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1 Project COPRIN, INRIA, Sophia-Antipolis, France {Ignacio.Araya,
Bertrand.Neveu}@sophia.inria.fr

2 Department of Computer Science, Universidad Técnica Federico Santa Maŕıa,
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In this paper we introduce a hyperheuristic to solve hard strip packing pro-
blems. The hyperheuristic manages a sequence of greedy low-level heuristics,
each element of the sequence placing a given number of objects. A low-level
solution is built by placing the objects following the sequence of low-level
heuristics. The hyperheuristic performs a hill-climbing algorithm on this se-
quence by testing different moves (adding, removing, replacing a low-level
heuristic). The results we obtained are very encouraging and improve the
results from the single heuristics tests. Thus, we conclude that the collabora-
tion among heuristics is an interesting approach to solve hard strip packing
problems.

1 Introduction

In this paper we focus our attention on methods to solve the two-dimensional
strip packing problem, where a set of rectangles (objects) must be positioned
on a container (a rectangular space area). This container has a fixed width
dimension and a variable height size. The goal is, when possible, to introduce
all the objects in the container without overlapping, using a minimum height
dimension of the container. This problem is NP-hard and exact approaches
[18, 15] are in general limited to small instances. Four variants of this prob-
lem exist, depending on the possibility of rotation of the objects, and on the
presence of the guillotine cut constraint3.

In the literature many heuristic approaches have been proposed. In our un-
derstanding the most complete review has been presented in E. Hopper’s The-
sis [11]. However, in the last few years the interest in this subject has increased,

∗ This work was partially financed by the Fondecyt Project 1060377
3 This constraint requires that all objects placed in the container can be reproduced

by a series of guillotine cuts, i.e. edge-to-edge cuts parallel to the edges of the
container.
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and so has the interest in the number of research papers presenting new
approaches and improvements to the existing strategies. These approaches
are in general single heuristics or heuristics incorporated into metaheuristics
methods. Recently, the concept of hyperheuristic has been introduced and
successfully tested in different problems, [5]. The key idea is to tackle problems
using various low-level heuristics and develop a framework that controls the
applications of the heuristics. Using this framework the time consuming task
of designing an algorithm with special components for a specific algorithm is
reduced. This kind of approach is useful to obtain a good solution for a pro-
blem in a reasonable amount of time. It emphasizes a compromise between
the quality of the solution and the invested time for designing the algorithm.
Our goal is to show that hyperheuristics can be applied to solve Strip Packing
Problems providing effective solutions in an efficient way. Our hyperheuristic
is compared to other approaches using well known benchmarks. This paper
is organized as follows: First we present an overview of methods based on
heuristics to solve the strip packing problem, which are included in our hy-
perheuristic approach. Next we introduce our hyperheuristic. We will then
present the results obtained using the benchmarks. Finally, our conclusions
and future trends in this research area are presented.

2 Heuristics based Methods

In this section, we present a survey of the main heuristics for strip packing
problems and of the most efficient algorithms using them.

2.1 Various low-level heuristics

Baker in [2] introduced Bottom-Left heuristics (BL), which first orders the
objects according to their area. The objects are placed at the top and pushed
down and left as much as possible. This method was improved by Chazelle [8]
and called Bottom Left Fit (BLF) : each object is located at the most bottom
and left possible place. Hopper [12] presented BLD which is an improved
version of BL, where the objects are ordered using various criteria (height,
width, perimeter, area) and the algorithm selects the best result obtained.
Lesh et al. in [16] focus their research on improving BLD heuristic. They
call their new heuristics BLD∗. In BLD∗ the objects are randomly ordered
according to the Kendall-tau distance from all of the possible fixed orders. This
strategy is called Bubble Search, [17] and can be applied to any constructive
algorithm in order to randomize a fixed ordering. As in GRASP, this strategy
repeats greedy placements with this randomized ordering until a time limit is
reached.

Another type of heuristics, Best Fit (BF) [6], uses a dynamic ordering for
the rectangles to be located. The algorithm goes through the possible places
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from the most bottom left one, and selects for each place the rectangle that
best fits in it (if it exists).

