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ABSTRACT. Whereas walks on N with a finite set of jumps were the subject of numerous studies,
walks with an infinite number of jumps remain quite rarely studied. Even for relatively well struc-
tured models, the classical approach with context-free grammars fails as we deal with rewriting
rules over an infinite alphabet. However, several classes of such walks offer a surprising structure:
we make here explicit the associated bivariate functions, and give several theorems on their nature
(rational, algebraic) via the kernel method or Riordan arrays theory. We give some examples of
recent problems in combinatorics or theoretical computer science which lead to such rules.

RESUME. Tandis que les propriétés énumératives et asymptotiques des marches sur N avec un nom-
bre fini de sauts ont fait 'objet de nombreuses études, les marches avec un nombre infini de sauts
demeurent assez peu étudiées. Méme pour des modeles relativement structurés, on ne peut utiliser
les approches classiques par grammaires algébriques, puisqu’il s’agit de régles de récriture sur un
alphabet infini. Toutefois, diverses classes de telles marches offrent une surprenante structure :
nous explicitons ici la nature (algébrique, rationnelle) de la série génératrice bivariée associée (via
la méthode du noyau ou la théorie des tableaux de Riordan). Nous illustrons l'intéret de telles
marches en combinatoire et informatique théorique par quelques exemples.

INTRODUCTION

A considerable number of problems from computer science deals with a sum of independent
identical distributed random variables ¥,, = X; + X5 + --- + X,, (where each of the X;’s assumes
integer values). We will consider here the following model of random walks: the walk starts (at time
0) from a point Xy of Z and at time n, one makes a jump X,, € 7Z; so the new position is given by
the recurrence ¥, = 3,, 1 + X,, where, when ¥,, 1 = k, the X,,’s are constrained to belong to a
fixed set Py, (that is, the possible jumps depend on the position of the walk).

These “walks on Z” are homogeneous in time (that is to say, the set of jumps when one is at
position k is independent from the time). When the positions ¥,,’s are constrained to be nonnegative,
we talk about “walks on N”. The probabilistic model under consideration here is the uniform
distribution on all paths of length n.

When the sets Py’s are equal to a fixed set P (the simplest interesting case being P = {—1,+1}),
the corresponding walks have been deeply studied both in combinatorics and in probability theory.
We refer to [3] for asymptotic properties of such “walks on N with a finite set of jumps”. When
the sets Pj’s are unbounded, both enumeration and asymptotics become cumbersome: contrary to
the previous case, the walks are not space-homogeneous (the set of available jumps depends on the
position) and it is not possible to generate them by context-free grammars. However, if the sets Py’s
have a “combinatorial” shape, it is reasonable to hope that the generating function associated to the
corresponding walk would have some nice properties. We show here that this hope is legitimate and
we present several classes of such walks, for which we are able to give the nature of their generating
function.

Our results have potential impacts on the theory of generating trees (generation of combinatorial
objects), the enumeration of general classes of lattice paths, and on the study of rewriting rules on
an infinite alphabet.

A definition of the generating function associated to the walk is given in Section 1. In this first
section, we also present the generating tree and Riordan array viewpoints. In Section 2, we give
several theorems related to the nature of the generating functions associated to some walks and then
we give some asymptotic results. In Section 3, we give some examples of problems in which some
of the new classes of walks that we study in this article appeared.
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FIGURE 1. The generating tree of the walk on N with jumps P = {+1, —1} starting
in 0 (and up to length n = 4). Each branch corresponds to a path. The branch
(0,1,2,1,2) corresponds to the path drawn on the lattice.

1. LATTICE PATHS AND GENERATING TREES

In combinatorics, it is classical to represent a particular walk as a path in a two dimensional lattice.
Thus the drawing corresponds to the walk of length n linking the points ((O, Y0), (1,%4),...,(n, En))
It is also convenient to represent all the walks of length < n as a tree of height n, where the root
(at level 0 by convention) is labeled with the starting point of the walks and where the label of each
node at level n encodes a possible position of the walk (see Figure 1).

