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Resume

La tendance actuelle dans le développement et le déploiement d’applications consiste à les

embarquer dans des machines virtuelles ou des conteneurs. Il en résulte une combinaison

de configurations de réseaux physiques et virtuels combinant des commutateurs virtuels

et physiques avec des protocoles spécifiques pour créer des réseaux virtuels s’étendant sur

plusieurs serveurs. Ce nouvel environnement constitue un défi lorsqu’il s’agit de mesurer et

de debuguer les problèmes liés aux performances.

Dans cette thèse, nous examinons le problème de la mesure du trafic dans un environ-

nement virtuel et nous nous concentrons sur un scénario typique : des machines virtuelles

interconnectées par un commutateur virtuel. Nous avons étudié le coût de la mesure en

continu du trafic réseau des machines. Plus précisément, nous avons évalué le cout du partage

du substrat physique entre la tâche de mesure et l’application. Nous avons dans un premier

confirmé l’existence d’une corrélation négative entre la mesure et le trafic applicatif.

Dans une seconde partie de la thèse, nous avons orienté notre travail vers une minimisa-

tion de l’impact des mesures en utilisant des techniques d’apprentissage automatiques en

temps réel. Nous avons proposé une solution basée sur les données, capable de fournir des

paramètres de surveillance optimaux pour les mesures de réseau virtuel avec un minimum

d’interférence pour le trafic applicatif.

Mot-clé: Réseau virtualisé, Mesure, Surveillance, Open vSwitch, Centre de Don-
nées, Apprentissage Machine, sFlow, IPFIX





Abstract

The current trend in application development and deployment is to package applications

within containers or virtual machines. This results in a blend of virtual and physical resources

with complex network setups mixing virtual and physical switches along with specific

protocols to build virtual networks spanning over several servers. While this complexity is

often hidden by cloud management solutions, such new environment constitutes a challenge

when it comes to monitor and debug performance-related issues. In this thesis, we consider

the problem of measuring traffic in a virtualized environment and focus on one typical

scenario: virtual machines interconnected with a virtual switch. We assess the cost of

continuously measuring the network traffic of the machines. Specifically, we seek to estimate

the competition that exists to access the resources (e.g., CPU) of the physical substrate

between the measurement task and the application. We confirm the negative correlation of

measurement within such setup and propose actions towards its minimization. Concluding on

the measurement interference with virtual network, we then turn our work towards minimizing

its presence in the network. We assess the capability of machine learning techniques to

predict the measurement impact on the ongoing traffic between virtual machines. We propose

a data-driven solution that is able to provide optimal monitoring parameters for virtual

network measurements with minimum traffic interference.

Keywords: Virtual Network, Measurement, Monitoring, Open vSwitch, Data Cen-
ter, Machine Learning, sFlow, IPFIX
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Chapter 1

Overview

1.1 Network softwarization

The evolution of the Internet and its ubiquitous adoption in nearly every level of our society

have opened a whole new domain for communication providers. Their interest in profit

motivates the invention of new technologies and services for individual users just as well

as for the enterprises. Internet by its very definition is a large-scale, global network. While

it was arguably easier to organize such a network in its early days, when the subscribers

were not-so-numerous and rather predictable in their behaviour, the newly-arrived Internet

Service Providers (ISPs) started to struggle scaling up their facilities for huge crowds of users

when the Internet stepped into its late stages of adoption. At a certain point, such networks

became subject to scalability constraints and problematic maintenance of numerous protocols

within purpose-built networking devices, that have to be configured one by one, requiring

physical presence at the site. Enterprises networks started organizing into logically separated

networks within their facilities given by the Infrastructure Provider (InPs). Meanwhile,

Service Providers (SPs) were aggregating resources from multiple InPs and offering end-to-

end services. For the rapidly developing IT-market, there appeared a need to share physical

resources in an efficient manner while ensuring isolation. This was the reasoning invention

of virtualization, hypervisors and containerization systems. Additionally, the aforementioned

issues with legacy networks lead in a part to the appearance of network softwarization and

virtualization, which aimed at breaking the chains of fixed-role network architectures and

allow more flexibility in network design.



2 Overview

In general, virtualization is used to transform available hardware into a software envi-

ronment. It first appeared to serve the purpose of shared computer resources among a large

group of users and brought multiple advantages since then to the computer science domain.

Virtualization has an important role in cloud computing technologies. Virtualization is a

kind of abstraction to make software object or resource to behave and look like a hardware-

implemented one, but with significant advantages in flexibility, cost, efficiency, scalability

and wide range of applications and general capabilities. With the advent of virtualization

technologies and subsequent discovery of their advantages, Internet research and industries

have ventured to study and experiment with virtualizing every component of a computing

system – from the computers as a whole (Virtual Machine, VM) to its individual subsystems

(storage, networking, and so on).

A virtual machine is a software imitation of a computer system with its imitated hardware

(processor memory, hard disk, etc.), which is based on another operating system built upon a

hardware entity. One could think of it as a kind of a software duplicate of a real machine

[1]. Virtual machines are not aware of the underlying system where they are deployed,

and they can only use as much physical resources as dedicated by the underlying host

operating system, which ensures isolation of resources and prevents any interference of

co-hosted VMs and native system. The functionality of VMs is equal to the functionality of

its operating system. It can implement certain applications, functions or services, and act as a

programming emulator or simulator. Cloud providers are direct beneficiaries of virtualization,

as they deliver hosted applications and services over the Internet. Such applications and

services can be accessed from across the globe thanks to the cooperation of virtualization

and networking. Virtualization also helps cloud service providers in achieving isolation and

resource multiplexing.

Network virtualization combines resources of physical servers and networks into software

networks between virtual machines. These software networks share the same underlying

physical infrastructure and become an efficient tool for new application deployment, accessi-

bility, and scalability of resources and services deployed in such virtual environments, as

well as automation and energy saving. Networking functions and networking equipment can

be softwarized as well. Network function virtualization (NFV) and software switches took

the functionality of physical devices and now enable Internet traffic processing by software

programs in order to accelerate deployment of network services and cope with demanding

and rapidly changing needs from network users and administrators. Network under virtual-
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ization becomes a sophisticated system where high-level applications are deployed inside

virtualized operating systems (VMs), which can be organized into a virtual network with

software switches and software network functions. All these virtual components are based

on a host operating system (hypervisors and cloud management systems like OpenStack

[2]), that handles this virtual domain plus the whole operation of a hardware server, which

is only a single node in a typically large network alongside with other servers and network

equipment. This is what a typical data center would look like nowadays.

In the quest of searching for simple and flexible network administration, the concept

of Software-Defined Networking attracted the attention of the Internet and cloud actors.

Software-Defined Networking (SDN) is a paradigm of decoupling network control and

management from traffic forwarding. In a network that is implemented using the SDN

paradigm, an administrator can now issue network administration and configuration from a

centralized controller, which has access to all network devices. Compared to the traditional,

individual administration approach, the required device configurations are applied, necessary

policies are set, the forwarding rules are issued in a more transparent, efficient and less

time-consuming manner. In such a way, administration operations are communicated to the

devices not directly but using an application programming interface (API), such as OpenFlow

[3] and Cisco OpFlex [4], which provides better visibility, efficiency, and flexibility to the

network management.

Virtualization, SDN, and clouds are uniting towards the goal of IT softwarization, which

relies on software programs to satisfy the demands of network services. The interoperation

of such solutions inevitably leads to increasing the overall complexity of the entire system.

On the other hand, the complexity of such a system is justified by the level of technological

progress achieved and the profit obtained.

This thesis will present our findings as to how to ensure proper monitoring of one of the

crucial components of this united system: the network subsystem.

1.2 Software network monitoring

Almost any kind of a sizeable business nowadays makes an extensive use of networking

technologies. Running such a business is often associated with ensuring the integrity and

security of the commercial data, as well as guaranteeing timely delivery of the product. If
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we apply this observation to an Internet services-related business, the product becomes the

service itself. In such a case it becomes crucial to have extended visibility into the operation

of the internal network, as this is what defines the client agreement compliance (Service

Level Agreement, SLA) and other important business goals.

Depending on the size and complexity of the network, achieving such visibility can be-

come difficult already due to the amount of incoming information. When we start considering

softwarization and virtualization in the networks, management, and monitoring gain a whole

new dimension of complexity. As a brief example, let us consider a virtual network client and

the way its network traffic can make before reaching the destination: after being issued from

its network socket, traffic will have to traverse software network equipment (e.g., a software

switch on the host operating system), then exit virtual networking interface, entering physical

equipment and interfaces, isolated by means of VXLAN (virtual extensible local access

network) tunneling, leaving the local network and travel throughout the physical network –

which can make use of NFV and, therefore, involve other virtualized segments. Our virtual

client’s traffic monitoring now includes monitoring of virtual network (equipment and traffic)

and virtual hosts, plus the monitoring of the aforementioned software and hardware parts of

the virtualization platform, which will include monitoring of the underlying network as well.

With the increasing use of virtualization, the number of measurement endpoints can grow

quickly.

Monitoring the virtualization platform is vital for providers to assure a decent level of

services, yet it is complex and challenging, as now it includes both monitoring the software

component (that enables virtualization), and physical component where it is deployed. Two-

fold amount of problems has to be detected and handled: software faults may be results of

improper configurations just as well as hardware issues, or an insufficient amount of system

resources can lead to obscured failures of virtualization (and not only) applications. Great

effort has to be devoted to monitoring, observing all aspects of the virtual environment,

preventing, detecting, localizing and resolving problems. Aiming to propose the best moni-

toring tools, the state-of-the-art solutions for network monitoring often contain investigations

of the amount of resources they consume (network- and/or systems-wise) [5], [6], [7], [8],

[9]. Even though it seems difficult to monitor an infrastructure seamlessly and without a

trace, modern research continues to excel at minimizing monitoring overheads. Researches

consider different kinds of the effect of their monitoring frameworks within an evaluation

setup (delay-. report-, bandwidth-, memory-wise, etc.). Yet, the evaluation phase may not
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reveal all pitfalls of such effects. To obtain a full picture, the monitoring tool would have

to be checked in operation with all its possible configurations within all possible setups.

It is problematic to anticipate under which setup (number of VMs, amount of traffic, the

criticality of application SLAs) the tool will be used. Also, it may be quite challenging to

perform tests within all the configuration scenarios. Nonetheless, it would be beneficial for

end-user, DevOps and network/system administrators to obtain a general idea of monitoring

tool behaviour in the setup with respect to its parameters, its application, virtual network

components operation (VMs, their application performance, software switch), and hardware

components (server and network performance). Throughout the state-of-the-art multiple

proposals of monitoring techniques and methods exist, that we have reviewed in Chapter

2. Yet, there was no explicit exploration of the scope of the footprint of monitoring tool

parameters at work in the virtual network setup.

1.3 Problem statement

Driven by the aforementioned two-fold kind of problems and shortage of its study, we have

ventured to shed more light on the monitoring processes in virtual networks and their effect

onto operation of the virtual network themselves, as well as their physical hardware – in

terms of system resource consumption. More specifically, the main question is whether

and to which extent certain monitoring solutions, that run over a virtual network, affect the

performance in terms of system and, in its turn, network resources.

Unfortunately, so far there exists no universal all-purpose monitoring framework, that

could be applied to all virtualization platforms (or, at least, a broad range of them), while

comprising traditional and virtual networks, devices and applications, and covering all kinds

of needs for users and operators at the same time. That is why numerous monitoring solutions

are developed for specific needs of certain platforms, often poorly applicable in different

setups: some works are developed for use with the most popular platforms, however, their

claim to be cross-platform compatible and deployable is rarely performed and verified, e.g.,

[10]. Such a shortage of cross-platform monitoring tools makes it difficult for cloud providers

and users to efficiently manage their monitoring tasks for virtualized networks. Having a

better insight on the effect of monitoring onto physical resources of the hosting hardware has
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the potential to help them better estimate and adapt the existing monitoring tools for their

specific needs.

Understanding the monitoring footprint in this scenario helps to achieve more efficient

resource management, thus improving reliability and decreasing operational costs of the

system. By knowing the nature and extent of the correlation between monitoring and the

monitored system in a virtualized environment, one could gain an opportunity to better

control the monitoring effects and overhead and take measures towards its minimization. We

aim to achieve this goal in the presented thesis.

Studying the effects and overhead of monitoring benefits all the network actors. Operators,

providers, and administrators could understand better the monitoring tool capabilities, and

thus be able to better profit from the advantages the tool is able to provide – while also

being aware of its weak sides. Possessing such information can help to anticipate resource

consumption, advancing capacity planning, obtaining facilitated network management, and

delivering better service for the end-user. From a user/tenant point of view, being aware

of monitoring footprint can help to maintain their applications, machines, and networks,

analyzing the nature of problems, whether they appear due to their action or to those inherent

to the service itself.

On the way to revealing how system resources are shared among monitoring and virtual

network, both implemented within the same hardware, we follow an experimental approach.

We install an experimental testbed representing the study object: the virtual network exposed

to the traffic monitoring, all deployed on top of the hardware server.

For the purpose of our study we chose monitoring tools widely used in both virtual

networks and traditional networks, supported in virtualized and hardware networking envi-

ronments:

• sFlow [11] – a packet-level monitoring tool for high-speed switched networks. It

is implemented in Open vSwitch and provides monitoring by sampling the ongoing

traffic and composing the statistics at remote node. More details in Section 2.3.2;

• IPFIX [12] – a monitoring framework for flow-level information collection. In virtual

environment is implemented in Open vSwitch as well. More details in Section 2.3.2.

Depending on the monitoring needs and network setup, these tools are able to provide

monitoring for traffic between virtual nodes as well as physical nodes. These monitoring
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tools were initially developed for hardware switches and routers to monitor traffic at the

packet and flow level. They enable monitoring for high speed switched networks and fulfill

well the required monitoring objectives (network performance, billing, troubleshooting, and

others). With the appearance of a software switch, such tools and their functionalities started

to be used in virtual networking equipment.

Additionally, the functionality of sFlow and IPFIX, namely sampling, allows to control

the amount of measurements to be performed. Sampling can greatly reduce the cost of

measurement in terms of secondary produced data, networking resources for its transporting

and datacenter facilities for its storage. It is useful especially depending on the size of

the datacenter network and number of cloud tenants and their traffic. As an example,

Facebook continuously monitors its data centers servers at a rate of 1 out of 30,000 packets

with a tool akin to sFlow [13]. Such rates of monitoring may not be suitable for smaller

networking player. Thus the necessity to calibrate the measurement arises and brings

additional challenges to network monitoring.

