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PRESIDENT’S MESSAGE 
 

On behalf of the organising committee, I extend a very warm welcome to the 24th Conference of 
the Association for the Advancement of Animal Breeding and Genetics. The format of this 
conference is necessarily different from earlier conferences, in response to the impact of the COVID-
19 pandemic and associated restrictions. Delegates are participating from hubs in a number of 
locations, but also on-line. 

The theme of the 24th Conference is ‘Widening the range of technologies used in animal 
breeding and genetics’ with an emphasis on the many new tools that are now available to improve 
animal breeding programs. These tools range from novel methods for developing additional 
phenotypes to innovative molecular approaches to increase the accuracy of genetic selection.  

Despite the changed conditions that many delegates have found themselves working under 
during the last 18 months, I am delighted to note that this has not slowed down the contribution of 
papers to AAABG. Overall, we have well over 140 papers for presentation at the 24th conference. 
These include: 

• 28 full-article papers published in a special edition of the journal Animal Production 
Science 

• Over 115 short communication papers published in the AAABG conference proceedings 
that will appear on the AAABG Home page. 

All delegates registered for the 24th AAABG conference will have full digital access to all papers, 
with the full text of special edition articles available via a password. The short communication 
papers, will also be available at a later date from the AAABG Home Page. In addition, all recordings 
of presentations of talks will be available, once initially presented, to all registered delegates, for a 
period of up to 3 months after the conference. 

The central day of this year’s conference, is a Breeder day. The organising committee decided 
to put it in the middle of the 3-day conference, to highlight the importance of addressing one of the 
main objectives of AAABG, which is ‘to promote communication among all those interested in the 
application of genetics to animal production, particularly breeders and their organisations, 
consultants, extension workers, educators and geneticists.’ All organising committees grapple with 
how to effectively meet this objective. Our attempt, taking place during the COVID-19 pandemic, 
although not as large as originally planned for at the Adelaide Convention Centre, should provide 
some learnings for future conferences to consider. 

The organising committee is grateful for the ongoing support of sponsors, especially for staying 
with us following a change to the conference format. We are also indebted to the Adelaide 
Convention Centre and the Adelaide Wine Centre, who returned all funds paid following 
cancellation of our venue bookings. Our thanks also to organisers of hubs, who have taken on 
responsibility for making arrangements at a local level so that delegates have the option to meet 
together close to their home location to participate in the conference. 

Finally, I thank members of the conference organising committee and Dr Sue Hatcher, our 
AAABG Editor, for all their hard work in making the 24th AAABG Conference possible. I am 
honoured to have had the privilege of being President of AAABG and leading the organising 
committee for the 24th Conference. 
 
Forbes Brien 
President 

 
  



iv 
 

ASSOCIATION FOR THE ADVANCEMENT OF ANIMAL BREEDING AND GENETICS 
 

2021 
 

TWENTY FOURTH CONFERENCE COMMITTEE 
 

President Forbes Brien 
President Elect Bronwyn Clarke 
Vice President Wayne Pitchford 
Secretary/Treasurer Chantal Barrass 
Editor Sue Hatcher 
  
Ordinary Committee Members Lynton Arney 
 Cynthia Bottema 
 Tong Cheng 
 Michelle Hebart 
 Stefan Hiendleder 
 Stephen Lee 
 Rudi McEwin 
 Judith Pitchford 
 Penny Schulz 
 John Williams (overseas member) 
  
Professional Conference Organiser Event Studio 

 
 
 
 

CITATION OF PAPERS 
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THE ASSOCIATION FOR THE ADVANCEMENT OF ANIMALBREEDING AND 
GENETICS1 INCORPORATED2 

 
OBJECTIVES 
(i)     to promote scientific research on the genetics of animals;  
(ii)    to foster the application of genetics in animal production;  
(iii)   to promote communication among all those interested in the application of genetics to animal 

production, particularly breeders and their organisations, consultants, extension workers, 
educators and geneticists.  

 
To meet these objectives, the Association will:  
(i)     hold regular conferences to provide a forum for:  

(a) presentation of papers and in-depth discussions of general and industry-specific topics 
concerning the application of genetics in commercial animal production;  
(b) scientific discussions and presentation of papers on completed research and on proposed 
research projects;  

(ii)   publish the proceedings of each Regular Conference and circulate them to all financial 
members; 

(iii)    use any such other means as may from time to time be deemed appropriate.  
 
MEMBERSHIP  

Any person interested in the application of genetics to animal production may apply for 
membership of the Association and, at the discretion of the Committee, be admitted to membership 
as an Ordinary Member.  

Any organisations interested in the application of genetics to animal production may apply for 
membership and, at the discretion of the Committee, be admitted to membership as a Corporate 
member. Each such Corporate Member shall have the privilege of being represented at any meeting 
of the Association by one delegate appointed by the Corporate Member.  
 
Benefits to Individual Members.  
• While it is not possible to produce specific recommendations or “recipes” for breeding plans 

that are applicable for all herd/flock sizes and management systems, principles for the 
development of breeding plans can be specified. Discussion of these principles, consideration 
of particular case studies, and demonstration of breeding programs that are in use will all be of 
benefit to breeders. 

• Geneticists will benefit from the continuing contact with other research workers in refreshing 
and updating their knowledge. 

• The opportunity for contact and discussions between breeders and geneticists in individual 
members’ programs, and for geneticists in allowing for detailed discussion and appreciation of 
the practical management factors that often restrict application of optimum breeding programs.  

 
Benefits to Member Organisations.  
• Many of the benefits to individual breeders will also apply to breeding organisations. In 

addition, there are benefits to be gained through coordination and integration of their efforts. 
 

1 AAABG was formerly known as the Australian Association for Animal Breeding and Genetics. Following 
the 1995 OGM the name was changed when it became an organisation with a joint Australian and New 
Zealand membership.  
2 The Association for the Advancement of Animal Breeding and Genetics is incorporated in South Australia. 
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Recognition of this should follow from understanding of common problems, and would lead to 
increased effectiveness of action and initiatives. 

• Corporate members can use the Association as a forum to float ideas aimed at improving and/or 
increasing service to their members.  

 
General Benefits. 
• Membership of the Association may be expected to provide a variety of benefits and, through 

the members, indirect benefits to all the animal industries. 
• All members should benefit through increased recognition of problems, both at the level of 

research and of application, and increased understanding of current approaches to their solution. 
• Well-documented communication of gains to be realised through effective breeding programs 

will stimulate breeders and breeding organisations, allowing increased effectiveness of 
application and, consequently, increased efficiency of operation. 

• Increased recognition of practical problems and specific areas of major concern to individual 
industries should lead to increased relevance of applied research.  

• All breeders will benefit indirectly because of improved services offered by the organisations 
which service them.  

• The existence of the Association will increase appreciably the amount and use of factual 
information in public relations in the animal industries. 

• Association members will comprise a pool of expertise – at both the applied and research levels 
– and, as such, individual members and the Association itself must have an impact on 
administrators at all levels of the animal industries and on Government organisations, leading 
to wiser decisions on all aspects of livestock improvement, and increased efficiency of animal 
production.  

 
CONFERENCES  
One of the main activities of the Association is the Conference. These Conferences will be structured 
to provide a forum for discussion of research problems and for breeders to discuss their problems 
with each other, with extension specialists and with geneticists. 
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ASSOCIATION FOR THE ADVANCEMENT OF ANIMAL BREEDING AND GENETICS 
 

FELLOWS OF THE ASSOCIATION 
 

“Persons who have rendered eminent service to animal breeding in Australia and/or New Zealand 
or elsewhere in the world, may be elected to Fellowship of the Association…” 
 

Elected February 1990 Elected September 1992 
R.B.M Dun K. Hammond 
F.H.W. Morley  
A.L. Rae  
H.N Turner  
  
Elected July 1995 Elected February 1997 
C.H.S. Dolling J.S.F. Barker 
J.R. Hawker R.E. Freer 
J. Litchfield  
  
Elected June 1999 Elected July 2001 
J. Gough J.N. Clarke 
J.W. James A.R. Gilmour 
 L.R. Piper 
  
Elected September 2005 Elected September 2007 
B.M. Bindon K.D. Atkins 
M.E. Goddard R.G. Banks 
H.-U. Graser G.H. Davis 
F.W. Nicholson  
  
Elected September 2009 Elected September 2011 
N.M. Fogarty B.P. Kinghorn 
A.R. Fyfe A. McDonald 
J.C. McEwan  
R. Mortimer  
R.W. Ponzoni  
  
Elected October 2013 Elected October 2015 
H.M. Burrow P.F. Arthur 
P.F. Fennessy D. Johnson 
G. Nicol K. Meyer 
P. Parnell B. Tier 
 R. Woolaston 
  
Elected October 2019 Elected November 2021 
S.A. Barwick F.D. Brien 
H.T. Blair D. Garrick 
S.W.P. Cloete J. Greeff 
I.W. Purvis B. Hayes 
 J.E. Pryce 
 J.H.J van der Werf 

 



x 
 

HONORARY MEMBERS OF THE ASSOCIATION 
 

“Members who have rendered eminent service to the Association may be elected to Honorary 
Membership…”  
 
Elected September 2009 
W.A. Pattie 
J.R.W. Walkley 
  



xi 
 

HELEN NEWTON TURNER MEDAL TRUST 
 
The Helen Newton Turner Medal Trust was established in 1993 following an anonymous 

donation to the Animal Genetics and Breeding Unit to perpetuate the memory of Helen Newton 
Turner and to encourage and inspire those engaged in animal genetics.  

Helen Newton Turner AO 
 

Trustees of the Helen Newton Turner Trust are: 
• Ms Kate Lorimer-Ward (Chair), NSW Department of Primary Industries (DPI) 
• Prof. Brian Kinghorn, University of New England (UNE) 
• Dr Robert Banks, Animal Genetics and Breeding Unit (AGBU) (UNE) 
• Prof. James Rowe, National Farmers Federation (NFF) 
• Mr Ian Locke, Association for the Advancement of Animal Breeding and Genetics (AAABG) 
 

THE HELEN NEWTON TURNER MEDAL 
The Medal is named after Dr Helen Newton Turner whose career with CSIRO was dedicated to 

research into the genetic improvement of sheep for wool production.  
The Helen Newton Turner Medal was first awarded in 1994 to Associate Professor John James 

and a list of all recipients to date is given below. The Helen Newton Turner Medallist is chosen by 
Trustees from the ranks of those persons who have made an outstanding contribution to genetic 
improvement of Australian livestock.  

The recipient of the Medal is invited to deliver an Oration on a topical subject of their choice. 
  

Medallists 
1994 J.W. James 2001 G.A. Carnaby 2011 R. Banks 
1995 L.R. Piper 2003 F.W. Nicholas 2013 M. Goddard 
1997 J. Litchfield 2005 K. Hammond 2015 A.R. Gilmour 
1998 J.S.F. Barker 2007 L. Corrigan 20147 A. Collins 
1999 C.W. Sandilands 2009 R. Hawker 2019 K.D. Atkins 

 
The Oration of the 2019 Medal recipient, Dr. Kevin Atkins, is reproduced in the AAABG Special 

Issue of Animal Production Science that accompanies these proceedings. 
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THE HELEN NEWTON TURNER BRIGHT FUTURES AWARD 

In 2021, the Trust established a new award, the Helen Newton Turner Bright Futures Award to 
recognise the achievements of an up-and-coming individual who is showing evidence of establishing 
a reputation for excellence in the field of animal genetics within Australia. 
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SUMMARY 

Australia’s beef and dairy industries will need to adapt very rapidly to projected climate 
change by 2050 if they are to remain productive. This review first highlights lessons learned in 
decades past in balancing productivity and adaptation, illustrated in a series of Vercoe and Frisch 
papers, that should not be overlooked as the industries push forward. New strategies made possible 
with genomics, including appropriately balanced selection for heat tolerance in dairy cattle to 
maximise productivity in projected future climates, are then described. Finally, a couple of novel 
strategies using genomic information, including sentinel herds, precision adaption traits, and 
chromosome segment stacking, are proposed.  
 
INTRODUCTION 

According to the International Panel on Climate Change Report (2021), the rate of change in 
temperature is accelerating and a 2°C increase from pre-industrial times is expected by 2050 for 
most regions of Australia. This will significantly impact beef and dairy production systems in 
Australia. For example, by 2050 the currently temperate dairying regions in southern Australia are 
expected to have average daily temperatures, humidity and rainfall more similar to Tenterfield in 
New South Wales (https://www.climatechangeinaustralia.gov.au/en/projections-tools/climate-
analogues/). In northern Australia, summer temperatures are predicted to regularly exceed 50°C. 
Although the production systems are suited to current climatic conditions, this paper asks ‘How 
can the Australian cattle industry adapt to a rapidly changing climate?’ We address this question 
from the perspective of an animal breeder – with the knowledge that 28 years is a relatively short 
timeframe for genetic change (7 generations at most). The objective of this paper is to review 
strategies proposed to achieve this, and to propose some new strategies made possible with the 
availability of genomics.   

This review is inspired by the framework described by Frisch and Vercoe (1984) for balancing 
adaptation and productivity potential. Frisch and Vercoe (1984), building on decades of elegant 
experiments with Bos taurus and Bos indicus cattle breeds and their crosses at Belmont Research 
Station in Rockhampton QLD, (Vercoe and Frisch 1969, etc), concluded: 

“Each breed was best suited to one particular environment. The general principle that arises 
from this is that resistance to environmental stresses will affect the capacity of breeds to express 
growth potential and will result in a change of ranking in different environments that may arise in 
different years, different seasons or at different locations.” 

“The task of the animal breeder to combine the adaptation traits of the Brahman with the 
growth potential of Bos taurus breeds.”  

While Frish and Vercoe (1984) were largely concerned with growth, the other major 
component of productivity, fertility was being addressed at the same time in the same place by 
Turner (e.g. Turner et al. 1983).  
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CROSSBREEDING AND COMPOSITES TO OPTIMISE ADAPTATION AND 
PRODUCTIVITY 

The insights of Vercoe, Frisch and Turner, and others, supported a major innovation in 
Australian cattle breeding, the creation and widespread introduction of composite breeds, both 
from Australia and overseas (e.g. Africander), in an attempt to balance adaptation and 
productivity. Composite cattle now dominate pastoral company holdings and are very widespread 
in Northern Australia.  

Creation of composite breeds was also attempted for dairy cattle, with the Australian Friesian 
Sahiwal and the Australian Milking Zebu (Tierney et al. 1986, Hayman 1974). However, these 
composites could not compete on milk production with Holsteins from southern Australia, 
particularly following deregulation.  
 
WITHIN BREED SELECTION FOR ADAPTATION AND PRODUCTIVITY 

Another pathway to improved productivity in harsh environments is within breed selection. 
Frisch and Vercoe (1986) recognised this possibility “In the case of the Brahmans there is no 
genetic alternative to selection unless other breeds that have higher resistance to environmental 
stresses, and ultimately, higher productivity, can be identified and imported. This avenue should 
be vigorously explored”. In other words, in particularly harsh environments, even composite cattle 
may not be sufficiently adapted, and selection within the most adapted breed becomes the only 
alternative. There are herds in Australia which exemplify this. For example, the Collins Belah 
Valley herd which has had sustained selection for high fertility, on both number of calves over the 
lifetime of cows and since it has been available, BREEDPLAN days to calving (the number of 
days to calving following bull in date). The genetic trend for days to calving in this herd is 
pronounced (Figure 1) and many of the cow herd produce a calf every year. It is interesting to note 
that these gains have been achieved by selecting for a productivity trait – days to calving, without 
selection for specific adaptation traits, in harsh environments. However, adaptation is of course 
indirectly strongly selected for, otherwise the cows would not survive to produce a calf. 

It should be pointed out that while major gains for fertility have been achieved in the Collins 
herd, in other Brahman and indeed Northern Herds, gains for fertility have been modest at best 
(Figure 1). This is in part due to the difficulty of recording fertility in extensive conditions. 
Genomic prediction offers new opportunities for selecting for fertility traits in these situations. 
This requires large reference populations to be established where animals are both recorded for 
fertility and genotyped for genome wide DNA markers, ideally in the harsh commercial 
environment which most cattle experience or will experience in the future. In Australia, both the 
Repronomics project (Johnston et al. 2019) and the Northern Genomics project (Hayes et al. 2019) 
have been set up with this aim. 
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Figure 1. Genetic trend for days to calving for the Brahman breed and the Collins Brahman 
herd (source ABRI) 
 
BREEDING DIRECTLY FOR FUTURE ADAPTATION – CAN WE BREED FOR 2050? 

It could be argued, as Vercoe and Frisch (1990) and Frisch and Vercoe (1984) effectively did, 
that selection on productivity in a challenging environment automatically selects for the 
appropriate level of adaptation – if the animals were not adapted, they would not perform (as 
demonstrated by the Collins herd). While it is challenging to breed cattle for productivity in harsh 
environments, it is even more challenging to breed for productivity when the environment is in 
flux or the projected future environment is not within the currently (feasible) production areas? 
The challenge then becomes, what is the best approach for a breeder to maximise adaptation and 
profitability in future environments? 

An interesting case study here is heat tolerance. Nguyen et al. (2016) described a web-based 
tool which allowed dairy farmers to appropriately weight heat tolerance in their selection decisions 
given projected climate on their farm in 2050 (using CSIRO and BoM projections (2015)). The 
heat tolerance trait they used was for each cow the regression of test day milk production on 
temperature humidity index on that test day (Nguyen et al. 2016). The GEBV were validated in a 
chamber experiment by Garner et al. (2017), in which cows high and low for heat tolerance GEBV 
were measured for milk production before and after a simulated heat wave event. To answer the 
question how much emphasis in a selection index should be placed on heat tolerance, in order to 
maximise future profitability, Nguyen et al. (2016) first estimated genetic correlations between 
key dairy traits. Milk production and heat tolerance were negatively correlated (-0.85) while 
fertility (six week in calf rate) and heat tolerance were positively correlated (0.39). Nguyen et al. 
(2016) then derived selection index weights (per dairy farm) for traits in the Balanced Performance 
Index (the Australian dairy selection index, Byrne et al. 2016), and heat tolerance, given projected 
future climates for individual dairy farms, as predicted by CSIRO and BoM (2015). Using this 
approach, Nguyen et al. (2016) could show predicted future profitability was higher as a result of 
including heat tolerance in the selection index.  

Another approach to selecting for productivity in increasingly harsh conditions might be to 
dissect adaptation more precisely, and select for these precision traits. For example, differences in 
nitrogen metabolism are associated with animal adaptation to environmental stress. Heat stress 
increases water intake and nitrogen losses, with Bos indicus cattle being less vulnerable to 
increased nitrogen losses because of their ability to restrict urine output during high temperatures 
(Vercoe 1976). Together with the lower fasting metabolic rate of Bos indicus cattle (Frisch and 
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Vercoe 1977), it became clear that both energy and nitrogen metabolism were integral part of the 
breed adaptation to hot environments and low protein diets. Recently, Prada e Silva (2021) devised 
an isotope test for tail hair that could determine the proportion of dietary versus body derived 
nitrogen, and demonstrated this was correlated with both growth rates and fertility. Selection for 
simple and cheap proxy traits such as these may accelerate breeding of animals that perform well 
on low quality diets and are adapted to very harsh conditions. 
 
NOVEL USES OF GENOMIC INFORMATION TO BREED CATTLE FOR 
PRODUCTION IN 2050. 

The Australian beef industry, and to a lesser extent the dairy industry, has a unique advantage 
in responding to future climates. With a huge range of breeds and environments, the harshest 
environments can be used a proxy for future conditions in regions that currently have more 
moderate climates. The cattle in these harshest environments could be a “2050 genomic reference” 
population, to develop GEBV for performance in the future predicted environment, as part of 
Australia’s effort to ensure the ongoing productivity of the cattle industry. This could occur even 
though the studs where the selection is made are in much more moderate environments, as is 
common with the stud sector.  

Finally, genomic information could also be used to deliver a twist on the Vercoe and Frisch 
vision of combining the adaptation traits of the Brahman with the growth potential of Bos taurus 
breeds. The genomic information can be used to produce breeding values for growth, fertility 
traits, nitrogen use efficiency, and adaptation traits for the haplotypes (unique chunks of the 
genome) in populations, rather than the individuals in those populations. For example regions of 
the genome associated with adaptation were recently identified by Kim et al. (2020), by 
identifying genome regions that had been selected for 1000s of years in Bos indicus x Bos taurus 
composite cattle in harsh environments in Africa. This haplotype information, combined with a 
breeding strategy to rapidly “stack” the most desirable haplotypes (Kemper et al. 2015) could be 
used to breed the “ultimate” composite cattle anticipating future climates.   

 
CONCLUSION 

Future climates will force many changes on the beef and dairy industries in Australia. This 
review has highlighted lessons learned in decades past, i.e. the Frisch and Vercoe opus of 1984, 
that should not be overlooked as the industries push forward. The use genomic tools offer new 
opportunities to realise their vision for optimising adaptation and productivity.    
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SUMMARY 

Livestock well-being can be defined as a wicked problem. It is difficult to approach and ever 
evolving due to its multifaceted characteristics and multiple stakeholders of influence. Well-being 
consists of two areas: health and welfare. This review outline some of the areas that contribute to 
health and welfare research and explores the role of genetic improvement in advancing livestock 
well-being as an overarching concept. It is concluded that due to the complex qualities of the 
problem, an interdisciplinary approach is required to create lasting change. 
 
INTRODUCTION 

A variety of definitions exist for animal welfare, health, and well-being (Lerner 2008). In a 
research context, health and welfare have evolved as separate streams of science. Welfare research 
explores the effects of the environment and husbandry procedures on an animal’s’ physical and 
mental well-being. Animal health research is concerned about functional mechanisms that 
contribute to disease resilience and the effect of disease on animals’ physical well-being. Here 
animal well-being is defined as the term that encompasses animal health and welfare. 

The ethical treatment of livestock is increasingly the focus of animal welfare groups, advocacy 
ranging from requesting alternatives to animal husbandry practices to elimination. Such scrutiny 
could pose a threat to the social licence of livestock farming (Martin and Shepheard 2011), 
potentially threatening livestock producer’s livelihood. The red meat industry is taking a pro-
active approach with “world class animal health, welfare, biosecurity and production practices” 
being one of the six priorities in Red Meat 2030, which sets the direction for the red meat 
industries for the next decade (Red Meat Advisory Council 2019). However, the improvement of 
livestock well-being is a “wicked” problem (Rittel and Webber 1973). A wicked problem has ten 
inherent characteristics: 1) it is difficult to define; 2) it is hard to measure success; 3) it can only be 
improved rather than solved; 4) approaches have to be made up; 5) multiple explanations exists, all 
stemming from individual opinions; 6) it is interconnected and a symptom of another problem; 7) 
mitigation strategies do not have a ultimate test of success; 8) it has little scope for learning 
through trial and error; 9) every wicked problem is unique and; 10) planners are liable for their 
consequences. Approaching a wicked problem requires an understanding of the complexity, 
interconnectedness and of the multiplicity of stake holders involved. Selective breeding, adapting 
the animal, is an integral part of the approach, next to management interventions, adapting the 
environment, to move towards improved livestock well-being. This review is exploring the role of 
genetic improvement in advancing mitigation strategies to the wicked problem of livestock well-
being.  

 
ASSESSMENT OF ANIMAL WELL-BEING 

The traditional definition of animal well-being, based on the framework of The Five Freedoms 
(Table 1), was adopted into RSPCA Australia policy in 1993. It outlines key aspects of animal 
well-being, including physical and mental requirements of animals. Whilst it is relatively easy to 
assess the vigour and health of an animal, it is exceedingly difficult to assess the mental state 
which is a subjective perception by the animal and the assessor.  

Grandin and Johnson (2009) argue that the concept of freedom is difficult, and it is necessary 
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to understand the underlying emotions. They give the example that it might be assumed that 
chickens that are kept in predator safe barns are free of fear. Chickens have evolved to be only free 
of fear when they can hide to lay their eggs and it is irrelevant if that is indoors or outdoors. To 
understand emotions in animals research has been conducted into “affective state” (Boissy and Lee 
2014). Affective state has two dimensions 1) the extent to which the state is negative or positive 2) 
the level of arousal which can be high or low (Mendl et al. 2010). Methodology to assess affective 
state provides a useful model for experimental validation of the mental state of animals (Graunke 
et al. 2013; Monk et al. 2018). However, currently methods do not exist that can provide such an 
assessment at a scale necessary for inclusion in a breeding program.  

 
Table 1. The Five Freedoms 
 
Principle Implementation 
Freedom from hunger and thirst by ready access to fresh water and a diet to maintain full health and 

vigour 
Freedom from discomfort by providing an appropriate environment including shelter and a 

comfortable resting area 
Freedom from pain, injury and 
disease 

by prevention through rapid diagnosis and treatment 

Freedom to express normal 
behaviour 

by providing sufficient space, proper facilities and company of the 
animal’s own kind 

Freedom from fear and distress by ensuring conditions and treatment which avoid mental suffering 
 

Although it is obvious that several commercial husbandry procedures (e.g. castration, tail 
docking), are associated with pain, the level and duration of pain that an animal experiences 
following such procedures is difficult to assess objectively. Pain models based on physiological 
and behavioural responses have been developed (Landa 2012). Objective measures (e.g. cortisol 
levels) are difficult to obtain, because they are influenced by multiple factors and are expensive, 
while observation of behaviour is also species specific, with some species not expressing pain very 
overtly (Landa 2012). However, models exist and have underpinned the successful development of 
advanced pain relief options for sheep (Smith et al. 2017; Colditz et al. 2019).  

Remote animal sensing technology provide opportunities not just for precision farm 
management, but also for the collection of animal behaviour data at high frequency at the level of 
the individual animal (Handcock et al. 2009), which can be used for novel trait development of 
welfare traits and possibly assist in disentangling social interaction effects (Pérez-Enciso and 
Steibel 2021). Biosensors and wearable technology can be used to collect data for animal health 
related traits, such as stress, heat load and disease occurrence which can inform management and 
could also be used as phenotypes for genetic improvement (Neethirajan 2017) 
 
ADAPTING THE ANIMAL TO THE ENVIRONMENT  

Whilst management strategies to improve livestock well-being, such as pain relief and 
appropriate husbandry systems, adapt the environment to the animal, genetic improvement 
provides the parallel mechanism to adapt the animal to the environment. It has been demonstrated 
that selection for production traits with little consideration to well-being traits can lead to 
unfavourable correlated responses in trait complexes related to animal well-being, such as 
reproduction, metabolism and health traits (Rauw et al. 1998). The challenge for genetic 
improvement strategies of livestock well-being is the integration of often novel and difficult to 
measure traits into existing breeding programs. Fundamental research is required on trait 
measurements, the establishment of genetic and phenotypic relationships with other traits and 
determining an economic value for welfare traits, because it is difficult to attach a monetary value.  
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Genetic and genomic strategies have been developed to improve livestock well-being and will 
continue to have significant impact, as highlighted by the following examples in sheep and cattle. 
Australian Wool Innovation Limited collaborated with the CSIRO and the Western Australia 
Department of Agriculture and Food to explore the genetic background of breech strike resistance 
to provide tools to industry to cease the practice of mulesing for breech flystrike control (Smith et 
al. 2009; Greeff et al. 2014). The research projects identified dag, breech wrinkle and breech cover 
as suitable indirect selection criteria for breech flystrike and since 2009 estimated breeding values 
for these traits have been reported by Sheep Genetics, the Australian sheep performance recording 
system (http://www.sheepgenetics.org.au/Home). Direct selection on breech flystrike is feasible in 
the future through genomic selection (Dominik et al. 2021). 

Single genes for five recessive conditions in Angus cattle have been identified and genetic tests 
provide information on the carrier status of bulls for informed purchasing decisions 
(https://www.angusaustralia.com.au/registrations/dna/genetic-conditions/). Rather than promoting 
the eradication of the recessive alleles, Angus Australia developed a policy for the use of carrier 
bulls, which has seen a drop in allele frequency from 7% to 2% whilst minimising the effect on the 
genetic gain for production traits (Teseling and Parnell 2013).  

Angus Australia has also been fostering the improvement of general disease resistance, termed 
immune competence, in the Angus breed (Angus Australia 2019). Immune competence is 
moderately heritable and yields accurate genomic breeding values that can be used as a long-term 
strategy to improve livestock well-being. The approach will see fewer animals affected by disease 
which reduces the reliance on antibiotics in the Angus industry (Hine et al. 2019).  

Genetic improvement in cattle well-being related traits, such as temperament, calving ease and 
structural soundness, have been advanced through the inclusion of these traits in BREEDPLAN 
the Australian beef cattle genetic evaluation system. Selection for temperament was introduced to 
into BREEDPLAN Version 4.2 in 2002 in form of a docility breeding value. The phenotype and 
genetic background of the trait can be objectively assessed using flight speed and crush score 
(Fordyce et al. 1982). In sheep, a clear linkages exist between the temperament and mothering 
behaviour in sheep that can be exploited for genetic improvement (Brown et al. 2016).  

Next to selection on breeding values, genomic selection, marker assisted selection, also simple 
mass selection is often still applied to welfare related traits. For traits that affect longevity, 
breeding values might not be available. In sheep this could include traits such as leg conformation, 
shoulder confirmation, fleece rot and flystrike amongst others. Genetic gains can still be achieved 
if these traits are moderately heritable, but the practice compromises genetic gain towards the 
overall breeding objective because these cannot be balanced as part of the selection index. At the 
other end of the spectrum of selection strategies, precise gene editing (PGE) holds great promise 
for the improvement of livestock well-being, but its application is still debated. Great impact on 
animal well-being has been achieved in the cattle industry with genetic dehorning which alleviates 
the need for surgical procedures. The genetic test has been refined over the last 12 years to 
increase its effectiveness for prediction of the poll status (Randhawa et al. 2020), but PGE would 
be an even more effective strategy to reduce the frequency of the poll allele in a population 
(Mueller et al. 2019). Other applications of PGE have been demonstrated e.g. resistance to porcine 
reproductive and respiratory syndrome in pigs (Chen et al. 2019) and foetal sexing of layer chicks 
to avoid euthanasia of male chicks after birth (Doran et al. 2017).  
 
CONCLUSIONS 

Traditionally selection has furthered improvement in a number of trait complexes that are 
related to livestock well-being. Building on existing genetic and genomic tools a multidisciplinary 
effort is required to take advantage of behavioural and biological data from sensors to work 
towards a solution of the ever-evolving challenge of improving livestock well-being. Gene editing 
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may provide novel opportunities to improve livestock well-being, but it also increases the level of 
complexity of the wicked problem.  
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SUMMARY 

When the opening ceremony of the 2032 Brisbane Olympic games is televised, it will be the first 
time an Olympics will be viewed by humans on Mars and the Earth’s moon. Technological advances 
that will enable us to become a multiplanetary species, and to sustain and feed a long-term moon 
base are happening at such an extraordinary rate and enabling truly amazing feats of humanity. 
Whilst these may, at first glance, seem far-fetched ambitions, the scientific advances that are 
enabling these endeavours have immediate relevance to farming practices that will bring new 
efficiencies, productivity, new products, and ultimately new value to the producers who adopt them, 
and societies who purchase them. An example of these innovations will be in the explosion of 
measurement enabled precision interventions, based on the generation of decision enabling data. 
Critically, these advances will occur in human medicine before they are tested in livestock. 
However, the fundamental biological discoveries are still relevant and therefore innovations in 
human medicine can be rapidly translated to livestock. This measurement enabled understanding is 
extremely relevant to livestock production, where knowledge of the “mind and body” state of a 
dynamic and living organism is crucial. Here, a short summary of the types of technologies and 
biological breakthroughs they afford will be provided, with specific focus on humanities greatest 
health burden: PAIN. 
 
INTRODUCTION 

Diseases of the central and peripheral nervous system account for more than three quarters of 
the years humans live with disabilities (Institute for Health Metrics and Evaluation 2020). These 
diseases do not always result in death. However, disorders of the brain and spinal cord account for 
the greatest societal burden of disability because patients live a long time with these disorders in 
chronic pain or with mental health problems. Why is it that medicine and the scientific research that 
advances the quality use of medicines have failed to address these problems of the brain and spinal 
cord? The simplest and yet most important answer is that these disorders are very complex and 
involve multiple physiological systems. These disorders arise from developmental adaptations and 
involve a complex presentation of gene and environment interactions. As such, we currently lack 
knowledge of the “mind and body” state of the dynamic and living organism in humans. Sound 
familiar? We face the same shortcomings in available technology to quantify optimal strategies for 
livestock care and production. 

Unfortunately, the acceleration of the use of precision medicine in fields like cancer which are 
allowing for personalisation of treatments based on measurements (mechanistic biomarkers) have 
not yet developed for complications of the brain and spinal cord. Some advances have been made, 
such as the use of advanced imaging platforms such as fMRI, PET and measurements from EEG. 
However, despite these isolated advances, most diseases of the central nervous system are still 
approached with subjective diagnosis and empirical treatment selection. Moreover, even for human 
medicine, these complex imaging approaches will not economically scale to diagnose and manage 
three quarters of the world’s human population who are afflicted by disorders of the central nervous 
system. Let alone translate to farm based, livestock production tools. Therefore, new methods and 
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solutions are needed that create measurement enabled precision interventions that have translational, 
and scalability engineered into them from the beginning. 

Let’s take PAIN as an example where future innovations are needed. In livestock production, 
acute pain is experienced due to management procedures, such as castration and tail docking, 
injuries from fighting or housing conditions, diseases such as mastitis or other infections, and at time 
of birth. These acute injuries and acute painful experiences can transition into the persistence of 
pain, which has a profound impact on the wellbeing and resilience of the animal that cause increased 
costs and reduced productivity. Pain in animals is an experience that we are unable to reliably 
diagnose or quantify. Even when animals in pain are identified we are still left ineffective in 
verifying the success of interventional treatments. These limitations arise from our inability to 
objectively measure pain. This means that opportunities to add beneficial chronic pain resilience 
genetic traits to breeding values have yet to intentionally begin. We still use old medicines based on 
empirical data for the management of acute pain associated with injury, illness, and husbandry 
practices. We need new measurement data of the “mind and body” state of the dynamic and living 
organism to advance the management of pain in livestock.  

Within the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics we 
have established a decadal research program to meet this challenge. To create scalable, and hence 
economical fast solutions, we have harnessed light-based imaging and sensing tools to capture 
information from biological processes. The advantage of light based measurements is that it is 
capable of adapting over scales ranging from events occurring at the single molecule (nano), through 
to secondary and tertiary biological structures (micro) to subcellular and cellular anatomy (macro) 
(Hutchinson 2020). Moreover, light can be safe and non-destructive and is therefore uniquely 
positioned to be able to provide the desired measurement and imaging outcomes. The breakthroughs 
that are allowing the new use of light in these measurement technologies is afforded through 
optimisation of the technologies that enhance the light matter (in this case biology) interactions, 
creating customised light, sculpting how the light enters or interacts with matter, making structures 
and surfaces that allow sensing of events to occur when and where we want them and of course 
imaging beyond where light normally can go was needed (Hutchinson 2020). Given the brain and 
spinal cord are classically viewed as “dark”, the measurements and imaging here can be conducted 
on very low background noise. Finally, the cost to scale these technologies are rapidly decreasing 
and therefore they are becoming increasingly accessible to a broader range of scientists right through 
to handheld technologies in the field with producers.  

This measurement enabled innovation is not new to the red meat industry, with the Meat and 
Livestock Australia implementing the Meat Standards Australia many years ago. As of mid-2021 
the Meat and Livestock Australia have called for proposals on how to develop and implement the 
Lifetime Animal Wellbeing Index. It is critical to start efforts to improve outcomes in complex traits 
like pain and wellbeing from a basis of excellence in measurement. Without the development and 
implementation of measurement tools, significant efforts and resources can be expended that 
ultimately achieve suboptimal outcomes (i.e. a waste of time and money). The recent human 
medicine equivalent of this has been the greater than 5000% increase in opioid use in the 
management of pain states that have proven to be non-responsive to opioids. In fact, the Centres of 
Disease Control have defined opioids as contraindicated for all chronic pain (non-cancer pain) 
conditions owing to the substantial worsening of the individual’s quality of life and concerning 
fatality rates. 

Unlike human medicine, many experiences of livestock husbandry care are highly standardised. 
This makes for establishment of a quantified best practice highly achievable. An example of a 
potential routine trigger for the classical presentation of a persistence of pain in animals is 
amputation. Whilst on the decline in livestock, surgical removal of body parts is still widespread. 
This practice itself causes pain, resulting from the resection (cutting) of peripheral nerves and the 
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possible formation of traumatic neuromas and causes significant ongoing sensitisation at the level 
of the brain and spinal cord to mechanical stimuli. Light touch transitions to a painful response. 
Imagine grass blades running across sunburnt skin. The parallel amputation and the associated 
changes in brain and spinal cord function in humans is considered to be significantly painful 
(Hutchinson and Terry 2019). We cannot ever know what an animal feels or thinks and therefore 
we avoid anthropomorphising these states. Instead, we can use a reductionist scientific approach to 
examine at the molecular and cellular level events and anatomical structures of the sensory system 
in animals. We can then use comparative histology and classical biology to infer possible functional 
consequences. Using these approaches, it is possible to see the hallmarks of chronic pain in animals. 
This can be seen in cellular adaptations in both the injury site and within the brain and spinal cord. 
Importantly, these same changes are associated with the phenomenon of residual stump pain and 
phantom limb pain in humans. This is a prevalent experience as painful symptomatic neuromas 
following amputations are observed in up to a quarter of amputees. These types of measurements 
are now afforded through high volume and rapid light based sensing equipment, or alternatively 
cheap and disposable field based assays that can use light and cameras on mobile phone devices 
(Orth et al. 2018). 

It is important to also realise that the field of medical neuroscience is rapidly evolving. The 
international effort that the opioid pandemic has triggered has resulted in thousands of new studies 
that have identified hundreds of previously untested targets that could provide chronic pain solutions 
for humans. And of course, because of the highly conserved nature of these systems, many have the 
potential to be applied to livestock. One major area of growth has been the realisation that a solely 
neuronal or electrical view of brain and spinal cord function is wrong. We now view the brain and 
spinal cord as capable of immune functions, literally speaking the molecular language of the immune 
cells that circulate around our body. This has triggered a revolution in the pain field, as pain which 
was once thought of as solely a neuronal wiring problem has given way to an integrated neuro and 
immune hypothesis of exaggerated pain (Hutchinson and Terry 2019).  

Glial cells (immune-like cells of the brain and spinal cord), and peripheral immune cells 
circulating through the brain and spinal cord are now understood to be integral to creating and 
maintaining the neuroexcitatory states that underpin persistent pain (Grace et al. 2021). This has 
immense implications. Firstly, all the nerve block agents we use to “stop pain” may work to stop the 
“electrical signalling” of injury, but may do nothing to stop the immune signalling of pain which is 
able to bypass all nerve blocks and communicate directly to the brain and spinal cord to establish 
the foundation of chronic pain. Interestingly, the greater prevalence of exaggerated pain in females 
also appears to have its origins in this neuroimmune involvement, through estrogenic priming of 
immune functions. We know that male and female immunology differs with females more likely to 
have autoimmune disease. We also know that women experience up to 12 times the rate of chronic 
pain (Grace et al. 2021). Hence, the persistent pain problem, and the neuroimmune contributors are 
likely to be even more relevant in livestock owing to the predominance of female animals in 
production. Therefore, it is critical to understand this immune to brain and brain to immune 
communication between the peripheral immune, spinal immune and brain immune systems which 
create and maintain chronic pain states in livestock (Hutchinson and Terry 2019). Moreover, while 
neuronal processes are critical for the conduction of heightened pain, there is an anatomically 
distributed immune signal that triggers conduction of the exaggerated pain response (Marsh et al. 
2021). This breakthrough provides us now with the first opportunity to diagnose pain through a 
blood sample in livestock. To date, the translational benefits of these discoveries in the fundamental 
neuroscience of pain have passed directly to the human clinical setting, without changes in animal 
husbandry practices. This is a critical missed opportunity.  
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CONCLUSION 
We are at the cusp of a measurement science watershed moment, where quantification of “mind 

and body” state of the dynamic and living organism, such as pain and some emotional states will be 
possible in humans. Very similar technologies can be used in livestock to make these crucial 
measurements. However, we cannot wait decades for these innovations to spontaneously occur. If 
humanity reaches Mars before these opportunities have been translated to livestock production, we 
will have failed. We need to cultivate specific opportunities, and the relationships that develop from 
them, to allow for the tough questions to be asked and breakthrough ideas to be tested. If we can 
accelerate these translational opportunities in the future, then streams of research in neuroscience, 
immunology, pharmacology and biophotonics will emerge to equip the Australian livestock industry 
with world-first platform technologies that will be able to, for example objectively quantify pain in 
livestock. These new technologies will then be used to enhance livestock production practices. For 
example, it will be possible to rapidly identify new drug targets for their ability to block the 
persistence of pain, underpin productivity gains and an iteratively improve production and business 
practices. These capabilities will then all contribute to a greater understanding of how breed 
selection and defined genetic traits contribute to minimising chronic pain in livestock. Given this 
futuristic technology is on our doorstep, imagine what the plenary of the 2032 Association for the 
Advancement of Animal Breeding and Genetics meeting might be… Will we be talking about 
breeding selection technologies and traits that have be deployed in establishing the first 
interplanetary transfer of livestock? Only time and your imagination will tell…. 
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SUMMARY 
The future of genotyping is sequencing. A wide variety of technologies are available, but cost-

effective low coverage methods need further development. The downstream bioinformatics and 
statistics also have to be able handle the incomplete and noisy data produced. DNA sequencing-
based technologies separate into 3 classes: whole genome or skim sequencing, random sampling of 
the genome typically 0.05X coverage or less, and amplicon or equivalent technology for defined 
segments and variants. There will be a place for all three, possibly combined into a single sequencing 
assay. However, the most cost effective for genomic selection currently are random sampling 
methods: best known as genotyping by sequencing (GBS). Currently, most flavors of GBS are based 
on restriction enzyme reduced representational sequencing or RE-RRS. In the longer-term methods 
based on random selective primers and PCR may prevail. Increasingly, opportunities will be taken 
to contemporaneously explore DNA methylation, structural variation and the host microbiome. 
Nanopore and long read technologies will also be used, in part, to reduce infrastructure costs and 
reduce turn-a-round time. There is still a niche for array-based technologies, at least for the next 
decade, but if they are to persist beyond that date the ability to manufacture small runs of chips, cost 
effectively, coupled with further cost reductions will be required. As sequencing costs decline, 
research emphasis will shift to better DNA sampling and DNA extraction techniques. 
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SUMMARY 

In New Zealand, ~84% of methane and ~30% of total greenhouse gas emissions are derived from 
enteric emissions from grazing ruminants. Here, we show a simple estimation of the impact of 
implementing a national breeding scheme in sheep to reduce methane emissions, based on real on-
farm figures. We demonstrate how a modest change in breeding for environmental traits can lead to 
substantial changes in ruminant emissions. Currently there is uncertainty around how methane 
emissions at the farm gate will be valued. Our estimates show that breeding although slow, is a 
viable option to make real progress towards carbon neutrality with a very high rate of return on 
investment and a very modest cost per tonne CO2 equivalents saved regardless of accounting method.  
 
INTRODUCTION 

Methane is a greenhouse gas associated with climate change and approximately 84% of methane 
emissions in New Zealand are produced from grazing livestock (MfE 2020). Reducing methane 
emissions from livestock is therefore of environmental and economic importance. Ruminant animals 
primarily produce methane as a by-product of the complex microbial fermentation process in their 
rumen that breaks down feed to volatile fatty acids, which are absorbed through the gut wall and are 
a major source of energy for the animal (Matthews et al. 2019). Although the mechanism by which 
the host controls this fermentation process is not well understood, heritable individual variation has 
been shown to exist and methane mitigation has been shown to be possible through breeding (Pinare-
Paino et al. 2013, Jonker et al. 2018, Lassen et al. 2016). The impact of changes in methane 
emissions is generally measured by converting to carbon dioxide global warming equivalents 
(CO2e). The Global Warming Potential (GWP) of a greenhouse gas is its ability to trap extra heat in 
the atmosphere over time expressed as CO2e. This is most often calculated over 100 years and is 
commonly referred to as GWP100. While GWP100 is the accepted metric for describing the warming 
impact of greenhouse gases, it uses a single scaling factor that doesn’t account for methane being a 
short-lived gas in the atmosphere (Lynch et al. 2020). Recently, the use of warming potential or 
GWPw.e., based on warming equivalents, has been proposed. This accounts for the behaviour of 
change of methane emission in the atmosphere, and on its contribution to global warming over time.  

Over the past decade, two small sheep flocks (n = 100 ewes) have been selected for divergent 
methane yield, with low-methane sheep currently emitting 10-12% less methane than the high-
methane animals (Rowe et al. 2019). Furthermore, methane emissions have been measured in a 
research flock run under commercial conditions and methane breeding values included in a maternal 
selection index at a hypothetical cost of NZD$100 per CO2e using GWP100. The development of 
portable accumulation chambers (PAC) to phenotype sheep and the demonstrated success, together 
with funding from the Pastoral Greenhouse Gas Research consortium has been used to successfully 
roll out methane measures on commercial farms. Research breeding values for methane emissions 
have been implemented within the national breeding scheme - Sheep Improvement Limited 
(Newman, 2009 Beef and Lamb New Zealand 2020). The realised genetic progress made in methane 
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breeding values has been used to estimate the impact of measuring a proportion of the New Zealand 
commercial flock.  

 
MATERIALS AND METHODS 

Animals. Data to estimate genetic gain was available from multiple sources. Genetic parameters 
were based on 15,000 methane records from sheep measured through portable accumulation 
chambers from flocks across New Zealand. Flock records for methane emissions recorded from 
2009 and performance traits recorded from 1995 to 2020 were also available for a 750 ewe, 
composite maternal flock (research flock 2638) where selection on an index that included methane 
was implemented in 2018.  

Over the last two years over 5,000 sheep have been measured across ram breeders’ farms for 
methane emissions (grams CH4 per day) using PAC. The number of sheep measured per farm varied 
from 84 to 268. This demonstrates that given current infrastructure, that ~5,000 measures are 
physically possible across the national flock annually. Based on this, we assumed that ~2.5% of all 
lambs born into the stud tier (n=~200,000) could be measured annually. 

For predicting the impact of breeding for low methane, we assumed a 20-year time horizon with 
a lowering of emissions through a combination of phenotyping and genomic prediction. We assumed 
no reduction of emissions for the first 5 years in the commercial flock due to genetic lag effects and 
a starting adoption rate of 0.3, which is the current penetration of genotyping in NZ sheep flocks, 
increasing adoption by 0.1 per year until 100% adoption in the breeding tier in year 8. We assumed 
200,000 lambs born each year into the stud tier with 2.5% of these (n=5,000) measured for methane 
and the remainder genotyped. Commercial production based on 2020 figures assumed 16.85 million 
breeding ewes producing 8390 kt CO2 equivalent. Methane was valued at NZD$50, $100 and $200 
per tonne CO2e.  

 
RESULTS AND DISCUSSION 

Figure 1 shows that in a research flock (2638) farmed under commercial conditions, 
implementation of methane into the index using a GWP100 and NZD$100/tonne CO2e led to a 
reduction of methane emissions by 1-2% per year whilst still maintaining genetic gain in the 
maternal index (without accounting for any gains made in methane).  
 
Figure 1 Genetic trends for New Zealand Maternal Worth (NZMW) index (cents) (left) and 
breeding values for methane emissions (PACCH4gBV measured in g CH4 per day) (right) in 
research flock 2638 and average recorded maternal flock 

Blue line denotes average recorded maternal flock (DP Flks Avg). Methane emissions were measured in the 
2638 flock from 2009 and were added to the selection index of flock 2638 in 2018.  

 
Variation in breeding values for grams of methane emitted for all commercial flocks was similar 
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across farms, commonly ranging from ~-1.5g to +1.5g grams per day. This suggests that there is 
sufficient variation segregating in the general population for genetic improvement. 

The commercial and physical impact of a national breeding scheme to lower methane emissions 
was estimated as 0.58%/year using genomic selection. After 20 years, annual methane production 
in 2040 was predicted to have reduced by 7.5% per annum saving a total of 4490 kt of CO2e over 
the 20-year period (Figure 2) with a cumulative saving of CO2e assuming GWP100.  
 
Figure 2 Predicted annual and cumulative savings in methane emissions measured in carbon 
dioxide equivalents (kt) based on a 0.58% genetic gain per year 

 
Assuming 5,000 sheep measured annually, methane measures at a cost of NZD$30 per measure 

and genotyping at a cost of $25 per animal, the total cost of implementing the scheme over the 20-
year period including additional genotyping of stud animals by breeders was estimated at NZD$31 
million. This includes capital expenditure of NZD$200,000 on PAC measuring equipment. The 
marginal cost of reducing a tonne of CO2e was estimated at $1.72. This includes losses made in 
years 1 to 5 due to genetic lag and low adoption rates in the early years. Assuming a tax rate of 28%, 
and cost of borrowing at 10%, the internal rate of return on a total investment of ranges from 42 to 
80% for GWP100 to 64-111% for GWPw.e. depending on the costs per tonne of CO2e (Table 1).  

 
Table 1. Internal rate of return for 0.58% genetic gain per year expressed at a national level 
 
 $tonne CO2e ∆G/year% NPV(10%) $M1 IRR2 
GWP100 50 0.58 41.6 42% 
 100 0.58 94.1 60% 
 200 0.58 199.3 80% 
GWPw.e. 25 0.58 111.3 64% 
 50 0.58 233.6 85% 
 100 0.58 478.3 111% 
1NPV=Net Present Value,  2IRR =Internal rate of return  
 
CONCLUSIONS 

We have demonstrated a 1-2% reduction per annum in our commercial research flock since 
methane breeding values were included in the index, whilst maintaining genetic gain for all other 
traits. We have also estimated that if we achieve less than one half of this reduction in the breeding 
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tier in the national flock, given likely adoption rates, and including genetic lags in the deployment 
of improved livestock, we can use breeding to make a substantial contribution to methane mitigation 
at a very low cost to the industry. These benefits have been made achievable by the development of 
low-cost high throughput phenotyping for methane combined with the widespread adoption of 
genomic selection. Sheep account for 1/3 of enteric emissions in New Zealand with cattle 
contributing most of the remainder. There is currently a barrier to achieving reduction of methane 
emissions in cattle due to a lack of high throughput measurement technology. If this barrier were 
overcome, benefits from breeding would be potentially much greater than for the sheep industry and 
more straightforward to achieve, given widespread use of artificial insemination and the much lower 
effective population size. 
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SUMMARY 

Genetics of common disease and subjective well-being in human populations has been given a 
major boost in the last 15 years through genome-wide association studies (GWAS). Tens of 
thousands of loci have been identified that are robustly associated with one or more of these traits, 
with strong evidence for pleiotropy. Limitations for cross-species comparisons of traits, genes and 
pathways are the arbitrariness of defining phenotypes and the current lack of resolution in gene 
and variant mapping. Developments in both livestock and human genetic studies imply that better 
comparisons will be feasible in the near future. Methods underlying genomic prediction are 
converging between livestock and humans. 

 
INTRODUCTION 

The title of this short paper was suggested by the Organisers of the AAABG 2021 conference. 
The initial response to the question is ‘not a lot’, because humans can be asked directly about their 
well-being where inference in livestock has to be made otherwise, for example by measuring 
proxy phenotypes. Also, ‘Improving’ well-being in humans is by changing the environment 
whereas in livestock it is by genetic selection. Nevertheless, there may be room for cross-
fertilisation of the two disciplines on the topic of well-being, and we have tried to draw a few 
conclusions by reviewing what experimental designs and data have worked best in humans. 

 
MATERIALS AND METHODS 

Well-being can be defined in many ways. An operational measure in humans might be absence 
of disease or a long and healthy life. One definition that geneticists and economists are both 
interested in is called ‘subjective well-being’, which is asking individuals to rate themselves on 
well-being on a quantitative score. “Disease count” has been used as a quantitative trait in human 
genetic studies and is a sum of the presence/absence of a number of common diseases and 
disorders, measured in biobanks or obtained from electronic health records.  

 
RESULTS AND DISCUSSION 

Livestock and humans share biology and a number of studies have tested whether genes that 
explain variation for a particular trait in one species also explain variation is a similar trait in 
another. For the trait stature or size, this is clearly the case (Pryce et al. 2011; Kemper et al. 2012; 
Bouwman et al. 2018; Raymond et al. 2020). For other traits where the corresponding traits are 
less easy to define aligning “well-being” traits across species may not be straightforward. 

To our knowledge, the only study that has directly tried to integrate genetic analyses of 
livestock and humans for a well-being trait was a recent study using the trait of temperament, 
measured as flight time after release from a weighing box in beef cattle (Costilla et al. 2020). In 
fact, the study was initiated with the misplaced hypothesis that studying traits in livestock (where 
temperament can be measured objectively) could inform genetic analyses of behavioural traits in 
humans. It came as a surprise to us that human studies (using self-report questionnaire data) are 
very much more powered than cattle data sets to detect trait-marker associations, because of the 
superior experimental sample sizes. In that study we tested for enrichment of genetic associations 
for flight time in orthologous gene sets associated with the human behavioural trait of neuroticism 
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(quantitative measure of an anxiety-related emotional state), and three disorders of the brain: 
schizophrenia, an adult onset disorder with lifetime risk ~1%; autism spectrum disorder, a 
childhood onset disorder lifetime risk ~1% of the population; developmental delay disorders, 
which are less common with more severe early childhood behavioural traits and de novo 
mutations. We found evidence supporting shared genetic signals between flight time and autism 
spectrum disorders, perhaps because the age when the cattle were measured (10 – 14 months) 
equates best on the onset of these disorders in humans. In this study, we also integrated the cattle 
temperament associated genes, with gene expression measured in human tissues from the GTEx 
consortium. In summary, the study was less illuminating than we had hoped, but large sample 
sizes for human behavioural traits continue to accumulate, and the study provides a template for 
the analyses that can be conducted. 

GWAS have been conducted on disease account, subjective well-being and ‘life satisfaction’ 
on 100,000s of thousands of samples, all reporting multiple genome-wide significant loci (Okbay 
et al. 2016a; Zhu et al. 2018). Subjective well-being is genetically strongly negatively correlated 
with neuroticism and depression (OkbaY et al. 2016a) and utilising that information improves 
polygenic prediction accuracy (Turley et al. 2018). From functional enrichment analyses, all 
subjective well-being and traits correlated with it all point to the brain. More generally, there is 
clear evidence in humans that genetic variation that is associated with behaviour is correlated with 
risk of many diseases and disorders, likely in a causal manner. For example, a polygenic predictor 
(= EBV in animal breeding, see Wray et al. (2019)) for ‘educational attainment’ (= the number of 
years of schooling), which is an imperfect proxy for intelligence, is negatively correlated with risk 
of dementia and neuroticism (Okbay et al. 2016b). Although more research is needed, it appears 
that there are both behavioural and physiological pathways to many diseases. 

One known limitation of GWAS is that neither the causative mutations (polymorphisms) nor 
the target gene are identified, and that makes it hard to make meaningful species comparisons. 
However, sample size of exome and whole genome sequence studies are increasing, with the 
advantage that associated rare mutations that have predicted pathogenic effects (e.g., non-
synonymous coding mutations) are likely to be causal and the target gene is known. This will 
allow a better comparison of genes and pathways related to traits across species. Similarly, the 
identification of additional dominant and recessive mutations in cattle for a number of syndromes 
(Reynolds et al. 2021) may lead to improved identification or prediction of pathogenic mutations 
in humans. 

In addition to comparisons of genetic variation for well-being and disease traits in livestock 
and humans, there is increasing interest in humans in the application of polygenic (genomic) 
prediction. Although many researchers in human genetics don’t realise that genomic prediction has 
its origin in animal breeding, as pointed out by Wray et al. (2019), there is increasing convergence 
in (Bayesian) methods to maximise accuracy. Even though the primary purpose of genomic 
prediction is in identifying people in the population who are at high risk of developing disease, so 
that preventative or therapeutic interventions can be better targeted, there is also a growing interest 
in using genomic predictors in the context of IVF and embryo selection. Within-family genomic 
selection in humans! Not surprisingly, the theory presented on the expected gains and (in)accuracy 
of prediction in the context of embryo selection using polygenic scores (Karavani et al. 2019; 
Turley et al. 2021) could come straight out of an animal breeding textbook. Finally, for some traits 
(such as human height) the discovery (training) datasets are becoming so large that using 
statistically significant (GWS) loci only in the prediction is approaching BLUP and other Bayesian 
approaches that use all genetic variants. 

 
CONCLUSIONS 

Well-being and disease studies in humans are characterised by ever-larger genome studies, 
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many of which are now reaching millions of individuals. GWAS is slowly moving from using 
SNP arrays and imputation to the use of whole-genome sequence data, thereby facilitating a better 
identification of causal variants and target genes and, ultimately, better prediction accuracy. This, 
combined with more discovery of specific causative mutations and target genes in livestock 
species, will allow better comparisons of genes and traits across species. 
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SUMMARY 

Improving feedlot performance, carcase weight and quality is a primary goal of the beef industry 
globally. Here we used data from 3,408 Australian Angus steers from seven birth cohorts (2011 to 
2017) with genotypes for 45,152 SNPs. We report genetic parameter estimates and accuracies of 
genomic estimated breeding values (GEBV) for feedlot and carcase traits, namely feedlot average 
daily gain (ADG), carcase weight (CWT) and carcase Meat Standard Australia marbling score 
(MBL). Prediction accuracies were estimated based on traditional method as well as method LR. 
The average prediction accuracies across cohorts assessed with the traditional method were 0.28 
(ADG), 0.49 (CWT) and 0.50 (MBL), while method LR accuracies were 0.47 (ADG), 0.64 (CWT) 
and 0.59 (MBL). We found a strong correlation (0.74, P-value<0.001) between traditional accuracies 
and method LR accuracies. Heritability estimates were moderate to large (0.29 for ADG, 0.53 for 
CWT and 0.41 for MBL). The metrics of GEBV quality and heritabilities reported here suggest good 
potential for accurate genomic selection of Australian Angus for feedlot performance and carcase 
characteristics. 
 
INTRODUCTION 

Genomic selection represents a revolution in animal breeding. It enables the identification of 
superior animals through the estimation of genomic breeding values (GEBVs) for relevant 
quantitative traits (Goddard et al. 2010; Hayes et al. 2013). But the accuracy of GEBVs depends on 
several aspects including the size of the reference population and heritability of the trait (Goddard 
and Hayes 2009).  

In this sense, Legarra and Reverter (2018) have proposed the method LR, which provides 
estimates of accuracy and biases by comparing genomic predictions based on partial and whole data. 
This method has been successfully applied to data from several different species (Aliakbari et al. 
2020; Chu et al. 2019; Macedo et al. 2020; Silva et al. 2019).  

Here we used method LR and a traditional method to evaluate the accuracy of genomic estimates 
in Australian Angus cattle. Angus is the dominant breed in the Australian cattle herd with an 
estimated 5.6 million females influenced by Angus genetics, accounting for 48% of the national 
female heard (Angus Australia 2019). Considering its importance, we aimed at determining the 
potential for accurate genomic selection of Australian Angus for feedlot performance and carcase 
characteristics. 

 
MATERIALS AND METHODS 

The dataset used for this study was collected as part of the Australian Angus Sire Benchmarking 
Program (ASBP). It includes phenotypes, genotypes, and fixed effect information of 3,408 
Australian Angus steers from seven year of birth cohorts (YOB, 2011 to 2017) and imputed 
genotyped for 45,152 autosomal SNPs. The steers represent 12 breeding properties and 294 sires 
with an average of 11.5 progeny per sire, ranging from 1 to 27. The number of animals and sires (in 
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brackets) in YOB cohorts 2011 to 2017 are respectively 361 (35), 514 (48), 579 (44), 274 (25), 569 
(49), 575 (63) and 536 (56). 

Three phenotypes were analysed, including feedlot average daily gain (ADG, 1.59 ± 0.33kg/d), 
carcase weight (CWT, 432.99 ± 65.60kg) and Meat Standard Australia marbling score (MLB, 
494.66 ± 122.54). Variance components, heritabilities and genetic correlations were estimated using 
Qxpak5 (Pérez-Enciso and Misztal 2011). The linear mixed model used to analyse all traits 
contained the fixed effects of contemporary group (CG), including property of origin, year and 
month of birth, and date of measurement, age of dam (AOD) at birth of calf in years and the linear 
covariate of age at measurement. Contemporary groups were different for each phenotype due to the 
different measurement dates. The random additive polygenic and residual effects were fitted with 
assumed distributions N(0, G⨂VG) and N(0, I⨂VR), respectively, where G represents the genomic 
relationship matrix (GRM) generated using the first method of VanRaden (2008), VG is the genetic 
covariance matrix, I is an identity matrix, VR is the residual covariance matrix and ⨂ represents the 
Kronecker product. The analyses were undertaken in two stages. First, one multivariate (3-variate) 
analysis was performed with all traits. The resulting GEBV (ûw) from this multivariate analysis, 
based on the whole dataset, was used as the calibration in the computation of accuracy and bias. 
Next, a series of single-trait analyses were undertaken where the values from animals from a given 
YOB cohort were treated as missing. The resulting GEBV (ûp) from these univariate analyses based 
on partial data were used as the validation. 

