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Abstract—The event-driven, or notification-based, paradigm has attracted much research interest in areas such as distributed

systems, databases, workflow, and grid computing. However, little attention was devoted to event-driven service-oriented architectures

(SOAs). In this paper, we propose a novel framework for event-based interactions in SOAs. First, we introduce various notification

patterns for event-driven SOAs. We define two taxonomies for dissemination protocols in SOAs: The interaction taxonomy identifies

the different models through which Web services interact with each other and the filtering taxonomy classifies the events and services

involved during dissemination. Second, we propose a dissemination pattern called implicit notification. In contrast to publish-subscribe,

implicit notification does not require consumers to explicitly subscribe with producers. We define a model for implicit notifications and

introduce a family of protocols for enabling this pattern. Finally, we describe a prototype implementation for a disaster management

case study and conduct experiments to assess the performance of the proposed protocols.

Index Terms—Advanced services invocation framework, collaboration exchange protocol, collaborative services delivery platform,

Web services interoperability.
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1 INTRODUCTION

SERVICE-ORIENTED architecture (SOA) is a new approach
for designing software systems by providing services to

either user applications or other services distributed in a
network via published and discoverable interfaces [1], [36],
[37]. Although SOAs can be implemented using different
technologies such as J2EE, CORBA, and JMS, the most
common realization of SOAs is based on Web services [36].
Web services are loosely coupled entities that provide
predefined capabilities via XML-based standards (e.g.,
WSDL, SOAP) on the Web [1]. They interact with each
other through the exchange of messages. The most
common interaction pattern used in Web services is
request-response: A client submits a request to a server
(e.g., request for quote from a stock Web service); the
server sends back a reply to the client. However, Web
services within an SOA often want to receive messages
(also called notifications) when events occur in other
services and applications [22]. Examples of events include
computation results, applications data, status updates,
errors, and exceptions.

The event-driven, or notification-based, interaction pat-

tern is widely used to disseminate information among

different entities in distributed systems [35]. It typically

realizes the well-known publish-subscribe scheme [15]:

Consumers register their interest in an event and are

subsequently asynchronously notified of events generated

by producers. Publish-subscribe is at the heart of message-

oriented middleware and event-driven systems. Combining

event-driven systems with SOAs, known as event-driven

SOAs, inherits the features of both: Web services address

the interoperability issue in heterogeneous distributed

systems and event-driven systems enable asynchronous

interactions. Events are disseminated in SOAs for various

purposes, such as logging (e.g., for recovery, nonrepudia-

tion), monitoring (e.g., for service availability), auditing

(e.g., for privacy), and sending application-specific data

(e.g., weather alerts, stock price changes). Event-driven

SOAs are slated to play a key role in empowering vital areas

such as disaster management, e-science, supply chain, and

finance [13], [41].
The event-based paradigm has attracted much research

interest in areas such as distributed systems [2], [8], [14],

databases [11], [25], workflow [20], and grid computing

[18]. However, little attention was devoted to event-driven

SOAs. WS-Notification [21], [42] and WS-Eventing [9] are

two competing standardization efforts for enabling event-

based SOAs. Techniques such as [34] and [37] define

notification protocols for Web services. These techniques

and standardization efforts simply adapt the traditional

publish-subscribe scheme to SOAs. In this paper, we

propose a novel framework for event-based interactions in

SOAs. We give below a summary of our contributions:

. We introduce various dissemination (or notification)
patterns for event-driven SOAs. We show that these
patterns complement each other; each pattern is
suitable to particular scenarios (e.g., push versus
pull, wireless versus wired). We define two taxo-
nomies for dissemination protocols in event-driven
SOAs: The interaction taxonomy identifies the various
ways through which Web services interact with each
other and the filtering taxonomy classifies the events
and services (consumers and producers) involved
during dissemination.
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. We describe a novel pattern called implicit notifica-
tion. In contrast to publish-subscribe, implicit noti-
fication does not require consumers to explicitly
subscribe with producers. At the reception of an
event, a service determines the list of relevant
neighbors (using a distributed ontology) and forwards
the event to them. We propose a family of protocols
for enabling the implicit notification pattern.

. We describe a prototype implementation and ex-
periments to assess the viability and performance of
implicit notification for a disaster management case
study. Disaster management systems provide stra-
tegies to rapidly assess conditions, make decisions,
deploy relief and resources, and respond effectively
to crises (e.g., earthquake and hurricane) [4]. A
recent report authored by the US National Research
Council’s Committee on “Using Information Tech-
nology to Enhance Disaster Management” identifies
SOAs as one of the research directions for improving
disaster management [33]. The adoption of event-
based SOAs for disaster management helps deal
with rapidly changing situations such as terrorist
attacks and hurricanes [12].

The rest of this paper is organized as follows: In Section 2,

we describe the interaction and filtering taxonomies for

dissemination techniques in SOAs. In Section 3, we present

the implicit notification model. In Section 4, we propose

protocols for enabling the implicit notification model. In

Section 5, we describe a prototype implementation of the

implicit notification model for a disaster management case

study. Section 6 is devoted to performance study. In

Section 7, we overview related work. In Section 8, we

present concluding remarks.

2 CLASSIFICATION OF DISSEMINATION TECHNIQUES

IN SOAS

In this section, we introduce two taxonomies for categoriz-

ing dissemination protocols in event-based SOAs: the

interaction and filtering taxonomies.

2.1 Interaction Taxonomy

The interaction taxonomy (Fig. 1) identifies the different
models through which services interact with each other in
event-driven SOAs. It categorizes those models in a 3D
space: mode, cardinality, and strategy.