The ability of these tools to serve numerous monitoring objectives and to perform multiple

monitoring functions, as well as their integration in the mostly used virtual switch, motivated

the research work in this thesis.

1.3.1 Contributions

This thesis tackles the issue of system resource consumption of virtual network monitoring

and proposes a solution to tune monitoring parameters so as to control its interference with

application traffic. Our contributions are listed below:

• We provide an overview of virtual networking and describe the state-of-the-art solutions

for monitoring of various aspects of virtual networks: from infrastructure-level to

network performance monitoring in clouds and SDN-based environments;

• We explore the system resources consumption of typical monitoring processes run in

virtual switches in terms of network-related and server-related resources;

• We demonstrate the existence of a negative correlation between the monitoring tasks

and the operational traffic in the network under flow- and packet-level monitoring;
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• We analyze this effect with regard to system resource usage and show that such an

effect is not caused by a lack of server resources;

• We provide an overview of scientific works, proposing to leverage machine learning

algorithms for benefits in the area of networking and its monitoring;

• In order to minimize the overhead of virtual network monitoring, we propose a solution

based on Machine Learning to (i) identify a potential drop in throughput due to traffic

measurement and (ii) automatically tune monitoring parameters so as to limit the

measurement and traffic interference in the virtual environment.

1.4 Thesis Outline

In this Chapter 1 we described the notion of network softwarization and the need for its

monitoring. We revealed the rationale behind our work in this domain and explained how

important and challenging monitoring becomes in the scope of virtual networks, especially

with relation to resource management. We briefly summarized the issues that we consider

in this thesis and listed our main contributions. The rest of this manuscript is structured as

follows:

In Chapter 2 we explore network measurements performed in a virtualized environment

and what virtual network represents by itself. We briefly present different virtualization

solutions and platforms. We explore the peculiarities of network measurement in virtual

networks, clouds, and SDN. We provide a categorized list of the existing contributions of

the research community in these areas. Furthermore, we discuss how machine learning

techniques rush into virtual networking and networking measurement.

In Chapter 3 we first describe our experimental testbed, next we present the results of our

experimentation with two measurement tools deployed into virtual network and the effect of

virtual network measurement process on system resources.

In Chapter 4 following our discovery of measurement interference with a virtual network,

we head towards avoidance of such interference by means of machine learning. In this

chapter, we first describe how we collect a dataset of measurements to use it further to

build machine learning models and then obtain a solution that can propose such monitoring

parameters to control the level of measurement footprint in the network.
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Chapter 2

Monitoring Virtualized Networks:
State-of-the-art

2.1 Generalities on network virtualization and monitoring

2.1.1 System virtualization

The idea of system virtualization (in its modern interpretation) is to share hardware resources

of a computer (which is called ”a host“) among multiple securely isolated operating systems

(called ”guests“), by so establishing a pool of independent ”virtual“ computers within just

one physical computing system instance. The advantages are plentiful:

• expenditures reduced: virtualization allows to exploit resources of hardware server to

the full in a dynamic and efficient manner. For datacenter it means purchasing fewer

servers and reducing their energy costs;

• better resource utilization: virtualization provides a natural way of co-locating multiple

processing services, which greatly improves utilization ”density“ of the computing

resources while maintaining their isolation and scalability;

• thin provisioning: virtualized components can be deployed at will on the host sys-

tems, in reasonably little time. Such a property improves the resource utilization

efficiency of the host hardware, allowing to dynamically dimension the number of

virtual components according to their current demand.
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System virtualization can be achieved in different ways. Nowadays, two main families of

virtualization technologies can be identified: hardware virtualization, and operating system

(OS)-level virtualization.

Hardware virtualization is implemented in the form of hypervisors. The first mentioning

of hypervisor was in [1]. It was called a virtual machine monitor (VMM) and was defined as

a piece of software, having three main characteristics:

1. ”the VMM provides an environment for programs which is essentially identical with

the original machine;

2. programs running in this environment show at worst only minor decreases in speed;

3. the VMM is in complete control of system resources“.

Nowadays different virtualization players propose their own definition of the hypervisor.

The authors of [14] considered several definitions of hypervisors and propose to define a

hypervisor as: ”a thin software layer that provides an abstraction of hardware to the operating

system by allowing multiple operating systems or multiple instances of the same operating

system, termed as guests, to run on a host computer“. A considerable number of successful

hypervisors are available today, and their differences are significant enough so as keep them

in quite different niches:

• KVM/QEMU [15]. KVM/QEMU stands for the kernel-based virtual machine – open-

source virtualization platform, which allows Linux kernel to perform functions of a

hypervisor.

• VMware (VMware vSphere) [16]. VMware is a commercial virtualization project,

which offers bare-metal virtualization and hosted virtualization. Desktop hypervisor

software runs over Microsoft Windows, Linux, and macOS, whereas hypervisors for

servers do not require an underlying operating system.

• Xen Project [17]. Xen is an open-source hypervisor. Except for hardware virtualization

(XenServer/XCP[18]), it is mostly known for its paravirtualization mode, meaning that

multiple operating systems can be executed on the same hardware at the same time.
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• Hyper-V [19]. Hyper-V is a Microsoft hypervisor. It runs over Windows-based

operating systems and has different architectural principles than those which derive

from Linux.

• PowerVM [20]. PowerVM is an IBM server virtualization product. Commercial

solutions provide numerous virtualization features regarding resource management,

aggregation, migration, real-time information about virtualized workloads and many

more.

• Vx32 [21]. Vx32 is a user-level sandbox for code execution. Vx32 runs on several

popular operating systems, does not require kernel extensions or special privileges.

OS-level virtualization is a paradigm that implies the deployment of multiple isolated

processes that can perform various functions within an operating system. One of its examples

is containerization.

Container-based virtualization can be considered as a lightweight version of hypervisor

virtualization: it performs isolation of the processes inside the operating systems – as opposed

to the isolation of the entire OS in the hardware virtualization. A container in its simple form

is a mere process with a restricted filesystem exposure, running in the host OS user space.

The implementation of the mentioned filesystem exposure restriction is important, as it, in

fact, implements the basic isolation. For instance, by presenting an ordinary directory as a

root point to the container, programs that run within it would falsely consider having access

to the entire filesystem. In comparison to usual filesystem permission, such a mechanism

gives an opportunity to implement more extensive isolation of a process, while giving the

contained programs full freedom to access their fictitious filesystem with no impact outside

of it. While modern containers rely on more advanced mechanisms than the one presented

above, root directory changing has been used quite extensively for smaller tasks (often within

applications themselves) in UNIX-like systems since almost the inception of the UNIX,

under the names of “chroot” and “jails”.

Being a process in the host user space, the container’s internal activity is competing for

resources in the same way as other non-container processes. Being a process also gives

containers the access level to the specific host hardware as for the host OS. These two

properties free the containers from a need for a per-container guest operating system (and

hence hypervisors), as well as from specific hardware pass-through mechanisms that often
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pose a significant architectural challenge in hypervisors (for example, VirtualBox having

limited support for graphical processing units). One of the main disadvantages of such an

approach is that resource allocation and reservation becomes less trivial than for hypervisors,

though technically possible to a certain extent. The lack of a guest OS environment to serve

specific system calls to the containers also requires them to be compatible with the host

OS: it is, therefore, not normally possible to host, for example, Linux-based containers in

Windows host environment.

Nowadays, containerization is represented largely by the following utilities and softwares:

Docker [22], LXC [23] , OpenVZ [24], chroot, FreeBSD Jails [25].

The goal of hypervisors and containerization remains the same, however, the underlying

implementation differs, thus affecting different features from performance to the overhead of

the platform. The comparison of hypervisors, their strength and weaknesses are explored in

several works, e.g.:

• performance comparison of container-based and hypervisor virtualization: KVM, LXC,

Docker and OSv [26];

• performance analysis of four virtualization platforms: Hyper-V, KVM, vSphere and

XEN with regard to CPU, memory, disk and network resources [27].

Many cloud computing software solutions are developed on the basis of hypervisors -

Apache CloudStack [28] (for creating, managing and deploying cloud infrastructure services),

OpenStack [2] (for virtualization of servers and other resources for customer use), RHV [29]

and oVirt [30] virtualization management platform.

2.1.2 Network virtualization

Network virtualization works as an abstraction that hides complex underlying network re-

sources, enables resource isolation and encourages resource sharing for multiple network and

application services [31]. This is usually achieved by virtualizing active network equipment

so that their resources could be shared between multiple isolated overlays. This way of

operating the network provides many benefits, such as portability, flexibility, and scalability –

when compared to traditional, physical network environments. A typical virtual network
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architecture is presented in Fig. 2.1. As presented in Fig. 2.1, physical servers intercon-

nected by means of traditional networking devices organize a traditional network. Each of

those servers by means of virtualization can be virtualized into several virtual machines

interconnected by the virtual switch, uniting into virtual networks among available hardware

servers.

Virtual Network 2
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Fig. 2.1 Virtual network: physical and virtual view.

One of the most prominent examples of such performance optimization is the issue of

network throughput in virtualized network devices. Traditionally, virtualization and sharing

of extension host devices (such as ones attached via PCI) between different VMs had to be

implemented by means of the hypervisors themselves. This entailed compatibility and support

difficulties, as well as (often) a decrease in the performance of those devices when accessed

from a VM. Such an issue was especially problematic for virtualized network devices because

their cornerstone component – Network Interface Cards (NICs) – are typically implemented

as PCI/PCIe extension cards, and hypervisors were not always capable of providing their

VMs with a line-rate NIC performance at high data rates. A substantial improvement in
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this regard has been achieved by the introduction of Single-Root Input/Output Virtualization

(SR-IOV).

Within SR-IOV specification, a PCIe device itself supports isolation of its resources

for direct VM access, in a form of physical and virtual functions. A physical function

(PF) presents itself as a full-featured PCIe device, supporting input/output as well as device

configuration. Within a physical function, virtual functions (VF) can be defined, which

provide virtualized devices supporting input/output only within their parent physical function

configuration. When VMs perform I/O operations within these functions (that appear as

PCIe devices), hypervisors move the data to and from the physical PCIe hardware directly,

bypassing their own internal network abstractions (whenever such functionality is supported,

of course). Such a standard specification with a resource sharing and isolation in mind has

greatly promoted high-bandwidth I/O for network virtualization.

An important example of network virtualization (which is also heavily used in this

thesis) is a software switch - an application to perform packet forwarding and other switch

capabilities between virtual NICs (vNIC, that can be attached to VMs) and physical NICs

of physical equipment. The most famous player in the domain is Open vSwitch [32],

nevertheless, there are other non-hardware implementations of switches, e.g., snabb [33],

BESS [34], PISCES [35], FastClick [36], Fr.io VPP [37], netmap VALE [38].

Open vSwitch was created as a simple flow based switch with a central controller and was

released in 2009. It is a multilayer virtual switch implemented in software. It operates like a

physical switch, e.g., OvS handles information about connected devices with MAC addresses,

instances tap interfaces are connected to OvS bridge ports. It uses overlay (GRE/VXLAN)

networking providing multi-tenancy in cloud environments.

Due to OvS architectural principles, switching is performed in the kernel module, the

equivalent of the fast-path of physical switches/routers. Indeed, the kernel can directly copy

frames from one interface to another without any context switching, which is the fastest

option in an off-the-shelf computer 1. However, such an operation is not possible for every

packet but only for those for which an entry exists in the associate array used by the kernel

mode [39]. Other packets, typically the first packet of any new connection must be handled

by ovs-switchd, which is executed in user space (hence slower, as some context switching

will occur while processing this packet). Ovs-switchd will perform a set of hash lookups in

1note that OvS supports some kernel by-pass techniques like DPDK, which is out of the scope of this thesis.
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its rule tables to find the rule matching the packet. The rule will next be installed in the kernel

module path to speed up the processing of the next packets form the connection. Fig.2.2

vividly demonstrates the packet handling in OvS in kernel and user spaces.

With virtualization, a VM (or a container) has its own TCP/IP stack and virtual interface

that is connected to a physical interface of the server. This complexity affects performance,

especially for servers with high bandwidth requirements. This is typically the case of NVF

[40] in the data centers of the telco ISPs, which are in general close to the mobile base stations.

While telcos want to benefit from the flexibility of virtualization, by virtualizing some of

their network operations into so-called VNFs, they do not want to sacrifice performance. For

these cases, hypervisor bypass solutions like DPDK have been invented [41, 42]. In such

cases, a direct link is established between the user space in the VM and controller of the

physical interface. This enables to achieve high performance, at the expense of a loss in

terms of flexibility as these DPDK-enabled VNFs cannot be easily migrated from one server

to another.

This type of solution is also offered in public/private clouds for users/applications with

specific network requirements. In this thesis, we do not consider these niche cases but focus

on the mainline case where the network traffic of the VM will be handled by the hypervisor.

Fig. 2.2 OvS data path2

2Source of the figure https://blog.sflow.com/2015/01/open-vswitch-performance-monitoring.html



18 Monitoring Virtualized Networks: State-of-the-art

The comparison and evaluation of 6 state-of-the-art software switches were conducted in

[43]. The authors proposed a benchmarking methodology for understanding the switches’

performance baseline. A methodology implies 4 test scenarios to evaluate the performance

of software switches. In this work OvS-DPDK, snabb, BESS, FastClick VPP and netmap

VALE switches were compared and evaluated. The results of such comparison did not bring

striking insights: no single switch prevails others. The performance depends on the switch

implementation and investigated scenario, e.g., BESS prevails over others in the scenario

where packets are forwarded from physical NIC to VNF, whereas snabb wins in the scenario

of VNF to VNF. Performance characteristics of virtual switching were also described in [44]

and performance modeling in [45].

2.1.3 Monitoring the virtual network

The complexity and blend of software and hardware in data centers raise the difficulty to

monitor and debug performance issues in a virtualized environment. A computer network is

a complex system, and a failure of a single component can impact the system as a whole and

network users’ experience: from incorrect network configurations or virtual machine settings

to underlying servers and network devices problems. Monitoring the network health can help

to identify such issues, and so to troubleshoot network appropriately in case of failures.

Generally, monitoring can be defined as a process of data collection and processing. More

specifically, monitoring in the domain of networking implies several subprocesses [46]:

1. Data collection: there exist two ways of data collection: passive and active. The active

measurement simulates users behaviour by injecting test traffic into the network for

monitoring purposes (e.g., SDN rule checking [47]), whereas passive measurement

implies observation of ongoing users traffic (e.g., sampling techniques) and its analysis

over some period of time. Data collection does not exclude a combination of both.

Detailed analysis of the pros and cons of these two methods is presented in section 2.5.