Let us now describe heuristics for problems with guillotine cut constraint.
The heuristics FFDH and NFDH proposed in [14] and BFDH proposed ini-
tially in [19], and modified by [3] as BFDH* are very similar. In each of them,
the objects are oriented such that their width is not lower than their height,
and they are ordered from highest to lowest. Each object is packed in a rect-
angular sub-area of the container in the bottom left corner. The width of the
sub-area is given by the container, and the height is given by the first ob-
ject packed in this sub-area. When it is possible to include the current object
to be placed into some sub-areas, it is positioned into the sub-area having:
the least available area for BFDH; the bottom available area for FFDH; and
the top area, if it is available, for NFDH. In other cases the algorithm opens
a new sub-area above the existing sub-areas positioning the current object
in the bottom left corner as the first object of this sub-area. BFDH* seeks
to improve this heuristic by allowing object rotations, so that when the al-
gorithm searches to include the current object into a sub-area it tests both
orientations.

Zhang et al. [21] propose a recursive heuristic HR for problems with guillo-
tine cut constraint. When the first object is positioned in the container (on the
bottom left corner) it identifies two remaining areas. It recursively continues
placing the remaining objects. To improve the performance of the heuristic,
the authors present a deterministic algorithm (HRalg) that gives priority to
the objects with bigger areas. Zhang et al. claim that their algorithm quickly
obtains good results on Hoper’s benchmarks.

For our approach we have selected HR, BF, BLF, BFDH* as the low-
level heuristics for problems without guillotine cut constraint, because they
have shown to be individually competitive. For problems with guillotine cut
constraint the selected heuristic are HR and BFDH*.

2.2 Metaheuristic approaches

These and other low-level heuristics have been used in metaheuristic approa-
ches, as tabu search, simulated annealing, and genetic algorithms. The first
idea is to build an initial solution by a low level heuristic and to perform
a local search on the layout. Neveu et al. [20] present an incremental move,
which allows additions and removals of rectangles. They also implement a
generic metaheuristic using this move obtaining competitive results.

Other researchers prefer to work on the order of the objects for each po-
sitioning heuristic. In [12] they present a genetic algorithm and a simulated
annealing algorithm (GA+BLF and SA+BLF), both of which try to find the
best order for the objects to be placed in the container using the BLF strategy.

For the case of fixed orientation problems, the best approach to our knowl-
edge appears to be the GRASP based approach described in [1]. This approach
repeats the following two-phases algorithm: the rectangles are first placed by a
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slightly randomized BF like constructive phase. Then the solution is improved
by a strictly improving Variable Neighborhood Search (VNS).

On the other hand, Bortfeldt [3] introduced a Genetic Algorithm called
SPGAL and obtained the best results known in the literature for the problems
allowing the rectangles to be rotated. The algorithm generates an initial popu-
lation using a BFDH* heuristic which is an improvement of the BFDH heuris-
tic initially proposed in [19]. This heuristic works with a layer structure, that
takes into account the guillotine cut constraint. The genetic algorithm directly
performs a search in this layer structure. For problems without the guillotine
cut constraint, a post-optimization procedure breaks this layer structure. The
same genetic algorithm is used in [4] for bigger instances (1000 pieces). It is
divided in GA-1, GA-2, GA-3 and GA-4, each of them initialized with diffe-
rent parameters. The procedure is only applied to problems with the guillotine
cut constraint, because the post-optimization procedure is negligible for large
instances [4].

Burke et al.[7] hybridize the best-fit heuristic with metaheuristic ap-
proaches such as tabu search (BF-TS), simulated annealing (BF-SA) and
genetic algorithms (BF-GA). BF-SA obtains the best results.

3 The hyperheuristic approach: H-SP

The hyperheuristic framework manages a set of low-level heuristic and tries to
find a way to apply them. There are some genetic inspired hyperheuristics in
the literature to solve combinatorial problems [9, 10]. However, in most of the
cases, they use a representation that just corresponds to a simple sequence of
low-level heuristics to be applied.

