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Abstract

The massive data parallel computing power provided by inexpensive commodity Graphics Processing Units(GPUs)
makes large-scale spatial data processing on GPUs and GPU-accelerated clusters attractive from both a research
and practical perspective. In this article, we report our works on data parallel designs of spatial indexing, spatial
joins and several other spatial operations, including polygon rasterization, polygon decomposition and point inter-
polation. The data parallel designs are further scaled out to distributed computing nodes by integrating single-node
GPU implementations with High-Performance Computing (HPC) toolset and the new generation in-memory Big
Data systems such as Cloudera Impala. In addition to introducing GPGPU computing background and outlining
data parallel designs for spatial operations, references to individual works are provided as a summary chart for
interested readers to follow more details on designs, implementations and performance evaluations.
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1 Introduction
Geospatial data is one of the fast growing types of data due to the advances of sensing and navigation technologies and
newly emerging applications. First of all, the ever-increasing spatial, temporal and spectral resolutions of satellite imagery
data have led to exponential growth of data volumes. Second, both airborne and mobile radar/lidar sensors have gener-
ated huge amounts of point-cloud data with rich structural information embedded. Third, many mobile devices are now
fequipped with locating and navigation capabilities by using GPS, cellular and Wifi network technologies or their combi-
nations. Considering the large amounts of mobile devices and their users, the accumulated GPS traces, which are essential
to understand human mobility, urban dynamics and social interactions, can be equally computing demanding when com-
pared with satellite imagery data and lidar point cloud data. While the traditional infrastructure data, such as administrative
regions, census blocks and transportation networks, remain relatively stable in growth when compared with the new types
of geospatial data, quite often the new sensing and location data need to be related to the infrastructure data in order to
make sense out of them. Furthermore, polygons derived from point data clustering (e.g., lidar point clouds, GPS locations)
and raster data segmentations (e.g., satellite and airborne remote sensing imagery) are likely to be even larger in volumes
and computing-intensive. To efficiently process these large-scale, dynamic and diverse geospatial data and to effectively
transform them into knowledge, a whole new set of data processing techniques are thus required.

Existing Big Data techniques include algorithmic improvements to reduce computation complexity, developing approx-
imate algorithms to trade accuracy with efficiency and using parallel and distributed hardware and systems. As parallel
hardware, such as multi-core CPUs and Many-core Graphics Processing Units (GPUs), is now mainstream commodity [4],
parallel and distributed computing techniques on top of this inexpensive commodity hardware are attractive, especially for
applications that require exact computation while little room has been left for algorithmic improvements. In the past few
years, the simplicity of the MapReduce computing model and its support in the open source Hadoop system have made
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it attractive to develop distributed geospatial computing techniques on top of MapReduce/Hadoop [2]. The success of
SpatialHadoop [3] and HadoopGIS [1] has demonstrated the effectiveness of MapReduce-based techniques for large-scale
geospatial data management where parallelisms are typically identified at the spatial partition level which allows adapting
traditional serial algorithms and implementations within a partition.

While MapReduce/Hadoop based techniques are mostly designed for distributed computing nodes each with one or
multiple CPU cores, the General Purpose computing on Graphics Processing Units (GPGPUs) techniques represent a sig-
nificantly different parallel computing scheme. GPU hardware architectures adopt a shared-memory architecture closely
resembles traditional supercomputers [5], which requires fine-grained thread level coordination for data parallelization.
From a practical perspective, as the data communications are becoming increasingly expensive when compared with com-
putation on modern processors/systems [4], GPU shared-memory architectures allow very fast data communications (cur-
rently up to 672 GB/s for Nvidia GTX Titan Z1) among processing units when compared with cluster computing ( 50 MB/s
in cloud computing and a few GB/s in grid computing with dedicated high-speed interconnection networks) and multi-core
CPUs (a few tens of GB/s), which is desirable for data intensive computing. Finally, in addition to fast floating point
computing power and energy efficiency, the large number of processing cores on a single GPU device (5,760 for Nvidia
GTX Titan Z) makes it ideal for processing geospatial data which is typically both data-intensive and compute-intensive.
Nevertheless, from a research perspective, techniques based on a single GPU device have limited scalability which makes
it desirable to scale-out the techniques to cluster computers with multiple-nodes and multiple GPU devices.