To ascertain the quality of the resulting GEBV in the validation population we used: 1) 
Traditional accuracy, calculated as the Pearson correlation between a GEBV and its associated 
phenotype adjusted for fixed effects for individuals in the validation population, divided by the 
square root of heritability (Bolormaa et al. 2013); 2) Method LR Bias, calculated as the difference 
between the average GEBV of individuals in the validation population minus that using the 
calibration data; 3) Method LR Dispersion, measured for individuals in the validation population 
from the slope of the regression of  ûw on ûp; and 4) Method LR accuracy, computed for individuals 
in the validation population according to Legarra and Reverter (2018) as follows: 

ACCLR =  �
𝑐𝑐𝑐𝑐𝑐𝑐�𝒖𝒖�𝑤𝑤 ,𝒖𝒖�𝒑𝒑�

�1 + 𝐹𝐹� − 2𝑓𝑓�̅𝜎𝜎𝑔𝑔,∞
2

 

Where 𝐹𝐹� is the average inbreeding coefficient, 2𝑓𝑓 ̅ is the average relationship between 
individuals, and 𝜎𝜎𝑔𝑔,∞ 

2  is the genetic variance at equilibrium in a population under selection which, 
assuming the individuals in the validation population are not under selection, can be estimated by 
the additive genetic variance estimated from the partial dataset. 

 
RESULTS AND DISCUSSION 

Heritability estimates were 0.30 for ADG, 0.53 for CWT and 0.41 for MBL which are well within 
reported values in literature. For instance, Somavilla et al. (2017) using Bayesian GBLUP to 
evaluate feedlot ADG in Nellore cattle found a heritability of 0.31. For the carcase traits, Su et al. 
(2017) working with Hereford and admixed Simmental reported heritabilities of 0.48 and 0.43 for 
marbling score and 0.51 and 0.34 for CWT, respectively. 

Genetic correlations were high and positive between ADG and CWT (0.64) and close to zero 
between those 2 traits and MBL (0.05 and 0.04, respectively). These results corroborate literature 
that have reported low correlations between live/carcass weight and traits such as fat deposition and 
marbling (Nkrumah et al. 2007). 

The metrics of GEBV quality are presented in Table 1. Traditional accuracies were 0.28 (ADG), 
0.49 (CWT) and 0.50 (MBL), while method LR accuracies were 0.47 (ADG), 0.64 (CWT) and 0.59 
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(MBL). This is in accordance with the literature that reports greater accuracy for carcase traits than 
for live animal body composition traits (Boerner et al. 2014) and increased accuracy for traits with 
a higher heritability (Fernandes Júnior et al. 2016). We found a strong correlation (0.74, P<0.001) 
between traditional accuracy and Method LR accuracy (Figure 1). Values of bias for all the traits 
were fairly close to zero, showing an absence of bias. In the absence of bias, the expected value of 
dispersion is 1, which was observed for all traits.  
 
Table 1. Traditional accuracy (ACCT) and method LR accuracy (ACCLR), bias (BiasLR) and 
dispersion (DispLR) of GEBV for feedlot average daily gain (ADG), carcase weight (CWT) and 
marbling score (MBL), based on a 7-way cross-validation schema 

 
  ADG CWT MBL 
  Mean SD Min Max Mean SD Min Max Mean SD Min Max              
             
ACCT 0.28 0.11 0.08 0.42 0.49 0.07 0.40 0.58 0.50 0.06 0.43 0.60 
ACCLR 0.47 0.04 0.42 0.53 0.64 0.05 0.57 0.67 0.59 0.05 0.53 0.67 
BiasLR 0.00 0.01 -0.01 0.01 0.27 0.61 -0.54 1.20 -0.08 1.71 -2.14 2.13 
DispLR 0.97 0.15 0.74 1.17 0.99 0.09 0.83 1.10 0.98 0.09 0.88 1.13 

 

 
Figure 1. Relationship between traditional accuracy and Method LR accuracy for feedlot 
average daily gain (ADG), carcase weight (CWT) and carcase marbling score (MBL) 
according to the 7-way cross-validation scheme based on year of birth cohorts 

 
The relationship between heritability and GEBV accuracy is also reflected in the phenotypic 

differences between validation animals in the highest and lowest GEBV quartile (Table 2). Based 
on SD units, ADG shows a Q1-Q4 difference of 0.35, CTW shows 0.93 and MBL 0.89. This 
demonstrates that the higher the GEBV accuracy, the higher the genetic gain expected when 
selecting elite bulls to sire the next generation. 
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Table 2. Difference between highest and lowest quartile for adjusted phenotypes (feedlot 
average daily gain - ADG, carcase weight - CWT and marbling score - MBL) based on GEBV 
ranking 
 

Cohort ADG CWT MBL 
    
2011 0.00 33.57 103.47 
2012 0.14 33.25 116.36 
2013 0.08 34.44 99.20 
2014 0.10 25.90 78.60 
2015 0.08 28.36 85.45 
2016 0.13 31.51 86.56 
2017 0.09 20.53 60.19 
Average 0.09 29.65 89.98 
Average/SD* 0.35 0.94 0.89 

                                                     *Standard deviation of adjusted phenotypes 
 
CONCLUSIONS 

The metrics of GEBV quality based on method LR, including accuracy, bias, and dispersion, as 
well as the heritabilities reported here, suggest good potential for accurate genomic selection of 
Australian Angus for the analysed traits. Further analyses are being undertaken to include other 
relevant feedlot and carcass traits. 
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SUMMARY 

This study investigated the genetic relationship between eye muscle width and depth recorded 
via ultrasound on live animals and on carcases in two populations of Australian and New Zealand 
sheep. Genetic correlations between ultrasound and carcase muscle dimensions were estimated 
within populations. Carcase eye muscle dimensions have sufficient genetic variation to be included 
in sheep breeding programs. Genetic correlations between carcase eye muscle depth (CEMD) and 
width (CEMW), and between CEMW and ultrasound eye muscle depth (PEMD) in Australian sheep 
were lower than expected. On the other hand, high genetic correlations were observed between 
ultrasound depth and width recorded in different ages on New Zealand Merinos. These differences 
indicate further research about CEMW is required and the implications of current selection practises 
has on carcase eye muscle dimensions. 

 
INTRODUCTION 

Lean meat yield is an important driver of profit for producers, processors and retailers of sheep 
meat. Ultrasound scanned eye muscle depth is moderately heritable and strongly correlated 
genetically with eye muscle depth in the carcase. Consequently, the majority of genetic gain in the 
depth of the eye muscle and in turn lean meat yield has been achieved by seed stock breeders 
selecting upon the ultrasound trait in the live animal (Brown and Swan 2016). The strong genetic 
correlations between ultrasound scanned eye muscle depth and width, previously observed in several 
studies (Safari et al. 2005), has meant that Sheep Genetics (Brown et al. 2007) has provided breeding 
values only for muscle depth. This is in part also due to the greater difficulty in measuring eye 
muscle width via ultrasound. 

There are several studies that have reported on the genetic relationship between ultrasound 
muscle dimensions (Brito et al. 2017) and ultrasound and carcase measurements (Safari et al. 2005; 
Greeff et al. 2008; Mortimer et al. 2010), but often with low records. In the following study the 
genetic relationship between ultrasound and carcase eye muscle measurements was investigated in 
two different data sets: > 25,000 Australian Merino and Merino-cross sheep where eye muscle 
dimensions were measured both with ultrasound post weaning and on the carcase; and >30,000 New 
Zealand Merinos with ultrasound measurements at different ages. The objective of this study was to 
update the understanding of the relationship between these measurements and determine the impact 
selection decisions may have on the dimensions of the eye muscle in the carcase.  
 
MATERIALS AND METHODS 

Australian Dataset. Data from Australian Merino and Merino-cross sheep were collected 
between 2007 and 2019 from 35 commercial flocks, 8 Information Nucleus Flocks and the MLA 
Resource Flock (van der Werf et al. 2010). Ultrasound muscle scanners accredited through Sheep 
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Genetics (MLA) scanned eye muscle depth (PEMD) at the C site over the 12th rib, 45 mm from the 
midline at post weaning age (mean age 213±45 days). Carcase traits were measured using the 
procedures described in Mortimer et al. (2017b). The carcases were cut between the 12th and 13th 
ribs and eye muscle (M. longissimus thoracis et lumborum, LL) depth (CEMD) and eye muscle 
width (CEMW) were measured with vernier callipers. Mean animal age for carcase traits was 263 
(±76) days.   

New Zealand Dataset. Data from New Zealand Merinos were collected between 2009 and 2019. 
Animals were ultrasound scanned at the C site over the 12th rib and measured for eye muscle depth 
and width at post weaning (7 – 10 months, PEMD, PEMW), yearling (10 – 13 months, YEMD, 
YEMW) and hogget age (13 – 18 months, HEMD, HEMW). For both data sets live weight was 
recorded at the time of scanning and was used to adjust the ultrasound measurements for weight. 
Summaries for each trait are presented on Table 1. 

 
Table 1. Number of records, mean (standard deviation), coefficient of variation (CV) and 
number of sires and dams. CEMD: carcase eye muscle depth, CEMW carcase eye muscle 
width, PEMD and PEMW: post weaning ultrasound eye muscle depth and width, YEMD and 
YEMW: yearling ultrasound eye muscle depth and width, and HEMD and HEMW: hogget 
ultrasound eye muscle depth and width  
 
Dataset Trait Records Mean (SD) CV Sires Dams 

Australian  
PEMD 25,628 25.4 (4.8) 18.8 1,651 12,799 
CEMD 26,284 31.0 (4.7) 15.3 1,874 12,747 
CEMW 26,282 60.6 (5.5) 9.0 1,874 12,747 

New Zealand  

PEMD 3,251 26.1 (2.8) 10.7 169 3,251 
YEMD 6,591 27.9 (3.6) 12.8 339 4,038 
HEMD 21,616 27.8 (3.8) 13.5 752 11,118 
PEMW 5,616 68.8 (6.0) 8.8 144 2,760 
YEMW 6,596 71.6 (6.2) 8.7 342 4,040 
HEMW 21,087 71.1 (6.9) 9.7 733 10,629 

 
Statistical analysis. Within each dataset, variance components and genetic parameters for each 

trait were estimated using a linear mixed model and REML methods with ASReml software 
(Gilmour et al. 2015). Fixed effects included type of birth, contemporary group, sex (male or female) 
and the age of dam. The quadratic function of live weight (post weaning, yearling, hogget) and hot 
carcase weight were included to adjust the ultrasound and the carcase traits respectively. All models 
included the random effects of animal, genetic group (Swan et al. 2016) and sire × flock interaction. 
Maternal effects were not fitted since preliminary analysis showed they were non-significant. For 
Australian data set age of the animal was included as a fixed effect. For both datasets the animal 
effect represented the additive genetic variance. Contemporary group was defined by breed, flock, 
management group, sex, date of measurement and – for carcass data – kill group. Phenotypic 
variance was calculated as the sum of the additive genetic, sire × site and the residual variance. For 
each dataset, phenotypic and genetic covariance for all traits and correlations between traits were 
estimated using bivariate analysis in ASReml.  
 
RESULTS AND DISCUSSION 

Variance components and heritability estimates for ultrasound and carcase traits for each of the 
data sets are shown in Table 2. For the Australian dataset, heritability estimates were moderate for 
carcase traits ranging from 0.19 (±0.02) for CEMD to 0.27 (±0.02) for CEMW; higher heritability 
(0.32±0.02) was observed for PEMD. Similar heritabilities for CEMD and CEMW have been 
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observed in previous studies (Greeff et al. 2008; Huisman et al. 2016; Mortimer et al. 2017b). 
Heritability for PEMD for both data sets was higher than previously reported (Safari et al. 2005; 
Greeff et al. 2008; Mortimer et al. 2017a). Higher heritabilities were observed for the New Zealand 
Merino ultrasound traits: ranging from 0.23 (±0.03, YEMW) to 0.45 (±0.04, PEMD) (Table 2). 
Increased heritabilities have been observed in the past when live weight was used to adjust 
measurements (Mortimer et al. 2014). 

 
Table 2. Estimates of phenotypic (𝝈𝝈�𝒑𝒑), additive (𝝈𝝈�𝒂𝒂) and residual (𝝈𝝈�𝜺𝜺) variance and 
heritability (h2) for ultrasound and carcase eye muscle traits. Standard error in parentheses 
 
Dataset Trait 𝒉𝒉𝟐𝟐 𝝈𝝈�𝒑𝒑 𝝈𝝈�𝒂𝒂 𝝈𝝈�𝜺𝜺 𝝈𝝈�𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒙𝒙 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 

Australian  
PEMD 0.32 (0.02) 4.95 (0.46) 1.59 (0.1) 3.28 (0.08) 0.08 (0.02) 
CEMD 0.19 (0.02) 10.12 (0.09) 1.92 (0.18) 8.06 (0.16) 0.14 (0.05) 
CEMW 0.27 (0.02) 14.81 (0.14) 3.93 (0.3) 10.55 (0.25) 0.33 (0.08) 

New Zealand  

PEMD 0.45 (0.04) 3.15 (0.07) 1.35 (0.14) 1.76 (0.10) 0.03 (0.02) 
YEMD 0.34 (0.04) 3.42 (0.07) 1.13 (0.18) 2.16 (0.13) 0.13 (0.04) 
HEMD 0.31 (0.02) 3.78 (0.04) 1.16 (0.10) 2.49 (0.07) 0.13 (0.02) 
PEMW 0.29 (0.03) 10.01 (0.22) 2.86 (0.40) 7.09 (0.32) 0.06 (0.04) 
YEMW 0.23 (0.03) 9.48 (0.19) 2.20 (0.42) 7.01 (0.33) 0.27 (0.11) 
HEMW 0.27 (0.02) 10.56 (0.12) 2.82 (0.26) 7.46 (0.20) 0.27 (0.06) 

 
Estimates of genetic and phenotypic correlations between carcase traits and post weaning 

ultrasound eye muscle depth for the Australian dataset are shown in Table 3. The genetic correlation 
between PEMD and CEMD was strong (0.77±0.04), but for the same animals CEMD was only 
moderately correlated with CEMW (0.38±0.05). Moreover, the correlation between CEMW and 
PEMD was low (0.17±0.04).  

In contrast, for the New Zealand dataset, the correlations between ultrasound traits exhibited 
high genetic correlations between muscle depth and width at the same age (0.92±0.03 to 0.99±0.02) 
as well as between traits recorded at different ages (0.78±0.15 to 0.90±0.07, Table 4).  
 
Table 3. Estimates of genetic (below diagonal) and phenotypic (above diagonal) correlations 
and their standard errors (parentheses) between carcase traits and ultrasound post weaning 
eye muscle depth for Australian dataset (see Table 1 for abbreviations) 
 

  PEMD CEMD CEMW 
PEMD  0.23 (0.01) 0.06 (0.01) 
CEMD 0.77 (0.04)  0.09 (0.01) 
CEMW 0.17 (0.04) 0.38 (0.05)  

 
High correlations between PEMD and CEMD have previously been reported by Greeff et al. 

(2008) (0.77) and Mortimer et al. (2010) (0.82). Moderate positive genetic correlations between 
CEMD and CEMW found in this study were similar to Safari et al. (2005) (0.23) and Greeff et al. 
(2008) (0.41). Based on these results, carcase eye muscle depth appears to be a genetically different 
trait to carcase eye muscle width. These low correlations in carcase measures contradict the New 
Zealand ultrasound results for corresponding traits as well as previous studies using ultrasound eye 
muscle dimensions at post weaning age, where correlations between eye muscle depth and width 
ranged between 0.78 in Australia (Safari et al. 2005) and 0.82 in New Zealand (Brito et al. 2017). 
Lower genetic correlations between ultrasound and carcase measurements could be a result of 
ultrasound limitations to accurately predict muscle dimensions. Hopkins et al. (2007) showed that 
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ultrasound muscle depth measurements are subject to more errors in heavier sheep. Moreover, it 
would be beneficial for future investigations to include accurate animal age records since limitations 
might also include potential failure to properly account for age variation. 
 
Table 4. Estimates of genetic and phenotypic correlations between ultrasound eye muscle 
depth and width for different ages (post weaning, yearling and hogget) for New Zealand 
Merino (standard error in parentheses)  
 

  Genetic Phenotypic 
  PEMD YEMD HEMD PEMD YEMD HEMD 
PEMW 0.92 (0.03) 0.84 (0.16) 0.88 (0.09) 0.61 (0.01) 0.15 (0.94) 0.64 (0.23) 
YEMW 0.78 (0.15) 0.99 (0.02) 0.87 (0.07) 0.57 (0.46) 0.68 (0.01) 0.49 (0.03) 
HEMW 0.90 (0.07) 0.80 (0.07) 0.95 (0.01) 0.60 (0.21) 0.48 (0.03) 0.70 (0.01) 

 
CONCLUSIONS 

The high genetic correlation between ultrasound PEMD and CEMD means that ultrasound 
should continue to be used as a selection trait to improve CEMD. However, whilst ultrasound 
measures of EMD and EMW are strongly correlated with each other, their correlations with carcase 
measurements are weaker. In particular, further research is required to determine if current selection 
practices are changing the dimensions of the eye muscle within the carcase and increase the need 
for a CEMW breeding value. 
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SUMMARY 

The Australian dairy sheep and goat industries have been constrained by the size of the national 
flock and the geographical spread of flocks across the country. The absence of a national genetic 
evaluation system to underpin meaningful genetic improvement has contributed to the production 
performance of Australian dairy sheep and goat milk production being lower compared to the more 
developed dairy sheep and goat industries of Europe. Implementing a national genetic evaluation 
scheme will aid the development and future progress of the Australian dairy sheep and goat 
industries through identification and selection of the genetically superior animals. This study 
investigated the advantages of a genetic evaluation program for traits of value in Australian dairy 
sheep and goats, and outlined potential gains from implementing a breeding program. 
 
INTRODUCTION 

The potential to develop breeding programs within the Australian dairy goat and milk sheep 
industries is constrained by the small size of the national flock, geographical spread across the 
country in a variety of different environments and management practises, and the ability to measure 
phenotypes and record pedigree (Lindsay and Skerritt 2003). Despite these challenges, both the 
number of Australian milking goats and production volume increased more than 62% from 2012 to 
2018 (Zalcman and Cowled 2018). However, average production, expressed in number of kilos per 
lactation, is still lower than what is achieved in Europe. The dairy sheep industry in Australia is 
estimated to be growing around 10% annually (Cameron 2014) but it relies mostly on low yielding 
non-dairy crossbred ewes with low lactation persistency compared to animals used in other countries 
with more advanced dairy sheep industries (Lindsay and Skerritt 2003). Most Australian dairy ewes 
are East Friesian crossbred (Morrisey et al. 2007), and while their average flock milk yield is around 
40% lower compared to Europe, there is lots of variation within and between flocks, with the 
performance of a number of ewes being on par with European animals. Variation in milk yield within 
the flock is a necessary prerequisite for genetic gain, but standardised recording protocols are needed 
for effective genetic evaluation which in turn will enable genetic selection. This study investigated 
the advantages and potential genetic gains of a genetic evaluation system for traits of value in 
Australian dairy sheep and goats.  
 
MATERIALS AND METHODS 

Review of genetic parameters. Milk yield represents the majority of the total income in the 
dairy sheep and goat industries (Carta et al. 2009). For both dairy sheep and dairy goats almost all 
of the milk produced is used for cheese production, and thus milk content traits (fat and protein) are 
also important as they affect cheese yield and flavour. Therefore, increasing milk yield and 
improving milk quality (mostly though increasing fat and protein content) are the most important 
components of the breeding objective for most breeds (Ramon et al. 2010).  

For dairy goats, milk yield heritability ranged between 0.18 and 0.34 (Analla et al. 1996; 
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Scholtens et al. 2019), but can be higher when estimated per lactation (e.g. 0.30 for first lactation 
does; Arnal et al. 2020). A similar pattern was observed for fat and protein yield (Analla et al. 1996; 
Bélichon et al. 1999; Scholtens et al. 2019; Arnal et al. 2020). Genetic correlations between milk, 
fat and protein yield were high, with estimates reported between 0.77 and 0.95 (Bélichon et al. 1999; 
Manfredi and Ådnøy 2012). However, genetic correlations between milk yield and milk content 
(daily fat and protein percentage) were negative (-0.48 to -0.12) (Bélichon et al. 1999; Maroteau et 
al. 2014). 

For most dairy sheep breeds, milk yield standardised for lactation length was originally the only 
selection criterion, while milk content traits were added later. Yield traits (milk, fat and protein) 
were reported to have moderate heritability (between 0.16 and 0.32) with high genetic correlations  
between the yield traits (between 0.77 and 0.93) (Barillet and Boichard 1987; Carta et al. 2009). 
Similar to dairy goats, genetic correlations between milk yield and milk content for dairy sheep was 
negative but varied for different sheep breeds (-0.43 to -0.64) (Carta et al. 2009). 

Prediction of genetic gains. Predictions of potential genetic gain based on a defined breeding 
objective for within-flock selection was undertaken using MTINDEX (van der Werf 2019). It was 
assumed that milking does/ewes entered their first lactation at 12 months and they were maintained 
in the herd/flock for four lactations (generation interval of 2.5 years). All milking females were 
recorded for lactation yield with test day records available for fat and protein percentage. Two 
breeding objectives were tested; (1) single trait selection based solely on total milk yield and (2) 
multiple trait selection placing equal economic weighting on milk yield, total fat and total protein 
yield. Potential gains were modelled for small, medium and large herds/flocks with flock size 
modelled by varying the assumptions associated with progeny and half-sib records. The number of 
paternal half-sibs and progeny was assumed to be 10, 30 or 100 respectively for small, medium and 
large herd/flocks. The modelling utilised variance components and genetic correlations for yield 
traits compiled from literature: a) for dairy goats, heritability of 0.25 for milk, fat and protein yield 
and genetic correlations between 0.77 and 0.89 (Bélichon et al. 1999); b) for dairy sheep, heritability 
of 0.28 for milk, fat and protein yield and genetic correlations between 0.82 and 0.92 (Barillet and 
Boichard 1987). Heritabilities and genetic correlations between traits were similar for the two 
species, however there were big differences in phenotypic variance; in dairy sheep, fat and protein 
yield phenotypic variance was a lot lower (Barillet and Boichard 1987).    
 
RESULTS AND DISCUSSION 

Genetic Gains in Dairy Goats. Potential gains in milk yield were predicted to be between 1.08 
and 1.32 kg of milk per animal per year (Figure 1A), depending on farm size. Considering a national 
flock of ~ 30,000 milking goats (Zalcman and Cowled 2018), this equals to an additional 32k to 40k 
kg of milk per annum, which at Australian goat milk prices ($1.20 - $1.50/L, J Cameron pers. 
comm.) is worth between $38.4k and $60k per year to the industry. With cheese being a valuable 
product of the industry, selection targeting fat and protein content could increase fat and protein 
yields by 38.4k – 40.8k and 33.6k – 36k kg per year, respectively. 

Genetic Gains in Dairy Sheep. Potential gain from selection in dairy sheep was 1.04 to 1.28 kg 
of milk per animal per year (Figure 1B), depending on farm size. Australian national flock size for 
dairy sheep is smaller than that for dairy goats, estimated at ~5,000 milking ewes. Potential gain for 
dairy sheep is likely to be between 5.2k and 6.4k kg of milk per annum, and this is worth between 
$10.4k and $12.8k per year to the industry (sheep milk valued at $2/L, J Cameron pers. comm.). 
Selecting for fat and protein content could increase fat and protein yields by 1.3k and 1.26k kg per 
year, respectively. Differences between predicted fat and protein yield gains for dairy sheep and 
goats reflect differences in the observed phenotypic variance for these traits in the two species 
(Barillet and Boichard 1987; Bélichon et al. 1999). 



Contributed paper 

32 
 

 

Figure 1. Estimated genetic gains for dairy goats (A) and sheep (B) under scenarios for a 
small, medium and large flock (S, M, L) with the objective to maximise only milk yield (1) or 
to maximise milk, fat and protein yield (2) 

 
Implementation in Industry. For most livestock industries, prices received do not increase in 

real terms, but both fixed and variable costs do, resulting in what is usually known as the “cost-price 
squeeze”. The effect of this is that profit from an enterprise declines in real terms over time. The 
only way to offset this decline is to make continual productivity improvement(s). Genetic 
improvement is attractive because its effects are permanent and cumulative, and provided that 
improvement is sufficiently rapid, the cost-price squeeze can be offset.  

For highly productive dairy sheep and goat breeds, genetic improvement has been achieved 
through extensive recording and a pyramidal breeding structure (Barillet et al. 2001; Carta et al. 
2009). As a result, some European breeds have achieved remarkable genetic progress under genetic 
evaluation. For example, genetic gain for French Lacaune between 1980 and 1994 was estimated at 
around 6 kg/year (Ugarte and Gabina 2004). Average production for improved European dairy sheep 
and goat breeds was very different to average production of Australian animals. For example, 
average milk production for dairy goats in France was 963 kg/goat per annum (IDELE 2020a), while 
Australian dairy goats have been reported to produce 519 kg/goat (Zamuner et al. 2020). Similarly, 
Australian dairy sheep produce 168 kg/ewe (J Cameron pers. coms), while European breeds like 
Lacaune produce 330 kg/ewe per annum (IDELE 2019). Importing and including high performance 
animals would be beneficial for the local dairy sheep and goat industry, but is currently prohibited 
under Australian quarantine regulations (Lindsay and Skerritt 2003). Consequently, the Australian 
industries will need to utilise the genetic variation that exists within the current population to drive 
genetic gains. 

The principal implication from this study was that genetic improvement in dairy goats and sheep 
is quite feasible, and will generate significant benefits to producers. Achieving effective genetic 
improvement will require some changes in the current practice, principally in ensuring that records 
of milking performance are systematically collected, along with pedigree and fixed effects, and that 
the resulting data is appropriately analysed to produce EBVs, all of which will come at a cost to the 
operation (Banks and Walkom 2016). Previous investigations (Lindsay and Skerritt 2003) noted that 
despite reported support and enthusiasm from producers there has been very little progression to 
develop a genetic evaluation at the national level. This may be in part due to a lack of public support 
and R&D funding in these industries compared to other industries (Banks and Walkom 2016). 
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Overall, without national support the costs are too great for the smaller operations to bother 
recording and the larger dairies are potentially too time poor to lead a national genetic evaluation 
program.  

 
CONCLUSIONS 
This study provided an example of the genetic gains that could be achieved by the Australian dairy 
sheep and goat industries through appropriate recording schemes and genetic evaluation. The rate 
of genetic gain could be further improved with the use of genomic selection to increase the accuracy 
of breeding values and reduce generation interval. This will require groups like the Australian Dairy 
Goat Society to develop a vision and strategy for long-term genetic improvement, and seek to assist 
the R&D and extension funding to support it. It is quite likely that some individuals will move to 
implement modern genetic improvement systems of their own accord, but the “trickle-down” flow 
of superior genetics from such a fragmented approach will be slow, and in the absence of industry-
wide genetic improvement, goat and sheep dairying will remain a relatively small-scale industry in 
Australia. 
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GENETIC PROGRESS FOR ENVIRONMENTAL OUTCOMES - HOW DO WE GET IT? 
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AbacusBio Limited, Dunedin 9016, New Zealand 
 
SUMMARY 

Genetic improvement of traits in animals that affect environmental outcomes provides a rich 
opportunity for animal breeding researchers. Despite a growing imperative for action driven by a 
diverse range of stakeholders, real world application remains challenging. This paper highlights the 
difficulties that need to be overcome in terms of cost and practicality of novel selection criteria, 
change drivers including regulatory policy and farmer attitudes, and the implications of alternative 
breeding objective definitions. Clear and detailed policy direction along with cost effective 
monitoring of impacts will be pivotal to effective deployment of genetic mitigations.  
 
INTRODUCTION 

People of the world with a comfortable level of income and security are becoming increasingly 
concerned about the ability of the world to sustain the resource demand pressures and adverse 
external impacts of livestock farming. Ruminant livestock are a particular target because of their 
role in methane production, but all livestock farming systems are under pressure. The focus of this 
paper is primarily on greenhouse gas (GHG) emissions and nutrient leaching. A substantial body of 
research is underway to develop mitigation strategies, and some of this research has identified 
potential opportunities to apply directional genetic selection for traits that contribute to mitigation.  
However, there remains a persistent drag on application. The objective of this paper is to describe 
the factors that are limiting genetic selection for environmental traits, and to attempt to map out a 
path to overcome these limits. First, though we identify the selection criteria available and the critical 
consideration of perspective, to make sure the desired outcomes of genetic improvement for 
environmental traits are achieved.  
 
SELECTION CRITERIA 

A detailed consideration of traits that can be selected for and which might influence 
environmental outcomes is beyond the scope of this study. However, Wall et al. (2010) identified 
three types of traits. The most obvious category of traits directly targets biological functions of the 
animal that lead to improved outcomes (Type 1). Good examples of these traits are those that 
quantify methane emissions after accounting for food eaten.  Productivity traits that dilute 
maintenance (Type 2), and survival traits, and traits that reduce the need for replacement animals 
and the emissions associated with them (Type 3) are additional options for selection criteria. An 
emerging consideration relates to the potential for farm systems changes expected to result from 
new environmental policies imposed by regulatory authorities. Here, focus of genetic changes in 
some existing traits could facilitate a more profitable transition to more environmentally friendly 
farming systems through a reorientation of the breeding goal. This new focus would target functional 
traits such as fertility.   
 
PERSPECTIVE 

People of the world with income and personal security levels at or below the borderline for what 
is deemed necessary for basic human rights tend not to rate adverse environmental impacts as a 
priority. Despite the quality of life of these people often being adversely impacted by a severe 
deterioration in the environment they live, the acute priorities of basic nutrition, shelter, health, and 
security dominate their existence. This is a substantial proportion of the world’s population. Thus, 
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it is important to accept that the drive to improve environmental traits in livestock systems 
supporting disadvantaged people will be for general production efficiency, potentially including 
adaptability to climate change. It is likely therefore that, genetic gain for environmental traits will 
only obtain meaningful focus in developed livestock industries where efficient breeding programs 
are already in existence. Part of the driver will be a desire by well off consumers to make purchases 
of livestock products with a low environmental impact per unit of product.  

Global demand for livestock products has been growing at a very fast rate, largely driven by the 
emerging middle classes of developing countries. If we accept the rights of these emerging middle 
classes to make dietary choices, such as consumption of livestock products for personal gain and 
health that are still well below the levels of consumption of many developed countries, then there is 
an important perspective of food demand that shapes the direction of change. Of particular concern 
when taking a global perspective, is the potential for reductions in livestock product output from 
developed countries due to a focus on the environment, that would likely lead to a shift of livestock 
production into less efficient farming regions where environmental damage per unit of product is 
even greater.  

Strong drivers for environmental improvements exist at both national and regional levels. The 
focus here is typically on reducing the total amount of environmental pollution on a regional basis. 
For attributes of production that affect nutrient leaching, the focus is on a reduction in the total level 
of pollution, with an elevated focus in more sensitive catchments. For greenhouse gas traits, there is 
a strong drive to achieve commitments to reductions in the total national inventory of emissions.   
 
STRATEGIC OPTIONS 

The following opportunities exist for breeding for environmental outcomes:  
1. Status quo - Continue genetic gain on current trait change trajectories, quantify the environmental 
impacts, and argue that the reduced emissions intensity (emissions per unit of product) is sufficient. 
2. Artificial evolution - Develop novel selection criteria that make it cheaper and easier for breeding 
programs to make genetic change in traits that improve both farm profit and which also improve 
environmental outcomes (Amer, 2012). 
3. Index manipulation - Modify trait change trajectories through changes in breeding objectives 
and index weightings (Cottle et al. 2011) for existing traits to achieve:  

reductions in emissions intensity  
reductions in gross emissions per animal. 

4. Novel traits – Develop new selection criteria targeting animal physiology changes that will lead 
to improved environmental outcomes (Pickering et al. 2015; Beatson et al. 2019). 
5. Facilitate system change – Modify the breeding goal to target genetic changes that fit to future 
farming systems that have favourable environmental attributes. 

While options 1 & 2 above are legitimate alternatives many livestock industries are under 
pressure to make more substantial and pro-active changes. The most obvious candidate traits will be 
new measurement techniques and technologies that improve feed efficiency. However, pastoral 
farmers’ responses to improved feed efficiency are most likely to be through increased stocking 
rates to make sure all available pasture is used efficiently, and so pollution mitigation at a gross 
national output level (both leaching and GHG emission) from gains in feed efficiency could be 
minimal. The value of index manipulation to decrease selection emphasis on traits that increase 
gross emissions must also be treated with caution. The traits most unfavourably associated with 
gross emissions per animal are typically milk yield and animal growth rate. Genetic progress in these 
traits has been a long-standing driver of genetic gains in livestock efficiency, and so an emissions 
intensity philosophy which tends to favour rather than penalise these traits may in some cases lead 
to better long-term outcomes (Amer et al. 2018). The contra argument (i.e. for penalising traits with 
high emissions) is that a shift in selection emphasis away from genetic gain in milk yield and growth 
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rate traits could fit more closely with legislated reductions in farming system intensity. For example, 
seasonal calving pasture-based farming systems with limited supplementation. This option is under 
serious consideration for the dairy industries for New Zealand and Ireland. For nutrient leaching 
mitigation, a shift towards less intensive farming systems in sensitive catchments is an obvious 
solution. With less intensive systems, genetic traits that enhance the cost reductions required to offset 
the reductions in product revenue will potentially increase in relative value to maintain economic 
viability. 
 
POLICY 

Regulatory policy provides an important but complex backdrop to livestock production. In 
particular, over the next decade, new policy mechanisms are likely to emerge that will have profound 
effects on advanced livestock industries. History can provide many examples of how agricultural 
policies have had the opposite effects to what was intended. For example, agricultural policies 
targeting support for smaller family farms sometimes disproportionally benefit the larger corporate 
farms who are better able to navigate the bureaucracy and exploit new technological opportunities. 
Of particular interest to animal breeders, is the question of how these policies might change 
preference drivers for trait improvements. At this point in time, key details of these policies are not 
sufficiently clear to be helpful in informing future breeding directions.  

The primary target of policies to reduce environmental emissions from livestock industries 
should be to shift farm practice and land use from the most polluting to less polluting alternatives. 
For countries with relatively low greenhouse gas emissions intensity, there is potential leakage of 
emissions to less efficient competing industries when policies targeting emissions result in reduced 
domestic industry output. Because of the pressure on countries to do their bit in reducing their 
national GHG emissions it seems inevitable that countries with major livestock product exports will 
be forced to impose policies which either cap or reduce livestock product output. This will force 
international prices for livestock products to rise, which will be beneficial if it reduces livestock 
consumption in wealthy countries, but could also limit the supply of cheap, safe, and nutritious food 
to the growing middle classes in countries with emerging economies. 
 
INCENTIVES 

In a growing number of livestock industries, national concerns about environmental issues are 
threatening the social licence to farm. This creates a dilemma, as do date, there have been only quite 
limited or more commonly no direct financial incentives placed on farmers or farm practices which 
reduce pollution. Instead policies tend to force reductions in overall pollution levels, often by 
limiting production. Farmers in New Zealand are feeling substantial pressure to make changes that 
reduce environmental consequences of what they do. In a recent survey of stakeholders involved in 
dairy cattle breeding in New Zealand, a significant proportion (approximately 50%) stated that they 
would be prepared to give up 10% of genetic progress in profitability traits to achieve meaningful 
gains in each of nutrient leaching and GHG emissions traits. In the absence of an antagonistic 
correlation with the profit breeding goal, this 10% sacrifice leads to approximately 40% of the 
maximum possible genetic progress in an environmental trait.   

Crude accounting methods used in regulation pose a significant risk of creating adverse 
outcomes, particularly when considering incentives for genetic improvement mitigations. For 
example, if farms’ emissions are quantified based on per animal constants, a hidden incentive is 
created to increase output per animal. Processor level deployment of carbon equivalent costs, for 
example per tonne of meat or milk solids produced have limited effectiveness, as they will fail to 
incentivise the shifts in farm practices required for mitigation.  

Requirements of New Zealand farmers to have individual environmental budgets for GHG 
emissions, and for nutrient leaching are rapidly becoming mandatory. National data bases that 
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quantify commercial herd or flock genetic merit for novel environmental traits would be a potential 
tool to directly incentivise uptake of more environmentally friendly genotypes. Monitoring of 
breeding purchases (e.g., semen, bulls and rams) by commercial farmers with potential use of DNA-
based auditing of a sample of commercial animals would be the most cost-effective way to achieve 
this. Extensions of national data infrastructures to incorporate aggregate information (e.g. herd level 
daily milk production from processors, fertilizer applications from contractors) would complement 
per animal performance records to facilitate accurate monitoring of the farm emissions profile 
(Zhang et al. 2021). These should provide more granular and incentivising policies than what could 
be achieved by taxing output (processor level obligation) or by counting animals in a way that 
assumes all animals have the same environmental impact. A strong science backing will be required 
to support the case for reducing a farm’s environmental budget based on observed genetic change 
for mitigation traits. New international standards for carbon accounting could then more accurately 
reflect changes in emissions per animal. This in turn would create incentives at both national and 
international level.  
 
CONCLUSIONS  

Genetic improvement undoubtedly has a significant role to play in addressing the substantial 
environmental challenges facing livestock farming systems. Research on environmental mitigation 
traits is likely to grow, and both national and commercial breeding goals for livestock industries 
with advanced breeding infrastructure will increasingly shift towards recognition of their associated 
environmental implications. However, there is a risk that clumsy implementations will lead to 
unintended consequences. The consequences of reduction in the genetic gains of production 
efficiency that have historically driven a huge reduction in the environmental footprint of livestock 
products, in response to strong demand for action from the growing middle classes to reduce gross 
per animal emissions outputs, need to be carefully considered. Multi-disciplinary teams that go 
beyond the science and technology to consider breeding strategies, policy mechanisms and farmer 
adoption and behaviour will be critical to achieving genetic progress in environmental outcomes. 
National infrastructures supporting performance recording and genetic improvement are a logical 
platform to build more sophisticated monitoring systems. New developments should include 
genomic-based auditing systems, be well supported by science, and provide knowledge flows and 
training with incentives for both genetic and management mitigations at farm level. These 
mitigations could then be recognised in regional and national inventories. There is strong evidence, 
at least in NZ, that many farmers would already be prepared to modify their selection decisions to 
improve environmental traits if the tools were available to do so. 
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SUMMARY 

We applied methods used successfully in prioritising trait improvements in animal breeding to 
cassava, to demonstrate that they are also relevant to plant breeding. Preference survey 
methodology based on 1000minds® was adapted and utilised to assess cassava trait improvement 
preferences of smallholder cassava farmers and other actors in the cassava value chain. We then 
establish how preference surveys can be employed to quantify and translate preferences into terms 
(trait units and scale) that align with estimated breeding values in plant breeding. Trait economic 
values were calculated according to the preference for each trait, relative to the preference for a 
monetary value included in the survey. Typologies of preferences were identified according to 
cassava traits preferences, and the resultant economic values differed between the typologies. This 
presents the potential for plant breeders to consider economic gains and cluster groups based on 
traits preferences in the development of breeding objectives.  
 
INTRODUCTION 

Trait selection and breeding goal establishment are important when developing breeding 
objectives in crop and animal breeding. Animal breeding has made more advances than plant 
breeding in the use of economic values for index selection. This difficulty in crop breeders using 
economic theory to develop economic weights (Sölkner et al. 2008) is attributed to the absence of 
formal frameworks for derivation of economic weights. Participatory breeding, which involves 
including farmers and other value chain actors in the development of breeding objectives, has been 
employed in breeding programs for several crops; however, a challenge in participatory breeding 
has been an inability to transfer farmers’ and other actors’ descriptions of, and expressed 
preferences for, traits into quantitative terms that would allow them to be combined with estimated 
breeding values in a formal selection index. This challenge increases the risk of the breeding 
program releasing varieties that do not meet the requirements of the farmers and markets.  

1000minds® (https://www.1000minds.com/) is a preference survey tool that employs an 
adaptive conjoint analysis methodology to minimise user burden. A detailed description of the 
algorithm of 1000minds can be found in Hansen and Ombler (2009). The 1000minds® method has 
been applied in the breeding of pasture plants (Smith and Fennessy 2011), sheep (Byrne et al. 
2012), and dairy cattle (Martin-Collado et al. 2015) to assess farmers’ preferences for trait 
improvements. Analysis of the outputs from 1000minds surveys enables the derivation of 
economic values and provides insights into trait preference heterogeneity across farmers and other 
supply chain actors. 

https://www.1000minds.com/
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This paper describes the application of methods and tools used in animal breeding to crops and 
shows how survey approaches can be employed to assign economic values to traits for genetic 
improvement when developing breeding objectives.  
 
MATERIALS AND METHODS 

We applied the 1000minds® survey tool (https://www.1000minds.com/) to prioritise trait 
improvements for cassava in Nigeria. The 1000minds software asks a series of choice questions, 
where respondents are repeatedly required to select their preference between two trait 
improvement alternatives. The survey was conducted in four geopolitical zones in Nigeria: the 
north-central, south-east, south-south and south-west zones. The traits included in the survey were 
selected in consultation with experts and through literature research. Prior to the survey, focus 
group discussions (FGDs) were carried out with farmers and other cassava value chain actors, and 
in addition to discussing the traits to include in the surveys, they were used to establish 
benchmarks, units, and economic equivalents for cassava traits. Table 1 presents the parameters 
used to calculate equivalent levels for the traits in the 1000minds survey. Economic equivalents 
were calculated as the economic effect on increment per unit change in each of the traits 
independently. 

The survey included 11 cassava traits and was administered to 792 smallholder cassava farmers 
and other actors in the cassava value chain. A demographic questionnaire was administered 
alongside the 1000minds® survey to explore the sociodemographic factors. The 1000minds output 
contains rankings of traits and preference percentage. These preference percentages were 
employed in the calculation of economic values. 

Derivation of Economic values. An economic value is defined as the marginal impact of a 
one-unit change in a genetic trait. Trait economic values were calculated according to the 
preference (%) for each trait relative to the preference (%) for the trait expressed in monetary 
terms in the survey, ‘price per 100kg bag’ (Byrne et al. 2012).  
 
Table 1. Parameters used to calculate economic equivalence of levels for 1000minds 
preference survey traits 

Inputs  Value  
Average price per 100kg bag1 2,500 
Average fresh roots yield (Number of100kg bags) per acre 40 
Total crop value/acre 100,000 
Average crop duration (days) 270 
Average ground storage(days) 365 
Price difference per change in root size 1,000 
Price difference per change in root colour 1,000 
Gari price per kg of gari  200 
Gari price per 100 kg of gari  15,000 
Average gari value (number of bags per acre) 13 
Total gari value/acre1 200,000 
Price difference across change in taste per 100kg2 1,000 
Price difference across change in texture per 100kg2 1,000 
Price difference across change in colour per 100kg2 1,000 
Price difference across change in swelling per 100kg2 1,000 

1Prices of cassava in Ibadan, Nigeria at the time of the survey 

2 Assumes NGN 1,000 (Nigerian currency) between lowest and highest score (i.e., NGN 250/ score change) 
for a 5-point scale.  

https://www.1000minds.com/
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Thus, the economic value per trait unit was calculated to reflect a unit change in the trait 
according to this equation: 

 (1) 
where for trait  and individual respondent ,  is the preference (%) for each trait,  is the 
number of units represented in the trait level (to convert to the desired final trait unit), and  is the 
monetary value per preference (%) for individual . Values for  were calculated as: 

  (2) 
where  is the number of units represented in the level for the monetary trait and, for individual 
respondent ,   is the preference (%) for the monetary trait. 
 
RESULTS AND DISCUSSION 

The Economic Values. Average economic values (NGN per trait unit) are presented in Table 
2. The economic values presented are based on the cost of cassava at the time of the survey. Price 
of cassava varies greatly in Nigeria and so we used the current price of a bag of cassava at the time 
of the survey to derive economic values. Economic values are presented per trait unit, as defined in 
the survey. The calculation of economic values is based on equation (1) and equation (2). Given 
the preference for the trait ‘maturity time’ = 7.53% ( ), and the preference (%) for the 
(monetary) trait ‘price per 100kg bag’ ( ) = 8.00% ( ), by way of example, applying 
equation (1) to the (non-monetary) trait, we deduce that 28 days (4 weeks) of maturity ( ) (Table 
2) is worth 7.5% and thus 1 day of maturity is worth 0.27% (7.5%/ 28 days). Similarly, for the 
(monetary) trait using equation (2), NGN 250 is worth 8.00% and thus 1% is worth NGN 31.22 
(NGN 250/ 8.00%). Given 1-day maturity is worth 0.3% and 1% of monetary trait is worth NGN 
31.22, then the economic value for maturity time can be calculated as NGN 8.40 per day (i.e., 
0.27% × NGN 31.22).  
 
Table 2. Trait economic values for all respondents 

Order of trait ranks are from highest to lowest. +Smaller numbers indicate higher ranks.  
 
Economic values differed by cluster groups. While Table 2 shows the population level trait 

preferences, heterogeneity exists in preferences for improvements in cassava traits (e.g., Martin-
Collado et al. 2015), further analysis of this heterogeneity showed that three typology cluster 

Traits Surveyed 
Unit Per unit 

Mean 
Trait 

ranks+ 

Average 
preference % 

Economic value 
(NGN/ survey 

trait unit) 
Yield Per 4 bags Per 1 bag 4.8 10.6 82 
Ground storage Per 5 weeks Per 1 day 5.4 9.7 9 
Gari colour Per 1 score Per 1 score 6.0 9.0 281 
Dry matter content Per 5% Per 1% 6.2 8.8 55 
Gari taste Per 1 score Per 1 score 6.5 8.3 259 
Root size Per 25% Per 1% 6.7 8.1 10 
Gari swelling Per 1 score Per 1 score 6.8 8.0 248 
Gari texture Per 1 score Per 1 score 7.0 7.7 239 
Root colour Per 1 score Per 1 score 7.1 7.6 236 
Maturity Per 4 weeks Per 1 day 7.1 7.5 8 
Disease resistance Per 10 % Per 1% 7.7 6.8 21 
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groups could be established based on preferences for different combinations of cassava traits.  The 
cluster analysis highlights traits that are important for different groups. An example is in the 
preference for disease resistance. While disease resistance ranked as the least preferred for 
improvement by the overall population (Table 2), a group of farmers exist that ranked disease 
resistance very high compared to other traits (data not shown) 

Breeding objective challenges in plant breeding. In this paper we show how animal breeding 
trait prioritisation tools can be applied in a plant breeding setting. However, it is important to 
highlight some of the challenges plant breeders may face in adapting animal breeding tools: (1) 
The units reported in this study may not reflect the units of the trait breeding values as they are 
evaluated in the breeding program. This is because units presented to survey participants were 
developed and presented in ways the respondents can relate to. Plant breeders often use scales 
(e.g., 0-9 scores for diseases score) that are abstract when considered in terms of the economic 
impact on farm and/ or are very different to what farmers use (e.g., farmers probably use % crop 
lost, or % of diseased plants). This makes it difficult to calculate economic values, because a 0-9 
score, for example, bears no resemblance to a unit that has an economic impact attached. This is 
less common in animals. (2) Another difference between plant and animal breeding is in the 
interactions of genetic traits with environmental variables (G x E). These G x E interactions are 
more influential in plants than animals; thus, plant breeders need to accommodate critical G x E 
interactions when developing breeding objectives. (3) The cluster groups (typologies) of 
preferences identified can be applied in targeting different market segments for breeding, however, 
complex factors such as breeding costs/benefits, variety replacement targets, and investment 
priorities need to be considered and integrated into the tools for these tools to be adoption by plant 
breeders. 

 
CONCLUSION  

This study has shown that traits prioritisation methods that have been successful in animal 
breeding are also relevant and useful for plant breeding. Many of the challenges and nuances 
associated with index development are common between plants and animals, although for plants, 
there are some additional challenges created by the strong influence of G x E interactions, 
potentially exaggerating differences in trait preferences across different typology cluster groups.  
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SUMMARY 

Previous research into breeding sheep based on methane yield has shown that low emitting 
animals appear to have neutral or superior economic and environmental value compared to high 
emitting animals. However, the impact of breeding for methane yield on milk composition has not 
been studied in depth. We investigated differences in detailed fatty acid (FA) profiles and rumen 
volatile fatty acids (VFA) associated with methane selection line across two lactation years in 
lactating ewes from a sheep flock selected for divergent methane yield. Changes in FA profiles due 
to selection line were observed, with increased polyunsaturated fatty acids levels in the milk and 
VFAs associated with less hydrogen formation in rumen samples from lower methane emitting 
animals. There was evidence that these differences were partly driven by changes in the rumen 
microbial profile. These results have important implications in screening for, and processing milk 
from, low methane emitting animals in industry. 
 
INTRODUCTION 

Methane is a greenhouse gas associated with climate change and approximately 84% of methane 
emissions in New Zealand are produced from grazing livestock (MFE 2020). Reducing methane 
emissions from livestock is therefore of environmental and economic importance and is achievable 
by breeding for animals that emit less methane. Ruminant animals primarily produce methane as a 
by-product of the complex microbial fermentation process in their rumen that breaks down feed to 
VFAs, which are absorbed through the gut wall and are a major source of energy for the animal 
(Matthews et al. 2019). The mammary gland also uses these VFA in the de novo synthesis of milk 
fatty acids (FA) (Negussie et al. 2017). Changes in a herd’s methane emission levels via breeding is 
therefore likely to be associated with changes in FA composition.  

Over the past decade, a sheep flock has been selected for divergent methane yield, with low-
methane sheep emitting 10-12% less methane than the high-methane animals (Rowe et al. 2019). 
Using lactating ewes from this flock, we analysed milk FA profiles and rumen fluid VFA to 
investigate changes associated with methane selection line, and whether these changes relate to 
changes in the rumen microbial profile.  

 
MATERIALS AND METHODS 

Animals. This study selected 60 out of 100 ewes from the high methane line (HML) and 60 out 
of 100 ewes from the low methane line (LML) in a divergent methane yield sheep flock (Rowe et 
al. 2019) that were lambing from September each spring. This selection was made in two lactation 
years (2018 and 2019), with 25 HML and 23 LML ewes retained in the flock and selected in the 
study in both years leaving 192 unique ewes. The average difference in methane breeding values for 
these ewes between the two lines was 1.98 g CH4 per kg dry matter intake (DMI) for 2018 and 2.21 
g CH4 per kg DMI for 2019 (average methane value was 16 ± 1.45 g CH4 per kg DMI). 

Traits. Milk and rumen samples were collected after lambing in October 2018 and 2019 at two 
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time-points two weeks apart. These time-points were approximately 2 and 4 weeks post lambing if 
the ewe lambed late (last week of September or October) and approximately 4 and 6 weeks post-
lambing if the ewe lambed early (early September). An 8-mL sample of milk was processed and 
methyl esters of the fatty acids measured using gas chromatography as described by Agnew et al. 
(2019). Rumen fluid were collected via oral stomach tubing and was divided into three 2-mL 
samples that were processed using the method described by Jonker et al. (2019) to obtain volatile 
fatty acid (VFA) profiles, and into a 30 mL sample for DNA extraction and sequencing to generate 
a rumen microbial profile as described by Hess et al. (2020). 

Statistical Analysis. Univariate linear mixed models (LMMs) were fitted for each trait using 
ASREML v4.1 (Gilmour et al. 2015). Model equations were: 

log10(y) = µ + cdat*bg + age + nll + lwt + line + pe (1) 
log10(y) = µ + cdat*bg + age + nll + lwt + M (2) 

where y is the trait of interest, cdat is the collection date of the sample, bg indicates if the ewe lambed 
late or early, age is the ewe’s age (years) at sampling (2, 3, 4+), nll is the number of live lambs (1, 
2, 3+), lwt is the ewe’s liveweight (kg) at sampling, line is the methane line (low or high), pe is the 
permanent environment random effect, and M is the reference-based microbial relationship matrix 
as described by Hess et al. (2020). Most ewes were 2 (47%) or 3 (33%) years old and had 1 (31%) 
or 2 (58%) lambs. The trait values were log transformed to improve variance homogeneity. Model 
(1) was fitted to investigate the effect of selection line on each trait while Model (2) was fitted to 
estimate the microbiability (proportion of variance explained by the rumen microbial profile). 

 
RESULTS AND DISCUSSION 

Milk FAs. Results from fitting univariate LMMs on the milk FAs are given in Table 1. FA 
percentages for each individual polyunsaturated fatty acids (PUFA) (e.g., C18:2 n6, CLA) and the 
total PUFA value were significantly greater in the LML compared to the HML for both years, with 
differences ranging between 4.3% to 13.5%. The total saturated fatty acids (SFA) value was 
significantly smaller in the LML for both years, with a difference around -1.1% to -1.3%, although 
changes in individual SFA (e.g., C12:0, C17:0) were not consistent across years. There was little 
evidence of changes in the monounsaturated fatty acids (MUFA). The repeatabilities were moderate 
across the FA, but greater for the PUFA and the  total SFA value across both years. 

Rumen VFAs. Results from fitting univariate LMMs on the rumen fluid VFA are given in Table 
2. Percentages of caproic and propionic acid were on average significantly greater in the LML than 
in the HML in both lactation years, while changes in the other VFA were inconsistent across years. 
The two VFA ratios were consistently smaller in the LML compared to the HML and significant at 
the 5% threshold, indicating that the percentage of acetic and butyric relative to propionic and valeric 
was smaller in the LML. This is consistent with stoichiometric principles, as formation of acetic and 
butyric acids is connected with hydrogen formation (utilised by methanogens to form methane) 
while propionic and valeric acids are associated with less hydrogen formation (Janssen 2010). The 
repeatabilities were between 0.23 and 0.39 for all VFA, except for caproic acid which had very low 
repeatability. Similar results in terms of ruminal VFA composition and repeatabilities were found 
in growing methane selection line sheep fed pasture as in this trial (Jonker et al. 2020). 

Microbiability: Estimates of microbiability for milk FA and rumen VFA are given in Table 3. 
The microbiability for all the milk PUFA and all the rumen VFA ranged between 0.21 to 0.54 and 
was greater than 2 standard errors from zero across both years. This was not the case for the milk 
SFA and MUFA. These results suggest that differences between the selection lines in rumen VFA 
and milk PUFA are, at least partially, driven by changes in the rumen microbial profile.   

 
CONCLUSIONS 

This study shows that breeding for methane impacts milk FA and rumen fluid VFA profiles and 



Contributed paper 

44 
 

suggests that changes in these profiles are partially driven by changes in the rumen microbial profile. 
These results suggest there is potential for milk FA and rumen VFA to be used as a proxy measure 
for methane, but the results also have implications on milk processing, as changes in FA profiles 
affects the quality and type of products produced from the milk. 

 
Table 1. Fatty acid (FA) composition of milk samples from low and high selection lines 
 
FA (%) 2018 2019 

Mean ± s.e. % diff‡ Repeatability Mean ± s.e. % diff‡ Repeatability 
Total SFA1 43.4 ± 2.36 -1.3%†  0.53 ± 0.08  44.8 ± 2.25 -1.1%†  0.44 ± 0.09  
   C12:0  4.35 ± 1.07 1.5%  0.36 ± 0.09  4.33 ± 1.20 -2.9%  0.19 ± 0.11  
   C14:0  7.83 ± 1.21  -0.5%  0.34 ± 0.10  8.06 ± 1.40 -2.1%  0.26 ± 0.10  
   C15:0  0.84 ± 0.10  0.7%  0.41 ± 0.09  0.93 ± 0.10 2.1%†  0.12 ± 0.11  
   C16:0  17.6 ± 1.67 -1.6%†  0.51 ± 0.08  18.1 ± 1.79 -1.2%  0.39 ± 0.09  
   C17:0  0.65 ± 0.18  -1.9%  0.31 ± 0.10  0.66 ± 0.12 -0.6%  0.28 ± 0.10  
   C18:0  12.1 ± 2.30 -2.8%  0.26 ± 0.10  12.6 ± 2.70  0.4%  0.28 ± 0.10  
   C20:0  0.12 ± 0.02  -2.8%  0.14 ± 0.10  0.12 ± 0.03  -1.3%  0.30 ± 0.10  
Total MUFA2 18.3 ± 3.75  -1.6%  0.28 ± 0.12  19.1 ± 3.51 -1.0%  0.11 ± 0.11  
   C14:1 0.04 ± 0.04 -0.7%  0.20 ± 0.23  0.07 ± 0.03 -4.7%  0.51 ± 0.08  
   C16:1 0.48 ± 0.11 -1.0%  0.26 ± 0.10  0.49 ± 0.13 -5.3%†  0.45 ± 0.09  
   C17:1 0.24 ± 0.08 -1.4%  0.32 ± 0.10  0.23 ± 0.05 -4.4%†  0.33 ± 0.09  
   C18:1 c9 17.3 ± 3.65 -2.2%  0.21 ± 0.10  18.0 ± 3.47 -0.8%  0.11 ± 0.11  
   C18:1 c11 6.94 ± 1.63 4.5%  0.70 ± 0.07  6.94 ± 1.13 1.0%  0.34 ± 0.09  
Total PUFA3 3.85 ± 0.66 5.4%*  0.57 ± 0.07  3.92 ± 0.54 7.2%*  0.53 ± 0.08  
   C18:2 n6  0.63 ± 0.14 4.8%*  0.38 ± 0.09  0.57 ± 0.13 9.4%*  0.44 ± 0.09  
   C18:3 n3  0.98 ± 0.24 7.1%*  0.62 ± 0.06  0.97 ± 0.22 13.5%*  0.48 ± 0.08  
   CLA 2.24 ± 0.61 4.5%†  0.61 ± 0.07  2.38 ± 0.42 4.3%†  0.56 ± 0.07  

1SFA = saturated fatty acids (Total = C12:0 + C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0) 
2MUFA = monounsaturated fatty acids (Total = C14:1 + C16:1 + C17:1 + C18:1 c9 + C18:1 c11) 
3PUFA = polyunsaturated fatty acids (Total = CLA + C18:2 n6 + C18:3 n3) 
†Significant at 5% threshold, *Significant at 0.1% threshold, ‡Difference (Low – High) 
 
Table 2. Volatile fatty acids (VFA) in rumen fluid samples from low and high selection lines 
 
VFA (%) 2018 2019 

Mean ± s.e. % diff‡ Repeatability Mean ± s.e. % diff‡ Repeatability 
Acetic  65.9 ± 2.73  -0.4%  0.22 ± 0.10  66.1 ± 2.77  -1.0%*  0.23 ± 0.10  
Butyric  10.2 ± 1.41 0.2%  0.25 ± 0.10  9.94 ± 1.35 2.5%†  0.31 ± 0.10  
Caproic 0.30 ± 0.12  6.8%†  0.00 ± 0.00  0.31 ± 0.12 12.7%*  0.01 ± 0.11  
Isobutyric 1.33 ± 0.37 -2.0%  0.36 ± 0.09  1.19 ± 0.32 0.6%  0.30 ± 0.10  
Isovaleric 1.49 ± 0.52 -2.8%  0.39 ± 0.09  1.29 ± 0.43 0.2%  0.29 ± 0.10  
Propionic 19.5 ± 1.28 1.3%†  0.37 ± 0.09  19.9 ± 1.31 1.5%†  0.35 ± 0.10  
Valeric 1.24 ± 0.28  -0.1%  0.11 ± 0.11  1.21 ± 0.32 4.5%†  0.25 ± 0.11  
A/P1  3.40 ± 0.33 -11.6%†  0.31 ± 0.10  3.34 ± 0.33 -17.2%*  0.26 ± 0.10  
(A+B)/(P+V)2 3.69 ± 0.32 -11.4%†  0.35 ± 0.09  3.62 ± 0.33 -16.6%*  0.30 ± 0.10  

1A/P = Acetic/Propionic 
2(A + B)/(P + V) = (Acetic + Butyric)/(Propionic + Valeric)  
†Significant at 5% threshold, *Significant at 0.1% threshold, ‡ Difference (Low – High) 
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Table 3. Microbiability estimates (% ± s.e) for milk fatty acids and rumen volatile fatty acids 
 
FA (%) 2018 2019 FA (%) 2018 2019 
Total SFA 0.18 ± 0.07 0.13 ± 0.07 Total PUFA 0.33 ± 0.09 0.34 ± 0.09 
   C12:0  0.11 ± 0.07 0.21 ± 0.09    C18:2 n6  0.21 ± 0.09 0.40 ± 0.08 
   C14:0  0.04 ± 0.05 0.13 ± 0.08    C18:3 n3  0.28 ± 0.09 0.46 ± 0.09 
   C15:0  0.01 ± 0.04 0.05 ± 0.06    CLA 0.26 ± 0.08 0.27 ± 0.09 
   C16:0  0.16 ± 0.07 0.00 ± 0.00 VFA (%) 2018 2019 
   C17:0  0.07 ± 0.07 0.27 ± 0.09 Acetic  0.38 ± 0.09 0.44 ± 0.09 
   C18:0  0.07 ± 0.06 0.17 ± 0.09 Butyric  0.48 ± 0.08 0.36 ± 0.09 
   C20:0  0.07 ± 0.06 0.17 ± 0.08 Caproic 0.32 ± 0.08 0.33 ± 0.09 
Total MUFA 0.08 ± 0.08 0.22 ± 0.09 Isobutyric 0.54 ± 0.09 0.32 ± 0.09 
   C14:1 0.00 ± 0.00 0.11 ± 0.08 Isovaleric 0.52 ± 0.08 0.29 ± 0.09 
   C16:1 0.01 ± 0.05 0.00 ± 0.00 Propionic 0.28 ± 0.09 0.46 ± 0.09 
   C17:1 0.15 ± 0.09 0.16 ± 0.09 Valeric 0.41 ± 0.08 0.42 ± 0.09 
   C18:1 c9 0.16 ± 0.09 0.21 ± 0.09 A/P 0.31 ± 0.09 0.48 ± 0.09 
   C18:1 c11 0.41 ± 0.10 0.09 ± 0.07 (A+B)/(P+V) 0.30 ± 0.09 0.47 ± 0.09 

Abbreviations for FA, VFA, SFA, MUFA, PUFA, A/P and (A+B)/(P+V) are as in Tables 1 and 2. 
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SUMMARY 
Rearing lambs while producing wool is an annual source of competition for available nutritional 

resources supplied to breeding ewes. Genetic correlations between wool and reproductive traits were 
estimated from industry data, comparing models that did or did not account for the effects of 
reproductive level on wool traits recorded at different wool age stages (yearling, hogget, adult). 
Small to moderate antagonistic correlations between wool and reproductive traits tended to decrease 
in magnitude when birth-rear type of the individual (yearling and hogget stages) or reproductive 
output (adult ewes) were accounted for in models for wool traits. Increased recording of reproductive 
performance would make it possible to more accurately compare young animals for wool traits as 
well as genetically improve both trait sets (ewe reproduction and wool traits) for Merinos. 

