Linear-Time Computation of Local Periods

Jean-Pierre Duval®, Roman Kolpakov?*, Gregory Kucherov?,
Thierry Lecrogq*, and Arnaud Lefebvre*

! LIFAR, Université de Rouen, France
Jean-Pierre.Duval@univ-rouen.fr
2 Department of Computer Science, University of Liverpool, UK
R.Kolpakov@csc.liv.ac.uk
3 INRIA/LORIA, Nancy, France

Gregory.Kucherov@loria.fr

4 ABISS, Université de Rouen, France

{Thierry.Lecroq,Arnaud.Lefebvre}Quniv-rouen.fr

Abstract. We present a linear-time algorithm for computing all local
periods of a given word. This subsumes (but is substantially more pow-
erful than) the computation of the (global) period of the word and on
the other hand, the computation of a critical factorization, implied by
the Critical Factorization Theorem.

1 Introduction

Periodicities in words have been classically studied in word combinatorics and
are at the core of many fundamental results [I82/T9]. Besides, notions and tech-
niques related to periodic structures in words find their applications in different
areas: data compression [24], molecular biology [12], as well as for designing more
efficient string search algorithms [TTI315].

In this paper, we concentrate, from the algorithmic perspective, on the im-
portant notion of local periods, that characterize a local periodic structure at
each location of the word [9§]. In informal terms, the local period at a given po-
sition is the size of the smallest square centered at this position. An importance
of local periods is evidenced by the fundamental Critical Factorization Theorem
[18/2/19] that asserts that there exists a position in the word (and a correspond-
ing factorization), for which the local period is equal to the global period of the
word.

Designing efficient algorithms for computing different periodic structures in
words has been for a long time an active area of research. It is well-known that
the (global) period of a word can be computed in linear time, using the Knuth-
Morris-Pratt string matching method [16/4].On the other hand, in [3] it has
been shown that a critical factorization can be constructed in linear time, by
computing the smallest and largest suffixes under the lexicographical ordering.
In the same work, the factorization has then been used to design a new string
matching algorithm.

* On leave from the French-Russian Institute for Informatics and Applied Mathemat-

ics, Moscow University, Russia

B. Rovan and P. Vojtas (Eds.): MFCS 2003, LNCS 2747, pp. 388-397] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Linear-Time Computation of Local Periods 389

In this paper, we show how to compute all local periods in a word in time
O(n) assuming an alphabet of constant size. This is substantially more powerful
than linear-time computations of a critical factorization and of the global period:
indeed, once all local periods have been computed, the global period is simply
the maximum of all local periods, and each such maximal value corresponds to
a distinct critical factorization.

Note that a great deal of work has been done on finding periodicities occurring
in a word (see [I3] for a survey). However, none of them allows to compute all
local periods in linear time. The reason is that most of those algorithms are
intrinsically super-linear, which can be explained by the fact that they tend,
explicitly or implicitly, to enumerate all squares in the word, the number of
which can be super-linear. The closest result is the one of [L7] which claims a
linear-time algorithm for finding, for each position ¢ of the string, the smallest
square starting at i. The approach is based on a sophisticated analysis of the
suffix tree. The absence of a complete proof prevents the comprehension of the
algorithm in full details; however, to the best of our understanding, this approach
cannot be applied to finding local periods.

Here we design a linear-time algorithm for finding all local periods, based
on several different string matching techniques. Some of those techniques (s-
factorization, Main-Lorentz extension functions) have already been successfully
used for several repetition finding problems [Z2T20JT3IT4[T5]. In particular, in
[13], it has been shown that all mazimal repetitions can be found in linear time,
providing an exhaustive information about the periodic structure of the word.
However, here again, a direct application of this approach to finding local periods
leads to a super-linear algorithm. We then propose a non-trivial modification of
this approach, that allows to find a subclass of local periods in linear time.
Another tool we use is the simplified Boyer-Moore shift function, which allows
us to complete the computation of local periods, staying within the linear time
bound.

2 Local Periods: Preliminaries

Consider a word w = a3 ...a,, over a finite alphabet. |w| denotes the length of w,
and w? stands for the reverse of w, that is a,a,_1 ...a;. w(i..j], for 1 <i,5 < n,
denotes the subword a;...a; provided that ¢ < j, and the empty word otherwise.
A position 4 in w is an integer number between 0 and n, associated with the
factorization w = wv, where |u| = 1.