In this paper, we report our work on data parallel designs for several geospatial data processing techniques. By further
integrating these GPU-based techniques with distributed computing tools, including Message Passing Interface (MPI2)
library in the traditional High-Performance Computing (HPC) clusters and newer generation of Big Data systems (such as
Impala3 and Spark4) for Cloud computing, we are able to scale the data parallel geospatial processing techniques to cluster
computers with good scalability. While we are aware of the complexities in developing a full-fledged GIS and/or a Spatial
Database on GPUs, our research bears three goals: 1) to demonstrate the feasibility and efficiency of GPU-based geospatial
processing, especially for large-scale data, 2) to develop modules for major geospatial data types and operations that can
be directly applied to popular practical applications, such as large-scale taxi trip data and trajectory data, and 3) to develop
a framework to integrate multiple GPU-based geospatial processing modules into an open system that can be shared by
the community. We have developed several modules (as summarized in Fig. 4 in Section 3), over the past few years. We
are in the process of integrating these modules under a unified framework and developing new modules to further enhance
functionality. Interested readers can follow the respective references for more details.

For the rest of the paper, Section 2 provides a brief introduction to GPGPU computing; Section 3 introduces our data
parallel designs and GPU implementations; Section 4 presents the high-level designs, implementations and preliminary
results on integrating single-node GPU techniques for scaling out geospatial processing on GPU-accelerated clusters; and
finally Section 5 is the summary and future work directions.

2 GPGPU Computing
Modern GPUs are now capable of general computing [4]. Due to the popularity of the Compute Unified Device Ar-
chitecture (CUDA) [6] on Nvidia GPUs, which can be considered as a C/C++ extension, we will mostly follow CUDA
terminologies to introduce GPU computing. Current generations of GPUs are used as accelerators of CPUs and data are
transferred between CPUs and GPUs through PCI-E buses. The Nvidia Tesla K10 GPU shown in the lower-right side of
Fig. 1 has 15 Streaming Multiprocesors (SMXs) with each SMX having 192 processing cores. Since 32 processing cores
form a warp and warps are used as the basic units for scheduling, GPUs can be viewed as Single Instruction, Multiple
Data (SIMD) devices [4]. A multiprocessor can accommodate multiple thread blocks with each thread block having one
or more warps through time multiplexing to hide I/Os and other types of latencies. For example, Tesla K10 GPU supports
up to 2048 concurrent threads (i.e., 64 warps) per SMX. All the 32 threads in a warp execute the same instruction and the
performance is maximized when there are no code branches within the warp; otherwise the branches will be serialized and
the performance can be poor.

GPUs that are capable of general computing are facilitated with Software Development Toolkits (SDKs) provided by
hardware vendors. The left side of Fig. 1 shows a simple example on summing up two vectors (A and B) into a new vector
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For the rest of the paper, Section 2 provides a brief introduction to GPGPU computing; Section 3 
introduces our data parallel designs and GPU implementations; Section 4 presents the high-level designs, 
implementations and preliminary results on integrating single-node GPU techniques for scaling out 
geospatial processing on GPU-accelerated clusters; and finally Section 5 is the summary and future 
work directions.  

2 GPGPU Computing  
Modern GPUs are now capable of general computing [1]. Due to the popularity of the Compute 

Unified Device Architecture (CUDA) [9] on Nvidia GPUs, which can be considered as a C/C++ 
extension, we will mostly follow CUDA terminologies to introduce GPU computing. Current 
generations of GPUs are used as accelerators of CPUs and data are transferred between CPUs and GPUs 
through PCI-E buses. The Nvidia Tesla K10 GPU shown in the lower-right side of Fig. 1 has 15 
Streaming Multiprocesors (SMXs) with each SMX having 192 processing cores. Since 32 processing 
cores form a warp and warps are used as the basic units for scheduling, GPUs can be viewed as Single 
Instruction, Multiple Data (SIMD) devices [1]. A multiprocessor can accommodate multiple thread 
blocks with each thread block having one or more warps through time multiplexing to hide I/Os and 
other types of latencies. For example, Tesla K10 GPU supports up to 2048 concurrent threads (i.e., 64 
warps) per SMX. All the 32 threads in a warp execute the same instruction and the performance is 
maximized when there are no code branches within the warp; otherwise the branches will be serialized 
and the performance can be poor.  