2. Data preprocessing: previously collected data is prepared for further stages (itemizing,

labeling, packaging, etc.)

3. Data transmission: prepared data is being sent to the analysis entity.
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4. Data analysis: analysis phase, when received data is investigated and all kinds of

statistics are built.

5. Data presentation: the results of data analysis are presented or visualized for further

perception, providing a view on the network.

Apart from trivial assistance in network debugging, monitoring becomes a crucial process

for service providers. In such a case, it serves several more complex objectives:

1. Quality of service delivery: there exists a certain level of services, that are delivered to

a customer by the provider, which is specified in the Service Level Agreement (SLA).

SLA obliges the provider to monitor and keep services parameters to a required level

and assure proper operation of the services, that customers pay for.

2. Billing and accounting: network monitoring allows to collect necessary statistics of

computer resources and services usage, as in the cloud computing paradigm pay-for-

use, when a customer pays to a provider in accordance with the amount of utilized

system resources.

3. Efficient resource usage: monitoring of system resources (memory, CPU cycles, I/O,

etc.) helps to anticipate failures due to resource limitations.

4. Performance monitoring: monitoring of network performance implies collecting

network-related metrics, such as bandwidth, throughput, latency, jitter, etc.

5. Security/privacy assurance: constant monitoring helps to detect numerous kinds of

security attacks (intrusion, DDoS).

6. Fault management/troubleshooting: it is important to keep track of network state during

its operation. Constant network monitoring helps to detect, diagnose, and prevent

network faults/frauds, which in turn assures decent service delivery to customers.

The monitoring of a virtual network implies the same stages, however considering

the architectural principles of clouds, SDN and virtual networks, it includes monitoring

of underlying physical components (hardware servers and network) and the platform that

enables virtualization, and monitoring of virtual components themselves (virtual hosts, virtual

network, applications health).
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2.2 Monitoring in the cloud-based environment

Being the basis for the virtual infrastructure, the underlying physical network is, perhaps,

the most important component in a virtual network. It is not uncommon to “overbook”

the physical resources for virtual overlays, so a single physical failure (such as network

connectivity issue, lack of server resources) may quickly translate into a massive outage

in a virtual domain. To overcome such issues multiple resource allocation algorithms and

VM migration techniques were proposed [48], [49], [50], [51], [52]. It is also worth noting

that virtual networks are supposed to be isolated from their physical substrate by means of

hypervisors. This gives one an opportunity to create such a monitoring scheme that would

help to identify the exact failure domain and, by so narrow down the problem scope for faster

issue resolution.

However, as it has been noted in the previous section, modern networks are not only

composed of physical devices but also of a wide range of virtual network functions deployed

on top of computing platforms – for instance, virtual switches, load balancers, firewalls,

application gateways and so on.

Literature specifies at least three classes of performance problems of these virtual platform

elements [53]: (i) miss-allocation of resources for element placement and functioning, (ii)

contention for resources between elements, and (iii) implementation bugs. PerfSight aims

at diagnosing such problems [53]. PerfSight tries to identify the location and reveal the

nature of performance degradation in the virtual domain. PerfSight relies on a controller, that

manages agents and diagnostic applications, analyzing collected data on the way to retrieve

the root cause of the observed problem. A collecting agent running at each server collects

the necessary data (packet counter, byte counter, I/O time) of a certain network component

(all VMs placed on the server, only VMs of a single tenant). The obtained statistic is enough

to pinpoint the problematic element according to authors. The diagnosis is based on a rule

book, which is constructed offline and aids to map the symptom to a resource contention

or bottleneck problem, i.e., packet drop location (tunnel between virtual switch and vNIC,

server NIC driver, etc.) has a match to a certain resource in shortage (CPU, memory space,

incoming bandwidth, VM CPU, etc.). The overhead of such metric collection and analysis is

studied.

It is evident that virtualized network functions neighboring in the same physical server

compete for its resources. Interestingly, different VNFs behave (in terms of resource con-
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sumption) in a different manner when placed together. In [54] the authors provided insights

on how various types of VNFs, co-located in the same server, tolerate each other and what

degree of server resource degradation can be expected from such neighbourship. The authors

also give some recommendations on VNF placement for efficient resource usage.

NFV networks – networks that are composed of virtual network functions and physical

devices, require different measurement solutions than traditional networks as state the

authors of [55]. They also propose their solution for such networks: a measurement system,

which enables passive and active measurements in Linux containers, called Virtual Network

Measurement Function.

2.2.1 Cloud infrastructure monitoring

Even if the physical substrate health is assured, problems may appear from the virtualization

enabler, such as hypervisors and cloud management stacks. Solutions offering cloud or

virtualization deployment are complex systems with distributed architecture, that tend to

incur faults related to operation or performance, provisioning compute and storage workloads,

incorrect component configuration, third party dependencies, API latencies, etc. That is why

some research work has focused on monitoring the health of the cloud infrastructure aspect,

which refers to hardware and software components that support cloud services [56], [57, 58],

[59]. As an example, OpenStack is a popular and convenient framework to develop cloud

on-premises. It has modular architecture - different interrelated components support certain

functions of the cloud: Nova - cloud computing controller, Neutron assures networking

management, Cinder - storage system, Swift - object storage system, Horizon - provides a

dashboard for platform administration, etc. Platform users can manage their cloud through

graphical interface (dashboard), command-line or RESTful web-services. Hansel and Gretel

[57, 58] focus on troubleshooting the infrastructure of OpenStack and leverage the REST

calls exchanged between the OpenStack modules to reveal components failures. Hansel [57]

focuses on fault detection, whereas Gretel [58] performs fault diagnosis by constructing a

precise sequence of messages exchanged between system nodes corresponding to a task or

operation (operational fingerprint). A data-driven approach is followed by these tools to

pinpoint the origin of system errors. In terms of system overhead Hansel is using 100MB of

memory and 4.5% CPU, and its enhanced version Gretel uses 123 MB memory and 4.26%

CPU on typical modern servers, which can be considered fairly small footprint.
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CloudSight [59] is a cloud infrastructure monitoring framework revealing the state

of cloud resources to tenants to increase the visibility of tenants’ problems, caused by

underlying cloud resource abstraction. The tool logs the states of cloud components, keeps

the resources change history, generates resource graphs containing information regarding

resources involved in tenant’s instances operation, which is available for interpretation for

cloud tenant. CloudSight is supposed to run on top of any cloud platform and was prototyped

and evaluated in OpenStack.

CloudHealth [60] offers a model-based monitoring approach for configuration, deploy-

ment, and operation of monitoring infrastructure in the cloud. CloudHealth is designed for

cloud operators. Monitoring objectives are translated into the necessary set of metrics in

accordance with two ISO standards (ISO/IEC 25010:2011 and ISO/IEC TS 25011:2017),

which provide specifications of quality models for IT services quality evaluation. As an

example, responsiveness – a level at which the service promptly and timely responds to

requests and provides the required functionality, – can be understood by paying attention to

waiting time to accept requests and waiting time to receive a response.

2.2.2 Network monitoring in cloud

Network performance diagnostic in the cloud is a hot topic and over past years numerous

solutions emerged: for cloud operators use or for tenants control, platform-specific or of

general application, etc. Resource sharing in the cloud may lead to performance problems,

which can be the result of either problem in providers’ infrastructure or the tenants’ VMs.

RINC (Real-time Interference-based Network diagnosis in the Cloud) [9] is a framework for

diagnosing the performance problems in the cloud for cloud operators. It provides monitoring

of tenants’ connections within the cloud, leveraging the idea of multiple phase measurement.

The main idea of multiple phase measurement implies collecting light-weight data to detect

problematic connections and heavier-weight to discover root-causes of troubling connections,

e.g., harvest simple statistics (e.g., throughput) to detect problematic connections, then on

such connections enable deeper-level measurement (congestion window, maximum segment

size, round-trip time, etc.) for the purpose of root-cause analysis. RINC measurement agent

runs in the hypervisor and relies on TCP statistics (SYN, FIN, CWND, sstresh, sending

rate, throughput, packet, and byte counters) by inspecting packets passing through the

hypervisor (implementing active measurement approach and sampling for certain cases is
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also considered). The measurement agent communicates with a global coordinator module,

which aggregates data received from the agents. The global coordinator module also provides

an interface between the cloud operator and the monitoring framework. Using this module

the cloud operator specifies the statistics needed to be collected. The cloud operator can

employ the query interface provided by RINC to write diagnosis applications. Examples

of diagnosis applications include detecting long-lived connections, heavy hitters and super

spreaders, root cause analysis of slow connections. In terms of overheads, the worst case

(querying all the connections) memory consumption is 3.5MB and 0.01% of networking

overhead. The CPU overhead is considered with respect to the number of concurrent flows:

0-10000 flows lead to a CPU consumption in the range 0-27 %, and a network footprint (to

convey measurement metrics) of 0-10 Mbps corresponding to 0-2% of the CPU consumed.

Virtual network diagnosis as a service (VND) [61] is also a query-based virtual network

diagnosis framework. However, in contrast to RINC, it provides network troubleshooting

tool for cloud tenants and their virtual network. It is composed of a control server, which

translates tenants’ queries into diagnosis policy, and several servers that collect network

traces, perform data parsing and storing. It provides troubleshooting by collecting flow traces,

mirroring the problematic flows and extracting traffic metrics (RTT, throughput, delays, etc.)

to identify network related issues, such as packet loss, high delay, network congestion, heavy

heaters, etc. Due to the trace collection method used, i.e., traffic mirroring, the overhead in

terms of memory throughput is 59MB/s for every 1 Gbps of traffic, plus storage required to

keep SQL-database. Even though VND can help to reveal certain networking problems using

queries on data from packet headers, sender or receiver side problems remain undetected [9].

A platform-independent monitoring framework for cloud service instantiations is Cloud-

View [8]. It allows cloud tenants to perform active and passive measurements between

virtual nodes after their instantiation, utilizing arbitrary measurement tools according to

their needs. Third-party measurement tools can be integrated into CloudView and provide

tool-agnostic flexibility to pick a tool for a particular metric and particular measurement task.

The authors also integrated CloudView in OpenStack and evaluated it on two different cloud

infrastructures. Two main components are sensor pod (the framework which hosts measure-

ment sensors, e.g., ping, pathChirp, tulip, etc.) and the information manager (application for

user interaction with platform). They observed that sensor components play a major role in

monitoring resource consumption: overhead of 0.5 % of CPU and memory beyond the raw

invocation of the sensors.
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Dapper [62] is a TCP-related performance diagnostic tool for the cloud implemented

based on the P4 programming language for packet processing. It distinguishes performance

problems according to their location: sender side, network side or receiver side. Slow

application data generation due to resource constraints, and long application reaction time

are sender-side problems; congestion, packet loss, and path latency are network-related

problems; performance degradation can also occur due to receiver limitations regarding

delayed ACKs or small receive buffer.

NetWatch [7] is another cloud performance monitoring tool suitable for both client users

and cloud providers’ needs. It provides an API interface to query measurement tasks on

demand. It has three components delivering measurement in the cloud: a controller, an agent,

and a probe (as it exploits active measurement). The controller is a communication node

between the service customer and the measurement framework. It issues control messages

for agent and probe to realize specified measurement tasks. The agent is parsing controller

instructions, executing them, managing probes creation, configuration, and deletion, and

obtaining reports on measurement results. The probe module is the software component

executing the actual network probing. NetWatch was prototyped in OpenStack. Measuring

network performance depends on the number of measurement tasks to be performed. For

example, NetWatch introduces reasonable overhead in terms of CPU - 0.7% per measurement

task and negligible influence in terms of memory and 0.01% of the bandwidth of gigabit NIC

is consumed by executing five tasks.

ConMon [5] is a network performance monitoring solution for container-based virtual

networks. In ConMon a monitoring controller resides in every physical server and communi-

cates with monitoring containers, which execute monitoring functions to monitor different

network performance metrics (packet loss, delay, jitter, path capacity). During their evalua-

tion of ConMon, the authors conducted network tests and reported accumulated CPU usage

of 100-200 % in total. The latency between two application containers expressed in RTT is

4.5 microseconds and 130 microseconds correspondingly for cases when containers reside in

the same and different servers. No packet loss or impact on background traffic was observed.
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2.3 Monitoring in SDN-based environment

In traditional networks traffic is forwarded between independent and autonomous devices.

These networking devices require individual configurations. Network operators experience

difficulties maintaining, debugging and managing various networks built upon such network-

ing equipment. Traditional networks having static, decentralized and complex architecture

do not offer the flexibility required for modern environments such as cloud networks with

multiple tenants.

The SDN paradigm aims to resolve the challenges of network devices control and man-

agement by separating the control plane (network management and configuration) from the

data plane (network traffic) of software and hardware components of networking equipment.

Decoupling the control and forwarding functions transforms the network into a programmable

environment, where all the configuration of forwarding devices is (logically) centralized

and these devices only follow the rules issued from the intelligent controller. Within such

networks the traffic passing through network devices is considered in the form of flows - a

set of packets with common properties (e.g., source, destination, protocol). Rules installed

by the controller are used at each switch to determine the operation to perform on flows.

Due to their architectural differences, monitoring in traditional networks and SDN-based

networks differs. Such a difference in monitoring legacy networks and SDN is considered in

[46]. Briefly, SDN facilitates and accelerates monitoring phases. Data collection requests

can be issued from a controller with the necessary frequency to be adjusted anytime from any

device. Whereas, adjusting collection parameters in legacy network devices (equipped with

collecting function) would require to manage the configuration of each device individually.

Furthermore, the transmission via legacy networks is done with the help of transmission

protocols, whereas SDN offers APIs and SDN protocols. With their help, the interactive

interface for further measurement operations within SDN can be deployed. Moreover, they

can offer functional measurement data representation and visualization.

2.3.1 SDN control plane monitoring

Before monitoring network anomalies in SDN, it is necessary to make sure that the system

is working consistently: the controller properly manages networking nodes and networking

nodes follow controller instructions. Different kinds of software faults (e.g., switch software
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bugs, outdated versions of switch software and OpenFlow [63]) and hardware (e.g., bit flips,

non-responding line cards) may trigger packet forwarding which does not match control plane

instructions [6]. To assure that such networking problems do not happen due to imperfect

communication between controller and network, VeriDP [6] follows a passive approach to

track control-data planes consistency, meanwhile Monocle [47] follows the active approach

for the same task. Some solutions to check SDN configuration correctness appeared earlier

[64], [65], [66], [67].

