Network Simulator “"ns”

Chadi BARAKAT

INRIA Sophia Antipolis, France
PLANETE research group

Email: Chadi.Barakat@sophia.inria.fr
WEB: http://www.inria.fr/planete/chadi

Outline

O Introductionto " ns”.

Q Structure of the simulator: C++ code, OTCL interface, tools.
O Programming in " ns “: The OTCL language.

[Exploiting the results of a simulation.

O Extending the capacity of " ns “.

Chadi BARAKAT - INRIA 2 ;" INRIA
Sophia Antipolis

Introduction

[A simulator for communication networks, developed at Laurence Berkeley
National Laboratory (LBNL) within the VINT project. It fast became a
property of the entire research community, where everyone can add its

own modules, and contributes to the development of the simulator.

Q Download your free copy at:

http://www.isi.edu/nsnam/ns/
[Can be installed on Unix, Linux, and Windows.
[The first version of " ns “ was experimental.

O Now, we are working with the second version called " ns-2 “.

Chadi BARAKAT - INRIA 3 ;" INRIA
Sophia Antipolis

Introduction (ctd)

d "ns" is mainly designed for Internet protocols, particularly the TCP
protocol. However, its good hierarchical organization has motivated
many researchers to use it for the study of:

e New protocols they propose for the different layers of the Internet
(routing, transport, application).

e The impact of new transmission media on Internet protocols (ATM,
satellites, Wired LANs, Wireless LANSs).

e The performance of new architectures proposed to improve the QoS in the
Internet (DiffServ, IntServ, buffer management).

O The different contributions to "ns" can be found on the web site of
the simulator, and by searching the mailing list archive.

Chadi BARAKAT - INRIA 4 W INRIA

Sophia Antinolis

Structure of the simulator

d " ns " is an object-oriented simulator. A simulation is no other than the
motion of packets, which are objects, among the different objects
representing the elements and protocols of the network.

[

0 The core of " ns " is written in C++. This eases the addition of new
protocols and mechanisms. The main classes are:

e Application: The parent class of all applications (e.g., ftp, telnet).

e Agent: The parent class of all protocols that run at layers 3 and 4 of the
Internet, e.g., TCP, UDP, TFRC, RTP, RIP, OSPF, SRM, DVMRP, PIM.

e Node: Represents the set of nodes in the network. A node can be a host, a
switch, a router, or a gateway. Each node contains a Classifier which
decides on where to send a packet coming from an interface or from an
agent. The packet is to be sent either to an agent attached to the node, or
to an outgoing interface.

Chadi BARAKAT - INRIA 5 ;" INRIA
Sophia Antipolis

Structure of the simulator (ctd)

Queue: The parent class of all buffers, e.g., Drop Tail, Drop From Front, RED.

LinkDelay: This class simulates the propagation delay and the transmission
time over links of the network. Together with the class Queue, this class
simulates the layers 1 and 2 of the Internet + the buffer management at the
IP layer.

e Packet: The class of packets that propagate through the network. This class
points towards two classes, the first one for the Header and the second one
for the Payload. To define a new protocol, one has to define a Header class.

e TimerHandler: The parent class for all timers used by network protocols.
When the timer of a protocol expires, a particular function of the class
representing the protocol is invoked.

Chadi BARAKAT - INRIA 6 ;" INRIA
Sophia Antipolis

Structure of the simulator (ctd)

 Every object of a simulation (except the receiving application) posses
the handler of an object to which the packet has to be forwarded on
its way to the destination, e.g., the LinkDelay object gives the packet
to the input interface of the node at the output of the link.

0 To give a packet to an object, we have to call the function recv of this
object using the handler we detain. We pass to this function a pointer
to the packet. The pointer to a packet passes from one object to

another until it reaches its destination.

Chadi BARAKAT - INRIA 7 ;" INRIA
Sophia Antipolis

What is then a simulation?

[Define the objects of the simulation (and set their parameters).
[Connect the objects to each other (topology of the network).

O Start the source applications. Packets are then created and are

transmitted through the network.

d Exit the simulator after a certain fixed time, or when a particular

event happens (e.g., end of the ftransfer).

Chadi BARAKAT - INRIA 8 ;" INRIA
Sophia Antipolis

The scheduler

O The core of the simulator. Its role is the scheduling of events. " ns “ is
called an event-driven simulator.