 
INTRODUCTION 

For breeding ewes, reproductive performance and wool production are annual outputs that 
compete for access to common, potentially limiting, nutritional resources. In addition, progeny born 
as singles have, on average, superior wool attributes relative to twins (Hocking-Edwards et al. 2011). 
In the Australian Merino industry, the majority of animals are recorded for wool traits as yearlings 
or hoggets (i.e. between 12 and 18 months of age), prior to their first joining. Data for adult wool 
traits is subsequently predominantly from breeding ewes. At both time points, variability introduced 
by litter size at birth-rearing (progeny) or reproductive status (ewe) could potentially affect estimates 
of the genetic correlations between wool and reproductive traits. Derivation of component traits for 
reproductive performance (Bunter et al. 2021) enable these associations to be investigated further 
across industry flocks. This paper examines how birth-rear type of offspring and previous 
reproductive status of ewes affect wool trait values and estimates of genetic correlations between 
these trait groups. 

 
MATERIALS AND METHODS 

Data and pedigree recorded from 2000 onwards for greasy fleece weight (GFW) and fibre 
diameter (FD) were extracted from the Sheep Genetics database for the subset of flocks that had 
some reproductive data for conception (CON), litter size (LS) and ewe rearing ability (ERA) traits. 
Wool and reproductive records were merged by animal-year of recording. Wool records were 
classified by age-stage groupings (Y: yearling; H: hogget and A: adult). Wool and ewe reproductive 
data were concurrent for the adult wool stage data only. Reproductive performance in the year prior 
to the adult stage shearing was derived from reproductive data, or described as unknown. The 
complete pedigree contained about 740k animals. 

Contemporary groups for wool traits within stage were defined by flock-year-date of shearing-
breeder subgroup (Brown et al. 2007), and contemporary groups for reproductive traits were as 
previously described by Bunter et al. (2021). Age at recording for wool traits was accounted for 
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using linear regression (Y, H stages) or by fitting age in years as a class effect (A stage). Animals 
over 6 years old at the time of recording were grouped in the 7yo age group. Sex was accounted for 
to accommodate wool records for males. An additional model term for Y, H and A stage wool traits 
was birth-rear type group (BTRTG: SS, MS, MM, SU, MU or UU, where S=single, M=multiple and 
U=unknown). Previous reproductive outcome (RSTAT: 4 levels for ewes: 0, 1 or 2+ lambs reared, 
or unknown) was fitted for ewe A stage wool traits only. Models containing these additional terms 
were compared to base models without these terms. Least squares means for BTRTG and RSTAT 
for each wool trait were obtained using the GLM procedure of SAS software (2002-2012). 
Heritabilities were estimated assuming an animal model for the alternative systematic effect models 
in univariate analyses. Additional random effects included maternal effects for wool traits (all 
stages) and a permanent environmental effect to accommodate repeated records for adult 
reproductive and wool traits. Correlations between wool and reproductive traits were estimated from 
a series of bivariate analyses using ASREML (Gilmour et al. 2014). 

 
RESULTS AND DISCUSSION 

Approximately 82% (70%) of animals had sires (dams) known and 6% of adult shearing records 
for ewes had previous reproductive status known. Data characteristics and heritabilities (Table 1) 
were generally consistent with expectation, with the exception of higher heritabilities for 
reproductive traits relative to the data sample of Bunter et al. (2021), which contained more flocks 
characterised by less historical pedigree and data. Maternal effects were about 2% for FD and ranged 
between 6-9% for GFW across stages, and were consistent within trait stage across models. 

 
Table 1. Estimates of additive genetic (h2) and permanent environmental effects (pe2) relative 
to the phenotypic variance (σ2p) for reproductive (CON, LS, ERA) or wool traits under the 
Base model, or after accounting for birth-rear type group (+ BTRTG) or previous 
reproductive status (RSTAT) 

Trait N Mean(SD
) 

Base model Base + BTRTG Base + RSTAT  
h2 pe2 σ2p h2 pe2 σ2p h2 pe2 σ2p  

CON 48899 0.91 (0.28) 0.09 0.09 0.075 - - - - - -  
LS 89165 1.34 (0.49) 0.09 0.02 0.206 - - - - - -  
ERA 51781 0.82 (0.35) 0.03 0.05 0.117 - - - - - -  
YGFW 370089 3.24 (1.12) 0.28 na 0.319 0.31 na 0.309 - - -  
YFD 375031 16.6 (1.86) 0.60 na 1.23 0.60 na 1.22 - - -  
HGFW 170254 4.50 (1.25) 0.37 na 0.401 0.38 na 0.396 - - -  
HFD 201061 17.9 (1.90) 0.61 na 1.50 0.62 na 1.49 - - -  
AGFW 196896 5.04 (1.49) 0.35 0.20 0.529 0.36 0.19 0.524 0.36 0.19 0.523  
AFD 167028 17.9 (2.42) 0.69 0.05 1.56 0.69 0.05 1.55 0.69 0.05 1.55  

-: not fitted; all se <0.01; CON: conception; LS: litter size; ERA: rearing ability; greasy fleece weight and fibre 
diameter for yearling (YGFW, YFD), hogget (HGFW, HFD) and adult (GFW, FD) stages 

 
Systematic effects. Lambs born and reared as singles (SS) had heavier fleeces than MM lambs 

at Y (GFW: 3.21±0.004 vs 2.93±0.005 kg), H (GFW: 4.54±0.01 vs 4.36±0.01 kg) and A stages 
(GFW: 5.30±0.03 vs 5.16±0.03 kg). Single born lambs also had lower FD than MM lambs at Y 
(16.8±0.01 vs 16.9±0.01), H (17.9±0.01 vs 18.1±0.01) and A stages (18.0±0.06 vs 18.2±0.06). 
Animals born as multiples and reared as single were intermediate. These effects result from 
permanent changes to lamb development arising from competition for resources during gestation 
and lactation. Phenotypic selection for increased fleece weight and finer micron would therefore 
favour SS over MM lambs, in the absence of accounting for BTRTG, particularly when based on 
yearling wool data. Clark and Thompson (2021) showed that BTRTG affects classing results, due 
to the effects of BTRTG on both weight and wool traits. 
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Across parities, ewe fleece weights were reduced by about 150g per additional lamb weaned in 
the previous year (i.e. GFW LSM: no lambs: 4.95±0.03 kg; one lamb: 4.80±0.03 kg; two lambs: 
4.65±0.03 kg) but FD did not significantly differ (p=0.07) with the previous years’ reproductive 
performance. These effects result from the trade-off between ewe wool growth and partitioning of 
ewe resources (feed intake) towards successful gestation and lactation outcomes (Freer et al. 1997). 
Hocking-Edwards et al. (2011) suggested that appropriate nutritional management of twinning ewes 
during pregnancy can offset detrimental effects for wool traits for both ewes and their offspring. 

Genetic parameters. The significant effects of birth-rear type on fleece weights (FW) or fibre 
diameter (FD: ewes and rams) and previous reproductive status (adult ewes) on AGFW suggest that 
correlations between wool and reproductive traits are antagonistic. However, ewe BTRTG 
categories are cross-classified with lamb BTRTG categories, enabling separation of genetic from 
non-genetic effects for wool traits associated with litter size in multiple generation data. 

Model comparisons. Variance in wool traits explained by BTRTG decreased with age/stage (ie 
A < H < Y stages) and was collectively proportionally more collectively for FW (2-7%) relative to 
FD (0-2%) (Table 1). Sheep born as multiples have lighter fleeces and broader micron, on average, 
due to permanent developmental effects (Hocking-Edwards et al. 2011). In contrast, RSTAT 
explained very little variance for adult wool traits (Table 1) and did not alter estimates of genetic 
correlations with reproductive traits (Table 2). This could be because RSTAT was unknown for the 
majority of ewe A stage wool records. For other trait combinations, the models fitted for wool traits 
affected estimates of genetic correlations between wool with reproductive traits. 

Genetic (ra) correlations between wool and reproductive traits. Genetic correlations were 
unfavourable (ra: -0.22) between GFW and CON, but this was less evident for Y and H fleece 
weights (Table 2). A more effective correction for RSTAT may be important for accurate estimates 
of the genetic correlation between GFW and CON. Genetic correlations between GFW at all stages 
and LS were negligible, providing BTRTG was included in wool trait models. Genetic correlations 
between GFW at any stage and ERA were negligible under all models. Fibre diameter at all stages 
had low positive genetic correlations with LS and ERA (ra: 0.15 to 0.22); antagonistic correlations 
of FD with CON were evident for HFD only. Overall, breeding objectives that aim to increase fleece 
weight (less so) and reduce fibre diameter (more so) have detrimental implications for ewe 
reproductive performance and lambs reared. However, genetic correlations were relatively low, 
indicating scope for concurrent improvement in both reproductive performance and wool traits with 
appropriate data recording and selection criteria. Safari et al. (2007) previously reported an 
antagonistic genetic correlation for NLW with CFW (-0.26±0.05), negligible with FD (0.06±0.04). 
Results here suggest genetically broader FD sheep are more likely to have higher genetic merit for 
LS and ERA, which is consistent with lower litter size and lamb survival typically observed for fine- 
relative to medium- or strong-wool sheep (Hatcher et al. 2009). 

Positive residual (not shown) and phenotypic correlations were evident between YGFW and LS, 
suggesting that unidentified non-genetic factors increasing ewe YGFW increased future litter size. 
Negative correlations between permanent environmental effects for ewe wool and reproductive traits 
(not shown) indicate that persistent high reproductive performance has negative consequences for 
FD and GFW within individual ewes. Overall, parameters derived for Y & H stage wool data, 
recorded prior to any joining event provide consistent results: wool traits are affected by 
reproductive performance levels but the genes that control these trait groups are largely independent, 
with the absolute magnitude of genetic correlations typically less than 0.2. 
 
CONCLUSIONS 

Merino breeders would benefit from recording reproduction accurately, as knowledge of birth-
rear type is important for accurate comparisons of young animals (e.g. YGFW, YFD) and 
comparison of adult ewe fleeces are also affected by variation in reproductive output. In each case, 
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animals with or resulting from low reproductive output would be favoured for fleece or weight traits 
if this information were unknown. However, genes affecting reproductive traits are largely 
independent of genes affecting greasy fleece weight or fibre diameter (ra: magnitude negligible or 
generally <±0.2), making it possible to change both trait sets with accurate recording of 
reproduction. Where correlations were not negligible, they were low and antagonistic, suggesting 
indirect selection pressure against improved reproduction from selection on uncorrected weight or 
fleece attributes. 
 
Table 2. Additive genetic (ra), residual (re) and phenotypic (rp) correlations between wool 
(Trait 1) and reproductive (Trait 2) traits when BTRTG (Y & H stages) and previous 
reproductive performance (RSTAT, A stage only) are added to Base models for wool traits 

Trait 1* Trait 2** Base model Base + BTRTG Base + BTRTG + RSTAT 
ra re rp ra re rp ra re rp 

YGFW CON -0.09 -0.01 -0.02 -0.07 -0.00 -0.01 - - - 
 LS -0.33 0.16 0.06 -0.03 0.10 0.07 - - - 
 ERA 0.01 0.02 0.01 0.04 0.02 0.02 - - - 
HGFW CON 0.04 -0.06 -0.04 0.06 -0.07 -0.04 - - - 
 LS -0.10 0.03 0.00 0.04 -0.00 0.01 - - - 
 ERA 0.06 -0.03 -0.02 0.06 -0.03 -0.01 - - - 
AGFW CON -0.21 0.10 -0.05 -0.21 0.10 -0.05 -0.21 0.10 -0.05 
 LS -0.10 0.04 0.00 -0.03 0.04 0.01 -0.02 0.04 0.01 
 ERA -0.04 0.05 -0.02 -0.02 0.05 -0.02 -0.02 0.04 -0.02 
YFD CON 0.06 0.01 0.02 0.06 0.01 0.02 - - - 
 LS 0.19 0.01 0.05 0.14 0.03 0.05 - - - 
 ERA 0.22 0.02 0.04 0.23 0.02 0.04 - - - 
HFD CON 0.14 -0.00 0.03 0.13 -0.00 0.03 - - - 
 LS 0.21 -0.07 0.01 0.14 -0.04 0.01 - - - 
 ERA 0.22 0.03 0.05 0.20 0.04 0.05 - - - 
AFD CON 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 
 LS 0.18 0.02 0.03 0.15 0.02 0.03 0.15 0.03 0.06 
 ERA 0.19 0.03 0.02 0.18 0.03 0.02 0.18 0.03 0.02 

Estimates ra >2×SE from 0 are in bold; *greasy fleece weight and fibre diameter for yearling (YGFW, YFD), 
hogget (HGFW, HFD) and adult (AGFW, AFD) stages; **conception (CON), litter size (LS) and rearing ability 
(ERA) traits for adult ewes 
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SUMMARY 

Genomic breeding values for heat tolerance were first developed and released to the Australian 
dairy industry in 2017, to allow farmers to select animals that better tolerate hot and humid 
conditions. It is desirable to improve the reliability of these genomic predictions to help accelerate 
the genetic improvement for this trait. Whole-genome sequence data may contain causative 
mutations, or variants in high linkage disequilibrium with causal mutations for traits. This study 
investigated the potential improvements in the accuracy of genomic prediction for heat tolerance 
when adding informative markers to the 50k industry SNP panel used routinely by DataGene for 
Australian dairy genomic evaluations. We selected informative sequence variants from a genome-
wide association study (GWAS) of heat tolerance phenotypes of 20,623 Holstein cows (each cow 
with ~15 million imputed sequence variants) and augmented the 50k SNP panel with these SNPs for 
genomic prediction using a Holstein bull reference (N = 3,323) and Holstein cow validation set (N 
= 8,484). The accuracy of genomic prediction of heat tolerance for reduction in milk, fat, and protein 
yield under hot and humid conditions increased by 0.1%, 4%, and 6% units, respectively when 
informative markers were integrated with 50k SNP data. Since genetic gain is linearly related to 
EBV accuracy, this lift in accuracy is important for driving the genetic improvement of heat 
tolerance. 

 
INTRODUCTION 

Heat tolerance is the ability of an animal to maintain production and reproductive performance 
under hot and humid conditions. The desire to breed for heat tolerance is growing worldwide due to 
the increasing effect of global warming on animal production. Considerable research has been 
conducted so far in many countries, including Australia, where the first breeding values for heat 
tolerance were released to the dairy industry in 2017 (Nguyen et al. 2017).  

Since genetic gain is linearly related to the accuracy of estimated breeding values (EBVs), even 
a small lift in the accuracy of the heat tolerance EBV is important to the dairy industry. Besides 
increasing the size of the reference population, one way to boost the accuracy is to increase the 
density of markers used for genomic predictions. However, increasing the marker set from lower 
density SNP panels to whole-genome sequence have, in most cases, yielded limited, or no 
appreciable increase in the accuracies for various traits in cattle (e.g., Van Binsbergen et al. 2015). 
A promising alternative, in which a boost of accuracy has been realized in previous reports (e.g., 
Moghaddar et al. 2019), has been to augment standard industry SNP panels (i.e., 50k or 600K arrays) 
with a small set of informative or causal mutations for a trait. To fully maximize predictions, this 
approach requires careful selection of informative markers. Thanks to the 1000 Bull Genomes 
project (Hayes and Daetwyler 2019), it is now possible to use this sequence database to impute 
genotyped animals up to whole genome sequence. This may facilitate accurate selection of highly 
informative variants for use in genomic predictions, especially for complex traits such as heat 
tolerance. 

In this study, we selected informative variants for heat tolerance from a genome-wide association 
study (GWAS) using milk production records of 20,623 Holstein cows, each having over 15 million 
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imputed sequence variants. We then investigated the accuracy of prediction when sets of these 
selected variants were added to the standard industry 50k SNP array, by training the prediction in a 
bull reference set, and validating it in an independent set of Holstein cows. 

 
MATERIALS AND METHODS 

Phenotypes. The phenotypes used in this study were obtained from DataGene (DataGene Ltd., 
Melbourne, Australia; https://datagene.com.au/) and included test-day milk, fat, and protein yields 
for Holstein cows and bulls, collected from dairy herds between 2003 and 2017 that were matched 
with climate data (daily temperature and humidity) obtained from weather stations across Australia’s 
dairying regions. The distribution of dairy herds and weather stations, data filtering, and the 
calculation of environmental covariate (i.e., temperature-humidity index or THI) used in this work 
were described in our earlier studies (Nguyen et al. 2016, Cheruiyot et al. 2020). 

Calculation of heat tolerance phenotypes for cows and bulls. The rate of decline (slope) in 
milk, fat, and protein yield due to heat stress events was estimated using reaction norm models as 
described by Cheruiyot et al. 2020. In these models, data on milk, fat, or protein yield were adjusted 
for fixed effects, including herd test day, year season of calving, parity, age at calving, jointly for 
parity and DIM, and jointly for stage of lactation and THI. Random effects fitted in the model 
included a random regression on a linear orthogonal polynomial of THI, where the intercept 
represents the level of mean milk yield and the linear component represents the change in milk yield 
(slope) due to heat stress for each cow (i.e., trait deviations (TD)) and a residual term. Slope solutions 
for each bull’s daughters were averaged to obtain slope traits for bulls (i.e., daughter trait deviations 
(DTD)). 

Genotypes and study design. Two genotype data sets were available: 50k SNP array and ~15 
million imputed whole-genome sequence variants. The number of Holstein animals with genotypes 
and heat tolerance phenotypes were 29,107 ♀/3,323 ♂. We split the Holstein cows into two: 1) QTL 
discovery set (N = 20,623; comprising older cows born before 2013) for selecting informative 
markers for heat tolerance, and 2) genomic prediction validation set (N = 1,223; young cows born 
after 2012). We used Holstein bulls as a training set for genomic prediction. We ensured that none 
of the cows in the QTL discovery set were daughters of the bulls in the training set to avoid parent-
daughter pairs between the two datasets to minimise close genetic relationships. 

QTL discovery analysis and selection of informative SNPs. We performed single-trait GWAS 
analysis to test associations between individual SNP and cows' slope traits (milk, fat, and protein) 
using GCTA software (Yang et al. 2011). The models used for analyses are described by Cheruiyot 
et al. (https://www.biorxiv.org/content/10.1101/2021.02.04.429719v1.full). 

Following the GWAS, we selected informative variants defined as ‘top SNPs’ for each slope 
trait as follows: for SNPs passing the GWAS threshold of −𝑙𝑙𝑙𝑙𝑙𝑙10(𝑝𝑝 𝑣𝑣𝑣𝑣𝑙𝑙𝑣𝑣𝑣𝑣) = 2; we chose the most 
significant SNP from within each 100 kb window and sliding 50 kb to the next window along each 
chromosome. We then removed one SNP of any pair of the selected ‘top SNPs’ in strong LD (r2 > 
0.95). 

Genomic prediction. We used BayesR (Erbe et al. 2012) to estimate prediction accuracies for 
50k SNP panel and compared the resulting accuracies with those obtained from adding ‘top SNPs’ 
to the 50k SNP set (i.e., 50k + ‘top SNPs’) using BayesRC method (MacLeod et al. 2016). The 
BayesR model fitted to the training bulls (N = 3,323) for 42,572 variants from 50k SNP panel was: 
y = Xβ +  Zg + Wv + e , where 𝐲𝐲 = vector of heat tolerance slope phenotypes; 𝐗𝐗 = design matrix; 
𝛃𝛃 = vector of fixed effect solutions; 𝐙𝐙 = design matrix relating phenotypes to GBV; g = vector of 
GBV ~ 𝑁𝑁(0, 𝐈𝐈𝜎𝜎𝑔𝑔2), where 𝜎𝜎𝑔𝑔2 is the additive genetic variance for the trait; 𝐖𝐖 = design matrix of SNP 
genotypes; 𝐯𝐯 = vector of SNP effects, modelled to have four possible normal distributions 
corresponding to zero, small, medium and large effects, respectively; 𝐞𝐞 = vector of residual errors 

https://datagene.com.au/
https://www.biorxiv.org/content/10.1101/2021.02.04.429719v1.full
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𝑁𝑁(0,𝐄𝐄𝜎𝜎𝑒𝑒2), where E is a diagonal matrix calculated as diag(1 𝑤𝑤𝑖𝑖⁄ ), with 𝑤𝑤𝑖𝑖  being a weighting factor 
for ith sire calculated based on the available number records following Garrick et al. (2009).  

We then used the BayesRC method to analyse 50k + ‘top SNPs’ dataset; an extension of the 
BayesR model that allows pre-allocation of variants to 2 or more classes (MacLeod et al., 2016) and 
hence a different posterior mixture distribution within each class if the class is enriched for 
informative SNPs. In our case the SNPs from 50k array (42,572) were allocated to class I and the 
selected ‘top SNPs’ to a separate class II, because the latter may be enriched with causal mutations 
for heat tolerance. For both BayesR and BayesRC models, we performed five MCMC replicate 
chains, each with 40,000 iterations of which 20,000 were discarded as burn-in for all the traits. We 
ran the analysis for 2 random validation sets of 600, and 623 Holstein cows. 

Calculating accuracy of genomic prediction. For each of the three validation cow sets 
(described above), the accuracy of prediction was calculated as: 𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝐴𝐴𝑣𝑣𝐴𝐴𝐴𝐴(𝑉𝑉𝑣𝑣𝑙𝑙𝑖𝑖) =  𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺,𝑝𝑝ℎ𝑒𝑒𝑒𝑒

�ℎ2
, 

where 𝑉𝑉𝑣𝑣𝑙𝑙𝑖𝑖  = Holstein cow validation set; 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺 , 𝑝𝑝ℎ𝑣𝑣𝑒𝑒 = correlation of GBV and phenotypes (i.e., 
slope traits); ℎ2 = genomic heritability calculated for each trait using variance component estimates 
of Holstein cows (N = 29,107) for 50k SNP array (45,504 SNPs) data based on –reml option of 
GCTA software (Yang et al. 2011). The bias of prediction was assessed as the regression coefficient 
of the phenotypes (pre-corrected for fixed effects) on the GBV for animals in the validation set. 

 
RESULTS AND DISCUSSION 

In this study, we used a large dataset of Holstein cows (N = 20,623) to select informative markers 
from a GWAS and then tested them for increased genomic prediction of heat tolerance phenotypes.  

The genomic heritability estimates (± standard errors) for the heat tolerance milk (HTMYslope), 
fat (HTFYslope) and protein (HTPYslope) yield slope traits from Holstein cows that used to 
calculate the accuracy of predictions were 0.23 ± 0.01, 0.21 ± 0.01, and 0.20 ± 0.01, respectively. 
The number of informative markers for heat tolerance (i.e., ‘top SNPs’) selected from GWAS (p < 
0.01) was highest for HTPYslope (9,633) followed by HTFYslope (9,352), and HTMYslope (9,207) 
traits. Similarly, the total number of markers used in the BayesRC analyses (i.e., 50k + top SNPs) 
were 51,750, 51,894, 52,168, for HTMYslope, HTFYslope and HTPYslope traits, respectively. We 
chose a cut-off of p < 0.01, which is comparatively relaxed, to capture both markers with small and 
large effect sizes for heat tolerance. 

Figure 1 shows the accuracy and bias of genomic predictions in the Holstein validation cows. 
For the BayesR model using only 50k SNP data, we found the highest accuracy of prediction for 
HTFYslope (0.49 ± 0.01), followed by HTMYslope (0.49 ± 0.01) and HTPYslope (0.39 ± 0.01). 
The bias across all study traits was > 1.0 (Figure 1) indicating ‘deflation’ or under prediction, 
meaning less variance among predicted than observed values. 

When the selected ‘top SNPs’ were added to the standard 50k SNP array and analysed using the 
BayesRC model, we found a consistent increase in the prediction accuracy across all the traits with 
values of 0.001, 0.04, and 0.06 for HTMYslope, HTFYslope and HTPYslope traits, respectively 
(Figure 1). This increase in accuracy is notable for HTFYslope and HTFYslope traits and likely to 
be associated with the pre-selected markers (potentially functionally linked with heat tolerance) and 
the method used (BayesRC). The bias of prediction for BayesRC was comparable that for BayesR. 
In this study, we investigated the potential benefits of sequence variants selected from a single breed 
(Holsteins) on the accuracy of genomic predictions for the same breed (within-breed prediction). 
The value of sequence variants selected in across-breed population (combined Holsteins and Jersey) 
on genomic prediction of other breeds (Jersey and crossbred cattle) will be investigated in a further 
study. 
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Figure 1. Accuracy of genomic prediction in Holsteins cows based on BayesR (50k; grey) and BayesRC 
(50k+topSNPs; blue) models for heat tolerance milk (HTMYslope), fat (HTFYslope), and protein 
(HTPYslope) yield slope traits. Vertical lines are the standard errors of prediction estimated from 2 
random validation sets of 600, and 623 Holstein cows 
 
CONCLUSION 

Overall, our results show that the accuracy of genomic prediction for reduction in milk, fat, and 
protein yields under hot and humid conditions can be improved by 0.1%, 4%, and 6% units, 
respectively when selected informative sequence variants are added to the industry-implemented 
50k SNP panel. 
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SUMMARY 

Split paternity rates in multiple born lambs of syndicate-mated Merino flocks have previously 
not been reported, primarily due to the cost of genotyping. Pedigree data from litters born to 
genetically diverse syndicate mated ewes in three Merino Lifetime Productivity flocks across 
Australia were analysed to examine rates of split paternity, or heteropaternal superfecundation. 
Over three joinings at three sites, 1082 twin or triplet litters were marked, of which 577 were 
heteropaternal (53.3%). There was no effect of age of dam, year of birth, sire or maternal grandsire 
on heteropaternity rates. These high rates of heteropaternity confirm the need to genotype all 
progeny from multiple births in syndicate mated flocks to ensure accurate genetic evaluation. 

 
INTRODUCTION 

Split paternity, or heteropaternal superfecundation, occurs when females are successfully 
mated by multiple males during the same oestrus cycle. Decreased costs of determining paternity 
using DNA means that it is now feasible to obtain pedigrees from syndicate mating which may 
have some practical advantages over single-sire mating. Being able to syndicate mate sheep and 
determine parentage using DNA requires less paddocks than single sire joining and reduced labour 
in terms of feeding, labour for lambing rounds (preparation for lambing through identification of 
dams and mothering up) together with less disturbance during the lambing period as well less risk 
of failed matings with infertile single-sire mated rams. 

Very little data about heteropaternal superfecundation has been published for either sheep or 
cattle. In cattle, where twinning rates are traditionally very low (1-5% depending on breed), 
McClure et al. (2017) examined rates of heteropaternal superfecundation in Irish herds, citing data 
from the Irish Cattle Breeding Federation database. They reported that, with an average of 1.7% 
twin rates, 0.98% of these were heteropaternal. By contrast, in syndicate-mated sheep, surprisingly 
high levels of heteropaternity, detected by DNA technology, have recently been reported for flocks 
in Ireland under relatively intensive conditions (Berry et al. 2020). The only information on the 
occurrence or frequency of heteropaternity in multiple-born lambs in naturally mated Merinos 
showed even higher levels (46-59%) in lambs born in 2012-2015 as part of the Merinolink 
Genomic Validation Project (Martin 2016). 

We predicted that heteropaternity would also be high in extensively run Merino flocks in 
different parts of Australia with varying genotypes. We tested this in three naturally mated Merino 
flocks in Western Australia and New South Wales over 2-3 years. We also examined the effect of 
heteropaternity on total weaning weight of litters to see if there was any difference in the weaning 
weights of single-sired twin lambs compared to heteropaternal twins. 
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MATERIALS AND METHODS 
Pedigree data were collected from F2 Merino lambs born between 2018 and 2020 in the 

Merino Lifetime Productivity (MLP) Project (Ramsay et al. 2019). These data are from three MLP 
sites located at Pingelly in WA and at Trangie (Macquarie) and Armidale (New England) in NSW 
and consist of lambing records of ewes born to genetically diverse sires representative of the 
Australian Merino population. Lambs included in this analysis were from paddock-mating of MLP 
ewes to a team of Merino rams at each site. The ewe to ram ratio was approximately 50 ewes per 
ram and 8 to 16 rams were used in each flock, depending on flock size. All flocks had a five-week 
joining period and paddock sizes for joining ranged from 10 to 65 hectares. The ewes were 
pregnancy scanned for litter size about 80-90 days after the start of joining. 

Tissue samples were taken from all F2 lambs alive at marking and tested using an 800K SNP 
chip. No DNA or data were collected on lambs that did not survive to marking. Parentage was 
verified against the ewe and ram genotypes, all of which had been previously genotyped using a 
50K SNP chip. Lambs that were assigned a birth type as twin or triplet and rear type as single were 
removed from the analysis as birth type was inferred from pregnancy scanning results and there 
were no data on litters that were scanned multiple but had less lambs survive to rearing. The 
pedigree assigned using tissue samples collected at marking and rear type at marking were used to 
determine if a lamb was a single or multiple and if heteropaternal or not. Data were available for 
1,082 litters where sire, dam and lamb’s pedigree were available. 

Statistical analysis. Estimates of heteropaternal effects were assessed by fitting General 
Linear Mixed Models (GLMM; Genstat VSN International 2017). The approach used a logit 
transformation and binomial distribution. Using additive models, logits were predicted as a 
function of syndicate group (a combination of flock, year of birth and joining group) as a fixed 
effect, and sire and maternal grandsire as random effects. 

Estimates of differences between litters for total weaning weight (sum of littermate weaning 
weights) were restricted to twin-born litters (triplets were excluded). Total weaning weight was 
analysed using the restricted maximum likelihood method (REML, Genstat, VSN International 
2017). Syndicate group and heteropaternal status were fitted as fixed effects, and sire and maternal 
grandsire were fitted as random terms.  

 
RESULTS AND DISCUSSION 

The average percentage of heteropaternal lambs across the three MLP sites over 2 or 3 joinings 
was 53.3% or 577 of the 1082 multiple born litters (Table 1). This included three of the four sets 
of triplets. The frequency of heteropaternity was greater than previous estimates (Berry et al. 
2020), but similar to that reported by Martin (2016) who studied 349 litters. The estimates of 
heteropaternity in our data are possibly underestimated as only those litters where at least two 
lambs survived to marking are included in the analysis. It is reasonable to expect that 
heteropaternal lambs could have greater variation in weight and other behaviours at birth and 
hence have lower survival than single sired twins. There were no significant differences between 
fixed effects of dam year of birth, syndicate group, or sire and maternal grandsire, suggesting no 
differences between maiden or later joinings in the production of heteropaternal litters. 

Over two or three joinings, the Merino flocks in this study showed higher levels of 
heteropaternity than a similar study of six commercial but smaller flocks of crossbred Irish sheep 
(Berry et al. 2020). This is surprising because our study included a lower ratio of rams to ewes 
(1:50 v 1:22-39) and was on a much larger and more extensive scale with larger paddocks. The 
lower ram to ewe mating ratios and larger paddock sizes would be expected to provide less 
interaction between rams and ewes during the oestrus period (Croker and Lindsay 1972). 
Nevertheless, the consistently high rates of heteropaternity (42% to 65%) across the three 
genetically and environmentally diverse flocks suggest these could be typical for rates of 
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heteropaternity in twin lambs in syndicate-mated Merino flocks across Australia. While factors 
that influence this surprisingly high level of heteropaternity in syndicate mating are largely 
unknown this reinforces the need to determine parentage of all multiple born lambs included in 
genetic evaluation using DNA.  
 
Table 1. Percentages of heteropaternal lambs marked between 2018 and 2020, at each of 
three MLP sites 
 
Site Dam year 

of birth 
Progeny 
year of 
birth 

No. 
heteropaternal 

litters 

No. multiple 
marked 
litters 

Percent 
heteropaternal 

lambs 

Pingelly 2016 drop 2018 31 48 64.6% 
 2016 drop 2019 60 108 55.6% 
 2017 drop 2019 46 86 53.5% 
 2016 drop 2020 74 142 52.1% 
 2017 drop 2020 66 109 60.6% 

Macquarie 2017 drop 2019 47 83 56.6% 
 2017 drop 2020 62 113 54.9% 
 2018 drop 2020 27 63 42.9% 

New England 2017 drop 2019 18 43 41.9% 
 2017 drop 2020 107 219 48.9% 
 2018 drop 2020 39 68 57.4% 

Total 
  577 1082 53.3% 

 
There were no significant differences between single sire and heteropaternal litters in total litter 

weaning weight (P = 0.764) despite Australian Sheep Breeding Values for weaning weight ranging 
from –1.6 to 9.9 kg (Merino Select analysis run date 21/02/2021) in rams used over the three sites 
(up to 6.9 kg range within site). There were, however, significant differences between syndicate 
group (P < 0.001) for total weaning weight. 

 
CONCLUSIONS 

Extensively run Merino flocks have not previously been candidates for large scale flock 
genotyping but, as the technology becomes more cost-effective for ram breeding and commercial 
sheep flocks, it is becoming feasible to genotype progeny from large syndicate-mated flocks. High 
rates of heteropaternal litters unequivocally confirm the need to genotype all offspring of syndicate 
matings to ensure pedigree is correctly assigned. The increased use of genotyping in Merino flocks 
that syndicate mate will allow for greater access to genetic evaluation with accurate pedigree data 
that has previously not been available for syndicate mated flocks. 
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SUMMARY 
Selection of Merino sheep for use in breeding programs includes the combination of visual 

assessment and measurement of production traits. Genetic evaluation of these assessments and traits 
takes into account non-genetic effects to improve the accuracy of breeding value predictions. The 
hypothesis tested in this paper was that visual classing assessment of sheep on a traditional three-
point and a novel five-point visual scoring system are heritable and both are also affected by non-
genetic effects such as birth and rearing type. Using data from the first two years of classing ewes 
in the Merino Lifetime Productivity project at Pingelly, WA, moderate heritability estimates were 
observed for both scoring systems (0.24±0.08 for three-point and 0.17±0.07 for five-point). Both 
traits were moderately repeatable (0.31-0.36+0.03). Birth and rear type impacted visual scoring 
grades significantly, indicating that they should be accounted for when visually classing Merino 
sheep. 

 
INTRODUCTION 

Merino sheep breeding routinely combines objectively measured production selection and visual 
assessment to improve the quality and quantity of wool produced as well as improve structure and 
conformation. Merino sheep classing by visual selection is based on a number of subjectively 
assessed traits such as wool quality, quantity and conformation, assessed by professional sheep 
classers using different scoring systems to class animals into different categories (Brown et al. 2002; 
Robinson et al. 2007). When used in conjunction with estimated breeding values for production 
traits, visual classing can add value to selecting superior animals for replacement, with greater 
accuracy and efficiency than using a single method alone (Mortimer et al. 2010).  

Genetic evaluation of Merino production data includes accounting for any fixed effects or non-
genetic factors, such as birth type (whether the animal was born as a single or multiple), rear type 
(whether the animal was raised as a single or multiple), the age of the dam, the date of birth of the 
animal and whether that animal was born to a maiden or experienced mature ewe (Hadfield and 
Kruuk 2007; Brown et al. 2016). These non-genetic factors influence the phenotype of the animal 
and can often influence how it is classed visually. For example, twin born and reared lambs are 
typically smaller and produce broader and less wool than single counterparts (Swan et al. 2008, 
Thompson et al. 2011a,b). Accurate estimates of these fixed effects need to be included when 
estimating breeding values, to ensure accurate estimates of genetic merit.  

Research has shown that visually assessed classer grades have a heritability between 0.12 and 
0.2 and have favourable genetic and phenotypic correlations with liveweight, wool quality and 
structural traits (Mortimer et al. 2009). These subjectively measured traits are also significantly 
influenced by birth type, rear type and other non-genetic factors.  In addition, Clarke and Thompson 
(2021) found that classers were influenced by subjective assessments of liveweight, clean fleece 
weight and fibre diameter when grading of animals. In this study non-genetic factors had a 
significant effect on classing outcomes such that at the first seven month old professional classing 
69% of the culls were twins and only 31% were singles. Conversely 70% of the tops were singles 
and only 30% were twins. The current study uses an expanded data set from the Merino Lifetime 
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Productivity Project (Ramsay et al. 2019), covering more sires, seasons and repeated measures.  It 
The hypothesis tested that classing grades are affected by non-genetic factors and that both three 
and five grade classing systems are heritable.  

 
MATERIALS AND METHODS 

The data analysed in this study were collected from a total of 1103 sheep born in 2016 and 2017 
as part of the Merino Lifetime Productivity (MLP) Project in Pingelly, Western Australia (Ramsay 
et al. 2019). The sheep were ewes from 29 different sires and dams originating from 3 sources born 
over 4 years. Dams were evenly distributed to sire groups, taking into consideration ewe age, 
condition score and weight. The minimum number of ewes joined to each sire was 90. At 
approximately day 90 of pregnancy, ewes were scanned for litter size using ultrasound and divided 
according to whether they were single or multiple bearing. Multiple-bearing ewes were managed 
separately to single-bearing ewes to provide for their increased nutritional requirements based on 
the recommendations for pregnancy management for Merino ewes (Young et al. 2016). Lambing 
occurred in late June, with marking, tagging and DNA sampling, taken late July. All ewe progeny 
from each year of birth, were run together from weaning until pregnancy scanning as maidens (22 
months). 

All progeny were evaluated subjectively using two different visual assessments that were 
completed by independent sheep classers yearly, prior to shearing (at approximately 8 and 20 months 
of age) and according to the site breeding objective. This first classing system, called the Australian 
Merino Sire Evaluation Association (AMSEA) grade, sorts animals into three categories either Tops 
(1), Flocks (2) or Culls (3) of approximate split 25%, 50%, 25%, based on visual assessment of all 
traits that are present in the project’s breeding objective: in this paper this system will be referred to 
as GRADE. The second system used a five grade system consisting of Top (1), First (2), Flock (3), 
Sale (4) or Cull (5), referred to as a professional classer grading (PROF) system with approximate 
split 2%, 10%, 58%, 20%, 10%.  The classer was unaware of the progeny’s parentage and birth type 
at classing.  

Statistical Analysis. Fixed effects, variance components and genetic parameters were estimated 
using general linear mixed models and residual maximum likelihood methods with ASReml 
(Gilmour et al. 2009). An animal model was fitted and the animals’ year of birth, age of dam at 
lambing (in years), birth type (litter size, how many lambs were evident at pregnancy scanning), rear 
type (how many lambs from the little survived to weaning), shearing number (first or second time 
being shorn) and dam source (where the dam was bred) were fitted as fixed effects. Birth type 
referred to litter size from pregnancy scanning records (coded as 1, 2 or 3), while rear type was the 
litter size at weaning (coded as 1 or 2 as no triplets survived). For each trait the fixed effects were 
tested for significance. Following each analysis, all effects that were not significant were removed 
from the model, until only significant fixed variables were left, (using a significance level of 5%). 
Animal was fitted as a random additive genetic effect and as an environmental effect to account for 
repeated measures on the same animal. The direct heritability was estimated by dividing the additive 
genetic variance with the total phenotypic variance, whereas the environmental variance component 
from the repeated measures was added to the direct additive genetic variance, which was then 
divided by the total variance to estimate the repeatability for each trait s 
 
RESULTS AND DISCUSSION 

Birth type recorded a significant effect on both PROF in both sets of data (yearling and 
combined) as well as for GRADE when the second shearing measure was included in the analysis 
(Table 1). Rearing type was highly significant effect for PROF and GRADE and an interaction 
between these factors of birth and rear type for GRADE. These significance levels reflect findings 
by Mortimer et al. (2009). Dam age however was not significant effect for PROF, while it was 
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significant for GRADE which is consistent with the findings of Mortimer et al. (2009). This 
significance declined when the second year of data was included, most likely due to the effects of 
many non-genetic factors reducing with the age of an animal (Asadi Fozi et al. 2005).  

Predicted means for the visually classed traits were also calculated for the combined measures 
at yearling and first adult shearing (Table 1). Single born and reared lambs had lower predicted 
means for GRADE and PROF, meaning they are less likely to be culled. These differences were 
more evident in the yearling data set but had improved accuracy with lower standard errors in the 
combined data (Table 1). These results emphasise the importance of accounting for birth type, rear 
type and dam age when selecting animals based on phenotype. Animals should be classed separately 
based on their birth and rearing type, multiple born and raised animals shouldn’t be compared 
phenotypically to singles as they incur phenotypic disadvantages due to non-genetic effects they are 
exposed to.   
 
Table 1. Predicted least square means (with standard errors) for significant fixed effects for 
visually assessed traits GRADE and PROF and significance of various fixed effects at 
combined yearling and first shearing (P < 0.05)  
 

 GRADE* PROF** 
Birth Type    

1 1.88 ± 0.09 3.13 ± 0.15 
2 2.17 ± 0.09 3.50 ± 0.14 
3 2.10 ± 0.22 3.14 ± 0.34 

Rear Type    
1 2.01 ± 0.08 3.19 ± 0.13 
2 2.07 ± 0.08 3.33 ± 0.13 

Shearing    
1 2.12 ± 0.08 3.31 ± 0.13 
2 1.89 ± 0.08 3.15 ± 0.13 

*GRADE Visual classing grade on a 3-point scale (Top, Flock, Cull) 
**PROF Professional visual classing grade on a 5-point scale (First, Top, Flock, Sale, Cull) 

 
Table 2. Variances and estimates of Heritability, Repeatability with standard errors for the 
visual traits measured at yearling age and at first adult shearing of 1100 Merino ewes 
 

Age Stage Variance Component GRADE* PROF** 
Yearling Heritability 0.21 + 0.10 0.18 + 0.08 

Combined yearling and first adult 
Combined yearling and first adult 

Heritability 0.24 ± 0.08 0.17 ± 0.07 
Repeatability 0.31 ± 0.03 0.36 ± 0.03 

*GRADE Visual classing grade on a 3-point scale (Top, Flock, Cull) 
**PROF Professional visual classing grade on a 5-point scale (First, Top, Flock, Sale, Cull) 
 

Heritability estimates for visually assessed traits of GRADE (3-point scale) and PROF (5-point 
scale) were moderate at 0.21±0.10 and 0.18±0.08 respectively at yearling age and 0.24±0.08 and 
0.17±0.07 for the combined years data (Table 2). The heritability for GRADE was similar to that 
reported by Mortimer et al. (2009) confirming that visual grade is a heritable trait and can be used 
in a selection program. The repeatability across years was estimated at 0.36±0.03 and 0.31±0.03 for 
PROF and GRADE, respectively. Fulloon et al. (2001) found GRADE to have a 0.34 repeatability 
supporting the finding from our study. This indicates that both GRADE and PROF are heritable and 
repeatable traits. The estimate of heritability for professional five-point scale (PROF) is a novel 
finding allowing for accurate selection of PROF which was previously unavailable to producers.  
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CONCLUSIONS 

Non-genetic factors, in particular birth type and rear type, were found to affect the visually 
assessed traits significantly. This indicates there is a bias towards single born and raised lambs when 
visual selection is used. By accounting for non-genetic effects in visual selection, phenotypic gains 
can be increased. It is therefore recommended that multiple- born and raised lambs shouldn’t be 
visually classed or compared alongside single born and raised counterparts as multiple-born animals 
incur phenotypic disadvantages.  

Both AMSEA classer grade and professional grade, were found to have moderate heritability 
estimates and favourable repeatability estimates. Professional grade (five point grading system), will 
provide more discriminatory grading of animals as there are more classes that the traditional three 
point scale. The novel estimates calculated in this study for heritability and repeatability mean 
professional grade can now be accurately selected for to provide genetic gains in breeding programs 
and producers wanting a greater range of classing points.  
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SUMMARY 
Average temperatures are likely to increase, resulting in hotter and dryer conditions in South 

Africa. The impact of these changes on animal production and welfare is not well-defined. Two 
trials were conducted to determine the homeothermic response of eight sheep breeds. In 2016, the 
study included seven breeds, namely Dohne, Dormer, Dorper, Meatmaster (MM), Merino, South 
African Mutton Merino (SAMM) and White Dorper (WD). The WD was replaced by an 
unimproved indigenous breed, the Namaqua Afrikaner (NA), in 2017. Ranges of ewes per breed 
were 10-14 in 2016 and 12-15 in 2017. On days forecast to be hot at noon, these animals were 
assessed under cool conditions (19-24°C) in the morning and hot conditions at noon (30-33°C) by 
monitoring individual average eye temperature using thermal imaging (only in 2016) as well as 
counting flank movements to derive respiration rate (both years). The increased heat load in the 
afternoon markedly increased both traits. Breed interacted with the time of the day. During 2016, 
there were suggestions that the hair breeds (Dorper, WD and MM) were able to maintain lower 
basal respiration rates in the morning compared to the other breeds. Respiration rate in the 
generally cooler 2017 study increased by more than threefold from the morning to the afternoon in 
Merino, Dohne, SAMM and Dormer ewes, more than twofold in the Dorper and MM and by only 
84% in the NA breed. These results suggest that hair sheep and hardy indigenous breeds may cope 
better with the anticipated higher heat load in the future. There is still marked scope for further 
research on ovine adaptation to heat stress conditions in South Africa.  

 
INTRODUCTION 

Sheep form an integral component of most livestock production systems throughout the world, 
the species being able to adapt to a wide variety of environments. The adaptability and success of 
sheep is confirmed thereby that they are the world’s most diverse mammalian livestock species 
(Cloete 2012). A list of sheep breeds by region confirmed that the ovine species is indeed globally 
successful and represented in widely divergent farming landscapes throughout the world.  

It is generally accepted that the western parts of Southern Africa will become hotter and drier 
under the impact of climate change (Meissner et al. 2013). Considerable areas of South Africa are 
already marginal owing to constraints of climate and soil (Cloete and Olivier 2010). Given the 
ability of sheep to adapt to marginal conditions, the species plays an important role in both the 
commercial and smallholder animal agricultural sectors. Under the increasing challenge posed by 
external drivers, such as temperature change, sheep and goats were reported to be more resilient 
than other livestock species (Rust and Rust 2013). The South African ovine genetic resource 
encompasses specialist wool and meat breeds, terminal sire breeds, dual-purpose breeds as well as 
unimproved, indigenous fat-tailed types (Cloete and Olivier 2010). By the number of weaning 
weight records, the most important South African breeds are the Merino, Dohne, SAMM, Dorper, 
Dormer and MM (Cloete et al. 2014). Although it is only found in conservation flocks at present 
(Qwabe 2011), the unimproved indigenous NA breed performed well in fitness traits when 
compared to commercial breeds (Cloete et al. 2016).  
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Against this background, it is important to assess these breeds for their ability to withstand 
high temperatures. It is also important to quantify potential differences between breeds, as well as 
between individuals within breeds to understand the mechanisms underlying the ability of sheep to 
maintain homeothermy under heat stress conditions. 

 
MATERIALS AND METHODS 

Two studies were conducted on the Langgewens research farm of the Western Cape 
Department of Agriculture in the Swartland district, where it is common for the diurnal maximum 
temperature to exceed 30°C during the summer. The homeothermic response of seven sheep 
breeds, namely the Dohne, Dormer, Dorper, MM, Merino, SAMM and WD were assessed, by 
monitoring individual eye temperature using thermal imaging as well as respiration rate over four 
sessions. The Merino, Dohne, SAMM and Dormer originated from breeds developed in temperate 
regions, whereas the Dorper, WD and MM were composite hair breeds with temperate and heat-
adapted breeds as parents. Respiration rate was determined by counting flank movements over a 
30 second interval and then express it as breaths per minute (bpm). Sheep were monitored for two 
sessions during the cooler mornings and for two sessions during hotter afternoons over a three-day 
period from 31 October to 2 November 2016.  

Experienced stockmen released ewes in groups of three to four from a crush into an outside 
yard where they could be approached to approximately 3 to 4 meters. Individual ewes had 
numbered tags tied around their necks to allow identification from a distance. Average eye 
temperature was recorded by an operator equipped with a thermal camera while a second operator 
counted the flank movements of individual sheep. A scribe recorded the respiration rate of 
individual ewes, while also acting as a time-keeper. When all sheep in a group were processed, the 
group was moved to a separate holding yard before the next group was assessed. This routine was 
followed until all ewes were processed. Several temperature forecast services were used to identify 
days for breath counting and eye temperature recording with a likely spread of temperatures well 
in the thermo-neutral zone (19-24°C ambient temperature according to the weather station) in the 
morning, to increase to a range where some individuals/breeds may experience heat stress (>30°C 
ambient temperature according to the weather station; see Marai et al. 2007) in the afternoon.  

The second study involved the same breeds with the exception of the WD, which was replaced 
by the NA. Apart from this change, the same basic procedure was followed during 7 and 8 
November 2017. The thermal camera was not available at this stage and the recordings were 
restricted to respiration rate. The mean (±s.d.) sizes of the breed groups were 12.4±1.3 (range 10-
14) during 2016 and 13.0±1.1 (range 12-15) during 2017. All ewes were purchased from reputable 
breeders within each breed, but possible family relationships were unknown. The ewes were 
already on the farm for at least 7 months (including the Mediterranean winter) when assessed. 

Mixed model methods were used to analyse the data with ASReml4 (Gilmour et al. 2015) 
within years (2016 and 2017). The model fitted was the following: 

yijkl = mu + bi + tj + bitj + eweijk + eijkl 
with yijkl = the ith eye temperature or respiration rate observation on the ijkth ewe; mu = the overall 
mean; bi = the ith breed (as described within years); tj = the jth time of day (morning or afternoon); 
bitj = the breed x time of day interaction; eweijk = the random effect of the ijkth ewe and eijkl = the 
random error term. The between-ewe variance component so derived was used to estimate the 
repeatability of the trait under consideration. Random ewe effects were then interacted with the 
time of the day to assess the variance associated with the re-ranking of ewes under hotter 
conditions in the afternoon.   

 
RESULTS AND DISCUSSION 

Mean (±SD) temperatures derived from weather station data indicated morning temperatures 
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during recording of 23.6±1.6˚C during 2016 and 18.9±2.6˚C during 2017. Corresponding means 
for the afternoon recording were respectively 32.6±1.4˚C and 30.2±1.2˚C. The 2017 recording 
were thus done under somewhat cooler conditions, especially in the mornings.   

Ewe breed, time of day and the interaction between these fixed effects were significant in 2016 
(Table 1). The average eye temperature increased from 35.5±0.1˚C in the morning to 36.7±0.1˚C 
at noon (P<0.01). However, these responses were not similar for all breeds (Table 1). Eye 
temperature increased by around 2% for WD, Dormer, Dorper and Merino ewes, but by much 
more (3.7 to 8.7%) in the case of SAMM, Dohne and MM ewes. Respiration rate similarly 
increased from 75±2 bpm in the morning to 122±2 bpm at noon (P<0.01). In this case there was 
evidence of differentiation according to origin, as the breeds from temperate regions (Dormer, 
SAMM, Merino and Dohne) generally exhibited smaller increases of 43 to 58% from morning to 
noon, compared to 83 to 100% observed in hair sheep (WD, Dorper and MM). These results stem 
from the fact that the heat-adapted hair sheep generally had lower basal respiration rates of 54 to 
60 bpm in the mornings, compared to 77 to 96 bpm for the breeds originating from temperate 
regions. The between-ewe variance component went to the boundary of parameters space (zero) 
for average eye temperature while the repeatability of respiration rate amounted to 0.26±0.06. 
Interacting ewe with the time of the day resulted in estimates of 0.22±0.07 for the repeatability and 
0.17±0.08 for the re-ranking term. The regression of respiration rate on eye temperature yielded a 
coefficient of 5.0±1.1 breaths per minute for one ˚C increase in eye temperature (r=24; P<0.01). 
 
Table 1. Estimated means (±s.e.) for respiration rate and average eye temperature of the 
respective breeds during cool (morning) and hot (noon) periods during 2016 
 
Trait and 
time 

Breed 
WD Dormer SAMM Dorper Merino Dohne MM 

Average eye temperature (˚C) 
Morning 35.6±0.32 35.9±0.29 34.4±0.29 36.1±0.31 36.2±0.34 35.0±0.29 35.1±0.29 
Noon 36.3±0.31 36.6±0.30 37.4±0.31 36.9±0.31 36.8±0.34 36.6±0.29 36.4±0.28 
Increase 1.97 1.94 8.72 2.22 1.66 4.27 3.70 
Respiration rate (bpm) 
Morning 58±4.9 96±4.7 77±4.7 60±4.8 94±5.3 89±4.7 54±4.5 
Noon 108±4.8 137±4.7 118±4.7 120±4.8 133±5.3 132±4.7 104±4.5 
Increase  83.1 42.7 53.2 100.0 58.3 48.3 92.6 
The increase from morning to noon is expressed relative to the mean for the morning 
 

During 2017, overall respiration rate increased by approximately three-fold from morning to 
noon as temperatures increased (from 33±1 bpm in the morning to 95±1 bpm at noon (P<0.01). 
The interaction of breed with time of day was again highly significant (P<0.01). The respiration 
rate of ewes was quite similar in the cooler mornings, ranging from 31 bpm (Dorpers and Dohnes) 
to 38 bpm in Merinos (Table 2). The smaller differences between breeds could be related to the 
lower morning temperatures during 2017. Responses to the higher heat loads at noon were again 
highly breed-specific. The respiration rate of the unimproved fat-tailed NA increased by 84% from 
the morning session to the noon session. The respiration rate of the other hair sheep (Dorper and 
MM) increased by more than 2-fold, while the respiration rate of the breeds from temperate origin 
increased by more than 3-fold. The repeatability of respiration rate amounted to 0.18±0.06. When 
the ewe x time of the day interaction was added, most of the variance repartitioned toward the 
interaction (re-ranking) term, yielding respective estimates of 0.08±0.07 and 0.28±0.09.  

The ability of adapted, indigenous genotypes to better cope with heat stress across species was 
reviewed by Cloete (2012). It was evident that indigenous sheep breeds were better able to cope 
with heat stress in Egypt and India. The NA, in particular, was described in the literature as a 
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slender breed with long legs to assist in the dissipation of excess heat (Qwabe 2011; Snyman et al. 
2013). The ability of this breed to cope with heat conditions as well as its resistance to external 
parasites (Cloete et al. 2016) indicate that it may play an important role under challenging and 
poorly resourced conditions (Molotsi et al. 2020). Although other hair sheep (WD, Dorper and 
MM) also performed better than the temperate breeds for respiration rate, they were not quite as 
well adapted as the NA.  
 
Table 2. Estimated means (±s.e.) for respiration rate of the respective breeds during cool 
(morning) and hot (noon) periods during 2017 
 
Trait and time Breed 

NA Dormer SAMM Dorper Merino Dohne MM 
Respiration rate (bpm)* 
Morning 32±3.7 32±3.9 34±3.7 31±3.8 38±3.7 31±3.7 32±3.4 
Noon 58±3.9 121±3.8 112±3.7 87±3.8 122±3.8 94±3.7 74±3.4 
Increase 84.4 378.1 329.4 280.6 321.1 303.2 231.3 
The increase from morning to noon is expressed relative to the mean for mornings 
 
CONCLUSION 

Adapted livestock such as particularly the NA, but also the MM and Dorper, may cope better 
under challenging climate change scenarios than breeds from temperate regions such as the 
Merino, Dohne, SAMM and Dormer. An easily recorded indicator trait such as respiration rate 
could be considered as a tool to improve within-breed heat tolerance by selection under low-input 
systems. The provision is that future studies should allow a better understanding of the interaction 
of random ewe effects with the ambient conditions, represented in this study by cooler mornings 
and hotter afternoons. 
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SUMMARY 

The study used 61,974 ewe-year records of 26,254 ewes aged 20 months and older for number 
of lamb born per ewe lambed (NLB), number of lambs weaned per ewe lambed (NLW) and ewe 
rearing ability (ERA) obtained from intensively managed South African Dohne Merino flocks. 
Corresponding numbers for extensively managed flocks numbered respectively 14,067 and 5,181. 
Reproductive output of intensively managed flocks was higher at respectively 1.49 vs. 1.28 NLB 
and 1.32 vs. 1.19 NLW when compared to extensively managed flocks. In contrast, ERA was 
slightly lower at 0.894 vs. 0.932 in intensively managed flocks. Estimates of heritability in 
intensively manage flocks were 0.028 for NLB, 0.016 for NLW and 0.002 for ERA. Corresponding 
values in extensively managed flocks were respectively 0.066, 0.040 and 0.008. Genetic correlations 
of NLB with NLW and of NLW with ERA were positive, while genetic correlations of NLB with 
ERA were not significant. Genetic correlations between performance in intensive and extensive 
flocks, as derived from pedigree information, amounted to 0.999 for NLB, 0.840 for NLW and 0.595 
for ERA. However, large SEs for the latter two correlations made it impossible to make firm 
recommendations. Further research is indicated.  

 
INTRODUCTION 

The South African Dohne Merino was developed from a cross between the Merino and the then 
German Merino, presently known as the South African Mutton Merino (Van Wyk et al. 2008). The 
Dohne Merino contributed approximately 28% of the weaning weight records to the National Small 
Stock database during 2010 to 2011 and has shown steady growth over the decade from 2003 to 
2012 (Cloete et al. 2014). The breed has also been exported to other sheep producing countries, 
including Australia (Li et al. 2013). The genetics of yearling live weight and wool traits in Dohnes 
were studied by Van Wyk et al. (2008). However, the only account of genetic parameters for 
reproduction traits in the breed involved reproduction totaled over a number of lambing 
opportunities (Oliver and Cloete 2011).  

The Dohne Merino breed is known to be farmed with under widely different conditions, ranging 
from extensive to very intensive (Jordaan 2013). The enhanced mating systems of intensive 
management complicate deriving genetic parameters for reproductive performance, since the 
observed phenotype could also depend on the environment at mating. Also, an alternative to the 
composite trait selection for reproduction by selecting for number of lambs weaned per mating in 
South Africa (see review by Brien et al. 2014) has been suggested by Bunter et al. (2020).  

We thus studied the genetics of repeated reproduction records of South African Dohne Merinos. 
Knowledge of the managerial practices on individual farms allowed us to allocate specific flocks to 
either an intensive or extensive group. In the intensive group, routine management included the 
synchronisation of ewes, including the administration of fertility-enhancing drugs, followed by 
laparoscopic insemination and lambing under controlled conditions in lambing pens. The extensive 
group, on the other hand, were mated naturally on rangeland without any human intervention. The 
ewes lambed under the same conditions, and the daily recording of new births was the only human 
intervention at lambing.  
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MATERIALS AND METHODS 
Traits, recordings and numbers: Data from registered Dohne Merino breeders were available 

to aid in the allocation of farms to the respective groups defined in the Introduction. Selection for 
reproduction in South African sheep at present hinges on analysis involving repeated records for 
number of lambs born (NLB) and number of lambs weaned (NLW) (Brien et al. 2014). Since many 
flocks do not provide complete mating lists to allow for the identification of barren ewes, these traits 
are expressed per ewe lambed for individual ewes available at lambing. This means that NLB 
equates to the definition used by Bunter et al. (2020) for litter size. Additional to NLB and NLW, 
ewe rearing ability (ERA) was constructed from the aforementioned traits, as described by Bunter 
et al. (2020). The latter trait is not considered in South African small stock selection at present. The 
intensive group was represented by 61,974 repeated records of 26,264 ewes lambing in 386 
contemporary groups. Analyses on the extensive group used data of 14,067 repeated records of 5,181 
ewes in 100 contemporary groups.   