VeriDP [6] tool consists of a server and a pipeline. The pipeline deals with tagging

and reporting packet headers to controllers of different types of switches in the network:

entry, exit, and internal switches. The server is put alongside the controller and intercepts

controller communication with switches to construct a path table. Reported packets are to

be verified according to the constructed path table. If the packet fails the verification, it

means that configuration inconsistency is present and the server tries to localize the faulty

switch. The reported overhead of VeriDP is expressed in terms of processing delay of its

pipeline and native OpenFlow pipeline in hardware SDN switch. Tagging delays equal to

0.27 microseconds, and sampling delays of 0.15 microseconds are reported in [6].

Monocle [68] is another solution to verify whether the network view configured by the

controller corresponds to actual devices behaviour. Monocle is inserted as a proxy into

the network between the controller and the switches. Firstly, it inserts catching rules in

the network and then issues test packets to check the specified rules, when received at a

switch with installed catching rule, are forwarded back to Monocle, where the conclusion

on rule-behaviour correctness is made. The authors of Monocle argue that injecting packet

probes into the network does not overload switches and consumes small switch resources

space.

2.3.2 SDN data plane monitoring

SDN (Software Defined Networking) is gaining momentum in modern data centers [69].

As such, a significant amount of works has focused on measuring SDN networks, their

performance and resources management.

SDN’s intelligent centralization paradigm is not a cure-all solution. It also has its issues

and may become a bottleneck with an increasing amount of tasks in the network [70]. Such
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issues with centralized controller bottlenecks are addressed in DIFANE [71], DevoFlow [72],

software-defined counters [73], Onix [74], Kandoo [75], HyperFlow [76] and Maestro [77],

which try to reduce the measurement overhead of the control plane by sharing some tasks

with forwarding devices or trying to improve controller performance by means of buffering,

pipelining, multithreading and parallelism.

Data center exploits large scale, high speed and high utilization networks, that are com-

plex to monitor. Tremendous effort was put into developing tools that would allow network

operators to manage and troubleshoot their datacenter networks [78], [79], [80], [81], [82],

[83], [66], [84], [85]. Some works [66], [84], [61] require entire data plane snapshot and may

only be able to track specific events at coarse-grained time-scale [85]. Sampling technologies

were introduced in order to alleviate overheads of such solutions [86], [11], [87], [88], [89],

[90], [79], [91], [6], [92], [10]. Traffic sampling implies extraction of a certain portion of

traffic for the purpose of network analysis. SFlow [93] is a famous sampling-based packet

monitoring solution, that was adopted from traditional network devices and is now imple-

mented in software switch (OvS) too. Full or partial extraction of traffic in SDN-based cloud

environments is offered by TREX [94]. CeMon [10] develops three sampling algorithms

for their framework in order to eliminate measurement overhead. UMON [95] modifies the

way OvS handles SDN flow tables to decouple monitoring from traffic forwarding, hence

building specific monitoring tables. UMON has a low CPU footprint: monitoring activities

of 150 hosts takes 9.9% CPU of a core. A considerably small packet loss is present dur-

ing monitoring with UMON of 26 packets per second. Installing monitoring capabilities

at the network edge is proposed by Felix [96]. Predicates are used to answer monitoring

queries of interest. Applying declarative query languages for network measurement was first

proposed by GigaScope [97]. It allows to execute numerous tasks for network monitoring

(traffic analysis, intrusion detection, router configuration analysis, network research, network

monitoring, and performance monitoring and debugging) and since then high-level language

programming and programming itself was leveraged in a variety of approaches in the context

of SDN [98], [90], [81], [68], [99], [100], [101].

Measurement tasks are often executed on the commodity switches in SDN, which rely on

TCAM (Ternary Content-Addressable Memory) - a very efficient, however greedy in terms of

resource consumption type of memory. High energy consumption of switch memory makes

it the most expensive component of the device. It is the number one priority for TCAM to

execute networking functionality, and introducing the burden of measurement functions into
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TCAM has to be done with great care. That is why DREAM [102] proposes to dynamically

distribute the measurement tasks over several SDN switches depending on the utilization of

the flow rule table and the targeted accuracy. DREAM considers an overhead in terms of

task allocation delays, which the authors estimate to be negligible compared to other delays.

SDN-Mon [103] also sends some tasks to switches in the network to be implemented by

switches processing powers.

SDN traffic is represented by flows – a sequence of IP packets of common properties, sent

between sending and receiving nodes in the network. The term ’flow’ was firstly mentioned

in RFC 1272 [1] published in 1991 by the IETF Internet Accounting Working Group with

the aim to introduce Internet traffic accounting. In 1995 packet aggregation in flows was

formulated by [104] and first efforts towards flow monitoring were started. Meanwhile,

without a clear purpose of flow monitoring or traffic accounting, Cisco devices were handling

packets using a flow level approach: to accelerate packet switching procedure, only the first

packet of the flow was considered when selecting a forwarding decision. This fact, alongside

the need for flow monitoring, inspired the development of NetFlow technology. NetFlow is a

monitoring protocol initially proposed by Cisco System for traffic accounting inside their

networks and equipment. It, however, got widespread among networking devices of other

vendors as well. NetFlow operates by means of three components interacting with each other:

a flow exporter (which performs packet aggregation into flows and provides flow statistics to

collectors), flow collector (which receives, stores and processes statistics from flow exporter)

and analysis application (which analyses flow data for the necessary monitoring purpose and

provides human-readable reports). Later on, it was integrated into virtual environments, e.g.,

Open vSwitch.

OpenFlow being a de-facto standard for SDN networks can reveal a lot of network

information with its functionality (port statistics, flow-counters, etc.). The appearance of a

centralized controller facilitated the polling of the networking equipments and provided an

uncharted territory for the development of networking monitoring frameworks.

Numerous works have been utilizing OpenFlow to achieve different monitoring goals

[105], [106], [107], [108], [95], [10], [109]. Baatdaat [105] proposes to insert the measure-

ment into the SDN network to use it to disclose the topology-wide network utilization map.

To schedule traffic flows Baatdaat uses OpenFlow to adapt to traffic bursts and average

link load. The eventual results show reduced network-wide link optimization by up to 18%

with ECMP and improved flow completion time by 41%-95%. FlowSense [106] offers
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performance monitoring of flow-based networks using OpenFlow messages sent by switches

to the controller. It utilizes passive observation of exchanged messages thus allowing to

compute link utilization and performance changes and avoid additional overhead. PayLess

[110] is a network statistics collection framework also based on OpenFlow controllers north-

bound API. CeMon [10] is also built around OpenFlow. It is a generic SDN monitoring

system, which can be implemented alongside other SDN monitoring frameworks to achieve

lower-cost measurements, as the main CeMon implementation intent was to reduce the cost

and overhead of flow statistics fetching. OpenNetMon [109] is a flow monitoring module

working on OpenFlow controller POX. The monitoring is performed combining adaptive

polling (throughput and packet loss) and active probing (delay) in order to verify whether the

QoS parameters are met. OpenNetMon also uses adaptive rate of measurements to minimize

the overhead in the network and on the switch, while paying attention to the measurement

accuracy.

OpenWatch [111] offers anomaly detection by adjusting the granularity of collected flow

statistics: finer-grained measurement data when a network attack is suspected and coarser-

grained during normal operation. Such an approach is supposed to unload traffic measurement

when unnecessary and identify network anomalies faster when they happen. OpenWatch

overhead is considered in terms of the additional number of reports with comparison to

other approaches of flow statistic collection: no aggr - no aggregation method for IP address

counting and static aggregating with fixed mask length (whereas OpenWatch enables adaptive

aggregation of flows). No aggr method introducing the biggest overhead in terms of reports,

meanwhile OpenWatch introduces additional load up to 10% as compared to the static

approach.

In Table 2.1 we summarize considered monitoring tool. We present them in several

perspectives:

• Tool’year implies a tool’s name and year of publication.

• Monitoring object describes the domain to which a monitoring solution contributes:

SDN management (control plane monitoring), or SDN performance (data plane moni-

toring).

• Monitoring actor for which player of the virtual network the measurement solution is

proposed: SDN administrator, cloud tenant or operator.
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• Measurement approach: passive, active or none (non-applicable).

• Overhead considered: whether the authors consider the overheads of the proposed

monitoring tool in any display: network-, system-wise, etc.

• Monitoring goals is a set of monitoring tasks that a monitoring tool can serve.

2.4 SFlow and IPFIX overview

Two versions of NetFlow became popular – 5 and 9. On the basis of the latter, the IPFIX

– an open standard for flow monitoring was engineered. IPFIX [12] is also a popular

monitoring solution for virtual networks, also functioning with Open vSwitch. IPFIX

stands for "IP Flow Information eXport" and its development was driven by vendors to step

away from Cisco standards. Indeed even though NetFlow featured interesting monitoring

capabilities, additional monitoring demands appearing during network administration could

not be implemented, as the protocol is proprietary. In contrast, IPFIX as an extended version

of NetFlow v9 supports fields of variable length (e.g., HTTP hostname) and also enterprise-

defined fields. Following the idea of flow monitoring of Cisco’s NetFlow other vendors also

created their versions, such as J-Flow by Juniper [112], Cflowd by Alcatel-Lucent [113],

sFlow by HP. The latter has caught our interest as a technology nowadays supported in SDN

and virtual networks.

SFlow has emerged in 2001. Its main difference from the previously mentioned monitor-

ing solutions is that it does not perform packet aggregation into flows, but collects individual

packets.It is also different from traffic mirroring, as mirroring implies copying all the packets

towards another place in the network. SFlow uses sampling to select packets for export and

to reduce the amount of exported monitoring data. Additionally, sFlow is configurable in

terms of the amount of packet bytes to be captured. SFlow also collects port statistics and

counters, which is not the case with mirroring. SFlow has some advantages compared to flow

export technology. Indeed, flow-based tools export flow records based on active/inactive flow

timers and may take up to 30 minutes.

The appearance of network virtualization and widespread usage of flow monitoring in

traditional networks, promoted sFlow adaptation to virtual networks, especially in Open

3Source of the figure [93]
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Fig. 2.3 sFlow architecture3

vSwitch. An sFlow agent and an sFlow collector are the two components of sFlow. Fig. 2.4

portrays how sFlow works. SFlow operates in user space of OvS. It is implemented by

ovs-switchd process, see Fig. 2.5. SFlow performs monitoring using a sampling mechanism

(1 packet out of n), which in the case of traffic measurement means exporting a packet header

of every n-th packet over the network to a remote collector, which further builds statistics

on the monitored network traffic. The sFlow agent is responsible for traffic capture on the

device, where sFLow is enabled. Collected sampled packet headers and port statistics are

encapsulated into sFlow datagrams, which are forwarded to the sFlow collector for analysis.

With sFlow, no computation is made at the switch as compared to NetFlow/IPFIX, which

should limit its CPU consumption.

Sampled NetFlow overhead was studied in [114]. The authors conclude that this tool

does not incur dramatic overhead during their experimentation. However, since the overhead

is proportional to the number of flows recorded, care has to be taken, when using sampled

NetFlow for network monitoring. The overhead was considered in terms of usage of router

resource and the amount of export and experimentation was performed on an operation Cisco

router.
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Fig. 2.4 sFlow agent embedded in hardware switch3

Fig. 2.5 sFlow measurement process in virtual switch
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2.5 Virtual networks monitoring challenges

Private and public cloud providers that have to deploy networking services face numerous

challenges stemming from the combination of platforms that compose their networks. As

such, a multitude of monitoring tools exists and new tools continue to emerge to serve any

kind of problems met in virtualized environments.

Researchers have to pay attention to several important aspects when proposing a virtual

network solution:

• Preservation of abstraction: a virtual network is an abstraction of a network. Tenants

virtual networks are logically isolated and the hidden physical infrastructure has to

remain hidden, as well as the physical points of measurement for tenants’ network.

Developing their virtual network diagnosis authors of [61] emphasize this point.

• Scalability: virtual network monitoring tool is obliged to adapt to constantly changing

the size of the virtual network otherwise it will not be able to serve its purpose. Often

virtual machines are being deployed to perform shot-time jobs and once the job is done,

virtual machines are getting suspended and new machines will be created for new needs.

VMs migration is an ordinary behaviour within a virtual environment: machines are

being transferred to different servers with spare resources. Also, machines may scale

in both directions: horizontal (adding more machines into setup) and vertical (adding

more resource powers to machines). In such a dynamically scaling environment a

monitoring tool has to bear the scalability challenge, i.e., to adapt to a rapidly changing

traffic load.

• Accurate measurement providing real-time statistics: certain monitoring goals require

measurement to be done over some time, e.g., accounting and billing: necessary data

for billing will be available after resources or service were used. At the same time, other

monitoring goals demand a timeless reaction from the administrator, e.g., congestion

control, heavy heaters detection, intrusion detection, prevention of attacks, flooding,

etc.

• Proper choice of measurement point: when collecting measurement in an environment

composed of multiple components, several operating systems, interconnections of

software and hardware networking interfaces, tunneling, encapsulation, one faces the
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problem of where such measurement has to be inserted. In addition, one has to consider

the fact that several VMs from different owners may sit alongside in the same server,

thus their traffic would pass through the same virtual switch and exit the same NIC of

the server. TREX [94] offers a solution for a tenant to define measurement templates,

including measurement extraction point.

• Traffic security: when it comes to traffic measurement, the security of user data has

high priority. The packet from users’ applications may carry private information of

the user, that even if encrypted, has not to be trapped into the hands of wrong network

actors. A technique to assure data security during traffic collection is to restrict the

amount of bytes to be collected, so it does not include payload, where sensitive data

may be stored.

• Low overhead: the challenge of monitoring overhead has motivated the work described

in this thesis.Throughout the literature, when proposing a new solution of monitoring,

researchers investigate its possible overhead in terms of system resources, network

bandwidth consumption or delays inserted, etc. In network monitoring having low-cost

and high-accuracy measurement is the ideal-case scenario. The research community

struggles towards that goal and proposes more and more efficient monitoring solutions.

In our work, we chose the commonly used network monitoring tools sFlow and IPFIX,

known for their ability to provide multiple near real-time networking statistics. Their

implementation allows to overcome scalability constraints, thus they are suitable for networks

of diverse size. The measurement point is fixed for sFlow and IPFIX – it is a software switch,

which forwards traffic of interest between virtual machines.

Considering the fact that these tools were designed to reduce monitoring cost by means of

sampling, we were motivated to obtain a clearer picture on tools’ needs in form of resources

(network and server costs).

Additionally, we were driven by the fact that the footprint of virtual network monitoring

solutions was presented differently every time. Some tools provide network-related overhead

(link utilization, amount of reports, delays) [111], [6], [9]; others report system-side resource

overhead (switch TCAM, server CPU, memory) [102], [47], [95], [5], [7], [62], etc.