 

 

 

 

 

 

 

 

 

Fig.1 Illustration of GPU hardware Architecture and Programming Model 
GPUs that are capable of general computing are facilitated with Software Development Toolkits 

(SDKs) provided by hardware vendors. The left side of Fig. 1 shows a simple example on summing up 
two vectors (A and B) into a new vector (C) in CUDA. The top part of the code shows the kernel 
function to be invoked by the main function in the lower part of the code segment. The whole computing 
task is divided into M blocks with each being assigned to a thread block with N threads. Within a thread 
block, an index can be computed to address the relevant vector elements for inputs/outputs based on its 
thread identifier (threadIdx.x) and block identifier (blockIdx.x), which are automatically assigned by the 
hardware scheduler, and block dimension (blockDim.x) which is specified when the kernel is invoked. 
While we use a 1D example in Fig. 1, CUDA supports up to three dimensions. 

Parallelism is fundamental to data processing on parallel hardware. While coarse-grained 
parallelization can be used to create parallel tasks and exploit existing scheduling algorithms for parallel 

//kernel function on GPUs 
__global__ void addVector(int *A, int *B, int *C) 
{ 
    //using built-in variables (blockDim.x=N) 
    int id= blockIdx.x * blockDim.x +threadIdx.x;  
    //execute in parallel for all threads in a block 
    C[id]=A[id]+B[id];  
} 
 
int main() 
{ 
... 
//allocate A, B, C vectors on GPUs and transfer A/B to 
GPU from CPU 
//kernel call using M blocks and N threads per block  
addVector<<<M,N>>>>(A,B,C) 
//transfer C back to CPU if needed 
... 
} 

A 

B 
C 

Thread Block 

Figure 1: Illustration of GPU hardware Architecture and Programming Model

(C) in CUDA. The top part of the code shows the kernel function to be invoked by the main function in the lower part of
the code segment. The whole computing task is divided into M blocks with each being assigned to a thread block with N
threads. Within a thread block, an index can be computed to address the relevant vector elements for inputs/outputs based
on its thread identifier (threadIdx.x) and block identifier (blockIdx.x), which are automatically assigned by the hardware
scheduler, and block dimension (blockDim.x) which is specified when the kernel is invoked. While we use a 1D example
in Fig. 1, CUDA supports up to three dimensions.

Parallelism is fundamental to data processing on parallel hardware. While coarse-grained parallelization can be used
to create parallel tasks and exploit existing scheduling algorithms for parallel execution, the reverse is not true. Roughly
speaking, the CUDA computing model for GPUs supports both task parallelism at the thread block level and data paral-
lelism at the thread level. For a single GPU kernel designed for solving a particular problem, the boundary between task
and data parallelism can be configured when the kernel is invoked (the lower-left part of Fig. 1). However, to maximize
performance, data items should be grouped into basic units that can be processed by a warp of threads (which are dynam-
ically assigned to processor cores) without incurring significant divergence. Instead of accessing data items sequentially
that exhibits significant temporal locality that is optimal on CPUs, when nearby threads in a warp access a continuous block
of data items in GPU device memory, the individual GPU memory accesses by the warp of threads can be combined into
fewer memory accesses (coalesced memory accesses). This GPU characteristic requires a careful design of the layouts of
multi-dimensional spatial data structures and their access patterns when developing spatial algorithms.

The unique hardware features and large tunable parameter space have made developing efficient GPU programs chal-
lenging. Using local, focal, zonal and global classification of geospatial operations [11] for both vector and raster data,
as local operations only involve independent individual data items and focal operations mostly involve a bounded small
number of neighboring items, they are relatively easy to be parallelized on GPUs. However, zonal operations (such as
generating elevation distribution histograms for raster cells in polygons) and global operations (such as indexing vector
geometry as trees) typically involve geometrical objects with variable numbers of vertices and may be spatially related
to unbounded numbers of geometrical objects, such as joining two polygon datasets based on point-polygon test or two
polyline datasets based on distance or similarity measures. The irregularities of data layout and data access patterns in such
spatial operations have made it technically very challenging to efficiently design and implement geospatial algorithms on
GPU hardware.