A square s is a word of the form ¢t (i.e. a word of even length with two equal
halves). t is called the root of s, and |t| is called its period.

Definition 1. Let w = wv, and |u| = i. We say that a non-empty square tt is
centered at position ¢ of w (or matches w at central position i) iff the following
conditions hold:

(i) t is a suffix of u, or u is a suffiz of t,
(ii) t is a prefiz of v, or v is a prefix of t.

390 Jean-Pierre Duval et al.

In the case when t is a suffix of u and ¢ is a prefix of v, we have a square occurring
inside w. We call it an internal square. If v is a proper prefix of ¢ (respectively,
u is a proper suffix of t), the square is called right external (respectively, left
external).

Definition 2. The smallest square centered at a position i of w is called the
minimal local square (hereafter simply minimal, for shortness). The local period
at position i of w, denoted LP, (i), is the period of the minimal square centered
at this position.

Note that for each position i of w, LP, (i) is well-defined, and 1 < LP,, (i) <

Any word w has the (global) period p(w), which is the minimal integer p
such that w[i] = w[i + p] whenever 1 < i,i + p < |w|. Equivalently, p(w) is the
smallest positive integer p such that words w[l..n — p] and w[p + 1..n] are equal.
The critical factorization theorem [I82]19] is a fundamental result relating local
and global periods:

Theorem 1 (Critical Factorization Theorem). For each word w, there ex-
ists a position i (and the corresponding factorization w = wv, |u| = i) such that
LP,(i) = p(w). Moreover, such a position exists among any p(w) consecutive
positions of w.

Apart from its combinatorial consequences, an interesting feature of the crit-
ical factorization is that it can be computed very efficiently, in a time linear in
the word length [B]. This can be done, for example, using the suffix tree construc-
tion [4]. On the other hand, it is well-known that the (global) period of a word
can be computed in linear time, using, for example, the Knuth-Morris-Pratt
technique [4].

In this paper, we show how to compute all local periods in a word in linear
time. This computation is much more powerful than that of a critical factoriza-
tion or the global period : once all local periods are computed, the global period
is equal to the maximum among them, and each such maximal local period
corresponds to a critical factorization of the word.

The method we propose consists of two parts. We first show, in Section [3]
how to compute all internal minimal squares. Then, in Section @l we show how to
compute left and right external minimal squares, in particular for those positions
for which no internal square has been found. Both computations will be shown
to be linear-time, and therefore computing all local periods can be done within
linear time too.

3 Computing Internal Minimal Squares

Finding internal minimal squares amounts to computing, for each position of the
word, the smallest square centered at this position and occurring entirely inside
the word, provided that such a square exists. Thus, throughout this section we

Linear-Time Computation of Local Periods 391

will be considering only squares occurring inside the word and therefore, for the
sake of brevity, omit the adjective “internal”.

The problem of finding squares and, more generally, finding repetitions occur-
ring in a given word has been studied for a long time in the string matching area,
we refer to [13] for a survey. A natural idea is then to apply one of those methods
in order to compute all squares and then select, for each central position, the
smallest one. A direct application of this approach, however, cannot result in
a linear-time algorithm, for the reason that the overall number of squares in a
word can be as big as ©(nlogn) (see [6]). Therefore, manipulating the set of
all squares explicitly is prohibitive for our purpose. In [13], mazimal repetitions
have been studied, which are maximally extended runs of consecutive squares.
Importantly, the set of maximal repetitions encodes the whole set of squares,
while being only of linear size.

Our approach here is to use the technique of computing maximal repetitions
in order to retrieve squares which are minimal for some position. To present the
algorithm in full details, we first need to describe the techniques used in [20/13]
for computing maximal repetitions.

3.1 s-Factorization, Main-Lorentz Extension Functions,
and Computing Repetitions

In this section we recall basic ideas, methods and tools underlying our approach.