We note wy, j the number of walks on N of length n going from the starting point to k (or,
equivalently, the number of nodes with label k at level n in the tree) and we want to find the
bivariate generating function

W(z,u) = Z wp(u)z"™ = ZWk(z)uk = Z Wy, uf 2"
n>0 keZ kEZ,,n>0
where u encodes the final altitude of the walk (the label in the tree), z the length of the walk (the
level in the tree), and where w, (u) is a Laurent polynomial (that is, a polynomial with finitely many
monomials of negative and positive degree). When the walk is constrained to remain nonnegative
(or equivalently when negative labels in the tree are not allowed), we consider similarly the bivariate
generating function

(1) F(Z,U) = an(u)zn = ZFk(z)uk = Z fn,kukzn-

n>0 kEN kEN,n>0

Generating trees and rewriting rules. The concept of generating trees has been used from
various points of view and was introduced in the literature by Chung, Graham, Hoggatt and
Kleiman [6] to examine the reduced Baxter permutations. This technique has been successively
applied to other classes of permutations. A generating tree is a rooted labeled tree with the prop-
erty that if v; and vy are any two nodes with the same label then, for each label ¢, v; and vy have
exactly the same number of children with label ¢. To specify a generating tree it therefore suffices to
specify: 1) the label of the root; 2) a set of rules explaining how to derive from the label of a parent
the labels of all of its children. Points 1) and 2) define what we call a rewriting rule. For example,
Figure 1 illustrates the upper part of the generating tree which corresponds to the rewriting rule
[(0), {(k) ~ (k = 1)(k + 1)}].

Riordan arrays We introduce now the concept of matriz associated to a generating tree: this is
an infinite matrix {d x }n,ken where d,, x is the number of nodes at level n with label k +r, r being
the label of the root. For example, the matrix associated to the generating tree of the Figure 1 is
the following:

n/k|0 1 2 3 4
0 [1
1|0 1

2 |10 1
3 10201
412 0301
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Many such matrices can be studied from a Riordan array viewpoint. In fact, the concept of a
Riordan array provides a remarkable characterization of many lower triangular arrays that arise in
combinatorics and algorithm analysis. The theory has been introduced in the literature in 1991 by
Shapiro, Getu, Woan and Woodson [11]. Riordan arrays are a powerful tool in the study of many
counting problems [7].

A Riordan array is an infinite lower triangular array {d, i }n.ken, defined by a pair of formal
power series D = (d(z), h(z)), such that the k-th column is given by d(z)(zh(2))*, i.e.:

dni = [2"]d(2)(zh(2))", n,k > 0.
From this definition we have d,, ;, = 0 for k£ > n. The bivariate generating function for D is:

Z dp, ku z" d(z)

o 1 uzh( )

In what follows, we always assume that d(0) # 0; if we also have h(0) # 0 then the Riordan array
is said to be proper; in the proper-case the diagonal elements d,, ,, are different from zero for all
n € N. The most simple example is the Pascal triangle for which we have

(Z) :[zn]liz (12:2)’“7

where we recognize the proper Riordan array with d(z) = h(z) = 1/(1 — 2). Proper Riordan arrays
are characterized by the existence of a sequence A = {a;}ieny with ag # 0, called the A-sequence,
such that every element d, 1 r+1 can be expressed as a linear combination, with coefficients in A,
of the elements in the preceding row, starting from the preceding column:

dpy1,k+1 = @odp | + a1dp p+1 + a2dy g2 + -

It can be proved that h(z) = A(zh(z)), A(z) being the generating function for A. For example,
for the Pascal triangle we have: A(z) = 1 4+ z and the previous relation reduces to the well-
known recurrence relation for binomial coefficients. The A-sequence doesn’t characterize completely
(d(2), h(z)) because d(z) is independent of A(z). But it can be proved that there exists a unique
sequence Z = {zq, 21,22, ...}, such that every element in column 0 can be expressed as a linear
combination of all the elements of the preceding row:

dp+1,0 = 2odn,0 + 21dp,1 + 22dp 2 + -+

This property has been recently studied in [7], where it is proved that d(z) = d(0)/(1 — 2Z(zh(z))),
Z(z) being the generating function for Z. Thus the triple (d(0), Z(z), A(z)) characterizes every
proper Riordan array.