While we have developed some geometrical algorithms on GPUs using CUDA directly at the beginning of our explo-
rations of massive data parallel computing power for geospatial processing, we gradually realized that the straightforward
approach is not productive. Instead, we have chosen to adopt a parallel primitive based approach whereas possible to
reduce implementation complexity and improve development productivity. Parallel primitives refer to a collection of fun-
damental algorithms that can run on parallel machines [8]. The behaviors of popular parallel primitives on 1D arrays are
well-understood. Parallel primitives usually are implemented on top of native parallel programming languages (such as
CUDA) but provide a set of simple yet powerful interfaces (or APIs) to end users. Technical details are hidden from end
users and many parameters that are required by native programming languages are fine-tuned for typical applications in
parallel libraries so that users do not need to specify such parameters explicitly.



3 Data Parallel Designs and Single-Node GPU-Implementations
Due to space limit, we will use a grid-file based indexing as an example to illustrate the idea of parallel primitives based
data parallel designs and their implementations on GPUs. We then provide a summary chart for our existing designs and
implementations and refer the readers to respective references for details.

Consider indexing a large set of points using the classic grid-file structure [9]. While serial algorithms and their
implementations loop through all the points and determine the grid cell that each point should be associated with, as shown
in Fig. 2, we use four parallel primitives for this purpose: transform, (stable) sort, reduce (by key) and (exclusive) scan.
The transform primitive (similar to the Map function in MapReduce) generates Morton codes [9] that are used as grid cell
identifiers for all points at a pre-defined resolution level; the sort primitive sorts points based on the cell IDs; the reduce
(by key) primitive counts the number of points within each grid cell; and finally the (exclusive) scan primitive computes
the prefix-sums of the numbers of points in all grid cells which are the starting positions of the points in the sorted point
data vector. The primitives are executed by GPU hardware in parallel using their most efficient implementations which are
transparent to algorithm and application developers. In fact, the current Thrust5 parallel library (which comes with CUDA
SDK) uses radix sort for the sort primitive. Although quicksort is known to be efficient on CPUs, radix sort is considered
to be more efficient on GPUs.

transform, (stable) sort, reduce (by key) and (exclusive) scan. The transform primitive (similar to the 
Map function in MapReduce) generates Morton codes [12] that are used as grid cell identifiers for all 
points at a pre-defined resolution level; the sort primitive sorts points based on the cell IDs; the reduce 
(by key) primitive counts the number of points within each grid cell; and finally the (exclusive) scan 
primitive computes the prefix-sums of the numbers of points in all grid cells which are the starting 
positions of the points in the sorted point data vector. The primitives are executed by GPU hardware in 
parallel using their most efficient implementations which are transparent to algorithm and application 
developers. In fact, the current Thrust6  parallel library (which comes with CUDA SDK) uses radix sort 
for the sort primitive. Although quick sort is known to be efficient on CPUs, radix sort is considered to 
be more efficient on GPUs. 

 

 

 

 

 

 

Fig. 2 Data Parallel Design and Implementation of Grid-File Point Indexing on GPUs 

We have designed indexing techniques for rasters [13,14,15], points [6,16] and Minimum 
Bounding Boxes [16,17] using Grid-Files [16], Quadtrees [6,13,14,15] and R-Trees [17]. We have also 
developed a GPU-based spatial join framework to join two indexed spatial datasets based on point-in-
polygon tests [6], point-to-polyline distance [16], polyline-to-polyline similarity [18] with applications 
to spatiotemporal aggregation of large-scale taxi-trip data [6], trip-purpose analysis [19], trajectory 
similarity query [18] and global biodiversity studies [7]. Fig. 3 illustrates our framework for spatial join 
processing on GPUs using grid-file indexing. After MBRs are rasterized into grid cells, the middle part 
of Fig. 3 illustrates how to use parallel primitives including sort, binary searches and unique to pair up 
polygons or polylines (i.e., spatial filtering) for the subsequent spatial refinement. While using quadtrees 
or R-trees for spatial filtering may require different parallel primitives (we refer to [6, 17] for details), 
the grid-file based spatial filtering essentially transforms a spatial query (filtering) problem into a 
relational equi-join problem which has been shown to be effective on GPUs [16]. The lower part of Fig. 
3 shows four types of spatial refinement operations which can be realized efficiently on GPUs and we 
refer to [6,16,19] for details. 

