaf
area of London Plane trees.

and shown in Figure 1. The functions describe how
the measured parameters are supposed to be updated
over time. It remains to be explained how these mea-
sured global parameters are used to update and con-
trol the local parameters of the dynamic L-system. We
make use of certain facts known from plant biology,
see [HKVF88, KK79, Nik94]. We describe the rele-
vant parameters for our model next.

Trunk length and diameter.
The length l and the diameter d of the trunk are di-

rectly controlled by the global functions. The length
l = l(t) is defined as the difference between the mea-
sured height of the tree and the measured height of the
crown, i. e.,

l(t) = fH(t)− fCH(t) .

The diameter d = d(t) is directly proportional to the
measured DBH, i. e.,

d(t) = cDBH · fDBH(t) ,

where cDBH ∈ [1,1+ ε) for a small ε > 0.

Branch length.
When a branch grows, it exhibits a similar growth rate
as the trunk or the tree as a whole. Thus, the length
of a branch follows the growth rates of the respective
functions. To assure that our tree model has the ac-
tual, measured tree height, we use the function fH(t)
to control the elongation of internodes.

Intuitively, primary branches (i. e., branches that em-
anate from the main branch/trunk) start growing be-
fore secondary branches (i. e., branches that emanate
from primary branches) exist, and so on. Thus, pri-
mary and secondary branches do not grow at the
same rate; while primary branches may already have
reached a slow-growing phase, the secondary branches
may still be in their initial fast-growing phase (Figure
1). This fact requires us to keep track of the time of
creation t0 of a branch and to compute the growth with
respect to this point in time.

Moreover, a secondary branch does not reach the
length of a primary branch, and a tertiary branch does
not reach the length of a secondary branch, etc. There-
fore, we multiply the growth function with a scaling
coefficient cl . The scaling coefficient cl of a branch
is obtained from the scaling coefficient of its parent
branch multiplied by the scaling factor sl ∈ (0,1),
where the trunk has a scaling coefficient cl of value
one. The scaling factor sl depends on the species.
For the London Plane tree, we use random values
sl ∈ (0.6,1). The randomness is required to make the
tree appear less symmetric and thus more realistic.

In summary, the length l = l(t) of a branch at time t is
given by

l(t) =
lmax

Hmax
· cl · fH(t − t0) ,

where lmax and Hmax are the maximum length of the
branch and the maximum measured height of the tree,
respectively. The maximum length lmax of a branch
is determined by the maximum length of the parent
branch multiplied by the scaling factor sl . The growth
of the branch terminates when the maximum length is
reached.

Branch diameter.
When a branch bifurcates, the child branches have a
smaller diameter than the parent branch. Leonardo da
Vinci postulated that the square of the parent’s diam-
eter is the sum of the squares of the diameters of the
children. In a dynamic setting, we use the measured
function fDBH(t) multiplied by a scaling coefficient cd
to determine the growth of the diameter d = d(t).

The scaling coefficient cd is based on the scaling coef-
ficient c′d of the parent branch but also on the scaling
coefficient cl , which establishes a correlation between
the scaling in length and diameter. The scaling coef-
ficient is computed as cd = cl · c′d · (1− 0.7 · c′d) . The
trunk has a scaling coefficient cd of value one. Differ-
ent diameters for different branches are induced by the
randomness in the scaling coefficient cl .

The growth in diameter is computed with respect to the
time of creation t0. The diameter d = d(t) is defined
by

d(t) = cd · fDBH(t − t0) .

Branch orientation.
The orientation of a branch is determined by the ori-
entation of the parent branch, the bifurcation angle φ ,
and the divergence angle θ . The bifurcation angle φ is
based on the ratio of crown diameter fCD(t) and crown
height fCH (t), which defines the shape of the crown.
London Plane trees are vertically ellipsoidal, which
means that their crown height is greater than crown di-
ameter. The ratio of crown diameter fCD(t) and crown
height fCH (t) is approximately constant over time. We
define the bifurcation angle by

φ = arctan

(
fCD

fCH

)

±α ,

where α is a small random angle to make the tree less
symmetric and thus more realistic.

When choosing divergence angles θ , we have to con-
sider that we are visualizing urban street treesregularly
pruned to obtain an “optimal” shape. A balanced tree,
where primary branches called scaffolds are evenly
spaced radially around the trunk, is considered opti-
mal. Also, lower branches are removed to allow for
clearance by trucks. Therefore, we choose

θ = 130◦ ,

which results in evenly spaced branches spiraling up
the trunk.

It remains to discuss how to decide when to apply the
update rules leading to tree growth and when to apply
production rules leading to bifurcation. Our approach
is to grow each branch using the update rules, until the
branch has reached its maximum length, and to cre-
ate a new branch using the production rules, once the
branch has reached its maximum length.

Leaves are grown on all branches being smaller than a
predefined threshold. The threshold is, again, depen-
dent on the species. Leaves spiral around the branch at
a set interval and have randomized orientation.

6 Results and Discussion

To visualize tree structure, we render each branch as a
cylinder. The stored diameter d is always the diame-
ter at the beginning of a branch. The diameter at the
end of the branch is determined by the diameter of the
adjacent branch. For an ending branch, which has no
child branches, the cylinder degenerates to a cone.

We have taken digital photographs of both the bark and
the leaves of a London Plane tree, which we use as tex-
tures for the branches and leaves in our renderings. We
have modified the bark texture such that the texture can
be wrapped around a branch without discontinuities in

the transition area and such that multiple copies of the
textures can be stitched together without discontinu-
ities.

We animate tree growth by using the tree model of
Section 4 and the local growth parameters discussed
in Section 5, which are used to visualize the global
parameters from Section 3. Snapshots of the anima-
tion, taken at ages t = 10, 20, 30, 40, and 50 years, are
shown in Figure 3.

To obtain a better feeling for the dimensions of the
tree, we add context in form of a human standing next
to the tree. For reference, we also display the age of
the tree during animation.

In addition to the quantitative, measured parameters
that directly influence the visual appearance of the
tree, we are also interested in visualizing quantitative
benefit-cost parameters. The dollar (US) value of an-
nual benefits for the London Plane tree in Modesto
were numerically modeled for energy savings, air pol-
lutant uptake, CO2 sequestration, stormwater runoff
reduction, and aesthetics [PM03]. Average annual
costs for the same species were based on an analysis
of tree work records for plant/water, prune, remove,
infrastructure repair, and storm clean-up. Their values
are displayed by benefit-cost bars animated to reflect
the typical stream of benefits and costs over time for
this species in Modesto.

The results (Figure 3) are quite satisfactory, as we suc-
cessfully animate growth of a realistic-looking London
Plane tree over 50 years, while conforming to mea-
sured tree dimensions. The emphasis of our work was
not to make the tree look as realistic as possible but to
display its growth in terms of trunk height and width,
crown height and width, and leaf area. Growth of these
parameters is represented in a visually appealing and
intuitive way. For example, one can observe how the
diameter of the trunk increases steadily but with a de-
creasing rate due to the fact that the trunk grows a new
ring every year, but annual ring width decreases over
time.

Although we do not have a video recording available
of a real tree growing over time, we can, at least, com-
pare visually the results in Figure 3 with the digital
photograph shown in Figure 4. Our goal was not to
replicate this particular tree in Figure 4, but to grow a
prototypical London Plane tree.

We use knowledge from plant biology where possible,
e. g., to estimate certain coefficients needed to map
measured parameters to our tree model parameters. On
the other hand, we have developed methods for urban
street trees, where pruning practices modify tree archi-
tecture. Thus, certain concepts, such as natural death
of certain branches or leaves or information flow in
growing plants as described in [PHHM97], are not rel-
evant. Instead, we complement biological knowledge
with arboricultural knowledge, for instance, to esti-
mate the orientation and spacing of scaffold branches.

The appearance of our tree could still be improved.
The growth direction of the branches would benefit
from more equal spacing [FH79]. The concept of hav-

Figure 4: Digital photograph of a London Plane tree
in the San Joaquin Valley city of Modesto, California.

ing branches grow toward the sky and toward least-
crowded areas could be introduced. This concept also
includes the thinning of branches in the tree’s interior
caused by lack of light. The implementation of this
concept would require us to change the tree model,
as it requires global information; our tree model only
stores local information. For example, when growing
one branch, we can only retrieve information about
the branch itself and its parent and child branches.
We cannot retrieve information about spatially close
branches, which, if known, would allow us to bend the
current branch to achieve an equal distribution.

7 Conclusions and Future Work

We have introduced an approach to model and visual-
ize the growth of urban street trees. Growth is con-
trolled by measured, global parameters such as tree
height and width, crown height and width, and leaf
area. We map these measured parameters to the lo-
cal parameters of a computer-generated tree model.
The tree model is based on a formal description using
locally, iteratively, and simultaneously applied pro-
duction rules, which exploit the modular structure of
trees and allow for easy modeling of fractal branching.
The production rules are coupled with local update
rules that describe the dynamic growth of individual
branches. The update rules are based on functions de-
rived from measured data. Hence, we can animate and
visualize the growth of a realistic-looking tree based
on real data. The animation also includes additional
benefit-cost parameters.

(a) (b)

(c) (d)

(e) (f)

Figure 3: Tree growth visualization of a London Plane tree; ages shown: (a) 10 years, (b) 20 years, (c) 30 years,
(d) 40 years, and (e),(f) 50 years.

We have used our method for modeling the London
Plane tree, whose parameters were measured in the
San Joaquin Valley city of Modesto, California. Up
to now, we have used only this species, but we plan to
use our methods for all twelve street tree species of the
San Joaquin Valley study. This information will help
gardeners, designers, planners, and tree managers to
decide which species are most appropriate to grow in
terms of size, form, benefits, and costs. Because trees
are long-term investments, selecting the right species
is critical to achieving maximum net benefit. The ap-

plication of our methods to other species is straight
forward, as it only requires us to exchange the growth
functions derived from the measured values, and to
use the appropriate textures. In addition, the species-
dependent coefficients cDBH , sl (controlling cl and cd),
and lmax and the threshold for growing leaves must be
adjusted.

We plan to enhance our tree model by adding capa-
bility to store and retrieve global shape and structure
information of the tree. The local structure, which is
based on production rules, makes it easy to model the

fractal branching structure of a tree, but limits the con-
trol of global shape.

By coupling the L-system-based model with a data
structure capable of retrieving global shape informa-
tion, we hope to achieve a more equal branch distri-
bution, where branches grow in preferred directions.
Global shape control will make it easier to match
crown shape more precisely.

Retrieving global information from the tree model also
will facilitate fast computation of leaf area at any time
during animation. Thus, leaf area could be compared
to measured data and the derived leaf-area growth
function fLA(t). We plan to use leaf area to control
the branching time of individual branches, the number
and distribution of leaves, and the fractal dimension of
the branching structure.

Acknowledgments
This work was supported by the Elvenia J. Slosson
Fund for Ornamental Horticulture, University of Cali-
fornia, Division of Agriculture and Natural Resources;
the National Science Foundation under contract ACI
9624034 (CAREER Award), through the Large Scien-
tific and Software Data Set Visualization (LSSDSV)
program under contract ACI 9982251, through the Na-
tional Partnership for Advanced Computational Infras-
tructure (NPACI) and a large Information Technology
Research (ITR) grant; the National Institutes of Health
under contract P20 MH60975-06A2, funded by the
National Institute of Mental Health and the National
Science Foundation; and the U.S. Bureau of Recla-
mation. We thank the members of the Visualization
and Graphics Research Group at the Institute for Data
Analysis and Visualization (IDAV) at the University of
California, Davis, and the members of the Center for
Urban Forest Research at the University of California,
Davis.

References
[AK85] M. Aono and T.L. Kunii. Botanical tree im-

age generation. IEEE Computer Graphics & Ap-
plications, 4(5):10–34, 1985.

[Blo85] J. Bloomenthal. Modeling the mighty maple.
In B. A. Barsky, editor, Computer Graphics (SIG-
GRAPH ’85 Proceedings), volume 19, pages 305–
311. ACM SIGGRAPH, 1985.

[CSHD03] M. Cohen, J. Shade, S. Hiller, and
O. Deussen. Wang tiles for texture and image gen-
eration. In A.P. Rockwood, editor, SIGGRAPH ’03
Proceedings. ACM SIGGRAPH, 2003.

[DCSD02] O. Deussen, C. Colditz, M. Stamminger,
and G. Drettakis. Interactive visualization of com-
plex plant ecosystems. In M. Gross, K.I. Joy, and
R.J. Moorhead, editors, Proceedings of IEEE Visu-
alization ’02 conference. IEEE Computer Society
Press, 2002.

[FH79] J. Fisher and H. Honda. Branch geometry and
effective leaf area: a study of terminalia-branching

pattern; 1: Theoretical trees, and pattern; 2: Survey
of real trees. American Journal of Botany, 66:633–
655, 1979.

[GMW04] Callum Galbraith, Lars Muendermann,
and Brian Wyvill. Implicit visualization and
inverse modeling of growing trees. Computer
Graphics Forum (Proceedings of Eurographics
2004), 23(3), 2004.

[HKVF88] H.T. Hartmann, A.M. Kofranek,
V.E.Rubatzky, and W.J. Flocker. Plant Sci-
ence: Growth, Development and Utilization
of Cultivated Plants. Englewood Cliffs, NJ,
Prentice-Hall, 1988.

[KK79] P.J. Kramer and T.T. Kozlowski. Physiol-
ogy of Woody Plants. Academic Press, New York,
1979.

[LD99] B. Lintermann and O. Deussen. Interactive
modeling of plants. IEEE Computer Graphics &
Applications, 19(1), 1999.

[Lin68] A. Lindenmayer. Mathematical models for
cellular interaction in development. Journal of
Theoretical Biology, 18:280–315, 1968.

[Nik94] K.J. Niklas. Plant Allometry: The Scaling of
Form and Process. University of Chicago Press,
Chicago, 1994.

[PHHM97] P. Prusinkiewicz, M. Hammel, J. Hanan,
and R. Mech. Visual models of plant develop-
ment. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Vol. III: Beyond
Words, pages 535–597. Springer-Verlag, Berlin,
1997.

[PHM93] P. Prusinkiewicz, M. Hammel, and E. Mjol-
sness. Animation of plant development. In J.T. Ka-
jiya, editor, Computer Graphics (SIGGRAPH ’93
Proceedings), volume 27, pages 351–360. ACM
SIGGRAPH, 1993.

[PHMH95] P. Prusinkiewicz, M. Hammel, R. Mech,
and J. Hanan. The artificial life of plants: Artificial
life for graphics, animation, and virtual reality. In
SIGGRAPH ’95 Course Notes, pages 1–38. ACM
SIGGRAPH, 1995.

[PL90] P. Prusinkiewicz and A. Lindenmayer. The al-
gorithmic beauty of plants. Springer-Verlag, New
York, 1990.

[PM98] P.J. Peper and E.G. McPherson. Comparison
of five methods for estimating leaf area index of
open-grown deciduous trees. Journal of Arbori-
culture, 24(2):98–111, 1998.

[PM03] P.J. Peper and E.G. McPherson. Evaluation
of four methods for estimating leaf area of isolated
trees. Urban Forestry & Urban Greening, 2:19–29,
2003.

[PMM01] P.J. Peper, E.G. McPherson, and S.M.
Mori. Equations for predicting diameter, height,
crown width, and leaf area of San Joaquin Valley
street trees. Journal of Arboriculture, 27(6), 2001.

VSA-based Fractal Image Compression

 Huaqing Wang1, Meiqing Wang2, Tom Hintz1, Qiang Wu1, Xiangjian He1
1 Faculty of Information Technology, University of Technology, Sydney

PO Box 123, Broadway 2007, Sydney, NSW, Australia

{huwang,hintz, wuq, sean}@it.uts.edu.au
2College of Mathematics and Computer Sciences, Fuzhou University

No.502 Gong Ye Road, Fuzhou, Fujian, China, 350002

wangmeiqing@hotmail.com

ABSTRACT
Spiral Architecture (SA) is a novel image structure which has hexagons but not squares as the basic elements.
Apart from many other advantages in image processing, SA has shown two unbeatable characters that have
potential to improve image compression performance, namely, Locality of Pixel Density and Uniform Image
Partitioning. Fractal image compression is a relatively recent image compression method which exploits
similarities in different parts of the image. The basic idea is to represent an image as fixed points of Iterated
Function Systems (IFS). Therefore, an input image can be represented by a series of IFS codes rather than pixels.
In this way, an amazing compression ratio 10000:1 can be achieved. The application of fractal image
compression presented in this paper is based on Spiral Architecture. Since there is no mature capture and display
device for hexagon-based images, the experiments are implemented on a newly proposed mimic scheme, called
Virtual Spiral Architecture (VSA). The experimental results in the paper have shown that introducing Spiral
Architecture into fractal image compression will improve the compression performance in image quality with
little trade-off in compression ratio. A lot of research work exists in this area to further improve the results.

Keywords
Fractals, image compression, image encoding, Virtual Spiral Architecture, hexagonal structure.

1. INTRODUCTION
Needless to say, visual information is of vital
importance if human beings are to perceive,
recognize and understand the surrounding world.
With the tremendous progress that has been made in
computer power, the corresponding growth in the
multimedia market and the advent of the World Wide
Web, it is becoming more than ever possible for
images to be widely utilized in our daily life. In
general, an image file contains much more data than
a text file. An image with a large amount of data
requires much memory to store, takes longer to
transfer, and is intricate to process. For example, a

grey scale image with 256 × 256 pixels requires
about 64 KB of memory space and more than 18
seconds to download using a 28.8K Dialup Modem.
As a consequence, image compression becomes
necessary due to the limited communication
bandwidth, CPU speed and storage size. Image
compression has been one of the most challenging
fields in the image processing research.
Fractal image compression is a relatively recent
image compression method which exploits
similarities in different parts of the image. For
example, with a picture of a fern (Figure 1) one can
see easily where these similarities lie: each fern leaf
resembles a smaller fern. This is known as the
famous Barnsley fern [Barnsley1985]. During more
than two decades of development, the Iterated
Function System (IFS) based compression algorithm
stands out as the most promising direction for further
research and improvement [Barnsley1993]. The basic
idea is to represent an image as the fixed points of
IFSs. An appropriately chosen IFS consists of a
group of affine transformations [Fisher1995].
Therefore, an input image can virtually be
represented by a series of IFS codes. In this way, a
compression ratio 10000:1 can be achieved

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

[Barnsley1988]. In short, for fractal image
compression an image is represented by fractals
rather than pixels. Each fractal is defined by a unique
IFS consists of a group of affine transformations.
Therefore the key point for this algorithm is to find
fractals which can best approximate the original
image and then to represent them as a set of affine
transformations.