2. WALKS ON 7Z WITH AN INFINITE SET OF NEGATIVE JUMPS

2.1. Lattice paths and generating trees. Consider a sequence (e;(k));>—_, (for a given integer
a > 0) of polynomials assuming nonnegative integers values then the walk with an infinite set of
jumps under consideration here are of the following kind:

@ 0A®) = OO QOO (k= 1O E Ok + @)Y,

where the exponent e;(k) is the multiplicity of the jumps —i when one is at position k and where r
is the starting position of the walk (or equivalently, the root of the associated generating tree).

If the sequence of polynomials (e;(k));>_, is ultimately e;(k) = 0, then the situation covers the
case of walks with a finite set of jumps. If the sequence is ultimately e;(k) = 1, then this covers the
case of “factorial rules” which are of great interests for the generation of combinatorial objects [4]
and for which it was proven in [2] that the associated generating functions are algebraic.

We still note f,, , the number of walks on N of length n going from the starting point to k and
we want to find the bivariate generating function F'(z,u) = Zn’k>0 fnxuF2". These random walks
on N can equivalently be seen as lattice paths, generating trees and also as Riordan arrays (when
a=1).
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Rule EIS approximate description Generating Function F(z, u)
Rational OGF OGF
1—2z — 22
(0), {(k) ~ (O)k(k+1)} Fy, F(z,1): powers of 2 _ T E
1— (u+2)z — 2uz?
F(z,1):A001333 continued 1224 22
(0), {(k) ~ (0)2* (k + 1)} fraction convergents to /2 3 3
Fo: A052542 (ECS) 1—(u+2)z+ (2u — 1)22 + uz
(0), {(k) ~ (0)** (k + 1)} F(z,1): A026150 (ECS) 1-2:427
’ = 1 — (u+2)z+ (2u — 2)22 4 2uz3
(0), {(k) ~~ () (k + 1)} F(2,1): AO46T17 half of 37 1-2:+27
3 ~r z, H alf o
1—(u+2)z+ (2u — 32)22 + 3uz3
k F(z,1): A001075 and 1—4z+4z
(0), {(k) ~ (0)% (k + 1)(k + 2)} Fo: A005320 Pell’s equation T 7RSI v v v —
du — 1)z —
(1), {(k) = ()W) (R)(k + 2)2(k + 3)°} 6" and A003464 (6" —1)/5 a 6( >u<<z 2)1 1>u 0
— 6z u z—
©.{(8) = @* @313 () (k + 12 (e +3)°} see Theorem 1
Algebraic OGF OGF
M), {(k) ~»(1)...(k+s—2)(k+s—1)} F(z,1): s-ary trees
2 2 F(z,1): A001003 Schrdder’s ul—(2u+1)z—1-6z— 22
(1), () = (1% (2 (k + 1)} Fle i) Ao ey s

©), {(k) ~ @F @=L @) (k) (k + 1) (k + )%}

A036765 F(z,1): rooted trees
with a degree constraint

Fp: A006013 A046648

(0, {(k) ~ (0)FF2(1)k+1 (K — )3 (k)2 (k + 1)} noncrossing trees on a circle equation of degree 3
F(z,1): A001764 ternary trees

(0), {(k) =~ (@OF(M)F~" .. (k = D' (R)(k + 1)}

equation of degree 3

F(z,1): A066357 planar trees
with root parity constraint

(0), {(k) ~ (O)F T3 ... (k = D (R)3(k + 1)? (k + 2)}

equation of degree 4

(0), {(k) ~ (0)%k ... (k = 1)1 () €0 (k + 1)} Fp: A006318 13- (ut1)z—V1-6:—2
(where C}, is the k-th Catalan number) large Schréder numbers 2 1 —3uz + (2u? + u)z2
1 3—(du+2)z — /1 — 4z — 422
0, {(k) ~ (0)Ck ... (k— 1)C1(k + 1)} Fp: A052705 (ECS) - ( )z -V
21— (3u+2)z + (2u? — 2u + 1)22
0), {(k) ~ (0)Tk ... (k — 1)T1(k)TO(k + 1)} Fy: A054727 noncrossing .
(where T}, is the k-th tri-Catalan number) forests of rooted trees equation of degree 3

TABLE 1. Some rewriting rules with simple combinatorial patterns. The ordinary
generating functions F'(z,1) and Fy(z) are defined as in Equation 1.