In this thesis we start with an investigation of the monitoring tools under consideration,

namely sFlow and IPFIX and their footprint in an experimental testbed. We noticed the
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interference of the investigated tools in our setup with dependence on their configuration,

as the amount of collected measurement could lead to degradation of virtual machines

traffic, i.e., the user traffic. Similar throughput degradation in virtual networks because of

measurement with sFlow is briefly mentioned in [115]. While proposing a network-wide

monitoring service for clouds, the authors do not investigate further the phenomenon of

sFlow impact on application traffic and only suggest to carefully choose its configuration

parameters. In our work, we try to investigate the reasoning for this phenomenon further and

propose to rely on machine learning to choose the best performing measurement parameters.

2.6 Machine learning in network measurement

Recently, various networking areas started to benefit from the usage of machine learning.

A comprehensive survey [116] presents diverse machine learning techniques in various

networking areas, including traffic classification and prediction, routing decisions, congestion

control, resource and fault management, QoS and QoE management, and network security.

Another fresh survey [117] focuses on current achievements of machine learning applied

specifically to Software Defined Networking issues. Inspired by previous success of machine

learning application in the domain of networking, we intend to use it towards the goals set in

this thesis and provide an overview of machine learning and recent contributions concerning

its usage for networking-related problems.

2.6.1 Introduction to machine learning

Machine learning (ML) is a set of methods, algorithms, and models enabling systems to

exploit data and obtain knowledge. The goal of machine learning is to find and build

hidden patterns in data, which will be further applied to analyze the unknown data. It is

based on methods of mathematical statistics, numerical analysis, mathematical optimization,

probability theory, graph theory and other techniques of digital data processing. Apart

from computer science, machine learning finds its application in numerous areas: medicine,

finance, linguistics, security and many more. The ubiquitous usage of information technology

promotes data growth in science, production, business, transport, health services. The

decision making and forecasting based on collected data become now a priority, and machine

learning offers a set of directly applicable techniques to tackle those challenges.
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There exist several types of machine learning techniques concerning the approach taken

to solve the task in hand. The most known and used ones are:

• supervised learning: building a model by learning on the data with known inputs and

desired outputs;

• unsupervised learning: building a model for data consisting only from inputs, trying to

structurize data, discover patterns, groups or clusters;

• semi-supervised learning: implies modeling with the use of both supervised and

unsupervised approaches, outputs only are available partially;

• reinforcement learning: one machine learning approach, where the system learns while

interacting with some environment and situations and reinforces model with regard to

taken decisions. Reinforcement learning may be considered as a supervised learning

sub-type, however in this case “the supervisor” is environment and model itself;

• feature learning: some learning algorithms benefit from the better representation of

the input data, e.g., which components and their correlation contribute the most to the

model. It helps also to reduce the dimensionality of data, achieve higher accuracy, and

find those features that overload the computation while being redundant or irrelevant.

As the studied phenomenon has predefined input values and experimentally obtained

output, the problem considered in this thesis relates to supervised learning. It can be further

grouped into regression and classification problems. A regression is used to operate with

a continuous value, which has its numerical value. In this work, it will be used to provide

a value of expected traffic loss under certain conditions of network and measurement. A

classification task implies categorizing the data into classes. In this work we defined two

classes, i.e., we will consider whether measurement impacts (or not) the virtual traffic.

Any ML model is built out of collected data. The collected data is divided into training,

validation and/or test parts. A training dataset consists of data and associated labels. For the

case of semi-supervised learning, a dataset can contain data with missing or incomplete labels.

Once this training dataset is passed to the ML algorithm, the latter attempts to build a model

to be further used with some new data and its identification. In the case of unsupervised

learning, the whole dataset is unlabeled and the ML models will serve to find patterns. A
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validation dataset is used to tune the parameters of the obtained model. A test dataset used to

check the obtained model performance on previously unseen data.

The division in training, validation and test datasets can be performed with holdout or

k-fold cross validation methods. With the holdout method a part of the dataset is used as

training and a part remains for validation and/or test. In k-fold method the dataset is divided

into k groups, each containing training, validation (or test) subsets. For each group, the

model will be independently trained, validated and/or tested and the resulting evaluation

scores will be calculated as an average.

To understand the performance of an ML model performance metrics may describe the

model complexity, accuracy, and reliability. In our work to gauge the performance of our

models, we will rely on the accuracy, mean absolute error (MAE), precision and recall

metrics, described in Chapter 4.

Hereby, we briefly explain the idea behind learning algorithms that were used within the

scope of our work:

1. k-Nearest Neighbour (kNN) consists of making a classification decision of a new

sample with respect to its k nearest neighbors. More details in [118].

2. Decision Tree (DT) is a learning tree technique. It consists of nodes, branches, and

leaves. Nodes represent features of the investigated data, branches are the combinations

of features referencing to classification, and leaves are class labels. The classification

of the new sample is performed by comparison of its features to nodes of the built

decision tree. Decision Trees are known for their high accuracy of classification. More

details in [119].

3. Random Forest (RF) bases its decisions on multiple decision trees, hence the name.

It randomly chooses a subset of features to build multiple trees and decision about

new sample is made considering the mode of the classes (for classification) or mean

prediction (for regression) of individual trees. More details in [120].

4. Support Vector Machine (SVM) in brief finds the decision boundary and separates the

feature space in the data. The classification is made depending on which side of this

boundary the new data sample, i.e., its set of features, will appear. More details in

[121].
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5. Naive Bayes (NB) is a probabilistic classifier based on the Bayes theorem. New

samples are classified according to the highest probabilities obtained. It can build

the probabilistic model on relatively small training data. More details in [122], [123],

[124].

2.6.2 Machine learning and networking

Recently, various networking areas started to benefit from the usage of machine learning. It

opens new research opportunities in this domain and finds its application for networking-

related problems [116]. Researches started to uncover the benefits of machine learning and

its applicability in the domain of networking: the authors of [125] express their view on the

future of network flow monitoring using machine learning methods. [116] also promotes

machine learning as an interesting research area in networking. The authors focus on

traffic engineering (traffic prediction, classification, and routing), performance optimization

(congestion control QoS/QoE correlation, resource and fault management) and network

security aspects of networking area.

Generally, DPI (Deep Packet Inspection) is often used when it comes to traffic classifica-

tion. It has high accuracy, however, it is considered costly and it becomes more difficult to

update the patterns with DPI with a constantly growing amount of applications. Additionally,

by its nature, DPI is not able to classify encrypted traffic. This is where machine learning

comes to play. ML appeared to be able to deal with encrypted traffic classification and

as an additional advantage in terms of computational cost. [126] proposes a combination

of DPI and machine learning to perform application-level classification in SDN. When a

classification is required, the ML algorithms makes its decision first. If the level of certainty

in this decision is higher than some predefined threshold, the traffic is classified as suggested.

Otherwise, the DPI attempts to classify the traffic and if it is not able to perform classification,

then the previous ML decision is applied. With this combination, method authors were able

to achieve high classification speed and maintain a decent level of accuracy. Traffic classifi-

cation with NetFlow data and machine learning is proposed by [127] and identification of

host roles with supervised learning with sFlow in [128]. Deep learning and neural networks

for the same case study are presented in [129], [130].

With the constant growth of applications in the Internet, QoS traffic characteristics may

be used to divide applications into sub-classes according to QoS requirements (delay, jitter,
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loss rate) on the way to clarify application identification. Leveraging QoS measurements for

QoE modeling is proposed in [131]. Multiple works focus on QoS prediction [132], [133], as

well as QoE prediction, e.g., a combination of DPI and semi-supervised learning is proposed

in [134].

Elephant and mice flow classification is important for efficient traffic flow optimization

in data centers. [135], [136] exploit machine learning to identify elephant flows for further

treatment within data centers.

Following this trend, anomaly detection with machine learning catches a lot of attention

recently:

• Coarse-grained intrusion detection. [137] – Hidden Markov Model (HMM) uses five

flow features to identify malicious behaviour, [138] – two phase anomaly detection and

classification with information theory, [139] – compare 4 machine learning algorithms

to predict vulnerable hosts and connections, [140] – neural network model is used to

classify traffic flows into normal and anomaly.

• Fine-grained intrusion detection. [141] – an SVM-based approach to categorize

network attacks, [142] – deep learning-based intrusion detection method.

• DDoS atacks detection: [143], supervised (k-NN, Naive Bayes) and unsupervised

algorithms (k-means, k-medoids) are used in [144]; neural networks in [145] and

[146].

• Other security-related works: application software faults in SDN [147], firewall flow

matching [148].

Anomaly detection in the cloud with machine learning is studied in [149], VNF anomaly

detection in [150]. Encrypted traffic can be monitored by machine learning and [125] antici-

pates ML as a promising perspective for future developing in the network flow monitoring

domain. [151] also recognizes the gap in Deep learning implication for computer networks

and review deep learning enablers for network traffic control systems.

Authors of [152] introduce a new paradigm called Knowledge-Defined Networking,

which relies on Software-Defined Networking (SDN), Network Analytics and Artificial

Intelligence. They study several use-cases and show the applicability and benefits of adopting
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the machine learning paradigm to the networking field, e.g., delay modeling of underlay

network with machine learning for further routing improvement in overlay network or

unsupervised machine learning applied to network logs to correlate events and logs and

extend knowledge about the network.

The usage of the intelligence techniques applied to network-related needs is relatively

new. It overcomes certain issues (heterogeneity, complexity, constant growth) faced in

network management, but also brings new challenges to the domain. The exploitation of

supervised machine learning remains fair until the dataset and labeling constraints enter

the room. The performance of supervised learning algorithms relies on the training dataset.

This is where other ML solutions can work better, e.g., semi-supervised learning could be

introduced instead. It is able to learn from the smaller part of labeled data and can be useful

for cases when the data collection period is limited or the prospective event requires fast

reaction (e.g., fine-grained traffic classification and intrusion detection). Reinforcement

learning is efficient for routing optimization and decision making. It does not need labeled

data and can be adjusted according to optimization goals.

The challenge of training time and learning performance arises for the neural network

(NN) models. The optimal NN architecture has to be chosen depending on the exact problem

that is studied. Some problems, e.g., network security-related issues, may be sensitive to

experimentation time. Timely identification of such issues is vital for network administrators

to be able to prevent or react immediately to such kind of problems. To obtain the optimal

model, the calibration of the neural network is important. For this purpose, it is necessary to

invest some time for experimentation and train the neural network.

Nevertheless, the studies of all kinds of machine learning techniques in combination with

computer networking, show that it has its advantages and perspectives. We were encouraged

by the results obtained of this combination and found an inspiration to introduce machine

learning as an effective approach to the problem that we faced in our work.





Chapter 3

Influence of Measurement on Virtual
Network Performance

3.1 Introduction

Modern IT infrastructures heavily rely on virtualization with the so-called public or private

clouds and cloud management tools such as OpenStack. The typical path taken by a packet

sent from a virtual machine (VM) in a data center illustrates the complexity of such a set-up.

The packet crosses the virtual network interface card (NIC) of the VM to reach a virtual

switch where it is encapsulated, e.g., in a VXLAN tunnel 1, either to reach the remote tunnel

endpoint (switch) before being delivered to the destination VM, or to a virtual router before

leaving the virtual LAN. This complexity and blend of software and hardware equipments

raise the difficulty to monitor and debug performance issues in such a virtualized environment.

Monitoring and capturing traffic at the departure or arrival of its journey, i.e., at the first/last

virtual switch, reduces the complexity of the task for the cloud provider or manager. It also

allows to limit the impact on the physical switches that interconnect the racks. Still, it should

be done carefully as the networking device (virtual switch) and the VMs share the resources

(CPU, memory) of the same physical server. This key question has been overlooked in

1VXLAN stands for Virtual eXtended LAN and enables to have an IP network (VLAN) that spans over
several segments, typically physical servers hosting VMs from different tenants. Tunnel endpoints are installed
in each server and form a mesh. Each endpoint tracks the VMs it has in each VLAN, which enables at the end
to map all the MAC addresses of VMs with the IP of the server hosting them.
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previous studies, so that in this chapter we shed light on the interplay between measuring

and delivering traffic in a physical server with VMs and a virtual switch.

We follow an experimental approach for the purpose of our study. We set up a testbed

around an Open vSwitch (OvS) switch, which is arguably the most popular virtual switch

nowadays, natively integrated in OpenStack and VMware, as well as in main Linux distri-

butions. We consider the two typical levels of granularity of traffic collection tools, namely

the packet level monitoring offered by sFlow [11] and the flow level monitoring offered by

IPFIX [153].We aim at answering the following questions:

• What is the resource consumption (in terms of CPU) of those measurement tools as a

function of the configuration parameters, e.g., sampling rate, granularity of measured

data, and report generation time?

• What is the trade-off between the measurement accuracy and the system performance,

i.e., the impact of measurement on the flows being measured (e.g., completion time,

throughput)?

Our contribution can be summarized as follows:

• We explore the system resources consumption of a typical monitoring processes run in

the virtual switches;

• We demonstrate the existence of a negative correlation between the measurement tasks

and the operational traffic in the network under flow and packet level monitoring;

• We show that such an effect is not caused by a lack of system resources.

In Section 3.2 we describe our testbed. We present the results for the two use cases of

sFlow and IPFIX in Sections 3.3 and 3.4, respectively. Section 4.5 concludes the chapter

with a discussion and ideas for future research.
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3.2 Test environment

3.2.1 Testbed

We follow an experimental approach to evaluate the impact of traffic monitoring tools on

the host physical server and the measured applications. We consider a typical scenario with

VMs interconnected by an OvS switch located in the same physical server, see Fig. 3.1. We

consider a scenario where a virtual network is built by linking several Virtual Machines

(VMs) through an OvS switch, all located inside a single physical server, as depicted in

Fig. 3.1. Note that this set-up is typical of modern data centers where several VMs are placed

on the same physical server. One or several virtual switches are then used to interconnect the

VMs together and also to the outside by linking the physical interfaces with virtual switch.

The physical server runs a Ubuntu 16.04 Operating System, and has 8 cores with Hyper-

Threading turned off at 2.13 GHz, 12 GB of RAM and 4 GigaEthernet ports. We use KVM

to deploy the VMs (centOS) configured with 1 Virtual CPU (VCPU) and 1 GB of RAM

each. We conduct experimentation with {2,4,6,8} VMs to investigate how measurement

tasks behave under different conditions of server CPU occupancy: from low utilization of

physical resources (2 VMs with 2 cores dedicated to VMs) to a case where all eight cores are

occupied (8 VMs). Half of VMS act as senders and half as destinations and the amount of

traffic generated is directly related to number of VMs.