We have chosen to build a simple hyperheuristic that manages a sequence
of low-level greedy heuristics. From the analysis of the four selected low-level
heuristics we can remark the following:

• Performance changes according to the order of the objects and their rota-
tion.

• The data structure to obtain a good implementation code is not always
the same for all of these heuristics.

Taking into account these remarks, we have designed a new hyperheuristic
approach which allows us to include a good individual implementation for
each heuristic considering them as black boxes. They communicate following
a protocol for modifying the current state of the search (the floor with the
objects already located by the preceding heuristics and the remaining objects
to locate) as shown in figure 1.
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Fig. 1. H-SP: Hyperheuristic for Strip Packing

3.1 Representation

The representation structure used is a constructive algorithm formed by the
sequential composition of constructive heuristics among a set H . A configu-
ration X is thus a constructive algorithm:

X = h1(p1, n1) ∗ h2(p2, n2) ∗ ... ∗ hk(pk, nk) (1)

Where h1, ..., hk ∈ H are the constructive heuristics, p1, ..., pk ∈ P are
parameters to initialize the heuristics and ni is an integer number that repre-
sents the amount of pieces that the heuristic hi must place. ∗ is the sequential
composition operator.

The sets P and H depend on the kind of problem that will be solved (with
or without guillotine constraint, with or without rotation allowed).

Let N be the number of pieces to place inside the container. The next two
constraints must be satisfied:

ni > 0, ∀i = 1...k (2)

k∑

i=0

ni = N (3)

The parameters pi are related to the order and the rotation of the pieces
before the placement. The basic order criteria used are: decreasing heights
(DP), decreasing widths (DW), decreasing areas (DA) and decreasing perime-
ters (DP). The rotation criteria used are: width greater or equal than the
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heights (W ≥ H), heights greater or equal than the widths (H ≥ W ), rotate
no object (NR) and rotate all the objects (All R).

Figure 2 shows a configuration example with 3 heuristics. To translate the
configuration into the problem, the heuristics are evaluated sequentially. The
first is BLF, the parameters p indicate that the rectangles must be ordered
by decreasing weights (DW) and rotated with their widths greater or equal
than their heights (W ≥ H). Just when the process of ordering and rotation
has been realized, the BLF heuristic will begin to place the pieces inside the
container (n = 4 pieces, corresponding to the white rectangles). The rectangle
numbers indicate the placement order of the pieces.

BLF

n=4

p=DW, W>H

BFDH

n=6

p=DP, NR

Configuration

Translation into the Strip Packing Problem

HR

p=DH, All_R

n=3

1

2

3

4

5

6

7

8

9

10

11 12

13

H

Fig. 2. Configuration example
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3.2 Moves

The local search operations that we have defined in our high-level structure
allow heuristics to be added, deleted and replaced from the configuration.
These operations are applied with equal probability.

Let the current configuration:

XC = h1(..)∗ ...∗hi−1(pi−1, ni−1)∗hi(pi, ni)∗hi+1(pi+1, ni+1)∗ ...∗hk(..) (4)

The add operation selects random values i ∈ {1..k}, hadd ∈ H , padd ∈ P

and nadd ∈ {1..ni}. The return of the operation is a new configuration:

X ′

C = ... ∗ hi−1(..) ∗ hadd(padd, nadd) ∗ hi(pi, ni − nadd)... (5)

If ni − nadd is equal to 0, the heuristic hi is simply eliminated from the
configuration. The key idea of this operation is to include new heuristics in a
different step of the algorithm in order to obtain a better cooperation among
them.

Figure 3 shows an example. The new heuristic is located in the third
position of the configuration, reducing by n′(2) the next heuristic n value.