In Table 1, we give a list of rewriting rules with simple combinatorial patterns, the reference
to famous numbers or combinatorial problems they refer to, the generating function F(z,1), and
the numbers identifying the corresponding sequences in the On-Line Encyclopedia of Integer Se-
quences http://wuw.research.att.com/~njas/sequences/; ECS stands for the Encyclopedia of
Combinatorial Structures http://algo.inria.fr/encyclopedia/.

2.2. Rationality and algebraicity of classes of rewriting rules.

Theorem 1. For a constant B > 0, the rule
(7). {(k) ~ (0)*® .. (B)*=5®) (k) (k+a)*}]

(where e(k),...,ex—p(k) are polynomial in k, e;(k) =0 for 0 < i < k — B and e;(k) = e;, some
fized constants, for i <0) has a rational generating function F(z,u).

Proof. First, we illustrate the general case by the following example:
[(0): {(k) ~ (0)" 2)*"H(3) (k) (k +1)*(k + 3)°}],

for which B = 3, the polynomials in k are e(k) = k?,ex_1 = 0,e_2 = 3k — 1,e_3 = 1, and the
fixed constants areepg =1,e_1 =2, e_9=0,e_3=25.

The part (k) ~ (0)¥" implies a transformation uf ~ k2u’. The part (k) ~» (2)**~! implies
a transformation u* ~~» (3k — 1)u?. The part (k) ~ (3) implies a transformation u* ~ u3. It
is possible to perform all these transformations using the derivation, evaluation in v = 1 and
multiplication by a monomial: in the first case, the multiplicity &2 is obtained by d(ud(u*)) and
then evaluating in u = 1; for the second case, the multiplicity 3k — 1 is obtained by taking 9, (u®*)/u
and then evaluating in v = 1; for the third case simply evaluate in © = 1 and multiply by u3.
The part (k) ~ (k)(k + 1)%(k + 3)° gives u¥ ~ P(u)u® where P(u) = 1+ 2u + 5u3. All these
transformations are in fact linear, so to act on u* or a polynomial in u (like f,(u)) is the same.
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Finally, evaluating d(udf,(u)) in u = 1 gives f/(1) + f1 (1) and evaluating u?d, f,(u?)/u in u =1
gives u?(3f! (1) — f.(1)), so these trivial simplifications gives the following recurrence:

frsr(u) = P(u) fu(u) +u® (f7 (1) + f1.(1) + @ (BF1(1) — fu(1)) +u’ fu(1).

Multiplying by 2”1 and summing for n > 0 leads to the functional equation

(1 —2P(u))F(z,u) =1+ z(u® —1)F(2,1) + 2(3u® + 1) F'(2,1) + 2F"(2,1).
Taking the first 2 derivatives and instantiating in u = 1 gives a rational system of full rank, hence
F(z,u) is rational:
u?(222% — 11223 — 2) + 12 (48023 — 6022) + 52823 — 25022 + 312 — 1

(1 — 2P (u))(8722% — 21222 + 30z — 1)

For the general case, one has the following functional equatlon

F(z,u) =

(1 —2zP(u))F(z,u) =u" +zZt )OLF(2,1)

(d is the largest degree of the polymonials e;(k), and the ¢;’s are some Laurent polynomials which
can be made explicit). Taking the first d derivatives and instantiating in u = 1 gives a system (for
m=0,...,d):

o+ (nf (z@ffti(l) + z(T) agipa)) 98 F (2, 1))

+ (200ti(1) = (1= 2P(1) O F(z,1) +2 Y Orti(1)0LF(2,1) = 0.
i=m-+1

This gives a matricial equation M.F = @ where F' = (0%F(2,1),...,0%F(2,1))T and v =
(u",0,...,0)T. The coefficients of the main diagonal of M are —1+z... (as they are the coefficients
of the 9" F(z,1) summand) and all the other coefficient of M are monomials in z of degree 1. Thus,
one has [2]det M = +1 and then det M # 0. Consequently, this system is of full rank. Solving it
gives rational expressions for the d?. F(z,1) and for F(z,u). O

We now give a generalization of a result of [2] which was giving the algebraicity of “factorial
rules”: we allow here initial multiplicities which are not space-homogeneous.