Statistical analyses: All data were analysed with ASReml4 (Gilmour et al. 2015). 
Contemporary group and ewe age in months were fitted to account for environmental differences 
among records. Ewe age was modelled as a fixed linear component as well as a cubic spline to 
account for random deviations from linearity. Random components included additive ewe effects as 
well as ewe permanent environmental effects. Initially, single-trait analyses were conducted within 
management groups, to define operational models for two-trait analyses to obtain genetic 
correlations among traits. Finally, the intensive and extensive datasets were merged to obtain genetic 
correlations of the expression of the traits in one environment with performance in the other 
environment. The pedigree file used in all analyses contained 44,145 individuals, 2,179 sires and 
23,546 dams. 

 
RESULTS AND DISCUSSION 

Overall, means for the reproduction traits were higher in the intensively managed flocks than in 
the extensive flocks (Table 1). The exception was ERA which was somewhat better in the extensive 
grouping, but at a substantially lower birth rate. Derived coefficients of variation ranged from 24.5% 
for ERA in extensive flocks to 47.4% for NLW in intensive flocks. These estimates are broadly 
consistent with comparable figures reported in the extensive review by Safari et al. (2005) and by 
Cloete et al. (2017). 
 
Table 1. Descriptive statistics, phenotypic variances (σ²p) and single-trait heritability (h²) and 
repeatability (t) estimates for number of lambs born per ewe lambed (NLB), number of lambs 
weaned per ewe lambed (NLW) and ewe rearing ability (ERA) in intensively and extensively 
managed Dohne Merino flocks 
 

Group and trait Mean ± SD Range σ²p h² ± SE t ± SE 
Intensive (n = 61974) 
NLB 1.488 ± 0.569 1 – 3 0.293 0.028 ± 0.004 0.061 ± 0.004 
NLW 1.318 ± 0.625 0 – 3 0.356 0.016 ± 0.004 0.048 ± 0.004 
ERA 0.894 ± 0.272 0 – 1 0.068 0.002 ± 0.002 0.019 ± 0.004 
Extensive (n = 14067) 
NLB 1.282 ± 0.486 1 – 3 0.201 0.066 ± 0.012 0.095 ± 0.009 
NLW 1.185 ± 0.508 0 – 3 0.236 0.040 ± 0.010 0.064 ± 0.009 
ERA 0.932 ± 0.229 0 – 1 0.052 0.008 ± 0.006 0.019 ± 0.009 
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NLB and NLW in intensively managed flocks increased to 48 months of age (P < 0.05; Figure 
1). NLB subsequently remained similar but NLW declined from 60 to 84 months. Extensively 
managed flocks had an increased NLB and NLW up to 60 months, stabilised at 72 months and 
declined to 84 months. ERA increased from 24 to 36 months in extensively managed flocks and 
stabilised thereafter (Figure 1). In contrast, ewe age groups from 36 to 60 months had the best ERA 
in intensively managed flocks, with lower (P < 0.05) figures for 24-month-old ewes and those aged 
72 months and older. Trends for NLB and NLW are generally similar with previous results for 
Dohne Merinos reported by Fourie and Heydenrych (1983).  

Figure 1. The effect of ewe age in months on the reproduction traits studied 
 
Derived single-trait h² and repeatability estimates for NLB and NLW were significant in both 

management groups, although estimates in intensively managed flocks were somewhat lower (P < 
0.05; Table 1). ERA was lowly heritable with a low repeatability estimate of around 0.02 in both 
groups. Recent results from Australian Merino industry (Bunter et al. 2020) and resource flocks 
(Dominik & Swan 2016; Cloete et al. 2017) supported a low h2 for reproduction traits with estimates 
generally below 0.10 for NLB and NLW, and below 0.05 for ERA.  

Phenotypic variance components from two-trait analyses in both intensively and extensively 
managed flocks in Table 2 were very close to single-trait values in Table 1. Estimates of h² were, 
however, slightly higher in intensive flocks than those in Table 1. In contrast, h² estimates of 
extensive flocks were only about half those in Table 1 for NLB and NLW (P < 0.05). Duplicate h²-
estimates from different trait combinations were all within 0.001 from each other. Two-trait 
repeatability estimates were very close to the corresponding single-trait estimates, suggesting 
different repartitioning between h² and the animal permanent environment between management 
systems. Reasons for this result are not evident. In intensive flocks, genetic correlations were 
positive between NLB and NLW, negative in direction but not different from zero between NLB 
and ERA and positive between NLW and ERA (Table 2). The latter traits were uncorrelated in 
extensive flocks. Phenotypic correlations between NLB and NLW were positive in direction but 
smaller in magnitude than the corresponding genetic correlations. The negative phenotypic 
relationship between ERA and NLB (Table 2) reflected higher mortality rates of multiples, but the 
magnitude was low and in close agreement with previous estimates (Bunter et al. 2019; 2020).  

Genetic correlations between the same trait expressed in either the intensive or extensive 
environment amounted to 0.999 ± 0.314 for NLB, 0.840 ± 0.459 for NLW and 0.575 ± 0.761 for 
ERA. The magnitude of these values suggested that NLB and NLW do not have to be considered as 
different traits. However, the SEs associated with these traits were high, and only the genetic 
correlation of unity for NLB reached a level of twice the corresponding SE. Genetic variances of 
small magnitude together with a low level of genetic connectedness between extensive or intensively 
managed flocks could contribute to the poor accuracy of these estimates. It is common for top 
ranking sires only to be used for laparoscopic artificial insemination, thus confounding management 
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groups by sire families. Genomic information could provide an alternative platform to link distant 
families in future studies, which could improve the accuracy of these estimates.  
 
Table 2. Two-trait phenotypic variances (σ²p), heritability (h²), repeatability (t) and correlation 
estimates for number of lambs born per ewe lambed (NLB), number of lambs weaned per ewe 
lambed (NLW) and ewe rearing ability (ERA)    
 

Group and trait Trait   
 NLB NLW ERA 
Intensive     
σ²p 0.2932 0.3562 0.0683 
NLB* 0.033 ± 0.005 0.741 ± 0.002 -0.078 ± 0.004 
NLW* 0.865 ± 0.040 0.031 ± 0.005 0.560 ± 0.003 
ERA* -0.147 ± 0.140 0.364 ± 0.116 0.018 ± 0.005 
T 0.061 ± 0.004 0.045 ± 0.004 0.020 ± 0.004 
Extensive     
σ²p 0.2015 0.2362 0.0515 
NLB* 0.030 ± 0.012 0.772 ± 0.004 -0.092 ± 0.009 
NLW* 0.995 ± 0.110 0.017 ± 0.011 0.519 ± 0.006 
ERA* -0.196 ± 0.435 -0.019 ± 0.611 0.012 ± 0.011 
T 0.095 ± 0.009 0.057 ± 0.008 0.020 ± 0.009 
* Heritability estimates in bold on the diagonal, genetic correlations below and phenotypic correlations 
above the diagonal 

 
CONCLUSIONS 

This study indicated that reproductive traits in South Africa Dohne Merinos are lowly heritable, 
estimates for ERA not reaching significance in all instances. Repartitioning variances to h² and 
animal PE in two-trait analyses stood to reason in intensive flocks but the reason for the lower two-
trait h² estimates for NLB and NLW in extensive flocks is difficult to explain. Genetic correlations 
for the same trait in the two environments were high in absolute values. However, interpretation was 
complicated by large SEs, suggesting the need for further research.  
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SUMMARY 

The genetic basis of polled or horned phenotypes in beef cattle is now well documented, however 
horned animals will continue to be born in the national herd for some time. Animal welfare will 
continue to be compromised due to the need to dehorn animals with horn buds. While scurs don’t 
necessarily require removal, the inability to distinguish between horned or scurred animals at the 
age of dehorning mean they are dehorned nonetheless. Targeted breeding of polled herds in industry 
is increasing with genetic poll tests available, but without understanding the genetic basis of scurs, 
horn buds and thus dehorning practices will remain. The difficulty in identifying the genetic basis 
of scurs remains the lack of a reference population with accurate phenotypes, driven largely by the 
difficulty in phenotyping horns and scurs at usual dehorning age. This paper describes the challenges 
and preliminary results of a phenotyping project using the Southern Multibreed project herd, which 
will form a reference population with poll/horn/scur phenotypes, accompanied by full pedigree 
recording and genomics data.  

 
INTRODUCTION 

Carcase bruising from horns is estimated to cost the Australian meat industry $30 million per 
year (CSIRO 2014). These economic losses promote the accepted management practice of horn bud 
removal (i.e. dehorning) at an early age (less than 6 months) (Medugorac et al. 2012). However, 
dehorning can still lead to economic losses due to wound healing, translating into short term weight 
loss and increased mortality rates (Prayaga 2007; Bunter et al. 2013). Despite being commercially 
necessary, dehorning procedures are painful. The increasing importance of social license in 
agriculture and the impact dehorning has on animal welfare may see less acceptance of these 
practices in the future (Williams and Page 2014). The alternative to dehorning horned cattle is to 
breed polled cattle.   

Horns in cattle form as a free-floating bud, which later fuses to the skull as a fixed bony 
extension, while scurs appear as small and only loosely attached horns, and polled cattle are naturally 
hornless (Seichter et al. 2012). While polled breeding is now targeted in industry, scurred animals 
will remain in the population until scur genetics are understood, requiring continued dehorning 
practices due to the inability to distinguish between horned or scurred cattle at the time of dehorning.  

The genetic basis of polled cattle is now largely accepted as an autosomal dominant trait 
(Mariasegaram et al. 2010; Medugorac et al. 2012; Seichter et al. 2012; Rothammer et al. 2014; 
Utsunomiya et al. 2019) with two alleles (Celtic PC, and Friesian PF) forming the basis for genetic 
testing enabling direct selection for polledness. The genetic basis for horns is the absence of any 
polled alleles, while the genetic basis of scurs appears to be more complex. The inheritance model  
initially proposed was that  scurs is a sex-influenced trait characterized by two alleles, Sc (scurs) 

 
∗ AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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and sc (no scurs), where one Sc in males results in scurs, while females require two Sc alleles to be 
scurred (White and Ibsen 1936). Due to growth in the same head position, horns mask the expression 
of scurs; it is proposed that homozygous polled alleles also inhibit scur growth, unless the animal 
also possesses homozygous scur alleles (Sc/Sc) (Long and Gregory 1978). More recent studies have 
offered varied and contradicting conclusions on scur genetics, including as autosomal recessive and 
not sex-influenced (Capitan et al. 2009), mapped to bovine chromosome 19 (Asai et al. 2004), 
autosomal dominant inheritance mapped to chromosome 4 (Capitan et al. 2011), and oligogenic and 
age-dependent penetrance (Gehrke et al. 2020). Additionally, studies have shown the diversity in 
scur phenotypes, with small scabs and scaly patches, to tiny loose buds, to long pendulous loose 
horns, along with differences in head shape and bumps (Capitan et al. 2011; Gehrke et al. 2020). 

One dimension of the complexity of scur studies lies in the difficulty of obtaining accurate 
phenotypes, given the variation due to age and breed, and the need to adjust management to enable 
recording prior to dehorning to avoid misclassification. Furthermore, the number of scurred animals 
in the population is relatively unclear for similar reasons. Observations from the Australian 
microsatellite haplotype poll test showed scur phenotype rates of approximately 5% (Connors et al. 
2018); however phenotypes were industry supplied and subject to bias (Connors et al. 2019). Most 
studies on scurs have been performed in the absence of poll genetic testing, which can clarify an 
animal’s horn genetics in addition to its phenotype. Additionally, obtaining large numbers of 
phenotypes has been performed within dairy breeds rather than beef breeds, likely due to the 
differences in management practices. Here, preliminary findings of a beef cattle poll/horn/scur 
phenotyping study using the Southern Multibreed Project (Walmsley et al. 2021) as a reference 
population are presented. While this study is preliminary, this paper will set the scene for the 
establishment of a reference dataset of multibreed populations with full pedigree recording, poll 
genetic testing, SNP genotypes, and phenotypes at marking and when older, for generations. 

 
MATERIALS AND METHODS 

The Southern Multibreed Project has cattle populations at five sites across NSW, including 
Trangie Agricultural Research Centre (TARC), Grafton Primary Industries Institute, Glen Innes 
Agricultural Research & Advisory Station, Elizabeth Macarthur Agricultural Institute, and Tocal 
Agricultural Centre. Each site has varied cattle populations in number and breed, which includes 
Brahman, Charolais, Shorthorn, Angus, Hereford, and Wagyu, and some Brahman-Hereford and 
Brahman-Angus F1 crossbreds. Calves at each site were marked at age 8-12 weeks, along with 
horned/polled/scurred phenotypes, sex, and breed recorded. Phenotypes were classified as the 
following:  

(i) smooth poll cone = no buds, smooth poll, pointed cone shape of skull; 
(ii) poll broad cone = no buds, smooth poll, broad cone shape of skull; 
(iii) poll = no buds, smooth poll, flatter shape of skull (i.e. no cone);  
(iv) poll frontal bumps = no buds, poll, bumps felt on skull; 
(v) buds = small keratin buds present (diameter measured); 
(vi) horns = small keratin horns present, >3cm length (diameter measured); 
(vii) scurs = scaly, scabby patches, no keratin (diameter measured). 

Each animal was photographed and the skull was palpated for head shape and to ensure buds were 
felt beneath longer coats; horns were already of considerable length such that they are seen through 
the coat. Buds, horns and scurs were measured in diameter at the skull. Data was recorded manually 
on-site, entered into Excel afterwards, and cross-checked with project records. 

 
RESULTS AND DISCUSSION 

The number of animals phenotyped in this study was 1309, consisting of 646 male and 663 
female calves. The phenotypes recorded are summarised in Table 1, and examples of the phenotypes 
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are pictured in Figure 1. Simply, the number of polled animals was 985, buds/horned was 298, and 
26 scurs. The majority of the scurred phenotypes were observed in crossbred calves, which may 
indicate an effect of the indicus lines on scur development. All but four Wagyu calves had buds or 
horns, and all Angus calves were polled. Differences in horn growth between sexes is difficult to 
determine at this early stage, though of note are the number of horned calves compared to budded 
calves for Wagyu and Hereford, with more males phenotyped as horned (i.e. longer growth) 
suggesting males grow horns quicker than females, and agreeing with current anecdotes of the horn 
growth-promoting effects of testosterone. The number of scurs in males and females appears to be 
similar, showing no agreement with current theory of sex-influenced genetics. It is important to note 
possible scabby patches phenotyped as scurs may have grown into buds over time, testament of the 
difficulty in phenotyping. Further observation of these calves will be performed at weaning to 
determine any late scur/bud growth in poll phenotyped animals. With poll genomic testing now 
common, testing calves at birth may enable informed disbudding choices, by only disbudding 
genetically horned calves, which would leave scur phenotypes to grow over time. 

 
Table 1. Summary of phenotypes for each breed and sex 
   

Phenotypes 

Breed Sex 
Smooth 

Poll 
Cone 

Poll 
Broad  
Cone 

Poll 
Poll  

Frontal 
Bumps 

Buds Horns Scurs Total 

Angus F 201  6 1    392 
 M 173 9 2      
Brahman F 6  1  4 8 2 41 
 M 4  3  7 3 3  
Charolais F 26 14 2 2 12 1  115 
 M 9 19 10 5 15    
Hereford F 109 9 12 1 15 3 1 299 
 M 68 11 22 18 12 14 4  
Shorthorn F 82 4 1 2 2   182 
 M 62 13 4 4 5 3   
Wagyu F 2   2 83 5  184 
 M     61 31   
Cross F 23  1 4 3 4 9 96 
 M 21  7 10 7  7  
Total  786 79 71 49 226 72 26 1309 

 

 
CONCLUSIONS 

This study describes the preliminary findings of phenotype collection for potential scur research. 
The population had good distribution of phenotypes across breed and sex. Genotypes on calves and 
parents, including poll genotype, will be available later in the year where concordance of genotypes 

Figure 1. Phenotype examples. (a) smooth poll cone, (b) scur, (c) buds, and (d) horns  

a b c d 
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and phenotype can be analysed. Use of the Southern Multibreed project as a reference population 
will provide generations of phenotype, genotype, and pedigree across multiple breeds, for further 
analysis of the complex scurs trait. 
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SUMMARY 

Fertility is a major challenge for beef producers in the harsh and diverse environmental 
conditions of Northern Australia. Two of the most significant environmental challenges facing 
breeding females are low and variable nutrition and exposure to severe heat stress. This paper aimed 
to define novel environmental descriptors that can be used to account for these effects when 
modelling fertility traits. Nutrition descriptors were based on rainfall records and average daily 
liveweight gain (ADWG). Heat stress descriptors were based on daily values for a temperature 
humidity index (THI). Three fertility phenotypes were collected as part of the Northern Genomics 
project; puberty (CL600), first pregnancy (PD1) and second pregnancy (PD2). The aims of this study 
were to examine the relationship between fertility traits and continuous environmental descriptors 
and confirm the importance of puberty attainment to subsequent reproductive success. Animals that 
were pubertal at CL600 were found to have increased odds of success in subsequent pregnancy 
recording. Environmental descriptors based on THI successfully defined an environmental gradient 
as the cumulative exposure to chronic heat stress. ADWG successfully modelled nutritional 
availability for PD1 and PD2 but descriptors based upon total rainfall were not successful.  
 
INTRODUCTION 

The Northern Australia beef industry contains 60% of Australia’s national herd and is defined 
by diverse and challenging environmental conditions (McLean et al. 2014). These conditions 
negatively impact female fertility, an important driver of profitability. The environment represents 
more than location or a contemporary group, it is the sum-total of the temperature, rainfall, pasture 
availability and other factors to which animals are exposed. The environmental descriptors examined 
in this study were designed to account for environmental variation as a continuous variable based 
upon available weather information and animal weight gain performance. Also examined was the 
role of early attainment of puberty on subsequent pregnancy. Overall herd productivity is enhanced 
by large numbers of maiden heifers becoming pubertal, conceiving and subsequently calving early 
in the breeding season, giving maximum opportunity for lifetime reproductive success. The 
objectives of this study were to assess the relationship between fertility traits and novel, continuous 
environmental descriptors measured in Northern Australia.  

 
MATERIALS AND METHODS 

Phenotypes. The project utilized heifer data (n = 24,768) from 54 commercial herds from across 
Northern Australia, collected as part of the ongoing Northern Genomics project. The animals 
represented a diverse range of breeds including: Brahman, Angus, Belmont Red, Charolais, 
Droughtmaster, Shorthorn, Limousin, Santa Gertrudis, Boran and Wagyu (Hayes et al. 2019). Heifer 
reproductive maturity (CL600) was measured when approximately 50% of the contemporary herd 
was sexually mature, using a one-time ovarian scan via ultrasound to detect the presence of a Corpus 
Luteum (CL; n = 25,176), following the procedures outlined by Hayes et al. (2019). This trait was 
nominally measured at approximately 600 d of age. Heifers which displayed a CL or were pregnant, 
were deemed ‘pubertal’, the rest ‘non-pubertal’. Heifer pregnancy status was measured as foetal age 
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in weeks (n = 20,989) at approximately 2.5 yrs of age, following the heifer’s first breeding season, 
and the subsequent pregnancy (n = 10,072) at approximately 3.5 yrs of age (PD1 = first pregnancy 
and PD2 = second pregnancy). Animals were also recorded for liveweight (Wt), hip height (HH), 
body condition score (BCS) and a tail hair sample taken.  

Environmental Descriptors. Weather data for each collaborating property was obtained using 
the NASAPOWER package in R 3.5.3 (Sparks 2018). NASAPOWER data is a publicly available 
global climatology database with a 0.5° by 0.5° arc of longitude and latitude (Sparks 2018). Based 
upon the coordinates provided for each collaborator, daily observations of rainfall, temperature and 
relative humidity data were downloaded for the 20 years preceding the date of trait recording. 

The temperature (T) and relative humidity (RH) was used to calculate a daily temperature 
humidity index (THI) via using the formula from Wijffels et al. (2013).  

𝑇𝑇𝑇𝑇𝑇𝑇 = 0.8 ∗ 𝑇𝑇 + �(𝑅𝑅𝑇𝑇 ∗ 0.01) ∗ (𝑇𝑇 − 14.4)� + 46.4 
To assess the impact of the severity of the environment in which the heifers were exposed, the 

number of days where THI was equal to or exceeded different thresholds (65-79) in the 6 months 
prior to trait recording (CL600) or conception date (PD1) was assessed. A THI value of 79 was used 
as it is considered to be the threshold of severe heat stress (Moran 2005; McGowan et al. 2014). 
Chronic heat stress was also modelled by calculating the area under the curve (AUC) of daily THI 
in the 120 d surrounding (60 d prior and 60 d post) trait recording/conception date.  

Rainfall descriptors were based on the daily precipitation records. Three separate descriptors 
were calculated based on key dates in the breeding cycle: conception date (PD1) and trait recording 
date (CL600). Total rainfall (mm) in the 365 d prior to trait recording, total rainfall (mm) in the 120 
d prior to trait recording and the standard deviation of rainfall in the 120 d prior to trait recording 
compared to the 20 yr average of the same period and location.  

ADWG was calculated as the average daily gain from CL600 to PD1 (kg/day). The effect of 
ADWG was not modelled for CL600 as no Wt data prior to CL600 measurement was available.  

Statistical Analysis. The B.indicus percentage and heterozygosity was calculated using the 
methods outlined by Hayes et al. (2019). The environmental descriptors were fitted as fixed effects 
in a generalized linear model. The equation of each generalized linear model was: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹𝑡𝑡𝐹𝐹𝐹𝐹 ~ 𝑇𝑇𝑇𝑇 + 𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑊𝑊𝐹𝐹 + 𝐵𝐵𝐶𝐶 + 𝐵𝐵𝑇𝑇% + 𝑇𝑇𝐹𝐹𝐹𝐹 +  𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐸𝐸𝐹𝐹𝑡𝑡𝐹𝐹 𝐷𝐷𝐹𝐹𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹𝐷𝐷𝐹𝐹𝐸𝐸𝐹𝐹 
CL600, PD1and PD2 were modelled as binary traits (0 = ‘non-pubertal’, 1 = ‘pubertal’ OR 0 = ‘non-
pregnant’, 1 = ‘pregnant’) using a logistic regression. Statistical analysis was conducted using the 
glm.db package in R (Ripley et al. 2013). Additional analysis to examine the effect of puberty at 
CL600 on pregnancy was completed using a least squares mean test via the emmeans package in R 
(Lenth et al. 2020). The relationship between CL600 score and all environmental measures was also 
modelled using logistic regression (0 = “non-pubertal”, 1 = “pubertal”) using the glm.db package in 
R (Ripley et al. 2013).  
 
RESULTS AND DISCUSSION 

Effect of CL600 on pregnancy. Heifers that were pubertal at CL600 had increased log odds of 
pregnancy success at both PD1 (0.56) and PD2 (0.75) compared to non-pubertal heifers (P < 0.05). 
This study has reinforced the usefulness of early puberty as a heritable trait capable of being 
measured earlier in life and which has a positive and significant relationship to later-in-life 
pregnancy traits (Johnston et al. 2014; Corbet et al. 2018). Heifers that are pubertal at the 
commencement of joining conceive early, calve early and readily reconceive. 

Effect of environmental descriptors on CL600. The effect of the number of days over THI 65 
and 70 was significant and negative (P < 0.05. The cumulative daily THI for 120 d surrounding trait 
recording was significant and negative (P < 0.05). Each additional day of severe heat stress (THI >= 
79) to which heifers were exposed was significant (P < 0.05) to puberty attainment but suggested a 
positive relationship, a results contrary to expectations. The results suggests that an increased heat 
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load, particularly chronic heat stress in the period prior to ovarian scanning will reduce the 
proportion of pubertal females. The reason for the lack of a relationship between acute heat stress 
and diminished puberty outcome is unclear. The secretion of hormones by the structures of the 
reproductive tract during estrus are subject to interference under high heat stress conditions, an effect 
that has been accounted for by these descriptors (Wolfenson and Roth 2018). The rainfall total and 
deviation of total rainfall from the long-term average and 12 mo rainfall in the preceding 12 mo 
were both not significant to the outcome of CL600. This result suggests that the rainfall descriptors 
did not conclusively account for the variability of nutrition.  

Effect of environmental descriptors on PD1. The number of days to which animals were 
exposed to THI thresholds of 65 and 70 in the 120 d surrounding conception date had a significant 
impact (P < 0.05) and was associated with reduced pregnancy success. Area under the curve of daily 
THI measurements and the number of days over 75 were both not significant. Days over 79 again 
had a positive effect (P < 0.05). The results suggest that the THI descriptors adequately model 
chronic heat stress and the detrimental impact it has on early pregnancy and cyclicity (Gilad et al. 
1993). Total rainfall and deviation from average were not significant to pregnancy outcome. The 
effect of ADWG was significant (P < 0.05), with increased ADWG being associated with improved 
pregnancy results.   

Effect of environmental descriptors on PD2. THI descriptors had a universally negative 
relationship to second pregnancy and were significant (P < 0.05) for; AUC, and days over 75. This 
was consistent with results for PD1 and CL600 in that a stronger relationship was found to chronic 
heat stress rather than acute or severe heat stress. The lack of a significant relationship between acute 
heat stress (days over 79) may be due to several factors, including adaptation and confounding 
seasonal effects as peak THI typically coincides with the wet season, and thus peak nutritional 
availability, in Northern Australia. The relationship of PD2 outcome to ADWG and rainfall echoed 
the results from PD1, ADWG was significant (P < 0.05) while rainfall was not.  

 
CONCLUSIONS 

This study showed that heifers which were pubertal at CL600 had improved pregnancy outcomes 
at PD1 and PD2. This underscores the importance of breeding heifers that are early maturing. Heifers 
that are pubertal at the start of the joining period maximise the available time to conceive early in 
the joining period which in turn increase the available time to re-conceive.  

THI-based descriptors to measure chronic heat stress had significant relationships with puberty 
attainment and heifer pregnancy. ADWG was found to have a significant relationship, in the 
expected direction, with first and second pregnancy. However, descriptors based upon rainfall had 
no significant relationship. The descriptors based upon ADWG and chronic heat stress satisfied the 
primary objective of the study, to define an environmental gradient based on these descriptors. 
Further refinement of rainfall descriptors is required.  
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SUMMARY 
Cost effective genotyping tools are essential for wide-spread use of genomics in research and 

industry. While the majority of large-scale industry implementations of genomic selection have 
relied on single nucleotide polymorphism (SNP) arrays, genotyping using skim-whole-genome 
sequencing (SWGS) is becoming more accurate and, due to large reductions in sequencing cost, 
SWGS genotyping is becoming price competitive with SNP arrays. In SWGS genotyping, a 
sample is sequenced to 0.5 or 1x read depth and imputed to full WGS with a reference population 
sequenced at higher read depth (e.g. 1000 Bull Genomes Project). Imputation software, such as 
Beagle, can directly impute SNPs from SWGS to high fold coverage WGS, but they were not 
designed to do so. Gencove has developed an imputation algorithm especially for this task, 
1oimpute. We compared the genotyping and imputation accuracy of Beagle4.0 and 1oimpute in a 
sample of 31 Holstein, 55 Jersey, and 39 Jersey-Holstein crosses. Animals were sequenced to 
approximately 10-fold coverage and variants and genotypes were identified as part of 1000 Bull 
Genomes Run8. Each animal’s sequence was then randomly down-sampled to 0.5 and 1-fold 
coverage, aligned to the reference assembly, and imputed either with Beagle4.0 or with 1oimpute. 
Imputed genotypes were compared to observed full-sequence genotypes via correlation and 
proportion correct (concordance). The mean per marker genotype correlation of the 16 million 
imputed SNP across all breeds was 0.78 (0.5x) and 0.84 (1x) for Beagle and 0.92 (0.5x) and 0.93 
(1x) for 1oimpute. While the Beagle pipeline could be likely further improved, the results 
demonstrate that a purpose-built imputation method is required to perform accurate SWGS 
genotyping. The method is attractive as it can provide sequence density genotypes at a cost price 
point comparable to low or medium-density SNP arrays.  
 
INTRODUCTION 

The large scale implementation of genomic breeding approaches in industry (e.g. genomic 
selection) requires genotyping tools that are accurate and cheap. The lower the cost of genotyping, 
the more widespread the adoption of genomic selection. Therefore, the continued development and 
refinement of genotyping methods is crucial to realising genetic gain from genomics.  

Whole-genome sequencing has always underpinned genotyping platform development through 
the discovery of genetic marker diversity, such as single nucleotide polymorphisms (SNP), from 
which a subset of markers can be chosen for routine genotyping. Whole-genome sequencing 
requires the preparation of a library that cuts DNA into segments (i.e. sequence reads) and attaches 
a barcode to each segment. Once barcoded, samples can be mixed and sequenced together and the 
data for each sample can be separated afterwards. This multi-plexing approach coupled with vastly 
increased sequence output of recent technologies are the primary reasons for the large reduction in 
sequencing costs over time. The amount of sequencing per position of the genome is called read 
depth (e.g. read depths of 8 to 20x are common in livestock populations).  

The most widely used genotyping method in large livestock populations have been SNP chips, 
which are microarrays that can provide genotypes on a few to many thousands of SNP. SNP chips 
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are generally highly accurate, amenable to high-throughput methods, and deliver near complete 
data at the loci queried. Low to medium density SNP chips with approximately <10,000 and 
50,000 markers are currently available at prices that warrant wide-spread use when compared to 
impact on farm profitability (e.g. Newton et al. 2018). Nevertheless, decreasing genotyping costs 
further would no doubt increase the use of genomic selection. 

Another way to genotype individuals is through genome sequencing directly. The reduced cost 
of sequencing now makes routine genotyping with whole-genome sequence feasible when 
sequence depth per sample is kept to 1x read depth or less, so-called skim whole-genome 
sequencing (SWGS). Due to the low read depth, there are relatively few loci with enough reads to 
call genotypes accurately and the set of loci called differs for each individual in a population.  
SWGS could be improved by imputing missing genotypes and improving genotype accuracy of 
loci with insufficient reads. Several imputation programs are available, such as Beagle, Minimac3, 
and FImpute, but most have not been developed specifically for imputing SWGS. Gencove have 
developed an imputation algorithm (1oimpute) for SWGS adapting an methods by Li and Stephens 
(2003) to routinely impute SWGS genotype data. 

Here we present a comparison of SWGS genotyping using 1oimpute and Beagle4.0 imputation 
in three dairy cattle breed groups, Holstein, Jersey and Holstein-Jersey crossbreds, sequenced at 
0.5 and 1x read depth. 

 
MATERIALS AND METHODS 

Whole-genome sequencing and processing. Thirty-one Holstein, 55 Jersey, and 39 Holstein-
Jersey crossbred bulls were whole-genome sequenced to an average depth of 10x. Raw sequence 
fastq data were provided to Gencove and each animal’s sequences were downsampled to 0.5 and 
1x read depth. Full, 0.5 and 1x sequences were quality controlled and aligned with BWA to the 
ARS-UCD-1.2 reference assembly (Rosen et al. 2020) to produce binary alignment (bam) files. 
Full sequences were included in Run8 of the 1000 Bull Genomes Project (Hayes & Daetwyler 
2019) and processed as described in Daetwyler et al. (2017).  

Genotype calling and imputation. Two parallel pipelines were implemented by Gencove and 
Agriculture Victoria (AgVic) for a total of four scenarios: Gencove 1oimpute 0.5 and 1x read 
depth and AgVic Beagle at 0.5 and 1x read depth.  

Gencove used their imputation software 1oimpute, which implements the Li and Stephens 
model for a set of reads in each animal’s bam file and a known set of phased variants in a 
reference panel (Li & Stephens 2003). The diploid genotype probabilites are estimated using a 
Hidden Markov Model (Wasik et al. 2019). Gencove used a multi-breed reference panel of 946 
animals (including 184 Holstein and 15 Jersey) for each breed (Snelling et al. 2020). AgVic 
performed variant calling on SWGS bam files using GATK3.8 according to the 1000 Bull 
Genomes Project guidelines. The 1000 Bull Genomes Project Run8 multi-breed taurus dataset 
with 4109 animals (including 1200 Holstein and 120 Jersey) was used as the AgVic reference for 
imputation. Random missing genotypes in the reference set were imputed with Beagle4.0 
(Browning & Browning 2009) and filtered to only include biallelic SNP whose alleles occur at 
least 4 times. SWGS genotypes were then imputed with Beagle4.0 utilising genotype probabilities 
(Browning et al. 2018), and imputed animals were removed from reference sets.  

Imputation accuracy evaluation. The accuracy of imputation was calculated as the Pearson 
correlation and concordance of imputed SWGS genotypes (coded as 0, 1, 2) from each respective 
pipeline and raw full sequence genotypes from the 1000 Bull Genomes Run8. Concordance was 
calculated as the proportion of imputed genotypes matching full sequence genotypes. Further, 
these statistics were summarised in minor allele frequency (MAF) bins of 0.0-0.03, 0.03-0.06, 
0.06-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5. Comparisons were restricted to the set of SNP imputed 
by both 1oimpute and Beagle5.1 and passing the GATK quality tranche threshold of 99.9. 
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RESULTS AND DISCUSSION 

The SWGS process led to approximately 1.6 million SNP.  This is substantially more than a 
50,000 marker SNP chip, but the SWGS SNP would be called with lower accuracy. The number of 
SNP imputed across all bovine autosomes by both 1oimpute and Beagle was 16,488,621 and the 
set of overlapping loci between the two pipelines were >95%.  

 
Table 1. Mean correlation and concordance per SNP of imputed and observed genotypes in 
Holstein (HOL), Jersey (JER) and Holstein-Jersey crossbreds (HOLJER) from 1oimpute (G) 
and Beagle (B) pipelines.  
 
Read Depth 0.5x Read Depth 1x Read Depth 
Breed HOL JER HOLJER HOL JER HOLJER 
Method G B G B G B G B G B G B 
Correlation 0.95 0.79 0.90 0.78 0.90 0.76 0.95 0.84 0.91 0.84 0.92 0.83 
Concordance 0.98 0.88 0.96 0.89 0.96 0.87 0.98 0.91 0.97 0.92 0.96 0.91 

SD across autosomes ~0.01 
 
The 1oimpute pipeline achieved substantially higher mean correlations between imputed and 

observed  genotypes across all 16 million SNP tested, with a difference of ~0.15 (Table 1). This 
trend was also observed when using concordance as the evaluation measure, though the advantage 
of 1oimpute over Beagle was slightly less at ~0.1 (Table 1). This is quite a marked improvement 
that would surely result in improved downstream analyses. Imputation performance was quite 
similar across the three breeds for both piplelines. Interestingly, 1oimpute managed to still 
outperform Beagle even though Beagle had approximately 7 times the number of Holstein and 
Jersey animals in its reference. We did also test Beagle5.1, but it performed very poorly 
(correlation reduced by ~0.2) as it does not utilise genotype probabilities. Slightly better 
imputation was observed when animals were sequenced at 1x versus 0.5x, although the difference 
was small, and suggests that 0.5x is likely sufficient for the 1oimpute algorithm. Both imputation 
methods provide metrics per SNP on their confidence in genotype accuracy, which can be used to 
filter data further. 

 

 
Figure 1. Mean correlation and concordance in minor allele frequency bins for Gencove 
1oimpute and Beagle imputation for Holstein bulls with 1x sequence read depth. 

 
It is well known that conventional imputation algorithm performance is substantially reduced 

for alleles with low frequency in the population (e.g. van Binsbergen et al. 2014). This was 
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confirmed for Beagle, where the correlation between imputed and observed genotypes in Holsteins 
was ~0.83 for loci with MAF < 0.03 (Figure 1). The reverse was observed for Beagle concordance, 
which was highest for the same low MAF bin. This occurs solely because most of the time, the 
most likely genotype will be correct and demonstrates the weakness of concordance as a measure 
of imputation accuracy, especially for low MAF SNP. In contrast, 1oimpute imputation 
correlations and concordance were consistently high (~0.95) across all MAF bins. Due to the high 
level of accuracy achieved by 1oimpute, both correlations and concordance were higher than 
Beagle across all MAF, though concordance did reach near 1.00 for low MAF SNP, indicating a 
small bias in this measure also for 1oimpute. Correlations and concordance followed similar levels 
and patterns across MAF for Jersey and crosses (data not shown). 

The Beagle pipeline was not built specifically for imputing SWGS data with high proportion of 
missing genotypes and called genotypes with high uncertainty with different SNP called for each 
animal. Further improvement may be possible by filtering the SWGS genotypes for loci with read 
depth >5x. While this would further increase the proportion missing, it would provide more certain 
SNP genotypes to initiate the Beagle Hidden Markov Model. However, it seems unlikely that 
Beagle could achieve similar performance to 1oimpute even with these improvements. Recently, a 
new SWGS imputation method (GLIMPSE) has been published (Rubinacci et al. 2021), which 
seems competitive in accuracy with 1oimpute and testing with this method is underway. 

The 1oimpute pipeline produces accurate genotypes at millions of loci and seems to overcome 
a traditional imputation bottleneck of accurately imputing lower MAF SNP. Industry application 
with the specific loci currently available on most SNP chips is therefore feasible, and for research 
applications, it is particularly useful to have access to many accurate genotypes across the MAF 
spectrum. 
 
CONCLUSIONS 

Substantially higher imputation accuracy was observed with Ioimpute than with Beagle. While 
the Beagle pipeline could be likely further improved, the results demonstrate that a purpose-built 
imputation method is required to perform accurate SWGS genotyping. The 1oimpute SWGS 
method is attractive as it can provide sequence density genotypes at a cost price point comparable 
to low or medium-density SNP chips.   
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SUMMARY 

With the objective of evaluating the impact of genotype by environment interaction (G by E) on 
breeding values for 150-day weight in Mexican Katahdin sheep, data from a total of 41,323 lambs, 
the progeny of 1,862 sires, were used to estimate genetic correlations between seven regional 
environments representing the majority of Mexico. Estimates of heritability within environments 
ranged from 0.24 ± 0.04 for Pacific Central to 0.42 ± 0.11 for North East. Genetic correlations across 
environments averaged 0.51 across all pairs, ranging from 0.07 ± 0.61 to 0.86 ± 0.27, indicating the 
presence of G by E interaction. A validation study predicted progeny performance within each 
environment with and without sire by flock effects from sire breeding values (EBVs) calculated 
from single trait BLUP analyses of data in the remaining environments. The regression of offspring 
performance on sire EBV were predictable across environments, but at lower levels than the 
expected value, in the absence of G by E, of 0.5. Fitting sire by flock improved the predictability 
with the regression coefficient increasing from 0.31 to 0.36.  

 
INTRODUCTION 

Katahdin sheep are a composite breed, developed in Maine, USA from crosses between hair and 
wool breeds (Wildeus 1997). This breed is low maintenance, highly prolific, does not require 
shearing, and is relatively resistant to internal parasites (Vanimisetti et al. 2007). The Katahdin breed 
plays an important role in the Mexican sheep industry as a maternal breed and makes a major 
contribution to sheep meat production in the country. Currently Katahdin sheep are dispersed across 
the diverse environments of Mexico, and have been dominating stud book registrations, with 87,807 
animals in the database of the Mexican National Ovinocultores Union (UNO). However, recording 
of performance is limited, which has affected the development of any systematic breeding programs 
to improve the breed through selection. The objective of this study was to evaluate performance for 
150-day weight, with a particular focus on the importance of G by E across the diverse Mexican 
environments where the breed is represented. 

 
MATERIALS AND METHODS 

Data structure. Records from 41,323 lambs, the progeny of 1,862 sires and 15,340 dams, were 
used to conduct genetic analyses of the performance for 150-day weight (W150) in Katahdin sheep 
across seven environments: North Central (NC), North East (NE), Pacific Central (PC), Central (C), 
Gulf Central (GC), Pacific South, (PS), and South East (SE). A summary of the number of animals, 
sires and dams represented at each environment is shown in Table 1. 

 
 

 
∗ A joint venture of NSW Department of Primary Industries and the University of New England 
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Table 1. Data structure and descriptive statistics for 150-day weight (W150, kg) recorded in 
Katahdin sheep for all of Mexico and by environment 
 

Component Mexico NC NE PC C GC PS SE 
Number of records 41,323 4,839 3,118 10,977 12,206 2,140 5,153 2,890 
Mean  40.9 42.1 38.1 44.1 41.9 40.8 31.9 42.1 
Standard deviation  8.8 9.5 7.3 7.8 8.6 7.2 6.2 7.1 
Variation coefficient (%) 21.5 22.6 19.2 17.7 20.5 17.7 19.5 16.9 
Number of dams 15,340 1,751 1,264 3,871 4,545 787 1,977 1,272 
Number of sires 1,862 350 176 556 734 151 161 215 

NC: North Central; NE: North East; PC: Pacific Central; C:Central; GC: Gulf Central; PS: Pacific South; SE: 
South East. 
 

Statistical analysis. Fixed effects fitted were sex (males, females), birth type and rearing type 
(single, twin, and triplet) and age of dam in years (factor: eight levels). Age at measurement was 
included as a linear regression. Variance components and heritabilities for each environment were 
estimated using univariate sire model. Random effects included sire genetic (G), maternal permanent 
environmental (PE) and contemporary group (CG), which was defined by flock of birth, year of 
birth and season. Genetic correlations across environments were estimated using bivariate analyses 
between each pair of environments. Bivariate models included the same fixed and random effects, 
with all analysis performed using ASReml software (Gilmour et al. 2018). The general bi-variate 
form of the variance structures including the residual term (R) was: 

G=�
𝜎𝜎𝑠𝑠𝑖𝑖2 𝜎𝜎𝑠𝑠𝑖𝑖𝑖𝑖
𝜎𝜎𝑠𝑠𝑖𝑖𝑖𝑖 𝜎𝜎𝑠𝑠𝑖𝑖2

�; 

PE=�
𝜎𝜎𝑚𝑚𝑖𝑖
2 0
0 𝜎𝜎𝑚𝑚𝑖𝑖

2 � ;  R = �
𝜎𝜎𝑒𝑒𝑖𝑖2 0
0 𝜎𝜎𝑒𝑒𝑖𝑖2

� ;   CG = �
𝜎𝜎𝑐𝑐𝑔𝑔𝑖𝑖2 0

0 𝜎𝜎𝑐𝑐𝑔𝑔𝑖𝑖2 � 

Genetic correlations between environments i and j were derived from the G matrix as: 𝑟𝑟𝑔𝑔𝑖𝑖𝑖𝑖 =
𝜎𝜎𝑠𝑠𝑖𝑖𝑖𝑖/(𝜎𝜎𝑠𝑠𝑖𝑖𝜎𝜎𝑠𝑠𝑖𝑖). The CG, PE, and R matrixes have a diagonal structure because contemporary groups, 
dams, and progeny can only be represented in a single environment. Heritabilities were estimated 
for environment i as ℎ𝑖𝑖2 = 4𝜎𝜎𝑠𝑠𝑖𝑖

2/𝜎𝜎𝑃𝑃𝑖𝑖
2 , with 𝜎𝜎𝑃𝑃𝑖𝑖

2  the phenotypic variance calculated as the sum of all 
components, excluding CG. 

Validation analyses were used to study the impact of ignoring G by E correlations in the genetic 
evaluation analyses. For each of the seven environments defined as “targets”, we estimated EBVs 
from “training” data combining the other six environments using a single trait animal model 
including and excluding the sire by flock interaction, not considering G by E effects (apart from any 
variation explained by sire by flock effects). Adjusted progeny performance in the target 
environment was then regressed on sire EBVs from the training analysis, i.e. for sires with progeny 
in both target and training data. The expected value of this regression in the absence of G by E is 
0.5, and regressions of adjusted offspring performance on sire breeding values were calculated from 
linear models including the fixed effects of sex, birth type, rearing type, age of the dam and age at 
measurement (W150), along with contemporary groups treated as a random effect.  
 
RESULTS AND DISCUSSION 

The mean weights at W150 for NC, NE, PC, C, GC, PS and SE were 42.1, 38.1, 44.1, 41.8, 40.7, 
31.9 and 42.1 kg, respectively (Table 1). The highest level of performance was observed for Pacific 
Central (PC) and the lowest for Pacific South (PS). The number of the records shows the distribution 
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of this breed across the country, with the largest numbers located in the central area (Central, Pacific 
Central) and the least in the Gulf Central. 

Genetic parameters used to calculate EBVs for the validation study were based on analyses of 
the whole data set. Parameters estimated from the animal model without sire by flock were 26.4 ± 
0.22 for the phenotypic variance, 37.2 ± 1.27 for the CG variance, with corresponding heritability 
and maternal permanent environment ratios of 0.14 ± 0.01 and 0.06 ± 0.01. For the model with sire 
by flock fitted phenotypic variance was 27.3 ± 0.25, CG was 34.7 ± 1.23, with heritability, maternal 
permanent environment and sire by flock ratios of 0.11 ± 0.01, 0.06 ± 0.01 and 0.07 ± 0.01 
respectively.  

Sire model variance components within environments are presented in Table 2. Estimates of 
heritability ranged between 0.25 ± 0.04 to 0.42 ± 0.11, averaging 0.32 across all regions. Lower 
heritability estimates (0.20 ± 0.02) have previously been reported in Katahdin lambs weighed at 
approximately 120 days of age (Ngere et al. 2017). Estimates of the ratio of maternal permanent 
environment effects ranged from 0.05 ± 0.01 to 0.10 ± 0.01 (averaging 0.08).  
 
Table 2. Estimates of phenotypic variance (σ2p), heritability (h2), maternal permanent 
environmental effects (m2) for 150-day weight (W150, kg) within environments in Katahdin 
sheep 
 
Component NC NE PC C GC PS SE 

σ2p 30.6 ± 0.77 23.7 ± 0.86   31.4 ± 0.52  28.3 ± 0.45   20.9 ± 0.78  12.7 ± 0.36 20.1 ± 0.71  
h2  0.31 ± 0.07  0.42 ± 0.11   0.24 ± 0.04  0.25 ± 0.04   0.28 ± 0.10 0.33 ± 0.09 0.42 ± 0.10  
m2 0.10 ± 0.01   0.08 ± 0.02  0.08 ± 0.01  0.09 ± 0.01  0.08 ± 0.02 0.05 ± 0.01  0.08 ± 0.02  

 
The highest number of common sires and their progeny were between Pacific Central and Central 

environments, where more linkage is facilitated by greater sharing of genetic material between farms 
located relatively closely together (Table 3).  

Genetic correlations across environments were positive, ranging between 0.07 ± 0.61 and 0.86 
± 0.27, with an average weighted by the inverse of standard errors of 0.51 (Table 3). The precision 
of estimates was highly variable, driven by differences in the number of common sires and progeny 
between regions. However, given the average correlation of 0.51 and considerable variation around 
the average, there is evidence that G by E interaction will affect selection across regions. We 
speculate that these interactions could have both biological and industry structural origins. The 
“biological” refers to true genetic adaptation to diversity in environmental conditions while the 
“industry structural” refers to the structure of the breed in Mexico into a large number of different 
breeding associations within regions that have different aims and ways of operating. Development 
of a single genetic evaluation system across environments would help to address this structural issue.  

The validation analysis implemented an evaluation model across environments without assuming 
G by E interaction i.e., a single trait for all environments. The model was tested with and without 
sire by flock interactions, which would in theory partly correct G by E interactions. Regression of 
offspring performance in each environment on sire breeding values calculated in the other 
environments (Table 4) showed that breeding values were predictable across environments but at a 
level lower than the expectation of 0.5 in the absence of G by E. Encouragingly, fitting sire by flock 
improved the weighted average regression (predictability) from 0.31 to 0.36. The reductions in 
predictability relative to the expectation of 0.5 were slightly higher than proportional to the average 
genetic correlation between environments: a regression of 0.31 would suggest a genetic correlation 
of 0.62 (0.31/0.5) and a regression of 0.36 a correspondingly higher correlation of 0.72. 

Several environments in Table 4 showed good levels of predictability from data recorded in other 
environments, including NC, NE, C, and GC, whereas predictability in other environments was 
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lower, including PC, SE, and PS. The two latter regions were smaller and characterised by poor 
connectivity with other regions. Improved linkage would be beneficial for these regions. 

 
Table 3. Number of common sires (and progeny) in upper triangle, genetic correlations for 
150-day weight (W150, kg) between environments in lower triangle 
 

Environment NC NE PC C GC PS SE 
NC  30 (842) 96 (4,741) 85 (3,552) 28 (723) 21 (937) 32 (845) 
NE  0.86 ± 0.27  39 (1,777) 39 (1,633) 19 (352) 11 (395) 17 (245) 
PC  0.48 ± 0.19  0.21 ± 0.37  147 (7,511) 44 (1,796) 31 (1,447) 45 (2,213) 
C  0.84 ± 0.17  0.19 ± 0.33 0.41 ± 0.18  50 (198) 29 (1,630) 46 (2,110) 
GC  0.56 ± 0.37  0.64 ± 0.40 0.50 ± 0.31 0.31 ± 0.32  16 (463) 30 (754) 
PS  0.74 ± 0.28  0.31 ± 0.58 0.77 ± 0.27 0.35 ± 0.33  0.07 ± 0.61  15 (250) 
SE  0.72 ± 0.31  0.77 ± 0.33 0.12 ± 0.34 0.23 ± 0.34  0.38 ± 0.47 0.45 ± 0.52  

 
Table 4. Number of sires and progeny used to calculate regression coefficients of sire breeding 
values from training data on progeny performance for 150-day weight in validation data from 
each environment with and without sire by flock interaction fitted in the training data 
 

Environment Sires Progeny Regression coefficient 
   No sire flock Sire flock 

NC 124 1689 0.57 ± 0.09 0.64 ± 0.11 
NE 58 691 0.32 ± 0.10 0.35 ± 0.11 
PC 198 5189 0.17 ± 0.06 0.25 ± 0.07 
C 201 4335 0.38 ± 0.06 0.42 ± 0.06 

GC 69 599 0.53 ± 0.18 0.55 ± 0.20 
PS 39 738 0.15 ± 0.09 0.23 ± 0.13 
SE 61 920 0.06 ± 0.13 0.11 ± 0.14 

Average   0.31 0.36 
 
CONCLUSIONS 

While this study showed evidence of G by E interaction across regions of Mexico, there was still 
evidence of predictability of breeding values across regions, albeit at a lower level than expected in 
the absence of G by E. Development of a national genetic evaluation system for the Katahdin breed 
in Mexico will stimulate greater linkage between associations, allowing breeders to benefit from 
across-flock selection even if there is a biological component of G by E in some circumstances. 
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SUMMARY 
In livestock, temperament traits such as flight speed and agitation are important indicators of 

management, survival, and welfare. Multiple studies have reported a low to moderate heritability 
for these traits. Identifying the genomic regions associated with temperament could help to find 
candidate genes and processes involved in defining these traits and this could be helpful in genomic 
prediction of phenotype or breeding value. This study aimed to identify genomic regions associated 
with flight speed and agitation. We used imputed whole-genome sequences from animals with 
records for flight speed (n = 8,737) and agitation (n = 8,586). The heritability for agitation was 0.18 
± 0.03 and 0.14 ± 0.02 for flight speed respectively. Three and five QTL regions were associated 
with agitation (on Chr3, Chr4, and Chr20) and flight speed (on Chr 1, Chr13, Chr15, and Chr26), 
respectively. The identification of these genomic regions provides further knowledge on the genetic 
mechanism involved in temperament traits providing alternative tools to improve sheep breeding 
programs. Further analysis is needed to find links between agitation and flight speed with production 
traits. 

 
INTRODUCTION 

Animal temperament has been proposed as a potential indicator of the physical, physiological, 
and psychological state of the animal in production systems which also defines welfare. 
Temperament can be assessed through behavioural traits such as agitation and flight speed, with 
both traits having shown a low to moderate heritability in sheep (Dodd et al. 2014). However, a 
better understanding of the whole genome associated regions and underlying genes involved could 
help to understand behavioural traits. Previously, a study on single nucleotide polymorphism (SNPs) 
on only four genes (SLC6A4, TPH2, OXTR, and HTR2A) identified SNPs on TPH2 and HTR2A 
associated with behaviour in sheep (Ding et al. 2020), suggesting that a genome-wide association 
study (GWAS) can provide further information to better understand the involved biological process. 
This study aimed to identify the genetic regions and candidate genes associated with temperament 
traits such as flight speed and agitation in sheep. 

 
MATERIALS AND METHODS 

Animals and phenotypes. In total, 8,771 genotyped animals were used from the Information 
Nucleus Flock with records for flight speed (N = 8,737) and agitation (N = 8,586) obtained between 
2008 and 2010. Lambs were produced by artificial insemination across eight farms within Australia 
and there were pure Merino or Merino crosses. A comprehensive description of the breeds is 
provided in van der Werf et al. (2010). A complete description of the recorded traits is provided in 
Dodd et al. (2014). In summary, studied traits were measured at post-weaning age. Lambs were 
subjected to an isolation test to record agitation by measuring with an agitation meter the number of 
vibrations caused by movement within the isolation box over a 30 second period. The flight speed 
corresponded to the speed at which the lamb crosses a specific distance.  

Genotypes. Low-density genotypes (50k) were imputed to high-density and finally to sequence 
level to keep ~31 million SNPs after quality control to remove SNPs with minor allele frequency 
less than 0.01, deviation from Hardy-Weinberg equilibrium (P < 10-10), and missing genotypes > 
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5%. A detailed description of the imputation is provided in Bolormaa et al. (2019). 
Statistical analysis. Each trait was normalized using square root and log10 for agitation and flight 

speed, respectively. Genetic parameters and genetic correlations for agitation and flight speed were 
estimated in ASReml v4 (Gilmour et al. 2015) using the pedigree in an animal model and bivariate 
model, respectively. The model fitted fixed effects as age, birth type (BT), month, flock (N = 8), 
year (N = 3), sex, management group (MG), interactions, and an error term (e). The animal id and 
breed proportion (GG) were fit as random for flight speed (model 1) and agitation (in addition to 
dam; model 2). Based on the animal model, phenotypes we adjusted for mentioned fixed and random 
effects. 

y = μ + BT + month + age + flock + year + GG + MG*year*flock + e               (1) 
y = μ + BT + month + age + flock + year + sex + MG + dam + GG flock*year + e    (2) 

The adjusted phenotypes and imputed sequences were used to perform a GWAS in GEMMA 
(Zhou et al. 2012) software with the model y = Xβ + Zα + e, where y is a vector of phenotype, X is 
the incidence matrix for the fixed effects, β is the vector of fixed effects (SNPs), Z is the incidence 
matrixes to relate random additive genetic effects with the phenotypes, α correspond to the vector 
of direct additive genetic effects effect with α~N(0,Gσ𝛼𝛼2 ) where G is a genomic relationship matrix 
and σ𝛼𝛼2  is the additive genetic variance; and e is a vector of residual effects. A normal distribution 
was assumed for the additive genetic effects. QTLs were identified based on a false discovery rate 
< 0.1, which corresponded to a threshold of -log10(9x10-08) ≥ 7, and a 1 Mb window from the 
significant SNPs.  

The percentage of genetic variance captured by the top significant SNPs was calculated as 
2piqiαi

2/σ2 * 100, where σ2 is the additive genetic variance, p and q are the allele frequency for the 
SNP, and αi

2 s the additive effect of the SNP. An additional threshold of -log10(1x10-05) ≥ 5 was used 
to identify the candidate genes around significant SNPs in a window of 1 Mb. The candidate genes 
were used in a pathway and gene ontology (GO) analysis performed with ClueGo v2.5.6 (Bindea et 
al. 2009) plugin. The function of candidate genes was further investigated in the literature.  

 
RESULTS AND DISCUSSION 

Moderate to low heritabilities were observed (Table 1) for agitation (0.18 ± 0.03) and flight speed 
(0.14 ± 0.02). Similar heritabilities were previously reported in an overlapping population of sheep 
for agitation (h2 = ~0.20; Lennon et al. 2009; Dodd et al. 2014), and flight speed (h2 = 0.11; Dodd et 
al. 2014) and cattle (for flight speed h2 = 0.21; Valente et al. 2016). A positive genetic correlation 
(rg) of 0.41 was detected between the studied traits, but this was higher than previously reported by 
Dodd et al. 2014 (rg = 0.20). 
 
Table 1. Heritability and genetic variance for temperament traits in sheep 
 

Trait h2 ± SE Vg Vp 
Agitation 0.18 ± 0.03 0.14 ± 0.02 0.77 ± 0.02 
Flight speed 0.14 ± 0.02 0.11 ± 0.02 0.81 ± 0.03 

h2: heritability; Vg: genetic variance; Vp: phenotypic variance; SE: standard error 
 
From the GWAS results, there were three QTLs regions (Figure 1A) identified for agitation that 

account for 9 % of the total genetic variation on the chromosomes Chr3, Chr4, and Chr20 (Table 2). 
Within these regions, 15 unannotated and 22 annotated genes were identified from which the top 15 
genes are MED27, RAPGEF1, UCK1, POMT1, PRRC2B, PPAPDC3, FAM78A, NUP214, AIF1L, 
CDK14, FZD1, MTERF1, AKAP9, EDN1, and HIVEP1. For flight speed, five QTLs (Figure 1B) 
were detected on Chr1 (with two QTLs), Chr13, Chr15, and Chr26 accounting for 16 % of the 
genetic variance (Table 2). These regions contained 35 annotated genes and 26 unannotated genes, 
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being CD47, IFT57, HHLA2, MYH15, KIAA1524, DZIP3, GUCA1C, MORC1, ELP4, PAX6, 
FCRLA, FCRLB, DUSP12, ATF6, and CENPA the top 15 genes in a window of within 1MB from 
the most significant SNPs. 

Most of the candidate genes were previously reported mainly in human studies to schizophrenia 
(FCRLA, UHMK1, RGS4, RGS5, and DCDC5; Campbell et al. 2008; Stefanis et al. 2008), 
depression (DUSP12, OLFML2B, ZFP64, and DCDC1; Wray et al. 2012), Alzheimer’s disease 
(ATF6, HSD17B7, and DZIP3; Montibeller et al. 2018, Xu et al. 2018) and other mental conditions 
(i.e. stress, bipolar, and anxiety disorders). For agitation candidate genes, fewer studies previously 
reported their function but similarly, some genes were associated with schizophrenia (RAPGEF1, 
FZD1, and AKAP9, Igolkina et al. 2018, Lui et al. 2020) or Alzheimer (NEDD9; Li et al. 2008).  

 
Table 2. Significant SNPs associated with agitation and flight speed 
 

Traits Chr Mb AF beta p-value % Vg 

Flight speed 

1 171 0.38 -0.09 5.92E-09 3.56 

1 11 0.02 -0.31 8.12E-09 3.14 

13 79 0.14 -0.11 6.03E-08 2.71 

15 60 0.15 -0.12 1.17E-08 3.40 

26 37 0.03 -0.23 5.34E-08 2.80 

Agitation 

3 5 0.02 0.25 6.77E-08 2.06 

4 8 0.20 -0.10 1.45E-08 2.32 

4 8 0.14 -0.12 1.13E-08 2.32 

20 43 0.34 0.084 8.64E-08 2.23 
Chr: chromosome; Mb: megabase pair; AF; allele frequency; %Vg: percentage of genetic variance. 

 
Figure 1. Manhattan plot of GWAS for (a) agitation and (b) flight speed indicating with lines 
the FDR < 0.1 threshold (blue) and the suggestive threshold (red) 
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The candidate genes located within 1 Mb of significant SNPs (-log10(1x10-05)≥5) were identified 
for agitation (582 genes) and flight speed (907 genes) where 53 genes overlapped for both traits. 
The three most represented gene ontology terms for flight speed were found to be intracellular, 
regulation of cellular process, and cytoplasmic part; while for agitation the signal transduction, 
regulation of signaling, and regulation of response to stimulus were the most enriched.  

 
CONCLUSIONS 

Genomic regions associated with flight speed and agitation were identified in this study. The 
significant SNPs in these regions are close to genes previously associated in multiple studies in 
humans with schizophrenia disorders, depression, and Alzheimer’s disease. Further knowledge on 
the genetic mechanism of behaviour and other important complex diseases can be provided from 
GWAS on non-model organisms such as sheep. From a production perspective in sheep, the genetic 
relationships between temperament and carcass traits are required together with economic values to 
assess the relevance of including these behavioural traits in selection programs, but a consistent 
recording of these phenotypes is needed to ensure the advantages in genomic selection. 

 
ACKNOWLEDGEMENTS 

The authors acknowledge MLA for providing access to the datasets used in the present study.  
 

REFERENCES 
Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., and Galon J. (2009) 

Bioinformatics 25: 1091.  
Bolormaa S., Chamberlain A.J., Khansefid M., Stothard P., Swan A.A., Mason B., and MacLeod 

I.M. (2019) Genet. Sel. Evol. 51: 1. 
Campbell D.B., Lange L.A., Skelly T., Lieberman J., Levitt P., and Sullivan P.F. (2008) Schizophr. 