The mode (pull versus push) dimension specifies whether
dissemination is initiated by consumers or producers. In the
pull strategy, events are delivered by producers as a reply
to specific requests (e.g., getEvent) submitted by one or
more consumers. In the push strategy, events are sent by
producers without prior requests from consumers. Cardin-
ality (one-to-one versus one-to-many) defines the number of
consumers to which information is delivered. One-to-one
(1:1) cardinality means that a producer is delivering
information to one single consumer. One-to-many (1:N)
cardinality expresses that a producer is transmitting
information to several consumers. It is important to note
that one-to-many is not many one-to-one [15]. We identify
two techniques for enabling 1:N cardinality: broadcast and
multicast. In broadcast, producers send information over a
medium on which consumers can listen. One example, in
wireless environments, is that of a mobile service (produ-
cer) broadcasting the requested information via a wireless
channel [43]. In multicast, information is sent to a specific
set of consumers. Some of the first systems to enable
multicast communication were based on the Isis framework
[7]. The strategy (implicit versus explicit) specifies whether
the consumer made an explicit request for information
dissemination (e.g., by sending a request or subscribing to
events) or not (i.e., implicit). The strategy and mode
dimensions are orthogonal. As illustrated in the rest of this
section, both push-based and pull-based disseminations
may be explicit and implicit.

Pull-based dissemination—As depicted in Fig. 2, there
are four pull-based dissemination patterns for Web services.
In the Pull-1:1-Explicit pattern, Ci requests a specific event
(through getEvent) from Pj; Pj replies by sending the event
to Ci (Fig. 2a). We identify two scenarios corresponding to
this pattern. First, Ci has a subscription with Pj on the event
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Fig. 1. Interaction taxonomy.

Fig. 2. Scenarios for pull-based dissemination. (a) Pull-1:1-Explicit.

(b) Pull-1:N-Explicit. (c) Pull-1:1-Implicit. (d) Pull-1:N-Implicit.



and has the possibility of polling Pj (through getEvent) at
regular intervals and pulling events, if any are available.
The second scenario is a variant of the observer design
pattern defined in [19]. Ci has a subscription with Pj on an
event; once the event is available, Pj sends minimum event
information (e.g., availability of a multimedia file) to Ci; Ci

then query for the rest of the information (e.g., get the file
from Pj).

In the Pull-1:N-Explicit pattern (Fig. 2b), several (sub-
scribed) consumers explicitly request information from a
producer. The producer replies to all consumers using
multicast communication. The Atomic Commitment Proto-
col [1], [36] is a scenario where this pattern could be used;
different services (that belong to the same transaction) send
requests to a coordinator which will reply by atomically
sending “abort” or “commit” to all services via multicast
communication.

The Pull-1:1-Implicit pattern (Fig. 2c) refers to the
scenario where a consumer Ci sends a request R to a
broker. The broker selects the producer Pj to execute R. The
selection is based on predefined parameters such as quality
of service (QoS) and consumer’s profile. Then, the broker
forwards R to Pj. Later on, Pj sends events related to R to Ci.
For example, Ci may send a request for airline reservation
to a travel agency (i.e., the broker). The broker decides to
submit a reservation request to a given airline’s Web service
Pj. At anytime, Pj may send events (e.g., booking confirma-
tion and flight cancellation) to Ci.

In the Pull-1:N-Implicit pattern (Fig. 2d), a consumer Ci

sends a request to a producer Pj. After processing Ci’s
request, Pj sends a reply to Ci and any other consumer Ck

that may benefit from that reply. We identify two scenarios
where this pattern could be used. In the first scenario, Ci is a
wireless service (e.g., a nurse requesting a patient’s lab
results from a hospital server) and Pj broadcasts the reply
via wireless channel. Another consumer Ck (e.g., the doctor
in charge of the patient) listening on the channel may get
the information if it finds it relevant [29]. In the second
scenario, a department within a university may send a
“request for further information” to the Dean’s office about
a recent regulation. The Dean’s office may reply to that
department and forward the reply to all departments
within the college.

Push-based dissemination—Push-based dissemination
includes four patterns (Fig. 3). In the Push-1:1-Explicit
pattern (Fig. 3a), there is a one-to-one subscription
relationship between consumers and producers. We
identify three scenarios relevant to this pattern. The first
scenario corresponds to the “Pipes and Filters” architec-
tural pattern [10]. “Pipes and Filters” provides a structure
for systems that process a stream of data. Each processing
step is encapsulated in a filter service. Data is passed
through pipes between adjacent filters. Each filter service
gets the input data from the previous pipe, performs a
function on the input data, and supplies the output to the
next filter. The second scenario corresponds to multilayer
architectures where interactions occur only between
adjacent layers. The third scenario corresponds to a
hierarchical publish-subscribe scheme. Services are orga-
nized in a tree and allowed to subscribe only with their

children. Therefore, notifications may go only from a
service to its parent. This pattern is used, for instance, in
organizations with hierarchically structured components,
where each component reports only to its parent.

The Push-1:N-Explicit pattern (Fig. 3b) corresponds to the
publish-subscribe interaction scheme. It uses either a
centralized or peer-to-peer architecture. Details about this
pattern are given in [9], [21], and [42]. The Push-1:1-Implicit
pattern (Fig. 3c) corresponds to WSDL’s notify operations
[1], [36] where a Web service sends an output message to
another service. No explicit subscription is required from
the consumer to receive a notification. The service to be
notified (i.e., consumer) may, for instance, be specified in
the business logic of the notifier service (i.e., producer). The
Push-1:N-Implicit (Fig. 3d) represents the case where a
producer submits information to a set of relevant services
without explicit subscriptions from those services. This
pattern may adopt a centralized or peer-to-peer topology. It
will be covered in details in Sections 3 and 4.