Figure 1. A fern leaf
The application of fractal image compression
presented in this paper is based on a novel image
structure, Spiral Architecture [Sheridan1991], which
is inspired from anatomical considerations of the
primate’s vision [Schwartz1980]. On The Spiral
Architecture, an image is a collection of hexagonal
elements [Sheridan2000]. In the case of human eye,
these elements (hexagons) would represent the
relative position of the rods and cones on the retina.
Each pixel on The Spiral Architecture is identified by
a designated positive number, called Spiral Address
as shown in Figure 2. The numbered hexagons form
the cluster of size 7n. The hexagons tile the plane in a
recursive modular manner along the spiral direction
[He1999]. Any hexagonal pixel has only six
neighboring pixels which have the same distance to
the centre hexagon of the seven-hexagon unit of
vision.
This paper is organized as follows. Beginning with a
review of fractal image compression in Section 2, an
introduction of the Spiral Architecture is presented in
Section 3. In Section 4, we describe the procedure of
adopting the fractal image compression algorithm on
The Spiral Architecture and the experimental results
are supplied in Section 5 with some quantified
analysis. We conclude in Section 6 by summarizing
the opportunity of better performance for fractal
image compression on the Spiral Architecture and by
mentioning areas for future research.

Figure 2. A collection of 72 = 49 Hexagons with

labelled addresses

2. CONCEPTS OF FRACTAL IMAGE
COMPRESSION
In the following section, the basic concepts of fractal
image compression on the traditional square structure
would be introduced. Before delving into details,
there are some highlights of fractal image
compression.

 It is a promising technology, though still
relatively immature.

 The fractals are represented by Iterated
Function Systems (IFSs).

 It is a block-based lossy compression method.
 Compression has traditionally been slow but

decompression is fast.

Theory and Math Background
The fundamental principle of fractal image
compression consists of the representation of an
image by an iterated function system (IFS) of which
the fixed point is close to that image. This fixed point
is named as ‘fractal’ [Fisher1995]. Each IFS is then
coded as a contractive transformation with
coefficients. Banach’s fixed point theorem
guarantees that, within a complete metric space, the
fixed point of such a transformation may be
recovered by iterated implementation thereof to an
arbitrary initial element of that space [Kreyszlg1978].
Therefore, the encoding process is to find an IFS
whose fixed point is close to the given image. The
usual approach is based on the collage theorem,
which provides a bound on the distance between the
image to be encoded and the fixed point of an IFS
(more details please refer to [Fisher1995] chapter 2).
A suitable transformation may therefore be
constructed as a ‘collage’ from the image to itself
with a sufficiently small ‘collage error’ (the distance
between the collage and the image) guaranteeing that
the fixed point of that transformation is close to the
original image [Wohlberg1999].
In the original approach, devised by Barnsley, this
transformation was composed of the union of a
number of affine mappings on the entire image
[Barnsley1993]. While a few impressive examples of
image modelling were generated by this method
(Barnsley’s fern, for example [Barnsley1988]), no
automated encoding algorithm was found. Fractal
image compression became a practical reality with
the introduction by Jacquin of the partitioned IFS
(PIFS) [Jacquin1993], which differs from an IFS in
that each of the individual transformation operates on
a subset of the image, rather than the entire image.
Since the image support is tiled by ‘range blocks’,
each of which is mapped from one of the ‘domain
blocks’ as depicted in Figure 3, the combined
mappings constitute a transformation on the image as
a whole. The transformation minimizing the collage

error within this framework is constructed by
individually minimizing the collage error for each
range block, which requires locating the domain
block which may be made closest to it under an
admissible block mapping. This transformation is
then represented by specifying, for each range block,
the identity of the matching domain block together
with the block mapping parameters minimizing the
collage error for that range block.

Figure 3. Each range block is constructed by a

transformed domain block

Basic Fractal Image Encoder
The encoder has to solve the following problem: for
each range block R the best approximation
 R ≈ sD + oI (2.1)
needs to be found, where D is a codebook block
transformed from a domain block to the same size as
R. The coefficients s and o are called scaling and
offset. We work out this problem with the Euclidean
norm. That is, to minimize

 (2.2)
we can use the well known method of least squares to
find the optimal coefficients directly as follows.
Given a pair of blocks R and D of n pixels with
intensities r1,…, rn and d1,…, dn we have to
minimized the quantity
 .

 (2.3)
The best coefficients s and o are

 (2.4)
and
 .

 (2.5)
With s and o given the square error is

(2.6)
If the denominator in equation 2.4 is zero then s = 0
and o = . .
In summary the baseline fractal encoder with fixed
block size operates in the following steps.

1. Image segmentation. Segment the given
image using a fixed block size, for instance,
4×4. The resulting blocks are called ranges
Ri.

2. Domain pool and codebook blocks
definition. By stepping through the image
with a step size of l pixel(s) horizontally and
vertically create a set of domain blocks,
which are four times as the size of range
blocks. By averaging the intensities of four
neighboring pixels each domain blocks
shrinks to match the size of the ranges. This
produces the codebook blocks Di.

3. The search of best s and o. For each range
block Ri an optimal approximation Ri ≈ sDi
+ oI in the following steps:
a) For each codebook block Di compute an
optimal approximation Ri ≈ sDi + oI in three
steps:

i. Perform the least squares optimization
using formulas 2.4 and 2.5, yielding a
real coefficient scalar s and an offset o.
ii. Quantize the coefficients using a
uniform quantizer.
iii. Using the quantized coefficients s and
o compute the error E(Ri, Di).

b) Among all codebook blocks Di find the
block Dk with minimal error

E(Ri, Dk)= mini E(Ri, Di).
c) Output the code for the current range
block consisting of indices for the quantized
coefficient s and o and the index k
identifying the optimal codebook block Dk.

3. SPIRAL ARCHITECTURE AND
IMAGE REPRESENTATION
A digital image contains thousands of pixels to
represent the real world and when we touch the term
‘pixel’ so far, that means a rectangular box in an
image. Almost all the previous image processing and
image analysis research is based on this traditional
image structure. However, we do have a relatively
new image structure called Spiral Architecture (SA)
[Sheridan1996]. Spiral Architecture is inspired from
anatomical considerations of the primate’s vision
[Schwartz1980]. From the research about the
geometry of the cones on the primate’s retina (See
Figure 4) we can conclude that the cones’
distribution has inherent organization and is featured
by its potential powerful computation abilities. The
cones with the shape of hexagons are arranged in a
Spiral clusters. This cluster consists of the
organizational units of vision. Each unit is a set of
seven hexagons compared with the traditional

rectangular image architecture using a set of 3×3
vision unit as shown in Figure 5.

Figure 4. Distribution of Cones on the Retina

Figure 5. Unit of vision in the two image
architectures

Spiral Addressing
The first step in SA formulation is initially labeling
each of the individual hexagons with a unique
address. The addresses of these hexagons will then
be simply referred to the hexagons. This is achieved
by a process that is initially applied to a collection of
seven hexagons. Each of these seven hexagons is
labeled consecutively with addresses 0, 1, 2, 3, 4, 5
and 6 as displayed in Figure 6.

Figure 6. A collection of seven hexagons with

unique addresses
Dilate the structure so that six additional collections
of seven hexagons can be placed about the addressed
hexagons, and multiply each address by 10. For each
new collection of seven hexagons, label each of the
hexagons consecutively from the centre address as
we did for the first seven hexagons (see Figure 7).

Figure 7. A collection of 72 = 49 hexagons with

labelled addresses

The repetition of the above steps permits the
collection of hexagons to grow in powers of seven
with uniquely assigned addresses. It is this pattern of
growth of addresses that generates the Spiral.
Furthermore, the addresses are consecutive in base
seven.
The important aspect of each hexagon is that it has
six neighboring hexagons. This establishes the
property that for all hexagons, the centre of each
hexagon has a constant distance from every one of its
six neighbors. According to Umbaugh
[Umbaugh1996], the difference of light intensities
between pixels is highly related to the distance
between them: the closer they are, the less difference
observed. Hence, the light intensity of a hexagonal
pixel can be considered being equally affected by the
light intensities of its six neighboring pixels
[He1999]. Moreover, each set of seven hexagons
may enjoy very similar light intensities and the
difference between the centre and others would be
quite small. This idea is the foundation stone when
considering image compression on SA.

Spiral Counting
Spiral Counting [Sheridan1996] is an algorithm that
designates a sequence of hexagons in SA. It can be
considered as a Spiral movement that given a
commencing hexagon, counts for a pre-determined
number and terminates at another certain hexagon.
Any hexagon in an image can be reached by Spiral
counting from any other given hexagon in the same
image. When applying Spiral counting, it is strictly
dependent on a pre-determined key define by
Sheridan in [Sheridan1991]. A key is the first
hexagon to be reached in an instance of a Spiral
counting, which determines two important
parameters: the distance and the orientation. For
instance, given a Spiral address 15, the key of 15 can
determine two values. One is the distance between
the given hexagon 15 to the hexagon 0; the other is
the orientation of hexagon 15 from hexagon 0. We
could use the angle ω to represent the orientation (see
Figure 8).

ω

Figure 8. The key of hexagon 15

(a) Rectangular Architecture (b) Spiral Architecture

2

3
0

4
5

6
1

Spiral counting is used to define two operations in
the SA, which are Spiral Addition and Spiral
Multiplication [Sheridan1991]. Let a and b be Spiral
addresses of two arbitrarily chosen hexagons in SA.
Then,

 Spiral addition of a and b, denoted by a + b,
is the Spiral address of the hexagon found
by Spiral counting b hexagons in the key of
Spiral address 1 from the hexagon with
Spiral address a;

 Spiral multiplication of a and b, denoted by
a x b, is the Spiral address of the hexagon
found by Spiral counting b hexagons in the
key of Spiral address a from the hexagon
with Spiral address 0.

Spiral Architecture together with the operations of
Spiral Addition and Spiral Multiplication is a
Euclidean Ring [Sheridan1991]. This property is
necessary to further implement SA for image
compression.

Virtual Spiral Architecture
SA has two unbeatable characters that are expected
to improve image compression performance: Locality
of Pixel Intensity and Uniform Image Partitioning
[Hintz2003]. However due to the lack of capture and
display devices, SA has not yet been widely used in
image processing. In order to make SA applicable on
the current available devices, Wu constructed a
mimic scheme called Virtual Spiral Architecture
(VSA) [Wu2004], with which images on rectangular
structure can be smoothly converted to SA.
VSA mimicking scheme is so called ‘virtual’ because
it only exists on computer memory during the
procedures of image processing. The processing
result will still be displayed on the traditional
rectangular structure (see Figure 9).

In order to keep the resolution, hexagonal and square
pixels are defined as the same size, i.e. 1 unit area.
Then if we map the SA on a traditional image and
then let N denote the number of square pixels
covered by a hexagonal pixel and let is represent the
size of overlapped area in a certain square pixel i
(See Figure 10), so the contribution of gray level
given by this square pixel to the hexagonal pixel is
measured by the percentage of the overlapped area,
i.e. pi.

%1001/ ×= ii sp (3.1)

Therefore the grey value of this hexagonal pixel is

∑
=

⋅=
N

i
iSquHex pgg

i
1

)(, (3.2)

where
iSqug is the grey level of the i square pixel.

As a result, the grey level information for SA is now
available during the procedure of image processing
and the experiment result can be displayed back on a
traditional square-structure-based device following
the similar mapping method (see Figure 11)

Figure 11. Boat in Square Structure and Virtual
Spiral Architecture Displayed on Normal Device

4. FRACTAL IMAGE COMPRESSION
ON SPIRAL ARCHITECTURE
In this preliminary research on adopting fractal image
compression into Spiral Architecture, we follow the
same idea applied on square structure, i.e. PIFS as
described earlier. Firstly we separate the image into
range blocks of seven hexagonal pixels and define
the domain blocks of seven times more, i.e. 49 pixels
(see Figure 12). Each pixel in the image can be the
centre of a domain block. Then we include the
neighboring 48 pixels around it based on Spiral

Figure 10. The relationship between a virtual
hexagonal pixel and overlapped square pixels.

1s

2s 3s

4s

Figure 9. Flowchart of image processing on virtual
Spiral Architecture

Original images
on square grids

Images on virtual
hexagonal grids

Processed images
on square grids

Mapping

Inversely
Mapping

Process images
on hexagonal grid

counting to form a domain block unless any pixel of
this domain block is out of the given image.

 range block domain block

Figure 12. Range and domain blocks in Spiral
Architecture

A number of researchers have noticed a tendency for
a range block to be spatially close to the matching
domain block, [Beaumont1990; Barthel1994], based
on the observed tendency for distributions of spatial
distances between range and matching domain blocks
to be highly peaked at zero [Jacquin1993;
Woolley1995]. Motivated by this observation, the
domain pool for each range block may be restricted
to a region about the range block [Jacquin1990], or a
spiral search path may be followed outwards from
the range block position [Beaumont1990;
Barthel1994]. Therefore, in order to reduce the
computational complexity, for each range block we
only search for up to 343 domain blocks, which are
around this range block. Each of those range blocks
has at most 343 domain blocks in the domain pool
and the centers of domain blocks in the pool are the
first 343 pixels counting from the centre of range
block through spiral direction.

5. EXPERIMENTAL RESULTS
We use the same algorithms mentioned before on
square and Spiral Architecture for four popular
images: a building, a boat and a house. Figures 13
through 18 show the experimental results and we
summarize them in two tables.

Figure 13. Original and compressed ‘building’ in

square structure

Figure 14. Original and compressed ‘boat’ in

square structure

Figure 15. Original and compressed ‘house’ in

square structure

Figure 16. Original and compressed ‘building’ in
Spiral Architecture

Figure 17. Original and compressed ‘boat’ in
Spiral Architecture

Figure18. Original and compressed ‘house’ in

Spiral Architecture

ω

Image Compression ratio PSNR

Building 3.37 23.40

Boat 3.37 26.56

House 3.37 22.41

Table 1. Summary for images on square
structure

Image Compression ratio PSNR

Building 2 25.43

Boat 2 29.73

House 2 26.20

Table 2. Summary for images on Spiral
Architecture

 As the range block on SA is of 7 pixels (compare
with 16 pixels in square structure), the compression
ratio is slightly lower but the quality of
decompressed image has increased.

6. CONCLUSIONS AND FUTURE
WORK
According the experiments done so far, we have
found that Spiral Architecture has a great potential in
improving fractal image compression. Knowing the
fact that there have been a large number of methods
found to optimize fractal image compression on
traditional image structure, we would try some of
them on Spiral Architecture. Moreover, we may take
advantage of spiral multiplication to find out the self-
similarity in an image with less computational
complexity. The following are some proposed
methods:

1. Apply spiral multiplication to have a
number of sub-images with 7n pixels as
range blocks. Define domain blocks as the
sub-images with 7n+1 pixels obtained by
spiral multiplication to form the domain
pool. This method is expected to take
advantage of the self-similarity introduced
by spiral multiplication so that the time to
search pairs between range and domain
blocks will reduce significantly.

2. In order to have a more accurate domain
pool, instead of averaging the neighboring
seven pixels intensities to scale a domain
block to be a codebook block, the medium
value of these seven pixels could be used to
represent their intensity.

3. Based on lots of experimental results, the
larger errors between fractals and the
original images always happen along the
contour or edge of objects in the image. We

are able to classify the range blocks into
three categories by their frequency in
intensity – shade, edge and midrange.
During the search process, we then can
enlarge the domain pool for range blocks
with higher frequency.

In short, with the implement results it can be seen
that introducing Spiral Architecture into fractal
image compression has great future in improving the
compression performance and a lot of researches
exist in this area.

7. REFERENCE
[Barnsley1988] Barnsley, M., Fractal Everywhere,

New York: Academic,1988.
[Barnsley1985] Barnsley, M. and S. Demko, Iterated

Function Systems and the Global Construction of
Factals, Royal Soc., London.

[Barnsley1993] Barnsley, M. and L. P. Hurd, Fractal
Image Compression, AK Peters. Ltd,1993.

[Barnsley1988] Barnsley, M. and A. D. Sloan,A
better way to compress images, BYTE: 215-
223.1988.

[Barthel1994] Barthel, K. U. and T. Voye Adaptive
fractal image coding in the frequency domain
Porc. Int. Workshop Image Processing:
33~38,June 1994.

[Beaumont1990] Beaumont, J. M. Advances in block
based fractal coding of still pictures Proc. IEE
Colloq.: The Application of Fractal Techniques in
Image Processing: 3.1~3.6,Dec, 1990.

[Fisher1995] Fisher, Y., Fractal Image Compression:
Theory and Application, New York, Springer-
Verlag New York, Inc.,1995.

[He1999] He, X., 2D-object Recognition with Spiral
Architecture, PhD. Thesis, Faculty of Information
Technology, University of Technology,
Sydney1999.

[Hintz2003] T. Hintz and Q. Wu, Image
Compression on Spiral Architecture, The
International Conference on Imaging Science,
Systems and Technology, Las Vegas, Nevada,
USA.