Res.101: 67. 
Ding L., Maloney S., Wang M., Rodger J., Chen L., and Blache D. (2020) Brain and Behav, e12714. 
Dodd C.L., Edwards J.H., Hazel S.J., and Pitchford W.S. (2014). Livest. Sci. 160: 12. 
Gilmour A.R., Gogel B.J., Cullis B.R., Welham S., and Thompson R. (2015) Hemel Hempstead: 

VSN international ltd. 
Igolkina A.A., Armoskus C., Newman J.R., Evgrafov O.V., McIntyre L.M., Nuzhdin S.V., and 

Samsonova, M.G. (2018) Front. Mol. Neurosci. 11: 192. 
Lennon, K. L., Hebart, M. L., Brien, F. D., & Hynd, P. I. (2009) Proc. Assoc. Advmt. Anim. Breed. 

Genet. 18: 96. 
Li Y., Grupe A., Rowland C., Holmans P., Segurado R., Abraham R., and Williams J. (2008) Hum. 

Mol. Genet. 17: 759.  
Liu X., Low S.K., Atkins J.R., Wu J.Q., Reay W.R., Cairns H.M., and Cairns M.J. (2020) Aust. N. 

Z. J. Psychiatry 54: 902. 
Montibeller L., and De Belleroche J. (2018) Cell Stress Chaperones: 23: 897. 
Stefanis N.C., Trikalinos T.A., Avramopoulos D., Smyrnis N., Evdokimidis I., Ntzani E.E., and 

Stefanis C.N. (2008) Behav. Brain Funct. 4: 1. 
Wray N.R., Pergadia M.L., Blackwood D.H. R., Penninx B.W.J. H., Gordon S.D., Nyholt D.R., and 

Sullivan P.F. (2012) Mol Psychiatry 17: 36. 
Xu M., Zhang D.F., Luo R., Wu Y., Zhou H., Kong L.L., and Yao Y.G. (2018) Alzheimer's & 

Dementia: 14: 215. 
Zhou X., and Stephens M. (2012) Nat. Genet. 44: 821. 



Contributed paper 

90 

A GENOMIC COMPARISON OF AUSTRALIAN, NEW ZEALAND AND 
NORWEGIAN DAIRY GOAT POPULATIONS 

 
K.G. Dodds1, J.H. Jakobsen2, M. Wheeler3, T. Blichfeldt2, R. Brauning1, 

 H.J. Baird1 and J.C. McEwan1 
 

1 AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand 
2 The Norwegian Association of Sheep and Goat Breeders, Box 104, 1431 Ås, Norway 

3 AgResearch, Ruakura Agricultural Centre, Mosgiel, New Zealand 
 

SUMMARY 
Six dairy goat populations that had been genotyped using genotyping-by-sequencing (GBS) were 

compared. The populations were an industry data set from Norway along with four herds from New 
Zealand (NZ) and one from Australia. The Norwegian population was found to be the most 
genetically diverged from the others. One of the NZ populations was also quite distinct while the 
other NZ populations appear to be genetically similar to each other and closer to the Australian 
population than the other NZ population. It may be useful to combine these three NZ populations 
and the Australian population to provide better genomic evaluation. 

 
INTRODUCTION 

AgResearch have been providing genotyping services for several dairy goat enterprises with 
clients in New Zealand, Australia, and Norway. A genotyping-by-sequencing (GBS) platform has 
been used to provide a medium-density (~60k) SNP profile. In most cases the genetic background 
of the populations is poorly recorded. This study characterises and compares these populations based 
on genotypes from the common GBS platform used. One outcome of a comparison is that it would 
inform the likely usefulness of combining populations for genomic evaluation.  

 
MATERIALS AND METHODS 

Animals. The animals used in this study were from herds in the Norwegian Association of Sheep 
and Goat Breeders (‘Norway’, www.nsg.no, Norway),  Meredith Dairy (‘Aus1’, Victoria, Australia), 
Northland (‘NZ1’, Northland, New Zealand) and three other New Zealand herds (‘NZ2’, ‘NZ3’, 
‘NZ4’). The Norway population descends from the Norwegian Landrace breed with some recent 
infusion of French Alpine (Ådnøy 2014). NZ1 is primarily Saanen (Wheeler et al. 2018) while Aus1 
is a composite of Saanen, Toggenberg and British Alpine (Wheeler et al. 2018) with similar likely 
origins for NZ2, NZ3, NZ4. To approximately balance numbers across the groups, younger animals 
were removed from some groups (those with birth years from 2018, 2014 and 2017 for Norway, 
Aus1 and NZ1 respectively). 

GBS genotypes. The animals were genotyped by genotyping-by-sequencing (GBS) using the 
methods described by Dodds et al. (2015) and Wheeler et al. (2018). Prior to this study, sequence 
reads from a set of 5,395 goats, that were available at the time, from a range of sources (including 
3,702 from Aus1, 1,458 from NZ1 and 201 from NZ3 but none from Norway) were used to detect 
variants. The variants were discovered using UNEAK (Lu et al. 2013) on the adapter-trimmed 
sequences and without using a reference genome. These variants were placed into a catalogue which 
was used to allow counts of reference and alternate alleles for each variant in any GBS’d sample 
using TagDigger (Clark and Sacks, 2016).  

Only SNPs that mapped on to the autosomal chromosomes of the goat reference assembly 
(ARS1, https://www.ncbi.nlm.nih.gov/assembly/GCF_001704415.1) were retained. In addition, 
SNPs with a raw (not adjusted for read depth) Hardy-Weinberg disequilibrium value < 0.05 (Dodds 
et al. 2015) or a depth adjusted Hardy-Weinberg test p-value < 10-100 (Dodds et al. 2018a) were 

https://www.ncbi.nlm.nih.gov/assembly/GCF_001704415.1
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removed. Animals that were genotyped multiple times but had inconsistent genotypes (n=10) or that 
had a mean read depth < 0.3 (n=191) were removed from the initial set of 8,340 goats.  

Population structure. A genomic relationship matrix (GRM) was calculated using the method 
of Dodds et al. (2015) which accounts for the read depth in a genotype call. The overall allele 
frequencies, calculated on the total number of reads for each allele, were used in these calculations. 
The GRM was then used to perform a principal component analysis. The mean relatedness by group 
pair was also calculated and plotted using the heatmap function in R (R core team, 2020), which 
also performs hierarchical clustering. The fixation index (Fst) between groups was calculated by the 
depth-adjusted method of Dodds et al. (2018b) using KGD software 
(www.github.com/AgResearch/KGD) with default settings. 
 
RESULTS AND DISCUSSION 

The SNP catalogue contained 60,225 SNPs. After filtering 51,680 SNPs and 8539 animals 
remained. These SNPs had a 73.9% call rate and mean read depth of 2.71. 

The first two principal components are shown in Figure 1. The first component explains 69.3% 
of the variance and separates out the Norwegian goats from the others. This is consistent with the 
Norwegian group being genetically isolated for over 1000 years until 2007. The effect of the recent 
use of semen from French Alpine goats in Norway can be seen by the small cluster (on the left of 
the main Norway cluster).   
 

  
Figure 1. Principal components plot of the GRM coloured by population. Subplots on the right 
show three of the populations plotted over the others for the region in the box  

 
The Australian and New Zealand populations fall into three partially overlapping groups (Figure 

1). These groups almost form a linear arrangement. NZ1 forms a group almost on its own at one 
end. This population is from Northland where climatic & environmental conditions have 
necessitated a region-specific breeding programme. Aus1 forms a group at the other end with the 
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other three NZ populations in between. Some of NZ4 overlaps with Aus1. Both NZ2 and NZ4 have 
animals near or just overlapping NZ1, while NZ3 is tightly clustered within the central group of NZ 
populations. The studies of Brito et al. (2017) and Oget et al. (2019), which also include some alpine 
dairy goat breeds but using a 50k SNP chip, suggest other populations that could be investigated 
using a common genotyping platform. 

The clustering based on mean population pair relatedness (Figure 2) also indicates that NZ4 and 
NZ2 are genetically similar, although it clusters Aus1 with this pair before adding NZ3. The Norway 
population is added last and appears to have the highest within population similarity. This could be 
due to the isolation of the Norwegian from other goat populations but may also be partly due to 
Norway being the most outlying population, a minority (~25%) of the data analysed and that SNPs 
were ascertained in non-Norwegian goats.  

 
 

 

 

 
Figure 2. Heatmap plot of the mean GRM relatedness within and between populations  
 

As NZ2, NZ3 and NZ4 appeared to be similar (Figure 1), they were treated as a single population 
(‘NZ234’) for the Fst analysis. The mean Fst for the resulting four populations was 0.066 while the 
pairwise values are shown in Table 1. These have an expected value, under the null hypothesis of 
no differentiation, of 1/(mean number of alleles in comparison) ≈ 0.0004 (negligible), as it was 
estimated using methods in Dodds et al. (2018b) that 10,000 alleles were seen (averaged over SNPs) 
in the 8539 individuals. The Fst results were broadly consistent with the relatedness results. For 
example, the highest Fst pair were Norway with NZ1 (Fst=0.061, Table 1) and this pair were the most 
distantly related (Figure 2) while the lowest Fst pair were Aus1 with NZ234 (Fst=0.018, Table 1) and 
these groups were the most closely related (Figures 1 and 2). 

The SNP minor allele frequencies (MAFs) were also calculated for each of the Fst populations 
and the numbers of SNPs that had no variation (MAF=0) in each group are shown in Table 1. The 
two most divergent populations (Norway and NZ1) had the highest numbers of MAF=0 SNPs. The 
high number of non-polymorphic SNPs for Norway could be expected as no animals from Norway 
were included in the SNP detection process. Even so, there are only 4% of all SNPs used that were 
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not polymorphic in the Norway population. 
 

Table 1. Mean Fst values between pairs of populations 
 

 Number Fst between population pairs Number of SNPs 

Population of animals Aus1 Norway NZ1 NZ234 with MAF=0 

Aus1 2199  0.044 0.047 0.018 358 

Norway 2107   0.061 0.042 1967 

NZ1 2357    0.032 890 

NZ234* 1876     122 
* NZ234 has 1249, 199 and 428 animals from NZ2, NZ3 and NZ4, respectively 
 

CONCLUSIONS 
These results indicate that there is some genetic differentiation between the populations of dairy 

goats investigated. The Norwegian population appears to be the most divergent, although the 
introduction of French Alpine into that population has reduced the amount of differentiation. Three 
New Zealand populations (NZ2, NZ3, NZ4) appear to be quite similar and it is likely that a combined 
genetic or genomic evaluation of those populations would be useful. If such an evaluation should be 
widened, it is Aus1 (rather than NZ1) that is most likely to be of benefit. There is unlikely to be 
much predictive power for genomic evaluations between the Norway population and the other 
populations studied here. 
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SUMMARY 

The slick genetic variant is a single base deletion in the prolactin receptor of cattle which 
produces a short hair coat and improves heat tolerance. In 2014, a breeding programme begun in 
New Zealand to introgress this variant from the Senepol beef breed (Bos taurus) into a New Zealand 
dairy genetic background. Heat tolerance was assessed in lactating heifers (12.5% Senepol, 87.5% 
NZ crossbred) using maXtec rumen boluses for long-term data collection. In mid-lactation, when 
the daily THI was at ~70 in late afternoon, rumen temperatures were similar between a group of 
slick heifers (N=9) and an age and size matched control group (N=9). The differential of rumen 
temperature, associated with the slick variant, became increasingly evident as the THI increased 
above ~70, with the maximum temperature difference ranging between 0.5-1.0°C at a THI of ~75. 
Accumulated milk volume in the slick heifers was ~82% of that in a contemporary group of heifers, 
reflecting the lower genetic merit of the slick group. 
 
INTRODUCTION 

The slick gene is a term used to describe a major, dominant gene segregating in Senepol and 
other Criollo beef and dual-purpose breeds, in association with a short, slick hair coat (Olson et al. 
2003). The causal mutation was identified as a deletion in the final exon of PRLR on BTA 20, 
leading to a truncation of the protein (Littlejohn et al. 2014). Similar mutations leading to various 
degrees of truncation in PRLR have been identified in several other breeds showing the same slick 
hair coat (Porto-Neto et al. 2018). The advantages of the slick hair coat in cattle are improved heat 
tolerance (Olson et al, 2003; Dikmen et al, 2014) and tick resistance (Ibelli et al. 2014). Data on 
heat tolerance of slick dairy cattle is limited. With climate change, the potential utility of the slick 
variant is obvious, particularly in dairy cattle with high feed intake and therefore elevated heat 
production. In addition, grazing systems in New Zealand (NZ) add to the heat load through solar 
radiation, mitigated, in part by cooling winds.  

A breeding programme to introgress the slick variant into a dairy genetic background was begun 
in 2014 by crossing NZ dairy cattle with Senepol sires. The subsequent focus has been on 
maximising the genetic merit for dairy and reducing the proportion of beef genetics in slick offspring 
while conducting several trials to understand the benefits of the slick coat. 
 
MATERIALS AND METHODS 

The heifers used were born in spring 2018 and entered their first lactation in spring 2020. Slick 
genotype was confirmed from ear punches by PCR, as described by Littlejohn et al. (2014). The 
trial was performed on  a commercial milking herd at LIC’s Innovation farm at Rukuhia, Waikato. 
The herd was milked twice daily, walking from paddock to the milking shed (~600 metres) at 5.30 
AM and 2 PM. All milking cows were managed in the same herd,  where the diet was predominantly 
pasture based with a supplement of maize silage, turnips and grass silage. Weather measurements, 



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 94-97 

95 

ambient temperature, relative humidity and rainfall, were collected hourly from the National Climate 
Database (Ruakura AgResearch/NIWA weather station, Hamilton, New Zealand). All the 
experiments reported were approved by the Ruakura Animal Ethics Committee. 

Nine heterozygous slick heifers (12.5% Senepol 87.5% NZ Holstein Friesian, Jersey crossbred) 
calved in August 2020 and joined the commercial milking herd. The slick heifers were sired by 3 
different slick carrier sires while a matched (age and size) control group of 9 heifers represented 6 
different Friesian-Jersey crossbred sires. All 18 heifers received smaXtec rumen temperature 
boluses in mid lactation (SmaXtec Classic BolusTX-1442A, SmaXtec animal care GmbH 
Belgiergasse 3, 8020 Graz, Austria). Rumen temperature data was compared to vaginal temperatures 
for 2 7-day periods using intra-vaginal data loggers (DST centi-T, accuracy: ±0.1°C, resolution: 
±0.032°C; Star-Oddi, Gardabaer, Iceland) attached to a shortened, hormone-free controlled internal 
drug release (CIDR) insert as described by Tresoldi et al. 2020. Data presented were collected in 
January 2021 when the animals were in mid-lactation (~140 days in milk). Rumen temperature data 
was corrected for effects of drinking using the smaXtec proprietary algorithm.  
 
RESULTS AND DISCUSSION 

Rumen temperature was ~39ºC in the morning before milking but rose from mid-morning to 
achieve a small differential between the slick and control groups of ~0.2°C when the Temperature-
Humidity Index (THI) was 70 (Figures 1 and 3).  

 
Figure 1. Mean rumen temperatures over 2 cooler days for slick (black) and control (grey) 
heifer groups, where the THI and ambient temperature at 4 PM was: 1a. 70 THI and 23.3°C, 
1b. 69 THI and 24°C. Arrows indicate milking times. 

When late afternoon THI was 74-76, rumen temperatures were similar among control and slick 
groups until late morning (Figure 2). Differences in rumen temperatures between groups were 
significant (P<0.001 by t-test) by early afternoon and rose to a peak difference of 0.8-1°C between 
3 and 6 PM on both days presented. Part of the temperature rise was associated with the afternoon 
milking and the heat increment associated with the walk to the milking shed (~600 metres). On both 
days, the temperatures in the slick animals returned to a baseline more rapidly than the controls. 
Additionally, the rumen temperature was markedly less variable among the slick animals compared 
to the controls, particularly during peak rumen temperatures in late afternoon. 
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The difference in average peak (3.30-5.30 PM) rumen temperature between the slick and control 
groups was related to THI, increasing from 0.2°C at a THI of < 71 to 0.5-1.0°C at a THI of 74-76 
(Figure 3). Different authors have provided different THI threshold values at which heat stress 
begins, ranging from 68-74 units (Herbut et al. 2018). The highest increment in rumen temperature, 
at THI of 74, observed in this study was from 39-40.6ºC in control animals, where the slick group 
increased from 39-39.6ºC (Figure 2a). Rumen and vaginal temperatures were also measured in the 
same heifers, showing that temperatures measured in the vagina were lower than the rumen by 0.8-
1.0°C (data not shown). The vaginal temperature differential between slick and control groups was 
equivalent to that seen in the rumen. Dikmen et al. 2014 found similar results and reported a 0.5°C 
difference in the afternoon in vaginal temperatures in genotyped slick, Holstein cattle in Florida. 
Comparable data were reported for vaginal temperatures in slick Holstein cattle in Puerto Rica 
(Sánchez-Rodríguez 2019), although slick animals were not confirmed to genotype.  

Figure 3. Difference in mean rumen temperature (mean 3.30-5.30 PM) between control and 
slick heifers on 16 days in January 2020 as related to THI at 4 PM 

 
The mechanism by which the slick coat enables maintenance of a lower temperature in the face 

of higher heat loads remains to be established. Dikmen et al. (2014) suggested an association with 
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increased sweating rate and an enhanced ability to dissipate heat at higher environmental 
temperatures appears to be involved. To measure the full potential of the slick hair coat in NZ, more 
research is required to develop a customized heat load index. The high heat load through solar 
radiation in New Zealand, as well as the effect of cooling winds, is currently not considered in the 
THI. 

Milking performance of the slick cows was 18% lower than their non-slick contemporaries, 
commensurate with their lower overall genetic merit measured as gBW (Table 1). 
 
Table 1. Comparison of average milk production and genetic merit merit (assessed as genomic 
breeding worth, gBW) between the slick group (N=9) and a cohort of contemporary milking 
heifers (N=58) for the 2020/21 season based on monthly herd testing 

 
CONCLUSIONS 

Even at a relatively low THI (~75) slick heifers at grazing had a substantially lower rumen 
temperature (0.5-1.0°C) than their non-slick counterparts. The differentials in rumen temperatures 
between the heifer groups was similar to that observed in vaginal temperatures. The slick genotype 
has the potential to confer substantial benefit to heat tolerance in dairy cattle, but more research is 
needed to understand the production and welfare value that the slick genotype brings.  
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Group Days in 
milk 

Average  
accumulated  
milk yield (l) 

Average 
accumulated  
fat yield (kg) 

Average  
accumulated  
protein yield (kg) 

gBW* 
($) 

Slick (N=9) 257 3350 176 139 118 
Contemporaries (N=58) 272 4080 215 163 213 
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SUMMARY 
This paper describes the generation of the first and second cohort of animals in a large 5-year 

breeding project being conducted across New South Wales involving five temperate beef breeds 
and the Brahman breed. Females were joined to 154 sires via artificial insemination and back-up 
matings in 2019 to generate the first cohort of calves, which were born in 2020. Calves were born 
and raised in mixed breed groups and will be intensively recorded head-to-head for current 
BREEDPLAN traits and new economically important traits. Birth data have been collected for 
Cohort One, with records available for 1,398 calves. Traits recorded at birth included birth weight, 
calving ease, calf fate, calf bellow and calf vigour. Traits to be collected at weaning include 
weaning weight, hip height, muscle score, docility (crush-side and flight speed), horn/poll 
phenotype and worm egg count. Relationships between calf bellow and calf vigour scores at birth 
and subsequent measures of behaviour and production will be assessed. Steers will be 
backgrounded at one of two locations before entering Tullimba feedlot and subsequently 
slaughtered, while females will be retained at each site to be joined naturally. Generation of 
Cohort Two has begun with females joined to 202 sires via artificial insemination and back-up 
matings in 2020, with 1,535 calves expected to be born in 2021. Data generated from the project 
will enhance current within-breed genetic evaluations through collection of data for traits that are 
currently poorly recorded, and by expanding the suite of traits available for selection. 

 
INTRODUCTION 

Currently, beef producers making selection decisions regarding the genetic merit of potential 
parents of the next generation of progeny in their herds are only able to utilise estimated breeding 
values (EBVs) and selection indexes generated from within-breed genetic evaluations (Graser et 
al. 2005). In addition, there is interest to enhance current within-breed genetic evaluations by 
conducting intensive collection of traits that are currently poorly recorded (such as fertility and 
eating quality), and by expanding the suite of traits to include behaviour, health and welfare traits. 
A new project is being conducted over the next 5 years (2020 to 2025) known as the Multi-Breed 
Genomic Beef Cattle Resource or Southern Multi-Breed (SMB) project. This project will collect 
phenotypes and genotypes on animals from six breeds that have been managed in mixed breed 

 
* AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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groups at sites across New South Wales (NSW) for existing BREEDPLAN and new economically 
important traits, such as early-in-life reproduction. This paper provides a description of the 
generation of the first two cohorts of animals in the project. 

 
MATERIALS AND METHODS 

Generation of Cohort One. The animals used in this project were calves born in the first 
Cohort of the Southern Multibreed Resource population in five NSW Department of Primary 
Industries (DPI) research herds (Trangie Agricultural Research Centre, Trangie; Grafton Primary 
Industries Institute, Grafton; Tocal Agricultural Centre, Tocal; Glen Innes Agricultural Research 
and Advisory Station, Glen Innes; Elizabeth MacArthur Agricultural Institute (EMAI); Menangle) 
(Walmsley et al. 2021). Calves in Cohort One were from six different breeds (Angus, Brahman, 
Charolais, Hereford, Shorthorn and Wagyu), and all breeds were managed and recorded in mixed 
groups at each location. Females at each site were mated via a single synchronised artificial 
insemination (AI) program in late 2019, with back up bulls introduced five days after 
insemination. A total of 94 sires were represented in the AI program (Angus=21; Brahman=12; 
Charolais=10; Hereford=25; Shorthorn=13; Wagyu=13) and 60 sires in the natural joinings 
(Angus=20; Brahman=3; Charolais=6; Hereford=15; Shorthorn=8; Wagyu=8). Purebred joinings 
were undertaken at all locations except Grafton, where a small amount of crossbreeding involving 
Brahman reciprocal matings to Angus and Herefords occurred. Matings were allocated using 
MateSel based on coancestry to limit inbreeding, with a small amount of emphasis placed on the 
index (Walkom et al. 2021). The joining program was staggered across the five sites, with calving 
occurring from June (Trangie) to October (EMAI) in 2020. Cohort One calves were fully 
pedigreed and had a comprehensive suite of traits measured at birth based on BREEDPLAN 
collection protocols. All Cohort One calves were assessed for horn/poll phenotype at marking time 
(approximately 10 to 12 weeks of age), with dehorning undertaken for those with the horn 
phenotype. Calves will be serially assessed for horn/poll phenotype in the project (Conners et al. 
2021). The number of female and male calves by breed of calf at each location is found in Table 1. 
There were 1,398 calves born in Cohort One.  

 
Table 1 Number of female (F) and male (M) calves by breed and site in Cohort One 
 

 AAa BB CC HH SS WY  
Siteb F M F M F M F M F M F M Total 
TR 37 38 - - - - 37 31 - - 29 30 202 
GR 64 58 62c 67d - - 47 54 - - - - 352 
TO 48 40 - - 6 14 - - 44 40 - - 192 
GI 38 26 - - - - 28 28 - - 19 26 165 
EMAI 41 49 - - 56 57 44 44 52 57 47 40 487 
Total 228 211 62 67 62 71 156 157 96 97 95 96 1398 

a AA=Angus; BB=Brahman; CC=Charolais; HH=Hereford; SS=Shorthorn; WY=Wagyu 
b TR=Trangie; GR=Grafton; TO=Tocal; GI=Glen Innes; EMAI=Menangle  
c BBxBB (n=22), AAxBB (n=13), BBxAA (n=4), BBxHH (n=12) and HHxBB (n=11) calves 
d BBxBB (n=19), AAxBB (n=10), BBxAA (n=11), BBxHH (n=22) and HHxBB (n=5) calves 
 

At birth, the calves were tagged, and several traits were recorded following standard 
BREEDPLAN collection procedures, including birth weight, calving ease and calf fate. In 
addition, measures of calf bellow and calf vigour were recorded for calves at two locations 
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(Grafton and EMAI). Calf bellow scores were collected in the following categories: 0 (no bellow); 
1 (single bellow less than 1 sec) and 2 (single bellow longer than 1 sec or multiple bellows). Calf 
vigour scores were collected in the following categories: 1 (extremely weak); 2 (weak); 3 
(healthy); 4 (vigorous) and 5 (extremely vigorous). Summary statistics across the project for the 
traits recorded at birth can be found in Table 2, with variation observed in all traits. All traits 
collected at calving were recorded by farm staff at the research station. 

 
Table 2 Summary statistics for birth traits in Cohort One 
 
Trait Number of records Mean SD Minimum Maximum 
Birth weight (kg) 1,398 38.6 7.5 18 61 
Calving ease 1,398 1.1 0.5 1 5 
Calf fate 1,398 0.09 0.4 0 2 
Calf bellow 838 0.59 0.79 0 2 
Calf vigour 839 3.25 0.79 1 5 
 

Most calves emitted no bellow (60%) during the recording process, while 21% of calves 
emitted a single bellow of less than 1 second in duration, and 19% emitted either a single bellow 
longer than 1 second or multiple bellows (Figure 1). The relationship between calf bellow scores at 
birth and subsequent measures of behaviour (all animals will have crush-side and flight speed 
docility measures taken at weaning) will be assessed. 

 

 
Figure 1. Distribution of calf bellow scores in Cohort One 

 
Most calves were healthy or vigorous (87%), with a small number of calves observed to be 

extremely vigorous (6%) and extremely weak (4%) (Figure 2). The relationship between calf 
vigour scores at birth and subsequent measures of behaviour and production will be assessed. 
 

 
Figure 2. Distribution of calf vigour scores in Cohort One 
 

Cohort One animals will be weaned at approximately 8 months of age, with a wide range of 
traits to be recorded at this time including weaning weight, hip height, muscle score, docility 
(crush-side and flight speed), horn/poll phenotype (as a repeated record of their phenotype 



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 98-101 

101 

collected at marking) and worm egg count. Steers from Cohort One will be backgrounded at one 
of two locations before entering Tullimba feedlot and subsequently slaughtered. Cohort One 
females will be retained at each site to be naturally joined in late 2021. Serial ovarian scans will be 
undertaken on the females in the lead-up to joining to identify the presence of a corpus luteum as a 
measure of puberty. 

Generation of Cohort Two. Females at each site were mated via a single synchronised AI 
program in late 2020, with back up bulls introduced five days after insemination. A total of 135 
sires were represented in the AI program (Angus=36; Brahman=19; Charolais=15; Hereford=29; 
Shorthorn=16; Wagyu=20) and 67 sires in the natural joinings (Angus=20; Brahman=4; 
Charolais=8; Hereford=17; Shorthorn=8; Wagyu=10). The joining program was staggered across 
the five sites, with calving anticipated to occur from June (Trangie) to October (EMAI) in 2021. 
Females were pregnancy scanned in January/February 2021, and the predicted number of calves in 
Cohort Two by calf breed and site is contained in Table 3.  
 
Table 3 Predicted number of calves by breed and site in Cohort Two 
 
Siteb AAa AAxBB BB BBxAA BBxHH CC HH HHxBB SS WY Total 
TR 71 - - - - - 62 - - 55 188 
GR 90 12 77 46 40 - 106 40 - - 411 
TO 95 - - - - 55 - - 92 - 242 
GI 77 - - - - - 73 - - 40 190 
EMAI 104 - - - - 112 84 - 108 96 504 
Total 437 12 77 46 40 167 325 40 200 191 1535 
a AA=Angus; BB=Brahman; CC=Charolais; HH=Hereford; SS=Shorthorn; WY=Wagyu 
b TR=Trangie; GR=Grafton; TO=Tocal; GI=Glen Innes; EMAI=Menangle 
 
CONCLUSIONS 

Data collection on the first cohort of animals in the Southern Multibreed resource population 
has commenced, with birth data recorded the first cohort of calves. Intensive data collection is 
planned on these animals at weaning, followed by collection of production and carcase data on 
steers in the feedlot and abattoir, and on heifers prior to joining and subsequent calving. This 
information, along with genotypes on sires, dams and calves, will be available to enhance current 
within-breed genetic evaluation as well as provide records for animals from multiple breeds 
managed in mixed breed groups. 
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SUMMARY 
A common question from Angus seedstock producers is “what is the value of live-animal 

ultrasound scanning of breeding candidates for carcase traits, particularly young bulls, if they are 
already genomic tested for genetic evaluation and underpinned by a reference population with 
carcase data”. To help answer this question, 3 ultrasound scan phenotyping scenarios were analysed 
through the Trans-Tasman Angus Cattle Evaluation (TACE) to produce and compare the subsequent 
eye muscle area (EMA), intramuscular fat (IMF), rib fat (RIB) and rump fat (RUMP) Estimated 
Breeding Values (EBVs) and their accuracies. This study shows that ultrasound scanning of 
genotyped bulls does provide some “value” for breeding programs in terms of increasing accuracy 
to carcase EBVs across all traits and scenarios. However, the value differs by trait (e.g. more 
influence on EMA EBV compared to IMF EBV) and by scenario (e.g. more influence from heifer 
scans, particularly on IMF, RIB and RUMP EBVs, compared to bull scans, because of the 
differences in genetic parameters for the bull and heifer ultrasound scan traits). Further work is 
required to understand at a herd and population level the impact of a reduction in ultrasound scan 
phenotyping, particularly on genotyped bulls, coupled with an increasing number of direct carcase 
phenotypes in the Angus Australia genomics reference population.  

 
INTRODUCTION 

A common breeding objective for beef producers is to improve carcase traits of animals used in 
breeding programs. Traditionally, carcase traits have proven expensive and difficult to measure and 
they cannot be measured on selection candidates. Due to this limitation, breeders use correlated 
ultrasound scan measurements on the live animal to increase selection accuracy for breeding 
objective traits related to meat quantity and quality, including eye muscle area (EMA), rib fat (RIB) 
rump fat (RUMP) and intramuscular fat (IMF). Since becoming available in the mid-1990s, 
ultrasound scanning for carcase attributes has been widely adopted in beef cattle breeding programs. 
For example, over 650,000 animals have live-animal ultrasound scan records in the Angus Australia 
performance database. These phenotypes are included in the Trans-Tasman Angus Cattle Evaluation 
(TACE) and, as correlated traits, are used to inform the carcase Estimated Breeding Values (EBVs). 

A recent alternative method for carcase trait selection is through genomic testing selection 
candidates and including the genomic profiles in single-step genetic evaluation programs (Johnston 
et al. 2019), such as TACE. The value of the genomic information is directly related to the 
underlying reference population of phenotypes coupled with genotypes, as described by Goddard et 
al. (2010). With these alternative methods for selection now available, a common question from 
Angus seedstock producers is “what is the value of live-animal ultrasound scanning of breeding 
candidates for carcase traits, particularly young bulls, if they are already genomic tested for genetic 
evaluation and underpinned by a reference population with carcase data”. This was modelled for the 
carcase intra-muscular (IMF) and marbling traits by Duff et al. (2019) and concluded that the value 
of ultrasound scan phenotyping for IMF diminishes as the prediction accuracy of the genomic 
breeding value (GBV) increases. 

This study further explores the answer to this question in the commercial genetic evaluation 
environment by comparing carcase EBVs and accuracies for defined groups of genotyped Angus 
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breeding cattle under three phenotyping scenarios.  
 

MATERIALS AND METHODS 
In collaboration with the Agriculture Business Research Institute (ABRI), 3 separate research 

analyses (herein reported as scenarios) of TACE were undertaken to produce a range of Estimated 
Breeding Values (EBV) and accuracies. TACE is underpinned by the BREEDPLAN software as 
described by Graser et al. (2005), and the single-step component to incorporate genomic information 
as outlined by Johnston et al. (2019). These analyses utilised the phenotype, pedigree and genotype 
extracts provided by Angus Australia for the mid-August 2020 TACE. The 3 scenarios were: 

- Scenario 1: All data available included in the analysis (i.e. standard analysis).  
- Scenario 2: As with scenario 1, but with exclusion of bull ultrasound scan phenotypes for 

eye muscle area (UEMA), rib fat (URIB), rump fat (URUMP) and intramuscular fat (UIMF) 
recorded from 1st January 2019 onwards. 

- Scenario 3: As with scenario 1, but with exclusion of bull, heifer and steer ultrasound scan 
phenotypes for SEMA, SRIB, SRUMP and SIMF recorded from 1st January 2019 onwards. 

The number of ultrasound scan phenotypes, direct carcase phenotypes and genotypes included 
in each scenario is listed in Table 1, showing scenario 2 and scenario 3 having approximately 20,000 
and 40,000 less ultrasound scan records analysed respectively, per trait, compared to scenario 1, 
while the number of carcase phenotypes and genotypes remained constant. Additionally, 
approximately 4,000 animals have both a genotype and a direct carcase phenotype, forming an 
effective segment of the Angus Australia genomics refence population and influencing the EBVs 
and accuracies of all genotyped animals.   

  
Table 1. Count of ultrasound scan phenotypes, carcase phenotypes and genotypes included in 
each scenario based on mid-August 2020 TACE extract 

 

 Ultrasound Scan Phenotypes Direct Carcase Phenotypes  
Scenario UEMA UIMF URIB URUMP CEMA CIMF CRIB CRUMP Genotypes 

1 643,153 594,372 642,217 642,005 7,392 13,092 5,319 14,793 95,180 

2 622,795 573,808 621,932 622,055 7,392 13,092 5,319 14,793 95,180 

3 603,814 554,749 603,295 602,832 7,392 13,092 5,319 14,793 95,180 
 
The resulting EBVs for EMA, IMF, RIB and RUMP and their accuracies were compared across 

the 3 scenarios, focussing on young bulls, born in 2018 and 2019, that had genotypes included in all 
scenarios and additionally had ultrasound scan phenotypes included in scenario 1 (n=9,089).   

 
RESULTS AND DISCUSSION 

For the 3 scenarios, the mean and standard deviation for the carcase EBVs and accuracies, along 
with EBV correlations are shown in Tables 2 to 5 (one table per trait).  

For all carcase EBVs, the mean EBV remained constant across scenarios, with an associated 
reduction in EBV standard deviation from scenarios 1 to 2 and 2 to 3, being the lowest in all cases 
for scenario 3. This is also matched with a reduction in EBV accuracy from scenario 1 to 2 and 2 to 
3, being again the lowest in scenario 3. The correlations between carcase EBVs were strong and 
positive in all cases (>0.92) with the weakest correlation observed between scenarios 1 to 3. This is 
expected as the largest portion of ultrasound scan phenotypes were excluded from scenario 3.  

Comparing the carcase traits, the least amount of change was observed for the carcase IMF EBV 
between scenario 1 and 2, reflected in both for change in EBV accuracy, from 59.5% to 58.6%, and 
high EBV correlation of 0.989. The carcase trait with the most change in EBV was EMA, between 
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scenario 1 and 2, the change in EBV accuracy was 60.0% to 58.2%, and EBV correlation of 0.957. 
This is partly explained by differences in the genetic parameters used in TACE for bull ultrasound 
scan traits, with a bull UIMF heritability of 0.17 being lower than bull UEMA heritability of 0.24. 
Additionally, bull UIMF has a weaker genetic correlation with CIMF of 0.60, compared to bull 
UEMA to CEMA correlation of 0.70. In general, this means that bull UIMF phenotypes have less 
influence on the IMF EBVs and accuracies compared to the bull UEMA influence on the EMA 
EBVs and accuracies. The results for RIB and RUMP EBVs were closer to those observed for the 
EMA EBV.  

 
Table 2. EMA EBV and accuracy means, standard deviations and EBV correlations 
 

  EMA EBV (cm2) Accuracy (%) 
Scenario 1 2 3 1 2 3 
Mean +6.2 +6.2 +6.1 60.0 58.2 56.7 
SD 2.89 2.73 2.67 3.97 4.67 4.92 
Correlation to Scenario 1  1.00 0.957 0.944 - - - 

 
Table 3. IMF EBV and accuracy means, standard deviations and EBV correlations 
 

  IMF EBV (%) Accuracy (%) 
Scenario 1 2 3 1 2 3 
Mean +2.3 +2.3 +2.3 59.5 58.6 56.9 
SD 1.03 1.02 1.01 4.38 4.64 4.91 
Correlation to Scenario 1  1.00 0.989 0.980 - - - 

 
Table 4. RIB EBV and accuracy means, standard deviations and EBV correlations 
 

  Rib Fat EBV (mm) Accuracy (%) 
Scenario 1 2 3 1 2 3 
Mean +0.0 +0.0 +0.0 63.9 62.9 61.6 
SD 1.52 1.45 1.43 3.75 4.05 4.34 
Correlation to Scenario 1  1.00 0.964 0.947 - - - 

 
Table 5. RUMP EBV and accuracy means, standard deviations and EBV correlations  
 

  Rump Fat EBV (mm) Accuracy (%) 
Scenario 1 2 3 1 2 3 
Mean -0.4 -0.4 -0.4 61.5 59.8 58.6 
SD 1.76 1.63 1.60 3.64 4.28 4.59 
Correlation to Scenario 1  1.00 0.941 0.929 - - - 

 
While changes in EBV spread, accuracy and correlation between scenarios are informative, for 

breeding candidate selection, understanding the change in EBVs for traits in the breeding objective 
can be more useful. To illustrate this, the distribution of change for the EMA EBV and IMF EBV 
are shown in Figures 1 and 2 respectively. This shows that for the IMF EBV, comparing scenario 1 
to 2, 70% of bulls did not change by more than ±0.1 % units (or approximately 1/10th of the IMF 
EBV SD), while for scenario 1 to 3, this decreases to 51% of bulls.  In contrast, for EMA EBV, 
comparing scenario 1 to 2, 35% of bulls did not change by more than ±0.3 % cm2 units (or 
approximately 1/10th of the EMA EBV SD), while for scenario 1 to 3, this decreases to 30% bulls. 
This demonstrates that there is less change and associated re-ranking of breeding candidates for the 
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IMF EBV, across scenarios, compared to the changes observed for EMA EBV. There is also more 
re-ranking when comparing scenario 1 to 3, compared to scenarios 1 to 2.  

 
Figure 1. Change in EMA EBVs comparing scenario 1 to 2 and 1 to 3  

 
Figure 2. Change in IMF EBVs (%) comparing scenario 1 to 2 and 1 to 3  

 
CONCLUSIONS 

This study shows that ultrasound scanning of genotyped bulls does provide some “value” for 
breeding programs in terms of increasing accuracy to carcase EBVs across all scenarios. However, 
the value differs by trait (e.g. ultrasound scanning had more influence on EMA EBV compared to 
IMF EBV) and by scenario (e.g. ultrasound scanning heifers had more influence, particularly on 
IMF, RIB and RUMP EBVs, compared to bull scans, because of the differences in the genetic 
parameters for bull and heifer ultrasound scan traits). Before breeding program design advice can 
be confidently provided, additional research is required, at both a herd and population level, to 
further understand the cost:benefit relationship and the overall impact of a reduction in ultrasound 
scan phenotyping, particularity on genotyped bulls, coupled with an increasing number of direct 
carcase phenotypes in the Angus Australia genomics reference population.  
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SUMMARY 
Improving cow health and efficiency is of economic importance. New health and efficiency traits 

need to be considered alongside traits which are already in the breeding objective. Thus, quantifying 
the correlated responses of novel traits to selection on the Australian national index, the Balanced 
Performance Index (BPI), is needed. Correlated responses of lameness incidence (LI) and milk mid-
infrared spectroscopy predicted blood urea concentration (MIR-BUN), were estimated under 
selection on the current BPI and on an updated BPI, including these traits in the breeding objective, 
using the MT Index tool. Not all genetic correlations (rg) for MIR-BUN were available, so missing 
values were assumed to be zero. Under the current BPI, LI and MIR-BUN increased undesirably, 
by +0.309%/year and +0.040mmol/L/year, respectively. A sensitivity analysis, varying rg between 
LI, MIR-BUN and BPI traits, also found undesirable responses for these traits giving confidence 
they are moving in undesirable direction. Finally, the economic values required to achieve a 
desirable response (i.e., reduction) in these traits under selection on the BPI were calculated. We 
found large economic values of at least –$350 and –$91 were required before reductions in LI and 
MIR-BUN, respectively, were observed. While desired response is achievable, the economic value 
of LI found in this study exceeds previously reported cost of lameness. A greater emphasis on 
recording health and efficiency traits, especially in the genomic reference population, will support 
greater selection response for health and efficiency traits at more moderate economic values. While 
novel phenotyping approaches like MIR could increase the number of animals with direct and 
indirect records for traits of interest, like MIR-BUN, further work to understand the underlying 
biological mechanisms and true economic value of these traits in pasture-based herds is needed. 

 
INTRODUCTION 

Health, welfare and environmental traits are a key focus of breeding value development with a 
global shift in dairy cattle breeding objectives to incorporate more non-production phenotypes. This 
can be attributed, in part, to the compilation of datasets with enough health records for genetic 
parameter estimation of economically important, but lowly heritable traits, e.g., lameness 
(Khansefid et al. 2021). In addition, the development of new phenotypes and indicator traits is being 
facilitated by emerging technologies like mid infrared spectroscopy (MIR). For example, urinary 
nitrogen (UN) excretion is of environmental and economic significance to the dairy industry. While 
UN can be predicted from blood urea nitrogen (BUN) (Kohn et al. 2005), BUN is both cost and 
labour prohibitive to measure in large populations. However, as rg between BUN and BUN predicted 
from mid-infrared spectroscopy of milk (MIR-BUN) is >0.95 (Van den Berg et al. 2021), BUN and 
MIR-BUN are genetically analogous to one another so MIR-BUN can be used as an indicator trait 
for UN excretion.  

Currently the BPI, the Australian dairy industry’s national selection index, includes production, 
longevity, fertility, health and conformation traits (Byrne et al. 2016, DataGene 2020). The BPI 
aligns the preferences of Australian dairy farmers across production, functional and type-focused 
traits along with their economic importance, to drive genetic gains towards the industry’s national 
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breeding objectives (NBO) (Byrne et al. 2016). As new measures of cow performance and their 
genetic parameter estimates become available, there is a need to understand how current selection 
practices are impacting these new traits. Our aim was to estimate the correlated response to selection 
for lameness and MIR-BUN, under selection on the current BPI and on an updated BPI, including 
these traits in the breeding objective. 

 
MATERIALS AND METHODS 

The selection index program MTIndex (van der Werf 2008) was used to estimate the correlated 
response of LI and MIR-BUN under selection on BPI and BPI adjusted to include either trait. The 
current BPI was constructed in MTIndex and populated with parameters reflective of the current 
Australian Holstein population sourced from Byrne et al. (2016) and DataGene (2020). LI was 
analysed as a binary trait, where a value of 1 indicated a cow who showed incidence of clinical 
lameness at any point during lactation, and a value of 0 indicating no incidence. MIR-BUN was 
measured as a continuous trait, MIR-predicted concentration of urea in blood (mmol/L) during early 
lactation. Genetic parameters for MIR-BUN and LI, shown in Table 1, were sourced from van den 
Berg et al. (2021) and Khansefid et al. (2021) and supplemented with correlations between EBVs 
from (Luke et al. 2019). Where no estimates were available rg of 0 were assumed. 

 
Table 1. Lameness (LI) and MIR-predicted blood urea nitrogen (MIR-BUN), phenotypic 
standard deviation (σp), accuracy (acc), heritability (h2), and genetic correlations (rg) with 
standard error in brackets 

 

Trait 
(units) σp acc h2 

rg with traits in the BPI1 

MY PY FY SU F SC OT MS UD PS 

LI 
(%) 1.74 0.38 0.006 0.31 

(0.09) 
0.26 

(0.09) 
0.15 

(0.09) 
-0.02 
(0.09) 

0.16 
(0.08) - -0.18 

(0.09) 
-0.17 
(0.10) 

-0.05 
(0.09) 

0.02 
(0.09) 

MIR-BUN 
(mmol/L) 1.79 0.37 0.22 -0.16 

(0.14) 
-0.10 
(0.14) 

0.27 
(0.14) 

0.38 
(0.102) 

0.26 
(0.102) 

0.23 
(0.102) - - - - 

1Traits: MY: milk yield, PY: protein yield, FY: fat yield, SU: survival, F: fertility, SC: somatic cell count, OT: 
overall type, MS: mammary system, UD: udder depth, PS: pin set. rg with feed saved, milking speed and 
temperament unavailable. 2rg from EBV correlations in Luke et al. (2019), standard error of 0.1 assumed 

 
Due to the large standard errors and preliminary nature of rg available, a sensitivity analysis was 

performed using rg ± 2 standard errors with key BPI traits. BPI traits were chosen on the criteria of 
having high contribution to the index (high economic value) or being of physiological importance 
to LI or MIR-BUN. The rg with fertility, survival and protein yield were analysed for both traits; and 
with overall type for LI; and with fat yield for MIR-BUN. Finally, a desired gains approach was 
used to estimate the minimum economic value required to achieve selection response in the desired 
direction for LI or MIR-BUN.  

 
RESULTS AND DISCUSSION 

Under selection on the BPI, correlated responses of a 0.31% increase in LI incidence/year and a 
0.04 mmol/L/year increase in MIR-BUN were seen (Table 2). The annual response of the BPI 
estimated here, $29.98/year, is slightly higher than what is being achieved in the current population 
(DataGene 2020). This is likely due to factors other than the BPI influencing breeding decisions 
such as; semen cost and availability, prioritising other selection criteria and the use of overseas 
indices. The sensitivity analysis of rg between BPI traits and LI and MIR-BUN showed LI and MIR-
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BUN response increased in all scenarios, except when a weaker correlation (rg – 2SE) with protein 
yield was assumed (Table 3). Thus, despite the preliminary nature of rg we are reasonably confident 
LI and MIR-BUN are increasing under current selection practices. Assuming the breeding goal is to 
reduce LI and to reduce MIR-BUN to reduce UN, both traits are currently moving in the undesirable 
direction. To include LI and MIR-BUN in the BPI and reverse this trend large negative economic 
values would be required, -$350 and -$91, respectively (Table 2). A lower economic value of 
$187.13-$243.17/cow/calving interval has previously been reported for lameness (Byrne et al. 
2016). To our knowledge no estimates of the economic value of UN or MIR-BUN exist for 
Australian conditions.  

 
Table 2. Annual response to selection on the BPI, BPI + Lameness (LI) and BPI + MIR-
predicted BUN and minimum economic values (EV) to achieve desired response in LI and 
MIR-BUN 

 
Breeding objective Current BPI BPI + LI BPI + MIR-BUN 

trait Response EV ($) Response EV ($) Response EV ($) 
BPI ($) 29.98 - 29.38 - 28.05 - 

Lameness (%) 0.309 - –0.01 –$350 - - 
MIR-BUN (mmol/L) 0.04 - - - –0.0004 –$91 
 

Table 3: Annual correlated response to selection on the BPI for lameness incidence (LI) and 
MIR-predicted blood urea concentration (MIR-BUN) for a sensitivity analysis of genetic 
correlations (rg) ±1 or 2 standard errors1 (SE) between LI with fertility, survival, protein yield 
and overall type and MIR-BUN with fertility, survival, protein yield and fat yield 

 

Trait rg with 
Magnitude of rg 

rg -2SE rg -1SE rg +1SE rg +2SE 

LI (%) 

Fertility 0.17 0.239 0.379 0.448 
Survival 0.198 0.253 0.365 0.42 

Protein yield –0.118 0.095 0.523 0.736 
Overall type 0.332 0.32 0.298 0.289 

MIR-BUN (mmol/L) 

Fertility 0.029 0.034 0.045 0.051 
Survival 0.032 0.036 0.044 0.048 

Protein yield –0.003 0.018 0.061 0.083 
Fat yield 0.024 0.032 0.048 0.056 

1Trait rg and SE reported in Table 1 
 
This study assumed UN excretion could be improved through selection on MIR-BUN given the 

relationship between UN and BUN (Kohn et al. 2005) and the strong rg between BUN and MIR-
BUN (van den Berg et al. 2021). MIR-BUN is an example of novel phenotypes being developed 
through emerging phenotyping technologies. While the current dataset is small (n = 9158) which 
contributes to its low accuracy, as MIR-BUN is derived from a milk sample, in future it could be 
available on all cows with milk records. This and a moderate heritability could offer good 
opportunities for genomic prediction which could make MIR-BUN a more accessible indicator trait 
for UN excretion than BUN and a good candidate for including in the BPI. However, selecting for 
lower MIR-BUN concentrations may not always be desirable. A lower threshold of 1.7mmol/L BUN 
has been used as a biomarker (indicator) for metabolic health (Luke et al. 2019). While an 
opportunity may exist to improve UN excretion via selection on MIR-BUN without compromising 
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animal health, the appropriate direction of selection pressure on BUN/MIR-BUN remains unclear, 
especially in pasture-based countries. More knowledge about the range and thresholds of BUN in 
Australian pasture-based herds and what the biological and economic consequences are for selecting 
on MIR-BUN is needed. Additionally, if there is a need to select for an optimum range of MIR-
BUN, economic values may differ widely by region or herd making it better suited as a standalone 
EBV, allowing farmers to customise their breeding goals, rather than in the BPI.  

As with many health traits, LI response to selection is limited by incomplete recording, low 
genetic parameter accuracies and low trait heritability. More robust methods for identifying and 
recording lame cows on farm (especially early detection) could improve management of lameness 
on-farm, reducing the direct and indirect costs of lameness, as well as improve genetic parameter 
estimates (Khansefid et al. 2021). LI selection response and accuracy could also be improved by 
combining direct and indirect health traits into a composite health trait (Khansefid et al. 2021), as 
implemented for mastitis resistance in Australian dairy herds (DataGene 2020).  

Novel high throughput phenotyping technologies – like MIR – that produce a large amount of 
data which could be used for multiple purposes are an exciting new opportunity in animal breeding. 
They offer an opportunity to predict many traits from a single sample, the ability to capture direct 
and indirect phenotypes for hard or expensive to measure traits (i.e. lameness, BUN) and also 
develop novel phenotypes. As we continue into this data-rich era it is important to invest in 
understanding the economic importance and underlying physiological and biological actions of these 
traits to fully understand the implications for future breeding objectives.  
 
CONCLUSION 

This study shows selection on Australia’s national selection index for dairy (known as BPI) is 
expected to result in more cases of lameness and an increase in urinary nitrogen excretion. While 
desired response is achievable using large negative economic values on LI and MIR-BUN within 
the BPI, these values exceed previously reported economic values for LI. True economic value for 
UN excretion or MIR-BUN is to be investigated. Novel phenotyping approaches like MIR may 
facilitate the rapid increase in animals with phenotypes for traits of interest. However, further work 
to understand the true economic and animal health costs associated with these new traits in an 
Australian dairy context is needed.  
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SUMMARY 
A cow’s ability to raise and wean a calf year after year is a primary determinant of profitability 

in beef production. This lowly heritable trait is impacted by environmental conditions, making it 
difficult to improve through genetic selection. Given this, there is a heightened interest from industry 
to develop selection tools that may assist the selection of breeding animals for improved lifetime 
fertility. The objective of this study was to assess the feasibility and accuracy of a genomic breeding 
value to capture a cow’s potential for lifetime productivity. In this study, yearly mating and calving 
records were collected from Brahman cows born between 1988-2010. These were used to classify 
animals based upon whether or not they met a stayability threshold of raising four calves by six 
years of age (n = 5,516). Relationships between animals was estimated by combining genomic (n = 
3,759) and pedigree (n = 11,578) information into an H matrix, and variance components and 
breeding values were estimated using the blupf90 program suite. Stayability at six years of age was 
found to be lowly heritable, h2 = 0.13. Despite this, when breeding values were estimated using 
single step best linear unbiased prediction, a reasonable prediction accuracy was achieved (0.35). 
This work demonstrates both the potential and limitations of a breeding value for a cow’s potential 
for lifetime productivity, using the intermediate trait, stayability at six years of age. 

 
INTRODUCTION 

A cow’s ability to raise and wean a calf year after year is a primary determinant of profitability 
in beef production. A cow’s lifetime productivity, measured in number of calves weaned, is the 
ultimate female fertility trait representing the cumulative effects of puberty with yearly joining, 
pregnancy, calving, weaning, and rebreed for as long as a cow remains productive in her given 
production system. A cow must produce enough offspring to offset the cost of heifer development 
and yearly maintenance, and generate a profit. Within intensive, temperate production systems 
common in the United States, this breakeven point is generally considered to be five calves by six 
years of age (Snelling et al. 1995). However, this threshold is likely to be earlier within the more 
extensive, low-input systems common in Australia’s north. 

Like many other reproductive traits, this lowly heritable phenotype is greatly affected by variable 
environmental conditions. For example, (rectal) temperature is unfavourably correlated with both 
pregnancy rate and days to calving, whereas temperature increases fertility decreases (Burrow 2001). 
This relationship is exacerbated by the increasingly difficult production environments brought about 
by climate change and is particularly felt by beef cattle producers throughout Queensland and 
northern Australia. Consequently, there is a heightened interest from the northern beef industry to 
develop selection tools that may assist the selection of breeding animals for improved lifetime 
fertility, especially in tropically adapted beef breeds. However, it is a difficult and expensive trait to 
measure, as cows must have fully reached maturity and be leaving the herd before their lifetime 
productivity may be fully characterised.  

Assessing stayability, or a cow’s probability of surviving to a specific age given the opportunity 
to first reach that age, is often a viable alternative. Previous work to genomically select for lifetime 
cow productivity in tropically adapted cattle have focused on intermediate life traits as a proxy for 
lifelong reproduction, such as weaning rate up to six years of age in Brahman (Johnston et al. 2014; 
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Zhang et al. 2014) or ability to produce 4 or more calves by 76 months of age in Nellore cattle 
(Ramos et al. 2020).  

Tropically adapted cattle raised in Queensland and northern Australia often have a high Bos 
indicus content, are older at the onset of puberty, and are therefore commonly bred as heifers at 
approximately two years of age. If a cow were to successfully wean a calf every year within this 
system, she should raise four calves by six years of age. This is milestone is likely the breakeven 
point within extensive, low input productions systems, with any calves produced after this point 
generating net profit. Therefore, the objective of this study was to assess the feasibility and accuracy 
of a genomic breeding value for a cow’s potential for lifetime productivity, or stayability to six years 
of age.  

 
MATERIALS AND METHODS 

This project used data and samples collected during the course of the commercial management 
of the herd and before the commencement of the project. Animal ethics approval was not required 
for these analyses. 

For this study, lifetime productivity of a Central Queensland Brahman cow herd was assessed. 
Born between 1988 and 2010, these cows were part of a stud herd that has been developed with a 
heavy emphasis on fertility, where failure to produce a calf was the primary culling criterion. As 
heifers, these cows were first exposed to a natural service bull at approximately 2 years of age and 
given a 4-5 month joining window. After which, they are expected to maintain a 365-day calving 
interval, year after year. This is a long joining period, creating significant variation with respect to 
when cows calve. This may impact a cow’s ability to get back in calf within a year, that is those with 
the younger calves will find it harder to get back in calf. However, this is a typical situation in 
northern Australia. Stayability to six years of age was measured as a binary threshold trait (n = 
5,516), where cows that successfully gave birth to four calves by six years of age were scored as ‘1’ 
and those that did not reach this milestone were scored as ‘0’, provided that she was given the chance 
to calve as a heifer with record of bull exposure at two years of age. Only cohorts that included 
animals that had reached six years of age were considered.  

Starting in 2016, all bulls, cows and calves were genotyped. Genotypes on 3,759 animals were 
generated using the Geneseek TropBeef V2 array, with 50,045 SNP (after quality control, with 
genotypes with QC score <0.6 set to missing, monomorphic SNP excluded and SNP with all 
heterozygous calls excluded). All genotypes were imputed to 709,000 SNP from the Bovine HD 
array (following further QC) using 4,506 cattle genotyped with the Bovine HD array (including a 
large number of Brahman, Droughtmaster and Santa Gertrudis cattle). Eagle (Loh et al. 2016) was 
used for phasing, and Minimach3 (Das et al. 2016) was used for imputation.  

In order to incorporate all available stayability phenotypic records, including those that were 
ungenotyped, a single-step approach was taken. Genomic relationship was estimated by combining 
all of the available genomic and ten generations of pedigree information (n = 11,578) into an H 
matrix, using single step procedures in the blupf90 program suite (Legarra et al. 2009). Variance 
components for stayability at six years of age was estimated using restricted maximum likelihood 
algorithms in the program remlf90, and genomic breeding values were estimated using single-step 
genomic best linear unbiased predictions in blupf90. Contemporary group was defined by the cow’s 
year and month of birth, the cow’s management cohort. Contemporary group was fitted as a random 
effect in the model as many cohorts were small (range of 9-175 animals per cohort).  

The predictive ability of the breeding values were investigated using a forward validation where 
data from the youngest cohort of cows with stayability phenotypes (born in 2010, n = 246) was 
dropped from the model and used as the validation population while the remaining, older cows 
served as the reference set (n = 5,270). Validation accuracy was calculated as the correlation between 
the estimated breeding value and the actual phenotype, divided by the square root of the heritability.  
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RESULTS AND DISCUSSION 

In this particular Brahman herd, approximately 71% of all females successfully calved as heifers 
(Figure 1). This was slightly lower than the median heifer pregnancy rates reported by McGowan et 
al. (2014) of 80% across northern Australia, but in line with rates observed in the Northern Genomics 
project of 70% (Copley et al. submitted for review). Of those females that successfully calved as 
heifers, 63% were successfully rebred the subsequent joining season. However, of the cows that 
successfully calved as heifers, only 41% had three consecutive calves and only 29% gave birth to 
four consecutive calves. This is higher than the success rate reported by Ramos et al. (2020) in 
Brazilian Nellore cattle, where only 19% of females achieved four calvings by six years of age. 

 

 
Figure 1. Distribution of lifetime number of calves produced in this population of Brahman 

females 
 

Heritability for stayability to six years of age was low, h2 = 0.13 (𝜎𝜎𝑎𝑎2 = 0.023), but expected given 
the complexity of this trait and the large role environment and management decisions play on 
longitudinal fertility. This is comparable to heritabilities of similar traits in Brahman, such as average 
weaning rate up to 6 years of age (h2 = 0.11; Johnston et al. 2014). This estimate is higher than the 
non-genomic heritability for stayability to six years (raised five calves) in American taurine cattle 
(h2 = 0.11; Snelling et al. 1995). However, this result is lower than the heritability for binary 
stayability at 76 months reported by Ramos et al. (2020) in Nellore cattle (h2 = 0.14) 

Predictive ability of the estimated breeding values was tested using a forward validation. The 
forward validation predicted the performance of the youngest cohort of cows with an accuracy of 
0.35, adjusting for heritability. The relatively low, but reasonable predictive accuracy of the breeding 
values highlights the difficulty of creating a single measure for a longitudinal, lifetime trait. Previous 
efforts to genomically predict lifetime performance in tropically adapted cattle also had reasonable 
accuracies, with predictions for average weaning rate up to six years of age achieving an accuracy 
of 0.39 (Zhang et al. 2014) and binary stayability at 76 months of age predicting with an accuracy 
of 0.55 (Ramos et al. 2020). As this cohort ages, increasing the number of phenotypic records 
available, it is expected that the accuracy should improve with the increase in reference size.  

Previous efforts to genetically characterise and develop selection tools for lifetime cow 
productivity have largely focused on intermediate or component traits, such as stayability (Ramos 
et al. 2020) or productivity up to a set age (Zhang et al. 2014). Others have focused on maximizing 
early in life information by including all yearly production records in a random regression analysis 
(Snelling et al. 2018). These approaches tend to result in higher intermediate heritabilities and are 
more practical than directly selecting for lifetime productivity; phenotypes may be collected earlier 
in life, making it easier to develop large reference populations for stayability. However, measuring 
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stayability does not provide as much information and will not fully characterise the genetic potential 
of those cows that may produce above and beyond a set age.  

 
CONCLUSIONS 

This study demonstrated the potential for a genomic breeding value capturing a cow’s potential 
for lifetime productivity, using the intermediate trait, stayability at six years of age. As a lowly 
heritable trait, the predictive ability of the estimated breeding values was reasonable but low. 
However, utilising intermediate component traits is a more practical way to genetically select for 
lifetime productivity than direct selection, increasing the potential for application within commercial 
production. As the reference population continues to grow, it is expected that the accuracy of these 
predictions should improve. 
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SUMMARY 
Imputation is a common approach to infer the missing markers for individuals with low marker 

density (i.e. target population) from a reference population genotyped with higher-density 
Single-Nucleotide Polymorphism (SNP) panels. Several factors affect the imputation accuracy of 
untyped, including the number of reference individuals, marker density and population structure. 
This paper investigates the effects of these factors on the accuracy of imputation by using individuals 
of a single cattle breed or multiple cattle breeds in the reference population with 600k marker 
density, as well as assuming the target population was genotyped with low (15k) or medium (30k) 
marker density. To achieve a within breed imputation accuracy of >90%, we required at least 500 
individuals in the reference population when the target population was genotyped with 15k SNP 
panel. Whereas, if the reference population consisted of a mixture of purebred and multi-breed 
individuals, the SNP density must be at least 30k in the target population, and there must be more 
than 900 individuals in the reference population to achieve a similar level of accuracy. 