Theorem 2. For a constant B > 0, the rule
[(r), {(k) ~ (0)=®) . (B)*=2®)(B+1)...(k—b—1)(k—b)...(k+a)=}]

(where e(k), ..., ex—p(k) are polynomial in k, e;(k) =1 for b < i < k — B and e;(k) = e;, some
fized constants, for i <b) has an algebraic generating function F(z,u).

Proof. We illustrate the general case by the following example:
[0, {(k) ~ (0" ()" =2(6)(7) ... (k = 5)(k — 4)*(k — 2)* (k) (k + 3)2(k + 23)}]

for which B = 5,b = 4,a = 23, the polynomials in k are ey (k) = k?, ex_2(k) = 3k° — 2, ex_1(k) =
er—3(k) = ex_4a(k) = er_5(k) = 0 and the fixed constants are e4 = 2, ea = 3, ¢9 = 1, e_3 = 2,
e 23 = 1. One sets P(u) = 2u~* + 3u=2 + 1 + 2u® + u?3, the recurrence is

fna(u) = P(w) fu(u) — {u="}P(u) +Zt )0,.fn(1

where {u<°} stands for the sum of the monomials in u with a negative degree. Multiplying by 2"+!

and summing for n > 0 leads to the functional equation

(3) (1—2zP(uw)F(z,u)=1—2 irk(u)Fk(z) +z th(u)(?;F(z, 1),
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where 7y (u) := {u<"}P(u)u” and t;(u) are (Laurent) polynomials which can be made explicit.
One can use the kernel method (we refer to [3, 5] for recent applications of this method) to solve
this equation. We call 1 — zP(u) the kernel of the equation. Solving 1 — zP(u) = 0 with respect
to u gives 4 roots u1(2), uz(2), us(z) and uy(z) which are Puiseux series in z'/# and which tend to
zero in 0. There are also 23 others roots which behave like z~1/23 around 0, so we call u1, ..., u4 the
small roots of the kernel. Plugging the 4 small roots of the kernel in Equation 3 and considering the
6 other equations obtained by taking the first 5 derivatives of Equation 3 (and then setting u = 1)
gives a system of full rank with 10 equations with 10 unknown univariate generating functions, which
are thus all algebraic, and then one has a formula for F(z,u), involving the w;, which implies its
algebraicity. For the general case, simply replace 4 by b and 5 by d in Equation 3 and then one can
argue as in Theorem 1 above, with a new matricial equation M ?‘) = 7; looking at the valuation
in z of each entries in M (some of them involves the small roots u;’s, but at most a product of b
of them) gives det M # 0 and thus a system of full rank, so F(z,u) can be expressed as a rational
function in z, u and the small roots u;’s. As these roots are algebraic, F'(z,u) is algebraic. O

Consider now the case where, for each 7, the exponent e; (k) of the rule (2) is a constant (that is,
the polynomial in e;(k) does not depend on k, so one simply writes e;). How far can we relate the
behavior of the walk

(4) [(0), {(k) ~ (O)* ()=t (B =2)2 (k= D () (B + 1) .. (B +a)* )]

to the generating function of the exponents E(u) = .., e;ut 7 We give here a first element of
answer:

Theorem 3. Consider the rule

() [(0), { (k) ~ () ()= (k= 1) (k)% ... (k +a)*}].

If the generating function of the exponents E(u) is algebraic then the bivariate generating function
of the walk F(z,u) is algebraic. For a =1, one has

Fo(z) 1 1

with Fo(z) = — E< 1> (9)

Flzu) = — 0&)
(2,u) 1—wue 12 Fy(2) e_1z z

where E<'> is the compositional inverse of E(u) and where e_1 is the multiplicity of the +1 jump.
More generally, for a > 1, the generating function F(z,u) is expressed in terms of the a solutions
u1(2), ..., uq(2) of 1 — 2zE(u) = 0 which satisfy u;(z) ~ 0 for z ~0:

(1) o

F(z,U)=ZFo(Z)< > u?...uf‘;>u’“ with FO(Z):ZH

k>0 i1+ tia=k i=1

Writing o; for the homogeneous symmetrical polynomial of total degree i and of degree 1 in each
variable and where each coefficient equals 1, one has

(~1)**! [T ui(z)
ze_q 140 (—1)oi(ur,... uq)

Proof. For a =1, the first identity reflects the combinatorial decomposition (one to one correspon-
dence, in fact) “a walk from 0 to k + 1”7 is “a walk from 0 to k” then followed by a jump +1 then
followed by “a walk from k + 1 to k£ + 1 never going below k 4+ 1”7. The generating function of these
last walks is clearly Fy(z), thus one has Fjy1(2) = Fy(2)e_12Fo(2) = Fo(2)(ze_1Fo(2))F .

For the walks corresponding to the rule (5), the set of jumps is given by E(1/u); if one reverses
the time direction, one gets a new walk where the set of available jumps is given by F(u). Define

F(z,u) as the corresponding generating function (one starts at altitude 0), one has:

for1(u) = {u” YE(u) fu(u),  folu) =1
where {uZ°} stands for the sum of all monomials in u with a nonnegative degree. Multiplying by
2"*! and summing for n > 0 gives

F(z,1)=

F(z,u) = folu) + 2E(u)F(z,u) — z{ufl}e—;lﬁ(z, w),
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that one rewrites as the following functional equation
(1 2E(w)F(z,u) =1 252 Ry(2).
U

Then solving the “kernel” 1 — zE(u) = 0 with respect to u gives a series u1(z) = E<"1>(1/2),
which is algebraic as the compositional inverse of an invertible algebraic function is algebraic (simply
plug the inverse in the polynomial equation ®(E(u),u) = 0 satisfied by E(u) to check this fact).

If one then evaluates the above functional equation at u = u1(z), one gets 0 = 1 — Z—Fo( )
and thus Fp(z) = -“. As one has Fo(z) = Fy(z) (a walk from 0 to 0 from left to right is still a
walk from O to 0 from right to left), one gets the result from the theorem. Note that if one sets

folu) = -, Fy enumerates walks from anywhere to 0, so Fy(z) = UI{(Z; 1) = F(z,1), which is
coherent with the theorem (case a = 1).
For a > 1, one sets P(u) := Z;ﬁa e;u’; one has

(1~ 2B(u)F(z,u) = fo(u) — 2{u="}P(u)F(z,u).

This is rewritten as

(6) (1 - 2E(u)F(z,u) —z Z ri(u

where i, (u) ;= {u<°}P(u)u* is a Laurent polynomial with monomials of degree going from —1
down to k — a.
The kernel equation 1 — zE(u) = 0 has a roots u1(2), . .., u.(z) which are Puiseux series in z/¢

and which tend to 0 when z tends to 0. When fo(u) = 1, plugging these roots in the functional

equation shows that they correspond to the a roots of the polynomial u® — zu® 30—} ry (u) Fi(2),
o1 Wi

—ze_q

When fo(u) = 7L this gives a system of a equations for a unknowns (the ﬁk’s). Solving it for Fy
gives F(z,1). Solving the F, for fg(u) = uF gives the Fj(z). The last identity for F(z,1) follows

from(z Z uil .. ule) 1+Z Yoi(ut, ... uq)) = 1.

k>0i1++ia=k

For a = 1, the Riordan arrays approaeh that we presented in Section 1 also gives the algebraicity
of F(z,u). In fact, a theorem from [10] gives F(z,u) = % where h(z) = A(zh(z)) and
d(z) =1/(1 — 2Z(zh(z))) for the rule [(0),{(k) ~ (0)% (1) (2)*~1...(k)**(k+ 1)*}]. For a > 1,
the matrix associated (see Section 1) to the rule (4) is called a horizontally stretched Riordan
array. With this concept, it can be shown, like with the kernel method, that the algebraicity of
the corresponding generating function F(z,u) depends on the algebraicity of A(z) = Y, o, arz”
and Fy(z),..., F, 1(2) (the generating functions of the first a columns of the matrix). While the
theory of Riordan arrays has been intensively studied, the theory of stretched Riordan arrays, from
a generating function point of view, is still in progress. O

whose leading term is 2% and whose constant term is so —ze_oFp(z). This gives Fy(z) =

Remark: as D-finite functions are not necessarily closed under compositional inverse, it is not
true that if F(u) is D-finite, then F(z,1) or Fy(z) (and a fortiori F'(z,u)) are D-finite, even in the
case a = 1.