     In addition to spatial indexing and query processing, which are important components in 
spatial databases, our research also involves several modules that are more related to pre-processing and 
post-processing as well as data conversions on GPUs, which are essential in a GIS environment. The 
work on natural neighbor based spatial interpolation for lidar data [20], although is implemented using 
CUDA directly for performance, also adopts a parallel primitive approach internally at the thread block 
level. The spatial interpolation module naturally bridges point data and raster data which makes it 
possible to apply existing techniques for rasters for point data. Similarly the GPU-based polygon 
rasterization technique in [21] bridges polygons and rasters. In observing that indexing polylines and 
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thrust::transform(d_points.begin(),d_points.end(), 

d_cellids.begin(),xytor(run_lev)); 
thrust::stable_sort_by_key(d_cellids.begin(),  

d_cellids.end(), d_points.begin()); 
thrust::reduce_by_key ( d_cellids.begin(),d_cellids.end(), 
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Figure 2: Data Parallel Design and Implementation of Grid-File Point Indexing on GPUs

We have designed indexing techniques for rasters [21, 22, 19], points [18, 26] and Minimum Bounding Boxes [26,
13] using Grid-Files [26], Quadtrees [18, 21, 22, 19] and R-Trees [13]. We have also developed a GPU-based spatial
join framework to join two indexed spatial datasets based on point-in-polygon tests [18], point-to-polyline distance [26],
polyline-to-polyline similarity [23] with applications to spatiotemporal aggregation of large-scale taxi-trip data [18], trip-
purpose analysis [25], trajectory similarity query [23] and global biodiversity studies [20]. Fig. 3 illustrates our framework
for spatial join processing on GPUs using grid-file indexing. After MBRs are rasterized into grid cells, the middle part
of Fig. 3 illustrates how to use parallel primitives including sort, binary searches and unique to pair up polygons or
polylines (i.e., spatial filtering) for the subsequent spatial refinement. While using quadtrees or R-trees for spatial filtering
may require different parallel primitives (we refer to [18, 13] for details), the grid-file based spatial filtering essentially
transforms a spatial query (filtering) problem into a relational equi-join problem which has been shown to be effective on
GPUs [26]. The lower part of Fig. 3 shows four types of spatial refinement operations which can be realized efficiently on
GPUs and we refer to [18, 26, 25] for details.

In addition to spatial indexing and query processing, which are important components in spatial databases, our research
also involves several modules that are more related to pre-processing and post-processing as well as data conversions on
GPUs, which are essential in a GIS environment. The work on natural neighbor based spatial interpolation for lidar
data [12], although is implemented using CUDA directly for performance, also adopts a parallel primitive approach inter-
nally at the thread block level. The spatial interpolation module naturally bridges point data and raster data which makes
it possible to apply existing techniques for rasters for point data. Similarly the GPU-based polygon rasterization technique
in [16] bridges polygons and rasters. In observing that indexing polylines and polygons at MBR level might be limited by
high false positives and result in low indexing power, we have developed a polygon decomposition technique which can
decompose polygons into quadrants [24]. The decomposed polygons can be used for both indexing and approximating
polygons in certain queries. We have also performed preliminary designs and implementations for polygon overlays [28],
Geographical Weighted Regression (GWR) analysis [15] and map-matching for trajectories on GPUs. Fig. 4 provides
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a summary chart of our existing works where shaded rectangles represent indexing techniques, diamond-headed edges
represent spatial applications and bracketed numbers represent publication sources for more details.