[Jacquin1990] Jacquin, A. E. Fractal image coding
based on a theory of iterated contractive image
transformations Pro. SPIE: Vis. Commun. Image
Processing 1360: 227~239,1990.

[Jacquin1993] Jacquin, A. E. Fractal image coding: a
review Proceedings of the IEEE 81(10): 1451-
1465,1993.

[Kreyszlg1978] Kreyszlg, E., Introductory
Functional Analysis with Applications, New
York: Wiley,1978.

 [Schwartz1980] Schwartz, E. Computational
Anatomy and Functional Architecture of Striate
Cortex: A Spatial Mapping Approach to

Perceptual Coding Vision Research 20: 645-
669,1980.

[Sheridan1996] Sheridan, P., Spiral Architecture for
Machine Vision, PhD. Thesis, Faculty of IT,
University of Technology, Sydney1996.

[Sheridan2000] Sheridan, P., T. Hintz, et al. Pseudo-
invariant image Transformations on a hexagonal
lattice Image and Vision Computing 18: 907-
917,2000.

[Sheridan1991] Sheridan, P., T. Hintz, et al. Spiral
Architecture in Machine Vision Australian
Occam and Transputer Conference,1991.

[Umbaugh1996] Umbaugh, S. E., Computer Vision
and Image Processing: A Practical Approach
Using CVIP tools, Prentice Hall,1996.

[Wohlberg1999] Wohlberg, B. and G. d. Jager, A
Review of the Fractal Image Coding Literature,
IEEE Transaction on Image Processing.

[Woolley1995] Woolley, S. J. and D. M. Monro
Optimum parameters for hybrid fractal image
coding Proc. IEEE Int. Conf. Acoustics, Speech
and Signal Processing 4: 2571~2574,1995.

[Wu2004] Wu, Q., X. He, et al., Virtual Spiral
Architecture, The International Conference on
Parallel and Distributed Processing Techniques
and Applications.

Parameterization of Tubular Surfaces on the Cylinder

Toon Huysmans
Vision Lab, Dept. of Physics

University of Antwerp

Groenenborgerlaan 171

Belgium 2020, Antwerp

toon.huysmans@ua.ac.be

Jan Sijbers
Vision Lab, Dept. of Physics

University of Antwerp

Groenenborgerlaan 171

Belgium 2020, Antwerp

jan.sijbers@ua.ac.be

Brigitte Verdonk
Dept. of Math. and CS.

University of Antwerp

Middelheimlaan 1

Belgium 2020, Antwerp

brigitte.verdonk@ua.ac.be

ABSTRACT
In this paper we develop a method to parameterize tubular surfaces onto the cylinder. The cylinder can be seen
as the natural parameterization domain for tubular surfaces since they share the same topology. Most present
algorithms are designed to parameterize disc-like surfaces onto the plane. Surfaces with a different topology are cut
into disc-like patches and the patches are parameterized separately. This introduces discontinuities and constrains
the parameterization. Also the semantics of the surface are lost. We avoid this by parameterizing tubular surfaces
on, their natural domain, the cylinder. Since the cylinder is locally isometric to the plane we can do calculations
on the cylinder without loosing efficiency. For speeding up the calculation we use a progressive parameterization
technique, as suggested in recent literature. Together, this results in a robust, efficient, continuous, and semantics
preserving parameterization method for arbitrary tubular surfaces.

Keywords
parameterization, remeshing, geometry images, texture mapping

1. INTRODUCTION
Surface parameterization is a technique to convert a
mesh, described using primitives like triangles, quadri-
laterals, or polygons, into a parametric description of
the surface. In most applications the surface is two-
dimensional and it is embedded in a three dimensional
space. Thus, a parameterization is a map from a two-
parameter domain onto the three-coordinate surface.

During the last ten years, parameterization has be-
come an important topic in computer science and
especially in computer graphics. It has a variety
of applications such as: texture-mapping [LPRM02,
SGSH02], rendering acceleration [GGH02], morph-
ing [Ale02, ZSH00], remeshing and level of detail
[EHL+95, PH03, AMD02], surface fitting [BGK95],
surface description [SD02] and form analysis [Sty01].

Most of the techniques in the literature are concerned
with the parameterization of topological discs. The

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency–Science Press

parameterization of surfaces of other topology is ad-
dressed by cutting the surface into one or more patches,
of disc topology, and parameterizing the patches sep-
arately. This cutting constrains the parameterization
process from the beginning and it also introduces dis-
continuities into the parameterization. For some ap-
plications, like global form analysis, morphing, and
surface fitting, this is undesirable. The only way to
parameterize a surface of non-disc topology, without
cutting it, is by parameterizing it on a domain that has
the same topology as the surface. For example, sur-
faces with spherical topology can be parameterized on
the sphere [PH03,GGS03,GWC+03]. In [KS04] and
[SAPH04] triangle surfaces are parameterized onto
other triangle surfaces that share the same topology.

We are interested in parameterizing surfaces with
cylindrical topology onto the cylinder. This is done
by Zöckler et al. in their paper on morphing [ZSH00],
where they parameterize the cylindrical surface in two
stages: first they cut the surface and parameterize it
onto the plane, and then the parameterization is glued
back together and optimized on the cylinder. Since
the surface is cut, distortions are introduced in the first
optimization and therefore they have to optimize the
parameterization a second time. For complex surfaces
this method might not find the optimal parameteriza-
tion. Our algorithm is different; we directly param-
eterize onto the cylinder without cutting the surface.
This way our algorithm is capable of parameterizing

Figure 1: Some examples of tubular surfaces.

virtually any tubular surface with low distortion.

Goal The goal of this work is to find a one-to-one
mapping from the surface of the cylinder to an arbi-
trary tubular surface. With ‘tubular surface’ we mean
any elastic deformation of a sphere with two holes
(boundaries), see figure 1 for a number of examples.
The upper boundary of the cylinder should map to
one of the boundaries of the tubular surface and the
lower boundary of the cylinder should map to the other
boundary of the tubular surface. The interior of the
surface of the cylinder then has to be mapped to the
interior of the tubular surface. This is illustrated in fig-
ure 2.

There are an infinite number of maps possible between
the cylinder and a tubular surface, but we desire a map
that is a balanced tradeoff between the following two
properties. First, we require that the semantics of the
cylinder are ported to the tubular surface. By this we
mean that axial lines on the cylinder are mapped to
lines that run in the axial direction on the tubular sur-
face and that radial curves of the cylinder are mapped
to curves that run in the radial direction on the tubular
surface (see figure 3). Second, we also want that a uni-
form distribution of points on the cylinder is mapped
to a quasi uniform distribution of points on the tubular
surface. The results in section 4. will show that mini-
mizing the stretch [SGSH02] of the map, will produce
a map with a balanced tradeoff between the semantics
and the uniformity property.

The remainder of this paper is divided into the follow-
ing sections: Section 2. contains some theory about
parameterizations and the cylinder that is important
for the rest of the paper. Section 3. explains our ap-
proach to the parameterization of tubular surfaces on
the cylinder. Section 4. shows some results obtained
with an implementation of our technique. Some sur-
faces together with their cylindrical parameterization
and also some cylindrical geometry images are shown.
Section 5. concludes the paper and suggests directions
of future research.

Figure 2: The upper boundary of the cylinder is
mapped to the red boundary of the tubular surface and
the lower boundary is mapped to the blue boundary of
the tubular surface. The interior of the cylinder surface
is mapped to the (grey) interior of the tubular surface.

Figure 3: Semantics of the cylinder: Axial and radial
lines on the cylinder are mapped to axial and radial
lines on the tubular surface.

2. THEORY
This section introduces some basic differential geome-
try notions and explains some of the geometric proper-
ties of the cylinder, which are important to understand
the rest of the paper. Most of this can be found in
an elementary differential geometry book, for exam-
ple [dC76].

Parameterization Informally, a parameterization
of a surface M is a bijective map from a domain D
to the surface M. Mostly, D is a simple mathemat-
ical surface, for example the plane [SGSH02] or the
sphere [PH03].

More formally, a parameterization of the surface M,
on the domain D, is a homeomorphism Φ between D
and M. The domain D is chosen so that it is home-
omorphic to M. This leaves us to explain the terms
homeomorphic and homeomorphism: suppose D and
M are topological spaces, and Φ is a function from D
to M. Then Φ is a homeomorphism iff the following
holds:

• Φ is a bijection;

• Φ is continuous;

• the inverse function Φ−1 is continuous.

0

x

y

z

p

v

u

r

h

Figure 4: The right circular cylinder of radius r and
height h. A point p on the lateral surface of the cylin-
der is defined by a cylindrical coordinate pair (u, v).

If there exists a homeomorphism Φ : D �→ M, then
M is said to be homeomorphic to D; D is also home-
omorphic to M, since Φ−1 is a homeomorphism.

In our specific setting of parameterization of tubular
surfaces, we choose D as the surface of the cylinder
andM the surface of the tubular object. We say that Φ
is a cylindrical parameterization of the tubular surface
M.

So, in this paper we are concerned with the automatic
construction of such a homeomorphism for any sur-
face homeomorphic to the cylinder.

The Right Circular Cylinder There are many def-
initions for the concept cylinder, but we choose a spe-
cific one: the right circular cylinder. This cylinder is
depicted in figure 4. The base of the right circular
cylinder is a circle of radius r and the centers of the
sections form a straight line perpendicular to the base
of the cylinder. We choose the lateral surface of the
cylinder as our parameterization domain D; it is pa-
rameterized by c : U �→ R

3:

U = {(u, v) ∈ R
2|0 ≤ u < 1, 0 ≤ v ≤ 1}

c(u, v) = (r cos(2πu), r sin(2πu), v). (1)

Geodesic Triangulation of the Cylinder In this
work we are only concerned with the parameterization
of piecewise linear triangle surfaces. This has the in-
teresting side effect that we do not have to calculate
the parameterization Φ for every point explicitly. If
we define the parameterization for the vertices and the
edges of the triangle surface, then the parameterization
of all other points can be found using interpolation.

We choose the parameterization of an edge between
two vertices on the surface to be a geodesic of the
cylinder that connects the parameterization of those
two vertices. We choose a geodesic because it is a lo-
cally length minimizing curve. On the cylinder, each
geodesic γ is a helix, a circle parallel to the base, or a

p1

p2

v

u

Figure 5: Three geodesics of the cylinder between
points p1 and p2. The solid is the shortest geodesic,
the dashed adds one turn in the positive u-direction
and the dotted adds two turns.

line perpendicular to the base, defined by:

γ(t) = (r cos (at + b), r sin (at + b), ct + d),

a, b, c, d ∈ R.

There are an infinite number of geodesics between any
two points on the cylinder, each with a different num-
ber of turns or a different direction. In figure 5 there
are three geodesics (helices) all connecting the same
two points. The solid line is the shortest geodesic of all
possible geodesics between p1 and p2. It is important
to specify the geodesic for each edge in the parameter-
ization. How we do this will become clear in section
3.

If we parameterize the vertices and the edges of the
surface onto the cylinder with the same connenctivity
as the surface mesh and if the resulting triangles on the
cylinder are not overlapping, then we get a triangula-
tion of the cylinder. This, we call a geodesic triangu-
lation because the edges of the triangles are geodesics
of the cylinder. Such a triangulation induces a map
from points on the cylinder to points on the surface. It
is clear that this map is bijective, continuous, and its
inverse is also continuous: it is a homeomorphism and
thus also a parameterization.

Local Cylinder-Plane Isometry As we already
mentioned in the introduction, most parameterization
algorithms have the plane as their parameterization do-
main; calculations done in this plane are mostly fast
and easy. When the parameterization domain is not
flat, the computations can be harder. For example
in [PH03] the domain is the sphere and calculations
involve numerical integration which slows down the
parameterization process.

A surface is flat if it has zero gaussian curvature, for
example the plane. To check that the cylinder is flat,
we compare the first fundamental form of the cylin-
der with the first fundamental form of the xy-plane.

If they coincide, then the cylinder is isometric to the
plane. As a concequence the cylinder has zero gaus-
sian curvature and therefore is flat.

The cylinder is parameterized by c in (1) and the xy-
plane on the other hand is parameterized by p : R

2 �→
R

3:

p(u, v) = (u, v, 0) (2)

The first fundamental form of the cylinder is given by:

Ec =

∣
∣
∣
∣

∂c

∂u

∣
∣
∣
∣

2

= r, Fc =
∂c

∂u
· ∂c

∂v
= 0, Gc =

∣
∣
∣
∣

∂c

∂v

∣
∣
∣
∣

2

= 1

The first fundamental form of the xy-plane is given by:

Ep =

∣
∣
∣
∣

∂p

∂u

∣
∣
∣
∣

2

= 1, Fp =
∂p

∂u
· ∂p

∂v
= 0, Gp =

∣
∣
∣
∣

∂p

∂v

∣
∣
∣
∣

2

= 1

We can see that the only difference between the first
fundamental forms is between Ec = r and Ep = 1,
but if we choose the radius of the cylinder to be r = 1
then the first fundamental forms coincide.

This means that the cylinder and the plane are lo-
cally isometric, yet they are not globally isometric be-
cause the plane and the cylinder are not homeomor-
phic. This local isometry can be grasped visually: by
cutting the cylinder along a line perpendicular to the
base, the cylinder can be unfolded to the plane without
distortion. This property has several interesting conse-
quences.

First of all, due to the isometry, every geodesic of the
cylinder corresponds to a geodesic of the plane and
vice versa. The geodesics of the plane are all straight
lines, so a geodesic triangle of the cylinder corre-
sponds to a straight-line triangle in the plane. Now,
if we have to apply an algorithm to geometry on the
cylinder, we can simply transform the geometry from
the cylinder to the plane by the isometry and apply or-
dinary algorithms to the planar geometry. Once the
result is obtained in the plane, it can be transformed to
the result on the cylinder.

Another advantage of working with the correspond-
ing plane geometry, is that we can use ordinary 2d-
optimization algorithms, like the conjugate gradient
algorithm, for optimization of the vertex positions.
Also, during the optimization of the vertex positions,
we have to calculate the distortions of a geodesic tri-
angle caused by the parameterization. But thanks to
the isometry, this distortion can be calculated using
the corresponding triangle in the plane. This means
that we can calculate the distortion, using the for-
mulas from planar parameterization algorithms as in
[SGSH02].

3. METHOD
The parameterization can be computed in two steps:
first, find a geodesic triangulation of the cylinder using

the connectivity of the tubular surface so that we have
a homeomorphism. Second, optimize the positions of
the vertices on the cylinder so that the distortion of the
parametrization is minimized. Although this method
is correct, it has the disadvantage that the optimization
step is very hard and that it will probably get stuck in a
bad local minimum. It is better to construct the param-
eterization in a hierarchical way, as in [HGC99] and
[SGSH02]. The hierarchical parametrization utilizes
the progressive mesh of the tubular surface and pro-
ceeds as follows: first the base mesh is parameterized
and then we iteratively split the vertices and locally op-
timize their placement while avoiding foldovers. This
method is outlined in the following algorithm:

Algorithm 1 Parameterize(M)

1: (M0, {vsplit1, . . . , vsplitm}) = ProgMesh(M);
2: P0 = ParameterizeBaseMesh(M0);
3: iprev = 0;
4: for i = 1 to m do
5: Pi−1

vspliti−→ Pi;
6: place new vertex v inside kernel of its 1-ring;
7: OptimizePlacement(v);
8: if #Pi > factor × #Piprev then
9: OptimizePlacement() for all v in Pi;

10: iprev = i;
11: end if
12: end for
13: OptimizePlacement() for all v in Pm;
14: return Pm;

We will now go into more detail:

Progressive Mesh Construction We first construct
the progressive mesh [Hop96] of our surface M us-
ing a quadratic error metric. A progressive mesh is
constructed by successively collapsing an edge of the
mesh; the next edge to collapse is chosen so that the
introduced quadratic error metric is minimal and that
the collapse does not violate any constraints. We im-
pose three constraints:

• Both boundaries of the tubular surface should
have at least three vertices.

• Collapse a boundary vertex only into a vertex
of the same boundary. This avoids that a ver-
tex of one boundary is collapsed into a vertex
of the other boundary, which would generate a
degenerate mesh. We also require this out of
convenience, because this way we know that an
internal vertex can never be split into a boundary
vertex which eases the parametrization process.

• The third constraint says that there may be no
triangles with all three vertices on one boundary,

Figure 6: The shaded triangle is violating the third
constraint because its three vertices are on one bound-
ary (bold line). We remedy this by splitting the edge
that is not on the boundary, this results in two extra
triangles.

because the parametrization of such a triangle
would result in a triangle of zero area, which is
undesirable.

We have added these constraints to the progressive
mesh construction algorithm. We also require that the
original surface does not violate any of the above con-
straints. If the first or the second constraint is violated
in the original surface, then we reject the mesh. When
the third constraint is violated in the original surface,
we have a remedy: split the edge of the triangle that is
not on the boundary, this is depicted in Figure 6.

The progressive mesh is represented by the base mesh
M0 and a set of vertex splits {vsplit1, vsplit2, . . . ,
vsplitm}, which are the reverse operations of the edge
collapses in reversed order.

Base Mesh parameterization If we construct the
progressive mesh of a tubular surface, as explained
in the previous section, then the base mesh M0 will
be an open prism with a triangle as its base. This
mesh is depicted in Figure 7. Each of the three square
sides of the base mesh consists of two triangles. This
mesh is parameterized on the cylinder by separating
the three points on both boundaries by 120 degrees.
Then the vertices on one of the boundaries are rotated
until three of the edges, connecting both boundaries,
are perpendicular to the base of the cylinder. The
(u, v)-coordinates of the parameterized base mesh are
displayed in Figure 7.

We also have to determine the parameterization of the
edges; the parameterization of an egde is a geodesic of
the cylinder. A geodesic can be determined by specify-
ing its direction (negative or positive u-direction) and
its number of turns (0,1,2,. . .). The parameterization
of an edge ((u1, v1), (u2, v2)) of the base mesh is al-
ways a geodesic with 0 turns, because the length of the
edge is at most 1/3 in the u-direction, and its direction
is positive if u1 <= u2 and negative otherwise.