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

HR

p=DH, All_R

n=3

BFDH

n=12

p=DH, H>W

i=3

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

HR

p=DH, All_R

n=3

BFDH

n=12

p=DH, H>W

BF

p=DA, NR

n’=2 -2=1

k=4

before the operation:

after the operation:

Fig. 3. Example of the add operation

The remove operation selects a random value i ∈ {1..k}. The return
operation is a new configuration:

X ′

C = ... ∗ hi−1(pi−1, ni−1) ∗ hi+1(pi+1, ni+1 + ni) ∗ ... (6)

If the random value of i is equal to k, then:

X ′

C = ... ∗ hk−1(pk−1, nk−1 + nk) (7)

The idea here is to allow the algorithm to discard some heuristics obtaining
better results without them.
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BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

HR

p=DH, All_R

n’=3

BFDH

n=12

p=DH, H>W

i=3

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

BFDH

n=12

p=DH, H>W

k=4

+3=15

before the operation:

after the operation:

Fig. 4. Example of the remove operation

Figure 4 shows an example. The third heuristic is removed from the con-
figuration and the value of n′(3) is added to the next heuristic n value.

The replace operation selects random values i ∈ {1..k}, hrep ∈ H and
prep ∈ P . The operation returned is a new configuration:

X ′

C = ... ∗ hi−1(..) ∗ hrep(prep, ni) ∗ hi+1(..) ∗ ... (8)

The idea of this operation is to give more exploration capability to the
algorithm.

Figure 5 shows an example. The third heuristic in the configuration is
replaced by a new one, with new parameters p and the same value of n.

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

HR

p=DH, All_R

n=3

BFDH

n=12

p=DH, H>W

i=3

k=4

BLF

n=4

p=DW, H>W

BFDH

n=6

p=DP, NR

BLF

p=DA, H>W

n=3

BFDH

n=12

p=DH, H>W

before the operation:

after the operation:

Fig. 5. Example of the replace operation

All these operations maintain the constraints (2) and (3) satisfied. The
representation and the defined operations allow the hyperheuristic algorithm
to reach a wider combination between low-level heuristics.
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3.3 Evaluation Function

Our approach uses the traditional fitness function for strip-packing [12], which
is to minimize the container’s height used. It is supposed that the container’s
width is fixed. The quality of a constructive algorithm or configuration is
evaluated according to the quality of the solution that it obtains.

3.4 Procedure

The hyperheuristic explores the space of constructive algorithms (Xs) by
starting from an initial and random generated configuration (X0). To do that,
our approach follows a Hill-climbing procedure, thus in each iteration it is
applied one random operation to the algorithm and if the new algorithm
X ′

C is better or equal than the current one (XC), then X ′

C will be the new
algorithm for the next iteration.

In order to escape local minima, we have performed for each H-SP test 10
restarts. It means that one execution of H-SP of 100 seconds corresponds to
10 hill-climbing procedures of 10s each.

The initial algorithm is X0 = h1(p1, n1)∗h2(p2, n2)∗ ...∗hm(pm, nm), with
h1 6= h2 6= ... 6= hm and m = #H , in other words, all the heuristics are used
once to construct X0. The values of pi are selected at random from the set P ,
and the values of ni are fixed satisfying the equation (9):

ni =
i × N

m
−

i−1∑

j=1

nj (9)

For example, if m = 4 (#H is also 4) and the amount of pieces N is 47,
the four heuristics in set H will be selected in some order, the parameters pi

will be randomly selected from P and the values of n1, n2, n3 and n4 will be
respectively 11, 12, 12 and 12.

Algorithm 1 shows the procedure. RandomAlgorithm function generates
the initial constructive algorithm. Add, Remove and Replace functions, per-
form the operations described in 3.2. Evaluate function executes the generated
algorithms and obtains their fitness. Finally the best solution can be obtained
executing the Best Algorithm.

4 Tests

We have performed two kinds of tests. The first one compares the results
obtained using low-level heuristics with the results of our hyperheuristic ap-
proach. We report the quality of the solution found and the percentage used of
each single low-level heuristic in the hyperheuristic. The second test compares
H-SP with the best reported results from the strip-packing state of the art.
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Algorithm 1 H-SP(T ime Limit)