We end with a last application of the kernel method.

Theorem 4. Consider the rewriting rule (4) when the e;’s are ultimately constants (say, equal to
a constant C): [(0), {(k) ~ (0)¢ ... (k—b— 1)k —b)* ... (k) ...(k+a)*~=}]. Then F(z,u) is
algebraic and satisfies
_ - ui?)
F(z,u) = Ko

where the u;’s and K are defined as below.
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Proof. One has the recurrence f,11(u) = C’M + P(u)fn(u) this leads to the functional
equation

b—1
(7) (1 2Pt~ =55 ) Pl =14 LS p ) - ) P
where P(u) = Y20_ (e; — C) L +3 % o e—su'. Define the kernel K as K (u, z) = u’(1—u)(1—zP(u)—
2. 1t has b roots uy(z), ..., up(z) which are Puiseux series in 21" and which tend to 0 in 0 and
one root up(z) which tends to 1 in 0. These are exactly the b+ 1 roots of the right hand part of (7)

(once multiplied by (1 — u)u?). So F(z,u) = W, where the u;’s are the b + 1 small roots

of the kernel. O

2.3. Asymptotics. Given a peculiar rule for Theorem 1, 2, 3 or 4, it is possible to find an asymptotic
expansion for the number of walks. It is not really possible to merge all these results in a single one,
as the rules are too unconstrained. However, for the algebraic case, a kind of universality holds for
the behavior of the roots of the kernel. This leads to following theorem, which has to be adapted
case by case for rules of Theorems 2 and 3 (and is easily applied to rules of Theorem 4).

Theorem 5. The number of walks of length n for the “factorial” rule

[(0), {(k) ~ (0)(1)...(k=b—=1)(k=b)* ... (k) ...(k+a)*}]
(where e;i(k) =1 for b <i<kandei(k) = e;, some fized constants, for i < b) has the following
asymptotics A\/—S, where A and p are algebraic constants depending on the finite set of jumps P.

Proof. See [1] for a proof and applications to the limit laws of final altitude and number of factors.
The approach is similar to the one used for walks with a finite number of jumps but there are
some complications due to the fact that the kernel is now of the kind 1 — z¢(u) where ¢(u) is
not unimodal. One can however establish that the real positive root uy now dominates and has a
square-root behavior. O

3. EXAMPLES

We now give a series of examples from combinatorics or computer science in which rewriting rules
studied in Section 2 appear.

EXAMPLE 1. Two families of rules leading to an algebraic generating function.
For the rule [(0), {(k) ~ (0)¢*(1)r—1 ... (k— 1) (k) (k 4+ 1)}], where ey, for i > 0 is the number of
t-ary trees with &k nodes, F(z,u) satisfies a algebraic equation of degree t. E.g., for t = 3, one has:
1— (344 3u)2)F(z,u) — (— 3+ (6u—T)z+ (—3u’+8u—3)z*) F(2,u)” — (1+ (3 3u)z+ (3u® —
Tu+3)2% + (—u® + 4u® — 3u+1)2*) F(2,u)* = 0.

For the rule [(0), {(k) ~ (0)ctF(1)etr=L (K —2)°t2(k — 1)L (k)°(k + 1)}], F(z,u) satisfies an
algebraic equation of degree 3:
(1 =2u)z?+ (c— (c+1) +2u?)) F3+ ((u—2)z+ (—c— 2+ 4u — 2u?)2?) F2 4 (1 + (2 — 2u)z) F = 1.
O