Event = An action to be done after a certain time in the future, e.q.,
retransmit a packet when a timer expires, give a packet to the node at
the output of a link after a time equal to the propagation delay.

O How the scheduler works ?

e ATt the beginning of the simulation, the user schedules a certain number of
events to be executed during the simulation lifetime, e.g., start of an
application, end of the simulation.

e The objects of the simulation schedule other events.

e All the events are placed in one queue by the order of their due time.

Chadi BARAKAT - INRIA 9 W INRIA

Sophia Antinolis

The scheduler (ctd)

e The scheduler comes to this queue, dequeues the event at the head of the
queue, advances the time of the simulation (by the time elapsed since the
last event), executes the event, then dequeues another event, and so on,

until the event exit is found. Here, the simulation stops.

1))

e The fime in " ns " does not correspond to the real time. There is no
relation between the duration of the simulation and the time it takes to
end. The time a simulation takes depends on how many events are executed
during it.

n

e A packet in " ns " is itself an event. We ask the scheduler to hand the
packet to an object after a certain time. The scheduler ensures that a

packet is not queued more than one time in the queue of events.

Chadi BARAKAT - INRIA 10 ;" INRIA
Sophia Antipolis

The OTCL interface

O The configuration of the simulation, and the parameters of the
different objects we want to create, are passed to " ns “ in a file
written in the OTCL language:

> ns configuration.tcl
OTCL is an object-oriented programming language as C++.

d " ns " disposes of an OTCL interpreter which translates the commands
written in OTCL to their equivalence in C++,

0 When" ns " is called, the OTCL interpreter creates an image of the C++
class hierarchy at the OTCL level. The user writes the configuration file
as if the simulator is written entirely in OTCL.

d This translating of the C++ class hierarchy allows the user to create
instances of the classes of the simulator, and to define new classes and
functions, if he wants to extend the simulator.

Chadi BARAKAT - INRIA 11 ;" INRIA
Sonhia Antipolis

Accompanying tools

Q " nam ": A tool that allows to visualize the motion of packets through

the nodes and links of the network.

Q " xgraph ": A tool that allows to plot the results of the simulation in the

form of curves.

Q " gt-item " A tool that allows to create large graphs and to control their

hierarchy.

d " sgb2ns “: A tool that translates the graphs created by " gt-item “ to

the OTCL language, so that they can be integrated in the configuration
file.

Chadi BARAKAT - INRIA 12 ;" INRIA
Sophia Antipolis

Programming in ™ ns

d To program in " ns “, all what we need is:
e Knowledge of the OTCL language, in order to write the configuration file.
e Knowledge of the OTCL class hierarchy.
e Knowledge of the different methods and variables of the OTCL classes.

e No need to know the C++ class hierarchy. The OTCL interpreter does the job
for us |

Q When the user creates an instance of an OTCL class, the OTCL
interpreter creates an instance of its corresponding C++ class. The same
thing applies to methods and variables.

[The function " main " of the simulator is very simple:

e Run the OTCL interpreter.
e Run the scheduler.

Chadi BARAKAT - INRIA 13 ;" INRIA
Sophia Antipolis

Basic instructions in OTCL

Assign a value o a variable: set a 10

Read the content of a variable: set b $a

Open a file in mode write: set £ [open file w]

Write the content of a variable in a file: puts $f “$a”

Array of variables: set tab($index) 0 ($index = 1,2,3,..)
Arithmetic operations: set c [expr 2.0 * $a / $b]

U 0000 D0 O

Control structures:

e if {$Sa == S$b} { ..}
o for {set i 1} {$i <= 10} {set i [expr $i + 1] } { ..}

 Pass parameters to the simulator: set a [lindex $argv 0]

e On the command line, write: > ns Configuration.tcl value-of-a

Chadi BARAKAT - INRIA 14 ;" INRIA
Sophia Antipolis

Basic instructions in OTCL

d Functions:
proc function-name {parl par2 .. } {
global a b ..
return [expr a + $parl] }

To call the function: set ¢ [function-name $parl $par2 ..]