 
INTRODUCTION 

Genotyping thousands of individuals per month for genomic evaluations has become a common 
practice in livestock industries in many countries to increase the rate of genatic gain. To reduce the 
costs of genotyping, industry animals are often genotyped with medium-density panels. Previous 
studies show that imputing genotypes to high-density and sequence variants can increase genomic 
prediction accuracy and improve genome-wide association power of Quantitative Trait Loci 
detection (Moghaddar et al. 2019; Khansefid et al. 2020). Several factors influence the imputation 
accuracy of untyped SNPs, such as the number of individuals with high-density markers (i.e. 
reference population size), the density of markers in the reference and target population, and 
population structure (Browning and Browning 2011; Ferdosi and Connors 2019; Connors and 
Ferdosi 2020). The population structure in imputation studies generally refers to the genetic 
relatedness of individuals within and between reference and target populations. In this study, we 
investigated the effect of genotyping the target population with higher-density markers and 
increasing the size of the reference population on the imputation accuracy. Genotypes were imputed 
from varying medium densities to high density (582k), with reference populations varying in number 
and breed. The size of the reference population was increased by including more individuals of 
similar breeds to the target population in the “single-breed reference” or including individuals of 
multiple breeds in the “multi-breed reference”. 
 
MATERIALS AND METHODS 

Genotypes. Genotypes were extracted using the BREEDPLAN genomic pipeline (Connors et 
al. 2018; Johnston et al. 2018). The individuals and SNPs which had missing rates greater than 5% 
and the SNPs with minimum allele frequency (MAF) lower than 5% were removed. For multi-breed 
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imputation study, the genotypes of 4,458 individuals and 682k SNPs were reduced to 4,363 
individuals and 624k SNPs after quality control (QC). The multi-breed populations included Angus 
(387), Brahman (610), Charolais (730), Hereford (294), Limousin (742), Santa Gertrudis (213), 
Wagyu (75), Simental (213), Shorthorn (123) and minor breeds (976). For the single-breed 
imputation study, the relationship between the individuals in the target and reference populations 
had to be greater than 0.8 (Boerner and Wittenburg 2018). Genotypes of 618 Brahman and 748 
Charolais with 682k SNPs were extracted, reducing after QC to 609 Brahmans with 579k SNPs, and 
728 Charolais with 582k SNPs.  

Reference and target populations. A proportion of individuals with high-density genotypes 
were selected as a reference population, and the genotypes of the remaining individuals were 
converted to 15k and 30k densities by masking a random set of SNPs. Hence, in the randomly 
selected individuals for the target populations, some of the known genotypes were converted to 
missing genotypes and this procedure was repeated 9 times for each scenario. 

In the multi-breed imputation study, the reference populations were consisting of 100, 200, 300, 
400, 500, 600, 800, 1000 and 2000 individuals. While in the single-breed imputation study, the 
reference populations only consisted of 100, 200, 300, 400, 500, and 600 individuals.   

Imputation. FImpute Version 2.2 with default parameters (Sargolzaei et al. 2014) was used to 
impute missing genotypes using single or multiple breeds in the reference without exploiting known 
pedigree information. 

Imputation accuracy. Pearson's correlation coefficient between true and imputed genotypes for 
individuals was calculated to assess the accuracy of imputation in the different scenarios.   
 
RESULTS AND DISCUSSION 

Figure 1 shows the correlation coefficients between true and imputed genotypes in different 
scenarios. In general, increasing the number of individuals in the reference population and increasing 
the number of SNPs in the target population from 15k to 30k improved the imputation accuracies 
for all scenarios. These results were expected and in line with the previous reports (Ferdosi and 
Connors 2019). Using the same breed in the reference and target populations led to higher imputation 
accuracy compared to including multiple breeds in the reference. For the purebred individuals with 
15k SNPs, there should be more than 500 individuals in the reference population to achieve 
imputation accuracy higher than 0.9, while with 30k SNPs, 200 individuals in the reference 
population were sufficient to achieve a similar level of accuracy. For multi-breed, the number of 
individuals in the reference population and the number of SNPs in the target population needed to 
be higher compared to single-breed, to achieve a correlation higher than 0.9. Imputation accuracy 
for a few individuals remained low (shown as outliers in Figure 1) in all scenarios probably because 
some haplotypes in the target population were undetected or incorrectly detected in the reference 
population even after including more individuals in the reference. For example, for imputing from 
30k SNP to high-density by using 2000 individuals in the multi-breed reference, 54 individuals had 
imputation accuracy less than 0.85 and 51 of those individuals had a relationship to the relevant 
breed reference population less than 0.8. This indicates that imputation accuracy tends to be lower 
in multibreed populations compared to purebreds.  

The genotypes from industry animals are used in genomic evaluation and GWAS (i.e. finding 
QTL) for many traits with diverse range of heritabilities. The accuracy of genomic predictions for 
the traits with high levels of heritability might be just marginally improved by increasing the marker 
density through imputation. However, imputation could be still useful to increase the power of QTL 
detection and especially for improving the accuracy of predictions for the traits with low levels of 
heritability or when the number of animals in the reference population is limited (Moghaddar et al. 
2019). Moreover, in terms of practicality, it is much easier to use a same set of SNPs (i.e. imputed 
to high-density) in genomic evaluation of all traits regardless of their heritability. 
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Figure 1. Correlation between true and imputed genotypes for 3 reference populations and 2 
marker densities. The boxplots show the correlation coefficients between true and imputed 
genotypes in different imputation scenarios. The 15k is low density and 30k is medium density 
panels 
 
CONCLUSIONS 

In this study, we explored the effect of the number of SNPs, the number of individuals in the 
reference and using a single or a multi-breed reference population on the imputation accuracy. The 
results showed that imputation accuracy was higher when the reference and target populations were 
of the same breed. In a multi-breed reference population with even a large number of individuals, 
the imputation accuracy was low, i.e. despite the number of individuals increased in the reference 
population, the imputation accuracy was lower than purebred scenarios. Increasing the SNP density 
of the target population to 30k, as well as increasing the number of individuals in the reference 
population, could improve the imputation accuracy. Algorithms behind the imputation programs are 
also important and further studies should evaluate how different algorithms affect the imputation 
accuracies in various scenarios. 
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SUMMARY 
Haplotypes as combinations of multiple markers have more diversity than single markers in the 

population. In this research we studied the haplotype diversity in four beef breeds (Brahman, 
Hereford, Santa Gertrudis and Wagyu) in Australia to identify the frequent and rare haplotypes 
within and between breeds. We found that most of the haplotypes (>90%) with more than one 
percent frequency within each breed were observed in the other breeds as well. Further, the low 
within breed haplotype diversity in Wagyu can indicate lower genetic diversity compared to the 
other breeds. 

 
INTRODUCTION 

Haplotypes could be more informative of genetic diversity than single markers. However, in 
genomic predictions, defining relationships between individuals using single markers (VanRaden 
2008) is more common than by use of haplotype (Hickey et al. 2013; Ferdosi et al. 2016) for both 
single and multi-breed genomic evaluations (Khansefid et al. 2020). Phasing of the genotypes into 
haplotypes and partitioning the genome to multiple segments has several benefits. The accuracy of 
genomic prediction can be increased using haplotypes instead of single markers (Ferdosi et al. 2016; 
Karimi et al. 2018). For example, haplotypes have more diversity than single nucleotide 
polymorphisms (SNPs). Quantitative trait loci (QTL) can be explored better using haplotypes 
because crossing over between SNPs and QTL can change the linkage disequilibrium (LD) between 
them across generations. Consequently, the lower relationships between individuals of different 
breeds could be precisely defined by calculating the proportion of common haplotypes, which is 
particularly important in multi-breed genomic predictions. In order for haplotypes to be useful in 
multi-breed genomic prediction, an overlap of haplotypes across breeds is required.  Additionally, 
haplotypes can be used to calculate genomic inbreeding and provide better insight of relationships 
between individuals of different breeds. This research investigates the overlap of haplotypes across 
breeds and their use in the calculation of inbreeding and across-breed relationships.  

 
MATERIALS AND METHODS 

Genomic data. Genotypes of four beef breeds in Australia were used in this study to assess the 
haplotype diversities within and across breeds. The individuals with SNP density greater than 30k 
SNPs were extracted after quality control and before imputation using the BREEDPLAN genomic 
pipeline (Connors et al. 2018; Johnston et al. 2018). Included were 12,692 Brahman with 143,829 
SNPs, 21,069 Hereford with 51,441 SNPs, 3,563 Santa Gertrudis (SG) with 82,990 SNPs and 59,120 
Wagyu with 51,330 SNPs. No SNPs were removed for low minor allele frequencies (MAF) as these 
SNPs were important for breed distinction. 

Merging the genotypes of four breeds. Genotypes of these four breeds were combined with 
custom C++ programming to yield 96,444 individuals with 227,422 unique SNPs.  
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Imputation. FImpute Version 2.2 with default parameters (Sargolzaei et al. 2014) was used to 
impute missing genotypes using a multi-breed reference but including the pedigree information. The 
pedigree had 7% and 4% missing sire and dam, respectively. Prior to imputation within each breed 
SNPs were removed with missing rate greater than 10% resulting in 29,570 SNPs passing this filter 
and being used in this study. 

Haplotype partitioning. The phased genotypes were partitioned to the haplotype segments with 
a length of 10 SNPs without overlap (Ferdosi et al. 2016). The total number of unique haplotypes 
within each breed and number of common haplotypes between breeds were calculated using three 
scenarios: all haplotypes (ALH), haplotypes with frequencies greater than 1 per cent within breed 
(High-Frequency Haplotype - HFH) and haplotypes with frequencies less than 1 per cent within 
breed (Low-Frequency Haplotype - LFH). Further, the percent of individuals covered by each of 
these scenarios were reported. The haplotype diversities/frequencies in the four studied breeds were 
plotted and analysed using R (R Development Core Team 2020). 
 
RESULTS AND DISCUSSION 
Table 1. Number and percent of haplotypes within and between breeds and their population 
coverage 
 

 Common Haplotypes (A) Mean of percent of population covered 
by common haplotypes (B) 

 B
rahm

an 

H
ereford 

Santa 
G

ertrudis 

W
agyu 

B
rahm

an 

H
ereford 

Santa 
G

ertrudis 

W
agyu 

All haplotypes (ALH)    
Brahman 736,996 55% 48% 45% 100% 78% 94% 81% 
Hereford 59% 690,560 47% 49% 94% 100% 91% 86% 
Santa Gertrudis 74% 67% 479,930 57% 97% 90% 100% 88% 
Wagyu 61% 62% 50% 542,637 87% 92% 87% 100% 
Haplotypes with frequency greater than 1% (HFH)  
Brahman 54,052 92% 93% 95% 63% 53% 63% 58% 
Hereford 92% 54,094 92% 96% 67% 69% 67% 64% 
Santa Gertrudis 94% 93% 53,535 95% 53% 51% 53% 52% 
Wagyu 91% 91% 90% 56,684 82% 86% 82% 93% 
Haplotypes with frequency less than 1% (LFH)  
Brahman 682,944 52% 44% 41% 37% 25% 32% 23% 
Hereford 56% 636,466 43% 45% 26% 31% 24% 22% 
Santa Gertrudis 71% 64% 426,395 52% 44% 39% 47% 36% 
Wagyu 58% 59% 45% 485,953 5% 5% 5% 7% 
(A) The diagonal elements are the total number of unique haplotypes in each breed. The non-diagonal 
elements are percentage of common haplotypes between each pair of breeds, where upper (and lower) 
triangular elements are number of common haplotypes between breed divided by number haplotypes of the 
breed in that “row” (and column). (B) The diagonal elements show the percentage of the genome covered 
with haplotypes in each breed. The non-diagonal elements are percentage of genome covered with common 
haplotypes between each pair of breeds, where upper (and lower) triangular elements are the percentage of 
the genome of the breed in that “row” (and column) covered with common haplotype. 
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The diagonal elements in Table 1–A shows the total number of unique haplotypes in each of the 

four breeds with Brahman having the highest number. Santa Gertrudis had the smallest number of 
unique haplotypes but also had the smallest number of genotyped individuals compared to the other 
breeds, especially Wagyu. Given the imbalance between number of individuals across breeds could 
affect our results, the haplotype diversity in Wagyu was especially low which could be a reflection 
of low effective population size due to limited founders originally imported into Australia. 
Moreover, according to Table 1-B frequent haplotypes (i.e. HFH) in Wagyu cover 93% of the 
population while such haplotypes cover 53% of the SG population. The number of common HFH 
between breeds was very high (Table 1-A-HFH) which can imply the potential in using haplotypes 

Figure 1 Haplotype diversity across four breeds in chromosome 1. The top plot shows the length of haplotypes 
(base pair) which were constructed by every 10 adjacent SNP. In the rest of bar plots, each bar represents the sorted haplotype 
frequencies (vertical line). The horizontal dashed lines mark 50%, 90% and 95% haplotype frequencies. The last haplotype 
was constructed by less than 10 SNPs, and therefore had fewer haplotypes. 
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to improve multi-breed genomic prediction accuracy. Previous studies have already reported the 
improvement in Restricted Expectation Maximum Likelihood and accuracy of genomic predictions 
in cross-validation studies using haplotype-based genomic relationship matrices (Ferdosi et 
al.2016). A similar study using a multi-breed population can shed light on the benefits of using 
haplotypes instead of single markers in multi-breed genomic prediction as our initial haplotype 
diversity study indicates noticeable overlap between haplotypes in different breeds. The main 
supporting reason for the usefulness of using haplotypes in multi-breed genomic predictions is the 
high possibility that many of the QTL and markers are in different LD or even different phase in 
different breeds. Hence, haplotypes as a combination of multiple markers, could better track QTL 
especially from distant ancestors compared to single markers. However, it is also important to assess 
if the haplotypes have the same effects across different breeds. 

Figure 1 shows the haplotype diversity in chromosome 1 across the four beef breeds and 
demonstrates quite different diversity of haplotypes across chromosome 1, which was seen in other 
chromosomes as well (not shown). As we expected, the marker distance and the length of haplotype 
significantly affected the haplotype diversities. For example, close to the end of chromosome 1, the 
lengths of haplotypes were relatively smaller than the rest of haplotypes which could be a potential 
reason for the lower haplotype diversity in such regions. Possibly partitioning the genome to 
haplotypes with relatively equal length or recombination rate instead of using similar number of 
SNPs in haplotypes, could resolve this issue. 
 
CONCLUSIONS 

In this study we explored the haplotype diversity within and between breeds. We found that low 
haplotype diversity within a breed could be an indication of lower genetic diversity in the population 
such as Australian Wagyu. The haplotype diversity showed relatively high relatedness between 
different breeds which suggests the potential benefits of using haplotype-based relationships in 
multi-breed genomic predictions. Further study is required to evaluate the benefits of haplotypes on 
single marker for genomic prediction. 
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SUMMARY 
The PhenoBank project is about creating a platform to facilitate research collaborations and 

genomic selection in beef cattle. The traits under investigation are female reproduction traits, 
measured early in life and preferably easy to measure to facilitate adoption. We now have data on 
more than 9000 cows from many tropical breeds, which have a record for PREG1: a binary trait for 
the ability to conceive, or not, after the first mating season. These cows were genotyped using SNP 
chip technology. Using data from 2400 Brahman cows from the PhenoBank we estimated the 
heritability of PREG1 and conducted a Genome Wide Association Study (GWAS). The estimated 
heritability was 0.17 (SE 0.03). We identified 59 suggestive SNPs (P-value < 9.9x10-5) that mapped 
to different chromosomes. The SNP with the highest significance (P-value 2.0x10-7) was on BTA8. 
SNPs clustered on BTA21 were also significant (P-value 1.1x10-6). This easy to measure trait can 
be used for genomic selection. The associated markers need to be confirmed in further studies.  

 
INTRODUCTION 

Female reproduction performance is a major driver of on-farm profitability and currently has 
immense potential for genetic improvement as many North Australian cattle enterprises have low 
reproductive rates. Female reproduction traits are often low in heritability and/or expensive to 
measure, which are hurdles for adoption (Cammack et al. 2009). Still, traits such as age at puberty 
and post-partum anoestrous interval are moderately heritable in tropical beef cattle (Johnston et al. 
2013). This heritability makes genetic selection for female fertility traits, especially early-in-life 
traits, a promising strategy for improving beef production in Northern Australian herds. Genomic 
selection accuracy can be improved by using large phenotype datasets and identifying informative 
genetic markers. Once established, genomic enhanced Estimated Breeding Values (gEBVs) for easy 
to measure traits are more likely to be used on extensive cattle enterprises because they will reduce 
the need for labour intensive data collection (e.g. collecting exact birth dates).  

Existing datasets with already-recorded female reproduction traits are the ‘fast track’ for creating 
the large reference population needed for robust gEBVs with the potential to transform the rate of 
genetic gain and the adoption of improved genetics in the beef sector, as it has done in the dairy 
industry (Meuwissen et al. 2013). By linking existing datasets, along with new data, we have created 
a data warehouse and platform to facilitate genomic selection: the PhenoBank. By using PhenoBank, 
genetic improvement of fertility traits in Bos indicus influenced herds can be further investigated.  

 
MATERIALS AND METHODS 

PhenoBank Platform. The PhenoBank database (DB) works with the cloud-based Livestock 
Information Platform (LIP) developed by CSIRO and Agricultural Business Research Institute 
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(ABRI). LIP was designed to store and retrieve livestock phenotypes and genotypes. PhenoBank 
DB has been developed as a pair of customised applications with both Windows and Web user 
interfaces. 

PhenoBank Data. The existing phenotype and genotype data contributed to PhenoBank was 
sourced from the Cooperative Research Centre for Beef Genetics Technologies (Beef CRC), the 
Northern Territory Department of Industry, Tourism and Trade (NT DITT) breeding herd and the 
Kamilaroi herd investigated in a CSIRO-led project. Genotypes of the Beef CRC cows were from 
the Bovine50K v.1 chip (Hawken et al. 2012). The NT DITT cows were genotyped in the project 
with the GGP Bovine50K SNP chip (NEOGEN Inc.), while Kamilaroi cows were genotyped with 
the GGP TropBeef 35K SNP chip (NEOGEN Inc.). Additionally, we have received phenotypic and 
genotypic data from 10 industry herds. To contribute to PhenoBank, producers provided the mating 
outcomes from the first two breeding seasons in a cow’s life and its DNA sample for genotyping. 
New cows for PhenoBank are being genotyped with the GGP TropBeef 35K SNP chip (NEOGEN 
Inc.). 

Analysis. We selected, curated and combined data of 2400 Brahman cows for which we defined 
new phenotypes. These records were sourced from the Beef CRC, NT DITT and Kamilaroi data 
contributions, and all have an early-in-life, easy-to-measure record for PREG1: a binary trait for the 
ability to conceive, or not, after the first mating season, outlined in Table 1.  

 
Table 1. Scoring criteria of early reproductive traits in Brahman heifers 
 
No. Trait Score Scoring Criteria 

1 PREG1 1 
2 

Not pregnant as a result of the first mating opportunity (n = 600) 
Pregnant as a result of the first mating opportunity (n = 1719) 

 
A reference panel of 546 Brahman animals were genotyped with the BovineHD (770K) SNP 

chip (NEOGEN) and used to impute genotypes from the medium-density SNP panels. A 
combination of Eagle v2.4.1 (Loh et al. 2016) and Minimac3 (Das et al. 2018) were used for 
imputation. The combined genotypes dataset was passed through final quality control (SNPs with a 
call rate < 0.9 and multiple allele frequency < 0.05 were discarded) to get over 500,000 SNPs for all 
cows included in this study. 

Each phenotype dataset had particular fixed effects to account for contemporary group effects. 
Contemporary groups were defined by farm location (animals raised together in the same farm) and 
by birth year and month, which inform the cow cohort (year) and the birth month class (Aug to Nov 
= Class A; Dec to April = Class B). For the Beef CRC dataset, farm, cow cohort and birth month 
class were used as fixed effects. For the NT DITT dataset, cow cohort and birth month class were 
used as fixed effects. For the Kamilaroi dataset, cow cohort was used as a fixed effect. After 
adjusting for fixed effects, the three datasets were combined to make a single dataset for pooled 
analyses. Genome wide association studies (GWAS) were conducted for the combined PREG1 
dataset using SNP & Variation Suite v8.8 (Golden Helix, Inc., Bozeman, MT, 
www.goldenhelix.com).  

 
RESULTS AND DISCUSSION 

We have created a data platform to facilitate collaborations and genomic selection in beef cattle 
research. PhenoBank now contains data on more than 9000 cows. PhenoBank presents an 
opportunity for researchers and producers to engage and collaborate. Datasets can be uploaded, 
merged, stored securely and shared when desired. The traits under investigation are female 
reproduction traits, measured early in life and preferably easy to measure to facilitate adoption by 
beef producers. The accuracy of imputation for CRC, Kamilaroi and NT DITT cows’ datasets was 
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0.95, 0.93 and 0.92, respectively. Linear mixed model analysis of PREG1 resulted in an estimated 
heritability of 0.17 (SE 0.03). This compares to a heritability of 0.18 for PREG1 after fixed-time 
artificial insemination in another study on Brahman heifers (Porto-Neto et al. 2015). 

GWAS for PREG1 identified 59 suggestive SNPs (P-value < 9.9x10-5) that mapped to different 
chromosomes. The SNP with the highest significance (P-value 2.0x10-7) was on BTA8. SNPs 
clustered on BTA21 were also significant (P-value 1.1x10-6) as shown in Figure 1.  

 

 
Figure 1. Manhattan plot of PREG1: genome-wide association results 
 

 
CONCLUSIONS 

By re-defining and merging data from previous projects with new data, we are expanding the 
number of samples available for research use. Using a sample of available PhenoBank data, we were 
able to show that PREG1 has a heritable component and we identified some potential genomic 
markers for this trait. Next, we will analyse the rebreeding ability for these cows, as we have the 
outcomes of the second mating season for most of them.  

Our next step for PhenoBank is the imputation of all uploaded genotypes to sequence level data 
and continued analyses investigating heifer and cow fertility. We will continue to collaborate with 
North Australian producers and upload their data contributions to PhenoBank to create a world class 
digital infrastructure for beef cattle genomics. Our goal is to contribute to the sustainability and 
profitability of Australia’s beef industry. 
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SUMMARY 

Gene transcription is controlled by functional interactions between promoters and enhancers. 
Cap analysis of gene expression (CAGE) sequencing has allowed for the accurate annotation of most 
gene promoters (transcription start sites, TSS) and active enhancers. To date, TSSs and enhancer 
regions in the bovine genome are poorly characterised. To explore bovine developmental-specific 
patterns of enhancer-TSS usage and model TSS-enhancer interaction, CAGE-seq was applied to 6 
bovine liver samples comprised of two different developmental stages (foetal and adult) obtained 
from 3 cows and their 3 foetuses. We identified approximately 30k and 20k TSSs and enhancer 
candidates, respectively, across the liver samples. About 231 significant TSS-enhancer interaction 
candidates were found by looking for closely spaced TSSs and enhancers that have highly correlated 
expression levels (r > 0.75; P-value < 0.05). Differential expression between development stages of 
TSS and enhancer candidates was performed using the Bioconductor package DESeq2 and 
identified 2050 (6) TSS (enhancer) candidates significantly differentially expressed across 
developmental stages (P-value < 0.05). The resulting catalogue of TSSs and active enhancers 
enables classification of developmental-specific TSSs-enhancers and modelling their interaction and 
provides major target regions for investigation of DNA methylation changes with aging. The 
information will also be useful in refining regions likely to contain causative mutations for complex 
traits associated with liver gene expression, such as feed efficiency.   
 
INTRODUCTION 

Identifying active regulatory regions in the genome is critical for understanding gene regulation 
and assessing the impact of genetic variation on phenotype. Although multiple processes are 
involved in gene expression regulation, the key role of promoters and enhancers has been a central 
focus of genome annotation for the past decade. Previous studies have confirmed that most genes 
have an array of close transcription start sites (TSSs) instead of the expected single TSS (FitzGerald 
et al. 2006; Hoskins et al. 2011; Djebali et al. 2012; Rojas-Duran and Gilbert 2012; Forrest et al. 
2014), and the transcription of a gene may start from one of several TSSs, a phenomenon known as 
alternative transcriptional initiation (ATI, Landry et al. 2003; de Klerk and Hoen 2015). While 
promoters specify and enable the positioning of RNA polymerase machinery at TSSs, enhancers 
modulate the activity of promoters and play a key role in the formation of diverse cell types and 
respond to changing physiological conditions. Andersson et al. (2014) showed that enhancer activity 
can be detected through the presence of balanced bidirectional capped transcripts using Cap Analysis 
of Gene Expression (CAGE) (Takahashi et al. 2012). Active enhancers produce weak, but 
consistent, bidirectional transcription of capped enhancer RNA (eRNAs), resulting in a 
characteristic CAGE tag starting sites (CTSS) pattern of two diverging peaks approximately 400 bp 
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apart. A specific advantage of the CAGE method is that reads mapped to the genome provide 
accurate location of TSSs and active enhancers and quantify transcription (Kodzius et al. 2006; 
Carninci et al. 2007).  

To date, enhancer regions in the bovine genome are poorly characterised. To explore bovine 
tissue-specific patterns of enhancer-TSSs usage, CAGE sequencing was applied to 6 bovine samples 
comprised of 2 different developmental-stages obtained from 3 cows and their 3 foetuses. To the 
best of our knowledge, this study is the first bovine TSS-enhancer discovery using CAGE-Seq data.  

 
MATERIALS AND METHODS 

CAGE library preparation and sequencing. Two liver samples were collected from one 
pregnant Bos indicus (Brahman cow) and the female cow’s foetus (approximately 12 weeks old). 
Four liver samples were collected from two Bos taurus pregnant cows and their female foetuses 
(approximately 16 weeks old) at the Ellinbank research facility with approval from the DEDJTR 
Animal Ethics Committee (2014-23). Samples (cows and foetus) were collected from the same 
anatomical region. The samples were harvested after the cow was slaughtered, immediately snap-
frozen in liquid nitrogen, and stored at -80oC until processing (Forutan et al. 2021). 

Read processing and alignment. Sequence read quality was assessed using FastQC (Andrews 
2010), including calculation of GC content, and identification of over-represented sequences. The 
EcoP15I fingerprint was trimmed by cutting the first 9 bases (CROP:9) and Illumina adaptor 
trimmed by cutting the last 14 bases (HEADCROP:36) using Trimmomatic (Bolger et al. 2014) 
(version 0.35). Trimmed reads were aligned to Bos taurus reference genome (GenBank: ARS-
UCD1.2) with Burrows-Wheeler Aligner (BWA. Li and Durbin 2009), version 0.7.13) using the 
BWA-MEM algorithms. The aligner was run using default parameters, the only exceptions were 
t=10, and k=10. Also, to alleviate the presence of universal G at the head of the read, which may be 
present in some of the reads, parameters L (clipping penalty) and B (mismatch penalty) were 
assigned as 4 and 5, respectively. 

Quality controls and preliminary analyses. Only primary alignments with a quality of greater 
than 20 (>99% chance of true) were considered for TSSs and enhancers calling. Further filtering 
was applied by only selecting CTSS with 3 or more CAGE reads in at least one sample for TSSs 
calling. Considering that active enhancers produce weak but consistent bidirectional transcription of 
capped enhancer RNAs (eRNAs), more relaxed filtration was used for enhancer calling (selecting 
CTSS with 2 or more CAGE reads in at least one sample). The total number of reads before and 
after quality control and numbers of TSSs and active enhancer candidates across all samples is 
shown in Table 1.  

TSSs and enhancers calling. clusterUnidirectionally function and the parameter mergeDist 20 
available in CAGEfightR package (Thodberg et al. 2019) was used to call TSSs. Ensembl database 
release 104 for Bos taurus was used for annotation of the signals. Only TSSs overlapping promoter, 
proximal and 5’UTR regions were used for further analysis. Identification of active enhancer 
candidates was done using clusterBidirectionally function with a balance score > 0.95 in the 
CAGEfightR package. The enhancers not overlapping intergenic and intron regions were removed 
from the analysis. TSS-enhancer interaction candidates were identified using findLinks function 
from the InteractionSet package into an R session (version /4.0.2) by looking for closely spaced 
TSSs and enhancers that have highly correlated expression within 20 kb distance. Differential TSSs 
and enhancer usage across developmental stages was performed by using the Bioconductor package 
DESeq2 (Love et al. 2014) and keeping only TSSs expressed in all samples (10,813 TSSs) and 
enhancers observed to be bidirectional in all samples (21 bidirectional enhancers). The findStretches 
function from CAGEfightR package was used to identify groups of closely spaced enhancers, where 
all enhancers were within a 10 kb distance of another member. 
 

https://bioconductor.org/packages/3.12/InteractionSet
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Data availability. Bos taurus and Bos indicus raw sequence data are publicly available via 
European Nucleotide Archive (ENA) under study ID PRJEB43513 and PRJEB44817, respectively.  
 
RESULTS AND DISCUSSION 

Genome-wide association studies (GWAS) have discovered many variants for complex diseases 
and quantitative traits. However, many implicated variants are classified as non-coding and, they 
are thought to play a role in gene expression regulation. Functional annotations provide valuable 
information for prioritizing potential causal variants within complex-trait loci identified through 
GWAS. Like any specific tissue in the body, the biological features of tissue in foetal and adult 
stages may be determined mainly at the level of gene expression. So, identification of functional 
regions such as enhancer and TSSs and differential and quantitative analysis of developmental stage-
specific TSS-enhancers expression could be useful to identify informative variants and ultimately 
improve genomic prediction. In total, 29,940 and 19,264 TSSs and candidate enhancers were 
detected across all samples, respectively (Table 1). Only 36% of TSSs (10,813) were expressed 
across all 6 samples. The lower number of enhancers was observed in the adult stage compared to 
the foetal stage (Table 1). In total, among the 19,264 active enhancer candidates expressed across 
samples, only a small proportion of enhancer candidates (less than 1%) were expressed across all 
samples. The enhancers are context-specific and respond to specific physiological, pathological, or 
environmental conditions which can cause the large variation in number of enhancers observed 
across samples. About 231 significant TSS-enhancer interaction candidates were found by looking 
for closely spaced TSSs and enhancers that have highly correlated expression levels (r > 0.75; P-
value < 0.05). Examination of the differential TSS usage across developmental stages controlling 
for effect of sub-species revealed 2050 differentially significant TSSs (P-value <0.05). We found 6 
developmental enhancers based on the differential enhancer usage analysis (P-value < 0.05), which 
could be the potential targets of DNA methylation in bovine liver. One of the developmental stage-
specific genes in liver is Sulfotransferase isoform 1A1 (SULT1A1). SULT1A1 is the most highly 
expressed hepatic sulfotransferase and plays the central role in detoxification. Out of five TSSs 
observed across samples for this gene (Figure 1), two of them were expressed in all samples (TSSs 
peaks located on positions 26,126,989 bp and 26,127,457 bp) and only the TSS on position 
26,126,966 – 26,127,032 bp showed significantly differential expression in foetal stage compared 
to adult stage (log2FoldChange = -3.291495; adjusted P-value < 0.0006).  
  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/detoxification
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Table 1. Summary of the number of CAGE tags, transcription start site (TSS) and enhancer 
candidates expressed in bovine liver 
 

Stage Biological 
samples 

Number of CAGE tags Number of TSS Number of 
enhancers 

  Total For TSS 
calling 

For 
enhancers 
calling 

Total In 
promoter, 
5’UTR, 
proximal 

Total In intergenic 
and intron 

Adult B.taurus 
rep1 

5,850,606 1,869,376 2,283,311 97,639  6,422 3,980 

 B.taurus 
rep2 

5,678,632 2,167,220 2,437,174     

 B.indicus 
rep1 

5,183,691 4,647,556 4,796,404     

Foetal B.taurus 
rep1 

10,048,108 2,607,022 3,358,781  140,591 22,310 17,386 

 B.taurus 
rep2 

9,327,767 1,632,971 2,476,168     

 B.indicus 
rep1 

7,448,786 5,552,082 5,844,322     

Total  43,537,590 18,476,227 21,196,160  162,275 24,605 19,264 
 

Figure 1. Plot of position of CAGE tag starting sites (CTSSs), TSSs (orange clusters), and 
enhancer candidate (pink cluster) of the SULT1A1 gene in bovine liver. Gene model is plotted 
based on the Ensembl database (bos_taurus_core_104_12). The links between TSSs and active 
enhancers is plotted using arches, scaling the height of the arches according to P-values of 
Kendall correlation 
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CONCLUSIONS 
Knowledge of interaction between bovine TSS and enhancer expression would be a useful 

starting point to predict biological function of specific genes in different developmental stages. In 
the current study, CAGE-seq was used for the first time to assess TSS-enhancer interactions in 
bovine liver. Also, we assessed differential TSSs and enhancer usages across developmental-stages 
in liver tissue for the first time in cattle using CAGE-seq. The results of this study will accelerate 
future genomic research and will assist in narrowing down candidate genes with differential TSS 
and enhancer usage across foetal and adult stages in liver. The information will also be useful in 
refining regions likely to contain causative mutations for complex traits associated with liver gene 
expression, such as feed efficiency. A limitation with the current study is that only one biological 
replicate was included for the Bos indicus cow-foetus, so analysis of additional would increase the 
resolution of the findings. 
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SUMMARY 
This paper investigates the ability of different linear mixed models to estimate the heritability of 

sex determination in a sub-set of the Australian Merino population. The dataset used was from 
Centre Plus Merinos in central-west New South Wales with 25 plus years of full pedigree collection 
and over 20,000 lambing events where the sex of the progeny were recorded. This study used sex of 
a lamb as a trait, (i.e. zero phenotype for female and one phenotype for male). We observed a 
significant, yet normal, amount of phenotypic variation in the sex ratio of progeny for dams, sires, 
maternal grand sires and maternal grand dams. However, no model was able to estimate significant 
genetic variation in sex determination and failed to return a heritability above 0.01. Consequently, 
it can be concluded within this dataset that it would not be possible to select to alter sex 
determination in Merinos. 

 
INTRODUCTION 

Sex determination in mammals occurs at egg fertilisation with females and males typically 
having XX and XY chromosomes, respectively. Whether a newly conceived embryo is a male or 
female is determined by the sperm as dams can only ever pass an X chromosome onto their progeny. 
Kosswig (1964) thought that sex determination was a polygenic trait in some species of fish. 
Furthermore, Flanders (1965) purported that winged insects exhibited genetic variation in female 
behaviour to fertilise or not fertilise eggs which influenced sex ratio. There are no estimates of sex 
ratio estimation in livestock species. However, in humans, Gellatly (2009) showed a heritability of 
sex ratio of 0.05 and purported that males tend to produce a sex ratio like that produced by their 
parents, whereas females do not.  

Sex determination is a potentially economically important trait to commercial producers where 
females are worth significantly more than castrated males. Anecdotally we hear sheep and cattle 
breeders observe that a cow or ewe only ever has one sex (e.g. “that ewe only ever breeds ram 
lambs”). This paper investigates whether phenotypic variation exists within a deeply pedigreed and 
well recorded Merino flock that is highly influential on the breed. If phenotypic variation does exist, 
we propose to run different types of linear mixed models to investigate whether any genetic variation 
can be quantified.  

 
METHODS 

Animals. Animals from the Centre Plus Merinos flock (601250 flock code), born since 1990, 
were included in the analysis. All animals without sire and/or dam pedigree were removed as well 
as any dead at birth (DAB) animals (all DABs were recorded as males). Contemporary grouping 
was defined as year of birth. No other contemporary grouping was significant enough to fit. In the 

 
* AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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case of running a sire, maternal grand sire or dam model, a minimum number of progeny were 
required to be included in the model (Table 1). 

Measurements. Phenotype was defined as the sex of each progeny born. Zero for females and 
1 for males. Hence an average of 0.5 was expected (Table 1).  

 
Table 1. Descriptive statistics of each model where direct animal, dam animal, dam dam, 
service sire, maternal grand sire and maternal grand dam models were run 
 

Analysis model type 
(min. no. progeny) 

n n 
Sire 

n 
Dams 

n 
MGS* 

n 
MGD^ 

Mean Phen. 
SD 

Min. Max. 

Animal  23228 368 6835 - - 0.50 0.14 0.00 1.00 
Dam – animal (1) 23228 - 6835 - - 0.50 0.35 0.00 1.00 
Dam - dam (7) 6324 - 765 - - 0.50 0.18 0.00 1.00 
Service sire (40) 23120 334 - - - 0.50 0.09 0.35 0.67 
Mat. grand sire (50) 19260 - - 186 - 0.50 0.06 0.38 0.65 
Mat. grand dam (10) 7676 - - - 535 0.50 0.14 0.10 1.00 

*MGS – Maternal grand sires; ^ MGD - Maternal grand dams 
 

Statistical analysis. Phenotypic variance for each model was assessed prior to any model run to 
see if the trait was worth investigating (Table 1, Figures 1-4). We also checked to see if average sex 
ratio sat inside a normal distribution of expectation if sex ratio was random. This is displayed in 
Figures 1-4 where we can observe distribution sits within a normal bell-curve which suggested 
enough variation existed to pursue a genetic parameter estimation. 

Once phenotypic variance was quantified, we investigated 6 models. These were: 1) animal 
model where the phenotype of each animal was used; 2) animal model of females where each 
progeny was a phenotype and multiple progeny were repeated records; 3) dam model similar to a 
sire model where dam is the random effect estimated; 4) service sire model where the sire of 
offspring is the estimated random effect; 5) maternal grand sire model similar to sire model; and 6) 
maternal grand dam model similar to sire model. Contemporary group (defined as year of birth) and 
conception method (artificial insemination or natural mating) were fitted as fixed effects while age 
of dam was fitted as a covariate. 

Genetic parameters and predicted means were estimated using an animal model in WOMBAT 
(Meyer 2007). A numerator relationship matrix based on a four-generation pedigree was used. 

 
Figure 1. Number of male progeny vs number of progeny for dams and where each dam sits 
within an expected normal distribution with a minimum of 7 progeny (n=765) 
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Figure 2. Number of male progeny vs number of progeny for sires and where each service sire 
sits within an expected normal distribution with a minimum of 40 progeny (n=343) 
 

 
Figure 3. Number of male progeny vs number of progeny for maternal grand sires with 
daughters that have a minimum of 40 progeny (n=186) 
 
RESULTS AND DISCUSSION 

All models converged with negligible genetic variance estimated (h2  ≤ 0.01). In model 2, where 
sex of progeny was used as a phenotype with repeated records, a small but insignificant amount of 
repeatability (0.02) was estimated. Despite no significant genetic variance being captured by the 
models, it can be observed in Figures 1-4 that phenotypic variance does exist for dams and sires 
which suggests that sex ratio is determined by factors outside genetics. If sex determination was 
random Figures 1-4 demonstrate that the sex ratios sit mostly within the 95% expected rate of a 
normal distribution with no outliers (i.e. > 4SD above or below the expected).  

As there is a reasonable amount of phenotypic variance for all models (Table 1), other genetic 
sources of variation may be explored. If there were sufficient numbers of genotypes to perform a 
GWAS for females, a GWAS analysis could be performed. Another avenue of investigation into 
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potential genetic variance of sex ratio determination could be to use a threshold model (Bulmer and 
Bull 1982). 

With sire and dam sex ratio showing phenotypic variation (Figures 1-4) and potentially little 
genetic interactions playing a role, other environmental effects may play a role in sex determination. 
Diet has been shown to influence sex ratio in sheep (Green et al. 2008, Gulliver et al. 2013). These 
studies looked at whole flock means rather than individuals. Whether there is a genetic interaction 
between feed sources and sex ratio variation has not been explained, making it potentially a future 
cross-discipline study.     

 
Figure 4. Number of male progeny vs number of progeny for maternal grand dams with 
daughters that have a minimum of 10 progeny (n=535) 
 
CONCLUSIONS 

Phenotypic variation in the Centre Plus Merinos population exists for sex ratio. However, the 
study was unable to capture any genetic variance from the linear mixed models that were used to 
assess genetic variation.  
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SUMMARY 

The Neogen GGP Ovine 50k chip contains approximately 5000 predictive Single-nucleotide 
polymorphisms (SNPs) that were identified by the Sheep CRC based on their relationship with 
carcase traits from genome wide association studies. These SNPs have been used in routine 
MERINOSELECT and LAMBPLAN analyses, equally-weighted with all other SNPs in a single 
genomic relationship matrix (GRM). This study aimed to examine the impact of fitting all SNPs in 
one GRM or fitting two GRMs, one with selected predictive SNPs and one with random SNPs, in 
conjunction with a numerator relationship matrix. Phenotypes on terminal sire breed cross resource 
flock animals recorded for five carcase and eating quality traits were used for bivariate variance 
component estimation. Variance components estimates were obtained for models containing only a 
numerator relationship matrix (NRM), NRM plus a GRM containing only non-selected SNPs, an 
NRM plus two GRMs containing non-selected and selected SNPs and an NRM plus one GRM 
containing all SNPs. Log-likelihoods were significantly higher in the models containing two GRMs 
for all trait pairs. Slightly higher average heritabilities were estimated from the model where the 
GRM contained all SNPs, except for intramuscular fat and shear force, where the GRM without the 
predictive SNPs resulted in higher heritabilities. The proportion of genetic variance explained by 
the genomic relationship matrices (𝜆𝜆) was estimated to be between 0.59 and 0.86. In terms of the 
genetic correlations between traits, for many trait-pairs the correlations were similar between the 
random effects fitted, but for two trait-pairs large differences were observed between the genetic 
correlations. 

 
INTRODUCTION 

Routine genetic evaluations for Australian terminal sire, maternal and Merino sheep have utilised 
single-step genomic BLUP (SS-GBLUP) since 2017 (Brown et al. 2018). For the genomic 
relationship matrix used in these analyses, the SNPs used were based on a set that passed quality 
control from the ISAG 50k sheep panel. In 2019, a new genomic panel for sheep was introduced 
(GeneSeek Genomic Profiler Ovine 50k, Neogen) which included approximately 5000 additional 
predictive SNPs that have been significantly associated with specific growth, carcase and eating 
quality traits in sheep (Moghaddar et al. 2019). The union of all SNPs on all genomic panels was 
chosen (including the predictive SNPs), with imputation of missing SNPs on each panel, followed 
by imputing all panels to the union set, resulting in 60,410 SNPs used in SS-GBLUP.  

The methods commonly used for constructing the genomic relationship matrix (GRM) for 
GBLUP (VanRaden 2008; Yang et al. 2010) assumes that all SNPs have equal weighting. While 
equal weighting on SNPs is reasonable for random SNPs, it may be appropriate to treat selected 
SNPs that are associated with specific traits differently. The GRM used in SS-GBLUP is blended 
with the NRM for these animals based on the parameter 𝜆𝜆, with the currently used value in Australian 
sheep evaluations set to 𝜆𝜆 = 0.5 resulting in the weighted GRM being the mean of the raw GRM 

 
∗ A joint venture of NSW Department of Primary Industries and the University of New England 
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and NRM (McMillan et al. 2017). This paper investigated the impact on covariance matrix estimates 
of including all SNPs in the same GRM or fitting separate GRMs for regular random SNPs and 
selected SNPs. The ratio of genetic variance explained by each genetic random effect was 
investigated, considering trait specific values of 𝜆𝜆. Changes in covariances between genetic effects 
were also investigated.  

 
MATERIALS AND METHODS 

Data on reference flock animals from both the Sheep CRC Information Nucleus Flock (van der 
Werf et al. 2010) and MLA Resource Flock databases were obtained from the LAMBPLAN terminal 
sire analysis. Pre-adjusted phenotypic data were used for five traits: post-weaning weight (PWT, 
kg), carcase eye muscle depth (CEMD, mm), carcase c-site fat (CCFAT, mm), intramuscular fat 
(IMF, %) and shear force (SF5, Newtons). Phenotypes were only retained for animals with 
genotypes and where a phenotype was recorded for all six traits, resulting in 9688 animals with data. 
Phenotypes used were pre-adjusted for birth type, rearing type, age of measurement, age of dam, 
and hot carcase weight (trait dependant). Contemporary groups were taken from the LAMBPLAN 
analysis, with PWT belonging to one contemporary grouping (based on breed, flock, management 
group and sex, 𝑛𝑛 = 444) and all carcase traits using different contemporary groupings (based on 
combinations of breed, flock, management group, sex and kill group, 𝑛𝑛 = 376). 

The 60410 SNPs available were split into two sets: the random SNPs (𝑛𝑛 = 55,709) and the 
predictive SNPs (𝑛𝑛 = 4,701). Three marker sets were then used to construct breed-adjusted genomic 
relationship matrices (GRMs), using the method described by Gurman et al. (2019). These GRMs 
were labelled 𝑮𝑮𝑟𝑟 for the random SNPs,𝑮𝑮𝑝𝑝 for the predictive SNPs and 𝑮𝑮𝑟𝑟𝑝𝑝 for the combined set of 
SNPs. A corresponding pedigree-based relationship matrix for animals with genotypes was also 
constructed based on the extended pedigree including all known ancestors. To accommodate 
variance component estimation using the software package ‘mtg2’ (Lee et al. 2016), animal by 
animal relationship matrices were constructed for the other random effects to be considered, genetic 
groups and dam permanent environment. Genetic groups (𝑛𝑛 = 89) were included by constructing a 
matrix of pedigree-based breed proportions, 𝑸𝑸, where the rows sum to unity and animals with known 
parents are the average of their parental group proportions. These proportions were then converted 
to an animal by animal matrix by 𝑸𝑸𝑸𝑸𝑇𝑇. Similarly, for the dam permanent environment effect, an 
incidence matrix was constructed relating dams to animals, 𝑾𝑾, which was converted to an animal 
by animal matrix 𝑾𝑾𝑾𝑾𝑇𝑇 .  

Pairwise bivariate models for all trait combinations were then analysed using various 
combinations of the genetic random effect matrices described above. The general model fitted was 
𝒀𝒀 = 𝑿𝑿𝑿𝑿 + ∑ 𝒁𝒁𝒖𝒖𝑖𝑖𝑛𝑛

𝑖𝑖=1 + 𝒆𝒆 where 𝒀𝒀 is the data in multivariate form; 𝑿𝑿 is the incidence matrix for the 
contemporary groups; 𝑿𝑿 is the vector of fixed-effect solutions; 𝒁𝒁 is the incidence matrix relating 
animals to breeding value estimates; 𝒖𝒖𝑖𝑖 is the vector of random effect solutions for the 𝑖𝑖th random 
effect and 𝒆𝒆 represents the residual. The model is also such that var(𝒁𝒁𝒖𝒖𝑖𝑖) = 𝑮𝑮𝑖𝑖 ⊗ 𝚺𝚺𝒊𝒊𝟐𝟐 where 𝑮𝑮 is 
the random effect matrix for the 𝑖𝑖th effect (𝑮𝑮 = {𝑨𝑨,𝑮𝑮𝑟𝑟 ,𝑮𝑮𝑝𝑝,𝑮𝑮𝑟𝑟𝑝𝑝,𝑸𝑸𝑸𝑸𝑇𝑇 ,𝑾𝑾𝑾𝑾𝑇𝑇} and 𝚺𝚺𝒊𝒊𝟐𝟐 is the estimated 
covariance matrix for the random effect. For all models presented, genetic group and permanent 
environment effects of the dam were also included. 

 
RESULTS AND DISCUSSION 

Significantly higher log-likelihood values were found for the models that contained two GRMs. 
Models that included GRMs had higher heritabilities than the pedigree-only models (Table 1). 
Further, the highest trait heritabilities were observed in the models that contained 𝑮𝑮𝑟𝑟𝑝𝑝. The 
proportion of the total genetic variance explained by the GRMs was between 0.59 and 0.86, with the 
model containing 𝑮𝑮𝑟𝑟𝑝𝑝 explaining a slightly higher proportion than the model containing only 𝑮𝑮𝑟𝑟 
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(Figure 1). The model that contained separate 𝑮𝑮𝑟𝑟 and 𝑮𝑮𝑝𝑝 either explained less variance than the 
model containing only 𝑮𝑮𝑟𝑟 (see CCFAT and PWT) or less than the model containing 𝑮𝑮𝑟𝑟𝑝𝑝 (see CEMD, 
IMF and SF5). These estimates of 𝜆𝜆 are larger than the value of 𝜆𝜆 currently used in 
MERINOSELECT and LAMPLAN analyses, suggesting that further investigation is required to 
determine if this finding is consistent for other traits or if 𝜆𝜆 should be trait specific.   

 
Table 1. Heritabilities calculated from the sum of all genetic effects in each model 

Random Effect 
Model 

PWT CEMD CCFAT IMF SF5 

𝑨𝑨 0.217 0.202 0.225 0.629 0.305 
𝑨𝑨 + 𝑮𝑮𝒓𝒓 0.283 0.225 0.252 0.636 0.313 
𝑨𝑨 + 𝑮𝑮𝒓𝒓𝒓𝒓 0.290 0.237 0.259 0.631 0.307 

𝑨𝑨 + 𝑮𝑮𝒓𝒓 + 𝑮𝑮𝒓𝒓 0.274 0.227 0.253 0.614 0.267 
Abbreviations: A: NRM, 𝑮𝑮𝑟𝑟 GRM calculated from random SNPs, 𝑮𝑮𝑝𝑝 GRM calculated from the predictive 
SNPs, 𝑮𝑮𝑟𝑟𝑝𝑝 GRM calculated from all SNPs  
 

 
Figure 1. Proportions of the total genetic variance explained by each random effect. 
Abbreviations listed in Table 1 
 

The genetic correlations between traits were not uniform across alternative models for genetic 
effects (Figure 2). While for most traits the correlations were fairly consistent, some trait pairs show 
much larger differences in the genetic correlations between models and random effects included, 
which the most evident of these being those correlations being CCFAT-PWT and CEMD-PWT. For 
both of these trait pairs, the estimated correlation was slightly negative between CCFAT-PWT and 
close to zero for CEMD-PWT from the model with only the NRM. When GRMs were added, these 
NRM correlations were estimated as strongly positive and the GRM correlations strongly negative. 
It should be noted that these differences largely cancel out when considering the overall genetic 
correlation. In some cases (CEMD-PWT, CF5-PWT, CEMD-SF5), the correlation estimated for the 
effects of 𝑮𝑮𝑟𝑟 and 𝑮𝑮𝑝𝑝 were different, suggesting here that the selected and random SNPs are capturing 
different genetic effects on these traits. Further investigation is required to determine why these 
differences in correlations occur. 

A cross-validation study using the variance components from this study was also conducted to 
investigate the benefits on predictive ability of using two GRMs or a single GRM with all SNPs 
together in a large scale BLUP analysis (Li et al. 2021). 
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Figure 2. Estimated correlations between traits for the genetic random effects for all four 
models. Abbreviations listed in Table 1. One correlation was estimated to be larger than one 
and was therefore modified to one for presentation 
 
CONCLUSIONS 

This study found that the current value of 𝜆𝜆 = 0.5 used in Australian sheep genetic evaluations 
was lower than that estimated for the carcase and eating quality traits examined. Higher log-
likelihoods values were estimated for the models containing two GRMs, however, this often resulted 
in slightly lower heritabilities compared to a model that contained all SNPs in one GRM. Including 
GRMs in the analysis resulted in different genetic correlations for some trait pairs from different 
GRM/NRM combinations. These results suggest that not considering the GRM in variance 
component estimation for SS-GBLUP can result in variances incorrectly proportioned between 
NRM and GRM. Further work is required to examine these impacts in other populations with 
different genomic population structures and in different traits.  
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SUMMARY 

Estimated Breeding Values (EBVs) published by Sheep Genetics Australia have an accuracy 
estimated with them. While the EBVs, their accuracy, and errors of genetic parameter estimates are 
all influenced by both data quantity and quality, these calculations do not explicitly take into account 
all aspects of data quality. To encourage increased genetic gains, Sheep Genetics provides 
participating breeders with data quantity and quality metrics in a ‘RAMping Up Genetic gains’ 
report. This paper demonstrates the considerable variation in these metrics for Merino flocks, and 
proposes additional descriptors metrics to characterise the quantity and quality of sheep genetic 
evaluation data. Current results show that there are opportunities to improve the completeness of 
pedigree and reproduction trait recording. Flocks had on average 46.6 ± 36.1% (mean ± SD) of 
animals with full pedigree, and 4.1 ± 6.9% of animals within each flock with reproduction trait 
records. The average proportion of effective progeny was 64.3 ± 19.1%. Flocks had on average 40.2 
± 37.3% of animals in contemporary groups that had variation in birth date recording. Since variation 
in age within contemporary groups is expected, this highlights potential issues with accurate 
recording of birth dates. Additional metrics describing lambing date distributions and deviations 
from the expected dates were derived, and emphasise potential issues of birth date accuracy, with 
some flocks recording birth dates on a non-random proportion of days of the week. Feedback on the 
quantity and quality of their current data should help ram breeders target improvements on their 
recording program. However, the optimum or reasonable level of quantity and quality to maximise 
genetic gains is currently undefined. 
 
INTRODUCTION 

The genetic evaluation systems available to the Australian sheep and beef industry through Sheep 
Genetics and BREEDPLAN, respectively, primarily rely on industry data submitted by seedstock 
producers. While there are standards and guidelines, there is wide variation in the data submitted. 
An accuracy figure is reported alongside estimated breeding values (EBVs). While the quality of 
data has been shown to influence the EBVs, their accuracy and the errors of genetic parameter 
estimates, accuracy is calculated using the amount and structure of information utilised (i.e. 
quantity), and not explicitly the quality of information. The difference between data quantity and 
quality is highlighted in the following example; a date of birth may be supplied for each animal 
(maximum data quantity), but a single generic date may be used for all animals irrespective of their 
actual date of birth within the lambing period (poor data quality). This will affect the ability to 
accurately correct for age and thus the accuracy of the EBVs. This highlights the need for additional 
metrics beyond EBV accuracy to characterise the quality of data.  

Data Quality Grades, which reflect the level of recording for pedigree, scan and wool traits, were 
previously provided to LAMBPLAN clients as a practical approach to describing index accuracy 
(Banks, 1999). Currently, Sheep Genetics provides the ‘RAMping Up Genetic gains’ (RUGG) report 
to participating breeders, which includes metrics to describe the quantity and quality of pedigree and 
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performance recording, and data structure. These metrics have been shown to have an association 
with genetic gains for a flock (Stephen et al. 2018). This paper demonstrates the variation in the data 
quantity and quality metrics reported in RUGG reports for Merino flocks, and proposes additional 
metrics to characterise the quantity and quality of data being supplied to Sheep Genetics. 

 
MATERIALS AND METHODS 

Existing data metrics. The metrics reported in RUGG reports were available for the 265 Merino 
flocks from the 12th December 2020 analysis. These flocks had a minimum of 100 animals per year 
and data available for the last 5 years. Unless stated, metrics were calculated as an average of the 
last 5 years and across contemporary groups. Metrics were classified as either quantity or quality 
metrics, although it must be acknowledged that some metrics can be placed in either category:  
1) Quantity: the amount of data submitted and its completeness. 
• fullped (%): proportion of animals from the flock in the analyses where both sire and dam are 

known (i.e. full pedigree). 
• avpedknown (%): completeness of pedigree known from last 3 generations. 
• recorded (%): proportion of animals with records submitted for any of the following: weight, 

fat, eye muscle depth, fleece weight and fibre diameter (all age stages) or number lambs weaned. 
• ngeno (%):  proportion of animals genotyped. 
2) Quality: the appropriateness for its intended use, including accuracy and data structure. 
• synped (%): proportion of animals with syndicate pedigree (i.e. where multiple rams are mated 

over a group of ewes, resulting in multiple potential parents for the progeny).  
• ages (%): proportion of animals recorded that are in contemporary groups with variation in age. 

Variation in age within contemporary groups is expected with accurate birth date recording.  
• bt (%): proportion of animals recorded that are in contemporary groups with variation in birth 

type recorded. 
• eff (%): proportion of effective progeny (i.e. percentage of progeny from a given sire relative to 

all progeny within a group, as defined in Brown et al. 2001). 
Additional quantity metrics. To take into account the different breeding objectives of each 

breed type, a ‘recorded’ metric was expanded to the proportion of animals recorded by trait groups:  
• rec_weights: weight traits, ultrasound c-site fat depth, and ultrasound eye muscle depth. 
• rec_repro: number of lambs weaned. 
• rec_wool: greasy fleece weight and fibre diameter. 

Additional qualtity metrics. These included genetic linkage metrics by trait group, as well as 
metrics to describe lambing date distributions and deviation from uniform distributions (inspired by 
DataAudit and StockTake; Johnston and Moore, 2005): 
• Average proportion of animals recorded that are directly linked to external flocks, by trait groups: 

carcase scan traits (link_carcase), weight traits (link_weights), number lambs weaned 
(link_repro), wool traits (link_wool). 

• maxfreq_ywt (%): the percentage of the most common single value appearing. Missing values 
were not included in this calculation. Only results for yearling weight (ywt) are reported in this 
paper as ywt was the most common weight trait recorded for the flocks examined.  

• Chi-squared statistics: For a large sample size of data with sufficiently wide variation in values, 
the last digits are expected to have a uniform distribution (Dlugosz and Müller-Funk, 2009). 
Deviation from this expectation may be due to poor recording, equipment problems or non-
randomisation of recordings. Since different traits are recorded in various increments (e.g. as 
whole number integers or various decimal places), chi-squared statistics were calculated for the 
last digits in the units (chi_units_ywt) and tenths (chi_tenths_ywt) place values for ywt:  



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 139-142 

141 

𝜒𝜒2 = �
(expected% − observed%)2

expected%

10

𝑖𝑖=0

 

where expected  = 10%, and observed = % of records with the digit i 
• dayinweek: mean square error of birth date for days in week. This metric is based on the same 

concept as the chi-squared statistics, where the likelihood of birth dates to occur on any given 
day of the work is expected to be equal. This was calculated as: 

dayinweek = �(expected%-observed%)2
7

𝑖𝑖=1
 

where expected = 1/7 × 100 % for each day of the week, and observed= % of animals born on 
the ith day of the week. 

 
RESULTS AND DISCUSSION 

Variation in data metrics. Figures 1a and 1b demonstrate the considerable variation in the data 
quantity and data quality metrics across Merino flocks. 

 

 
The data quantity metrics describe the amounts of pedigree and performance recording across 

Merino flocks. The average proportion of animals within a flock with full pedigree (fullped) was 
46.6% ± 36.1% (mean ± SD), with 29.2± 36.1% of the pedigree complete over the last 3 generations 
(avpedknown). Flocks had an average of 7.4% of animals within the drop genotyped (ngeno). 
Recording by trait groups was more informative than a recording metric that included all traits. As 
expected, there was more recording for weight traits (rec_weights, 86.9 ± 19.2%) and wool traits 
(rec_wool, 69.0 ± 20.7%) than reproduction traits (rec_repro, 4.1 ± 6.9%). Since only a proportion 
of ewes enter the ewe flock, low values of rec_repro were as expected. However, it was also the 
most variable metric relative to the mean (range 0 to 31.3%, CV= 168.0%). These metrics highlight 
the opportunity for Merino breeders to improve recording for pedigree and reproduction traits.  

The data quality metrics describe varying levels of pedigree accuracy and distribution of data. 
There was a low proportion of animals with syndicate pedigree (synped, 7.4 ± 12.3%). However this 
metric was also the most variable (range 0 to 63.9%, CV = 164.9%). The proportion of animals in a 
contemporary group that had variation in recording for birth dates (ages) was 40.2 ± 37.3% and 32.0 
± 32.1% for birth type recording (bt). That is, ~60% animals were in groups where there was no 
variation in birth date, and ~68% with no variation in birth type. This highlights potential issues with 
accurate recording of birth dates and birth types. The average proportion of effective progeny (eff) 
was 64.3 ± 19.1%. Since the eff metric can only be estimated if sire pedigree is known, this is 
expected to be an underestimate. The degree of linkage to other flocks reflected the level of recording 
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by trait group and Merino breeding objectives, with the most linkage through weight, wool and 
carcase traits compared to reproduction traits (link_weights, 78.6 ± 15.8%; link_wool, 78.1 ± 13.6%; 
link_carcase, 58.2 ± 31.3%; link_repro, 14.3 ± 20.1%). An average of 3.3% of yearling weight 
records (maxfreq_ywt) were the same within each flock (range of 0.01% to 20.3%).  

The quality metrics describing distributions of traits and deviations from expected distribution 
also varied across flocks. The chi-squared statistics, describing last digit distributions, were all less 
than the chi-squared critical value of 3.325, suggesting that the frequencies of last digits for ywt 
were as expected. Conversely, the average dayinweek was 4,841.5 ± 2777.53, and ranged from 20.3 
to 8,571.0 (i.e. the maximum mean square error, with birth dates recorded on only one day of the 
week). Again, the required degree of accuracy for birth dates and what is considered a reasonable 
loss in age adjustment precision is currently unknown. Nevertheless, these distribution and deviation 
metrics can still be used as a way to highlight unusual data. 