polygons at MBR level might be limited by high false positives and result in low indexing power, we 
have developed a polygon decomposition technique which can decompose polygons into quadrants [22]. 
The decomposed polygons can be used for both indexing and approximating polygons in certain queries. 
We have also performed preliminary designs and implementations for polygon overlays [23], 
Geographical Weighted Regression (GWR) analysis [24] and map-matching for trajectories on GPUs. 
Fig. 4 provides a summary chart of our existing works where shaded rectangles represent indexing 
techniques, diamond-headed edges represent spatial applications and bracketed numbers represent 
publication sources for more details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 A Framework of Spatial Join Query Processing on GPUs using Grid-File Indexing 
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Figure 3: A Framework of Spatial Join Query Processing on GPUs using Grid-File Indexing

4 Scaling-out to GPU-Accelerated Clusters
To further improve the performance of large-scale geospatial data processing, it is essential to share workloads among dis-
tributed computing nodes that are equipped with GPUs for scalability. As discussed in Section 1, it is nontrivial to design
and implement efficient distributed computing systems while existing Big Data systems typically do not support spatial data
processing. In observing that improving single-node efficiency using GPUs can significantly reduce inter-node data com-
munications [10], we believe that integrating our single-node GPU-based geospatial processing techniques with distributed
computing techniques can be competitive with existing solutions (such as HadoopGIS [3] and SpaitalHadoop [1]).

Towards this goal, we have experimented two approaches: one using the MPI parallelization software stack available
on the ORNL Titan supercomputer and one using the open source Cloudera Impala [7]. Fig. 5 illustrates the framework
of the first approach where the NASA SRTM 30-meter DEM rasters with 40 billion raster cells are first divided into raster
titles and the tiles are paired up with county MBRs. The pairs are partitioned and the partitions are then sent to Titan
computing nodes through MPI APIs (Left Fig. 5). On each computing node, a raster tile is further divided into blocks and



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Summary Chart of GPU-based Spatial Operations for Different Spatial Data Types and Datasets  

4 Scaling-out to GPU-Accelerated Clusters 
To further improve the performance of large-scale geospatial data processing, it is essential to 

share workloads among distributed computing nodes that are equipped with GPUs for scalability. As 
discussed in Section 1, it is nontrivial to design and implement efficient distributed computing systems 
while existing Big Data systems typically do not support spatial data processing. In observing that 
improving single-node efficiency using GPUs can significantly reduce inter-node data communications 
[25], we believe that integrating our single-node GPU-based geospatial processing techniques with 
distributed computing techniques can be competitive with existing solutions (such as HadoopGIS [3] 
and SpaitalHadoop [4]).  

Towards this goal, we have experimented two approaches: one using the MPI parallelization 
software stack available on the ORNL Titan supercomputer and one using the open source Cloudera 
Impala [26]. Fig. 5 illustrates the framework of the first approach where the NASA SRTM 30-meter 
DEM rasters with 40 billion raster cells are first divided into raster titles and the tiles are paired up with 
county MBRs. The pairs are partitioned and the partitions are then sent to Titan computing nodes 
through MPI APIs (Left Fig. 5). On each computing node, a raster tile is further divided into blocks and 
elevation histograms for the raster blocks can be efficiently computed on a GPU in parallel. 
Subsequently, raster blocks are tested whether they are completely inside a polygon or intersect with 
polygons after spatial filtering based on MBRs,. For raster blocks that are completely within a polygon, 
their histograms will be merged. For raster blocks that overlap with polygons, raster cells in the blocks 
are then treated as points and point-in-polygon tests are performed in parallel on GPUs as described in 
[6]. The per-polygon histograms are subsequently updated based on the test results. While we refer to [8] 
for details on the designs, implementations and performance evaluations, as a summary of results, we 
were able to generate elevation histograms for 3000+ US counties over 40 billion raster cells in about 10 
seconds using 8 Titan nodes. We are in the process of generalizing the approach to support more general 
Zonal Statistics spatial operations which are popular in GIS applications [10].  
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Figure 4: Summary Chart of GPU-based Spatial Operations for Different Spatial Data Types and Datasets

elevation histograms for the raster blocks can be efficiently computed on a GPU in parallel. Subsequently, raster blocks
are tested whether they are completely inside a polygon or intersect with polygons after spatial filtering based on MBRs,.
For raster blocks that are completely within a polygon, their histograms will be merged. For raster blocks that overlap
with polygons, raster cells in the blocks are then treated as points and point-in-polygon tests are performed in parallel on
GPUs as described in [18]. The per-polygon histograms are subsequently updated based on the test results. While we refer
to [17] for details on the designs, implementations and performance evaluations, as a summary of results, we were able to
generate elevation histograms for 3000+ US counties over 40 billion raster cells in about 10 seconds using 8 Titan nodes.
We are in the process of generalizing the approach to support more general Zonal Statistics spatial operations which are
popular in GIS applications [11].