2.2 Filtering Taxonomy

Consumers are usually interested in particular events or
event types, and not all the events. Filtering mechanisms are
used to help specify/disseminate events of interest. The
filtering taxonomy (Fig. 4) defines two dimensions for such
mechanisms: event and service dimension.

Event dimension—This dimension deals with filtering at
the event level (i.e., which event is relevant). It includes the
following five cases: topic-based, content-based, type-based,
semantic, and generic. In topic-based filtering, each event
belongs to one of a fixed set of subjects (also called topics);
producers are required to label each event with a topic
name. Consumers subscribe to topics. Events of topic T will
be sent to all consumers that subscribed to T. In content-
based filtering, events are no longer divided into different
subjects. Consumers define a subscription condition accord-
ing to the internal structure of events (e.g., stock quotes that
cost lest than $100); all events that meet the condition will
be sent to those consumers. In type-based filtering, events are
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Fig. 3. Scenarios for push-based dissemination. (a) Pull-1:1-Explicit.

(b) Pull-1:N-Explicit. (c) Pull-1:1-Implicit. (d) Pull-1:N-Implicit.



instances of application-defined types. For instance, WSDL
(the standard for defining Web service interfaces) uses XML
Schema as a typing system. Consumers are interested in
receiving events that have a certain type. In the semantic
event filtering, events are semantically described according
to a domain ontology [17]. Filtering is based on a condition
over the semantic properties of the events. In the generic
event filtering, there is no condition on the event to be
disseminated.

Service dimension—This dimension deals with filtering
at the service level (consumers and producers). It includes
the following four cases: specific, category-based, policy-based,
and semantic. In the specific filtering, consumers receive
events from specific producers they are registered with. In
the category-based filtering, consumers receive events from
producers that belong to certain categories. Each category
defines a domain of interest (e.g., airline and healthcare) of
Web services in the SOA. In the policy-based filtering,
consumers receive events from producers that implement
certain policies. We adopt a broad definition of policy [24],
encompassing not only security and privacy but also the
capabilities and requirements under which a service may
interact with clients. For instance, a service may be
interested in events published by services that implement
a given WSDL interface. In the semantic filtering, consumers
receive events from producers that satisfy certain semantic
conditions (functional or nonfunctional). This assumes that
all services are described according to a semantic model
such as DAML-S [28], OWL-S [26], and WSMO [38].

3 THE IMPLICIT NOTIFICATION MODEL

Our focus in the rest of this paper is on defining protocols
for enabling the peer-to-peer Push-1:N-Implicit pattern with
a topic-category-based filtering. For simplicity, we will use
the term implicit notification to refer to this pattern. In the
topic-category-based filtering, consumers receive events
under certain topics and are published by producers that
belong to certain categories.

In this section, we describe our implicit notification
model. We first present the concept of implicit notification
ontology (INO) to model interactions among Web services.
Then, we propose a peer-to-peer topology for exchanging

notifications among Web services. Finally, we introduce the

Basic Implicit Notification (BIN) protocol.

3.1 Implicit Notification Ontology

We model the different ways through which Web services

exchange implicit notifications through the INO. Simply

put, ontology is a formal and explicit specification of a

shared conceptualization [5], [17], [28]. At an abstract level,

we model INO as a labeled directed graph where nodes

represent concepts in the application domain and labeled

edges represent relationships between concepts. The INO

graph can easily be specified using major ontology

languages such as RDF and OWL [17]. Each concept in

the graph refers to a service category (i.e., domain of

interest) from the application domain. An edge Cati !
Catj labeled with T means that services that belong to

category Cati share information of topic T with services of

category Catj.
The categories (i.e., nodes) and topics (edges) of the INO

graph are defined according to two categorizations: topic

and service categorization. The topic categorization gives the

various topics of messages that may be exchanged among

Web services. For instance, let us consider disaster manage-

ment as a case study. The topic categorization may include

topics such as “disaster supplier info” and “press release.”

A message M is defined by the couple (T,D) where T is a

topic and D is the actual data to be sent. Topics may be

recursively organized into subtopics. We use the notation

Subtopics(T) to refer to all subtopics under T (descendents).

The service categorization gives the categories (domains of

interest) of services that may need to exchange messages.

For instance, the service categorization in a disaster

management system may include categories such as

“medicine food supplies” and “news media.” A service

may belong to more than one category. A category may be

recursively organized into subcategories. We use the

function Subcategories(C) to refer to all subcategories under

C (descendents).
Fig. 5 gives an example of an INO graph. It depicts five

service categories: Cat1, Cat2, Cat3, Cat4, and Cat5. It states

that services of category Cat1 notify services of categories

Cat2 and Cat3 about messages of topic T1 and services of

categories Cat4 and Cat5 about messages of topic T2.

Services of category Cat3 notify services of categories Cat6

and Cat7 about messages of topic T1.
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Fig. 4. Filtering taxonomy.

Fig. 5. Example of INO graph.



The INO graph allows the definition of a neighborhood
relationship among Web services. This is a nonsymmetric
relationship defined as follows: Let us consider two
services WS1 and WS2 of categories Cat1 and Cat2,
respectively. We say that WS2 is a neighbor of WS1 with
respect to a topic T if the INO graph includes an edge
Cat1 ! Cat2 labeled with T. Our definition of “neighbor” is
different from the one used in gossip-based (or epidemics-
style) protocols [8], [16]. First, our definition is logical
(based on the ontology graph), while the one used in gossip
protocols is physical (based on the network topology).
Second, our definition depends on the topic of the message
to be propagated. Finally, neighbors in our case are selected
based on the INO graph and, hence, are necessarily
interested in receiving the message. In gossip protocols,
neighbors are randomly selected and, hence, may not be
interested in receiving the message.