We use Open vSwitch (OvS) to interconnect the VMs due to its popularity. For traffic

monitoring, we consider legacy tools natively supported by OvS, namely sFlow [11] and

IPFIX [153]. The measurement collector is placed outside the server, in a remote node

across the network. These tools collect information about network traffic and are presently

supported by a wide range of network appliances across multiple vendors, including OvS.

sFlow is considered to be a scalable, light-weight solution for network monitoring [11].

It is a packet-level technology for monitoring traffic in data networks. In contrast to sFlow,

IPFIX (stands for Internet Protocol Flow Information Export) [12] is a flow-based measure-

ment tools, as it performs aggregation of sampled packets on flows on board of the switch,

and reports statistics on flows rather than simply copying and exporting the headers of the

sampled packets as in sFlow. Having said that, IPFIX can also operate at the packet level

by disabling flow aggregation (by setting either flow caching or active timer to zero), thus

reporting per-packet statistics. To some extent, one can see sFlow as an extreme version of
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Fig. 3.1 Testbed for experimentation

IPFIX where aggregation on board is disabled. Based on that, we start by evaluating the

overhead of sFlow in Section 3.3, then we move in Section 3.4 to a comparison between the

two measurement approaches in terms of their load on the physical server and the impact

they incur for the application data plane.

3.2.2 Traffic workload

In our testbed, traffic between the VMs is produced with two tools: flowgrind [154] and

iperf3 [155]. Each experiment is run 10 times to smooth the results. In general, the different

runs of each experiment are producing close results, as we operate in a closed and controlled

environment. We detail below the way these two benchmarking tools work and the parameters

we used.

Flowgrind

Flowgrind [154] is an advanced TCP traffic generator for testing and benchmarking Linux,

FreeBSD, and Mac OS X TCP/IP stacks It has distributed architecture with two components:

controller and daemon. We use it for its ability to generate TCP traffic following sophisticated

request/response patterns. Indeed, in flowgrind, one single long-lived TCP connection is

supposed to mimic transactional Internet services such as the Web. Hence, a TCP connection
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in flowgrind consists of a sequence of requests/responses separated by a time gap between

the requests. The request/response traffic model in flowgrind is controlled with the following

four parameters:

• Inter-request packet gap;

• Request/response size;

• Request/response size distribution;

• Number of parallel TCP connections.

We use a fixed inter-request gap equal to 10−4s in our experiments. Requests and

responses are sent as blocks, with request and response messages fitting in one or several IP

packets. While keeping the request size constant at 512B, we vary the response size (using

a constant distribution, meaning that all responses have the same size) to achieve different

rates, both in packets/s and in bits/s, as presented in Table 3.1.

Table 3.1 Flowgrind parameters used for traffic generation

Response size, bytes Throughput, Mb/s Throughput, packets/s
1024 80 16000
2048 160 26000
3072 240 40000
4096 320 45000

iPerf3

IPerf3 is a tool to measure network bandwidth operating with TCP, UDP and SCTP transport

protocols. It performs bandwidth tests between server and client hosts, establishing traffic

transfers with various parameters to be tuned (timing, protocols, buffers). We use iPerf3 to

generate TCP traffic at maximum achievable rate (10 Gb/s) to investigate whether monitoring

with sFLow may cause any kind of impact on the workload produced between VMs. For

IPFIX and sFLow comparison we also generate UDP traffic at constant and controlled rate

of 100 Mb/s to minimize data plane interference. The exploited traffic pattern is depicted in

Table 3.2.
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Table 3.2 iPerf3 parameters used for traffic generation

Protocol Throughput, Mb/s Throughput, packets/s
TCP 10000 25000
UDP 100 8600

3.3 Measuring with sFlow

We focus in this section on sFlow. Its behavior is mainly driven by the following parameters:

• Sampling rate: Ratio of packets whose headers are captured and reported by sFlow.

• Header bytes: The number of bytes reported by sFlow for each sampled packet. The

default value in our experiments, unless otherwise stated, is equal to 128 bytes. More

than one header can be aggregated in one UDP datagram, depending on the configured

header size.

• Polling interval: sFlow also reports aggregate port statistics (byte and packet counters)

to the collector. This parameter models the frequency at which sFlow reports these

statistics.

3.3.1 Initial experiment: measurement plane vs. data plane

We conducted a first experiment with a long lived TCP flow generated with iPerf3. The

experiment lasts 600 seconds and the sampling rate is changed (or disabled) every 100

seconds. We plot the throughput achieved by iPerf3 in Fig. 3.2. Note that with zero packet

sampled (i.e., no sFlow measurement), we can reach a throughput of up to 10 Gb/s as TCP

generates jumbo packets of 65 KB. It is then clear that monitoring with sFlow can influence

the application traffic and that this influence depends on the level of sampling. Finding the

right sampling rate to use is a trade-off between desired monitoring accuracy and expected

application performance. In the next sections, we explore this trade-off in more details and

try to understand whether this result is due to a lack of resources or to the implementation of

sFlow in OvS.
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Fig. 3.2 iPerf3 throughput at different sampling rates of sFlow: no sampling (A), 100%
sampling (B), 50% sampling (C).

3.3.2 Resources consumption and competition

In this section, we vary the sampling rate and observe the CPU consumption of sFlow

summed over all CPUs (hence potentially from 0 to 800%, as we have 8 CPU) as OvS uses

multi-threading and can run over different cores. Fig. 3.3 reports the results obtained with

the flowgrind workload, as described in Table 3.1. Note that the sampling rate is expressed in

sFlow as the number of packets (the unsampled ones plus the sampled one) between each

two consecutively sampled packets. This means that when sampling = 1, we sample every

packet (100% rate), sampling = 2 we sample one packet out of two (50% rate), and so on.

We can make two observations from Fig. 3.3. First, the CPU consumption increases with

both the sampling rate and the traffic rate, in line with intuition. Still, at 100% sampling, we

observe a decrease of CPU consumption in some cases (note that due to the implementation

of the sampling parameter in sFlow, there is no value between 50% (one packet out of two)

and 100% (every packet) in our graphs). We defer the study of this phenomenon to the next

section.

Second, while OvS is multi-threaded, a single thread is used to handle sFlow measure-

ment task and the utilization of the core where sFlow operates is high in our experiments.

Considering high value and sublinear increase of CPU consumed by the tool at high sampling

rates, one can wonder whether interference with monitored traffic exists. This interference is

indeed visible in Fig. 3.4 when plotting the number of packets generated by flowgrind for
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the different sampling rates and for the different traffic profiles. We report the results for

the case of 2, 4, 6 and 8 VMs. Normally, in the absence of interference, this number should

stay constant whatever the sampling rate is, which is not the case in the figure, especially

when the sampling rate gets close to 100%. This decrease in the number of generated packets

points to a possible interference caused by the CPU consumption of sFlow. Having less data

packets at high sampling rates can also explain the sublinear trend of CPU consumption with

sampling rate observed in Fig. 3.3.
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Fig. 3.3 CPU consumed by sFlow vs. sampling rate (flowgrind)

3.3.3 High sampling rate anomaly

To better understand the performance anomaly aforementioned, we looked at how the OvS

measurement process was utilizing the available cores in the case of 4 VMs, where there

should be enough resources for both measurement process and VMs generating traffic. In an
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Fig. 3.4 Nb. of packets generated vs. sampling rate (flowgrind)
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attempt to better understand the performance anomaly at high sampling rate where the CPU

consumption of sFlow is decreasing for some traffic rates, and the user traffic is affected, we

first studied cases where there should be enough resources for both the measurement process

and the VMs generating traffic (less than 4 VMs). We looked at how the OvS measurement

process was utilizing the available cores. We used pidstat to track the core utilized and its

usage by sFlow.

We observed that while there should be almost no competition between the iPerf3

(embedded inside single-core VMs) and OvS processes, as there are 8 cores in the server, the

OvS process was regularly scheduled to a different core by the Linux scheduler. To check if

this variable allocation results in suboptimal performance, we pinned each VM and the OvS

process to a specific core using the taskset utility. Fig. 3.5a and Fig. 3.5b portray a single

experiment for the case of 4 VMs (for traffic of 320 Mb/s and sampling rate of 100%), and

shows a clear improvement in terms of core utilization variability. Still, the impact on user’s

traffic was observed to be similar. We can thus conclude that the OS scheduler is not the

cause behind the performance problem we observed.

The experiments that we have carried out allowed us to make two main observations:

first, when activated on an OvS switch, sFlow mainly impacts the CPU of the physical host;

and second, most of the sFlow operations are done at the user-level space. As packets and

segments of packets are gathered from the kernel space, all the remaining operations (e.g.,

data buffering and timers management) are executed by processes running at the user space.

This means that monitoring the sFlow consumption is made easier as one can directly profile

the OvS user side process.

Fig. 3.6 provides a high level overview of the way OvS implements sFlow. The actual

switching (forwarding) of packets is done in the kernel. OvS further features two user level

processes. First, ovsdb-server, which is in charge of storing the configuration of the OvS

switches in the machine and is not of interest for us here. Second, the ovs-switchd daemon

process, which delegates the sFlow measurement to one of its threads. Hence, to implement

sFlow, each sampled packet must move from the kernel to the user space, which is likely to be

a problem at high traffic and high sampling rate. A better understanding of the phenomenon

we observed would require a precise profiling of the OvS code, which is out of the scope of

our work. Indeed, we suspect the bottleneck to manifest at the boundary between the kernel

space where forwarding is done by OvS and the user space where sFlow operates, hence

slowing down the rate of traffic going through both of them.
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(a) OvS is not assigned to a specific core

(b) OvS is assigned to a specific core

Fig. 3.5 CPU load with/without pinning OvS to specific core

3.3.4 Varying sFlow parameters

The effect of the sampling rate on the CPU consumption has been investigated in the previous

section. Increasing the sampling rate was shown to increase the CPU consumption to large

values, but also to impact the monitored applications themselves pushing them to reduce

their throughput. In this section, we extend the study to the other parameters of sFlow to

show their impact as well. We cover in particular the impact of the header length and the

frequency of interface statistics reporting, which are appended to packet samples by sFlow at

the desired time interval. To evaluate influence of these two parameters, we show results for

the set-up with four virtual machines, as in this case the physical server is under medium

utilization: four cores are assigned to four virtual machines and the remaining four cores
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Fig. 3.6 OvS architecture with sFlow measurement process

of the physical server are left for the proper operation of the hypervisor, OvS and the other

system services.

Header length

sFlow reports contain the first N bytes of sampled packets. The sFlow implementation in

Open vSwitch samples by default the first 128 Bytes of each packet. Hence, if a TCP packet

is sampled, assuming there is no options at the IP header, nor at the TCP header, sFlow will

record: the 14 Bytes of the MAC header, the 20 Bytes of the IP header, the 20 Bytes of the

TCP header and up to 74 Bytes from the application payload.

We vary the header length and assess its impact on the system performance with the help

of a flowgrind workload of response size equal to 1024 Bytes in our set-up of 4 VMs.

Several reports (packet samples or statistical reports) compose an sFlow datagram. De-

pending on its size, more or less reports may fit into one datagram. Maintaining fewer or

more reports does not matter for the software switch, as finally they are to be encapsulated

into one datagram. Moreover, the process of sending datagrams to the collector does not

incur a computational burden in terms of CPU. It follows, and according to what we see in

Fig. 3.7, that changing the header length does not impact the CPU utilization. In this figure,

we explore values of header length up to 512 Bytes, which is the recommended maximum
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Fig. 3.7 CPU consumed by sFlow for different header lengths and different sampling rates

header length in most sFlow implementations. Next, and if not explicitly mentioned, we

restrict ourselves to the default header length of 128 Bytes in our experiments.

Polling period

The polling parameter refers to the time interval (default 30s) at which sFlow appends to its

reports aggregate traffic statistics (total-packets and total-samples counters) associated with

the different interfaces of the virtual device, which can be either ingress or egress interfaces.

These reports are usually piggybacked with sampled packet headers, but as sampling is

random, and to avoid periods of no reporting, the sFlow agent can be configured to schedule

polling periodically in order to maximize internal efficiency. According to sFlow developers,

the polling interval should not have a big influence on CPU consumption. To confirm this

statement, we performed experiments with varying polling intervals under different flowgrind

workloads and sampling rates. Results were similar for the considered workloads. We report

in Fig. 3.8 the case of a flowgrind workload of about 80 Mb/s. We can observe in the figure

that varying the polling interval from 1 second to 30 seconds does not induce any additional

CPU overhead. This is because the sFlow agent opportunistically inserts the counters into

sFlow datagrams together with samples. If many packets are to be sampled, counters may

not be even included as frequently as configured.
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Fig. 3.8 CPU consumed by sFlow for different polling intervals

3.4 Measuring with IPFIX

As explained earlier, IPFIX and sFlow are two representatives of the two main classes

of traffic monitoring approaches: the flow level approach and the packet level approach,

respectively. sFlow was designed to limit the processing at the switch/router side by simply

forwarding packet headers to the collector while IPFIX maintains a flow table to aggregate

packets in flows, then reports on flows rather than on packets. This normally should entail a

higher processing load but a smaller network footprint. Next, we compare the two tools. We

configure sFlow with its default header length of 128 Bytes. The size of each IPFIX flow

report is equal to 115 Bytes.

3.4.1 Running IPFIX without flow aggregation

We first configured OvS to send one IPFIX flow record per packet sample to the collector.

The task of IPFIX is thus similar to the one of sFlow in this case.

There exist two caching options for IPFIX in OvS:

• cache active timeout – maximum period for which IPFIX flow record is cached and

aggregated before being sent;
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• cache maximum flows – maximum amount of IPFIX flow records that can be cached at

any time.

To ensure per-packet flow exporting, the caching feature of IPFIX is disabled and the

active timers are set to zero.

As there is no flow aggregation in this specific experiment, we consider a scenario with

one long run TCP flow produced by iPerf3 at a rate of 100 Mb/s. Results are reported in

Fig. 3.9a where we compare sFlow to IPFIX for different sampling rates, both in terms

of CPU consumption and total number of reports. We focus in this section only on the

IPFIX w/o cache case. Clearly, and because of packet processing on-board (in the switch),

IPFIX consumes more CPU than sFlow. The latter simply reports headers without on-board

processing.
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Fig. 3.9 IPFIX vs. sFlow resource consumption

Similarly to the case of sFlow, IPFIX also impacts the traffic forwarding function of the

virtual switch, as presented in Fig. 3.10. For this, we use the same set-up as for the sFlow

experiment in Fig. 3.2: 600 seconds of TCP iPerf3 traffic where sampling rate is changed (or

disabled) every 100 seconds. For the same sampling rate and by comparison with Fig. 3.2,

IPFIX has a more pronounced impact on the achieved rate than sFlow in this configuration,

in line with its higher CPU consumption.
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Fig. 3.10 iPerf3 throughput at different sampling rates of IPFIX: no sampling (A), 100%
sampling (B), 50% sampling (C).