O Create an instance of a class: set obj [new Classl/Class2/Class3]
A Call a method of an object without return: $obj method-name $parl..
O And with return: set a [$obj method-name $parl ..]
[Assign a value to a variable of an object: $obj set var-name $a
[Read the value assigned to a variable of an object:

set a [$obj set var-name]
O Free an object: delete $obj

Chadi BARAKAT - INRIA 15 ;‘l INRIA
Sophia Antipolis

Create a scenario

O The first thing to do is to create an instance of the class Simulator,
which contains a set of methods necessary for the programming:

set ns [new Simulator]

O Second comes the creation of nodes (use arrays in case of a network
topology with large number of nodes):
for {set i 1} {$i <= $NodeNb} {set i [expr $i+1]}{
set n($1i) [$ns node] }

[Then comes the creation of (duplex) links between nodes:

$ns duplex-link $n(l) $n(2) bandwidth delay type-of-buffer

e Dbandwidth = 10Mb, 100Kb, 10KB, 1MB, etc.
e delay = 10ms, 1ls, etc.
e type-of-buffer = DropTail, RED, etc.

O We can set the buffer size at the input of a link:
$ns queue-limit $n(l) $n(2) buffer-size-in-packets

Chadi BARAKAT - INRIA 16 ;" INRIA
Sophia Antipolis

Create a scenario

O Now, it is time fo create transport agents, to attach them to (peer)
nodes, and to connect them to each other (equivalent to connection
establishment procedure). Here is an example of a TCP connection:
set transpl [new Agent/TCP] //TCP source
Sns attach-agent $n(1l) S$Stranspl
set transp2 [new Agent/TCPSink] //TCP destination
Sns attach-agent $n(2) Stransp2

Sns connect $transpl $transp2 //establish the connection

O For a UDP agent, we still need to connect the source to the destination.
This is necessary to set the destination address in UDP packets:

set transpl [new Agent/UDP] //UDP source
set transp2 [new Agent/Null] //UDP destination
$ns connect $transpl $transp2 //connect agents

Chadi BARAKAT - INRIA 17 ;" INRIA
Sonhia Antipolis

Create a scenario

d We create then the application that generates data. The application
needs to be attached to the source agent. No need to attach an
application to the destination agent. For an FTP application:
set app [new Application/FTP]
$app attach-agent $transpl

[Finally, we precise the starting time of the application, the end time of
the simulation, and we launch the simulator:
$Sns at 10.0 “$Sapp start” //send an infinite amount of data
$ns at 10.0 “Sapp send 100” //send 100 bytes of data
Sns at simulation-time “exit 0”

Sns run

O Save everything in configuration.tcl and call " ns “.

Chadi BARAKAT - INRIA 18 ;" INRIA
Sophia Antipolis

Routing in "ns”

O By default, "ns” routes packets via a Shortest Path Tree. The tree is
computed one time at the beginning of the simulation.

O There is the possibility to make the routing protocol dynamic, i.e. it
adapts to any change in the status of links during the simulation.

O Routes can also be defined manually:

$ns rtproto Manual //Set the routing to manual
set DestID [$D id] //The ID of the destination node
set Interface [[$ns link $R1 $SR2] head] //The interface of

//the router Rl to which we want to route all packets sent to D

SR1 add-route S$DestID $Interface

e Define all routes in this way.

Chadi BARAKAT - INRIA 19 ;" INRIA
Sonhia Antipolis

Some classes and variables

d TCP:

set tcp [new Agent/TCP (TCP/Reno) (TCP/Newreno) (TCP/Sackl)]
set sink [new Agent/TCPSink (TCPSink/DelAck) (TCPSink/Sackl)]
$tcp set window size-in-packets
$tcp set ssthresh size-in-packets
$tcp set packetSize size-in-bytes
a RED:
$ns duplex-link $n(l) $n(2) bandwidth delay RED
set g [[$ns link $n(l) $n(2)] queue]
$q set limit size-in-packets
$q set thresh min-threshold-in-packets
$q set maxthresh maximum-threshold-in-packets
$q set q weight averaging-weight

$q set linterm inverse-of-pmax

Chadi BARAKAT - INRIA 20 ;‘l INRIA
Sophia Antipolis

Some classes and variables (ctd)

O CBR source:
set cbr [new Application/Traffic/CBR]

$cbr set packet size size-in-bytes
$cbr set rate XKB (Kb) (MB) (Mb)

0 Poisson source:
set poisson [new Application/Traffic/Poisson]
Spoisson set interval average-time-between-packets-in-s
Spoisson set size packet-size-in-bytes
O Uniform random variable:
set var [new RandomVariable/Uniform]
$var set min_ left-edge
$var set max right-edge

puts “$var value” //print on the screen a random number

O The entire list of classes and variables can be obtained from the
manual, the C++ code, or the file ns-default.tcl (default values).