In this way we obtain a geodesic triangulation of the

����� � ������� ������

����� ������� �������

�������

� ������� ������

Figure 7: Base mesh of the progressive mesh for a
tubular object, together with the (u, v)-coordinates of
its parameterization.

cylinder with the connectivity of the base mesh, and
thus we have found the parameterization P0 of the
base mesh.

Next Level Parameterization Once we have the
parameterization of the base mesh, we start by itera-
tively refining the resolution of the parameterization
using vertex splits until we end up with the parameter-
ization Pm of Mm = M. The step we explain here is
generic and takes us from a parameterizationP i to the
parameterization Pi+1.

We start by applying vspliti to Pi, this results in a new
vertex v. In order to avoid foldovers we have to put
this vertex inside the kernel of the polygon formed
by the triangles of its 1-ring. We will put the vertex
v in the center of this kernel. The kernel is com-
puted in the plane using the isometry. But first we
will have to transform the polygon to the plane. We
set the y-coordinates of the planar polygon equal to
the v-coordinates of the cylindrical polygon. We then
choose one point of the polygon as a reference and
set its x-coordinate to 0. Then we determine the x-
coordinate of the next vertex in the polygon by calcu-
lating the u-length of the geodesic edge between this
vertex and the reference vertex(taking into account the
direction and the number of turns of the geodesic).
Then the u-coordinate of the next vertex is determined
relative to the previous vertex until al vertices are as-
signed a u-coordinate and we have obtained the planar
version of our geodesic polygon.

We construct the kernel of this planar polygon using
line clipping and calculate its geometric center. Then
we transform the center to the cylinder and use this
coordinate as the placement for v. We transform the
center from the plane to the cylinder using a vertex of
the polygon as a reference. We also update the direc-
tion and number of turns of each of the edges incedent
to the vertex v. We now have a parameterization of
Mi+1.

In order to obtain a parameterization that is a balanced

trade-off between the semantics and the uniformity
property (see section 1.), we have to optimize the pa-
rameterization. After we have split a vertex, the place-
ment of the new vertex v will be optimized, then we
optimize the placement of each of its neighbours and
we end with optimizing the new vertex v again. Also,
when the number of vertices in the parameterization
has increased with a factor (for example 1.5), we do
this optimization for each of the vertices of the param-
eterization. A single vertex is optimized by the follow-
ing steps:

1. transform the vertex v and its 1-ring polygon to
the plane;

2. use the current position of v as an initial guess
for the optimization;

3. minimize the symmetric version of the geomet-
ric stretch of the barycentric map summed over
the 1-ring triangles as defined in [SGSH02]. The
calculation of geometric stretch is based on the
Jacobian of the barcentric map, since the Jaco-
bian is invariant to isometry we can calculate the
stretch using the planar triangles instead of the
geodesic triangles of the cylinder. The optimiza-
tion of the metric is also done in the plane using
a standard 2D-optimization routine, while con-
straining the position of v to the kernel of the
1-ring polygon in order to avoid foldovers;

4. in the end, transform the optimized position of
v back to the cylinder and update the direction
and number of turns of each geodesic incident
to the optimized vertex.

There is one remark we have to make: when we pa-
rameterize tubular objects that are very long in the ax-
ial direction compared to the radial direction, the pa-
rameterization gives bad results since the triangles are
compressed in the axial direction to fit on the cylin-
drical domain of length 1. This can be remedied by
changing the length of the cylindrical domain. For ex-
ample when parameterizing a tubular surface that is
twice as long in the axial direction as it is in the radial
direction, we have to set the length of the cylindrical
domain to the double of the radius of the cylindrical
domain. Currently this length has to be estimated by
the user, in the future we hope to automate this.

Sampling the Parameterization Up till now we
have only defined the parametrization of the ver-
tices and the edges. If we would like to sample the
parametrization at arbitrary points of the cylindrical
domain, then we have to define the parameterization at
every point. As we have seen in the previous section,
the interior of a triangle is parameterized using the

surface # faces h time (s)

knot 12768 7.0 55
pipe 23248 3.0 117
head 11538 1.0 64
bow 33702 2.0 143

spring 19152 10.0 89
screwdriver 53782 3.0 268

Table 1: parameterization results of surfaces from
11K to 50K faces within 1 to 5 minutes. The height
of the cylinder (h) ranges from 1 to 10 times the radius
of the cylinder.

barycentric map. Therefore if we want to sample the
parameterization on the point (u, v) we only have to
find the geodesic triangle on the cylinder that contains
the point (u, v), the value of the parametrization is
then determined by the barycentric map from that tri-
angle to the corresponding triangle on the tubular sur-
face. To find the triangle containing the point (u, v),
we utilize a point location technique using bounding
volume hierarchies [GLM96].

4. RESULTS
We have tested an implementation of the algorithm on
different tubular surfaces, the results are summarized
in Table 1. We have parameterized surfaces with 11K
to 50K faces, within 1 to 5 minutes on a 1.2GHz com-
puter. In Figure 8 the parameterized surfaces are dis-
played. The parameterization is revealed by the texture
of the surface, the blue and the red lines on the surface
are the iso-parameter lines for respectively the u and
v parameter. Also, the quality of the parameterization
can be derived from this figure. First, the semantics
of the cylinder are ported to the surfaces because the
red lines (iso-u) are running in the radial direction and
the blue lines (iso-v) are running in the axial direc-
tion. Second, the distortion is kept low, which we can
see because the iso-parameter lines form squares or
rectangles. However, the size of the squares or rect-
angles can vary on the same surface (for example on
the screwdriver), which tells us that the parameteriza-
tion suffers from scale distortion. This is unavoidable
when parameterizing onto the cylinder. This is also
the reason why we did not add the stretch of the pa-
rameterizations in Table 1, there would be no point in
comparing them.

Once a parameterization is obtained it is also possi-
ble to generate a geometry image [GGH02] of the sur-
face. Geometry images are a completely regular im-
age based surface representation with implicit connec-
tivity. They have a number of applications: hardware
accelerated rendering, adaptive remeshing, compres-
sion, etc. Our geometry images are constructed by

Figure 8: parameterization results, from left to right and from top to bottom: a knot, a pipe with a cross section that
morphs from a circle to a star and back to a circle, a head with the bottom of the neck open and a square hole in the
top, a bow, a spring, and a screwdriver with a hole in the tip and in the top. The texture visualizes the iso-parameter
lines of the parameterization.

Figure 9: A geometry image is generated by parame-
terizing the surface on the cylinder and unfolding the
cylinder to the plane.

sampling the cylindrical parameterization on a regu-
lar (u, v)-grid and unfolding this grid to the plane, this
process is visualized in Figure 9. One side-effect of
cylindrical geometry images is that the u and v res-
olution can be controlled separately. This results in
rectangular geometry images, which can be useful for
elongated surfaces. Figure 10 displays the cylindrical
geometry image and normal map of the bow surface at
different resolutions.

5. CONCLUSION
In this paper we propose a new method to parameter-
ize tubular surfaces. We parameterize the surfaces on
their natural domain i.e., the cylinder, which avoids
cutting. By minimizing our symmetric stretch metric
we obtaine a parameterization with a balanced trade-
off between cylindrical semantics and uniform sam-
pling. We test the algorithm on several surfaces and
summarize the results. We also propose a new kind
of geometry images for cylindrical surfaces and show
some results.

Figure 10: Cylindrical geometry image and normal
map of the bow surface at following resolutions: 257×
257, 33 × 33, 5 × 5. The remesh of the geometry im-
age at each resolution is displayed on the left and is
flat shaded.

Future directions of research: we would like to find a
method to automatically determine the optimal length
of the cylinder when parameterizing a surface or adapt
the parameterization method so that we can use a
cylinder of unit length without artifacts. We would
also like to extend the parameterization method for
feature correspondance. This should enable us to use
the tubular parameterization for shape analysis of bi-
ological tubular objects as for example the human
cochlea.

ACKNOWLEDGMENTS
This work was financially supported by the Flemish
Institute for the Promotion of scientific and Techno-
logical Research in the Industry (I.W.T.) - Brussels,
Belgium and the Fund for Scientific Research (F.W.O.)
- Flanders, Belgium.

References
[Ale02] Marc Alexa. Recent advances in mesh

morphing. Computer Graphics Forum,
21(2):173–196, June 2002.

[AMD02] Pierre Alliez, Mark Meyer, and Mathieu
Desbrun. Interactive geometry remeshing. In
Proceedings of the 29th annual conference on
Computer graphics and interactive techniques,
pages 347–354. ACM Press, 2002.

[BGK95] Ch. Brechbühler, G. Gerig, and O. Kübler.
Parametrization of closed surfaces for 3-D
shape description. Computer Vision and Image
Understanding: CVIU, 61(2):154–170, March
1995.

[dC76] Manfredo P. do Carmo. Differential Geometry
of Curves and Surfaces. Prentice-Hall, 1976.
503 pages.

[EHL+95] Matthias Eck, Hugues Hoppe, Michael
Lounsbery, Tom Duchamp, Tony DeRose, and
Werner Stuetzle. Multiresolution analysis of
arbitrary meshes. Proc. Conf. on Computer
Graphics (SIGGRAPH ’95), pages 173–182,
January 1995.

[GGH02] Xianfeng Gu, Steven J. Gortler, and Hugues
Hoppe. Geometry images. In John Hughes,
editor, SIGGRAPH 2002 Conference
Proceedings, Annual Conference Series, pages
335–361. ACM Press/ACM SIGGRAPH,
2002.

[GGS03] C. Gotsman, X. Gu, and A. Sheffer.
Fundamentals of spherical parameterization
for 3d meshes. ACM Transactions on
Graphics, 22, 2003.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha.
Obbtree: A hierarchical structure for rapid
interference detection. In Proc. SIGGRAPH
’96, pages 171–180, 1996.

[GWC+03] X. Gu, Y. Wang, T. Chan, P. Thompson, and
S. Yau. Genus zero surface conformal
mapping and its application to brain surface
mapping. In Information Processing Medical
Imaging 2003, 2003.

[HGC99] K. Hormann, G. Greiner, and S. Campagna.
Hierarchical parametrization of triangulated
surfaces. In B. Girod, H. Niemann, and H.-P.
Seidel, editors, Proceedings of Vision,
Modeling, and Visualization 1999, pages
219–226, Erlangen, Germany, November
1999. infix.

[Hop96] Hugues Hoppe. Progressive meshes. Proc.
23rd Int’l. Conf. on Computer Graphics and
Interactive Techniques (SIGGRAPH’96),
pages 99–108, January 1996.

[KS04] Vladislav Kraevoy and Alla Sheffer.
Cross-parameterization and compatible
remeshing of 3d models. ACM Trans. Graph.,
23(3):861–869, 2004.

[LPRM02] Bruno Levy, Sylvain Petitjean, Nicolas Ray,
and Jerome Maillot. Least squares conformal
maps for automatic texture atlas generation. In
Proceedings of the 29th annual conference on
Computer graphics and interactive techniques,
pages 362–371. ACM Press, 2002.

[PH03] Emil Praun and Hugues Hoppe. Spherical
parametrization and remeshing. ACM
Transactions on Graphics, 22(3):340–349,
July 2003.

[SAPH04] John Schreiner, Arul Asirvatham, Emil Praun,
and Hugues Hoppe. Inter-surface mapping.
ACM Trans. Graph., 23(3):870–877, 2004.

[SD02] Jan Sijbers and Dirk Van Dyck. Efficient
algorithm for the computation of 3D fourier
descriptors. In Guido M Cortelazzo and
Concettina Guerra, editors, Proceedings of the
1st International Symposium on 3D Data
Processing Visualization and Transmission
(3DPVT-02), pages 640–643, Los Alamitos,
CA, June 29–21 2002. IEEE Computer
Society.

[SGSH02] Pedro V. Sander, Steven J. Gortler, John
Snyder, and Hugues Hoppe.
Signal-specialized parametrization. In 13th
Eurographics Workshop on Rendering.
Eurographics Association, 2002.

[Sty01] Martin Styner. Combined Boundary-Medial
Shape Description of Variable Biological
Objects. PhD thesis, University of North
Carolina, Dept. of Computer Science, June
2001.

[ZSH00] Malte Zöckler, Detlev Stalling, and
Hans-Christian Hege. Fast and intuitive
generation of geometric shape transitions. The
Visual Computer, 16(Issue 5):241–253, 2000.

Silhouette Enhanced Point-Based Rendering

José Luiz Luz, Luiz Velho, Paulo Cezar P. Carvalho

IMPA–Instituto Nacional de Matemática Pura e Aplicada
Estrada Dona Castorina, 110, 22460

Rio de Janeiro, RJ, Brasil
{josell, lvelho, pcezar}@visgraf.impa.br

ABSTRACT
With the recent advances in the 3D scanning field, the size of datasets to be displayed has increased up to bil-
lions of points. Typically, we have a dense, unstructured set of points without connectivity information. Most
researchers have proposed the point-surfel association to represent the surface’s geometry and to render it using
a planar approximation for each point. This paper proposes an alternative approximation, where curved surface
elements (c-surfels) are employed, in order to get better adaptation to the surface to be rendered. We also use
texture mapping and blending, to produce a perceptually better visualization. Improvements caused by using
curved surfels instead of planar ones are especially noticeable at the object’s silhouette.

Keywords: Point-based Rendering, Graphics Data Structures, Texture Mapping.

1 INTRODUCTION

The problem of handling 3D datasets obtained from
real-world objects has drawn the attention of the re-
search community. Typically, we have a dense, un-
structured set of points (sometimes, billions of them)
without connectivity information. The techniques to
treat these datasets have evolved, especially due to re-
search on triangle meshes, since triangles are the most
popular modeling primitives. Nevertheless, with the
growing use of complex geometries the overhead asso-
ciated with polygonal meshes is reaching prohibitive
levels. As a consequence, other representations be-
come more attractive.

More recently, there has been a trend to use point-
based representations. Given the simplicity of points,
they seem natural for modeling and rendering. We can
obtain them from parametric representations (polygo-
nal meshes, splines patches, subdivision surfaces) and
non-parametric ones (implicit surfaces, fractals). Other
representations use directly the point samples, such as

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2005, January 31-February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency - Science Press

particle systems, volumetric data in medical images,
and image-based rendering.

Point-based representations can compensate for
their lack of connectivity information, by spatial prox-
imity between the points in a sufficiently dense sam-
ple, without causing loss of quality in the final im-
age. With the texture mapping technique introduced
by Catmull [Cat74] we can improve the visualization
while keeping the object fundamental geometry, get-
ting better results for planar surfaces or slightly curved
surfaces. Moreover, blending operations can be used
to reduce discontinuities in the texture mapping of over-
lapping surfaces.

This paper proposes an alternative approximation
where curved surface elements (c-surfels) are
employed, in order to get better adaptation to the sur-
face to be rendered. We also use texture mapping and
blending, to produce a perceptually better visualiza-
tion. Improvements caused by using curved surfels in-
stead of planar ones are especially noticeable at the
object’s silhouette.

We discuss related work in Sec. 2 and then de-
scribe the steps to build our primitives in Sec. 3. In
Sec. 4, point out some factors that contribute to the use
of c-surfels at the object’s silhouette and show some
results and applications, and in Sec. 5 we present some
conclusions, and discuss limitations and future work.

2 RELATED WORK
Levoy and Whitted [LT85] in 1985 proposed the use of
points as universal rendering primitives. The concep-
tual idea was to have a single element good enough

to model and render any kind of object. The surface
could be represented by points, considering it differen-
tiable, and estimating the tangent plane and the normal
from a small set of neighboring points.

About a decade later, in 1998, Grossman and
Dayle [GD98] addressed object sampling from a set
of orthographic views. They used a hierarchy of depth
buffers to determine when a pixel is considered a hole
or not.

Various researchers have published their ideas rel-
ative to point rendering and modeling. In 2000 three
papers introduced the ground ideas for our work.

Pfister et al. [PZBG00] extended Grossman and
Dayle’s work by adding hierarchical level of detail
(LOD) control and hierarchical visibility culling. They
proposed the paradigm of surface elements (surfels) to
efficiently render complex geometric objects. Surfels
are primitives without explicit connectivity, with at-
tributes such as depth, texture color, and normal. The
objects are sampled from three orthogonal views and
the sampling is stored in a octree. When rendering,
the visible surfels and the holes are detected; the sur-
face attributes are interpolated at the pixels that have
samples.

Rusinkiewicz and Levoy [RL00] devised a ren-
dering system called Qsplat. It allows real-time view-
ing of models consisting of hundred of millions of
points samples. They used a bounding sphere hierar-
chy for hierarchical LOD control and culling and they
employed splatting for surface reconstruction. The
splats are oriented along the view plane and rendered
in a back-to-front order.

Schauffer and Jensen [JS00] used small surfels to
render point-based representations. They considered
these surfels as tangent plane approximations and em-
ployed ray tracing to interpolate per-point attributes.

3 POINT RENDERING

There are many approaches to render objects from its
point-based representation. We can distinguish two
different proposals. The first renders the primitives
as 0-dimensional points, while the second renders the
primitives considering an area for each point.

We can also classify the algorithms to render point-
based surfaces in two groups: those that doforward
mappingand those that dobackward mapping. The
methods in the first group send points directly to ren-
dering pipeline and compute their contributions to the
pixels; thus we have projection from object-space to
image-space. Splatting [Räs02] is an example of this
type of algorithm. The methods in the second group
compute for each pixel in the image the object that
projects on it; therefore, we have projection from image-
space to object-space. Ray tracing and polygon texture
mapping are examples of this type of algorithm. Some

algorithms use a combination of both techniques.
Point rendering requires information about point

attributes such as position, normal, color, texture coor-
dinates, etc. We may also associate an element of sur-
face to a point, i.e. a surfel. The surface area at each
point can be considered circular and characterized by a
radius, that must be sufficiently large to ensure a hole-
free reconstruction. We can store other attributes for a
surfel, such as transparency and material properties.