3.4.2 Introducing cache and flow aggregation

The usual way of configuring IPFIX is with a non-zero value for caching and aggregation.

This allows to aggregate several packets from the same flow (TCP or UDP conversation) into

a single flow record. When a flow is aggregated on board of the switch, only one report about

this flow is sent containing aggregated statistics on it.

Considering the results from the previous section (without aggregation), the next natural

question is to evaluate how flow aggregation impacts CPU consumption, as flow aggregation

induces more computation on the virtual switch while reducing the network footprint of the

measurements.

In a first experiment, we consider the same workload as in the previous section (one

long run UDP flow generated by iPerf3) and tune IPFIX caching capacity to cover the entire

experiment, hence reducing drastically the number of reports: only one report is sent at

the end of the experiment. By doing so, we reduce to almost zero the networking cost of

reporting and we only leave the cost of flow aggregation. Results for this experiment are

reported in Fig. 3.9a along with those of sFlow and IPFIX without caching. The cost of

on-board processing is, as expected, smaller with caching than without caching for IPFIX.

What is striking here, however, is that IPFIX still consumes more CPU than sFlow even when

it does not send reports. Note that IPFIX, similarly to sFlow, is implemented in the user space.

It is thus normal that IPFIX suffers from the same performance problem at high sampling
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rate as sFlow (we did not report the impact on traffic of the IPFIX measurement process,

but it is similar to the one of sFlow). We can thus conclude on the benefit of aggregation in

IPFIX, but also on the importance of the CPU cost of IPFIX, which for its two variants (with

and without caching), remains more greedy than sFlow in terms of CPU consumption.

We performed a second set of experiments with a richer workload in terms of number

of flows (1000), which is more challenging for IPFIX as it induces more computation on

the OvS side. Comparing the results of Fig. 3.9a and 3.9b, we can observe that the CPU

consumption of IPFIX without caching has slightly increased as compared to the single flow

experiment. A further increase in the number of flows could have led to observe a more

pronounced difference between IPFIX and sFlow. However, at the scale of physical servers

hosting a few tens of VMs in a data center, 1000 flows is already a reasonably large value.

3.5 Conclusion and discussion

We have investigated the influence of virtual network monitoring on the physical server

performance and the throughput of monitored applications. Two legacy monitoring tools

were considered, sFlow and IPFIX. We performed a sensitivity analysis of CPU consumption

and network footprint of the two tools regarding different traffic profiles and monitoring

configuration parameters.

Among the set of influencing parameters, sampling rate and traffic throughput in packets

per second are the two dominant factors. Indeed, both cause an increase in the number of

samples to be generated, thus leading to an increase in the physical resources consumed at

the virtual switch. As for sFlow, the polling interval (of counters) induces no CPU overhead

for the virtual switch, as counters sent within this interval are small and this interval may

be adjusted by the sFlow agent for efficiency reasons. IPFIX appears to be more expensive

than sFlow (in terms of CPU consumption) because of its on board flow aggregation feature.

Finally, we observed interference between monitoring tasks and monitored traffic, as the cost

of monitoring transforms into reduced throughput for the monitored applications.

To reduce the load on the CPU and the impact on regular traffic, the best option is to

tune the sampling rate in a way to balance between monitoring accuracy and application

performance. Finding this optimal sampling rate is an interesting future direction for our

work. We also intend to study an alternative approach whereby the OvS switch would simply
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mirror traffic to an external measurement process embedded in a dedicated virtual machine.

This approach could consume more networking resources but has the potential to alleviate

the impact on the regular traffic that we intend to measure.

To reduce the load on the CPU and the impact on regular traffic, the best option is to

tune the sampling rate in a way to balance between monitoring accuracy and application

performance. Finding this optimal sampling rate is an interesting future direction for our

work. An alternative approach could be the case when the OvS switch would simply mirror

traffic to an external measurement process embedded in a dedicated virtual machine. This

approach could consume more resources but has the potential to alleviate the impact on the

regular traffic that one intend to measure.



Chapter 4

Tuning Optimal Traffic Measurement
Parameters in Virtual Networks with
Machine Learning

4.1 Introduction

The ability to perform traffic monitoring in virtual networks is a key instrument in the

troubleshooting toolbox of both cloud tenants and providers. sFlow [11] is the reference tool

that allows to perform such traffic monitoring in virtual networks based on Open vSwitch

(OvS) [32]. The tool has been initially designed for physical switches and routers, then

adapted to virtual networks. With sFlow, network equipment samples the packets at a rate

indicated by the user before packing them (after a controlled truncation) into an sFlow packet

that is sent to a dedicated machine called the collector. The key idea is to minimize the

amount of work done at the network equipment and leave the analysis to the collector itself.

The sampling rate can range from a few percent to a full capture, with the latter similar to

port mirroring. As an example, Facebook continuously monitors its data centers servers at a

rate of 1 out of 30,000 packets with a tool akin to sFlow [13].

In a previous chapter, we have demonstrated that traffic monitoring with sFlow costs

not only in terms of the CPU cycles of the physical system (where the virtual network is

deployed), but also causes reductions in the throughput of the operational traffic of the

embedded virtual network. Fig. 4.1 illustrates the case: we can observe that the traffic
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between two Virtual Machines (VMs) inside the same physical node decreases in terms of

throughput immediately after sFlow is turned on, with a penalty that is proportional to the

configured sampling rate. We refer to this throughput reduction as drop of throughput or,

alternatively, impact of sFlow sampling.

To determine the root cause of this interference, we were questioning the system resource

limitations for OvS and sFlow (server CPU, context switching); however it appeared that such

limitations do not exist, and that the impact is coming from other limitations related to the

operating system and the way it handles the data path of OvS and the forwarding of sampled

packets between OvS and sFlow. Even though the nature of such interference is not clear, we

believe that the footprint of network monitoring needs to be reduced to the minimum, or at

least to be well modeled so that this footprint could be better anticipated and controlled. The

best option would likely be to optimally tune sFlow monitoring parameters (sampling rate in

particular) so as to alleviate traffic disturbance while providing a good monitoring service at

the same time. However, the exact correlation between different monitoring parameters and

their impact on the application traffic is non-obvious. Certain Machine Learning techniques

(e.g., decision trees) could assist us in uncovering such a correlation, which would enable us

to tune the monitoring parameters optimally.

Considering these findings, in this chapter we aim to propose a solution that is based on

Machine Learning to (i) identify potential drop in throughput due to traffic measurement

and (ii) automatically tune monitoring parameters so as to limit the measurement and traffic

interference in the virtual environment. The objective is not to exceed a desired level of

throughput reduction in a context where throughput varies, so the parameters of monitoring

have to be adapted accordingly.

Next, we summarize the related work, then we describe our methodology based on data

analysis and machine learning and provide an overview of our dataset. In Section 4.3 we

present an offline study on our dataset where we model the relationship between throughput

and throughput loss given the sampling rate. Section 4.4 builds upon the offline analysis to

propose an online variant; it iteratively learns from previous experiences (with monitoring

and its impact) to build a model, which is able to pinpoint the optimal tuning of sampling rate

in sFlow, so that the impact of monitoring is limited to a certain desired level. We validate

the online variant with two synthetic traces we built for the purpose of the study and compare

its performance to the offline variant. We conclude the chapter in Section 4.5 with some

perspectives on our future research.
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Fig. 4.1 Traffic throughput at different sampling rates of sFlow: no sampling (A), 100%
sampling (B), 50% sampling (C).

4.2 Dataset construction and methodology

4.2.1 Methodology

In this chapter, we address two problems, namely a classification and a regression problem,

using machine learning. The classification problem can be cast as follows: given a sampling

rate S (in percent), a traffic rate R (in bps) measured when there is no sampling (the reference

throughput), a drop in throughput of I percent because of sampling at rate S (which then

becomes R× (1− I/100)), and a maximum authorized impact level thrI (in percent), the

question is to know whether I is less or greater than thrI . This problem can be solved using

binary classification supervised machine learning techniques such as Decision Trees and

Bayesian Networks.

The regression problem however is about the modeling of the impact I itself. This

regression problem, which can be solved by regression machine learning techniques such as

Random Forest, will open the door to our data-driven optimization which consists in finding

the optimal sampling rate to use in sFlow such that the (estimated) impact I does not exceed

the maximum authorized level thrI .

These two problems are investigated throughout this chapter in an offline and online

set-up. The offline set-up, where we train a classifier on a representative traffic dataset,

enables to assess whether we can predict the impact of sampling in sFlow and to select the
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appropriate machine learning algorithm among a set of candidates. We consider several

algorithms available in the scikit-learn library [156]:

• Decision Tree;

• K Nearest Neighbors;

• Naive Bayes;

• Random Forest;

• SVM.

The online set-up targets more an operational scenario where the model estimating the

impact of sampling (i.e., I) is built online with the objective to make it adaptive to physical

server characteristics. We focus on building iteratively this model for the regression case,

then show how such model can be used to optimally set the sampling rate. This will allow

us to answer the question of which sampling rate to use so as to limit the disturbance of the

ongoing traffic.

Our evaluation is done using traffic traces captured in a controlled virtual network

environment that we describe in the next section together with our dataset.

4.2.2 Dataset

The training and testing datasets (that we used to build and estimate the performance of

the learning algorithms) were collected within a dedicated experimental set-up. Our set-up

consists of one physical server with 8 cores, 12 GB of RAM, and N virtual machines (VMs)

interconnected with an OvS switch. Traffic between the VMs is generated with iPerf3 [155],

where half of the machines act as senders and the other half as receivers. We generate UDP

traffic for a set of predefined throughput values and packet sizes, and we apply the same

configuration to the different iPerf3 senders. Therefore, the total amount of traffic generated

is directly proportional to the number of VMs. We do not use TCP as we do not want the

transport layer to adapt to the changing network conditions that result from the usage of

sFlow. While our VMs are exchanging traffic between each other, we turn on sFlow on

the OvS switch to collect network statistics for a set of predefined sampling rates S. We

then measure the achieved throughput and compare it to the input traffic rate R to be able to
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calculate the drop in throughput I, if any. Our resulting datasets are thus composed of two

sets of features: traffic-related features (number of VMs, input traffic rate, packet size) and

measurement-related features (sampling rate, throughput reduction). We use the following

values:

• sampling rate S: either disabled or gradually increasing from 0.1% to 100%;

• number of VMs N ∈ {2,4,6,8};

• packet size: 128B, 256B, 512B, 1024B, 1448B;

• input traffic rate in bps per iPerf sender: from 100 Mbps to 1000 Mbps with steps of

100 Mbps;

• input traffic rate in packets per second.

Each experiment, consisting of one combination of the above parameters, is repeated 10

times to remove any bias and smooth average values. We perform experiments for all the

above values of number of VMs, input traffic rate and sampling rate. As for the packet size,

and because of the impossibility to accommodate small packet sizes at high rates in bps, we

limit the experimentation of packets smaller than 1448B to an input traffic rate equal to 100

Mbps, and scan the entire range of input traffic rate defined above for only large packets

of 1448B. It follows that our dataset consists of approximately 13,000 experiments that we

split between a training set and a testing set as described next. Lastly, for the part on binary

classification, we consider threshold values (i.e., thrI) of the impact I ranging from 1% to

25%.

Fig. 4.2 gives a flavour of this dataset, where we show the impact as a heatmap versus the

number of VMs and the sampling rate. Clearly, the more we go to the top right corner, the

darker the colour as the impact has tendency to increase with the traffic load on the physical

server and the sampling rate. We use the same dataset to validate both the offline and online

models for impact I, though in a different manner. In the offline case, and to avoid any bias

during the learning phase, we replace the 10 repeated experiments of the same scenario by

a single experiment, where the impact is the average observed impact. This means that the

offline dataset consists of 1,300 experiments. In the online case, we emulate the actual traffic

variations observed in an operational scenario by concatenating the 13,000 experiments in a

controlled manner so as to emulate either large or small traffic variations over time (more
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details in Section 4.4). For each case, we split our dataset into two parts for training (80% of

dataset) and testing (the rest 20% of dataset). We train our models on the training dataset and

assess their prediction accuracy on the testing dataset.

Fig. 4.2 Sampling impact vs. sampling rate and number of VMs

Handling the balance of our classes

Machine learning is sensitive to the distribution of classes in the datasets. If one class

is prevalent over the other, the learner may make biased decisions towards the majority

class. As we are using different values of impact threshold values, our dataset may show a

disproportion between the two classes (i.e., impacted scenarios versus non-impacted ones).

Fig. 4.3 depicts the distribution of classes in our dataset with respect to threshold thrI . While

the dataset shows a good balance between the two classes for large threshold values, there

is a clear unbalance at low values of threshold (below 10%). To counter this unbalance, we

use a well-known technique in the literature called Random Undersampling which consists

in randomly extracting instances from the majority class until the two classes are equal.

Hereafter, and for the offline study, we compare our classification models on both balanced

and unbalanced datasets.
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Fig. 4.3 Unbalanced dataset: classes distribution vs threshold

4.3 Offline analysis

In this section, we investigate the ability of different machine learning algorithms to detect

and estimate the impact of turning on sampling in sFlow on the application traffic, given a

wide range of experimental scenarios (i.e., traffic rate, number of VMs and sampling rate).

4.3.1 Detecting the impact of monitoring

The presence or absence of impact depends on the threshold of acceptable throughput

reduction thrI . For a given threshold, we can split our dataset into two classes: the YES class

when there is impact (i.e., I > thrI) and the NO class when there is no impact (i.e., I ≤ thrI).

Our objective is to build a model that can detect in what “case” the system is running.

We train and validate the different machine learning algorithms listed in Section 4.2.1

using the classical 10-fold cross-validation technique. We report each time the results for

both the balanced and the unbalanced datasets, the former being threshold dependent. We

first evaluate the algorithms using the accuracy metric, which is defined as the fraction

of correctly classified YES and NO instances. Fig. 4.4 reports the achieved accuracy of

prediction for both unbalanced (Fig. 4.4a) and balanced (Fig. 4.4b) datasets. The two most

accurate classifiers appear to be the Decision Tree and the Random Forest classifiers. They

perform at a minimum of 90% and 92% of accuracy for certain thresholds with an unbalanced

dataset; and 81% and 78% for a balanced one. We can thus conclude that these models are

able to correctly capture the impact of sFlow on application traffic.
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Fig. 4.4 Accuracy of different classifiers vs impact threshold for unbalanced (4.4a) and
balanced (4.4b) datasets.