EXAMPLE 2. Tennis ball problem. Let s > 2 be an integer and consider the following problem
known as the s-tennis ball problem. At the first turn one is given balls numbered one through s.
One throws one of them out of the window onto the lawn. At the second turn balls numbered s + 1
through 2s are brought in and now one throws out on the lawn any of the 2s — 1 remained. Then
balls 25+ 1 through 3s are brought in and one throws out one of the 3s— 2 available balls. The game
continues for n turns. At this point, one picks up the n balls in the lawn and consider the ordered
sequence B = (b1, ba,...,b,) with by < by < --- < b,. This sequence will be called a tennis ball
s-sequence and the first question is: how many tennis ball s-sequences of length n exist? The second
question is: what is the sum of all the balls in all the possible s-sequences of length n ? Obviously,
if we answer to both these questions, we also know the average sum of the balls in an s-sequence
of length n. The general case s > 1 has been studied in [8] from a generating function viewpoint.
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In fact, the authors consider an infinite tree with root 0 and with s children. Each (n + 1)-length
path in this tree corresponds to an s-sequence of length n. This infinite tree is isomorphic to the
generating tree with specification [(1), {(k) ~ (1)...(k+s—2)(k+s—1)}].

By using this result the authors find that the number of tennis ball s-sequences of length n
are counted by 7,1, where T,, = m(?) (the number of s-ary trees with n-nodes) and the
cumulative sum of all the balls thrown onto the lawn in n turn is

s, = %(sn2 + (35— 1)+ 28) Ty — %rf (8:) (s(” 1 k)).

= n+1—k

EXAMPLE 3. A new rewriting rule for (4, 2)-tennis ball problem.

The problem of balls on the lawn admits many other variants. For example, one could be supplied
with s balls at each turn but now throw out ¢ balls at a time with ¢ < s. The general (s,t) case is
an open problem while the (4, 2) case has been treated in [8], where the authors study the problem
by introducing a bilabeled generating tree technique. Anyway, recently Merlini and Sprugnoli found
that the problem can be expressed by the rule (4) with e; = i + 3 and a = 2, namely:

(8) [(0), {(k) ~ (0)**(M)* (@) ... (k + 2)}]

FIGURE 2. The partial generating tree for the specification (8)

In fact, if we don’t care of the order of the balls thrown away, so that the configuration (1,4),
(5,8), (2,10) is considered to be the same as (1,2), (4,5), (8,10), it can be proved that the number
of (4,2)-sequences of length 2n in which the last-but-one element is 2n + k — 1 corresponds to the
number of nodes with label k at level n in the generating tree of Figure 2 (for example, the possible
sequences of length 2 are (1,2), (1,3), (1,4), (2,3), (2,4) and (3,4)). O

EXAMPLE 4. Printers.

In [9] the authors present a combinatorial model for studying the characteristics of job scheduling
in a slow device, for example a printer in a local network. The policy usually adopted by spooling
systems is called First Come First Served (FCFS) and can be realized by queuing the processes
according to their arrival time and by using a FIFO algorithm. A job (printing a file) consists
in a finite number of actions (printing-out a single page). Each action takes constant time to be
performed (a time slot). If we fix n time slots, and suppose that at the end of the period the queue
becomes empty, while it was never empty before, the successive states of the jobs queue can be
described by a combinatorial structure called labeled 1-histograms. A 1-histogram of length n is a
histogram whose last column only contains 1 cell and, whenever a column is composed by k cells,
then the next column contains at least k —1 cells. It is at all obvious that a 1-histogram corresponds
to a path in the generating tree produced by the specification [(1), (k) ~ (1)...(k + 1)]. A labeled
1-histograms of length n is a 1-histogram in which we label each cell according to some rules (see [9]
for the details). Figure 3 illustrates the possible schedules for two particular 1-histograms of length
3: the first one, for example, corresponds to i) a first job which consists in printing two pages and
a second job, which starts at time slot 2, and corresponds to printing a page at time slot 3, and
ii) three different jobs which consists in printing a single page, the first at time slot 1, the second
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FIiGURE 3. The schedules corresponding to two particular 1-histograms.

at time slot 2 and the third at time slot 3, after queuing at time slot 2. It can be proved that the
number of schedules of length n with k jobs request at the first time slot corresponds to the number
of nodes at level n having label k + 1 in the generating tree with specification:

[(1), {(&) ~ (1) (k)*(k + 1)}].
This gives that the number S,, of possible schedules corresponds to the n** small Schréder number,
that is, the generating function for S, is (1 — 3z — /1 — 6z + 22)/(4z2).
O
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