The INO graph is distributed over the different services
in the system. If a service has Cati as a category, then it is
only aware of the relationships with Cati as a source. For
instance, a service of category Cat1 (Fig. 5) knows that it
should send messages of topic T1 to services of categories
Cat2 and Cat3. However, it is not aware that services of
category Cat3 will forward those messages to services of
categories Cat6 and Cat7. This is similar to the Chain of
Responsibility design pattern [19], where an object does not
know the objects beyond its direct successor. For instance,
in disaster management, each entity is only aware of the
entities it should directly interact with (e.g., local-to-state-
to-federal-to-international).

We identify two approaches for defining INO graphs:
manual and automatic. Details about these approaches are
out of the scope of this paper. For completeness, we give a
definition of each approach in the following:

. Manual. The INO graph is manually created by
domain experts. Experts in each domain or
category Cati identify the part of INO related to
Cati (i.e., relationships with Cati as a source).
Domain experts are also responsible for maintaining
the part of INO related to their category (e.g.,
changing topics or adding relationships).

. Automatic. The INO graph is (semi)automatically
created and maintained. One solution is to use
machine learning [31] for creating INO. For in-
stance, the system can learn (via data mining) from

the subscriptions made in push explicit techniques
(Figs. 3a and 3b) to determine the relationships in
INO. Another solution is to adopt a mass collabora-
tion approach [27]. Mass collaboration has been
employed quite successfully in open-source soft-
ware (e.g., Linux), product reviews (e.g., amazon.
com), and collaborative filtering. In our case, we
propose applying it in conjunction with manual and
automatic techniques to build the INO graph. The
idea is to build an INO “shell” and then leverage
the mass of users (consumers, producers, system
administrators, etc.) to help populate the INO graph
or verify and correct the relationships created by
automatic methods.

3.2 Peer-to-Peer Topology for Implicit Notifications

One important feature of the proposed notification infra-
structure is the automatic interaction among services to
share topic-based messages. Each Web service has an
administrative service, called notifier, associated to it
(Fig. 6). All notifiers are registered in the service registry
(UDDI in our case); they are categorized according to the
type of service they are associated to (as defined in the
service categorization).

Notifiers define a peer-to-peer network for sharing
information among services. Each provider publishes
information via its associated notifier. The notifier formats
the published information into a message and sends it to
other peers using the protocol described in Table 1. At the
reception of a message, notifiers apply the same protocol to
forward the message to other notifiers. The WSDL docu-
ment of each notifier Ni corresponding to service WSi

includes two operations: Publish(T,D) and Notify(T,D).
Publish(T,D) allows provider-to-notifier interactions. It is
invoked by the WSi provider to disseminate the message
M(T,D) through Ni. We say that Ni is the root notifier of M.
Notify(T,D) allows notifier-to-notifier interactions. It en-
ables the exchange of M(T,D) among notifiers. In the rest of
this paper, we will use a service and its attached notifier
interchangeably.
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Fig. 6. Interactions among notifiers.

TABLE 1
BIN Algorithm Executed by Notifier Ni



The proposed notification topology is attractive for a
number of reasons. First, it distributes control over several
architectural modules. Every service acts both as a con-
sumer and producer, thus precluding specific brokers
which would prevent scalability and fault-tolerance [2].
Second, it externalizes notification management and creates
a clear separation between the business logic of the service
and dissemination tasks. Third, it facilitates the integration
of notification mechanisms in legacy SOAs (i.e., SOAs
designed with no notification capabilities). Fourth, it
preserves the autonomy of Web services since little or no
modification needs to be done to Web services to send
notifications.

3.3 Basic Implicit Notification Protocol

In this section, we present the BIN protocol. BIN uses the
INO graph and adopts the peer-to-peer topology (Fig. 6) for
disseminating information among Web services. Table 1
gives the BIN protocol executed by notifier Ni. In this
protocol, both Publish() and Notify() operations are defined
in the same way. At the invocation of Publish(T,D) or
Notify(T,D), Ni calls the GetNeighborsðT;NiÞ to determine
the set of neighbors. Then, Ni forward M(T,D) to each
notifier Nk in NeighborSet by invoking the operation
Notify(T,D) of Nk.

The GetNeighborsðT;NiÞ function uses the INO graph to
determine neighbors. Let us assume that Catp is the
category of Ni. Ni first gets all edges Catp ! Catq labeled
with T or a subtopic of T from the INO graph. Then, Ni

inserts each notifier Nk with Catq or a subcategory of Catq

as a category in the NotifierSet. If Ni belongs to NotifierSet,
then Ni deletes itself from NotifierSet. This may happen if
1) the INO graph has a loop on Catp or 2) INO has an
edge Catp ! Catq labeled with T, and Ni belongs to
categories Cp and Cq. Finally, the GetNeighbors() function
returns NotifierSet.

BIN has two major drawbacks. First, a message may be
sent indefinitely in the system (notification loops). Second, a
message may be received repeatedly by a notifier (double
notifications).

Notification loops in BIN. Fig. 7 gives an example of
notification loop. We assume that WS1 is registered under
Cat1 and Cat3, WS2 is registered under Cat2, and WS3 and
WS4 are registered under Cat3. Let us assume that M(T,D) is
published to N1. Based on the INO graph, N1 (under Cat1)
sends M to N2 (under Cat2). Then, N2 sends M to services

under Cat3 (i.e., N3, N4, and N1). N1 will again forward M to
N2, hence creating an infinite notification loop.