for i = 1 to 10 do

restart time()
X0 ← RandomAlgorithm(H, P, N)
Best Algorithm← X0

XC ← X0

while time()< Time Limit/10 do

select RandomNumberFrom(1..3)
case 1: X ′

C ← Add(XC)
case 2: X ′

C ← Remove(XC)
case 3: X ′

C ← Replace(XC)
end select

if Evaluate(X ′

C) ≥ Evaluate(XC) then

XC ← X ′

C

end if

end while

if Evaluate(XC ) ≥ Evaluate(Best Algorithm) then

Best Algorithm = XC

end if

return Best Algorithm
end for

4.1 Benchmarks

For these tests we use the 21 Hopper’s instances classified in 7 classes
C1, . . . , C7, according to their size. The optimal solution of each instance is
known, [12]. We also report the results obtained using Bortfeldt’s problems
that have been recently proposed in [3]. He has defined 360 instances of strip-
packing problems with 1000 rectangles and unknown optimal solutions. There
are 12 sets of problems and 30 instances belonging to each set. They differ
in four factors related to the objects to be placed: width, area, heterogeneity
and maximum dimension ratio.

The hardware platform for the experiments was a PC Pentium IV, 2.66Ghz
with 1024 MB RAM under Debian operating system. The algorithm has been
implemented in C++.

4.2 Comparison with low-level heuristics

The Table 1 shows the results, using Hopper’s instances and allowing rotation,
found by each single heuristic and the average and the best results obtained
by our H-SP algorithm over 10 runs. In order to compare H-SP with low-level
heuristics, we limited the running time of H-SP to 20 seconds.
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The set H , in this test, is composed of the heuristics BLF,HR,BFDH*,BF,
in their original versions 4. And the set of parameters P is composed of all
combinations of types of ordering (7) and types of rotation (4) for the remain-
ing objects.

Each low-level heuristic is evaluated with each parameter in P (7×4 = 28)
and the best solution is shown, the time for each instance is not superior to 1
second. The results are calculated as the percentage from the optimal solution
(gap(%) = solution−opt

opt
).

Table 1. Gap to the solution for low-level heuristics and H-SP

Class Low-level heuristics H-SP20s
BLF HR BFDH* BF Average Best

C1 6.6 6.6 6.6 5 0 0

C2 13.3 8.8 8.8 8.8 0.89 0

C3 11.1 6.6 6.6 6.6 2.22 2.22

C4 4.4 3.8 3.8 3.3 1.67 1.67

C5 2.6 2.6 2.6 2.6 1.26 1.11

C6 3.1 2.7 2.7 2.5 1.28 0.83

C7 2.6 2.6 2.6 2.2 1.17 0.97

Average 6.24 4.81 4.81 4.42 1.21 0.97

The quality of the solution found by the low-level heuristics has been
strongly improved by the final constructive algorithm XF given by our frame-
work. The execution time of XF is comparable to the execution time of low-
level heuristics (in C7 instances, XF and BLF take 0.0045s and 0.0035s, re-
spectively, to construct a solution).

In Table 2, we report the average percentage of pieces that each heuristic
of the set H places in the final constructive algorithm XF for each kind of
problem.

We can remark that each problem requires a different combination of the
low-level heuristics. This is the advantage of the implicit natural adaptation of
the hyperheuristic framework. We remark that BFDH* tends to be less applied
as the size of the problem increases, while BLF shows the exact contrary
behavior. A pattern cannot be identified for both BF and HR heuristics. Note
however that BF has been used more frequently than HR. In addition, HR
is more useful in solving smaller problem categories. Thus, the application
percentage of the low-level heuristics depends on the problem instance to be
solved. Furthermore, the algorithm is able to self-adapt to the problem at
hand.

4 Originally each heuristic can decide when rotate or not an object, for the case of
no rotation allowed instances, this functionality is not used.
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Table 2. Average use of low-level heuristics in H-SP

Class Low-level heuristics

BLF HR BFDH* BF

C1 9.24 30.00 54.45 6.27
C2 11.14 27.17 11.95 49.72
C3 29.71 15.80 0.23 54.24
C4 34.46 24.41 8.52 32.59
C5 40.19 10.76 3.70 45.33
C6 15.82 10.97 1.95 71.25
C7 99.68 0.31 0 0

Average 34.48 13.07 5.49 46.94

Figure 6 shows a typical final constructive algorithm and its solution for
a class C7 instance (especifically the C72 instance).