Relationships between metrics. The relationships between the quantity and quality metrics 
were quantified by Pearson’s correlations (r). As expected, there were strong linear associations 
between rec_repro and link_repro (r = 0.82), and fullped and avpedknown (r = 0.77). There were 
moderately strong associations between fullped and ages (r = 0.60), bt (r = 0.61), daysinweek (r = -
0.51), link_repro (r = 0.48) and eff (r = 0.40). There were also strong associations within categories 
(e.g. between ages and daysinweek, r = -0.85). Therefore, the quantity and quality metrics are not 
necessarily independent, and some metrics describe similar aspects.  

Industry implementation. The improvement of the quality and quantity of data, in particular 
for reproduction traits, has been identified as a key priority for Sheep Genetics (Collison et al., 
2018). A framework to characterise genetic evaluation data, including a carefully developed overall 
‘data quality score, will benefit individual breeders, ram buyers and the industry as a whole. 
Feedback on the quantity and quality of their current data will allow ram breeders target 
improvements on their recording program, which support selection decisions and maximise genetic 
gains, and assess changes in recording across time. A data quality score could also help identify and 
highlight breeders who collect high quality data. In turn, this will provide increased transparency to 
ram buyers about the quality of data used to calculate EBVs. There is also potential to use these 
metrics to determine how data contributing to the reference population is valued and rewarded.  
 
CONCLUSIONS 

This paper demonstrates the considerable variation in the quantity and quality of Merino sheep 
genetic evaluation data. While there are opportunities for Merino flocks to improve completeness 
and accuracy of pedigree recording, birth date and reproductive performance, the optimum or 
reasonable level of quantity and quality is currently undefined. 
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SUMMARY 

Genetic gain can be maximised when selection is based on the most accurate breeding values 
and selection indices. To more explicitly take into account aspects pertaining to the quality of 
information used to estimate breeding values, metrics to characterise the quantity and quality of 
genetic evaluation data were previously proposed. This paper examines the relationships between 
these data quantity and quality metrics and genetic gains for Merino flocks. Stepwise regression 
analysis was used to analyse 3 metrics describing genetic gains: index accuracy, average index value 
and index trend. Index accuracy had the most number of significant predictors, with 4 quantity and 
3 quality predictors explaining 85% of the observed variation. The most important metrics 
explaining index accuracy were level of genetic linkage for wool traits, average proportion of 
pedigree known in the last 3 years, and the level of wool and reproduction trait recording (p < 
0.0005). Data characteristic metrics were also associated with average index and index trend, 
although to a lesser level (~24% variation explained). This study demonstrates that both data 
quantity and quality are associated with index accuracy and genetic gains in Merino flocks. This 
decomposition provides a basis for informing ram breeders on improvements in their data recording. 
Used in conjunction with optimum selection decisions, this will enable higher rates of genetic 
progress.  

 
INTRODUCTION 

Genetic gain can be maximised when selection is based on the most accurate breeding values 
and selection indices. While the accuracy of estimated breeding values is calculated using the 
amount and structure of information utilised (i.e. quantity), some aspects pertaining to the quality of 
information can not explicitly taken into account in this calculation. Aspects of data quality, such as 
management group structure and accurate dates of birth, have been shown to affect the accuracy of 
estimation of genetic merit (Brown et al. 2001; Swan and Brown 2007). However, it is important to 
more specifically quantify the impact of data quality on the estimation of genetic merit due to the 
varying quality of data submitted by seedstock producers. Characterising both the quantity and 
quality of data will allow breeders to identify where their recording programs can be improved. 

Sheep Genetics reports data quantity and quality metrics in their ‘RAMping Up Genetic gains’ 
(RUGG) report. Variation in these metrics has been shown to be associated with variation in rates 
of genetic progress (Stephen et al. 2018). Guy and Brown (these proceedings) reported considerable 
variation in key data metrics for Merino flocks, and proposed additional data quantity and quality 
metrics. This paper aims to demonstrate the value proposition of these metrics by examining their 
associations with genetic gains.  

 
MATERIALS AND METHODS 

Data quantity and quality metrics. The metrics examined in this paper were available for the 
265 Merino flocks in the 12th December 2020 analysis that had a minimum of 100 animals per year 
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and data available for the last 5 years. These metrics (defined in Guy and Brown, these proceedings) 
were calculated as an average of the last 5 years and across contemporary groups. 
Briefly, the data quantity metrics were: 

• fullped (%): overall proportion of animals in the analysis with full pedigree.  
• avpedknown (%): completeness of pedigree known from last 3 generations.  
• count: average flock size per year. 
• ngeno (%):  average proportion of animals genotyped.  
• Average proportion of year drop recorded for weight (rec_weights), reproduction (rec_repro) 

and wool traits (rec_wool). 
The data quality metrics were: 

• synped (%): proportion of animals with syndicate pedigree.  
• ages (%): proportion of animals in contemporary groups with variation in age recorded.  
• bt (%): proportion of animals in contemporary groups that have variation in birth type 

recorded. 
• eff (%):  the average proportion of effective progeny (Brown et al. 2001). 
• Average proportion of animals directly genetically linked to other flocks for weight 

(link_weights), reproduction (link_repro) and wool traits (link_wool). 
• Dayinweek: mean square error of birth date for days in week from an expected uniform 

distribution. 
Data metrics and genetic gains. Index accuracy (indexacc), average index value (avindex) and 

index trend (indextrend) were calculated for each Merino flocks for the Merino Production + index, 
and averaged over the last 5 years. A series of linear regression models was used to examine the 
relationships between each genetic gain metric and data quantity and quality metrics: 

GeneticGains_perci = µ + β1xi + ε 
where GeneticGains_perc is the percentile of indexacc, avindex or indextrend of flock i (quintiles 1 
to 5, with 5 being the highest index), and xi the flock’s corresponding data quantity and quality 
metric refined above. Outliers, defined by 1.5 × Inter Quartile Range below the 1st quartile and 
above the 3rd quartile, were removed from data metrics due to potential leverage and influential 
points affecting results of this analysis.  

Multiple linear regression was conducted using all data quantity and quality metrics as predictor 
variables. Identification of the strongest associations with index accuracy and genetic gains was via 
stepwise regression (combining both backward elimination and forward selection), based on Akaike 
Information Criterion (AIC). The final model only included significant data characteristic metrics:  

GeneticGains = µ + β1x1 + β2x2 + β3x3 + …+ βixi + ε 
where βi is the partial regression coefficient of metric i. Flocks were included in the analysis if all 
data quantity and quality metrics were available (n  = 243). 
 
RESULTS AND DISCUSSION 

There were significant differences in metrics across percentile groups, although there was 
considerable variation in each metric across the genetic gain percentile groups, with distributions 
overlapping (strongest relationships shown in Figure 1. Flocks with higher indexacc, avindex and 
indextrend (P < 0.005) had more reproduction traits recorded, more genotyped animals and a higher 
degree of average pedigree known in last 3 years (with the exception of avindex). These flocks also 
had greater linkage with other flocks for reproduction, weight and wool traits, actual birth dates and 
birth types recorded (not for avindex) and birth dates recorded evenly across days of the week. 
Flocks with higher indexacc also had greater average effective progeny numbers for sires and less 
syndicate recording (not shown in Figure 1). Therefore, flocks with more records and better quality 
data were associated with higher index accuracies and greater index gains.  
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Figure 1. Univariate relationships between a) data quantity and b) data quality metrics (y axes) 
and percentiles of index accuracy (indexacc_perc), average index value (avindex_perc) and 
annual index trend (indextrend_perc) (x axes) for the Merino Production Plus index, from 265 
Merino flocks. Lines are the average metric values for each percentile group, which reflect the 
strength of each relationship  
 

Stepwise regression was used to analyse the indexacc and genetic gains, with all data quantity 
and quality metrics tested (Table 1). Indexacc had the most number of significant predictors, with 4 
quantity and 3 quality in the final model. The most important descriptors of indexacc were level of 
linkage by wool traits, average pedigree known in the last 3 years, and level of wool and reproduction 
trait recording (P < 0.0005). This reflects the key priority areas of increasing complete pedigree, 
wool trait and reproduction trait recording identified by Sheep Genetics (Collison et al. 2018). The 
proportion of variation explained, taking into account number of predictor variables (𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 ), was also 
highest for indexacc (𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2   = 0.85). Avindex had 3 significant quantity and 2 quality metrics (𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2   

= 0.25) and indextrend had 4 significant quantity and 1 quality metrics (𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2   = 0.23). The metric 
that was a significant predictor in all models was avpedknown, while synped, bt and dayinweek 
were not significant predictors for all models.  

These results have implications for the development of an overall ‘data quality score’. Indexacc 
more appropriately reflects data characteristics than avindex and indextrend, which are influenced 
by breeder selection decisions. Along with a large proportion of variance explained by data quantity 
and quality metrics, indexacc may be the most appropriate measure to ‘train’ an overall score.  
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Table 1. Stepwise analysis of index accuracy, average index and index trends, with significant 
data quantity and quality metrics as predictor variables (p < 0.05), for 243 Merino flocks 
 

  Index accuracy+ 
(𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  = 0.85) 

Average index+  
(𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2   = 0.25) 

Index trends+   
(𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2   = 0.23) 

 Metrics1 Coefficient estimates (SE) * 
Quantity fullped 0.03 (0.01) -0.10 (0.05) * - 
 avpedknown 0.11 (0.02) 0.16 (0.08) 0.03 (0.01) 
 count - 0.007 (0.003) - 
 ngeno - 0.72 (0.17) 0.07 (0.03) 
 rec_weights 0.06 (0.03) * - -0.09 (0.02) 
 rec_repro 0.18 (0.08) - -0.14 (0.06) 
 rec_wool 0.05 (0.01) - - 
Quality ages - -0.08 (0.04) - 
 eff 0.04 (0.02) - - 
 link_weights - 60.21 (23.98) - 
 link_repro 8.02 (2.20) - 4.60 (1.70) 
 link_wool 40.27 (4.56) - - 

+using the Merino Production Plus index; 1 Description of metric acronyms provided in materials and methods 
section above; * P < 0.10 
 

It is important to note that the most powerful predictors of the measures of genetic gain used in 
this study (indexacc, avindex and indextrend) are specific to this dataset and the index examined, 
and separately, that they may change over time. The effectiveness of providing feedback on data 
characteristics can be monitored by trends over time, and the cost-benefit of improved recording can 
be assessed. Future investigations may consider how genetic gains are also influenced by ram 
breeder selection decisions. This includes selection for traits not included in the index or use of 
outside genetics or selection differential, which has been identified as a key performance indicators 
of index gains across multiple beef cattle breeds (Johnston and Moore 2005).  
 
CONCLUSIONS 

This study demonstrates some key components of data quantity and quality which are associated 
with index accuracy and metrics describing genetic gains in Merino flocks. This decomposition 
provides a basis for informing ram breeders on improvements in their data recording. Used in 
conjunction with optimum selection decisions, this will enable higher rates of genetic progress. 
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SUMMARY 
For a long time, the artificial insemination (AI) industry has provided high-quality semen for 

dairy cattle breeding. With the recent trend to widely use genomically selected bulls before 
adequate screening of their semen, predicting bull fertility early in life has become an important 
area of research. In this study we used 25-day non-return rate of about 3 million Australian cows 
that were inseminated using semen from 5943 Holstein (H) and 1258 Jersey (J) bulls that had high 
density SNP data (HD), to estimate the proportion of variance explained by SNP data and assess 
the accuracy of prediction of validation bulls. The proportion of variance explained by SNP data 
was about 1.2% in Jersey and 0.6% in Holstein bulls. The mean bull solution for both breeds was 
near zero (-0.05% for H and 0.43% for J). The standard deviation of the bull solutions of was 
2.36% in H and 3.30% in J bulls. For both H and J bulls, the difference between the best and worst 
bulls was about 18% units. Genomic prediction (GP) accuracies were estimated using 5-fold cross 
validation and varied from 0.20 to 0.25 in H bulls and 0.08 to 0.36 in J bulls. For H bulls the GP 
accuracy for young bulls were lower (0.13) than average accuracies calculated from 5-fold cross 
validation. In the case of J bulls, the accuracy for young bulls were the same (0.22) as the average 
accuracy from 5-fold cross validation. The results show that despite the low heritability, GP of 
male fertility in Australian H and J breeds is possible and could be used for monitoring and 
making early decisions to avoid the use of semen from extremely poor fertility bulls.  

  
INTRODUCTION 

Genetic improvement programs in dairy cattle have focused on female fertility but ignored 
male fertility assuming the artificial insemination (AI) industry is able to properly screen and 
standardize the quality of semen before it is widely distributed. Most studies have not found 
significant genetic difference in outcomes of insemination among bulls used for mating, possibly 
because of screening on semen parameters (e.g., Carrick et al. 2000; Kuhn and Hutchison 2008). 
As a result, bull fertility is a phenotypic evaluation used to rank bulls on AI success. Nevertheless, 
there is evidence that AI success varies among bulls and information on bull non-return rate 
(NRR) following insemination could be useful for improving overall herd fertility (e.g., Abdollahi-
Arpanahi et al. 2017). The economic impact of even a small difference in semen fertility between 
bulls could be large because a single bull is mated to thousands of cows and the benefit of using 
bulls with good semen fertility is immediate and has a direct effect on the overall herd fertility.  

With the recent shift in the dairy industry towards fast tracking of young genomically selected 
bulls for intensive use before adequate screening, exploring causes of variation in bull fertility 
early has become an emerging area of research (Taylor et al. 2018). The renewed interest to assess 
the extent of genetic variation in male fertility is partly due to the opportunity to carry out 
genomic-enabled screening of bulls before they are extensively used for semen collection 
(Abdollahi-Arpanahi et al. 2017; Rezende et al. 2019). The main aim of this study was to examine 
if the use of genomic evaluations can provide an opportunity for early culling of bulls based on 25-
day non-return rate (success or failure of insemination outcomes) of their mates. For this study we 
used genotype and phenotype data of 5934 Holstein (H) and 1258 Jersey (J) bulls that mated to 
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about 3 million cows. Accuracy of genomic predictions (GP) for both breeds were tested using a 
5-fold cross validation and by predicting direct genomic values (DGVs) for younger bulls.   

 
MATERIALS AND METHODS 

Phenotype data. Detailed description of the phenotype data used for this study is given by 
Carrick et al. (2000) and Haile-Mariam and Pryce (2021). Briefly the outcome of each 
insemination of AI bulls, called non-return rate (NRR), is derived by coding each insemination as 
successful (1) or failed (0) based on a minimum of interval of at least 25-days after insemination. 
In the first instance, any insemination performed at least 25-days before the end of the AI period 
was coded as successful and was changed to failed if it is followed by another insemination or 
mating at least 10 days after the previous insemination. Currently these data are used for 
calculating semen fertility values (SFV) of bulls by DataGene (https://datagene.com.au). In total 
there were 10941 bulls with 3.8 million inseminations between 1995 and 2020 in 3289 herds in 
Australia. AIs involving H and J bulls that mated to all breeds of cows (predominantly H and J, 
respectively) were selected for this study. The number of H and J bulls with phenotype and 
genotype data are given in Table 1.  

 
Table 1. The structure of Holstein and Jersey data used for genomic analyses  
 

AStandard deviation; BRange in number of inseminations per bull.   
 

Genotype data. Most bulls were genotyped using 50K SNP chips from various commercial 
providers, while about a quarter had HD genotypes. The first stage of the imputation was to a 
standard 50K SNP chip for all bulls followed by imputation to HD. Imputation of all 50K 
genotypes to HD was implemented using Fimpute v3 (Sargolzaei et al. 2014) with a reference set 
(RS) of 2700 HD genotypes. All 50K variants that passed quality control but did not overlap the 
HD set were then added back into the final imputed set which included the combined HD and 50K 
SNP sets. The 720,521 SNP set used for this study are located on all 30 chromosomes including 
the pseudo-autosomal region of the X Chromosome (Nguyen et al. 2021). The SNP data were used 
to create genomic relationship matrix (GRM) following Yang et al. (2011) separately for H and J 
bulls applying a minor allele frequency of 0.01 and 0.05 for H and J, respectively. To test if a joint 
RS of H and J bulls is beneficial, a third GRM using genotyped data of both breeds was also 
constructed.  

Statistical analyses. This study used NRR coded as 100 (for successful) and 0 (for failed) as 
the response variable to evaluate male fertility compared to studies in the literature (Abdollahi-
Arpanahi et al. 2017; Rezende et al. 2020) that used summarized bull solutions (e.g., sire 
conception rate or SFVs). The use of the raw NRR data jointly with important fixed and random 
effects and the GRM of bulls is expected to capture more of the variance and increase the accuracy 

Reference set  Holstein bulls Jersey bulls 
No. of records  2114529 300560 
No. of bulls with data  4654 1057 
Year of birth of bulls  1990-2014  1990-2012 
Mean NRR (%) 51.77(49.97)A 55.95(49.65)A 
No. of inseminations per bull 449(10-43221)B 285(10-14147)B 
Validation set    
No. of records  234401  61493 
No. of bulls with data  799 201 
Year of birth of bulls  2015-2019  2013-2019 
Mean NRR (%) 49.69(49.99)A 52.96(49.91)A 
No. of inseminations per bull 293(10-3313)B 309(10-4497)B 
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GP of bulls. Data analyses were carried out assuming a linear animal model using ASReml 
(Gilmour et al. 2015). Details of the fixed and random effects that were fitted are described by 
Haile-Mariam and Pryce (2021). Briefly a contemporary group effect that included herd-year-AI 
technician, mating number, cow breed, month of insemination, data processing centre, age of cow 
and bull at insemination, days in milk at insemination and days from insemination to the end of the 
AI period were fitted. The random effects fitted were the permanent environmental effect for the 
cow and the GRM for the bulls with insemination data. First, we used the genotype and phenotype 
data of all H and J bulls to quantify the proportion of variance captured by GRM. Then accuracies 
of GP were tested into 2 ways: Firstly, in a 5-fold cross validation scheme where the data were 
split into 5 parts of approximately equal size, by allocating the offspring of each sire to one of the 
5 datasets. In this approach no bull in the validation set had paternal half sibs in the RS. This 
analysis was performed 5 times using each dataset in turn as a validation and the other 4 sets as the 
reference. Secondly, validation using young bulls (forward prediction) where bulls born after 2014 
were used as a validation set and those born between 1990 and 2014 were used as RS in H. For J, 
bulls born after 2012 were included in validation set because the number born after 2014 were 
fewer (see Table 1). In both cases validation bulls were included in the GRM but had missing 
phenotypes when calculating their DGVs. Accuracy of prediction is calculated as the correlation 
between corrected phenotype (for effects considered in the model described above) and DGVs for 
bulls with at least 100 inseminations.  
 
RESULTS AND DISCUSSION 

The mean NRR for both H and J bulls used in the reference and validation set are shown in 
Table 1. The mean NRR are lowest in H validation bulls and highest in J reference bulls. The 
proportion of variance explained by the GRM was lower in H (0.6%) than in J bulls (1.2%). In 
both cases the permanent environmental effect of the cow accounted for 3% of the total variance 
and more than 95% of the variation was not accounted for by the model. Despite this, the bull 
solutions for both breeds show considerable variation. The mean bull solutions for all Holstein 
bulls were close to zero (-0.05%) with a standard deviation (SD) of 2.36%. In the case of Jersey 
bulls, the mean was 0.43% with SD of 3.30%. The bull solutions for both breeds show an 
approximate normal distribution (-9.0 to +9.0%) with few extremely poor fertility bulls. There 
were 9 H and 7 J bulls with solutions of below -9.0%. 

The accuracy of GP from the 5-fold cross validation are similar in both breeds despite the 
larger reference size of the H breed. The accuracy values for H bulls are lower than those reported 
by Abdollahi-Arpanahi et al. (2017) who used 7447 bulls with sire conception rate in the USA. 
Part of the reason for the difference could be the response variable used and the way the data were 
analysed in both studies. The difference in the RS between the two studies may also have 
contributed to the lower GP accuracy of the current study. For J bulls our estimates are slightly 
lower than those for J bulls from the USA (0.28-0.29) which was based on about 1500 bulls 
(Rezende et al. 2019). Interestingly for Australian J bulls, a bivariate model that used sire 
conception rate from the USA and SFV from Australia resulted in accuracy of 0.24 (Rezende et al. 
2020), which is similar to our result in Table 3. The analyses by Rezende et al. (2020) used about 
half of J bulls used in the current study and about 1500 bulls from the USA.  

To the best of our knowledge the accuracy of GP for young bulls for male fertility is not 
available in the literature. GP accuracy for young H bulls is lower than that the average from 5-
fold cross validation (Table 3). This could be because the young bulls in H are less related to the 
RS set due to the fast turn-over of bulls in the post genomic era. Furthermore, the lower proportion 
of genetic variance explained by GRM and the higher genetic diversity of all H bulls relative to J 
bulls may have contributed to lower accuracy of prediction for the young bulls. Possibly also 
changes to the level of screening on semen parameters after the introduction of genomic selection 
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may have contributed to low accuracy (Taylor et al. 2018). The use of joint H and J RS gave 
similar accuracy for young bulls (Table 3) suggesting a potential to have a single step genomic 
evaluation by including both genotyped and ungenotyped bulls of both breeds. This is appealing 
for the Australian dairy industry as the current evaluation for SFV uses data of all breeds. 
 
Table 2. Variance component estimates for semen fertility value and proportion of variance 
explained by the different random effects in Holstein and Jersey bulls 
 

Random effects  Holstein bulls Jersey bulls 
 Variance Proportion of total Variance Proportion of total 
GRM 13.60±0.68 0.006±0.000 27.74±2.24 0.012±0.001 
PE of cows   70.08±1.49 0.031±0.001 73.05±4.10 0.033±0.002 
Residual 2190.35±2.39 0.963±0.001 2139.93±6.37 0.955±0.002 

 
Table 3. Accuracy of genomic prediction for validation bulls for semen fertility value in 
Holstein and Jersey bulls with at least 100 inseminations  
 

Breed Five-fold cross validation Validation in young bulls 
 No. Accuracy No. Breed specific reference Joint reference 
Holstein 717-898 0.197-0.252(0.220) 482 0.128 0.123 
Jersey 100-176 0.078-0.357(0.221) 126 0.219 0.239 

 
CONCLUSIONS 

The results of this study show that prediction of DGVs for H and J bulls using raw 
insemination data is feasible. At this stage the accuracies of GP particularly for young bulls are 
low. Nevertheless, there is a potential to use these results for monitoring and making early 
decisions to avoid using semen from extremely poor fertility bulls.  
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SUMMARY 

This research quantified genetic variation in urination traits using sensors attached to grazing 
lactating dairy cattle that are designed to record timing, volume and nitrogen concentration of every 
urination event. The records from individual events were used to generate phenotypic traits that 
included daily urinary nitrogen (UN), urinary volume (Uvol), number of urination events (Unum) 
and average volume per urination event (VolEvent). Heritability estimates for these daily traits 
ranged from 0.20 to 0.37, showing these urination traits are heritable. Repeatability estimates ranged 
from 0.27 to 0.59, indicating there is considerable residual variation and sensor observations would 
need to be repeated over a number of days to get reliable phenotypic measures. Phenotypic and 
genetic correlations have been estimated, however due to the small number of animals in the current 
study, these preliminary estimates should only be viewed as indications. Overall, these results 
suggest there is potential for urination traits to be changed through selection however, these traits 
are difficult and expensive to measure and more cows need to be phenotyped in order to provide 
more reliable estimates of genetic parameters. 

 
INTRODUCTION 

Pasture-based dairy cows in New Zealand predominately consume a sward containing perennial 
ryegrass (Lolium perenne) and white clover (Trifolium repens). These forages contain a high 
concentration of protein-nitrogen (N) relative to energy that is in excess of dairy cow requirements 
(Kolver and Muller 1998). Unless supplemented with a high-energy low-protein feed, these cows 
will excrete most of this surplus nitrogen in their urine (Selbie et al. 2015). Excreted N is 
concentrated in patches where it can be surplus to pasture requirements. Additionally the soil is 
unable to retain excess N which can lead to leaching through the soil and hence become a major 
source of N in waterways (Woods et al. 2016). 

One method to reduce N losses at the farm level would be to reduce the total amount of urinary 
nitrogen (UN) excreted per cow per day. Another method would be to alter the urine patch dynamics, 
i.e. the UN load per urination event (Kennett et al. 2020). At a given daily UN load, a greater total 
urinary volume (Uvol) and smaller volume per urination event (VolEvent) would typically be 
favourable as it would lead to a more uniform spread of urine across the paddock and dilute the 
concentration of UN deposited in urine patches on pasture (Kennett et al. 2020). 

The objective of this study was to quantify genetic variation in urination traits of grazing dairy 
cattle.  

 
MATERIALS AND METHODS 

This experiment was conducted at Ashley Dene, situated near Burnham, Canterbury, New 
Zealand (43.6468° S 172.34679° E) between January and August 2020 with the approval of the 
Lincoln University Animal Ethics Committee (#2019-46). Six experimental runs were completed 
on a total of 180 Holstein-Friesian-Jersey crossbred cows milked twice-a-day. Each run was 
comprised of 30 cows split evenly into two grazing groups of 15 cows per group. Urine sensors (Mk 
II) developed by AgResearch (Betteridge et al. 2013; Shepherd et al. 2017) were attached to the 
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cows between 8am and 9am on a Monday and removed around 6am on Friday. For data analysis, 
day was defined as the 24 hours from 9am to 8:59am the following day, run-group-day was defined 
as the contemporary group made up of experimental run (1-6), grazing group (1 or 2) and day of the 
experiment (1-4).  

The urine sensors measure refractive index (RI), pressure, duration and time of each urination 
event. These data are used to estimate the urinary N concentration and volume of each urination 
event. The urinary nitrogen (UN) yield of each urination event (g N/event) was calculated as UN 
concentration (g/dL) x 10 x volume of the event (L). 

Over the four days, there were periods from time-to-time where the urine sensor was not 
functioning for the measurement of N concentration or was not functioning at all. For each cow-day, 
the number of urination events (Unum), cumulative urinary volume (Uvol) and cumulative UN was 
known for the total elapsed time that the urine sensor was functioning. These cumulative measures 
were divided by their respective total elapsed time of valid observations to give a per minute value. 
The per minute value was multiplied by the number of minutes in the day to get the known 
cumulative measure representing daily Unum, Uvol and UN. For each cow-day the average volume 
per urination event (VolEvent) was calculated by dividing Uvol by Unum. Cow-days where the 
urine sensor was functioning for less than 50% of the day were not included in the final dataset 
(n=187 cow-days) for any of the urine traits. Similar edits to remove cow-days for UN were applied 
when the sensor recording N concentration was not functioning.  

Two cows that were having extended lactations (>500 days) atypical of New Zealand pasture-
based dairy cattle were removed from the dataset.  

Genotypes. Cattle were genotyped by Weatherbys (www.WeatherbysScientific.com) on an 
Illumina 50,000 SNP bovine panel. The small proportion of SNPs that were missing on any animal 
were imputed using the methodology of FImpute (Sargolzaei et al. 2014). Only mapped SNPs 
assigned to chromosomes 1 through 29 were included in the analysis (n=42,231). 

Statistical analysis. Bayesian univariate repeatability models for the urination traits were run 
using the Julia for Whole-genome Analyses Software (JWAS) package (Cheng et al. 2018) run in a 
Julia computing environment (julialang.org). Inference was based on MCMC chains of 90,000 
samples, retaining every 10th sample, after a burn-in of 10,000 samples which had been discarded. 

The repeatability model equation was: 
y = RGD + age + DIM + pJ + het + AnimPerm + SNPs + e 

where y is the daily measurement on the trait of interest: UN (n=483 records on 164 cows), Uvol, 
Unum and VolEvent (n=517 records on 168 cows); RGD was the fixed class effect of run-group-
day the animal was grazing; age was the fixed class effect of age of the cow in years from birth to 
most recent parturition; DIM was the fixed linear covariate of days in milk on day 1 of RGD; pJ was 
the linear covariate of Jersey breed proportion; het was the linear covariate of the specific heterosis 
coefficient between Holstein-Friesian and Jersey (Dickerson 1973); AnimPerm is the random 
permanent effect of animal assumed to be independently and identically normally distributed with 
variance 𝜎𝜎𝑐𝑐2; SNPs are additive covariates for all of the 42,231 autosomal loci with effects 
independently and identically normally distributed with variance 𝜎𝜎𝑎𝑎2; and e is the residual effects 
independently and identically normally distributed with variance 𝜎𝜎𝑒𝑒2.  

Co(variance) components for UN, Uvol, Unum and VolEvent were estimated by fitting the 
model equation pairwise using six bivariate repeatability animal models.  

The 95% credibility intervals were calculated by taking the 97.5th percentile of the MCMC 
samples as the upper bound and the 2.5th percentile as the lower bound. 

 
RESULTS AND DISCUSSION 

Descriptive statistics for the final dataset are given in Table 1. Daily Uvol and UN (Table 1) 
were greater than that reported for Friesian-Jersey crossbred cows fitted with the same sensors as 
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used in the current study (Bryant et al. 2018). Another study using similar urine sensors reported a 
daily Uvol of 42.2 L (Mangwe et al. 2019), comparable to the current study. The mean number of 
urinations per day was similar to that reported by Bryant et al. (2018) and Mangwe et al. (2019). 

The estimates of heritability for the four urination traits were moderate (Table 1). Repeatability 
for VolEvent was greater than for UN (0.59 vs 0.27). Estimates of repeatability were similar to those 
observed for lactation test-day traits spread monthly or alternate monthly throughout a lactation. For 
example, estimates of repeatability were 0.52 for milk yield, 0.43 for fat yield and 0.44 for protein 
yield with approximately 80,000 multibreed cows and an average of two test-day records per cow 
(Lembeye et al. 2016). 

Heritability and repeatability estimates of urination traits in cattle are scarce, although a Danish 
study reported a heritability of 0.12 for concentration of phosphorus in urine from random spot 
samples and a repeatability of 0.21 (Løvendahl and Sehested 2016). The same study reported a 
heritability of 0.05 and a repeatability of 0.38 for urinary creatinine, a nitrogen containing compound 
in urine.  
 
Table 1. Unadjusted phenotypic mean and standard deviation for daily urinary nitrogen (UN; 
g/d), urination volume (Uvol; L/d), urination number (Unum; count) and mean volume per 
urination event (VolEvent; L/event). Posterior means with lower and upper 95% credibility 
intervals (presented in brackets) of the genetic variance, heritability and repeatability 
 

Trait Mean Standard 
deviation 

Genetic 
Variance 

Heritability Repeatability 

UN 238 80 868 0.20 0.27 
   (441, 1,311) (0.10, 0.30) (0.18, 0.36) 
Uvol 36.8 12.4 50.2 0.36 0.50 
   (22.3, 78.9) (0.17, 0.51) (0.41, 0.58) 
Unum 13.0 4.4 3.9 0.24 0.46 
   (0.8, 7.5) (0.05, 0.44) (0.36, 0.55) 
VolEvent 2.9 0.7 0.16 0.37 0.59 
   (0.08, 0.26) (0.18, 0.55) (0.51, 0.66) 

 
Genetic and phenotypic correlations among the four urination traits are in Table 2. The 

phenotypic correlations among UN, Uvol and Unum were moderately high and positive, suggesting 
that cows that excreted a high volume of urine per day would be doing so with more urination events 
per day and at a greater daily UN load. The posterior means for the genetic correlations between 
Uvol and UN, Unum and VolEvent were moderate to moderately high and positive (Table 2). The 
genetic correlation between daily UN and VolEvent was near zero. 

Due to the small numbers of animals in this study, the 95% credibility intervals around the 
posterior means of genetic parameters were wide, thus these preliminary estimates of genetic 
parameters should only be viewed as indications. Subsequent studies with larger cohorts of cattle 
are required to increase the reliability of the genetic parameters for urination traits. Nevertheless, 
based on this study, the genetic correlations of Uvol with Unum and VolEvent are likely to be 
positive.  

Phenotyping cows for urination traits is expensive and logistically challenging, especially when 
cows are lactating and are outdoors grazing pasture. For this reason, there are few studies that have 
summarised whole day urination traits in grazing dairy cattle (Shepherd et al. 2017; Bryant et al. 
2018; Mangwe et al. 2019), and none that have quantified genetic variation in the same traits. 
Comparing the square root of the estimated genetic variance to the raw mean shows that there is 
opportunity for urination traits to be included in the national breeding objective to ultimately reduce 
N losses to waterways, however, a cheaper and easier measurement to predict the urination traits 
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would be advantageous to enable faster and more accurate selection over the national dairy herd.  
 

Table 2. Posterior means of the phenotypic (above the diagonal) and genetic (below the 
diagonal) correlations between daily urinary nitrogen (UN; g/d), urination volume (Uvol; L/d), 
urination number (Unum; count) and mean volume per urination event (VolEvent; L/event) 
with lower and upper 95% credibility intervals (presented in brackets)  
 

 Trait UN Uvol Unum VolEvent 
UN  - 0.68 0.60 0.09 
  - (0.62, 0.73) (0.53, 0.67) (-0.01, 0.19) 
Uvol  0.59 - 0.75 0.31 
  (0.29, 0.78) - (0.70, 0.80) (0.21, 0.41) 
Unum  0.58 0.75 - -0.29 
  (-0.03, 0.83) (0.44, 0.91) - (-0.39, -0.18) 
VolEvent -0.09 0.47 -0.17 - 
  (-0.49, 0.36) (0.04, 0.76) (-0.64, 0.41) - 

 
CONCLUSIONS 

This study shows that there is genetic variation in the urination traits UN, Uvol, Unum and 
VolEvent. This suggests there is potential for urination traits to be changed through selection 
however, these traits are difficult and expensive to measure and more cows would need to be 
phenotyped in order to provide more reliable estimates of genetic parameters among the urination 
traits in addition to other important traits such as lactation and fertility. 
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SUMMARY 

We tested the premise that genomic prediction (GBLUP) converts accuracy into genetic gain 
(ΔG) more efficiently than pedigree prediction (PBLUP) using group records at the same rate of true 
inbreeding (ΔF ). We tested this premise by stochastic simulation. We estimated conversion 
efficiency (CE) of optimum-contribution selection (OCS) using individual and group records with 
PBLUP and GBLUP at 0.01 ΔF. We did this by allocating selection candidates to groups of 12 
individuals. Animals in each group were measured as either individual or group records. Selection 
was for a single trait with heritability 0.2. The trait was controlled by 7702 biallelic quantitative-
trait loci. We found that the CE of group records increased from 94 to 102% when we changed 
prediction from PBLUP to GBLUP. Group records generated EBV that were about 0.76 times as 
accurate as individual records with both PBLUP and GBLUP. However, group records realised only 
0.70 times as much ΔG as individual records with PBLUP; they realised 0.79 times as much ΔG with 
GBLUP. Clearly, group records converted accuracy into ΔG more efficiently with GBLUP than they 
did with PBLUP. This makes group records a more attractive measure of phenotypic performance 
with GBLUP. 

 
INTRODUCTION 

Group records measure the sum of phenotypic performances of animals reared in groups (e.g., 
feed intake of pigs in a pen). They can be particularly useful for traits that are difficult or expensive 
to measure as individual records (i.e., phenotypic performance of individual animals). Not only are 
group records often easier and cheaper to measure than individual records, estimated breeding values 
(EBV) predicted using group records are typically 50-90% as accurate as EBV using individual 
records (Olson et al. 2006, Su et al. 2018, Ma et al. 2020). This prompted a widely-held view that 
selection based on group records could realise most of the genetic gain (ΔG) realised by individual 
records at a fraction of the cost. However, Henryon et al. (in prep.) found that group records were 
only 82-90% as efficient in converting accuracy into ΔG as individual records – a parameter they 
referred to as conversion efficiency (CE). In their study, selection candidates were grouped and 
phenotyped, breeding values (BV) were predicted as BLUP of breeding values based on pedigree 
information (PBLUP), and selection was carried out by optimum-contribution selection (OCS) with 
rate of pedigree inbreeding constrained to 0.01. They found that group records had lower CE than 
individual records because OCS using group records reduced selection intensities. Selection 
intensities were reduced because EBV with group records expressed less within-family variation 
and candidates that ranked highest for EBV were more related. To realise the constrained rate of 
pedigree inbreeding, OCS using group records needed to select more candidates than OCS using 
individual records. This implies that if group records are to generate higher CE, we need EBV with 
more within-family variation. One way to do this is to replace PBLUP with genomic prediction of 
BV (GBLUP). With GBLUP, group records should generate higher selection intensities by enabling 
OCS to differentiate between candidates within full-sib families. Fewer candidates would need to 
be selected to realise the same rate of inbreeding as OCS using group records with PBLUP. This 
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reasoning led us to believe that GBLUP results in higher CE than PBLUP when using group records 
at the same rate of inbreeding. We tested this premise by stochastic simulation. 

 
MATERIALS AND METHODS 

Procedure. We used stochastic simulation of animal-breeding schemes to estimate CE generated 
by OCS using individual and group records with PBLUP and GBLUP at 0.01 rate of true inbreeding 
(ΔF), where the true inbreeding coefficient of an individual was defined as the observed proportion 
of loci in its genome with alleles that are identical-by-descent (IBD). We allocated selection 
candidates to groups of 12 individuals. Animals in each group were measured as either individual 
or group records. We also sampled relatives of the selection candidates. These animals were 
measured as individual records. They were included in the prediction models, but were not 
candidates for selection. Selection was for a single trait with heritability 0.2 (additive-genetic 
variance 1.0). The trait was controlled by 7702 biallelic quantitative-trait loci (QTL). It was also 
influenced by litter and group effects (litter and group variances 0.25). All animals were genotyped 
and phenotyped before selection in each generation. Breeding schemes were run for eight discrete 
generations (t = 1 … 8) and replicated 120 times. Each replicate was initiated by sampling a unique 
base population from a founder population. Animals in the base populations were randomly selected 
in generation 𝑡𝑡 = 1. In generations 𝑡𝑡 = 2 … 8, selection candidates were allocated matings by OCS. 

Breeding scheme. A total of 600 matings were allocated to 3600 selection candidates by OCS 
in generations 𝑡𝑡 = 2 … 10. The number of matings that were allocated to each male could vary from 
0, 1, 2 … to 50 matings. Six-hundred females were allocated a single mating. The matings allocated 
to the sires and dams were paired randomly. Each dam produced seven offspring – four males and 
three females – resulting in 600 full-sib families and 4200 offspring (2400 males and 1800 females). 
Three males and three females from each full-sib family were randomly pre-selected as candidates 
for selection. These 3600 animals were allocated to groups of 12 and measured as individual or 
group records. The remaining male in each full-sib family was measured as an individual record but 
was not a candidate for selection. The BV of the selection candidates were predicted using their own 
phenotypes and their genetic relationships to the male in each full-sib family that was measured as 
an individual record. 

Grouping criterion. Groups of 12 animals were established by dividing each full-sib family into 
two sub-families of three full-sibs. Four sub-families from four different full-sib families were 
randomly allocated to each group. Each full-sib family was represented in two groups. Selection 
candidates were allocated to a total of 300 groups in each generation. 

Genetic model. The founder population was established using a Fisher-Wright inheritance 
model to generate linkage disequilibrium between QTL and markers. The genome was 30 M and 
consisted of 18 pairs of autosomal chromosomes. Each chromosome was 167 cM long. The genome 
contained 7702 QTL and 54218 biallelic markers. These markers were randomly distributed across 
the genome and in linkage disequilibrium with the QTL. They were used in GBLUP. An additional 
6012 IBD loci were placed evenly across the genomes of animals in base populations. Unique alleles 
at these loci were used to calculate ΔF. 

Optimum-contribution selection. OCS was carried out by maximising 𝐔𝐔𝑡𝑡(𝐜𝐜) = 𝐜𝐜′𝐚𝐚� − 𝜔𝜔𝐜𝐜′𝐀𝐀𝐜𝐜, 
where c is a vector of genetic contributions to the next generation, â is a vector of BV predicted with 
PBLUP or GBLUP, ω is a penalty applied to the average-estimated relationship of the next 
generation, and A is a pedigree-relationship matrix (after Henryon et al. 2019). The penalty, ω, was 
constant across generations. It was calibrated to realise 0.01 ΔF. The realisedΔF deviated from 0.01 
by less than 0.0001. 

Statistical analyses. We present CE, accuracy, ∆G, selection intensity, and additive-genetic 
standard deviation realised by OCS using individual and group records with PBLUP and GBLUP. 
CE measured the efficiency by which accuracy of EBV from group records was converted to ∆G 
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relative to individual records: CE = ΔG𝑗𝑗 ΔG𝑖𝑖𝑖𝑖𝑖𝑖⁄
𝑟𝑟𝑗𝑗 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖⁄ ∙ 100, where ∆G𝑗𝑗 and r𝑗𝑗 are mean ΔG and accuracy of 

individual or group records (j = ind, grp). ΔG, accuracy, selection intensity, and additive-genetic 
standard deviation are presented as means (± sd) of the 120 replicates. ΔG in each replicate was 
calculated as the linear regression of Gt on t, where Gt is the average true breeding value of animals 
born at times t = 4 … 8. Accuracy, selection intensity, and additive-genetic standard deviation in 
each replicate were averaged over generations 𝑡𝑡 = 4 … 8. Accuracy was calculated as the correlation 
between true breeding values and EBV of animals within generation. Selection intensity was 
calculated as the difference in average EBV of selected animals weighted by their contribution to 
the next generation and average EBV of selection candidates within generations divided by the 
standard deviation of the EBV. Additive-genetic standard deviation was calculated as the standard 
deviation of true breeding values of animals within generations. We present absolute and scaled ΔG, 
accuracy, selection intensity, and additive-genetic standard deviation. Scaling was carried out by 
setting values realised by individual records with PBLUP and GBLUP to 100. ΔF in each replicate 
was calculated as 1-exp(β), where β is the linear-regression coefficient of ln(1-Ft) on t, and Ft is the 
average coefficient of true inbreeding for animals born at times t = 4 … 8 (after Sonesson et al. 
2004). 

 
RESULTS AND DISCUSSION 

Our findings supported our premise that GBLUP results in higher CE than PBLUP when using 
group records at the same rate of inbreeding. We found that the CE of group records increased by 
eight percentage units – from 94 to 102% – when we changed prediction from PBLUP to GBLUP 
at 0.01 ΔF (Table 1). When prediction was changed from PBLUP to GBLUP, the accuracy of both 
individual and group records increased by about 1.4 times. That is, the relative difference in accuracy 
between individual and group records remained the same: group records generated EBV that were 
about 0.76 times as accurate as individual records with both PBLUP and GBLUP. However, group 
records realised only 0.70 times as much ΔG as individual records with PBLUP. They realised 0.79 
times as much ΔG with GBLUP. Clearly, group records converted accuracy into ΔG more efficiently 
with GBLUP than they did with PBLUP. It suggests that the widely-held view that selection based 
on group records could realise most of the ΔG realised by individual records at a fraction of the cost 
is more applicable to GBLUP than it is to PBLUP. Of course, the ultimate decision of whether to 
invest in individual or groups records to measure difficult and expensive traits will be specific for 
each breeding scheme. It will depend on the relative cost and difficulty of gathering individual and 
group records and how managers of breeding schemes evaluate returns of investment. So, groups 
records are a more attractive measure of phenotypic performance with GBLUP than with PBLUP 
because they convert accuracy into ΔG more efficiently.  

As we contented, OCS using group records generated higher CE with GBLUP than they did with 
PBLUP because selection intensity of OCS using group records relative to individual records was 
higher with GBLUP. We found that selection intensity using group records was only 0.89 times as 
high as individual records with PBLUP (Table 1). It was 0.95 times as high with GBLUP. The 
selection intensity of OCS using group records was higher with GBLUP presumably because 
genomic relationships generated more within-family variation for EBV. OCS using group records 
with GBLUP was able to differentiate between candidates within full-sib families. It could select 
fewer candidates to realise 0.01 ΔF than group records with PBLUP. Therefore, group records 
generate higher CE with GBLUP than PBLUP because they increase selection intensities by 
generating more within-family variation for EBV. 
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Table 1. Conversion efficiency, accuracy, rate of genetic gain, selection intensity, and additive-
genetic standard deviation realised by individual and group records at 0.01 𝚫𝚫𝚫𝚫  with two 
predictions methods (PBLUP and GBLUP) 
 

Prediction Record CE r ΔG 𝑖𝑖 σa r∗ ΔG∗ 𝑖𝑖∗ σa∗  
PBLUP Individual 100 0.54 0.73 1.70 0.83 100.0 100.0 100.0 100.0 

 Group 94 0.40 0.51 1.50 0.88 74.4 70.3 88.7 107.0 
GBLUP Individual 100 0.74 1.01 1.83 0.75 100.0 100.0 100.0 100.0 

 Group 102 0.57 0.80 1.74 0.82 77.3 79.1 95.3 109.5 
Absolute and scaled accuracies (𝑟𝑟 and r∗), rates of genetic gain (ΔG and ΔG∗), selection intensities (𝑖𝑖 and 𝑖𝑖∗), 
and additive-genetic standard deviation (σa and σa∗) are means of 120 simulation replicates. r∗, ΔG∗, 𝑖𝑖∗, and σa∗  
were calculated by setting 𝑟𝑟, ΔG, 𝑖𝑖, and σa realised by individual records to 100 with PBLUP and GBLUP. SD 
between replicates ranged from 0.012 to 0.035 (𝑟𝑟), 0.040 to 0.057 (ΔG), 0.030 to 0.091 (𝑖𝑖), 0.144 to 0.180 (σ𝑎𝑎), 
1.58 to 6.49 (r∗), 3.99 to 7.81 (ΔG∗), 1.66 to 4.96 (𝑖𝑖∗), and 19.21 to 24.00 (σa∗). 

 
We were surprised to find that CE was greater than 100 for group records with GBLUP. It was 

greater than 100 because there was more additive-genetic variation available for OCS using group 
records to convert accuracy into ΔG than OCS using individual records. Unlike selection intensity, 
the relative difference in additive-genetic variation between individual and group records remained 
the same with PBLUP and GBLUP: the additive-genetic standard deviation of OCS using group 
records was about 1.08 times higher than OCS using individual records (Table 1). More additive-
genetic variation was available for OCS using groups records because selection was not as effective 
as individual records. It realised less ΔG, leading to less Bulmer effect and smaller changes in allele 
frequencies. So, CE of group records using GBLUP can be higher than 100 because OCS using 
group records results in more additive-genetic variation available to be converted into ΔG. 
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SUMMARY 

Seasonal fertility is the variation in reproductive performance of sows across different seasons. 
A consistent fertility of sows across seasons is desirable. Seasonal fertility is reflected in farrowing 
rate because a reduction in farrowing rate is often observed during the summer-autumn period. An 
independent economic model was developed to derive economic values for farrowing rate. 
Economic values varied from $2.19 to $1.95 per 1% change in farrowing rate for mean farrowing 
rates of 72 to 85%. The economic value for farrowing rate predominately accounted for the costs of 
non-productive days of non-pregnant sows. The model and economic values presented in this study 
for farrowing rate can be used to extend existing maternal breeding objectives in pigs. Further, the 
variation in economic values for farrowing rates can be used to consider genotype by season 
interactions for farrowing rate in pig breeding programs. 

 
INTRODUCTION 

Seasonal fertility is the variation in a fertility measure such as farrowing rate or litter size across 
different seasons and low seasonal fertility is desirable. Historically, research has focused on 
seasonal infertility which is characterised by poorer reproductive performance of sows during the 
summer and autumn period (e.g. Love et al. 1993; Auvigne et al. 2010). In contrast, a focus on 
seasonal fertility extends seasonal infertility because seasonal fertility aims to improve the 
consistency of high reproductive performance of sows across all seasons rather than focusing on 
reduced performance of sows in one season only.  

Selection of sows across seasons for reproductive traits is expected to improve seasonal fertility 
somewhat. For example, a maternal line selected in hot and tropical environments across countries 
was better adapted to high temperatures than a line selected in one temperate environment only 
(Bloemhof et al. 2008). However, incorporating genetic variation in the response of sows to changes 
in seasonal conditions in breeding objectives enables more targeted selection for seasonal fertility. 

A key trait to quantify seasonal fertility is farrowing rate which represents the proportion of sows 
served that farrow. Genetic variation in the response of sows to changes in photoperiod and ambient 
temperature has been found for farrowing rate (Sevillano et al. 2016). Further, farrowing rate was 
genetically a different trait in different temperature groupings in the Australian study by Bunz et al. 
(2019). These results support the inclusion of genotype by season interactions for farrowing rate in 
order to enhance genetic gain in seasonal fertility of sows. It was the aim of this study to derive 
economic values for farrowing rate taking into account differences in the level of performance for 
farrowing rate as they may be observed across seasons. 

 
MATERIALS AND METHODS 

Farrowing rate is a binary trait and variance components may be based on the original scale (0 
versus 1) or may be expressed as a percentage (0 versus 100). Production systems usually refer to 
changes in farrowing rate in 1% increments which was the basis of the model that was developed to 
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derive the economic value of farrowing rate. A higher farrowing rate improves profit by reducing 
costs of non-productive days of sows in each parity and reducing costs associated with each mating. 
Non-productive days arise for sows that fail to farrow by returning from a mating and for non-
pregnant sows in general until they are removed from the herd.  

The economic value for a 1% increase in farrowing rate (EV_FR) was calculated as: EV_FR = 
(ScreturnFR + ScmatingFR) – (ScreturnFR+1% + ScmatingFR+1%), where ScreturnFR are the 
costs to keep a returned sow (e.g. non-pregnant sow) in the herd until the sow is either mated again 
or removed from the herd assuming a base farrowing rate and ScmatingFR are the additional mating 
costs of returned sows ($ 30/mating) for the same assumed base farrowing rate. Both 
ScretrurnFR+1% and ScmatingFR+1% are the corresponding costs associated with a farrowing rate 
that is 1% higher than the assumed base farrowing rate.  

The costs of keeping returned sows in the herd for the base farrowing rate depend on feed, 
housing and labour costs as well as the average number of days until a returned sow is either 
successfully remated or removed from the herd. Key assumptions made in the calculation of the 
economic value for farrowing rate were based on typical production parameters for Australia 
(Australian Pork Limited 2012a). These include production levels of sows, price assumptions for 
feed as well as those that relate to other aspects of the operation, including capital value of the 
buildings and facilities as assumed by Amer et al. (2014). 

The daily costs per sow (dSc) were the sum of daily feed costs (dFc), daily housing costs (dHc) 
and daily labour costs (dLc) which were derived as: dFc = feed per day (kg) * costs of feed ($ / kg); 
dHc = (costs of sow place ($ / place) * annual interest rate (%) + costs of sow place ($ / place) * 
annual depreciation rate (%)) / 365; dLc = (labour costs per staff ($ / annum)/ number of sows per 
staff (n sows)) / 365.  

The average number of days until a returned sow is either successfully remated or removed from 
the herd for the base farrowing rate depends on the proportion of sows that a) farrowed from each 
mating (n = 1 to 4) and b) were not pregnant or not-in-pig (NIPs) and subsequently removed from 
the herd. The NIPs were calculated as: NIPs = (1 – FR) * NIPs%, where FR is farrowing rate and 
NIPs% is the percentage of NIPs (12%) of returned sows from each mating (Australian Pork Limited 
2012b).  

The proportion of sows that farrowed from each mating (psow) was calculated as: psown = 
(psown-1 - NIPs)*FR. 

The costs of keeping returned sows in the herd were: ScreturnFR = NIPs * NIPsdays * dSc + 
∑ (21 ∗ psown ∗ dSc + cmate)4
n=2 , where cmate were costs of mating including semen costs and 

labour ($ 30 / mating). A mating interval of 21 days and removal of NIPs at 80 days after mating 
(NIPsdays) were assumed.  

 
RESULTS AND DISCUSSION 

Costs. The daily costs to keep a sow in the herd were $4.73 $ per day (Table 1). Housing costs 
accounted for the largest cost component with $2.63 per day, reflecting the high capital costs of 
buildings in Australia. Comparison with costs structures outlined for other countries overseas (e.g. 
Krupa et al. 2017) are not possible because housing costs were not reported specifically and were 
part of other non-feed costs which were outlined for groups of animals of a full farrow-to-finish unit 
and not specifically defined for sows. 

The proportion of sows that farrowed from the 2nd to the 4th mating for different farrowing rates 
are shown in Table 2. These percentages of sows farrowing from different matings and the 
corresponding NIPs corresponded to industry values (Australian Pork Limited 2012b). 

Economic values. Economic values for farrowing rate were derived for different levels of 
farrowing rate using the base assumptions outlined above. The economic value for farrowing rate 
varied from $ 2.19 per 1% improvement for a low farrowing rate of 72% to $ 1.95 per 1% 
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improvement for a high farrowing rate of 85% (Table 3). The intermediate value of $ 2.06 may be 
appropriate for most farms as an overall average across the year, while the higher economic value 
may be more applicable for the summer-autumn period when farrowing rates are usually lower. 

 
Table 1. Daily costs per sow ($/day) due to feed, housing and labour 
 

Cost component Item  Input value Costs per sow 
 Daily feed per sow (kg) 2.5  
 Costs of feed ($/kg) 0.4  
Feed costs   1.00 
 Costs of sow place ($) 8,000  
 Interest rate (%) 7  
 Depreciation rate (%) 5  
Housing costs   2.63 
 Annual costs per staff ($) 60,000  
 Sows per staff 150  
Labour costs   1.10 
Total daily costs per sow  4.73 

 
Table 2. Percentage of sows farrowing from the second to fourth mating and percentage of 
non-pregnant sows (not-in-pig sows, NIPs) for different farrowing rates 
 

Percentage of sows that farrow after Farrowing rate (%) 
 72.0 75.0 77.0 80.0 82.0 85.0 
2nd mating (%) 17.7 16.5 15.6 14.1 13.0 11.2 
3rd mating (%) 5.0 4.1 3.6 2.8 2.3 1.7 
4th mating (%) 1.4 1.0 0.8 0.6 0.4 0.3 
Percentage of NIPs (%) 3.4 3.0 2.8 2.4 2.2 1.8 

 
Sensitivity analyses showed the effect of modifying assumptions in housing costs and number 

of sows per person on economic values for farrowing rate (Table 3). Capital costs due to housing 
were the biggest cost component and changes in these costs affected economic values for farrowing 
rate most. The range of these economic values may be used to define the economic value for 
farrowing rate that is most appropriate for specific conditions observed on commercial farms. 

This study extends the number of traits included in maternal breeding objectives for pigs outlined 
by Amer et al. (2014). The approach of using independent models for each trait improves the 
feasibility of extending breeding objectives. The economic value for farrowing rate mainly reflects 
costs of non-productive traits in sows complementing economic values for age at first oestrus and 
weaning to conception interval which also describes variation in non-productive days of gilts and 
sows as outlined by Amer et al. (2014). A longer farrowing interval, however, is also associated 
with higher culling rates of sows that ultimately result in poorer sow longevity. The economic value 
for sow longevity outlined by Amer et al. (2014) was derived from net returns and replacement costs 
of sows resulting from a 1% increase in survival of sows in each parity which was independent from 
the costs of non-productive days due to changes in farrowing rate. 

Economic values for farrowing rate were not found in the literature. The model presented by de 
Vries (1989) has been widely used in pig breeding programs. The model considered culling rate of 
sows as breeding objective traits. Culling rates were defined for different stages of the reproductive 
cycle of sows including the stage from mating to farrowing. The number of non-productive days 
was constant in each stage, and culling rates effectively described sow longevity as illustrated by 
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the author, who derived an economic value for sow longevity based on the association between 
culling rates and the number of farrowings per replacement gilt used in their model.  

 
Table 3. Economic values for farrowing rate ($ / 1%) assuming different levels of farrowing 
rate and alternative input values for housing and labour costs that vary from the base value 
by plus or minus 25% 
 

 Farrowing rate (%) 
 72.0 75.0 77.0 80.0 82.0 85.0 
Base assumptions 2.19 2.15 2.12 2.06 2.02 1.95 
Base and $10,000 per sow place 2.44 2.40 2.36 2.30 2.25 2.17 
Base and $6,000 per sow place 1.94 1.91 1.88 1.83 1.79 1.73 
Base and 112.5 sows per person 2.33 2.29 2.25 2.19 2.15 2.07 
Base and 187.5 sows per person 2.11 2.07 2.04 1.98 1.94 1.88 

 
Breeding objective. A breeding objective may consider farrowing rate as one trait, assuming 

that it is the same trait throughout the year. However, farrowing rate should be considered as a 
different trait in the hot summer-autumn period versus other seasons, given the genetic parameters 
estimated by Bunz et al. (2019). This can be accommodated in breeding objectives by defining 
farrowing rate as a separate trait for two separate seasons (hot summer-autumn versus other seasons) 
given the result by Bunz et al. (2019). Defining farrowing rate as a different trait for two seasons 
requires using appropriate economic values for each season taking differences in farrowing rate 
across seasons into account. The economic value for farrowing rate applicable to each season should 
then be weighted by the proportion of sows represented in each season. In the study by Bunz et al. 
(2019) about 24% of sows were mated in the hot summer-autumn period leaving 76% of sows for 
the other seasons.  

 
CONCLUSIONS 

An independent economic model was developed and used to derive economic values for 
farrowing rate enabling the extension of maternal breeding objectives in pigs. Economic values for 
farrowing rate were higher for lower farrowing rates, which may be observed in the summer-autumn 
season. These higher economic values for lower farrowing rates may be used to consider genotype 
by season interactions for farrowing rate in pig breeding programs.  
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SUMMARY 
Rumen microbial profiles have been shown to be accurate predictors of methane emissions in a 

variety of species, however, it can be very costly and slow to generate a dataset with a sufficient 
number of individuals measured for methane who also have had rumen samples collected and 
processed into rumen microbial profiles for these benefits to be applied in industry. We evaluated 
the potential of combining datasets from New Zealand and Australian sheep to improve our ability 
to accurately predict methane emissions in Australian sheep. Prediction of Australian sheep methane 
emissions using rumen microbial profiles and phenotypes from New Zealand was possible, however, 
it was important to closely match the diets the sheep were fed to have confidence in the predictions. 
Prediction accuracies of Australian sheep methane emissions were higher when training on data 
collected on Australian sheep than training on New Zealand sheep; however augmentation of New 
Zealand data collected on a similar diet enabled more complex models to be run and an improvement 
in prediction accuracy. 

 
INTRODUCTION 

The rumen microbiome has been shown to play an important role methane production and feed 
efficiency and improve prediction accuracy in these traits (Hess et al. Submitted-b). However, large 
sample numbers are typically required for accurate trait prediction. Over 3,000 New Zealand sheep 
rumen microbial profiles have been generated with associated methane emission phenotypes, 
representing a variety of breed compositions, ages and diets (Hess et al. Submitted-a). Robinson et 
al. (2020) describe a study in over 500 Australian merino sheep that have been measured for methane 
emissions with rumen samples collected during the study. This study predicted methane emissions 
in Australian merino sheep under two scenarios: 1) when Australian sheep had no methane data 
collected and models were trained using the New Zealand dataset, and 2) when some Australian 
sheep had methane data collected and added to the New Zealand training dataset. The models used 
in our study utilized genomic information, rumen microbial profiles or both. 

 
MATERIALS AND METHODS 

Australian Microbiomes. Rumen samples were collected from 502 Information Nucleus Flock 
follower ewes on a chaffed lucerne and cereal hay diet at 1.5-1.6 times maintenance (Robinson et 
al. 2020). Restriction Enzyme-Reduced Representation Sequencing (Hess et al. 2020) was used to 
generate Reference Free Rumen Microbial Profiles, as described in Hess et al. (Submitted-a).  

New Zealand Microbiomes. Reference Free Rumen Microbial Profiles were generated on 3,019 
rumen samples from 1,200 dual purpose composite ewes (Hess et al. Submitted-a; Hess et al. 
Submitted-b). Rumen Microbial Profiles were separated into 3 groups based on diet (all fed ad lib) 
and age: lamb on ryegrass-based pasture/grass (GL, n = 1051), adult on ryegrass-based pasture/grass 
(GA, n = 1010), and lambs on a lucerne pellet diet (LL, n = 958).  

Methane Phenotypes. Australian sheep had methane phenotypes collected in Respiration and 
Portable Accumulation Chambers (Robinson et al. 2020) during the same experiment in which 
rumen samples were collected. Methane emission phenotypes for the Australian sheep used in this 



Contributed paper 

164 

study were the genetic plus permanent environmental effects for respiration chamber measurements 
based on the model without covariates for liveweight and feed intake of Robinson et al. (2020) 

New Zealand methane phenotypes were the methane emission phenotypes from Portable 
Accumulation Chambers, adjusted for the fixed effects of birth rear rank, age of dam and birth date 
deviation (Hess et al. Submitted-b). Adjusted methane phenotypes were normalized within group, 
such that each group had a mean of zero and standard deviation of one to account for differences in 
measurement type (respiration chamber vs portable accumulation chamber), differences in methane 
emissions due to effects such as diet and age, and differences in the methane yield models. 

Genotypes. High density genotypes were available on all New Zealand sheep and 322 of the 
Australian sheep. Sheep were genotyped on a variety of SNP chips, then imputed to a high density 
set of SNPs separately within each country. After imputation, the two datasets were combined and 
SNPs that were segregating in both populations (471,596 SNPs) were used to generate a genomic 
relationship matrix (GRM) using the first method of Van Raden (2008). 