In this paper we have as input a set of point sam-
ples on a smooth surface, which are assumed to be
sufficiently dense so that the distribution of the points
over the surface can be considered approximately uni-
form. We also assume that a normal is available at
each point, and, in some cases, textures coordinates
are also available. We do forward mapping and tex-
ture mapping, and regard each point as either a surfel
or curved surfel (c-surfel), with the same fixed radius
for all surfels which is computed before sending them
to the rendering pipeline.

3.1 Building our primitives
A topological surface is a subsetS of an Euclidean
spaceR3, which is locally homeomorphic to the Eu-
clidean spaceR2, that is, for each pointp ∈ S there is
a spherical neighborhoodB3

ε ⊂ R3 with centerp, in
such a way that the subsetB3

ε ∩S is homeomorphic to
the open unit disk in the Euclidean plane (Figure 1).

B2
1 =

{
(x, y) ∈ R2;x2 + y2 < 1

}
Intuitively this definition says that a surface is

obtained by overlapping several deformed pieces of
the plane [VG03].

Figure 1: Homeomorphism

Let us represent these pieces by means of the func-
tion φ(r) (r ∈ [0, ε]), which is given by:

φ(r) =

{
0 , planar approximation

1− e
−

(
r2

h2

)2

, almost planar approximation

The expression “almost planar” is used to repre-
sent our c-surfel, andh is a constant which defines the
surfel curvature. From this function we can obtain a

plateau-like surface (gaussian approximation) or a pla-
nar one, defined by the points(r. cos θ, r. sin θ, φ(r))
(θ ∈ [0, 2π]), which allows one to use it as a local
approximation to a point, and allowing a perceptually
better adaptation to the surface (Fig. 2).

(a) (b)

(c) (d)

Figure 2: (a) planar surfel. (b) c-surfel. (c),(d) over-
lapping surfels

When we put these approximations on the surface
we obtain overlapping surfels (c-surfels). Therefore,
to give an appearance of continuity to the surface we
use texture mapping and blending operations.

3.2 Texture mapping and blending
We map to our surfels a single texture with only one
color, and opacity falling off radially according to a
gaussian approximation. The alpha-value of pixel(i, j)
(initially set to 1.0) is multiplied by a factorf(i, j)
given by:

f(i, j) = e−((i−x0)
2+(j−y0)

2)/d2
,

where

(i, j) - position at texture;
(x0, y0) - texture center;
d - radial fall-off factor.

We map the texture considering initiallyr ∈ (0, 1],
and using the function:

(r. cos(2kπ
n), r. sin(2kπ

n), φ(r))

↓

(1
2 cos(2kπ

n) + 1
2 , 1

2 sin(2kπ
n) + 1

2).

Wheren is the number of sides of the surfel and
k is in the interval(0, n]. Thus, the surfel (c-surfel)
center corresponds exactly to the texture center in a

parametric spaceuv defined in[0, 1]x[0, 1], and trans-
parency is observed at the surfel border, as shown in
Figure 3. Further the surfel is scaled in according to
the computed radius.

Figure 3: mapped texture surfel.

To handle overlapping surfels we need to know
how to use alpha values to combine the currently pro-
cessed color and the one previously stored at color-
buffer.

The colorc at position(x, y) in the final image
is computed as a normalized weighted mean of con-
tributions from mapped texture colors (surfels). The
normalization is necessary since the weights (alpha
values) do not necessarily constitute a partition of the
unity at screen-space, due to irregular surfel position
and the truncation of the ideal alpha mask (Figure 4).

(a) no blending. (b) blending.

Figure 4:

We have:

c(x, y) =
∑

i ci.wi(x, y)∑
i wi(x, y)

ci - ith polygon color
wi(x, y) - weight at position(x, y)

We sort the points before rendering their corre-
sponding surfels, since ordering affects smoothness at
the final image, and we use a multipass rendering due
to the interaction between blending and Z-buffering.

Figure 5: incorrect occlusion and blending

3.3 Visibility
Rusinkiewicz and Levoy [RL00] proposed a multipass
rendering in OpenGL to ensure that both occlusion and
blending happen correctly (Fig. 5). For the first pass,
we render the surfel with an offsetzo away from the
viewer. We do this only into the depth buffer. For
the second pass we turn off the depth offset allowing
depth comparison, without updating the depth buffer
and writing to color-buffer. This steps blend together
with the correct occlusion all surfels within a depth
rangezo of the surface.

3.4 Surfel size
We need to compute the correct size of the surfels,
which will be the same for all of them. To compute the
size of the surfels we use eigenanalysis of the covari-
ance matrix of a local neighborhood (Principal Com-
ponent Analysis - PCA) to estimate local surface prop-
erties, as proposed by Pauly [MPK02]. Given a point
cloudP =

{
pi ∈ R3

}
, the covariance matrixC for a

sample pointp is given by

C =

 pi1 − p
. . .

pik
− p

T

·

 pi1 − p
. . .

pik
− p

 , ij ∈ Np

wherep is the centroid of the neighbourspij
of p, and

Np is the index set of thek-nearest neighbours of the
samplep. The principal components are the solutions
to the following eigenvector problem:

C · vl = λl · vl , l ∈ {0, 1, 2}

We use the eigenvalues and their corresponding
eigenvectors to do a space partition. Since eigenvalues
give a measure to the variation of the points inNp,
we take the eigenvector corresponding to the greatest
eigenvalue, and define a splitting plane in a BSP-tree,
that we use to perform hierarchical clustering.

Assuming thatλ0 ≤ λ1 ≤ λ2, the eigenvalueλ0

describes the variation along the surface normal. We
define

σn(p) =
λ0

λ0 + λ1 + λ2
,

as the surface variation at pointp in a neighborhood of
sizen. If σn(p) = 0 all points lie in the plane. Then
we use that as a subdivision criterion to locate clus-
ters with exactly three non-collinear points (Figure 6).
The size of the surfel corresponding to a cluster is the
diameter of the smallest circle circumscribed to its as-
sociated triangle. Since we assume that our sample
is approximately uniformly distributed, we expect that
the triangles have approximately the same area, and
use the average of all surfel sizes as a common size

used in the rendering process. But if we have regions
with uneven distribution, holes can appear on the sur-
face.

Figure 6: triangles on the surface obtained by cluster-
ing

4 VISUALIZING WITH OUR SURFELS
We associate to each point either a planar surfel or
a c-surfel, which are constructed, and stored. Then
they are oriented, translated and scaled accordingly to
the point attributes. Some factors contribute to obtain
good results when using c-surfels, Among them we
can highlight the following ones:

• Overlapping c-surfels provides a better local ap-
proximation to the points on the surface, since
they have an associated mesh, which provides
more details;

• All normals in the c-surfel have the same orienta-
tion as the normal at the point; thus shading and
blending operations give an appearance of conti-
nuity to the rendered surface.

Figure 7 shows a result using only c-surfels. However,
as the c-surfel have a mesh, the computational cost due
to rendering them can become high, depending on the
number of polygons of the mesh. The table 1 shows
the performance of our unoptimized C implementa-
tion for different c-surfels (Pentium IV 1.4 GHz 512
RAM).

c-surfel
24 polygons 60 polygons 200 polygons

Igea 1.06 fps 1.00 fps 0.41 fps

(134.345 points)

Table 1: different c-surfel resolutions

Instead of using only c-surfels, we propose to use
both planar and curved surfels, and since using flat sur-
fels at the silhouettes of the object may result in less

(a) igea (134.345 points).

Figure 7:

precise rendering (Figure 8), we use c-surfels at the
silhouette points (and close to them) and flat ones for
the rest of the surface as illustrated in Figure 9.

(a) flat surfels at the silhouette.

(b) c-surfels at the silhouette.

Figure 8:

Then if the angle between the vector from a point
p to the observer’s eye and the normal at this point is in
the interval[90o − ε, 90o + ε] (ε ∈ [0o, 20o]), we use
a c-surfel for this point, otherwise we employ a flat
surfel. The table 2 shows some time measures using
planar surfels with 6 sides, and c-surfels formed by 24
polygons.

We can see that using c-surfels at the object’s sil-
houette does not increase the cost significantly, when
comparing to the all planar case. Therefore, their use
seems a good option to enhance the level of details at
these regions. Some rendering results are shown in the
figure 10.

When we have texture coordinates available for
the points, we can do texture mapping by blending
the texture image colors: given the texture coordinates
we verify the corresponding color in the texture-space,
and map it to the surfel (Figure 11).

Figure 9: surfel and c-surfels

Model planar surfel c-surfel planar surfel
+

c-surfel

Igea 1.22 fps 1.06 fps 1.18 fps

(134.345 points)

Ball joint 1.08 fps 0.96 fps 1.03 fps

(137.059 points)

Budha 0.35 fps 0.3 fps 0.33 fps

(389.347 points)

Table 2: using planar and almost planar approxima-
tions

5 CONCLUSIONS

We proposed the use of curved surfels and texture
blending to visualize a set of point samples, by ex-
ploring the adaptation to the surface when the c-surfels
overlapping each other, which provides more details
because of their mesh. Since the associated computa-
tional cost can be high, we used these c-surfels only at
the models silhouette, without increasing the overhead
very much.

In future work we intend to improve the tech-
nique to handle difficult regions, such as those with
high-curvature, perhaps storing a curvature informa-
tion for each point, estimated in terms of its local neigh-
borhood, and use that to adapt the surfel curvature.

6 ACKNOWLEDGMENTS

The authors are partially supported by CNPq research
grants. This research has been developed in the VIS-
GRAF Laboratory at IMPA. VISGRAF is sponsored
by CNPq, FAPERJ, FINEP and IBM Brasil.

(a) budha (389.347 points). (b) hand (327.323 points).

(c) ball joint (137.059 points). (d) rabbit (44.691 points).

Figure 10:

(a) texture-mapped sphere. (b) texture-mapped torus.

Figure 11:

7 REFERENCES

[Cat74] E. E. Catmull. A Subdivision Algorithm for
Computer Display of Curved Surfaces. PhD the-
sis, Department of Computer Science, Univer-
sity of Utah, 1974.

[GD98] J. P. Grossman and William J. Dally. Point sam-
ple rendering. Eurographics Rendering Work-
shop 1998, pages 181–192, 1998.

[JS00] Henrik Wann Jensen and Gernot Schauffer. Ray
tracing point sampled geometry. In Springer-
Verlag, editor, Rendering Techniques 2000,
pages 319–328. Eds. Peroche and Rushmeier,
2000.

[LT85] Marc Levoy and Whitted Turner. The use of
points as a display primitive. Technical Report
85-022, University of North Carolina at Chapel
Hill, 1985.

[MPK02] Markus Gross Mark Pauly and Leif P. Kobbelt.
Efficient simplification of point-sampled sur-
faces.In Proceedings IEEE Visualization 2002,
pages 163–170, Computer Society Press, 2002.

[PZBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen Van
Barr, and Markus Gross. Surfels: Surface el-
ements as rendering primitives. InProceed-
ings of ACM SIGGRAPH 2000, pages 335–342.
ACM Press/ ACM SIGGRAPH/ Addison Wes-
ley Longman, 2000.

[Räs02] Jussi R̈as̈anen. Surface splatting: Theory, ex-
tensions and implementation. Master’s thesis,
Dept. of Computer Science, Helsinki University
of Technology, 2002.

[RL00] Szymon Rusinkiewicz and Mark Levoy. QS-
plat: A multiresolution point rendering sys-
tem for large meshes. InProceedings of ACM
SIGGRAPH 2000, pages 343 – 352. ACM
Press/Addison-Wesley Publishing Co, 2000.

[VG03] L. Velho and J. Gomes. Fundamentos de
Computaç̃ao Gráfica. Impa, Rio de janeiro,
2003.

Shape from Silhouette:
Image Pixels for Marching Cubes

Bruno Mercier
SIC Lab, Bât. SP2MI, téléport 2

Bd Marie et Pierre Curie
86962 Futuroscope Chasseneuil, France

mercier@sic.univ-poitiers.fr

Daniel Meneveaux
SIC Lab, Bât. SP2MI, téléport 2

Bd Marie et Pierre Curie
86962 Futuroscope Chasseneuil, France

daniel@sic.univ-poitiers.fr

ABSTRACT

In this paper, we propose to use image pixels for geometry reconstruction with a shape from silhouette approach.
We aim at estimating shape and normal for the surface of a single object seen through calibrated images. From the
voxel-based shape obtained with the algorithm proposed by R. Szeliski in [18], our main contribution concerns the
use of image pixels together with marching cubes for constructing a triangular mesh. We also provide a mean for
estimating a normal inside each voxel with two different methods: (i) using marching cubes triangles and (ii) using
only voxels. As seen in the results, our method proves accurate even for real objects acquired with a usual camera
and an inexpensive acquisition system.
���������
	���

Geometry reconstruction from images, shape from silhouette, marching cubes.

1. INTRODUCTION
Since the early years of computer vision, much effort
has been dedicated to automatically digitizing shape
and reflectance of real objects. For instance, Stan-
ford Digital Michelangelo [11] project aims at digitiz-
ing large statues, Callet. et al. [1] digitize statuettes
and reconstruct plaster models covered with bronze.
Hasenfratz et al. [7] use a digitize shape for placing a
real actor in a virtual environment so that shadows and
lighting be properly computed.

In most cases, acquisition hardware play a major role
for reconstructing objects shape and research efforts
have increased a lot during the last decade. Our concern
is about objects only described with a set of calibrated
photographs. Our final goal is to insert real objects
(corresponding to lightfields/lumigraphs or described
by a series of images) into virtual environments with
����������������������� �"!$#��&%'��(��)�*!$+,�$�.-/!0�*%21���3/���4�5�$67!$+�+
�$�839!:���8�$6;��-'�<�>=?�$��#56@�$�83A�������$�9!$+B�$�814+<!$���C���D�$�FE'���
���G($�*!0�H���4%I=
�)��-'��E'��6J�4�K3'���:LH�<%'�M%N��-9!:�G14�$3/���4� !:���
�/�0�O�"!�%'�5�$�P%Q�<�C������R'E'���M%S6J�$�P3Q���$T/�U�$�P14�������V��14�<!$+
!�%QL�!0�H�*!0(��8!$�/%7��-9!:�W1���3/���4�XRA�M!0�Y��-/���Y�/�0���<1��Z!0�9%���-'�
6JE'+<+�14�)�*!0�����$�.���[��-'�,T/���C�\3/!$($��]_^`�U14�$3Da5�0��-/����=
������b
���P����3/E/R'+��<��-cb����53A�$�C�d����������Le�����,�$�f���P���M%'���C������R/EQ���
����+����C���4bD���MgDE/�)���4�h3'�����$�i��3A�414�)T/1j3A�V�����<�������$��!$�/%9k0�0�l!m6@�4��]

n�o/p�qHr0sQt*uAv$w�rCxzyY{`|~}l���'r�w<�J�$�$���*{'{Q���:�Q�$�e�����D���
yX{�|~}�� �Q�����$��qHv$u/s'v$t*�Y�H���J��p4��t*s'v$t*�;�'�h�Q�����
�
w �:pVu'�j|��:p��*oW�
p��9s'�4w ���:�
� ��3DaH����(�-D�
�m�¡ �¢m�5£¡(����/1�a"¤?¥Q14���4�'14�������4���4]

proper lighting and global illumination. The whole
problem is thus not only geometry estimation but also
initial light sources position, reflectance properties for
the real object as well as rendering process. This paper
only addresses a small part of the whole work: geom-
etry and normal estimation.

The basis of our work is the voxel-based shape from
silhouette technique presented by Szeliski in [18]. We
propose a new method for combining the marching
cubes algorithm with image pixels for precisely re-
covering a triangular mesh corresponding to the ob-
ject shape. We also propose two methods for esti-
mating surface normal. As shown in the results, our
method has a consequent impact on geometry. Based
on this method, we have successfully recovered light
sources geometry and object surface reflectance prop-
erties [14].

This paper is organized as follows. We firstly describe
work most related to our concerns. Section 3 presents
the acquisition system we use and work overview. We
then detail our reconstruction and normal estimation
method. Finally, we provide a series of results before
we conclude.

2. RELATED WORK
The literature concerning geometry reconstruction is
vast and this section only presents a quick run through
the area for most closely related works.

{���pVt�p�r��M������r$u
[5, 2] uses two cameras located close one

to another so that images of the object be slightly dif-
ferent. Internal and external camera parameters knowl-
edge help to determine corresponding points on images
and deduce depth with the help of textures, laser grids
or structured light.

{QoQvV�'p¡xVtCr����Co'v
	0�Ju��
methods aim

at recovering objects shape with the assumption that
surfaces are lambertian (or almost lambertian) [16, 8].

Shape from silhouette approaches [13, 3] are more
adapted to our problem since we do not want to make
any assumption about images. Objects can have glossy
surfaces, with or without textures and we cannot use
active laser grids or test patterns to reconstruct the ob-
ject geometry. Most shape from silhouette methods
rely on a voxel-based datastructure and the approach
described by R. Szeliski in 1993 [18] is often used as a
basis. For such methods, a well-known drawback con-
cerns cavities. For example a coffee cup handle will
be recovered since the hole can be deduced from the
visual hull on the image, but the inside will be filled-up
with material (unless there is no bottom). Improve-
ments have been proposed for solving this problem
with voxel coloring [15], space carving [9] or gradient
voxel flux [4] with the assumption that objects surface
is mostly lambertian.

From voxels, the marching-cubes algorithm can easily
generate a triangular mesh corresponding to the object
surface [17]. For example Hasenfratz et al. use such a
reconstruction method for interactively integrate a real
person into a virtual environment [7]. Our method fo-
cuses on such approaches and aims at improving the
triangular shape accuracy. To achieve this goal, we
propose to use image pixels for guiding the marching
cubes algorithm and estimating accurate surface nor-
mal.