Double notifications in BIN. Fig. 8 gives an example of
double notification (or repetition). WS1 is registered under
Cat1, WS2 and WS3 are registered under Cat2, and WS4 and
WS5 are registered under Cat3. Let us assume that M(T,D) is
published to N1. Based on the INO graph, N1 sends M to N2,
N3, N4, and N5. At the reception of M, N4 and N5 forward M
to N2 and N3 leading to double notifications.

One solution for detecting notification loops and repeti-
tions is by checking the INO graph. However, such a solution
is not practical for the following reasons: First, the INO graph
is distributed over the different services in the system. Each
service is only aware of the part of the graph related to its
category. No one has a global view on INO. Second, even if
there is no cycle in the INO graph, there is still a risk of
notification loops because a service may belong to several
categories (see the example in Fig. 7). Third, Web services
operate in a dynamic environment; they may join/leave the
service space at any time. Additionally, topics, categories,
and relationships among categories may be added/chan-
ged/removed at any time. Hence, there is a need to extend
BIN to handle notification loops and repetitions.

4 IMPLICIT NOTIFICATION PROTOCOLS

In this section, we propose three implicit notification
protocols to deal with repetitions and notification loops:
Centralized Implicit Notification (CIN), Distributed Implicit
Notifications (DIN), and Header-based Implicit Notifica-
tions (HIN).

4.1 Centralized Implicit Notification

The CIN protocol uses a centralized history to keep track of
all messages along with their consumers/producers. The
history can be seen as a table with three columns: ID,
Notifier, and Type. An entry (ID,N,Type) in the history
means that notifier N processed the message identified by
ID as a consumer ðType ¼ 1Þ or producer ðType ¼ 2Þ. We
use Universal Unique Identifiers (UUIDs) as message IDs;
UUIDs are 128-bit numbers used to uniquely identify an
object or entity on the Internet. IDs are carried by messages
throughout the notification process. We assume the
existence of a function GenerateID() that generates UUIDs.

Table 2 gives the CIN algorithm executed by Ni. At the
invocation of Publish(T,D), Ni (the root notifier) generates a
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Fig. 8. Example of double notifications in BIN.



unique message ID. Since Ni is the producer of M(T,D), it

stores ðID;Ni; 2Þ in the history (Ni is a consumer and will act

as producer by forwarding M to neighbors). Ni then

determines the list of neighbors. Finally, for each notifier

Nk that belongs to NeighborSet, Ni inserts ðID;Nk; 1Þ in the

history and forwards M(ID,T,D) to Nk.
At the invocation of Notify(ID,T,D), Ni first checks

whether it already processed the message as a producer,

i.e., if ðID;Ni; 2Þ 2 History. This may happen if two or more

producers check the history at the same time, do not find

ðID;Ni;
�Þ in the history, and, hence, they all decide to send

M to Ni. In this case, Ni processes the first received message

only. If ðID;Ni; 2Þ 62 History, Ni first inserts ðID;Ni; 2Þ in the

History. Then, it computes the NeighborSet. Let Nk be a

notifier in NeighborSet. Ni forwards M(ID,T,D) to Nk only if

Nk has not previously received this message; this is done by

checking that ðID;Nk;
�Þ does not belong to the history. If

ðID;Nk;
�Þ 62 History, Ni inserts ðID;Nk; 1Þ in the history and

sends M to Nk. Otherwise, Ni ignores Nk.

Lemma 1. No notifier forwards a message M(ID,T,D) twice to

the same neighbor in the CIN protocol.

Proof. Let us assume that a notifier Ni sends a message

M(ID,T,D) to the same neighbor Nj at two different times

t1 and t2 ðt1 < t2Þ. We consider the following cases:

. Ni is a root notifier: Ni receives the message via
Publish(). According to the CIN protocol (line 3),
Ni inserts ðID;Ni; 2Þ in History at t1. At time t2, Ni

first checks whether ðID;Ni; 2Þ belongs to History
(line 10) before sending M. Hence, Ni cannot
forward M to Nj at t2 since ðID;Ni; 2Þ is already
in History.

. Ni is not a root notifier: Ni is the first to receive the
message via Notify(). Hence, ðID;Ni; 2Þ 62 History.
According to the CIN protocol (line 11), Ni inserts
ðID;Ni; 2Þ in History at t1. At time t2, Ni first
checks whether ðID;Ni; 2Þ belongs to History
(line 10) before sending M. Hence, Ni cannot

forward M to Nj at t2 since ðID;Ni; 2Þ is already
in History. tu

To illustrate the CIN protocol, let us consider the
scenario depicted in Fig. 9 that corresponds to the INO
graph given in Fig. 8. Let us assume that (T,D) is published
to N1. N1 generates a unique message ID equal to 1 and
inserts ð1;N1; 2Þ in the history. Based on the INO graph, N1

sends M(1,T,D) to N2, N3, N4, and N5. It also inserts
ð1;N2; 1Þ, ð1;N3; 1Þ, ð1;N4; 1Þ, and ð1;N5; 1Þ in the History. At
the reception of M(1,T,D), N4 and N5 figure out that N2 and
N3 are neighbors. Since ð1;N2; 1Þ and ð1;N3; 1Þ belong to the
history, N4 and N5 do not forward M to N1 and N2. The total
number of notifications sent is 4 (no repetitions).

4.2 Distributed Implicit Notification

The use of a centralized history in CIN suffers from two
major drawbacks. First, the history node constitutes a single
point of failure. Second, each notifier needs to remotely
access the history, which may increase the time required to
send notifications. To address these problems, we propose a
distributed version of CIN. We refer to this protocol as DIN.