 

 

 

 

 

 

 

 

 

Fig. 5 Zonal Statistics on US Counties over NASA SRTM DEM Rasters on Titan Supercomputer using MPI with 
GPU-based Histogramming, Point-in-Polygon Test and Box-in-Polygon Test 

The second approach we have adopted is to extend Cloudera Impala to support spatial query in 
SQL. Different from traditional distributed computing that utilizes MPI, data communication in Impala 
is based on Apache Thrift7 and is tightly embedded into SQL physical execution plan. As shown in Fig. 
6, in the ISP prototype system we have developed, three additional extensions are implemented in order 
to reuse the Impala infrastructure for distributed spatial query processing. First, we modify the Abstract 
Syntax Tree (AST) module of Impala frontend to support spatial query syntax. Second, we represent 
geometry of spatial datasets as strings to support spatial data accesses in Impala and prepare necessary 
data structures for GPU-based spatial query processing. Third, we have developed a SpatialJoin module 
as a subclass of ExecNode to extract data from both left and right sides in a spatial join in batches before 
the data is sent to GPU for query processing. We again refer to our technical report [27] for details while 
only provide a summary of performance evaluation here due to space limit. Our experiments are 
performed on Amazon EC2 clusters with up to 10 g2.2xlarge instances, each with 8 Intel Sandy Bridge 
2.6 GHZ vCPUs, 15 GB memory and an NVIDIA GPU with 4 GB graphics memory and 1,536 CUDA 
cores. Our experiments have shown that the end-to-end runtimes can be reduced to ~30s when joining 
~170 million taxi trip pickup locations (dataset volume 6.9 GB on HDFS) with ~40 thousand polygons 
(9 vertices per polygon on average) using 6 EC2 instances. The runtimes in joining ~50 million GBIF 
species occurrence locations with ~14.5 thousand WWF Ecoregion polygons (279 vertices per polygon 
on average) are about 135s using the 6 EC2 instances. When the number of instances is increased to 10, 
the runtimes are further reduced to about 21s and 95s, respectively, which indicate reasonable scalability. 
While we are still in the process of investigating various factors that may affect system performance and 
scalability to remove bottlenecks and achieve better performance, the preliminary results are 
encouraging which warrants further research.  

The current GPU SDKs have limited support for JAVA, Scala and other languages other than 
C/C++, which makes it difficult to integrate out GPU-based implementations to Hadoop and Spark for 
scalability. However, we have observed that our data parallel designs and their implementations on top 
of the Thrust parallel library have strong connections with the built-in vector functions (e.g., map, 
reduce and sort) in Scala (and similarly Java 8). The connections have motivated us to develop 
SpatialSpark [28] to process spatial queries directly on Spark, a popular and high-performance in-
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Figure 5: Zonal Statistics on US Counties over NASA SRTM DEM Rasters on Titan Supercomputer using MPI with
GPU-based Histogramming, Point-in-Polygon Test and Box-in-Polygon Test

The second approach we have adopted is to extend Cloudera Impala to support spatial query in SQL. Different from
traditional distributed computing that utilizes MPI, data communication in Impala is based on Apache Thrift6 and is tightly
embedded into SQL physical execution plan. As shown in Fig. 6, in the ISP prototype system we have developed, three
additional extensions are implemented in order to reuse the Impala infrastructure for distributed spatial query processing.
First, we modify the Abstract Syntax Tree (AST) module of Impala frontend to support spatial query syntax. Second,

6http://thrift.apache.org



we represent geometry of spatial datasets as strings to support spatial data accesses in Impala and prepare necessary data
structures for GPU-based spatial query processing. Third, we have developed a SpatialJoin module as a subclass of
ExecNode to extract data from both left and right sides in a spatial join in batches before the data is sent to GPU for query
processing. We again refer to our technical report [27] for details while only provide a summary of performance evaluation
here due to space limit.