3. WORK OVERVIEW

Acquisition System
For this work, we used images of both virtual objects
and real objects. Virtual objects are convenient for val-
idating the method and providing result quality since
camera parameters and object geometry are known.
For real objects, we devised the acquisition system de-
scribed in figure 1. Object and light sources are fixed
on a turntable: a camera is located on a tripod with
fixed aperture and shutter speed. During acquisition,
camera position does not change. Every 5 degrees,
two images are acquired with the same viewpoint. The
first one is overexposed with an additional light source
for separating object from background (a lambertian
black cloth) while the second one is used for acquiring
the actual object radiance. After one turn, the camera
is raised of several centimeters. In practice, only 1
turn (76 viewpoints) is necessary for precisely recov-
ering the object shape, but we also used this system for

acquiring complete image-based objects.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���

Turntable

Diode

CameraLight sources

��������������� �"!
#$����%&�('&�()�*+%-,$%-'-�/.10

Image Processing
For separating background from the object, we use a
powerful light source for overexposing images. The
object is so bright that it is easy to determine the black
background with a seed-fill algorithm even with dark
regions on the object. Except background, only 2 con-
nected regions remain: the object and the red diode
used for estimating camera orientation. Background
pixels are then set as perfectly black on images: (0,0,0)
for R,G,B values.

The diode is used to determine the rotation axis of the
turntable seen on photographs. Focal length is known
a priori (fixed camera parameters) and 3D position is
manually estimated. Orientation can thus be deduced
from the red diode. We did not use any test pattern for
estimating camera parameters.

Reconstruction Process
Our reconstruction method is composed of 3 main
steps:

1. the shape from silhouette approach proposed by
R. Szeliski in [18] provides a set of voxels;

2. a triangular mesh is generated from marching
cubes and image pixels;

3. a normal is estimated for each voxel either with
the marching cubes triangles or with a method
using only voxels.

4. SHAPE FROM SILHOUETTE
Octree Construction
As a first (rough) approximation of the object geometry,
we used the shape from silhouette approach proposed
in [18]. With this approach, all the images are used it-
eratively to hierarchically sculpt the object. The shape
initially corresponds to a voxel, recursively refined dur-
ing the reconstruction process. For each view of the
object, the octree voxels obtained so far are projected
onto the image plane and compared to image pixels.
When a voxel is seen outside the object for one image,
it is actually marked as

r$s��
(figure 2(a)); when a voxel

is seen inside the object for all the images, it is marked

as
�Ju

(figure 2(b)); all the others are often seen inside
the object and sometimes on the object boundary, they
are marked as

v��;��� �$s'r$s��
(figure 2(c)) and subdivided

into 8 sub-voxels. This process is repeated until no am-
biguous voxels exist or a minimum size criterion has
been reached. For our method, the algorithm should

� !��.��E'��¤
L����Q�4+

� R��?���'¤ Le���Q�4+ � 1��P!0� RQ¤
Le���'��+

� �(�������	� ��
)
� ��� !�����%&%&��� !��/'&�()�* 0

stop when ambiguous voxels correspond to a series of
4 (or 9) pixels for more reliable results. Figure 3 shows
some results for a clown (real object). Note that for a
256x256 image, pixel resolution corresponds to a depth
of 8 in the octree.

� �(��������� ��� � !)�*�%-'-� � ! '&�()�* � � %&����'&%��)����(�����
��%��! �"
��*$#&% 0

Obviously, all ambiguous voxels have the same size,
according to the reconstruction process. At the oppo-
site, voxels marked as

�Ju
or
r$s��

are not further subdi-
vided and have various sizes.

Practical Aspects
For our method, voxel projection on the image plane
is performed with raytracing. This will be further used
with marching cubes in the following section. Each
pixel corresponds to a ray originating at the image
center-of-projection and going through the pixel (figure
4). These rays are called

�9�('Dp�w)��t�v$� �
from now on. Pixel-

rays corresponding to the object silhouette are called�Ju/� tCv$���
since they hit the object and rays corresponding

to background are called
r$s���� tCv$���

.

Surface Thickness
The reconstruction process results in a set of ambigu-
ous voxels called

	$�(����t�p ��p���sHtJx4v��Vp
. For marching cubes,

this surface needs to be 6-connected which is not en-
sured by the previous algorithm. To achieve this goal,
we propose to modify the discrete surface with an ad-

Background
(out−ray)

(in−ray)

Object

� �(��������)��+* ��� �
��, ����,�% 0

ditional process applied every time ambiguous voxels
are subdivided. Voxels classified as in or out can be
reclassified as ambiguous when the discrete surface is
not 6-connected (as illustrated in figure 5): when two
adjacent in and out voxels do not correspond to the
same hierarchy level in the octree, we choose to re-
classify the smallest one, -/.1032�454 , as ambiguous (since
- .10326454 parents had been longer classified as ambigu-
ous). In the case of two voxels with similar size, we
consider that out-voxels should remain outside the ob-
ject according to the sculpture method seen above; the
in-voxel will consequently be reclassified as ambigu-
ous. A final operation reduces the surface thickness
while keeping the 6-connection.

� !�� � R/� � 1��

out−voxel
amb−voxel
in−voxel

discontinuity problem
voxel to be modified

� �(�������7� �8
)
�$�
��% ��� !�����%&%&�(� !���'-�()�*:9;�$07<�=�)/���/%�> ��*
'�=�� %&�����?��! �/9A@ 0B��)�� �
��%�'-)7@ � .)!# ��� ��#C9 !/0�.)!# ��,
� �
#D#���%&! ����'-� %&�$�E�?��!���FHG
, !)�* *�� ! '-�
��*&�JILK�0

5. PIXELS FOR MARCHING CUBES
Original Marching Cubes
For reconstructing a triangular mesh from a set of am-
biguous voxels, marching cubes [12] are obviously
well-suited to the problem. Originally, the algorithm
is dedicated to medical images and uses some density
values (weights) associated with each voxel vertex; as
a rough simplification, positive weights correspond to
points inside the object and negative weights are out-
side the object. A linear interpolation provides the
(estimated) intersection between each voxel edge and
the actual object surface. According to these intersec-
tions, a triangular mesh can be defined for each voxel
with a limited number of configurations (see figure 6).

� �(������� G ��� �/��!E= ��*$� !
� @ � % !)�* � ��������'&��)�* % F ���$,� ������# '-) ��.�@ ������)�� % ��)�� �
��%)�*$�(, K� @ ����!���#�)�'-% ��* ,
��! ��'-��������'&��! � %8�() !��/'-�
)���'&%&� #$� '6=�� %&����� ��! ��0

Since weighting values cannot be computed directly
from the discrete surface, edges centers are often used
for generating triangles. However, as explained in the
following, it is possible to use pixel-rays with march-
ing cubes so that triangles fit the model shape more
precisely.

Refining the Method
As a first estimation, voxel vertices are classified ac-
cording to neighborhood. Each voxel vertex of the
6-connected discrete surface has (at least) either one
in-voxel or one out-voxel neighbor. For placing trian-
gles in

v������ �$s/r0s � �0r�'Dp�w �
, we also use pixel-rays (figure

7).

� �(������� " ��� ��' , ��� ,$%"%�=�)���� #+*�)�' '-)�� ! = '�=$� %&����,
�?��! � ��* %&� #�� ��* ��.�@ �(����)���% ��)
�$�
� 9$��* , �E��,$% ����� *�)�'
� %-�
0

Our algorithm firstly computes the intersection points
between out-rays and voxel faces (figure 8). Then, a
line corresponding to the object surface on each face is
estimated (called

��sHt@x4ve�*pBw �JuAp
from now on). This line

is placed as close as possible to all intersection points
and out vertices. Let us consider the 2D convex hull
associated to all these points 	�

��� . It can be shown
that for the general case, such a line corresponds to a
convex hull line segment ��� . The surface line is thus
chosen among 	������ so that the following function be
minimized: ��� ��� ����� �

��� � � �
 �"! �#� �%$

Unfortunately, in some cases, a surface line cannot be
computed using the convex hull (see figure 8(d) for
example). For such cases, the surface line is defined
directly using in-vertices.

Finally, the intersection between surface lines and voxel
edge defines the point (

���4� �$pVt ��pH'
) used for marching

cubes. Note that when the surface line contains a face
vertex, our algorithm slightly shift the mc-vertex for
avoiding degenerated triangles.

� !��

&'&'&'&'&'&'&&'&'&'&'&'&'&&'&'&'&'&'&'&&'&'&'&'&'&'&&'&'&'&'&'&'&&'&'&'&'&'&'&
('('('('('('(('('('('('('(('('('('('('(('('('('('('(('('('('('('(('('('('('('(

� R�� � 1��

surface line
mc−vertex
out−ray intersection
out−vertex
in−vertex

� %J�
� �(�������*) �,+ * '-��� %-� ! '&�()�* @ ��'.- ��� *)���' , ����,�%&��*�#
��)
�$�
� �?��! � %�, %-�������E�J� !���%-�/%�9 �$0&�)�� � %&�$�J� ! ��%-� %�9
@ 00/ !/01- �('6= � # ��%&!)�* *�� ! '-�
%&�$�E�?��!�� 9;# 0���)�� �
�
������'&��! � % � %-�
#D��% � @)�� *�#$�/� ,�0

The defined surface line is bounded by voxel vertices
according to classification so that surface continuity be
maintained (figure 8(d)). For two adjacent faces, the
corresponding surface lines have to be connected (see
figure 9(a)). The only adequate choice consists in using
the mc-vertex closer to the

�Ju/� �$pVt ��pH'
since the other one

would re-introduce out-rays intersection points inside
the object surface. Finally, the same principle applies
to adjacent voxels on the discrete surface (figure 9(b)).

6. SURFACE NORMAL
For some application, a normal can be needed for sur-
face voxels (for instance, for estimating light sources
properties and BRDF of the object [14]). We propose
two methods: the first one uses the triangles gener-
ated by our adapted marching cubes algorithm while
the second one relies on the discrete surface and its
neighborhood.

Normal from Triangles
Inside each ambiguous voxel, several triangles define
the object surface. We propose to compute the average
triangle normal weighted by area.

Using triangles located in only one voxel leads to a

� !�� � R/�
� �(���$� �	% ���$����� ��! � !)�* '&��* � �(' , ��*�# . !E,H����� '-��! � % 0

� !��
Object

� R��
� �(������� ���$���)�� . ���A� ��) . .	��� !E= ��*�� !
�$@ � % ' ������* ,
�/�(� %�9 '6=�� %&����� ��! � ��%��	��
���
�0

bumpy normal, introducing artifacts for light sources
estimation or during the rendering process (figure 10(b)
and 11). This is why we propose to smooth normals
according to neighbor voxels triangles. In our applica-
tion, a parameter called

� �;rMr��@oH�Ju � 	$��� � v$u9�*p
is fixed by

the user. Practically, with an octree depth equal to 7,
our best results have been obtained with a smoothing
distance set to 3 or 4 voxels (depending on the object
geometry).

� �(������� ����� ��)�� !
�������
# %&����� ��! � %� �#���� '-)	# ��%&!�� ��'-�
��� � ���/%-� * '6��'-�()�*: '6=�� .	�/� ! = �(*�� ! �$@ �/% ���(��)�� �('�= .
#�) � % *�)�''���)
�$� #�� %�.))�'�= %&�$�E�?��!��/% 0
Discrete Normal
Intuitively, a normal estimated from marching cubes
should be quite representative of the object surface.
However, it is also possible to define a normal in
each voxel directly with the discrete surface. Par-
ticularly, if a surface mesh is not needed, acceptable
results can be obtained. Normal is estimated according
to out-voxels in the given neighborhood (figure 12):�� � � ����������

��
- � ����� , where

��
- � corresponds to the unit

vector going from the current voxel center to the

��� �

neighbor voxel center;
�

is the number of voxels used.
With this method, normals are defined by a fixed num-
ber of directions which could be useful for compression
algorithms.

out−voxel

amb−voxel

in−voxel

current voxel

� �(������� ��� �!�)���.	�J� � %-'&��.	�/'&�()�* � ��) . ��)
�$�
��% 0

7. RESULTS
Object Shape
Before actually using our method with real objects,
validation has been done with known geometric objects
(a sphere and a cube). As shown in table 1, using image
pixels with marching cubes (MC in the figure) improves
consequently shape precision. For the experiments we
made, the error is noticeably reduced compared to a
marching cubes algorithm with edges centers. Note
that when hierarchy depth increases, the two methods
tend to provide the same results because the number of
pixel-rays becomes lower. Our method will obviously
be more accurate with a low-depth hierarchy.

"$#$%�&('*)�+-,�./,0%�1�23&4+5,*.6,	%�798�:;,	%6,
<>=�?A@�BCBEDFBCG0?�H I J K

LNM6O*P/QERSPUT�V P/W>X(Y Z�[*\3]_^`^ a	\3b_^c^]�\da!^`^
egfih*P/j klW�monoQ>XpY qo\ r-^`^ q*\�s!^c^ qo\tsu^`^

";#4%�&v'*)S+5,�./,	%`w!2�1;.x:vyuz9{|,
<>=�?A@�BCBEDFBCG0?�H I J K

LNM6O*P/QERSPUT�V P/W>X(Y }0qo\ r-^`^ Z*a	\ r-^c^ Z	qo\tsu^`^
egfih*P/j klW�monoQ>XpY }�Z�\i}~^`^ Z*a	\3Z_^c^ Z*]�\tqu^`^

� �J@��(� ��� � ����������� # ��%-'6��* ! � @ � '.- � � * ���/!�)�* ,
%-'-� � ! ' ��# ' ������*��/���/%8��*�#D��!�'&�$���)�@�� �/!�' %&����� ��! ��0

Note that a cube is the worst example. A polygon is
difficult to reconstruct with a shape from silhouette ap-
proach (as any flat surface) since the camera viewpoint
is never perfectly located on the polygon plane.

Normal Estimation
This paper describes two different methods for estimat-
ing normal inside each voxel. The first one is based
on marching cubes triangles while the second one only
relies on voxels. For each case, it is possible to smooth
normal values according to a user-specified smoothing
distance. For estimating normal quality, we compared
the estimated normal with the actual (known) surface
normal (table 2)

As for surface accuracy, a surface normal obtained with
the help of pixel-rays is sensibly more precise (20-
25%) than with using edges centers marching cubes or

"$#$%�&('*)�+-,�./,0%�1�23&4+5,*.6,	%�798�:;,	%6,
<>=C?A@�BCB DFBCG0?AH I K

�������x?AH��
	��uD��
��?�
�	0=UB � � �
�EfdQ�R/W�P/V PcT��oW�^umoj Z*Z�\dZ�� Zo}0\3Z�� }	\db��
L M/O�PUQERSP/T�V P/W>XpY �	\�s � q*\3b � }	\dZ �
eNf h�PUj klW�m*noQ>X(Y b	\3b�� r4\3a�� Z�\d]��

� �J@��(� � � � ����������� ��*$�/�(� % # ��� �����/*�! � F1#���������� %EK
@ ��' - ���/* � %-'&��.	�/'-�
# *�)���.	�J�L��*�# ��! '&� ���)�@�� � ! '
*�)���.	�J� 0

the discrete surface. Our method provides a precision
with an error less than 5

�
even without any smoothing.

When smoothing, normal precision is about one degree
(with a smoothing distance of 5 voxels). Note that with
the discrete surface, the smoothing distance should not
be less than 3 voxels.

Rendering using Normals
From geometry and normal we have generated new
views. Triangles can be directly with Graphics Hard-
ware (OpenGL). For example, figures 13, 15 and 14
show new images.

� !�� � R/�
� �(������� �
� ��� �/*$#������(*�� � %&��*$� '-� ����*��/�(� %�9B� 0 - �('�=
������� ��!�"���#%$&��'�� .	�/��!E= ��*$� ! �$@ �/%�9 @ 0 - �('�= � ��� �
��,
����,�% . ��� ! =���*���!
� @ � % 0

� !�� � R�� � 1��
� �(������� �)�� � � *�#���� ��*��1� %&��*�� ��)
� ��� *�)���.	����- �('�=
%�.))�'�=���*��$9 �$0 - �('�= �(�)��� ��!�"���#*$&��' � . ��� ! =���*��
!
�$@ � % *�)�'-� '�=��8@ � . �$, %&�����?��! �)�*)�@�� � ! ' %&� ��=�)�� ,
��'-'-�/9�@ 0�- �('�= � ��� �
��, ����,�%� . ��� ! =���*��+!
�$@ � % !�)�* ,
'-)��$� ��% %�.))�'6=�����9$!/0 - �('6=	��!�'&�$���$%�� =������ *�)�� . ��� 0
Rendering using Voxel Radiances
It is also possible with pixel-rays (in-rays) to estimate
an average radiance emitted by the voxel (figures 16).

� !�� � R��

� 1��
� �(���������
� ��� � *�#$� � ��*$��� %&��*�� ��)�� �
� *�)�� . ��� � ��* �
��)
�$�
� !����� '6=�� '-� ����*��/�(� % *$)���.	����%+����� � � � ����! �
#�@$,
'�=�� ��)�� �
� *$)���.	��� 0 �$0 - �('6= ������� ��!�"���#%$&��'�� � ��� !E= ,
��*�� !
�$@ � %�9 @ 0 - �('6=0� ��� �
��, ����,�%�9�!/0 - �('�= %�.))�'�=��
#
�)���.	�J�BF1# �(%-'6�� !��)�� �	��)
�$�
��%EK&0

8. CONCLUSION
This paper presents a method for using image pixels to-
gether with marching cubes for a shape from silhouette
application. Our work relies on a 6-connected discrete
surface obtained with the method proposed by Szeliski
[18]. We also propose two methods for estimating the
normal inside voxels, using either triangular mesh or
discrete surface. As seen in the results, our method
proves robust even for a cheap acquisition system with
usual camera and turntable.