4.3 Comparison with State-of-the-art Algorithms

Tables 3 and 4 summarize the best results found in the literature [1, 3,
4, 12, 13, 16, 18, 21], and the results obtained by our hyperheuristic for the
Hopper’s instances. The results are calculated as the percentage from the
optimal solution (gap(%) = solution−opt

opt
).

Tests with rotation allowed (RF)

We have first studied the problems where the rotation of the rectangles is
allowed. Table 3 shows the results found in the literature for some algorithms
compared with H-SP. The algorithms GA+BLF and SA+BLF [12], were run
on a Pentium Pro 200 MHz with an average time per run of 674 minutes
for SA+BLF and 136 minutes for GA+BLF. The deterministic algorithm
HRalg [21], was run on a 2.4GHz CPU, with an average time per run of 5.59
seconds (0 seconds for C1 instances, 36 seconds for C7). SPGAL [4] reports
an average time per run of 159 seconds on a 2GHz Pentium and the algorithm
was run 10 times for each instance. The H-SP algorithm have been run 10
times with execution times of 100 and 1000 seconds for each instance. The set
H is composed of the heuristics BLF, HR, BFDH* and BF, in their original
versions.

Results in Table 3 show that H-SP gives good quality solutions and even
better solutions than various other algorithms for the problem (metaheuristics
and heuristics) except for the SPGAL algorithm. This algorithm is especially
designed for these benchmarks and evaluates all possible rotations for each
object to be positioned.
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BF

n=6

p=DH, W>H

BLF

n=1

p=DA, W>H

HR

p=DA, H>W

n=41

BLF

p=DH, NR

n=148

BFDH

p=DP, H>W

n=1

Fig. 6. Solution for instance C72
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Table 3. Gap to the solution for Hopper’s instances with rotation allowed (RF)

Class GA+ SA+ HRalg SPGAL H-SP100s H-SP1000s
BLF BLF Average Best Average Best Average Best

C1 4 4 8.33 1.7 1.7 0 0 0 0

C2 7 6 4.45 0.9 0 0 0 0 0

C3 5 5 6.67 2.2 2.2 2.22 2.22 1.78 1.11

C4 3 3 2.22 1.4 0 1.67 1.67 1.67 1.67
C5 4 3 1.85 0 0 1.11 1.11 1.11 1.11
C6 4 3 2.5 0.7 0.3 1 0.83 0.83 0.83
C7 5 4 1.8 0.5 0.3 1.03 0.97 0.69 0.56

Average 4.57 4 3.97 1.06 0.64 1 0.97 0.87 0.75

Tests without Rotation (OF)

We have also tested the algorithms considering the same benchmarks, but
without allowing object rotations. To this test, the set H is composed of the
heuristics BLF, HR, BFDH* and BF, in their no-rotation-allowed versions.
The set P is reduced to only order parameters (rotation have no sense).

Table 4 shows the results found by some algorithms compared with H-
SP. The GRASP algorithm has been run 10 times on a 2GHz Pentium, the
stopping criterion is of 60 seconds. BF+SA [7] has been run 10 times on a
2GHz Pentium with a limit of 60 seconds per run. Iori et al.[13] algorithm was
run 300 seconds on a Pentium III at 800Mhz. SPGAL [4] reports an average
time per run of 160 seconds on a 2GHz Pentium and the algorithm was run
10 times for each instance. The H-SP algorithm have been run 10 times with
execution times of 100 and 1000 seconds for each instance.

Table 4. Gap to the solution for Hopper’s instances without rotation (OF)

Class Iori BF+ SPGAL GRASP H-SP100s H-SP1000s
algorithm SA Best Average Best Average Best Average Best

C1 1.67 0 1.67 0 0 1.33 0 1 0

C2 2.22 6.25 2.22 0 0 0 0 0 0

C3 2.22 3.33 3.33 1.11 1.11 2.22 2.22 2.22 2.22
C4 4.75 1.67 2.78 1.67 1.67 2.11 1.67 1.67 1.67

C5 3.93 1.48 1.48 1.11 1.11 1.18 1.11 1.26 1.11

C6 4.00 1.39 1.67 1.58 1 1.39 1.11 1.22 0.83

C7 — 1.77 1.25 1.39 1.25 1.08 0.97 1 0.97

Average 3.13 2.27 2.06 0.98 0.88 1.33 1.01 1.2 0.97

Up to now, GRASP was the best approach. We obtained better average
results than GRASP in the two biggest classes (C6 and C7).
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4.4 Tests with Bortfeldt’s instances