We now focus on per-class classification results using the precision and recall metrics.

Precision reports the fraction of correctly classified samples, namely "condition positive",

while recall reports the overall fraction of correctly classified instances of the "condition

positive" class. An ideal classifier should achieve a precision and recall equal to one.

Fig. 4.5 provide scatter plots of the precision and recall scores for the YES and NO

classes for the set of considered impact thresholds. We conduct the study of precision/recall

scores for all mentioned classifiers and only present the results for the best performing ones:

Decision Tree and Random Forest classifiers. We can observe that the two scores can be
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Fig. 4.5 Precision/recall for each class with respect to threshold (YES - impact is present,
NO - impact is absent) and classifier: balanced dataset.
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indeed close to one for both classes. We can also observe that the distribution of observations

per class has little impact on the obtained scores for these two classifiers.

Feature importance

While trying to understand the conditions under which impact emerges, it is important to

investigate to which extent every feature contributes to the classifier decision. By means

of embedded method in Decision Tree and Random Forest regressors, we obtain feature

importances reported by both classifiers represented in Fig. 4.6. We conclude from it that

sampling rate and throughput in packets per second contribute the most to the classification

decision. Indeed, as sampling rate is the most influencing parameter on the amount of traffic

to be sampled by OvS, it boosts switch to compose samples, while processing ongoing traffic.

In such manner, the interaction of monitoring and forwarding brings traffic losses. In addition,

by the fact that sFlow is packet-based monitoring framework, classifiers confirm that the

throughput in terms of packets per second matters over bits per second within investigated

environment.

VM feature

Feature importance analysis reports a significant weight of VM feature in dataset, it takes

the third place among the others. In our set-up network traffic is produced by 2, 4, 6, and

8 VMs. Every pair of VMs performs as source and destination. Therefore, comparing to

single source and destination case (2 VMs), amount of traffic doubles for 4 VMs, triples

for 6 VMs and quadruples for 8 VMs. Knowing that, we question such VM feature weight

in classifiers decisions and choose to eliminate this feature from dataset, train our model

again and check how this removing impacts classification accuracy. Fig. 4.7 portrays delta

of classifiers predicting accuracies, when VM feature is present and removed from dataset.

The order of difference is in range of several percents. It makes us conclude and confirm that

VM feature, being related to traffic in packet per second feature, does not play major role in

classification decisions and may not be considered as important during feature engineering.
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(a)

(b)

Fig. 4.6 Feature importance Decision Tree 4.6a Random Forest 4.6b

4.3.2 Quantifying the impact

It is important not only to identify the presence of impact, but also to predict its numerical

value. In this section, we investigate this regression problem with the help of Decision Tree

and Random Forest algorithms, as they appear to provide best predictions in the classification

case. The validation shows values of mean absolute error (MAE) of 1.96% for Decision Trees

and 1.81% for Random Forests, which stand for the average absolute difference between the

real impact (in percent) and its predicted value (also in percent). We can thus conclude that

offline regression models are able to accurately predict the impact value and can thus be used

to tune the sampling rate so as to reach a desired impact level.
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Fig. 4.7 Accuracy delta with VM feature eliminated from dataset

4.4 Online analysis

The previous section enabled us to assess the ability of machine learning to detect the

presence of impact of sFlow on the application data plane and to estimate the amplitude

of this impact. While the models constructed offline are efficient, there is no reason to

believe they will be generic enough and applicable to all virtualized environments. To avoid

generating a model per server offline, we study in this section whether these models can be

produced online in an adaptive way. We explore this problem in this section and propose an

approach to optimally set the sampling rate using the built model.

As algorithms belonging to the tree and forest families showed the best performance in

the offline case, we rely on a particular decision tree algorithm called Hoeffding [157] to

incrementally learn from instances coming one by one. Incremental Regression Hoeffding

Tree is known for its efficiency in case of high-speed data streams. It is available in the

multi-output streaming framework scikit-multiflow [158].

Building the model online requires the definition of a strategy for data acquisition to

learn from. We will have to periodically collect several metrics, such as the traffic state when

sampling is disabled, the throughput after sampling at some rate, the impact of this sampling

rate on the throughput, and the number of VMs. Traffic state is available to measure at the

switch ports. Sampling rate to test can be chosen randomly and configured on the switch
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interface by the administrator. After this sampling rate is configured, one can measure again

the traffic at the ports of the switch and calculate the drop in throughput in comparison with

the no sampling case. The number of VMs can be estimated from the traffic collected by

sFlow, at least for active VMs. All this procedure provides an instance of features, that can be

used to update the machine learning algorithm. When done, we reset the sampling rate to a

value that is judged appropriate, then wait until the next measurement epoch, where again we

disable sFlow sampling, measure traffic, sample at some random sampling rate, remeasure

traffic and number of VMs, and update the learner. We keep repeating this process until the

model converges.

Traffic load in a virtual network is dynamic. Its variable nature has to be taken into

account while building and validating our models and for optimally setting the sampling

rate. To evaluate the performance of the online machine learning algorithm, we emulate

the above procedure thanks to our offline dataset. We first split our initial set of 13,000

experiments into two sets: one used for learning (containing 80% of the instances) and one

used for testing (the remaining 20%). At each measurement period, we provide to the learner

a new measurement instance of the learning set and ask it to emit a prediction for all the

experiments in the testing set.

We define two strategies for deciding the order in which experiments in the learning set

are provided to the learner:

• A global strategy where the next experiment is chosen at random from the learning set.

This mimics the case of a network with rapid traffic variations. Note that the sampling

rate is chosen at random here.

• A local strategy where the next experiment is chosen at random in the neighborhood

of the current experiment with respect to the number of VMs and traffic rate. For a

given instance, the sampling rate to test is again chosen randomly. Contrary to the first

strategy, this local strategy is supposed to mimic traffic with smooth fluctuations.

Following these strategies, we manage to transform our dataset into a synthetic network

workload to be used for building and validating our models online. Within this synthetic

workload, each instance corresponds to a scenario when virtual network is being under

monitoring: at a given time there is a certain traffic condition on the server (some amount
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of VMs sending traffic with some input rate) and certain measurement condition (some

sampling rate is turned on).

Fig. 4.8 MAE of regression for online global & local & offline

4.4.1 Predicting the drop in throughput

Fig. 4.8 presents mean absolute prediction errors for global random, local random and offline

strategies as instances are being collected and learned from. The regression case is considered

here where the objective is to predict the real value of the throughput reduction I (in percent).

With the global random strategy, the learner initially provides predictions with high mean

absolute errors and reaches 10% errors only after 1000 samples have been provided. The

local random strategy leads to almost the same result at long run: about 1000 samples are

needed to achieve less than 10% errors. However, the errors for the local random strategy are

initially higher than the global one as, at the beginning, the model learns from a small set

of similar traffic instances while it is asked to predict over diverse traffic samples, some of

which it might have never seen before.

Comparison with the offline model suggests that the learning phase is going to be very

long if one wants a error in the order of a few percents between the online and the offline

approaches. An alternative, less complex but operationally meaningful approach is to ask

the learner to provide a sampling rate such that the impact value stays below a predefined

threshold. This is the question we investigate in the next section and check whether it can

provide a faster convergence to the desired impact level.
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4.4.2 Finding optimal monitoring parameters

We consider the same online learning algorithm as in the previous section, using again

the local and global synthetic traces. The procedure is as follows: once a new instance is

selected to train the online algorithm, the learner is asked to predict the optimal sampling rate

corresponding to this new instance. The optimal sampling rate is defined as the maximum

sampling rate allowing the impact on the traffic to be within some desired threshold thrI .

The prediction is then compared to the exact value of the optimal sampling rate computed by

considering all the instances in the complete dataset with the same traffic conditions while

scanning all known sampling rates. The procedure is repeated until exhaustion of all 13,000

instances (there is no training and test sets here).

We present results using a threshold thrI of 7%, as results are qualitatively similar for

other thresholds. Fig. 4.9a and Fig. 4.9b report the results for the global and local synthetic

workload respectively. The figures show the achieved impact when the optimal sampling

rate is set (which should be less than, still close to, the desired impact thrI). In comparison

to the previous section (see Fig. 4.8) where the mean absolute error was improving at slow

pace over time, we observe here a faster convergence of the learner. Only a few tens of tests

are needed to train the online model for the task of setting optimally the sampling rate and

limiting its impact on traffic to the desired value. This is because the prediction complexity of

the task is lower given the finite number of sampling rates that can be implemented in sFlow

(1 out of n packets). We can further observe that the online learner performs better under the

local than the global workload. This is because under the local workload the learner is asked

a prediction for traffic conditions close to the ones it got trained with.

4.5 Conclusion and Discussion

In this chapter, we considered the application of machine learning algorithms to predict the

impact of capturing packets with a tunable sampling rate, in virtual environments. We further

use these algorithms to determine the best performing measurement parameters. As each

network features its own traffic profile, we considered the case where the training phase has

to be done online. We also considered the offline case where the learner is fed at once with

a large set of instances that correspond to a wide range of traffic and sampling conditions.

The evaluations were performed with a large dataset of traces obtained in a controlled
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(a)

(b)

Fig. 4.9 Throughput drop at estimated optimal sampling rate: global workload (4.9a) and
local workload (4.9b).

environment. The results obtained suggest that our machine learning-based solution is able to

predict the impact of virtual network monitoring, as well as optimal monitoring parameters

w.r.t the impact of measuring the network.



Chapter 5

Conclusions and Future work

5.1 Conclusions

Advances in networking and computing technologies continue to transform the habits of

network monitoring. On the one hand SDN, NFV and cloud paradigms simplify the network

management, though at the same time inducing new challenges and promote development of

new solutions for monitoring. In this thesis we attempt to contribute towards this subject.

In Chapter 3 we started with exploring the problem of virtual network monitoring. Upon

experimentation with sFlow and IPFIX within a setup around a OvS switch, we have observed

the relationship between monitoring process and network traffic. It is expressed in losses of

traffic to a certain extent once monitoring is enabled in the setup. The fact that the monitoring

process is implemented within OvS is executed within the host OS, i.e., directly on the

hardware, drove us to investigate how the monitoring process interacts with the hardware

aspect, because the hardware limitations could have explained the problems encountered

with using sFlow. Analysing the system resources in terms of CPU and context switching,

we confirmed that the host OS/hardware is not the one to blame for network degradation

due to monitoring. Considering the obscurity of the observed interaction of monitoring and

network, one of the opportunities to overcome it can be machine learning with its ability to

reveal the relations between variables. With an objective to avoid a negative influence of

monitoring onto network, we turned our research into this direction.
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Thus in Chapter 4 we started to explore how to apply machine learning to our problem.

At the beginning we collected the data for further manipulations. We took a closer look at

the obtained dataset and analyse the relation between the components of virtual network,

amount of sampling and observed traffic impact. This impact is expectedly proportional

to sampling rate as well as to the number of virtual machines in the setup, which in their

turn are proportional to amount of traffic. Having demonstrated that, we also conducted

a feature analysis: which dataset component contributed the most to the decision of the

model. The sampling and traffic features appeared the most important. We also verified

that eliminating the VM feature (which is proportional to traffic) does not impact the model

decision dramatically. We paid attention to the dataset balance, as it need to be accounted in

ML models and could cause biased decisions.

In Chapter 4 we also identified the potential of machine learning modeling to detect

the presence of impact (classification) and define its value (regression) in the setup with

respect to different definitions of impact and obtained decent levels of performance. Obtained

results confirmed the ability of machine learning to be efficiently applied to our problem and

motivated us to improve the solution. It was clear, that as the obtained models were trained

on synthetic data, they hardly could be generalized to other virtual setups. To overcome this

limitation, we targeted online modelling. An online approach can build up a model on the fly.

It does not require the whole dataset at once. Instead, it is able to update the model as new

data appears. We proposed two online models with regard to network traffic dynamics, each

signifying a different traffic scope: global or local. These strategies could recreate a network

situation with rapid or smooth traffic fluctuations. Online models built on the basis of these

strategies reported acceptable performance only at the late phases of learning: the absolute

errors of predicted impact were higher comparatively to offline case.

The initial goal of this ML study was to be able to discover the necessary monitoring

parameters for the setup, so as to avoid any interference with traffic. On the basis of online

models, while the learning phase is in process, we demanded to provide a sampling rate

for the current traffic profile such that a certain level of impact is not exceeded. Our study

have shown that it is possible to provide optimal sampling rates at much earlier stages of

learning phase, which in its turn indicates the applicability of machine learning in the context

of measurement with sFlow in virtual network built around OvS.

Overall, in this thesis we show that network monitoring domain has high potential to

benefit from machine learning. Considering recent research works and our obtained results,
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the combination of these two areas can bring useful insights and stimulate new research

ideas.

5.2 Future work

This thesis has demonstrated the potential of machine learning techniques to be used for

calibration of network monitoring parameters, however few peculiarities remained uncovered.

Our model now requires tests in the wild, which could potentially bring up several issues;

those can become further steps for future work. During their lifetime, networks usually

experience repeated traffic variations. If the training phase entails a complex procedure, e.g.,

turning sampling on at different values in a regular manner, it can be interesting to collect

data for training only when this is relevant. One could leverage active learning to make

training phase more efficient, as active learning technique can decide when the learner needs

additional training data to increase its accuracy.

Further, the model we obtained from the observation of the network would later suffer

from aging. Model aging is a problem to be solved by periodical model retraining. One of the

solution to avoid a complete retraining phase is to use algorithm like the CVFDT algorithm

[159] that can keep a decision tree up to date over time.

Another issue that would be interesting to disclose is the computational overhead of the

learning algorithms during learning phase. How the overhead would differ, for example, in

the case of a single decision tree vs. a random forest of multiple trees or vs. other algorithms

with different hyperparameters. Considering that in this work the overhead minimization is

the main idea behind this modelling, revealing its computational overhead would be important

as well, especially, for the targeted cloud environment which are so sensitive and competitive

for computational resources.

Also, sFlow, being a packet-based sampling tool, provides results with quantifiable

accuracy. If the suggested model will suggest very small sampling rate on the way to

minimize impact, there may not be enough sampling data to provide accurate statistics on

operating traffic. The trade-off between accuracy and impact avoidance could be taken into

account. The requirements for accuracy could be introduced as input features when building

and calibrating models.
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