In this protocol (Table 3), each notifier Ni maintains a
local history called Historyi. Historyi contains the IDs of all
messages received by Ni (as a producer or consumer). If
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TABLE 2
CIN Algorithm Executed by Notifier Ni

Fig. 9. CIN protocol—An example.

TABLE 3
DIN Algorithm Executed by Notifier Ni



the operation invoked is Publish(T,D), Ni generates a

unique message ID, inserts ID in Historyi, and computes

NeighborSet. Finally, Ni forwards M(ID,T,D) to each

notifier Nk in NeighborSet. If the operation invoked is

Notify(ID,T,D), Ni checks if ID belongs to Historyi. If so, Ni

ignores M since it has already received the message.

Otherwise, Ni inserts ID in Historyi, computes NeighborSet,

and forwards M to each notifier Nk in NeighborSet.

Lemma 2. No notifier forwards a message M(ID,T,D) twice to

the same neighbor in DIN protocol.

Proof. The proof is similar to the one given for Lemma 1

(replace History and ðID;Ni; 2Þ by Historyi and ID,

respectively). tu

To illustrate the DIN protocol, let us consider the

scenario depicted in Fig. 10 that corresponds to the INO

graph given in Fig. 8. This scenario shows that repeated

notifications are still possible, but detected, in DIN. Since N1

is the first to receive (T,D), it generates a unique ID (say 1),

inserts ID in History1, and forwards M(1,T,D) to notifiers

that belong to Cat2 and Cat3 (i.e., N2, N3, N4, and N5). Let us

assume that N2, N3, N4, and N5 receive M at the same time.

At the reception of M, N2, N3, N4, and N5 insert ID into their

local histories since ID does not belong to any of those

histories. Based on the INO graph, N4 and N5 forward M to

notifiers that belong to Cat2 (i.e., N2 and N3). Since ID

belongs to History2 and History3, N2 and N3 consider M as a

repeated notification and, hence, ignore the message. The

total number of notifications sent is eight, including four

repetitions.

4.3 Header-Based Implicit Notification

The HIN protocol uses the SOAP header of each notification

message to store the names of notifiers that already received

the message. When a notifier receives a message, it decides

whether to forward the message to the next notifier by

simply looking at the header of that message. The header of

a message M(T,D) is composed of two parts: Root and

Notified. Root contains the name of the root notifier. Notified

is a list of all notifiers (except the root) that received M.
Fig. 11 shows an example of notification message in

HIN, where M is published to the root notifier Ni. Let us

assume that Ni needs to send M to Nj and Nk. Ni sets

M.Header.Root to Ni, M.Header.Notified to fNj;Nkg, and

sends M(Header,T,D) to Nj and Nk.
Table 4 gives the HIN algorithm executed by a

notifier Ni. At the invocation of Publish(T,D), Ni creates a

Header and assigns Ni to Header.Root. Next, Ni determines

the list of neighbors. Finally, Ni assigns NeighborSet to

M.Notified and sends M(Header,T,D) to each notifier in

NeighborSet. At the invocation of Notify(Header,T,D), Ni

determines the list of neighbors. If Ni belongs to Neighbor-

Set, then Ni deletes itself from NeighborSet. Then, Ni

considers the following two cases for each notifier Nk in

NeighborSet:

1. Nk ¼ Header:Root or Nk 2 Header:Notified. Nk al-
ready received the message. Hence, Ni ignores Nk

and removes Nk from NeighborSet.
2. Nk 6¼ Header:Root and Nk 62 Header:Notified. Nk did

not receive the message before. Hence, Ni adds Nk to
Header.Notified.
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Fig. 10. DIN protocol—An example.

Fig. 11. Structure of a notification message in HIN.

TABLE 4
HIN Algorithm Executed by Notifier Ni



Finally, Ni forwards M(Header,T,D) to each notifier Nk

that belongs to NeighborSet by invoking the operation
Nk.Notify(Header,ID,T,D).

Lemma 3. No notifier forwards a message M(Header,T,D) twice

to the same neighbor in HIN protocol.

Proof. Let us assume that a notifier Ni sends a message
M(Header,T,D) to the same neighbor Nj at two different
times t1 and t2 ðt1 < t2Þ. We consider the following cases:

. Ni is a root notifier: Ni receives the message via
Publish(). According to HIN protocol (lines 3 and
5), Ni assigns Ni to M.Header.Root and Nj to
M.Header.Notified at t1. At time t2, Ni removes
Nj from NeighborSet since Nj is already in
M.Header.Notified (lines 12 and 13). Hence, Ni

does not forward M to Nj at t2.
. Ni is not a root notifier: Ni is the first to receive the

message via Notify(). According to the HIN
protocol (line 14), Ni assigns Nj to M.Head-
er.Notified at t1. At time t2, Ni removes Nj from
NeighborSet since Nj is already in M.Header.No-
tified (lines 12 and 13). Hence, Ni does not
forward M to Nj at t2. tu

Let us consider the scenario depicted in Fig. 12 that
corresponds to the INO graph given in Fig. 8. Since N1 is the
root notifier, it initializes M.Header.Root with N1. From the
INO graph, N3 determines that N2, N3, N4, and N5 are
neighbors. Hence, N3 initializes M.Header.Notified with
fN2;N3;N4;N5g and forwards M with the updated header
to N2, N3, N4, and N5. N4 and N5 determine that services
under category Cat2 (i.e., N2 and N3) are neighbors.
However, both N2 and N3 belong to M.Header.Notified.
Therefore, N4 and N5 ignore M. The total number of
notifications is four (no repetitions).