The s-factorization [7] is a special decomposition of the word. It is closely
related to the Lempel-Ziv factorization (implicitly) defined by the well-known
Lempel-Ziv compression method. The idea of defining the s-factorization is to
proceed from left to right and to find, at each step, the longest factor which has
another copy on the left. Alternatively, the Lempel-Ziv factorization considers
the shortest factor which does not appear to the left (i.e. extends by one letter
the longest factor previously occurred). We refer to [12] for a discussion on these
two variants of factorization. A salient property of both factorizations is that
they can be computed in linear time [22] in the case of constant alphabet.

In their original definition, both of these factorizations allow an overlap be-
tween a factor and its left copy. However, we can restrict this and require the copy
to be non-overlapping with the factor. This yields a factorization without copy
overlap (see [I5]). Computing the s-factorization (or Lempel-Ziv factorization)
without copy overlap can still be done in linear time.

In this work we will use the s-factorization without copy overlap:

Definition 3. The s-factorization of w without copy overlap is the factorization
w = f1fa...fm, where f;’s are defined inductively as follows:

(i) fi = w(1],

(ii) assume we have computed f1fo...fi—1 (i > 2), and let w[b;] be the let-
ter immediately following fifa... fi—1 (i.e. by = |fifa... fica| +1). If
wlb;] does not occur in fifs... fi—1, then f; = wlb;], otherwise f; is the
longest subword starting at position b;, which has another occurrence in

fife . fic1

392 Jean-Pierre Duval et al.

Note however that the choice of the factorization definition is guided by the
simplicity of algorithm design and presentation clarity, and is not unique.

Our second tool is Main-Lorentz extension functions [21]. In its basic form,
the underlying problem is the following. Assume we are given two words wy, wo
and we want to compute, for each position i of ws, the longest prefix of w; which
occurs at position 7 in ws. This computation can be done in time O(|wy |+ |w2])
[21]. Note that w; and wy can be the same word, and that if we invert w; and
wsg, we come up with the symmetric computation of longest suffixes of ws[1..4]
which are suffixes of w;.

We now recall how Main-Lorentz extension functions are used for finding
repetitions. The key idea is illustrated by the following problem. Assume we have
two words wy = wi[l..m] and we = ws[l..n] and consider their concatenation
w = wiws. Assume we want to find all squares of w which cross the boundary
between w; and ws, i.e. squares which start at some position < m and end at
some position > m in w (start and end positions of a square are the positions
of respectively its first and last letter). First, we divide all such squares into two
categories — those centered at a position < m and those centered at a position
> m — and by symmetry, we concentrate on the squares centered at a position
> m only. We then compute the following extension functions :

— pref(i), 2 <i<n+1 defined by pref (i) = max{j|ws[l..j] = weli..i+j—1]}
for 2 <i < n,and pref(n+1) =0,

— suf (i), 1 <i<mn defined by suf(i) = max{jlwi[m —j + 1..m] = wm +i —
Jj+1l.m+i}.

Then there exists a square with period p iff

suf (p) +pref(p+1) > p (1)

[20]. This gives a key of the algorithm: we first compute values pref(p) and
suf (p) for all possible p, which takes time O(m + n). Then we simply check
for each p inequality () — each time it is verified, we witness new squares of
period p. More precisely, whenever the inequality is verified we have identified,
in general, a series (run) of squares centered at each position from the interval
[m — suf (p) +p..m~+ pref (p+1)]. This run is a mazimal repetition in w (see [13]).
Formally, this maximal repetition may contain squares centered at positions < m
(if suf(p) > p), and squares starting at positions > m (if pref(p +1) > p —1).
Therefore, if we want only squares centered at positions > m and starting at
positions < m (as it will be our case in the next Section), we have to restrict the
interval of centers to [max{m — suf(p) + p, m}..min{m + pref(p + 1),m + p}].
Clearly, verifying inequality ([I)) takes constant time and the whole computation
can be done in O(n).

To find, in linear time, all squares in a word (and not only those which cross
a given position), we have to combine the factorization and extension func-
tion techniques. In general terms, the idea is the following : we compute the
s-factorization and process factors one-by-one from left to right. For each factor
fr, we consider separately those squares which occur completely inside f,., and

Linear-Time Computation of Local Periods 393

those ending in f,. and crossing the boundary with f,_;. The squares of the first
type are computed using the fact that f, has a copy on the left — we can then
retrieve those squares from this copy in time O(]f,|). The squares of the second
type are computed using the extension function technique sketched above, to-
gether with an additional lemma asserting that those squares cannot extend to
the left of f, by more than |f,.|+ 2| fr—1| letters [20]. Therefore, finding all these
squares, in form of runs, takes time O(|fr—1| + |f+|). The whole word can then
be processed in time O(n). The reader is referred to [20l13] for full details.
This general approach, initiated in [7J20] has been applied successfully to
various repetition finding problems [I3JT415]. In this work we show that it can
be also applied to obtain a linear-time algorithm for computing internal local
periods. This gives yet another illustration of the power of the approach.