The current GPU SDKs have limited support for JAVA, Scala and other languages other than C/C++, which makes it
difficult to integrate out GPU-based implementations to Hadoop and Spark for scalability. However, we have observed that
our data parallel designs and their implementations on top of the Thrust parallel library have strong connections with the
built-in vector functions (e.g., map, reduce and sort) in Scala (and similarly Java 8). The connections have motivated us
to develop SpatialSpark [14] to process spatial queries directly on Spark, a popular and high-performance in-memory Big
Data system developed using Scala and Java. While the end-to-end performance of SpatialSpark is largely affected by the
underlying geometry library (JTS7 in this case) which dominates the spatial join query runtimes, the simple implementa-
tions and high-performance have made the implementation attractive for Cloud deployment [14]. This subsequently has
motivated us to develop a data communication infrastructure similar to Spark (and Akka8 that Spark depends on) to natively
support large-scale geospatial processing on GPU-accelerated clusters. By developing more semantics-aware spatial data
partition and communication primitives and extending the row-batch based asynchronous data processing framework in
Impala [7] to semi-structure data (such as spatial data and trajectory data), we hope the new designs and implementations
can bring higher efficiency and scalability for large-scale geospatial processing.
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Fig. 6 ISP System Architecture and Components    

5 Conclusion and Future Work 
Large-scale geospatial data in newly emerging applications require new techniques and systems 

for better scientific inquiries and decision making. Efficient and scalable processing of large-scale 
geospatial data on parallel and distributed platforms is an important aspect of Big Data research.  In this 
paper, we present our work on parallel designs and implementations of geospatial processing algorithms 
and systems on GPUs and GPU-accelerated clusters for both efficiency and scalability. Experiments on 
several large-scale geospatial data have demonstrated orders of magnitude speedups when compared 
with traditional techniques on single CPU cores and have shown great potentials in significantly 
speeding up a wide range of geospatial applications.  

For future work, first of all, we would like to investigate on both generic and spatial specific 
parallel primitives for multi-dimension data as most of existing primitives in parallel libraries (including 
Thrust) are designed for one dimensional vectors. Second, while we have successfully scaled out our 
data parallel designs from a single node to distributed nodes by using existing parallel libraries and 
systems such as MPI, Impala and Spark, there is still considerable room for optimizations to further 
improve scalability by incorporating spatial processing domain semantics. Finally, compared with 
existing spatial databases that provide declarative SQL interfaces and GIS that provide intuitive graphics 
interfaces, except for ISP, most of our prototypes are standalone command line programs. We plan to 
integrate both SQL and graphics interfaces with our prototypes for better usability.  
Acknowledgement: this work is partially supported by NSF Grants IIS-1302423 and IIS-1302439. 
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Figure 6: ISP System Architecture and Components

5 Conclusion and Future Work
Large-scale geospatial data in newly emerging applications require new techniques and systems for better scientific in-
quiries and decision making. Efficient and scalable processing of large-scale geospatial data on parallel and distributed
platforms is an important aspect of Big Data research. In this paper, we present our work on parallel designs and imple-
mentations of geospatial processing algorithms and systems on GPUs and GPU-accelerated clusters for both efficiency
and scalability. Experiments on several large-scale geospatial data have demonstrated orders of magnitude speedups when
compared with traditional techniques on single CPU cores and have shown great potentials in significantly speeding up a
wide range of geospatial applications.

For future work, first of all, we would like to investigate on both generic and spatial specific parallel primitives for
multi-dimension data as most of existing primitives in parallel libraries (including Thrust) are designed for one dimensional
vectors. Second, while we have successfully scaled out our data parallel designs from a single node to distributed nodes ,
there is still considerable room for optimizations to further improve scalability by incorporating spatial processing domain
semantics. Finally, compared with existing spatial databases that provide declarative SQL interfaces and GIS that provide
intuitive graphics interfaces, except for ISP, most of our prototypes are standalone command line programs. We plan to
integrate both SQL and graphics interfaces with our prototypes for better usability.

7http://www.vividsolutions.com/jts/JTSHome.htm
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