Although Fig. 12 shows that N4 and N5 are able to
detect repetitions, double notifications are still possible in
HIN. Let us consider the scenario shown in Fig. 13. We
assume that N1 is the root notifier. N1 initializes M.Head-
er.Root with N1, assigns fN2;N3g to M.Header.Notified,
and forwards the message M with the updated header to
N2 and N3. N2 and N3 determine that services under

category Cat4 (i.e., N4) are neighbors. However, N4 is
different from M.Header.Root and does not belong to
M.Header.Notified. Hence, both N2 and N3 send M to N4

(i.e., double notification). Since N4 cannot determine
whether it received the same message more than once, it
sends M twice to N5 (under category Cat5). One solution to
deal with this issue is to combine HIN with DIN; indeed,
the use of local histories enables N4 to keep track of
previously received messages. The total number of
notifications sent in Fig. 13 is six, including two repeti-
tions. The same scenario executed with DIN would
generate five notifications, including one repetition.

5 IMPLEMENTATION

In this section, we describe a prototype implementation of a
disaster management notification system. We used Micro-
soft Windows Server 2003 (operating system), Microsoft
Visual Studio 8 (development kit), UDDI Server, IIS Server,
and SQL Server (for history tables in CIN and DIN). We
defined the topic and service categorizations as UDDI
categorizations. Fig. 14 shows part of the INO graph for
disaster recovery implemented as a database table. The
service categorization includes MedecineFoodSupplies,
ResearchOrgs, NationalOrgs, VolunteerOrgs, GlobalOrgs,
NewsMedia, and AviatioSupplies. The topic categorization
includes disaster info, disaster supplier info, press release,
and research publication.

As a proof of concept, we deployed 20 notifiers
(implemented in C#) and registered them in UDDI under
the corresponding categories. All notifiers are deployed in
the same machine (Intel(R) processor, 1,500 MHz, and
512 Mbytes of RAM). The centralized history (in CIN) is
stored in a separate machine within our local area network
to simulate delays in accessing a remotely located history.
The prototype includes graphical interfaces to automatically
add notifiers to the system. Fig. 15 (top-left) depicts the
screenshot for creating a new notifier named DetroitTV
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Fig. 12. HIN protocol—An example.

Fig. 13. Double notifications in HIN protocol.



under the category NewsMedia. The system automatically

generates a “DetroitTV.cs” class and “DetroitTV.asmx” file
(Fig. 15, top-right). It also automatically registers DetroitTV

notifier under NewsMedia category in UDDI along with the

access point for invoking the notifier (Fig. 15, bottom-left).
Fig. 16 depicts screenshots for publishing messages

using the proposed protocols. The default page (Fig. 16,
top-right) includes a text description of the system and

prompts users to select the protocol they are interested in

using (CIN, DIN, or HIN). Users are then taken to the next
page (Fig. 16, middle) to select the topic, the root notifier,

and the actual data to be published. In our example, the

message “Earthquake occurred in California” with topic

“Disaster Info” is published by International Disaster and
Emergency Readiness (IDER). IDER belongs to the Re-

searchOrgs category. Based on the INO graph in Fig. 14,

the message is forwarded to services under categories

GlobOrgs (CARE and UnitedNationsDRB), NationalOrgs
(USNationalGov), and ResearchOrgs (USGS and USPEER).

Clicking on the Send button will invoke the Publish()

method of the root notifier. Users will then be taken to the
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Fig. 14. INO graph for disaster recovery as a table.

Fig. 15. Prototype—Generating notifiers.



result page (Fig. 16, bottom). This page displays the
message ID generated by the root notifier, the topic and
actual data of the message, and the list of services that have
been automatically notified.

6 EXPERIMENTS

We conducted experiments to compare the performance of
CIN, DIN, and HIN protocols. We designed 10 scenarios in
disaster management and ran each scenario through our
prototype using CIN, DIN, and HIN protocols. Each
scenario was design to include possibilities for double
notifications, notification loops, or both. We measured the
following two parameters:

1. Number of notifications. This parameter gives the
number of times that a published message is sent to
notifiers (the same or different notifiers). It is used to
determine which protocol reduces the number of
double notifications.

2. Notification time. This parameter gives the time (in
seconds) it takes for a published message to reach all
services interested in that message in the system. It is
used to determine which protocol propagates a
message faster in the system.

Fig. 17 compares the number of notifications generated
in CIN, DIN, and HIN protocols. Experiments show that
CIN always generates fewer notifications than DIN. As
mentioned earlier, the use of a centralized history in CIN
reduces double notifications compared to DIN as all
notifiers have the same global view on the notification
trace. Experiments show that HIN generates the same
number of notifications as CIN in certain scenarios (e.g.,
scenarios 1, 4, 6, and 9). The notification trace in Fig. 12 is an
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Fig. 16. Prototype—Sending implicit notifications.

Fig. 17. Number of notifications in CIN, DIN, and HIN.



instance of such a situation. There are scenarios where DIN
outperforms HIN (e.g., Scenarios 3 and 10). The notification
trace in Fig. 13 is an instance of such a situation.

There are also scenarios where HIN is not as good as
CIN, but it outperforms DIN (e.g., Scenarios 2, 7, and 8). For
instance, in Fig. 18 (Case a), we assume that a message M of
topic T is published to N1. In this case, CIN generates three
notifications, HIN generates four, and DIN generates five.
Finally, there are situations where HIN and DIN generate
the same number of notifications (e.g., Scenario 5). For
instance, in Fig. 18 (Case b), we assume that a message M of
topic T is published to N1. In this case, CIN generates three
notifications while both HIN and DIN generate four.