We performed three series of tests with the 360 large new random instances
proposed by Bortfeldt and Gehring [4], subdivided in 12 sets of 30 in-
stances. For all these instances, the optimal solution is not known. We use
as performance index the gap with the continuous lower bound clb [4] (

gap(%) =
(bestfound−clb)

clb
).

In Table 5 we have compared the Bortfeldt’s algorithm GA4 (based on
SPGAL) with H-SP. In the second and third columns we consider the problems
type RG, that requires guillotine cuttings and allows objects to be rotated.
For these set of problems the average execution time of algorithm GA4 is
895 seconds on a 2GHz Pentium. For these guillotinable instances, the set
H is composed of low-level heuristics that respect that guillotine constraint.
The heuristics are only two: HR and BFDH* (Section 2.1). For each problem
instance the hyperheuristic is run once with a maximum execution time of
100 seconds.

In the fourth and fifth columns we consider the problems type OG, that
requires guillotine cuttings and where the orientation of the objects is fixed.
We used the same low-level heuristics as for RG instances. The average ex-
ecution time for Bortfeldt’s algorithm is 717 seconds on a 2GHz Pentium.
For each problem instance the hyperheuristic is run once with a maximum
execution time of 100 seconds and the average results are shown.

We also considered the problems type RF shown in the last column, where
guillotine cutting is not required and the objects may be rotated. The set H

is composed of the heuristics: BLF, HR, BFDH* and BF, in their original ver-
sions. For each problem instance the hyperheuristic is run once with maximum
execution times of 100 and 1000 seconds.

We can remark that we are competitive for all these RG and OG bench-
marks with Bortfeldt’s algorithm. Moreover with the type RF we can see that
we reduced the gap obtained for the RG and OG problems. This behavior was
expected, since RF problems are less constrained, nevertheless, Bortfeldt and
Gehring say that their algorithms (GA-4 is the best of them) obtain negligible
improvements when they are applied with the post-optimization process [4],
in other words, when they are applied to RF problems.

Our framework is flexible: we only had to change the set of low-level heuris-
tics in each case, and the framework gives us competitive results.

5 Conclusions

This research allows us to conclude that using a hyperheuristic approach can
improve the performance of single greedy heuristics. Moreover, the hyper-
heuristic is able to adapt itself to the problem by selecting a good combination
of these low-level heuristics. This framework is quite general: we have shown
that it could solve different strip packing problems (RF, OF, RG, OG). For
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Table 5. Gap to the solution for Bortfeldt’s instances

Set of Type RG Type OG Type RF

Problems GA4 H-SP GA4 H-SP H-SP H-SP
100s 100s 100s 1000s

1 2.44 3.39 4.43 4.89 1.44 1.01
2 1.86 1.92 3.79 3.70 0.99 0.74
3 2.61 1.54 3.07 2.32 1.26 1.07
4 2.34 1.04 2.85 1.64 0.75 0.62
5 1.27 3.11 2.08 4.12 1.07 0.82
6 1.04 1.67 1.68 2.38 0.76 0.61
7 1.87 1.59 2.39 2.13 1.60 1.46
8 1.18 1.51 1.62 1.92 1.08 0.92
9 3.03 2.12 4.34 3.45 1.25 0.76
10 1.78 1.27 1.67 1.52 0.52 0.38
11 1.87 1.46 2.45 1.97 1.32 1.12
12 1.83 1.58 2.12 2.03 0.61 0.54

Average 1.93 1.85 2.71 2.67 1.05 0.84

solving a new problem type, the major task is the selection of suitable and
efficient low-level heuristics. The hyperheuristic framework will allow cooper-
ation among them, hopefully improving their single behaviors.

For future works, we believe that adding new operations and low-level
heuristics can obtain configurations that explore in a better way the search
space.
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