3.2 Finding Internal Minimal Squares

We are ready now to present a linear-time algorithm of computing all internal
minimal squares in a given word w.

First, we compute, in linear time, the s-factorization of w without copy over-
lap and we keep, for each factor f,., a reference to its non-overlapping left copy.
The algorithm processes all factors from left to right and computes, for each fac-
tor f,., all minimal squares ending in this factor. For each minimal square found,
centered at position i, the corresponding value LP, (i) is set. After the whole
word has been processed, positions ¢ for which values LP,, (i) have not been as-
signed are those positions for which no internal square centered at 7 exists. For
those positions, minimal squares are external, and they will be computed at the
second stage, presented in Section [

Let f. = w[m + 1..m +] be the current factor, and let w[p 4+ 1..p +] be
its left copy (note that p +1 < m). If for some position m + i, 1 < i < I,
the minimal square centered at m 4+ ¢ occurs entirely inside the factor, that
is LP,(m + i) < min{i,l — i}, then LP,(m + i) = LP,(p +). Note that
LP,(p+ i) has been computed before, as the minimal square centered at p + i
ends before the beginning of f,.. Based on this, we retrieve, in time O(]f,|), all
values LP,(m + i) which correspond to squares occurring entirely inside f,. It
remains to find those values LP,(m + ¢) which correspond to minimal squares
that end in f, and extend to the left beyond the border between f, and f,_;.

To do this, we use the technique of computing squares described in the pre-
vious section. The idea is to compute all candidate squares and test which of
them are minimal. However, this should be done carefully: as mentioned earlier,
this can break down the linear time bound, because of a possible super-linear
number of all squares. The main trick is to keep squares in runs and to show
that there is only a linear number of individual squares which need to be tested
for minimality. As in [20], we divide all squares under consideration into those
which are centered inside f, and those centered to the left of f,.. Two cases are
symmetrical and therefore we concentrate on those squares centered at positions
m..m~+ [— 1. In addition, we are interested in squares starting at positions < m
and ending inside f,.. We compute all such squares in the increasing order of pe-

394 Jean-Pierre Duval et al.

) q q
-q k-q m j m
‘ \ ‘ ‘
= — o
|
— p ! P

bound of factors

Fig. 1. Case where neither of inequations (2),([3) holds (subcase k > j)

riods. For each p = 1..l—1 we compute the run of all squares of period p centered
at positions belonging to the interval [m..m + [— 1], starting at a position < m,
and ending inside f,, as explained in Section Bl Assume we have computed a
run of such squares of period p, and assume that g < p is the maximal period for
which squares have been previously found. If p > 2¢, then we check each square
of the run whether it is minimal or not by checking the value LP, (7). If this
square is not minimal, then its center 7 has been already assigned a value LP,(4).
Indeed, if a smaller square centered at ¢ exists, it has necessarily been already
computed by the algorithm (recall that squares are computed in the increasing
order of periods), and therefore a positive value LP,(¢) has been set before. If
no value LP, (i) has yet been assigned, then we have found the minimal square
centered at 4. Since there is < p of considered squares of period p (their centers
belong to the interval [m..m + p — 1]), checking all of them takes < 2(p — q)
individual checks (as ¢ < p/2 and p — g > p/2).

Now assume p < 2q. Consider a square s, = w[j —¢+1..j +¢| of period ¢ and
center j, which has been previously found by the algorithm (square of period
q in Figure [T). We now prove that we need to check for minimality only those
squares s, of period p which have their center %k verifying one of the following
inequalities :

lk—jl<p—gq,or (2)
k>j74+q (3)

In words, k is located either within distance p — ¢ from j, or beyond the end of
square Sg.