Fig. 19 compares the notification times of CIN, DIN, and
HIN protocols. The notification time is bigger in the case of
CIN since each notifier needs to access a history table
located in a separate node before sending notifications. In
DIN, each notifier accesses a local history table which
reduces the overall notification time compared to CIN.
Fig. 19 shows that DIN and HIN have almost similar
notification times, with HIN performing slightly better in
certain scenarios (e.g., scenarios 1, 4, and 6). This is because
HIN generates much fewer notifications than DIN in those
scenarios. Additionally, HIN does not access any database
table to determine whether a notifier should forward a
message or not.

7 RELATED WORK

The Web has become the medium of choice for disseminat-
ing fast-changing data such as traffic/weather information,
stock prices, and sports scores [6]. The growing popularity
of RSS feeds and similar technologies illustrated the
importance of this medium. RSS is a format for delivering
regularly changing Web content. RSS feeds benefit users
who want to subscribe to timely updates from favored Web
sites or to aggregate feeds from many sites into one place.
RSS can be seen as a publish-subscribe system for Web
micronews. It suffers from the escalating bandwidth
demand of RSS readers [39].

WS-Notification is a family of specifications that define a
standard for topic-based notifications in Web services [21],
[42]. It includes a standard message exchanges to be
implemented by providers that wish to participate in
notifications, standard message exchanges for a notification

broker (allowing publication of messages from entities that
are not themselves service providers), operational require-
ments expected of service providers and requestors that
participate in notifications, and an XML model that describes
topics. WS-Notification follows the Push-1:N-Explicit pat-
tern (Fig. 3b). The notification protocols proposed in this
paper follow the Push-1:N-Implicit pattern (Fig. 3d).

The Web Services Resource Framework (WSRF) is a
family of OASIS-published specifications that allow Web
services to become stateful [3]. Web services communicate
with resource services (called WS-Resources) which allow
data to be stored and retrieved. The framework relates to
well-known Web services standards such as WS-Notifica-
tion. From the perspective of WS-Notification, WSRF
provides useful building blocks for representing notifica-
tions. From the perspective of WSRF, WS-Notification
extends the utility of WS-Resources by allowing requestors
to ask to be asynchronously notified of changes to resource
property value [36].

WS-Eventing [9] is a major competitor of WS-Notifica-
tion. Comparative studies of both specifications are pre-
sented in [22] and [35]. Both studies agree that WS-Eventing
and WS-Notification are adopting ideas and concepts from
each other and getting more mature with each update.
There is currently a trend of convergence of both specifica-
tions. Proposals for creating a new standard that will
integrate functions from WS-Notification with WS-Eventing
are underway [14].

Our aim in this paper is to define a framework that
includes several notification patterns for event-based SOAs.
Existing standardization efforts such as WS-Notification
and WS-Eventing implement one of the patterns described
in the framework, namely, the Push-1:N-Explicit (both
centralized and peer-to-peer). The patterns introduced in
our framework do not contradict or compete with each
other, but rather complement each other. We envision that a
given SOA may implement several patterns (e.g., push and
pull patterns) to cope with the requirements and peculia-
rities of its various applications and users.

The WS-Messenger project supports both WS-Eventing
and WS-Notification specifications at the same time
through a mediation approach [23]. The mediation
techniques reconcile the differences between WS-Eventing
and WS-Notification. WS-Messenger detects which speci-
fication the incoming SOAP messages use and processes
them accordingly. Response messages follow the same

166 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

Fig. 18. Comparing DIN and HIN: Two cases.
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specifications as request messages. Event producer can

publish event notifications using either the WS-Eventing or

the WS-Notification specification. This makes no difference

to the event consumers since WS-Messenger performs

mediations automatically.
Several techniques have adopted the concept of ontology

in event-based systems. An ontology-based matching

algorithm for content-based Push-1:N-Explicit dissemina-

tion is introduced in [44]. A Push-1:N-Explicit dissemina-

tion system which utilizes ontology to classify and query

published data is presented in [40]. The approach described

in [45] uses ontology to model events, topics, and subscrip-

tions in content-based Push-1:N-Explicit dissemination

systems. However, [40], [44], and [45] deal with the Push-

1:N-Explicit pattern. In this paper, we use ontology for

enabling the Push-1:N-Implicit pattern.
A publish-subscribe infrastructure for SOAs is proposed

in [34]. The infrastructure is based on the Quicksilver

platform developed by the same authors. The proposed

infrastructure focuses on enabling IP multicast and provid-

ing reliability and QoS guarantees for the publish-subscribe

model. Our work focuses on a different dissemination

pattern, i.e., implicit. Some of the techniques (e.g., multicast)

used in [34] can be adopted in our work. WebBIS defines an

event-based protocol for Web services [30]. However, it

focuses on propagating changes from component to

composite services.

8 CONCLUSION

In this paper, we have dealt with dissemination patterns

and protocols in event-based SOAs. Based on the interac-

tion and filtering taxonomies, we propose a categorization

of dissemination patterns in SOAs. One of the patterns we

emphasize is implicit notification. This pattern uses the INO

to model interaction interests among categories of services.

We introduce three implicit notification protocols to deal

with the issues of notification loops and repetition:

centralized, distributed, and header-based. Finally, we

describe a prototype implementation and conduct experi-

ments to compare the proposed protocols.
As future research, we will develop techniques (e.g.,

machine learning [31] and mass collaboration [27]) to

(semi)automatically define and maintain the INO ontology.

We will also explore other protocols to minimize both

notification time and the number of notifications. For

instance, we will investigate the use of distributed hash

tables [32]. Finally, we will define models and protocols for

enabling the different dissemination patterns introduced in

this paper.
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