In the future, we aim at combining the reconstructed
information with image-based techniques such as ligh-
fields/lumigraphs [10, 6] for integrating (real) objects
into virtual environments with realistic relighting and
global illumination. This method has already been used
for estimating light sources positions from images [14].

9. ACKNOWLEDGMENTS
We would like to pay a tribute to Alain Fournier (Imager
Lab, University of British Columbia, Vancouver) with
whom the overall framework around this paper has
been initiated in 1999. The quad has been designed by
Stewart Cowley who kindly accepted to let us use this
model for our work.

10. REFERENCES
[1] P. Callet. Rendering of binary alloys. In

�0|~| ��}
�Q�e���

, sep 2004.
[2] Q. Chen and G. Medioni. A volumetric stereo

matching method: Application to image-based

� !�� � R/�

� 1�� � %�� � ���
� �(������� �
G � � ������*��/��� !)/��)�� !)�� ��� %��)�*�# %1'-) '�=��
�������E�/���1�E�J# ����* ! �&�)�� ����!E= ��)�� �
� 9+�$0 �)�� � �$�(��,
'&�$�J� #$� ��#:9 @ 0 �)�� � ������� !���)�- * F '-)/,�K�9 !/0 �"! ,
'&�$�J� � =�)�'-)������ ��=:9�# 0	�)�� � ������� -))!# ,��) - � � 9���0-))!# ,��)�- ��� - �('�= .)!# �(� �
���(�/= '&��*$��0

modeling. In
| �A�i�

, pages 29–34. IEEE
Computer Society, 1999.

[3] C H Chien and J K Aggarwal. Volume/surface
octrees for the representation of
three-dimensional objects.

|�r��m�/s ���m�c������r$u
}lt�v*�'o/��� ��v&�Dp¡�~tCrM�Vp � ���

, 36(1):100–113, 1986.
[4] C. Hernández Esteban and F. Schmitt. Silhouette

and stereo fusion for 3d object modeling. In���m��� �Q���$�
, pages 46–53, 2003.

[5] Olivier Faugeras and Renaud Keriven. Complete
dense stereovision using level set methods.
��p�� � sHt�p � r���p � �Jud|�r��¡�9s���pVt�{A��� pVu9�Vp

, 1406:379+,
1998.

[6] Steven J. Gortler, Radek Grzeszczuk, Richard
Szeliski, and Michael F. Cohen. The lumigraph.
� |	� |�r��m�9s���pVt"}ltCvV�'oH��� �

, 30(Annual
Conference Series):43–54, August 1996.

[7] Jean-Marc Hasenfratz, Marc Lapierre,
Jean-Dominique Gascuel, and Edmond Boyer.
Real-time capture, reconstruction and insertion
into virtual world of human actors. In

�c������r$u'�
����	Dp�rYv0u�	>}lt�vV�QoH��� �

, pages 49–56. Eurographics,
Elsevier, 2003.

[8] D. R. Hougen and N. Ahuja. Adaptive
polynomial modelling of the reflectance map for
shape estimation from stereo and shading. In| �A�i�

, pages 991–994, 1994.
[9] Kiriakos N. Kutulakos and Steven M. Seitz. A

theory of shape by space carving. Technical
Report TR692, , 1998.

[10] Marc Levoy and Pat Hanrahan. Lightfield
rendering.

|�r��m�9s���pVt"}ltCvV�'oH��� �
, 30(Annual

Conference Series):31–42, August 1996.
[11] Marc Levoy, Kari Pulli, Brian Curless, Szymon

Rusinkiewicz, David Koller, Lucas Pereira, Matt
Ginzton, Sean Anderson, James Davis, Jeremy
Ginsberg, Jonathan Shade, and Duane Fulk. The
digital michelangelo project: 3D scanning of
large statues. In Kurt Akeley, editor,

{/� �&�$tCvV�'o
�Q�e�e�:�j|�r �m�9s���pVt"}lt�v*�'oH��� �¡�lt�rM�*p�p 	$�Ju����

, pages
131–144. ACM Press / ACM SIGGRAPH /
Addison Wesley Longman, 2000.

[12] William E. Lorensen and Harvey E. Cline.
Marching cubes: A high resolution 3d surface
construction algorithm.

� |	� |�r��m�/s ��pVt
}lt�v*�'oH��� �

, 21(Annual Conference
Series):163–169, July 1987.

[13] W. N. Martin and J. K. Aggarwal. Volumetric
descriptions of objects from multiple views.��
�
�
�n/tCv$u��Vve� � � r$u��Br$uX�
v�����pVt*u � uAv$w ��������v0u�	
�Zve�*oH�@u p��*u/��p�wJw � �DpVu9�Vp

, 5(2):150–158, March
1983.

[14] B. Mercier and D. Meneveaux. Joint estimation
of multiple light sources and reflectance from
images. In

�0|~| ��}O�Q�e�V�
, sep 2004.

[15] S. Seitz and C. Dyer. Photorealistic scene
reconstruction by voxel coloring, 1997.

[16] Hemant Singh and Rama Chellappa. An
improved shape from shading algorithm.
Technical Report CS-TR-3218, Department of
Computer Science, University of Maryland
Center for Automation Research, College Park,
MD, February 1994.

[17] G. Slabaugh, B. Culbertson, T. Malzbender, and
R. Schafer. A survey of methods for volumetric
scene reconstruction from photographs. In��}j�e�

, pages 81–100, 2001.
[18] Richard Szeliski. Rapid octree construction from

image sequences. In
| ��}i�C��
�� �;v&�Dp

��u�	DpVt � � v0u�	$�Ju �
, volume 1, pages 23–32, July

1993.

Texture Painting from Video

Jinhui Hu
University of Southern California

3737 Watt Way, PHE 404
USA(90089), Los Angeles,

California

jinhuihu@graphics.usc.edu

Suya You
University of Southern California

3737 Watt Way, PHE 404
USA(90089), Los Angeles,

California

suyay@graphics.usc.edu

Ulrich Neumann
University of Southern California

3737 Watt Way, PHE 404
USA(90089), Los Angeles,

California

uneumann@graphics.usc.edu

ABSTRACT
Texture mapping is an important research topic in computer graphics. Traditional static texture-maps are
limiting for capturing a dynamic and up-to-date picture of the environment. This paper presents a new technique
called texture painting from video. By employing live video as the texture resource, we are not only able to
create an accurate and photo-realistic rendering of the scene, but also can support dynamic spatio-temporal
update in the structure of texture model, database, and rendering system. We present our approaches towards
the system requirements and experimental results for both simulation and real datasets.

Keywords

Texture Painting, Image Warping, Image Registration

1. INTRODUCTION
Texture is a crucial element in today’s graphics
oriented applications. In many cases, the value of the
applications is increased if both the geometric
information and the appearance of the generated
images are accurate and realistic analogues of the
real world. Texture mapping is a relatively efficient
means to create the appearance of realism without the
tedium of modeling and rendering every 3-D detail
of a surface.

Effective generation of textures has been becoming
an important research issue in computer graphics and
image processing. There are many ways to acquire
data for creating scene textures, such as texture
synthesis and direct texture mapping from imagery.
Much research has been conducted on the texture
synthesis, a technology inspired by research in
texture analysis and statistics. While the results from
the stochastic textures are useful, this class of

approach is unable to deal well with more
complicated textures and hard to achieve photo-
realistic effects.

To create an accurate and realistic appearance of
rendering scene, real world images are often captured
and used for texture creation. While most graphics
systems support high-quality texture mapping from
real imagery, they are limited to static texture
resources that must be created prior to use. Static
textures are usually derived from fixed cameras at
known or computed transformations relative to the
modeled objects. The creation and management of
such texture databases is also time consuming since it
includes image capture and the creation of mapping
functions for each segmented image and model patch
Once their relationships are established, the texture
images are mapped to the geometric models during
scene rendering. Therefore, such static texture-maps
are limited for applications requiring a dynamic and
up-to-date picture of the environment.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific
permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

This paper presents a novel technique, called texture
painting from video, to cope with the aforementioned
limitations of the static texture mapping and
visualizations. Live video is used as texture resource
and mapped dynamically onto the 3D models of
scenes to reflect the most recent changes of the
environments. The video streams can be acquired
from stationary or moving cameras such as handheld
camcorder, and their projections onto the 3D model
are achieved in real-time. Unlike the traditional
texture mapping in which each texture image is a

priori associated with, and mapped onto, patches of
the geometric models, our approach dynamically
creates the associations between the model and
image as a result of image projection during the
rendering process. In this case, we can automate the
texture mapping process. As new images arrive, or
as the scene changes, we simply update the camera
pose and image information, rather than repeat the
time consuming process of finding mapping
transformations, hence make it possible to handle
live video streams in real-time.

Related Work
Texture synthesis is a popular technique for texture
creation. Such an approach is able to take a sample
texture and generate an amount of images, while not
exactly like the original, will be perceived by human
beings to be the same texture. The parametric model
based approach uses a number of parameters to
describe a variety of textures ([Hee95, Por00]). The
non-parameterized texture, or example based
methods generate textures by directly copying pixels
from input textures [Efr99]. Recently, [Ash01]
suggested an approach to synthesize textures using
whole patches of input images. While the texture
synthesis technique has been demonstrated
successfully in certain applications to be a useful tool
for texture generation, the results of the synthesized
textures are not photo-realistic and lack of texture
details.

Texture painting is an alternative way to create
textures. A number of interactive texture painting
systems have been suggested. [Iga01] presented a
3D painting system that allows users to directly paint
texture images on a 3D model without predefined
UV-mapping. [Ber94] employed the Haar wavelet
decomposition of image for multi-resolution texture
painting. [Per95] painted multi-scale procedural
textures on 3D models. Most of current texture
painting systems are interactive, allowing users to
easily design and edit textures to achieve desired
effects. The results can be aesthetically pleasing, but
it is hard to make them photo-realistic.

A straightforward way to produce realistic textures is
to use real world images as texture resources. To
create a complete texture map covering the entire
scene being textured, multiple images are used.
[Ber01] used high resolution images captured from
multiple viewpoints to create high quality textures.
[Roc99] stitched and blended multiple textures for
creation of textures. [Ofe97] suggested a quadtree
approach to represent multi-resolution textures
extracted from image sequences. This method
requires user to mark the texture area to be extracted,
and then manually track the area for a short image
sequence (less than 16 images).

Recently several works suggested using video clips
as texture resources. [Sch00] proposed the idea of
“video textures”. From the input clip of limited
length, they can generate an infinitely long image
sequence by rearranging and blending the original
sequence. [Soa01] presented the idea of dynamic
textures that are sequences of images with a certain
stationary property in time. By learning a model
from the input sequence, they synthesize new
dynamic textures. Both above methods use the
textures in a non-traditional way to achieve desired
effects and goals of applications. Their systems deal
only with the special textures of repeated patterns,
such as sea waves, smoke plumes, etc. In our
approach, however, we are dealing with general
image textures, i.e. a multidimensional image that is
mapped to a multidimensional space. Rather than
synthesize new textures, we directly use the original
video captured from any real world scene to produce
an accurate and realistic appearance of the
environment.

2. TEXTURE PAINTING FROM VIDEO
Using live video as the texture resource can offer us
many benefits to reproduce real scene. However, we
also encounter several technical barriers needed to be
overcome. First, the video streams need to be
acquired continually and updated, which may lead to
infinite texture storage. A straightforward approach
of using certain amount of texture memory is unable
to keep old texture data from where the projection
was a few moments ago. Such texture retention
requires approaches being able to persist in the
projection for each new video frame onto a surface
area.

Second, since we want to paint the dynamic videos
onto the surface of 3D model. Only if the camera
positions and orientations are known, these data can
be projected onto the scene model correctly, thereby
highly precise tracking of camera pose and
alignments between image frames are required.

Third, due to lack of the models for dynamic objects,
those foreground moving objects need to be
segmented from the input video to persist only the
background textures being projected onto the
surfaces of scenes.

Proposed Approach
We present our approaches towards the system
requirements essential to the texture painting from
video. We propose novel methodologies for rapid
creation of dynamic textures from live video streams
and their data retention, storage management, and
texture refinement. We also implement a prototype

of real-time 3D video painting system based on the
methodologies we proposed.

Figure 1 illustrates the main structure of our texture
painting from video system. As stated above, the
main challenge of using live video as texture-maps is
how to effectively handle the infinite video streams
within a certain amount of texture buffers so that the
rendering algorithm can persist in the texture
projection for each new frame onto a surface area.
Given the fact that only limited scene geometry can
be visible from a viewpoint, we propose the idea of
“base texture buffer”, which is a texture buffer
associated with a model patch or a group of
neighboring patches being visible from the viewpoint
(Figure 2). The base texture buffer is first initialized
as white texture, and then dynamically updated with
the new coming frames.

To update the base texture buffer for each group of
visible patches, we transform each new frame to the
base texture buffer. Let the projection matrix
associated with the base texture buffer is P and the
projection matrix of the new coming frame at a
viewpoint is . For every new frame, the

transformation between the new frame and the
base texture buffer is

vP

tP

By using equation (1), we are about to dynamically
warp every new frame from different viewpoint to
the common base texture buffer, and project the
updated content onto the visible surface of scene. In
this case, we overcome the problems of infinite
texture storage and also the time consuming process
of polygon clipping for every video frame.

To achieve accurate image alignment, the 3D model
is generated and refined based on LiDAR data
[You03], and we recover the camera pose using a
robust tracking approach proposed in [Neu03]. Then
we refine the recovered alignments in 2D image
domain to achieve seamless texture images. Several
other core steps, including selective texture painting,
base buffer selection, and occlusion detection, are
also suggested and will be detailed in following
sections.

3. APPROACH DETAILS
3.1 Model Based Image Warping
A key part of texture painting from video is to
dynamically update the base texture buffer, which is
based on a process of model based image warping.
First, we select a base texture buffer. The pose of the
base buffer relative to the 3D model of the scene is
computed. The correspondence of each pixel in the

base buffer to the 3D model is computed using
equation (2), where denotes the pixel in the base
buffer, is the projection matrix of the base buffer,
and

bI

bP
M is the corresponding point on 3D model.

Next, when a new video frame comes, if the model
correspondence to the base buffer is visible from
current camera position, we update the base buffer
with current new frame. This is done by a model
based image warping operation.

Figure 1 – Overview of the texture
painting from video system.

(1)1* −= vt PPP

(2)

MPI vv =

1−= bb PIM

vb II =

(3)

(4)
As indicated in Figure 2, for each pixel bI in the base
texture, we can find its correspondence M on the 3D
model. Given the tracked camera pose and the
projection matrix denoted , we project the 3D
point

vP
M back to the image plane to find its

corresponding pixel using the Equation 3. We VI

Base Texture
Video Image

Ib

Iv

M

Figure 2 - Model based image warping.

then update its color information in the base texture
buffer using Equation 4. This warping process is
repeated for every pixel contained in the base texture
buffer.

The 3D model based approach is flexible, allowing
the camera moving freely in any 3D environment. It
requires, however, highly precise camera tracking,
which is usually hard to achieve, especially in an
outdoor environment. We compensate the tracking
errors by employing a 2D image registration
approach in Section 3.5. Figure 3 illustrates the
result of the model based warping approach.

Figure 3 - Result of the model based image
warping. Left: original image, right: image warped
to base buffer.

3.2 Improve Warped Image Quality

I(xv, yv)

I(xb, yb)

Direct back-warping of the image to the base buffer
may result in aliasing. To improve the final texture-
maps quality, we use bilinear interpolation for anti-
aliasing. As indicated in Figure 4, each pixel
coordinates of I(xb,yb) in the base texture buffer is
treated as a real number. Using the Equations (2-4),
we can find its corresponding pixel in video frame,
the coordinates of which, I(xv,yv), are also real
numbers. Usually, I(xv, yv) will not fall into an
integer grid in the image. We then interpolate the
color information using a four-neighboring bilinear
interpolation. Figure 4 shows the result of applying
the approach to Figure 3,which apparently improved
the image quality.

Figure 4 - Using bilinear interpolation to
improve warped image quality.

3.3 Occlusion Detection
Under some circumstances, although the 3D model is
visible from the base buffer, it may be occluded from
current camera viewpoint. The model based warping
and texturing will project part of the frame onto the
occluded model areas (Figure 5 left). This occlusion
problem is solved using depth maps. From each
camera viewpoint we render the 3D model to obtain
an estimated depth map. When doing the image
warping, we first find the corresponding 3D point for
an image point being warped. We then project it
back to the image plane, and compare its depth value
with the estimated depth map. Finally, we keep the
pixel projection only if its depth value is less than the
corresponding depth value in the depth map. The
result is shown in Figure 5.

3.4 Selective Texture Painting
 Texture painting from video has the advantage of
dynamic texture updating to capture the most recent
environment changes. However, if we don’t select
the content to be textured, it will project everything
in the video sequence onto the 3D environment, and
consequently give an undesired result. Figure 6 (left)
shows a case of moving objects are painted onto the
3D model as part of background textures.

We can view that there are three types of texture
information in a video sequence: background
textures, foreground textures such as trees, and
dynamic objects such as moving people or vehicles.
The background textures are the only part we are
interested in and intending to process, since they
have corresponding 3D model to be textured.

By employing a background learning approach, we
segment and remove the undesired objects from the
input video. Given a number of training frames, we
first learn the images to estimate a background model
based on the linear average model. General average
method will only work for static cameras. To deal
with moving cameras, we first warp each new frame

∑
=

=
N

i
ivback I

N
I

1
,

1 (5)

Figure 5 - Occlusion processing. Left: texture
painting before depth test. Right: after depth test.

Figure 6 - Selective texture painting. Left:
texture painting without background learning.
Notice that the moving yellow sphere is painted
as part of background texture. Right: after
background learning. Only the static scene is
painted as background texture.