Show that one of inequations (E)),([3) must hold. By contradiction, assume
that neither of them holds. Consider the case k > j, case k < j is symmetric.
The situation with & > j is shown in Figure [[l Now observe that word w[j +1..k]
has a copy w[j — ¢+ 1..k — g| (shown with empty strips in Figure [[) and that
its length is (k — j). Furthermore, since k — j > p — ¢ (as inequation does
not hold), this copy overlaps by p — ¢ letters with the left root of s,. Consider
this overlap w[k — p + 1..k — ¢] (shadowed strip in Figure [1). It has a copy
wlk + 1..k + (p — ¢)] and another copy w[k — (p — ¢) + 1..k] (see Figure [Il). We
thus have a smaller square centered at k, which proves that square s, cannot be
minimal.

Therefore, we need to check for minimality only those squares s, which verify,
with respect to s, one of inequations ([2)),(3). Note that there are at most 2(p—gq)

Linear-Time Computation of Local Periods 395

squares s, verifying (@), and at most p — g squares s, verifying (B), the latter
because s, must start before the current factor, i.e. K < m+p. We conclude that
there are < 3(p—q) squares of period p to check for minimality, among all squares
found for period p. Summing up the number of all individual checks results in a
telescoping sum, and we obtain that processing all squares centered in the current
factor can be done in time O(|f,|). A similar argument applies to the squares
centered on the left of f,.. Note that after processing f,, all minimal squares
ending in f, have been computed. To sum up, we need to check for minimality
only O(|fr—1| + |fr]) squares, among those crossing the border between f, and
fr—1, each check taking a constant time. We also need O(|f,|) time to compute
minimal squares occurring inside f,.. Processing f, takes then time O(|f.—1| +
| fr|) overall, and processing the whole word takes time O(n).

Theorem 2. In a word of length n, all internal minimal squares can be com-
puted in time O(n).

4 Computing External Minimal Squares

In this section, we show how to compute minimal external squares for those
positions which don’t have internal squares centered at them. The algorithm
is based on the simplified Boyer-Moore shift function, used in classical string
matching algorithms [1/T6].

Definition 4. For a word w of length n the simplified Boyer-Moore shift func-
tion is defined as follows [1I6):

dyp(@) =min{l | £ > 1 and (for all j,i < j <n, £ >j orwlj] =w[j —{])}.

In words, d,,(4) is the smallest shift between suffix v and its copy in w. If v has
no other occurrence in w, then we look for the longest suffix of v occurring in
prefix of w. The function d,, can be computed in O(n) time and space [I].

We will show that, given a word w of length n, all minimal external squares
can be computed in time O(n). Consider a word w and assume that the function
d,, has been computed. Consider a factorization w = uv and assume that there
is no internal square centered at position |u|. We first consider the case when
|u| > |v|, and show how to compute the minimal right external square centered
at |ul.

Lemma 1. Let w = uv with |u| > |v|. If there is no internal square centered at
i = |u|, then the minimal right external square has period d.,(i).

Proof. First note that d,,(7) > |v| must hold, as otherwise there is a copy of v
overlapping (or touching) the suffix occurrence of v, which implies that there is an
internal square of period d,, (%) centered at i, which contradicts our assumption.
We now consider two cases. If d,, (i) < i,then there is an occurrence of v inside u
and therefore u = ugvu; for some ug, u;. It follows that there is a right external

396 Jean-Pierre Duval et al.

square centered at ¢ with the root vu;. This is the minimal such square, as the
definition of d,, guarantees that u; is the shortest possible.

If dyy (i) > i,then v = vov and u = viug with |v1ugvg| = dy (7). V1ugUg forms
the root of a right and left external square centered at i. Again, the existence of
a smaller right external square would contradict the minimality requirement in
the definition of d,,.

The case |u] < |v| is symmetric and can be treated similarly by considering
the inverse of w.

To conclude, all external minimal squares can be computed in time O(n),
for those positions which don’t have internal squares centered in them. We then
obtain an O(n) algorithm for computing all minimal squares: first, using the
algorithm of Section [3] we compute all internal minimal squares and then, using
Lemma [[lwe compute all external minimal squares for those positions for which
no internal square has been found at the first stage. This proves the main result.

Theorem 3. In a word w of length n, all local periods LP, (i) can be computed
in time O(n).