Chadi BARAKAT - INRIA 21 ;‘l INRIA
Sophia Antipolis

Extract results from a simulation

d At any moment in the simulation, we can read the value of a variable of
an object, and write it on the screen, or in a file. Here is an example on
how to plot the congestion window of a TCP connection versus time:

set WindowVsTime [open WindowVsTime w]

proc plotWindow {tcpSource file} {
global ns
set time 1 //the window is read every second
set wnd [$Stcp window]
set now [$ns now]
puts $file "S$now $wnd"
Sns at [expr Snow+$time] "plotWindow S$tcpSource $file” }

Sns at 0 "plotWindow S$tcp $WindowVsTime"

Chadi BARAKAT - INRIA 22 ;" INRIA
Sophia Antipolis

Extract results from a simulation

A In case we want to extract results about packets, the class Trace of
the simulator is needed. Objects of this class can be associated to the
elements of the network (for example to buffers), and give us the
instants of arrivals/departures/drops of packets. This is an example of
lines written by an object of type Trace:

= lwddbbt 0 2 op AUl Eee——as 2 0L BLE RRZE B
r 1.84608 0 2 ¢br 210 coo———= ¢ 90 3 1 225 610
+ 1.84608 2 3 cbr 210 —rr———- g 0:0 341 L2425 510
d 1:84608 2 3 ¢cbr 210 ~—=r——= G0 3;1 225 gl

[With a simple function, we can associate Trace objects to all elements
of the network, and get information about all packets:

set file [open out.tr w]

$ns trace-all $file

Chadi BARAKAT - INRIA 23 ;" INRIA
Sophia Antipolis

Extract results from a simulation

0 We can also ask the simulator to associate a Trace object to a
particular buffer: $ns trace-queue $n(1l) $n(2) $file

[Queue monitor: Very useful objects to get statistics about the motion
of packets through a particular buffer of the simulated topology. Among
others, we can at any moment read the number of packets (bytes) that
have arrived to the buffer, the number of packets (bytes) that have
left, the number of packets that have been dropped, etc.
set monitor [$ns queue-monitor $n(l) $n(2) stdout]

puts $file “[$monitor set pdepartures (barrivals) (pdrops)1”

Q Flow monitor: Very useful objects to get statistics about the motion of
packets of a particular flow through a buffer of the topology. This class
uses the colors that we can associate to flows: $tcp set fid 1

Chadi BARAKAT - INRIA 24 ;" INRIA
Sophia Antipolis

Extract results from a simulation:
Flow monitor

 Define first the Flow Monitor that filters packets based on their Flow ID,
then associate it to the desired link and get a pointer to its classifier:
set flowmon [$ns makeflowmon Fid]
set L [$ns link $SR1 S$SR2]
Sns attach-fmon $L $flowmon
set fcl [$flowmon classifier]
O When statistics on a flow X are required, probe the classifier for packets
of that flow, then read statistics on that flow as with Queue Monitor:
set flowstats [$fcl lookup auto 0 0 X]
puts “[$flowstats set pdepartures (barrivals) (pdrops) ...1”

O lookup results in an error if no packets have not been seen from Flow X.

Chadi BARAKAT - INRIA 25 ;" INRIA
Sophia Antipolis

Extension of the simulator

O Two methods exist:

e Work with the C++ code, by modifying the existing classes and methods, or
by adding new classes (to implement a new protocol for example). This
method requires a knowledge of C++, and it is the most efficient since most
of the classes of " ns " are defined at the C++ level.

e Work with the OTCL code, by modifying the existing classes and methods,
or by adding new classes. This method requires a knowledge of OTCL. It is
less efficient than the first method, since we are not able to access from
the OTCL level to many functions and variables defined at the C++ level.

e The choice of one of the two methods finally depends on the skills of the
programmer.

d A good knowledge of C++ and OTCL is a guarantee for a good
understanding and managing of " ns “ |l

Chadi BARAKAT - INRIA 26 ;" INRIA
Sophia Antipolis