Figure 7 – Refining texture alignment. Left: texture
painting using only 3D model based warping, which
results in significant misalignment due to inaccurate
camera pose. Right: texture painting after refining the
texture alignment.

onto the base texture buffer (which is static relative
to the 3D model), then we average each warped
frame over the base texture buffer. After that, we
segment the objects from the background using
image subtraction approach. Figure 6 (right) shows
the result after the background learning.

3.5 Refine Texture Alignment
As mentioned above, inaccurate camera pose
tracking will result in misalignments between the
textured images as shown in Figure 7 (left). The
alignment needs to be refined to improve the
visualization value. Our approach to this problem is
to perform the refinement in 2D image domain, i.e.
we first register the video frames based on the
camera tracking data and 3D model, and then re-
align the registered image with the base buffer using
a 2D image registration approach.

• Motion Model
Affine model is used for estimating the
transformation parameters between the warped video
frame and the base texture buffer.

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

y

x

yv

xv

yb

xb

t
t

I
I

aa
aa

I
I

2221

1211

• Feature Matching
Corner feature of scenes is used as matching
primitive to find the correspondences between the
video frame and the base texture buffer. The Harris
algorithm is employed to detect image corners, and
the SSD (Sum of Squared Difference) approach is
used for feature matching. Since the images have
been aligned based on the camera tracking data, the
SSD matching space is greatly reduced.

• Parameter Optimization
While three pairs of correspondences are sufficient to
compute a unique solution for affine transformation,
we use all matching corners to guarantee accuracy.
Least square approach is used to estimate the optimal
parameters.

Once the affine parameters are estimated, the 3D-
warped image is warped again using the affine
transformation to the base texture buffer. Figure 7
(right) shows the refined result of using the
approach.

3.6 Select Optimal Base Buffer
Given a 3D scene model, the selection of the base
texture buffer is an optimization problem. A
straightforward way is to assign one base buffer for
each polygon surface. The advantage of this simple
method is that it is not required to clip polygon.
However, when the number of polygons becomes
large, this method becomes unfeasible. So we need
to minimize the number of required base texture
buffers. One possible approach is to combine as
many nearby polygons as possible into one base
buffer. However, complex models typically have
very varying surface normal, even nearby polygons.
Having those polygons with very different normal
shared one base buffer will lead to very poor texture
reproduction. Another issue arising from the
different polygons sharing one base buffer is that we
need to clip the 3D model during texture mapping
process. The number of clipped polygons will affect
the rendering speed, so we would like also to
minimize the number of clipped polygons.

(6)

The problem of selecting optimal base buffers can be
proved to be a NP optimization problem. [Mat99]
used a heuristic algorithm to solve the problem. In
this paper, we approach to combine neighboring
polygons with similar normal into the same base
buffer. Our ongoing work is deeply emphasizing this
problem.

4. EXPERIMENTAL RESULTS
We have tested the proposed video painting approach
on both simulation and real datasets. Figure 8 shows
the results from our simulation experiment. A 3D
cube model covered by a real image is used to mimic
a 3D environment (Figure 8a), and a synthetic
camera (shown with a red frustum in Figure 8a)

moving freely within the environment is used to
“capture” the scene. The image captured from a
viewpoint by the camera is shown in the Figure 8b,
which is used to simulate input video. We then
applied the proposed approach to this scenario.
Figure 8e is the input image warping to the base
buffer, and Figure 8d shows the images painting onto
the 3D model. Since the synthetic camera pose is
perfect in this simulation experiment, no further 2D
image registration is needed. The whole system is in
real time, achieving ~30fps on a 1.1GHZ DELL
workstation. It is worth to mention that the camera
motion is completely arbitrary, and the captured
images are painted persistently onto the correct
surface areas, as shown in Figure 8c, and Figure 8f.

We also tested the approach on real data captured by
a user walking around USC campus. A portable
tracking and video system was used to collect camera
tracking data and video streams. The entire campus
model was reconstructed using a LiDAR modeling
system [You03]. We then applied the approach to
the collected dataset. The video frames were first
aligned to a temporary buffer based on the tracked
camera pose; then the 2D affine transformation
between the warped image and base frame was
computed to refine the alignment; and finally the
warped image is re-warped back to the base buffer
using the computed 2D transformation. The whole
processing for this scenario achieved ~10fps, in
which the most time-consuming part is the 2D image
registration. We notice, however, the fact that most
part of two successive image frames is overlapped,
and there is no need to update the painting for every
frame. So, it is sufficient to only update the painting
buffer in every certain frame (e.g. every 20th frame)
to speedup the system performance. Figure 9 shows
the results of the real data experiment.

5. CONCLUSION
Texture is a crucial element in today’s graphics
oriented applications. Traditional static texture-maps
are limiting for capturing a dynamic and up-to-date
picture of the environment. This paper presents a
new technique of texture painting form video. By
employing live video as texture resource, we are not
only able to create an accurate and photo-realistic
appearance of the rendering scene, but also can
support dynamic spatio-temporal update in the
structure of texture model, database, and rendering
system. We present our approach towards the system
requirements and experimental results for both
simulation and real datasets.
While the proposed approach is novel, there are still
several technical barriers we are addressing in our
ongoing work, including

• Selection of the optimal base texture buffer for
complex scene models. Currently we simply
approach to combine the neighboring polygons
with similar normal into the same base buffer,
which works fine for most of the man-made
scenes’ models. We would also like to deeply
explore the solution for more complex scenes.

• Real time implementation to support multiple
video streams. Today’s computing and graphics
hardware has reached a stage where many
complex real-time computations could be
performed with the high-end graphics processors
(GPU). How to effectively utilize the
programmable GPU features to speedup the
video processing is also our emphasis.

ACKNOWLEDGEMENT
This work was supported by the National Geospatial
Intelligence Agency (NGA) under a NGA University
Research Initiative (NURI) program, and in part by a
Multidisciplinary University Research Initiative
(MRUI). We thank the Integrated Media Systems
Center, a National Science Foundation Engineering
Research Center, for their support and facilities. The
first author would also like to thank Pamela Fox for
her proof reading and comments.

REFERENCES
[Ash01] Ashikhmin, M. Synthesizing natural textures.

ACM Symposium on Interactive 3D Graphics, pp.
217–226, 2001.

[Ber94] Berman, D.F. etc. Multiresolution painting and
compositing. Proceedings of SIGGRPAH 94, 1994.

[Ber01] Bernardini, F., Martin, I. M. and Rushmeier, H.
Hight-quality texture reconstruction from multiple
scans. IEEE Visualization and Computer Graphics,
Volume: 7, Issue: 4 pp. 318-332,2001.

[Efr99] Efros, A.,and Leung, T. Texture synthesis by non-
parametric sampling. ICCV, pp. 1033-1038, 1999.

[Efr01] Efros, A., and Freeman W. T. Image quilting for
texture synthesis and transfer. Proceedings of
SIGGRAPH 2001, pp. 341–346,2001.

[Hee95] Heeger, D.J. and Bergen, J.R. Pyramid based
texture analysis/synthesis. Proceedings of SIGGRPAH
95, pp.229-238, 1995.

[Iga01] Igarashi, T., and Cosgrove, D. adaptive
unwrapping for interactive texture painting. ACM
Symposium on Interactive 3D Graphics. 2001.

[Jia01] Jiang B., Neumann U., Extendible Tracking by
Line Auto-Calibration. International Symposium on
Augmented Reality, pp.97-103, New York, October
2001.

[Mat99] Matsushita K., and Kaneko, T. Efficient and
handy texture mapping on 3d surfaces. In Proc. of
Eurographics, pp.349-358, 1999.

[Neu03]Neumann, U., You, S., Hu, J., Jiang, B. and Lee, J.
W. Augmented virtual environments (AVE): dynamic
fusion of imagery and 3D models, IEEE Virtual
Reality, pp. 61-67, Los Angeles California, 2003.

[Ofe97] Ofek, E. etc. Multiresolution textures from image
sequences. IEEE Computer Graphics and Applications,
Volume:17, Issue:2 pp.18-29, 1997.

[Per95] Perlin, K. Live paint: painting with procedural
multiscale textues. Proceedings of SIGGRAPH,
pp.153–160, 1995.

[Por00] Portilla, J., and simoncelli, E.P. A parametric
texture model based on joint statistics of complex
wavelet coefficients. IJCV 40, 1(Oct.) pp. 49-70, 2000.

[Roc99] Rocchini, C., Cignoni, P. and Montani, C.
Multiple textures stitching and blending on 3D objects.
In Eurographics Rendering Workshop, 1999.

[Sch00]Schodl, A., Szeliski, R., Salesin, D. H., and Essa, I.
Video textures. Proceedings of SIGGRAPH, pp. 489–
498, 2000.

[Soa01] Soatto, S., Doretto, G., and Wu, Y. Dynamic
textures. In Proceeding of IEEE International
Conference on Computer Vision, II, pp. 439–446,
2001.

[Wei00] Wei, L. Y., and Levoy, M. Fast texture synthesis
using tree structured vector quantization. Proceedings
of SIGGRAPH, pp.479–488, 2000.

 [You03]You, S., Hu, J., Neumann, U. and Fox P. Urban
Site Modeling From LiDAR, Second International
Workshop on Computer Graphics and Geometric
Modeling, Montreal, CANADA, 2003.

b

Figure 8 - Te
simulated env
The image vi
video frame i
3D model (d)

Figure 9 - T
(b): One fra
a

d

xture painting with simulation dataset. A cube model covered by a real image is used as a
ironment (a). A synthetic camera moving inside the environment is shown in red frustum.
ewed from the camera’s viewpoint, which is used as simulation of input video (b). The
s warped based on 3D model onto the base buffer (e), then painted as texture onto the same
. The (c), (f) show the painting results of simulated data.
a

exture painting with real data. (a):
me of the captured video. (c): Rend
b

 Portable video acquisition and trac
ered scene of USC campus with live
c

c

e
 f
king system.
 video painting.

	IPC_2005.pdf
	WSCG 2005
	International Programme Committee

	!_J_WSCG_2005_Vol_13_No_1-3_Numbered_Final.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	J_WSCG_2005_No_1-3.pdf
	L07-full.pdf
	1 INTRODUCTION
	2 RELATED WORK
	3 REQUIREMENTS
	4 LAYOUT STYLES
	5 AUTOMATED LABEL LAYOUT
	5.1 Object Properties and Constraints
	5.2 System Architecture
	5.2.1 Domain Expert Initialization
	5.2.2 Image Analysis
	5.2.3 Label Layout
	5.2.4 Line Intersection Elimination
	5.2.5 Layout Compaction
	5.2.6 Frame Coherent Presentation
	5.2.7 Decoration

	5.3 Selection of Layout Style

	6 EVALUATION
	7 DISCUSSION AND FUTURE WORK

	D67-full.pdf
	INTRODUCTION
	PREVIOUS WORK
	TERMINOLOGY
	MESH COMPARISON
	Data Structures
	Main Algorithm
	Cell-Based Distance
	Distance of a Triangle

	APPLICATION TO SIMPLIFICATION
	RESULTS
	Mesh Comparison
	Error Control

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

	G03-full.pdf
	Introduction and Previous Work
	Data Acquisition
	Shape Alignment
	Statistical Analysis
	Results and Conclusions
	Future Work

	F53-full.pdf
	INTRODUCTION
	3.2 Improve Warped Image Quality
	3.3 Occlusion Detection
	3.4 Selective Texture Painting
	3.5 Refine Texture Alignment
	4. EXPERIMENTAL RESULTS
	ACKNOWLEDGEMENT
	REFERENCES

	P4:
	stampTemplate:
	pg: 1

	P5:
	stampTemplate:
	pg: 2

	P6:
	stampTemplate:
	pg: 3

	P7:
	stampTemplate:
	pg: 4

	P8:
	stampTemplate:
	pg: 5

	P9:
	stampTemplate:
	pg: 6

	P10:
	stampTemplate:
	pg: 7

	P11:
	stampTemplate:
	pg: 8

	P12:
	stampTemplate:
	pg: 9

	P13:
	stampTemplate:
	pg: 10

	P14:
	stampTemplate:
	pg: 11

	P15:
	stampTemplate:
	pg: 12

	P16:
	stampTemplate:
	pg: 13

	P17:
	stampTemplate:
	pg: 14

	P18:
	stampTemplate:
	pg: 15

	P19:
	stampTemplate:
	pg: 16

	P20:
	stampTemplate:
	pg: 17

	P21:
	stampTemplate:
	pg: 18

	P22:
	stampTemplate:
	pg: 19

	P23:
	stampTemplate:
	pg: 20

	P24:
	stampTemplate:
	pg: 21

	P25:
	stampTemplate:
	pg: 22

	P26:
	stampTemplate:
	pg: 23

	P27:
	stampTemplate:
	pg: 24

	P28:
	stampTemplate:
	pg: 25

	P29:
	stampTemplate:
	pg: 26

	P30:
	stampTemplate:
	pg: 27

	P31:
	stampTemplate:
	pg: 28

	P32:
	stampTemplate:
	pg: 29

	P33:
	stampTemplate:
	pg: 30

	P34:
	stampTemplate:
	pg: 31

	P35:
	stampTemplate:
	pg: 32

	P36:
	stampTemplate:
	pg: 33

	P37:
	stampTemplate:
	pg: 34

	P38:
	stampTemplate:
	pg: 35

	P39:
	stampTemplate:
	pg: 36

	P40:
	stampTemplate:
	pg: 37

	P41:
	stampTemplate:
	pg: 38

	P42:
	stampTemplate:
	pg: 39

	P43:
	stampTemplate:
	pg: 40

	P44:
	stampTemplate:
	pg: 41

	P45:
	stampTemplate:
	pg: 42

	P46:
	stampTemplate:
	pg: 43

	P47:
	stampTemplate:
	pg: 44

	P48:
	stampTemplate:
	pg: 45

	P49:
	stampTemplate:
	pg: 46

	P50:
	stampTemplate:
	pg: 47

	P51:
	stampTemplate:
	pg: 48

	P52:
	stampTemplate:
	pg: 49

	P53:
	stampTemplate:
	pg: 50

	P54:
	stampTemplate:
	pg: 51

	P55:
	stampTemplate:
	pg: 52

	P56:
	stampTemplate:
	pg: 53

	P57:
	stampTemplate:
	pg: 54

	P58:
	stampTemplate:
	pg: 55

	P59:
	stampTemplate:
	pg: 56

	P60:
	stampTemplate:
	pg: 57

	P61:
	stampTemplate:
	pg: 58

	P62:
	stampTemplate:
	pg: 59

	P63:
	stampTemplate:
	pg: 60

	P64:
	stampTemplate:
	pg: 61

	P65:
	stampTemplate:
	pg: 62

	P66:
	stampTemplate:
	pg: 63

	P67:
	stampTemplate:
	pg: 64

	P68:
	stampTemplate:
	pg: 65

	P69:
	stampTemplate:
	pg: 66

	P70:
	stampTemplate:
	pg: 67

	P71:
	stampTemplate:
	pg: 68

	P72:
	stampTemplate:
	pg: 69

	P73:
	stampTemplate:
	pg: 70

	P74:
	stampTemplate:
	pg: 71

	P75:
	stampTemplate:
	pg: 72

	P76:
	stampTemplate:
	pg: 73

	P77:
	stampTemplate:
	pg: 74

	P78:
	stampTemplate:
	pg: 75

	P79:
	stampTemplate:
	pg: 76

	P80:
	stampTemplate:
	pg: 77

	P81:
	stampTemplate:
	pg: 78

	P82:
	stampTemplate:
	pg: 79

	P83:
	stampTemplate:
	pg: 80

	P84:
	stampTemplate:
	pg: 81

	P85:
	stampTemplate:
	pg: 82

	P86:
	stampTemplate:
	pg: 83

	P87:
	stampTemplate:
	pg: 84

	P88:
	stampTemplate:
	pg: 85

	P89:
	stampTemplate:
	pg: 86

	P90:
	stampTemplate:
	pg: 87

	P91:
	stampTemplate:
	pg: 88

	P92:
	stampTemplate:
	pg: 89

	P93:
	stampTemplate:
	pg: 90

	P94:
	stampTemplate:
	pg: 91

	P95:
	stampTemplate:
	pg: 92

	P96:
	stampTemplate:
	pg: 93

	P97:
	stampTemplate:
	pg: 94

	P98:
	stampTemplate:
	pg: 95

	P99:
	stampTemplate:
	pg: 96

	P100:
	stampTemplate:
	pg: 97

	P101:
	stampTemplate:
	pg: 98

	P102:
	stampTemplate:
	pg: 99

	P103:
	stampTemplate:
	pg: 100

	P104:
	stampTemplate:
	pg: 101

	P105:
	stampTemplate:
	pg: 102

	P106:
	stampTemplate:
	pg: 103

	P107:
	stampTemplate:
	pg: 104

	P108:
	stampTemplate:
	pg: 105

	P109:
	stampTemplate:
	pg: 106

	P110:
	stampTemplate:
	pg: 107

	P111:
	stampTemplate:
	pg: 108

	P112:
	stampTemplate:
	pg: 109

	P113:
	stampTemplate:
	pg: 110

	P114:
	stampTemplate:
	pg: 111

	P115:
	stampTemplate:
	pg: 112

	P116:
	stampTemplate:
	pg: 113

	P117:
	stampTemplate:
	pg: 114

	P118:
	stampTemplate:
	pg: 115

	P119:
	stampTemplate:
	pg: 116

	P120:
	stampTemplate:
	pg: 117

	P121:
	stampTemplate:
	pg: 118

	P122:
	stampTemplate:
	pg: 119

	P123:
	stampTemplate:
	pg: 120

	P124:
	stampTemplate:
	pg: 121

	P125:
	stampTemplate:
	pg: 122

	P126:
	stampTemplate:
	pg: 123

	P127:
	stampTemplate:
	pg: 124

	P128:
	stampTemplate:
	pg: 125