5 Conclusions

We presented an algorithm that computes all local periods in a word in a time
linear in length of the word. This computation provides an exhaustive informa-
tion about the local periodic structure of the word. According to the Critical
Factorization Theorem, the (global) period of the word is simply the maximum
among all local periods. Therefore, as a case application, our algorithm allows
to find all possible critical factorization of the word. The main difficulty to solve
was to extract all shortest local squares without having to process all individ-
ual squares occurring in the word, which would break down the linear time
bound. This made impossible an off-the-shelf use of existing repetition-finding
algorithms, and necessitated a non-trivial modification of existing methods. An
interesting research direction would be to study the combinatorics of possible
sets of local periods, in a similar way as it was done for the structure of all
(global) periods [10J23]. The results presented in this paper might provide an
initial insight for a such study.

Acknowledgments

GK, TL and AL have been supported by the french Action Spécifique “Algo-
rithmes et Séquences” of CNRS. JPD, TL and AL have been supported by the
NATO grant PST.CLG.977017. Part of this work has been done during the stay
of RK at LORIA in summer 2002, supported by INRIA.

References

1. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications
of the ACM, 20:762-772, 1977.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Linear-Time Computation of Local Periods 397

Ch. Choffrut and J. Karhuméki. Combinatorics of words. In G. Rozenberg and
A. Salomaa, editors, Handbook on Formal Languages, volume I, 329-438, Springer
Verlag, 1997.

M. Crochemore and D. Perrin. Two-way string matching. J. ACM, 38:651-675,
1991.

M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.
M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient string
searching. Algorithmica, 13:405—425, 1995.

M. Crochemore. An optimal algorithm for computing the repetitions in a word.
Information Processing Letters, 12:244-250, 1981.

M. Crochemore. Recherche linéaire d’'un carré dans un mot. Comptes Rendus
Acad. Sci. Paris Sér. I Math., 296:781-784, 1983.

J.-P. Duval, F. Mignosi, and A. Restivo. Recurrence and periodicity in infinite
words from local periods. Theoretical Computer Science, 262(1):269-284, 2001.
J.-P. Duval. Périodes locales et propagation de périodes dans un mot. Theoretical
Computer Science, 204(1-2):87-98, 1998.

Leo J. Guibas and Andrew M. Odlyzko. Periods in strings. Journal of Combina-
torial Theory, Series A, 30:19-42, 1981.

Z. Galil and J. Seiferas. Time-space optimal string matching. Journal of Computer
and System Sciences, 26(3):280-294, 1983.

D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and
Computational Biology. Cambridge University Press, 1997.

R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear
time. In Proc. of FOCS’99, New York (USA), 596-604, IEEE Comp. Soc., 1999.
R. Kolpakov and G. Kucherov. Finding repeats with fixed gap. In Proc. of the 7th
SPIRE, La Corumna, Spain , 162-168, IEEE, 2000.

R. Kolpakov and G. Kucherov. Finding Approximate Repetitions under Ham-
ming Distance. In F.Meyer auf der Heide, editor, Proc. of the 9th ESA, Aarhus,
Denmark, LNCS 2161, 170-181, 2001.

D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal of Computing, 6:323-350, 1977.

S. R. Kosaraju. Computation of squares in string. In M. Crochemore and D. Gus-
field, editors, Proc. of the 5th CPM, LNCS 807, 146-150, Springer Verlag, 1994.
M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics
and Its Applications. Addison Wesley, 1983.

M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press,
2002.

M. G. Main. Detecting leftmost maximal periodicities. Discrete Applied Mathe-
matics, 25:145-153, 1989.

M.G. Main and R.J. Lorentz. An O(nlogn) algorithm for finding all repetitions
in a string. Journal of Algorithms, 5(3):422-432, 1984.

M. Rodeh, V.R. Pratt, and S. Even. Linear algorithm for data compression via
string matching. Journal of the ACM, 28(1):16-24, 1981.

E. Rivals and S. Rahmann. Combinatorics of periods in strings. In J. van Leuween
P. Orejas, P. G. Spirakis, editors, Proc. of the 28th ICALP, LNCS 2076, 615-626,
Springer Verlag, 2001.

J.A. Storer. Data Compression: Methods and Theory. Computer Science Press,
Rockville, MD, 1988.