Models. Three models were run in ASReml v 4.1 (Gilmour et al. 2015), which explained 
variation in methane phenotype using genotypes, Microbial Profiles or both: 

y = µ + G + e;  
y = µ + M + e; 

y = µ + G + M + e 
where y is the adjusted methane phenotype; µ is the mean; G is the random animal genetic effect 
with relationships between animals represented by the GRM described above; M is the random 
microbial effect with relationships between samples represented by the cohort-adjusted microbial 
relationship matrix, calculated as described in Hess et al. (2020); and e is the residual.  

The above models were trained using GL, GA, LL or all NZ samples, and used to predict 
breeding values (BV) and microbial values (MV) in the Australian dataset. For models including 
both G and M, the BV and MV were summed to get the combined value (GMV). Accuracies were 
estimated as the correlation between the phenotype and the BV, MV or GMV. The accuracy of the 
microbial values were calculated using all Australian samples or just the samples associated with 
genotyped animals, and models containing G were only run for animals with genotype information 
available. Accuracies were estimated for each cohort separately and the standard errors of the 
accuracies estimated as the standard deviation across all cohorts. There were 10 validation cohorts 
with 50 ± 26 Australian sheep in the full dataset and 5 of these cohorts had 64 ± 29 genotyped sheep. 

The three models above were also trained using Australian samples excluding the cohort that 
was being predicted, as well as these samples augmented with the LL or all NZ samples. Microbial 
relationship matrices used for each model were generated using tags that were present in all groups 
found in either the training or prediction set for that model. There were 79,328 tags present in both 
GA and AUS groups, 69,120 tags present in both GL and AUS groups, 39,502 tags present in both 
LL and AUS groups, 29,456 tags present in all groups (GA, GL, LL and AUS), and 150,687 tags 
present in the AUS group. 
 
RESULTS AND DISCUSSION 

Across-country prediction. Our first analysis aimed to use various rumen microbial profiles 
from New Zealand sheep to predict methane emissions in Australian sheep. Microbial value 
estimates for either all Australian samples or samples associated with a genotyped animal were poor 
and tended to be negative when New Zealand samples were used as the training set, with the 
exception of the samples from lambs fed lucerne pellets (Table 1). The highest accuracy (0.23) was 
from BV estimated using the full NZ dataset and a model fitting both genomic and microbial effects. 
This model contains the most information, with up to three methane phenotypes collected on each 
individual (one each in GL, GA and LL), compared to one for each of the other groups.  

Models trained on the LL data had low but positive accuracies (0.09-0.13) and the lowest 
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standard errors (Table 1). Most training individuals were represented in all three NZ groups (GA, 
GL and LL), so the difference in BV accuracies from the model just fitting genomics is largely 
driven by differences in the methane phenotype. The diet fed to the Australian sheep (chaffed lucerne 
and cereal hay) is more similar to the lucerne pellet diet of the LL group than the ryegrass-based 
pasture of the other two New Zealand groups, therefore it is likely the drivers of methane emissions 
in these Australian sheep are most similar to those in the New Zealand LL group. 

The model fitting both genomic and microbial effects and trained on the LL dataset showed the 
highest GMV accuracy, but this was no higher than the accuracy of the BV in the model just fitting 
genomic effects with the same training data (Table 1), suggesting that incorporating microbial 
information doesn’t always improve accuracy beyond just fitting genotypes even when the microbial 
profiles had some predictive ability (e.g. LL). For the model fitting genomic and microbial effects 
and trained on the other NZ datasets (GL, GA and all NZ), there is some evidence that including the 
microbial component into the model can improve BV accuracy (0.08-0.23) compared to a model 
fitting only the genetic effect (-0.01-0.17). 
 
Table 1. Accuracy of predicting Australian methane emissions using Genotypes and/or 
Microbial Profiles from New Zealand sheep 
 

Training 
set 

All AUS Genotyped AUS 

MV BV MV 
GRM+MRM 

BV MV GMV 

GL -0.10 ± 0.14 -0.01 ± 0.18 -0.12 ± 0.09 0.08 ± 0.17 -0.12 ± 0.10 -0.11 ± 0.09 

GA -0.20 ± 0.14 0.04 ± 0.15 -0.22 ± 0.11 0.21 ± 0.21 -0.23 ± 0.11 -0.20 ± 0.11 

LL 0.13 ± 0.08 0.13 ± 0.09 0.09 ± 0.07 0.12 ± 0.12 0.12 ± 0.08 0.13 ± 0.08 

NZ -0.02 ± 0.12 0.17 ± 0.14 -0.06 ± 0.04 0.23 ± 0.16 -0.01 ± 0.06 0.01 ± 0.06 
All AUS = Genotyped and non-genotyped Australian sheep, Genotyped AUS = genotyped subset of All AUS  
GL = Grass lamb, GA = Grass adult, LL = Lucerne pellet lamb, NZ = All NZ samples (GL + GA + LL) 
MV = Microbial value, BV = Breeding value, GMV = Genetic plus Microbial value 
 

Incorporating data from other countries. Our second analysis aimed to evaluate whether 
including data from another country can improve prediction accuracy. All accuracies were higher 
when incorporating Australian data into the training set (Table 2) compared to training on different 
combinations of the New Zealand dataset (Table 1). BV and MV accuracies were high when using 
the training set of Australian samples despite the smaller size (Table 2). The highest accuracies were 
observed for GMV using the AUS+LL training set, followed by the MV estimated for genotyped 
animals when training on just the Australian dataset.  

BV accuracy was not significantly impacted by adding LL or all NZ data to the Australian dataset 
(Table 2). This is likely driven by the different breed compositions between the two countries, 
leading to genomic relationships that were mostly negative between animals from NZ and Australia 
(Mean = -0.05; Range = -0.09 to 0.09); while those within Australia were mostly positive (Mean = 
0.19; Range = -0.03 to 0.73). 

The model fitting both genomic and microbial effects gave higher accuracies than the models 
fitting just genomic or just microbial relationships for the models trained on AUS+LL and AUS+NZ 
data (Table 2). The model fitting both genomic and microbial effects is more complex than the other 
two models used in our study, this led to singularity issues when used on the Australian dataset, 
likely driven by the smaller training set of 322 genotyped animals. Augmentation of the Australian 
dataset with New Zealand samples allows a more complicated model to successfully run and 
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produces a higher prediction accuracy than using a model that just fits genomic or microbial effects. 
 

Table 2. Accuracy of predicting Australian methane emissions using Genotypes and/or 
Microbial Profiles from New Zealand and Australian sheep 
 

Training 
set 

All AUS Genotyped AUS 

MV BV MV 
GRM+MRM 

BV MV GMV 

AUS 0.54 ± 0.12 0.45 ± 0.26 0.57 ± 0.16 Singularities 

AUS+LL 0.47 ± 0.13 0.46 ± 0.24 0.49 ± 0.16 0.44 ± 0.25 0.48 ± 0.15 0.60 ± 0.17 

AUS+NZ 0.40 ± 0.14 0.44 ± 0.25 0.39 ± 0.17 0.43 ± 0.25 0.37 ± 0.15 0.53 ± 0.15 
All AUS = Genotyped and non-genotyped Australian sheep, Genotyped AUS = genotyped subset of All AUS  
AUS = Australian Samples, AUS+LL = Australian and Lucerne Lamb samples, AUS+NZ = AUS and All NZ 
samples; MV = Microbial value, BV = Breeding value, GMV = Genetic plus Microbial value 

 
Factors influencing these results. Several factors will be influencing these results and their 

application to other datasets. The design of the Australian and New Zealand datasets were different 
in terms of sheep breed, the method for measuring methane (respiration chambers vs portable 
accumulation chambers), diet the sheep were on, and slightly different methods of rumen sample 
processing. Differences in rumen microbial profiles between New Zealand and Australian datasets 
were observed in Hess et al. (Submitted-a). These differences are likely largely driven by 
environmental factors, such as diet, but could also be partially due to differences in sample 
preparation. Cohort-adjusted rumen microbial profiles, as were used in this study, did not show the 
same differences between New Zealand and Australian samples (Hess et al. Submitted-a). 

 
CONCLUSIONS 

This study shows that prediction of methane emissions across country using microbial profiles 
is possible even when genetic linkages are not strong, however, care needs to be taken in matching 
the diets as closely as possible to have some confidence in the predictions. Prediction accuracies of 
Australian sheep methane emissions were higher when training on data collected on Australian 
sheep than training on New Zealand sheep. Importantly, augmentation of the Australian dataset with 
data collected on New Zealand sheep that were on a similar diet enabled more complex models to 
be run and an improvement in prediction accuracy. 
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SUMMARY 

Reproductive success, particularly after AI, is dependent on a number of contributing factors on 
both the ewe and ram sides. While there has been considerable emphasis on characterising ewe side 
contributions to reproductive success, relatively little emphasis has been placed on defining ram side 
contributors. In this context, the quality of semen used in AI is a crucial factor. Research details that 
spermatozoa contain around 14,000 mRNA transcripts (Selvaraju et al. 2017), which are transferred 
to the ova on fertilisation, conceivably influencing early embryonic development and successful 
conception. Therefore, this study aims to characterise the ovine spermatozoal transcriptome and 
investigate whether spermatozoal transcriptomes differ between breeds and between semen samples 
with high or low quality. Semen was collected (n=45) across three breeds; Merino, Dohne and Poll 
Dorset, and each ejaculate was subjected to computer assisted semen analysis (CASA) for 
assessment of quality parameters. RNA Sequencing and differential gene expression analysis 
identified 754 differentially expressed genes that were identified to play crucial roles in a variety of 
physiological functions, including fertilisation, embryonic development, and offspring production.  
 
INTRODUCTION 

Artificial insemination (AI) is increasingly used in sheep breeding as it shortens the lambing 
period and allows for a single ejaculate to be used to inseminate a large number of ewes. While there 
are a number of contributing factors to conception success, a number are linked with seminal origin 
(Saacke 2008). Thus, it is crucial to characterise mechanisms underlying seminal factors which 
contribute to conception success. While it is generally accepted that semen quality influences 
conception outcomes, the magnitude of this influence has been difficult to characterize, primarily 
because visual assessment, frequently used to determine semen quality, can be highly subjective. 
However, computer assisted semen analysis (CASA), which enables repeatable assessment of semen 
quality parameters, now affords an objective alternative for determination of semen quality.  
Spermatozoa are known to contain a range of transcripts that can potentially influence fertilisation 
(Vijayalakshmy et al. 2018), and even offspring phenotype (Rando 2012). This study aims to 
characterise the transcriptome of three common sheep breeds in Australia, and determine whether 
spermatozoal transcriptome varies between breeds and between ejaculates of varying quality. These 
investigations could lead to the development of molecular markers and in vitro measures that could 
assist in predicting successful reproduction when specific ejaculates are used in AI programs. 
 
MATERIALS AND METHODS 

Animals and assessment. Semen was collected from 3 sheep breeds; Merino (n=16), Dohne 
Merino (n=16), and Poll Dorset (n=13). Rams were closely matched for age (~18 months old), 
location and management conditions. Immediately following collection, each ejaculate was split 
into 2 aliquots; 250µL was diluted 1:10 (Nutrixcell, IMV Technologies) maintained at 37OC for 4 
hours then assessed utilising a CASA, with remaining semen snap frozen and stored in liquid 
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nitrogen until RNA isolation. Each ejaculate was ranked (Gillian et al., 2008) to identify ejaculates 
with high and low quality for RNA Sequencing analysis. Following RNA isolation (Kasimanickam 
and Kasimanickam 2019), the RNA integrity number was assessed and samples higher than 8 were 
kept for sequencing; Merino (n=12), Dohne (n=12), Poll Dorset (n=12).  

RNA sequencing. Novogene (Singapore) utilised the NEBNext Ultra RNA Library Prep Kit for 
Illumina was used to fragment the RNA and synthesize the complementary DNA (cDNA) library. 
The sequencing of cDNA libraries was performed, obtaining 100 bp paired-end reads. Quality of 
reads was assessed, poor quality bases (Phred score Q<30), adaptors, and overrepresented sequences 
filtered out. Outliers and samples with low mapping rates to the ovine genome were also excluded.  

Differential expression analysis. Quality control was performed and genes with low expression 
were removed. Differential gene expression analysis was performed within the R software 
environment to identify all genes that were either up or down regulated with a log fold change >1. 
A false discovery rate threshold of < 0.05 was applied to control type I error. Four contrasts were 
performed utilising Merino (n = 9), Dohne (n=10), and Poll Dorset (n = 12); three were between 
breeds (Dohne vs. Merino, Dohne vs. Poll Dorset, and Merino vs. Poll Dorset); and the fourth 
compared ejaculates of relatively high and low qualities fitting the breeds, to account for possible 
breed differences. The makeup per breed for the ejaculates ranked as being relatively low include 
Merino (n= 4), (Dohne (n= 5), and Poll Dorset (n = 6). Similarly, the ejaculates ranked as being 
relatively high include Merino (n= 5), (Dohne (n= 5), and Poll Dorset (n = 6). 
 
RESULTS AND DISCUSSION 

Spermatozoal cells contain a range of RNA transcripts that are transferred to the ovum during 
fertilisation. However, the physiological role of spermatozoal RNA, particularly in relation to 
fertility and embryonic development, remain largely unknown. Therefore, the key objectives of this 
study were to characterise the ovine spermatozoal transcriptome, and determine whether 
transcriptomic profiles varied between breeds, and between semen ejaculates of varying quality.  

Figure 1. Semen quality parameters (Mean ± SE) for Dohne, Merino, and Poll Dorset 
 

Differentially expressed genes. A total of 1,187,335,440 mapped reads across the three breeds 
sampled were mapped against the latest publicly available reference genome (Oar v.4.) at an average 
rate of 88%. According to the number of differentially expressed gene (DEGs) between contrasts, 
the transcriptomic profile of Merino and Dohne rams appear similar, in comparison to the 
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transcriptomic profile of the Merino compared to the Poll Dorset. Respectively; 570, 72, 73, and 39 
DEGs were found between the breed comparisons Merino vs. Poll Dorset, Dohne vs. Merino, Dohne 
vs. Poll Dorset, and ejaculate quality contrasts (descriptive statistics for quality parameters shown 
in Figure 1). Figure 2 displays the DEGs found for each comparison group.  

Of the 39 DEGs found when contrasting ejaculates that were determined to be relatively high 
and low quality, 10 were found in literature to be associated with reproduction. Most noteworthy 
DEGs associated with reproduction included PRM3, SPEM2, and OXCT2. Protamine 3 (PRM3) is 
significantly enriched for spermatogenesis, gonad development and hormone synthesis in sheep 
following next generation sequencing of sheep testis (Yang et al. 2018). Stafuzza et al. (2019) found 
SPEM family member 2 (SPEM2) to be associated with embryonic development and number of 
piglets born alive following a GWAS. Georgiadis et al. (2015) used 3-oxoacid CoA-transferase 2 
(OXCT2) as a post-fertilisation and early embryonic marker using quantitative polymerase chain 
reaction (qPCR) when investigating high quality RNA in human semen.  

Eleven of the 39 DEGs found in ejaculate quality contrast are associated with growth and 
production traits. Key genes linked with growth and production are BRI3BP, LYRM4, KLK10, and 
MFSD9. Following GWAS conducted in cattle, BRI3 binding protein (BRI3BP) has been shown to 
be associated with carcass traits (Lee et al. 2012), and LYR motif containing 4 (LYRM4) is 
significantly associated with rib eye area (Wang et al. 2020). Kern et al. (2016) found kallirein 
related peptidase 10 (KLK10) to be up regulated in a study looking feed intake and efficiency in 
cattle, suggesting that it could play a similar role for growth and development in sheep. Likewise, 
Perland et al. (2018) validated major facilitator superfamily domain containing 9 (MFSD9) as a 
central solute carrier which is expressed in the food regulatory areas of the brain, resulting in 
increased feed intake, and increased growth.  

 
Figure 2. Venn diagram of DEGs for each breed contrast and semen quality contrast; DM: 
Dohne, PD: Poll Dorset, ME: Merino 
 

Notable genes found when comparing three breeds sampled were subjected to a literature review. 
The 5’-aminolevulinate synthase 1 (ALAS1) is a gene of interest identified in the Merino vs. Dohne 
contrast, it is known to regulate circadian networks in cattle, which could influence the regulation 
of reproduction in seasonal breeding species like sheep (Wang et al. 2015). Likewise, Edwards et 
al. (2013) undertook a GWAS in cattle and found capping protein regulator and myosin 1 linked 
(CARMIL1) to be significantly associated with fertility.  

In the Merino vs Poll Dorset contrast, solute carrier family 35 member A5 (SLC35A5) and 
integral membrane protein 2C (ITM2C) were identified as key DEGs. In cattle, a GWAS found 
SLC35A5 to be associated with fertility (Parker Gaddis et al. 2016). Similarly, expression of ITM2C 
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is significantly enriched in the epididymis and vas deferens in both humans and mice during sexual 
maturation (Rengaraj et al. 2007).  

Key DEGs identified in the Dohne vs. Poll Dorset contrast included; DNA polymerase lappa 
(POLK), which is developmentally regulated in testis of human and mice, and is hypothesised to 
play a crucial role in spermatogenesis (Ogi et al. 2001); and mannosidase alpha class 1A Member 1 
(MAN1A1), which is associated with 6 month weight in sheep in a GWAS (Gholizadeh et al. 2015).  
 
CONCLUSION 

The current study provides important insights into spermatozoal transcriptomes in sheep, and 
suggests that future investigations may target specific genes found to be differentially expressed in 
our study. Validation of our results in an independent population is also warranted. Furthermore, we 
have observed some of the differentially expressed genes are expressed stably within breeds, while 
others are expressed variably within breeds. This also deserves further scrutiny. 
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SUMMARY 
The responses to genomic selection in breeding programs for growing pigs were predicted using 

a selection index approach. Genomic selection increased overall predicted response by 2.6 (500 
reference population) to 27.8% (5000 reference population) for a breeding objective consisting of 
backfat thickness (BFT), average daily gain (ADG), post-weaning survival (PWS) and feed 
conversion ratio (FCR) in growing pigs. Predicted response in PWS increased by 147% with 
genomic selection (5000 reference population) at the expense of the other traits like BFT, ADG, and 
FCR which had 14.5, 1.6, and 2.8% less genetic gain compared to the response in a conventional 
breeding program without genomic selection. The higher loss in genetic gain for BFT was due to a 
stronger genetic correlation with FCR in comparison to ADG. The predicted additional responses in 
the breeding objective is a guideline for the implementation of genomic selection in pig breeding 
programs.  
 
INTRODUCTION 

Genomic selection is a method of predicting genetic merit of selection candidates utilizing dense 
marker genotyping covering the whole genome and basing predictions on a reference population 
that has both genotypes and phenotypes (Meuwissen et al. 2001). The impact of genomic 
information on response to selection is mostly determined by an increase in prediction accuracy and 
a decrease in generation interval. Since the generation interval of pigs is short, the genetic gain will 
largely be affected by the increased prediction accuracy with genomic information. Tribout et al. 
(2012) predicted 26% additional genetic gain from genomic selection compared to a breeding 
program without genomic selection. The breeding objective consisted of two genetically 
independent traits of growing pigs. However, breeding objectives consist of more than two traits in 
practial pig breeding programs and the prediction of response to genomic selection has not been 
reported for a broader breeding objective. Moreover, genomic selection is expected to benefit 
individual traits differently. Therefore, the objective of this study was to investigate how much 
genomic selection increases the predicted response in a breeding objective consisting of multiple 
correlated traits in growing pigs.  

 
MATERIALS AND METHODS 

A selection index was used to predict the genetic gain in a conventional pig breeding program 
and compare that with ten different scenarios using genomic selection. The genomic breeding value 
(GBV) was included as an additional trait with a heritability of 0.99 and had zero economic value 
in the breeding objective (Dekkers 2007). Genomic selection (GS1 to GS10) was based on a 
reference population size that varied from 500 to 5000 pigs with an interval of 500. The accuracy of 
the genomic prediction was derived based on the trait heritability, size of reference population and 
effective population size according to the formula of Daetwyler et al. (2008). Effective population 
size was assumed to be 100 to provide an estimate of linkage disequilibrium in a historical 
population. Accordingly, increases in the size of the reference population increased the correlation 
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between the true breeding value and corresponding GBV (accuracy) of each trait. A deterministic 
simulation was used to predict the genetic gain per selection round, R = i 𝑟𝑟𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖, where R is the 
genetic gain, i is the selection intensity of 1, 𝑟𝑟𝑖𝑖𝑖𝑖 is the selection accuracy (i.e. correlation between 
the true and estimated breeding value) and 𝜎𝜎𝑖𝑖 is the standard deviation of the breeding objective. 
Simulation was done using MTindex software (https://jvanderw.une.edu.au/). 

Breeding scenarios. A terminal sire index for growing pigs included four breeding objective 
traits; back fat thickness (BFT, mm), average daily gain (ADG, g/d), feed conversion ratio (FCR, 
kg/kg), post-weaning survival (PWS, 0/1). These traits were also used as selection criteria, along 
with phenotype measurements of insulin-like growth factor 1 (IGF-1, ng/mL), muscle depth (MD, 
mm) and genomic breeding values for all traits. Base parameters for breeding objective traits and 
selection criteria are given in Table 1. Heritabilities and correlations were based on studies using 
Australian pig data. Economic values were taken from the study of Hermesch et al. (2014). The 
breeding objective is summarised in Table 2 including the source of information for each trait at the 
moment of selection (5 months of age). Sources of information for different traits varied depending 
on the availability of recording and recording cost. Genomic breeding values were available for the 
selection candidates before selection. 
 
Table 1: Genetic standard deviation (bold, on the diagonal), heritability (h2), common litter 
effect (c2), economic value (EV), genetic (below diagonal) and phenotypic (above diagonal) 
correlations of the selection criteria traits (BFT, mm; ADG, g/d; FCR, kg/kg; PWS, 0/1; IGF-
1, ng/mL; MD, mm) in a terminal sire line index for growing pigs 
  

Traits1 h2 c2 EV Correlations 

BFT  0.33 0.04 -1.7 1.09 0.11 0.06 0 0.21 -0.03 
ADG  0.31 0.1 0.09 0.02 39.95 -0.2 0 0.09 -0.01 
FCR  0.12 0.11 -27.44 0.1 -0.37 0.13 0 0.15 0 
PWS  0.05 0 182.88 0 0 0 0.04 0 0 
IGF-1  0.22 0.19 0 0.57 0.06 0.65 0 11.63 0 
MD  0.19 0 0 -0.05 0.28 0 0 0.37 2.02 

1BFT=back fat thickness, ADG= average daily gain, FCR= feed conversion ratio, PWS=post-weaning survival, 
IGF-1 = insulin like growth factor-1, MD = muscle depth 
 
Table 2: Relative emphasis on the breeding objective traits and the sources of information for 
the selection criteria traits 
 

Traits % Contribution to Sources of information 

 breeding objective Own Sire Dam Fullsibs Halfsibs 
BFT  12.0 1 1 1 5 30 
ADG  17.5 1 1 1 5 30 
FCR  23.1 1 1 1 1 5 
PWS  47.4 0 1 0 0 30 
IGF-1  0 1 1 1 2 12 
MD  0 1 1 1 5 30 

1BFT=back fat thickness, ADG= average daily gain, FCR= feed conversion ratio, PWS=post-weaning survival, 
IGF-1 = insulin like growth factor-1, MD = muscle depth 
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RESULTS AND DISCUSSION 
Selection accuracy. In comparison to a breeding program without genomic selection, overall 

accuracy of the breeding objective increased in genomic selection scenarios and showed an upward 
trend with the increase in the size of reference population (Table 3). The accuracy of PWS in the 
breeding objective increased by 81% in scenario GS10 whereas the accuracy of BFT, ADG and FCR 
increased by 14, 15, and 20%. Improvement of accuracy for different traits illustrates that traits with 
limited information prior to selection benefited more due to adding genomic information. Additional 
carcase and meat quality traits are also expected to benefit from genomic selection but were not 
considered in this breeding objective because they are not rewarded in most Australian markets.  
 
Table 3. Accuracy of breeding objective traits and the overall terminal sire line index in 
growing pigs in scenarios with no GS (conventional breeding program) and GS1 to GS10 
(assuming different size of reference population starting from 500 to 5000 in increments of 
500) 
  

Accuracy 

Terminal Sire 
index 

no GS GS1 GS2 GS3 GS4 GS5 GS6 GS7 GS8 GS9 GS10 

BFT  0.71 0.72 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.81 
ADG  0.69 0.70 0.72 0.73 0.75 0.76 0.77 0.78 0.79 0.80 0.80 
FCR  0.56 0.57 0.58 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 
PWS  0.27 0.31 0.34 0.37 0.39 0.42 0.43 0.45 0.46 0.47 0.49 
Overall Merit 
($Index) 

0.47 0.48 0.50 0.51 0.53 0.55 0.56 0.57 0.58 0.59 0.60 

1BFT=back fat thickness, ADG= average daily gain, FCR= feed conversion ratio, PWS=post-weaning survival.  
 

Predicted responses. Genomic selection in this study showed the potential to improve overall 
response in the breeding objective (Table 4). The predicted genetic gain in PWS increased between 
23 and 147% using genomic selection compared to the genetic gain in the conventional breeding 
program. On the other hand, BFT, ADG and FCR had 14.5, 1.65, and 2.89% lower gain in the most 
accurate genomic selection scenario (GS10). The genetic improvements in PWS were achieved at a 
diminishing rate from GS3 to GS10.  

Relative improvement for the different breeding objective traits is explained by the relative 
emphasis on breeding objective trait, the accuracy of its estimated breeding values (EBV) and the 
correlation with EBVs from other objective traits. Back fat thickness had a relative economic value 
of 12% of the total breeding objective whereas FCR contributed 23.1% while having fewer records 
available before selection. As a result, FCR did not lose as much gain as BFT. A negative genetic 
correlation between FCR and ADG (-0.37) prevented ADG from losing as much gain as BFT. 
However, the different rate of predicted responses for different traits indicates a shift of genetic 
improvement towards the traits having the limited number of records, a feature of genomic selection 
that has not been well studied in pig breeding programs but has been reported in a sheep breeding 
study (van der Werf 2009). The current study illustrated the effects of genetic correlations between 
breeding objective traits on the magnitude of genetic improvement for different breeding objective 
traits due to genomic selection.  

Genetic gain depends on the GBV prediction accuracy that ultimately depends on the size of the 
effective population (Daetwyler et al. 2008). In this study, effective population size was assumed to 
be 100 which is slightly higher than the value estimated by D’Augustin et al. (2017) that varied from 
42 to 98 in three Australian pig breeds. However, genetic gain was predicted deterministically based 
on selection index theory. This approach provided an approximate figure of additional 
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1.16$/growing pig in genomic selection with a reference population of 5000 pigs. Further study 
should be conducted to investigate the long-term economic impact of using genomic selection in 
growing pigs.  

 
Table 4. Response per round of selection for the breeding objective traits in terminal sire line 
index in scenarios with no genomic selection (No GS, conventional breeding program) and 
GS1 to GS10 (assuming different size of reference population starting from 500 to 5000 in 
increments of 500)  
 

Responses in genetic standard deviation 
 

Scenarios BFT ADG FCR PWS Overall Merit ($Index) 
No GS -0.311 (100) 0.462 (100) -0.450 (100) 0.119 (100) 4.17 (100) 
GS1 -0.302 (97.1) 0.461 (99.7) -0.426 (94.6) 0.147 (123.5) 4.28 (102.6) 
GS2 -0.291 (93.5) 0.458 (99.1) -0.421 (93.5) 0.176 (147.8) 4.44 (106.4) 
GS3 -0.285 (91.6) 0.456 (98.7) -0.419 (93.1) 0.199 (167.2) 4.59 (110.0) 
GS4 -0.281 (90.3) 0.457 (98.9) -0.421 (93.5) 0.214 (179.8) 4.71 (112.8) 
GS5 -0.278 (89.3) 0.454 (98.2) -0.420 (93.3) 0.236 (198.3) 4.85 (116.2) 
GS6 -0.276 (88.7) 0.458 (99.1) -0.426 (94.6) 0.246 (206.7) 4.94 (118.4) 
GS7 -0.274 (88.1) 0.456 (98.7) -0.428 (95.1) 0.262 (220.1) 5.06 (121.3) 
GS8 -0.272 (87.4) 0.459 (99.3) -0.428 (95.1) 0.273 (229.4) 5.15 (123.5) 
GS9 -0.271 (87.1) 0.461 (99.7) -0.434 (96.4) 0.284 (238.6) 5.25 (125.8) 

GS10 -0.269 (86.5) 0.459 (99.3) -0.437 (97.1) 0.295 (247.8) 5.33 (127.8) 
1BFT=back fat thickness, ADG= average daily gain, FCR= feed conversion ratio, PWS=post-weaning survival. 
Values in parentheses indicate the percentage changes in the responses relative to the base scenario 
(conventional breeding program).  
 
CONCLUSIONS 

This study predicted the additional overall response and additional response in individual 
breeding objective traits resulting from different scenarios of genomic selection. Overall genetic 
gain resulting from using GS is motivating for the implementation of GS in growing pigs. Before 
reaching a final conclusion, it is worthwhile to investigate the cost-benefit analysis of more realistic 
genomic selection scenarios.   
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SUMMARY 

The National Breeding Objective (NBO) for the New Zealand dairy industry is currently under 
review. As part of this process a stakeholder survey was carried out to help guide the direction of 
the review. The survey included questions on key issues related to the NBO, such as the direction 
of breeding worth (BW – the national breeding index which includes economically important traits), 
the role of important traits (particularly fertility, TOP traits - Traits Other than Production, 
liveweight and environmental traits, among others), and views on the dairy cow of the future. There 
were good levels of engagement with the survey and overall, the results show there is stakeholder 
support for prioritising the inclusion of a new and more accurate fertility breeding value in BW, 
applying a non-linear weighting to liveweight, and including key TOP traits (such as udder traits, 
capacity, feet and legs, and lameness) in BW.  
 
INTRODUCTION 

The NBO for the New Zealand dairy industry had its last major review in 2012 (Amer et al. 
2013). Since that time, it has been updated annually. Following discussions with breeding industry 
representatives along with the New Zealand Animal Evaluation Ltd (NZAEL) management and 
board, it was agreed that a major review of the NBO should take place. To guide this process a 
stakeholder survey was carried out to garner views from key stakeholders on the direction the NZ 
dairy herd is heading in and what the dairy cow of the future looks like for NZ. A farmer survey will 
also follow. In this paper, we will discuss key findings of the stakeholder survey and how this is 
shaping a plan for the future direction of the National Breeding Objective. 

 
MATERIALS AND METHODS 

To gather stakeholder opinions on the NBO a survey was constructed in Alchemer (formerly 
Survey Gizmo). Questions in the survey covered the following points: 
1. Fertility - After recognising the antagonistic effect that continued selection for milk production 

was having on NZ dairy herd fertility levels (Grosshans et al. 1997), fertility was added to the 
NBO in 2001. However, recent summaries show only a very small positive genetic trend in 
fertility (DairyNZ 2021). This is coupled with the opinion, expressed by many farmers, that 
fertility does not have a high enough weighting in Breeding Worth (BW). There is also some 
interest in changing the definition of the fertility trait breeding value (EBV) from CR42 (calving 
rate in the first 42 days after planned start of calving) to 6-week-in-calf rate (from planned start 
of mating). Questions in the survey asked whether respondents believed the fertility EBV was 
accurate enough, had high enough weighting in BW and whether a 6 week in-calf rate trait was 
more desirable definition for the fertility breeding value. 

2. Environmental traits – environmental traits have become a major issue for NZ dairy farmers 
over the past decade. There is scope to increase focus on environmental traits in BW to achieve 
gains genetically as a low-cost approach to reaching on farm environmental goals. However, 
this would result in reductions in the rate of genetic progress in the existing BW traits. How 
much would farmers be willing to give up in profitability to make advances in environmental 
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traits? 
3. Traits affecting survival - fertility and production traits play a large part in cow culling, 

however, there are a number of other traits that affect survival – these traits are currently 
encompassed in the residual survival breeding value. Functional survival is computed on the 
phenotypic level and is independent from fertility and production also. Functional survival is a 
newer alternative trait to residual survival and is a more accurate way of removing fertility and 
production related survival from the survival EBV. TOP traits, such as udder overall, can 
influence a cows functional survival. Is stakeholder opinion that it is sufficient to include udder 
overall indirectly in BW by including it as a predictor trait for survival or do stakeholders 
believe udder overall should be considered as a standalone trait in BW? 

4. Liveweight – do stakeholders believe that the current liveweight penalty is appropriate? 
There were also questions covering further TOP traits, optimal sire selection and decision 

support tools, gestation length, calf survival and calving difficulty, OAD (once a day) milking, high 
output systems, health traits, producing milk for specific markets based on genotype, milk price 
prediction, frequency of updates, as well as questions on traits that do not currently have breeding 
values (e.g. lameness). The survey was circulated among key stakeholders from DairyNZ, breeding 
companies (LIC, CRV), NZAEL Farmer Advisory Board, Massey University, and breed societies. 

 
RESULTS AND DISCUSSION 

In total, there were 459 responses - 280 complete and 179 partial responses. Of the total, 
approximately 50% of respondents were commercial farmers (211) and a further 25% breeders (109, 
produce milk and sell heifers, embryos, and occasionally semen or bulls). The remaining 
respondents (109) consisted of stakeholders from industry support and research groups, technical 
farmer support roles, bull breeding companies and milk processors. There were some differences in 
results between farmer and non-farmer survey respondents. 

When respondents were asked which of the NZ indexes were most useful for genetic selection – 
60% thought Breeding Worth (BW) was the most useful (Figure 1). The Australian Balanced 
Performance Index (BPI) was most commonly listed index under the ‘Other’ category.  

Figure 1. Which of the NZ indexes are the most useful for genetic selection? 
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Results from the survey show that overall stakeholders believe indexes are a useful tool for 
selection, however, support for BW was lower than expected because stakeholders believe there are 
some important traits missing in the national index. Some of the specific traits that stakeholders 
would like to see included in BW are udder traits, capacity, feet and legs, and lameness – along with 
further health traits (e.g. clinical mastitis and facial eczema).  There was very strong support for the 
inclusion of lactation persistency in BW – with 71% of respondents either agreeing or strongly 
agreeing with this statement (Figure 2).  

Figure 2. Traits stakeholders would like to see included in BW (blue – strongly agree/agree, 
orange – strongly disagree/disagree) 

There were mixed opinions on the inclusion of environmental traits (low nitrogen and low 
methane production) in BW – however, a reasonable number of respondents (>60%) said they would 
sacrifice some profitability to achieve genetic gain in a Low Nitrogen (Low N) or Greenhouse Gas 
(GHG) trait. Currently, there are no direct environmental traits that have reached a level of proven 
integrity to justify inclusion in the NBO. Work on appropriate future weights for environmental 
traits is encompassed in research programs investigating the development and application of these 
traits.  

Forty percent of respondents believed fertility is underweighted in BW. Of those that believe 
fertility is underweighted, a majority (strongly) agreed with the following: there is lost opportunity 
around sales of high value calves and heifers when fertility isn’t high; the cost of artificial 
insemination is too high; the fertility EBV is not currently accurate enough; having to rear more 
replacement heifers (i.e. low fertility herd) is inconvenient; the economic impact of reduced fertility 
is very high for a dairy operation; and more weighting on fertility would result in faster 
improvements in herd fertility levels. The percentage of respondents who thought fertility was 
underweighted in BW was less than expected, which may be driven by a belief that the current 
fertility trait isn’t accurate enough – in which case, increasing weighting on fertility still wouldn’t 
achieve the desired gains. Respondents were in support of having a new fertility breeding value 
indicating likely change in 6-week-in-calf rate, rather than the current definition of 6-week re-
calving rate (CR42). The rationale here is that 6-week-in-calf rate is the primary metric of fertility 
performance used by farmers at a phenotypic level, providing farmers with a more tangible means 
of understanding how changes in the fertility genetic merit of their herd is contributing to their 
fertility performance targets.  

Most respondents either disagreed or strongly disagreed (43% vs 28% who agreed/strongly 
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agreed) that the penalty for liveweight is appropriate for comparing across breeds. Holstein-Friesian 
farmers/breeders believed that liveweight (LW) is penalised too much within the Holstein-Friesian 
breed, these breeders also tended to think that LW is penalised too much within the Jersey breed 
(but not to the same magnitude). On the other hand, while Jersey farmers/breeders believed LW is 
penalised too heavily in Jerseys, they tended to disagree more than agree with the statement that LW 
is penalised too much within the Holstein-Friesian breed. Traits like BCS and LW have intermediate 
optimum levels in the minds of farmers and while Jerseys benefit as a breed from the current 
liveweight penalty, few farmers purchasing Jersey bulls wish them to produce very small sized cows 
in their herd. The current linear weighting applied to every breed equally creates a rigidity in 
deployment that causes mismatches between BW and farmer perception. Therefore, these survey 
responses support the thinking that a non-linear weighting on liveweight is more appropriate than 
the current weighting. Other key findings were that there is: strong support for custom selection 
tools along with mating allocation and inbreeding management tools; support for a NZAEL 
produced OAD index and high production index; and finally, there were mixed views on timelines 
of NBO reviews – annual updates versus every 3-5 years.  

Full results from the stakeholder survey can be found via the DairyNZ website at the following 
address https://www.dairynz.co.nz/animal/animal-evaluation/national-breeding-objective-review/. 

Following on from this stakeholder survey, a farmer survey is planned for later this year. Farmer 
trait prioritisation surveys provide insights into farmer preferences and traits that have an important 
influence over the cows they farm – over and above those traits which are associated with 
profitability by inclusion in selection indexes (Amer and Byrne 2019). Trait prioritisation surveys 
are an important way to engage farmers in the process of creating a selection index, influencing 
acceptance and adoption of the index (Axford 2018), and ensuring the industry is working together 
to create the NZ dairy cow of the future. 

 
CONCLUSIONS 

Overall, results from the stakeholder survey suggest the following changes should be considered 
as priorities for the NBO: higher weighting on a new and improved fertility value; application of a 
non-linear weighting on liveweight; and direct weighting on udder, feet and legs. Following on from 
this stakeholder survey, a farmer survey including trait prioritisation is planned for 2021.  
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SUMMARY 

Reduced milk production and reproductive losses are common consequences of heat stress in 
dairy cattle and are likely to increase because of global climate change. The objective of this study 
was to compare body temperature regulation during heat stress between genetically heat-tolerant 
and heat-sensitive cows in peak summer (August 2020) on a California dairy farm. Genomic ABVs 
(ABVHT) were calculated for 12,487 cows from a single U.S. dairy farm. The herd had an average 
ABVHT of 102.5 with a standard deviation of 3.6. Rectal temperature was measured in 626 lactating 
cows with ABVHT ≥ 102 (heat tolerant) or <102 (heat sensitive) using a rectal thermometer. Vaginal 
temperature was measured in 118 cows with ABVHT ≥ 108 or <97 at 15-min intervals for five days 
in 118 cows using iButtons placed in blank CIDRs. Heat-tolerant cows had a 0.12°C (P=0.032) 
lower rectal temperature and a 0.07°C (P<0.001) lower vaginal temperature than heat-sensitive 
cows. The ABVHT can be used to select cows for resistance to heat stress under U.S. conditions.  
 
INTRODUCTION 

Heat stress is one of the most significant environmental determinants of livestock productivity. 
In cattle, heat stress decreases milk production, reduces growth, diminishes sexual behavior, 
compromises female fertility, alters fetal development, and disrupts spermatogenesis (Hansen 2020). 
Global climate change means that limitations to sustainable livestock production caused by heat 
stress will become even more important than today (Battisti and Naylor 2009; Gauly and Ammer 
2020). A breeding value for heat tolerance (ABVHT) in Holsteins and Jerseys based on the 
magnitude of the decline in milk, fat and protein yield per unit increase in temperature-humidity 
index for cattle is available for on-farm selection decisions in Australia (Nguyen et al. 2017). 
Inclusion of thermotolerance in selection indices for cattle present in hot climates may represent a 
useful approach for minimizing current and projected effects of heat stress on production and 
reproduction of dairy cows. The extent to which the breeding value is useful for other countries and 
systems, depends on whether the trait, measured in cattle under Australian conditions, also identifies 
dairy cattle in other countries that are genetically predisposed to be resistant or susceptible to heat 
stress. Given differences in management, including housing and feeding, this may or may not be the 
case. Accordingly, the purpose of this study was to evaluate the effectiveness of the genomic 
estimates of ABVHT for predicting resistance of lactating Holstein cows in the USA to heat stress. 
It is hypothesized that core body temperature is lower for females with high ABVHT than for 
females with low ABVHT.  
 
MATERIALS AND METHODS 

The trial was approved by the University of Florida animal ethics committee. Data were collected 
from a commercial dairy farm in Riverdale, California. There were 3,613 lactating Holstein cows 
milked two times per day. The cows were housed in free-stall barns with shade cloth, fans, and 
sprinklers for heat abatement, and had access to dirt lots. In August, average daily milk yield was 
38.1 kg. 
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Climate data. Dry bulb temperature and relative humidity were measured every 15 minutes for 
the duration of the study using HOBO U23 Pro v2 temperature and relative humidity data logger 
(Onset, Bourne, Massachusetts, USA) from three locations at the farm: exterior parking lot, the barn 
identified as the hottest by the farm manager and the barn identified as the coolest.  

Genotypes. Genotypes (n=12,684) and pedigrees were sent to DataGene (Melbourne, Australia) 
and included in the August 2020 official genetic evaluation run. Standard procedures used by 
DataGene to edit and impute genotypes were applied (Nieuwhof et al. 2010). Samples with a call 
rate less than 0.9 or with more than 40% of markers heterozygous were removed. Animals with 
parentage or sex inconsistencies between the pedigree and genotype were also excluded. As many 
commercial providers provide genotypes to DataGene, a standard set of 45,685 SNP genotypes is 
used for routine evaluations (Nieuwhof et al. 2010) and missing genotypes were imputed by 
DataGene to satisfy this requirement. After quality control, genomic ABVHT were calculated for 
12,487 cows following the methodology of Nguyen et al. (2016). The ABVHT is calculated to have 
a breed mean of 100 and a standard deviation of 5.  

Cow design and sampling. Of the 12,487 cows with ABVHT, 2,925 cows were in the current 
herd. Rectal temperatures were measured daily using digital rectal thermometers across a random 
sample of cows (n=1078) once they had returned from milking in the afternoon (range of sampling 
time was 11:00 – 20:45 H). Of the 1,078 cows, 626 animals with ABVHTs ranging from 102 to 109 
(termed HTR, n=354) or 95 to 101 (HSR; n=272) were used for statistical analysis. The most heat 
tolerant cows on the farm (ABVHT ≥ 108; termed HTV) and least heat-tolerant cows (ABVHT ≤ 
97; termed HSV) were selected for vaginal temperature analysis. A blank CIDR containing an 
iButton 1922L (Maxim Integrated, San Jose, California, USA) was placed intravaginally for five 
days to record temperature every 15 minutes. The experiment was performed with 40 HTV and 23 
HSV cows in week 1 and with a separate 26 HTV and 29 HSV cows in week 2. Herd records were 
obtained from the farm and accessed using DHI-Plus (Amelicor, Provo, Utah, USA). 

Statistical analysis. Statistical analysis was performed using R (4.0.3). The model y = µ + Xβ + 
ε was used to analyze rectal temperature, where y is a vector of rectal temperature, β is a vector of 
fixed effects including close barn temperature (barn closest to the location of the cows), test day 
milk yield, parity (primiparous or multiparous), day of calendar year, and ABVHT, and X is a design 
matrix of the fixed effects. Vaginal temperature was analyzed using the model, y = µ + Xβ + ε, 
where y is a vector of vaginal temperature averaged across 5 days, β is a vector of fixed effects 
including ABVHT, week, pen, milk yield, parity (primiparous or multiparous), and days in milk, 
and X is a design matrix for fixed effects. Week one and two were analyzed separately using the 
mixed model: y = µ + Xβ + Zg+ ε, where y is a vector of vaginal temperature, β is a vector of fixed 
effects including ABVHT, date, time, date by ABVHT, time by ABVHT, milk yield, parity 
(primiparous of multiparous), and days in milk, g is a vector of random effects including cow nested 
within ABVHT, and X and Z are design matrices for fixed and random effects respectively. 
 
RESULTS AND DISCUSSION 

Cows designated as HTR (ABVHT ≥102) had lower (P=0.032) rectal temperatures than cows 
designated as HSR (ABVHT <102) (Figure 1A). The mean rectal temperature was 38.46°C and 
38.58°C for HTR and HSR cows, respectively (Figure 1B). 
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Figure 1. Differences in rectal temperature between heat-sensitive and heat-tolerant cows as 
affected by dry bulb temperatures measured at the barn closest to the cow (n=626). Heat-
tolerant (HTR) cows had an ABVHT ≥102 and heat-sensitive (HSR) cows had an ABVHT 
<102. (A) Data points are rectal temperatures for individual cows. (blue = HTR; orange = 
HSR). The line shows the group average at each barn temperature. (B) Mean rectal 
temperature + SEM for each ABV class after adjustment for close barn temperature, milk 
yield, parity, and day 
 

Daily variation in vaginal temperature was characterized by lower vaginal temperatures in the 
morning and higher temperatures in the late afternoon. There was variation between weeks that is 
likely due to milking schedule (Figure 2A). Mean vaginal temperatures across both weeks were 
lower for extreme heat-tolerant cows (ABVHT ≥108; designated HTV) than for extreme heat-
sensitive cows (ABVHT ≤97; designated HSV). The average vaginal temperature was 39.02°C for 
HTV and 39.09°C for HSV(P<0.001). These results are similar to those of Garner et al. (2016), 
working in environmental chambers in Australia, who found heat-tolerant cows (i.e. based on 
ABVHT) had significantly lower body temperatures during a heat challenge than heat-sensitive 
cows. There was a large effect of week on vaginal temperature. Analysis of vaginal temperature data 
to examine interactions between ABVHT and time of day were analyzed for week 1 separately from 
week 2. For week 1, there was a significant effect of ABVHT (P<0.001) but there was no interaction 
between time and ABVHT (Figure 2A). HTV cows had an average vaginal temperature of 39.11°C 
and heat-sensitive cows had an average vaginal temperature of 39.18°C. In week 2, there was an 
interaction between ABVHT and time of day (P <0.001) but no significant effect of ABVHT (Figure 
2B). The difference between groups was more variable for week 2 throughout the day. In the 
evenings and early morning, there is a large difference in body temperature between HTV and HSV 
cows, while they become nearly identical between 12:00 AND 15:00. This result could indicate that 
HTV cows are more efficient at cooling their bodies when the environmental heat load is reduced 
than HSV cows. This idea is supported by the rectal temperature measurements where HTR cows 
maintained lower rectal temperatures than HSR cows until the dry bulb temperature reached ~33°C 
(Figure 1A). During both weeks, HTV cows maintained lower body temperatures than HSV cows 
throughout the day with the smallest difference in vaginal temperature from 12:00 to 15:00 when 
vaginal temperature declined for both groups. This time coincided with most cows returning from 
the parlor and drinking large amounts of water. 
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Figure 2. Mean daily vaginal temperature + SEM adjusted for milk yield, days fresh, and 
parity (primiparous vs multiparous) in (A) week 1 and (B) week 2. Heat-tolerant (HTV) cows 
had an ABVHT ≥108 and heat-sensitive (HSV) cows had an ABVHT ≤97 
 

Based on the literature, it is expected that genetically heat-tolerant cows which maintain lower 
body temperatures under heat stress conditions will sustain higher milk yields and better 
reproduction in the summer. The average difference in rectal temperature between heat-tolerant and 
heat-sensitive cows in the current experiment was 0.12°C and the average difference in vaginal 
temperature was 0.07°C. Future studies will determine whether differences in ABVHT are also 
reflected in genetically heat-tolerant cows having higher milk yield and conception rates under heat 
stress than their heat-sensitive counterparts. 
 
CONCLUSIONS 

Cows with a high heat tolerance breeding value had lower body temperatures under heat stress 
than cows with a low heat tolerance value. Thus, the ABVHT can identify heat tolerant cows with 
superior ability to regulate body temperature under US conditions. 
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SUMMARY  

Several cases of neurological diseases in sheep were submitted opportunistically to a government 
veterinary diagnostic laboratory in Australia. Initial analysis suggested a possible genetic cause for 
segmental axonopathy, degenerative thoracic myelopathy, lissencephaly and cerebellar hypoplasia 
and cervicothoracic vertebral subluxation. Suitable case material is available and will be investigated 
further using in depth pathological investigation to establish diagnostic criteria, understand 
pathogenesis and propose candidate genes. Whole genome sequencing data will be used to identify 
likely causal variants with the aim to develop diagnostic tools for industry. 
 
INTRODUCTION 

The Online Mendelian Inheritance in Animals database (OMIA, https://omia.org/home/) lists 
194 inherited defects in sheep and likely causal variants have been identified for only 32 of these to 
date. A number of suspected inherited conditions have been reported recently in sheep in Australia 
and New Zealand. Our group has identified causal variants for neuronal ceroid lipofuscinosis (OMIA 
001443-9940, Tammen et al. 2006), brachygnathia, cardiomegaly and renal hypoplasia syndrome 
(OMIA 001595-9940, Woolley et al. 2020) in Merino sheep and hydrops foetalis/pulmonary 
hypoplasia and anasarca (OMIA 000493-9940) in Persian sheep, but several suspected inherited 
neurological conditions are still under investigation (Woolley et al. 2019). Characterisation of 
inherited diseases and identification of causal variants is imperative to the development of diagnostic 
capabilities to identify affected and carrier animals and inform better management and breeding 
practices.  

This study focussed on a detailed literature review of four diseases to inform further 
characterisation of the phenotype and pathogenesis to assist with selection of confirmed cases for 
genetic analysis, and identification of candidate genes associated with disease by comparison to 
similar genetic conditions in animals and humans. 

 
MATERIALS AND METHODS 

Review of previously submitted case material. Selected suspected inherited neurologic 
diseases for which case material was available at the Elizabeth Macarthur Agricultural Institute, 
Department of Primary Industries, NSW (EMAI) were further characterised based on clinical 
presentation, clinical pathology, gross pathology, histopathology and where indicated, special stains, 
immunohistochemistry, transmission electron microscopy and additional diagnostics. Case material 
was both retrospective from previous submissions received at EMAI, and prospectively recruited 
from emergent disease cases submitted to EMAI during the study period. Upon identification of 
suspected heritable neurological conditions, ongoing investigation involves exclusion of differential 
diagnoses presenting with similar clinical and/or pathologic abnormalities. Existing SNP chip and 
whole genome sequencing (WGS) data from previous analysis were catalogued. 

Structured literature review. A structured literature review of selected neurological conditions 
was conducted. PubMed, Web of Science and OMIA searches were used to identify relevant 

https://omia.org/home/
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literature. Published literature was evaluated for each disease to identify new references and 
summarise current knowledge about disease phenotypes, mode of inheritance and candidate genes 
associated with disease. New information was used to update entries in OMIA. The literature was 
also reviewed to identify any additional suspected or known inherited neurologic phenes in sheep. 
 
RESULTS AND DISCUSSION 

Review of previously submitted case material. Suspected inherited neurological diseases 
identified for initial investigation included ovine segmental axonopathy and degenerative thoracic 
myelopathy using retrospective analysis of case material, cervicothoracic vertebral subluxation from 
both retrospective and current investigations, and a recent investigation of lissencephaly and 
cerebellar hypoplasia diagnosed in a flock of crossbred sheep in NSW (Table 1). 

 
Table 1. Inherited ovine neurologic conditions investigated: available case material, whole 
genome sequencing (WGS) and SNPchip genotyping data 
 

Disease OMIA ID Case material WGS / SNP50* data 
Segmental 
axonopathy 

001492-
9940 

Multiple animals from 
several properties 

1 affected sheep (MGIseq System, 
Q30% = 88.05) 

Degenerative thoracic 
myelopathy 

000079-
9940 

Multiple animals, 1 
property None 

Lissencephaly and 
cerebellar hypoplasia 

001867-
9940 

Multiple animals, 1 
property 

1 affected sheep (MGIseq System, 
Q30% = 88.28) 

Cervicothoracic 
vertebral subluxation 

002313-
9940 

Multiple animals from 
several properties 

2 affected sheep (Illumina HiSeqTM 
X Ten, Q30% = 92.16%); 9 affected 
& 2 obligate carriers (SNP50) 

*all WGS = 150bp paired-end reads, 30X coverage; SNP50 = Illumina® OvineSNP50 Genotyping BeadChip 
(CA, USA). 

 
Structured literature review. A literature review did not yield any additional references for 

lissencephaly and cerebellar hypoplasia or cervicothoracic vertebral subluxation that were not 
already listed in OMIA. One review article referencing degenerative thoracic myelopathy and two 
review articles referencing segmental axonopathy were added to OMIA. 

Ovine Segmental axonopathy (‘Murrurundi disease’) has been reported in Merino sheep of 1 to 
5 years of age in Australia and New Zealand (Hartley and Loomis 1981; Harper et al. 1986).  
Clinically, sheep present with gradually progressive hindlimb ataxia (Hartley and Loomis 1981). 
Gross post-mortem lesions are absent or limited to hindlimb muscle atrophy (Harper et al. 1986; 
Jolly et al. 2006; Windsor 2006). Histologically, affected animals have vacuolation and spheroid 
formation throughout white matter in the brain and spinal cord (Hartley & Loomis 1981; Harper et 
al. 1986) with Wallerian degeneration of variable severity. Within the spinal cord, dorsal columns 
are more severely affected with spheroids compared to ventral and lateral columns (Harper et al. 
1986). Axonal swellings associated with this condition ultra structurally contain membrane-bound 
vesicles (Jolly et al. 2006; Windsor 2006) and mitochondria (Windsor 2006). It has been postulated 
that the vesicles may originate from degenerating organelles (Jolly et al. 2006; Windsor 2006). 
Proteomic analysis has found cytoskeletal abnormalities in the trigeminal root, thought to be 
secondary changes (Jolly et al. 2006). It has been suggested that ovine segmental axonopathy may 
be an autosomal recessive inheritance (Jolly et al. 2006).  

Degenerative thoracic myelopathy has been reported as a cause of hindlimb ataxia or paresis in 
Australian Merino sheep (Harper et al. 1991). Affected animals were between 5 and 24 months of 
age (Harper et al. 1991). Clinically, animals have slowly progressive hindlimb ataxia and paresis 

https://www.omia.org/OMIA001492/9940/
https://www.omia.org/OMIA001492/9940/
https://www.omia.org/OMIA000079/9940/
https://www.omia.org/OMIA000079/9940/
https://omia.org/OMIA001867/9940/
https://omia.org/OMIA001867/9940/
https://www.omia.org/OMIA002313/9940/
https://www.omia.org/OMIA002313/9940/
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with neurologic examination consistent with a thoracolumbar lesion. Histologically this disease 
manifests as symmetrical Wallerian degeneration of variable severity, predominately affecting the 
ventromedial and dorsolateral tracts of the spinal cord (Harper et al. 1991). As this is a non-specific 
lesion, exclusion of differential diagnoses is essential in the investigative process, with potential 
differential diagnoses including plant toxicities, were excluded in this study (Harper et al. 1991). 
While a hereditary cause of degenerative thoracic myelopathy is suspected, it has not yet been 
proven.  

Lissencephaly and cerebellar hypoplasia has been identified in mixed breed sheep on a property 
in New South Wales in 2019. Preliminary pathological investigation resulted in a diagnosis of LCH. 
LCH has previously been identified in Spanish Churra lambs (Pérez et al. 2013; Suárez-Vega et al. 
2013), as well as humans, goats (Santos et al. 2013) and calves (Santos et al. 2016). In Churra lambs, 
affected animals were markedly ataxic and died within days of birth (Pérez et al. 2013). There was 
marked cerebellar hypoplasia, agyria and pachygyria with reduced and disorganised layers within 
the cerebral cortex, and disorganisation of the hippocampus histologically (Pérez et al. 2013). A 
monogenic autosomal recessive pattern of inheritance was suspected, with affected animals shown 
to have a 31-bp deletion in predicted exon 36 of the RELN gene and an absence of the protein reelin, 
a reported cause of LCH in humans (Pérez et al. 2013; Suárez-Vega et al. 2013). LCH in humans 
has also been associated with variants in genes including DCX and LIS1, although additional genetic 
variants are suspected (Ross et al. 2001). 

Cervicothoracic vertebral subluxation has been reported in Poll Merino sheep in NSW (Hill et 
al. 1993; Cronin et al. 2019), Corriedale sheep in NSW (Hartley et al. 1994), Columbia lambs in the 
US (Lakritz et al. 1995) and Suffolk sheep in Scotland (Nisbet and Renwick 1961). Affected animals 
range in age and typically show a dropped or U shaped neck with hindlimb ataxia and variable neck 
rigidity or pain and inspiratory stridor (Hill et al. 1993; Hartley et al. 1994; Cronin et al. 2019). The 
consistent gross finding in this condition is subluxation or deviation at the junction of the cervical 
and thoracic vertebrae leading to spinal cord compression (Hill et al. 1993; Hartley et al. 1994; 
Cronin et al. 2019). Some reports have described gross changes in the paravertebral muscles 
including white streaks and pinpoint haemorrhages, characterised histologically by muscle 
degeneration, necrosis, regeneration, mineralisation, haemorrhage and fibrosis (Cronin et al. 2019). 
Cronin et al. (2019) postulated this was an inherited condition based on pedigree analysis; however, 
the responsible variant(s) remains to be determined. Woolley et al. (2019) reported on the findings 
of initial investigation of SNP genotyping and whole genome sequencing data, but a likely causal 
variant has not been identified.  

Ongoing research. The literature review identified strong candidate genes for LCH and standard 
analysis of WGS of a single affected animal identified possible likely causal variants that are 
currently validated. Current investigation involves immunohistochemistry to describe the condition 
and compare the reported cases to the disease in Churra lambs and humans.  

For the remaining three diseases the literature review did not identify strong candidate genes and 
the initial analysis of limited WGS data for cervicothoracic vertebral subluxation (Woolley et al 
2019) and segmental axonopathy was inconclusive. Detailed analysis of the histopathology of all 
identified case material will be conducted with the aim to establish clear diagnostic criteria for each 
disease and to accurately characterise the phenotype and underlying pathogenesis. This information 
will assist in diagnosis of future cases as clinical presentation alone has resulted in misdiagnosis of 
neurological conditions in the past. Furthermore, possible candidate genes can be identified by 
comparison to similar genetic conditions in animals and humans.  

DNA from six additional affected animals (2 each for segmental axonopathy, degenerative 
thoracic myelopathy and cervicothoracic vertebral subluxation) has been submitted for whole 
genome sequencing. Standard methods will be used to align reads to the ovine reference genome 
and to call and annotate variants. This new data, existing WGS data (Table 1) and publicly available 
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control WGS data will be used to filter for private variants in identified candidate genes that 
segregate with the disease phenotype. Likely causal variants will be validated in additional samples. 
 
CONCLUSIONS 

A number of neurological conditions recognised in sheep are suspected to be hereditary. 
Characterising the clinical aspects and pathology of these conditions will facilitate accurate 
diagnosis of affected animals, provides insight into possible pathogenesis, and can assist in guiding 
genetic investigations to identify causative genetic variants. This study is in the early stages and we 
aim to raise awareness and encourage submission of additional samples to be used in the validation 
stage of the genetic study.  
 
ACKNOWLEDGEMENTS 

The authors thank farmers and veterinarians for submitting data and case material and the 
technical staff in the histology, molecular and genetic laboratories at EMAI. Dr. Cali Willet from 
The Sydney Informatics Hub Core Research Facility at The University of Sydney, Dr. Shernae 
Woolley and Monique Cauchi from The University of Sydney are acknowledged for initial analysis 
of WGS data. The authors acknowledge Dr. Pedro Pinczowski from DPI, Dr. Marina Gimeno and 
Emily Winkenwerder from The University of Sydney and district veterinarian Lou Baskind for their 
work on the recently diagnosed case of lissencephaly and cerebellar hypoplasia in sheep. 

 
REFERENCES 
Cronin N, Loukopoulos P., Brown D., O’Rourke B.A., Morrice G. and Windsor P.A. (2019) 97: 

499. 
Harper P.A.W., Duncan D.W., Plant J.W. and Smeal M.G. (1986) Aust. Vet. J. 63:18. 
Harper P.A.W., Plant J.W., Walker K.H. and Timmins K.G. (1991) Aust. Vet. J. 68: 357. 
Hartley W.J. and Loomis L.N. (1981) Aust. Vet. J. 57: 399. 
Hartley W.J., Stevenson J.M.K. and McCarthy P.H. (1994) Aust. Vet. J. 71: 267. 
Hill B.D., O’Dempsey N.D. and Carlisle C.H. (1993) Aust. Vet. J. 70: 156 
Jolly R.D., Johnstone A.C., Williams S.D., Zhang K. and Jordan T.W. (2006) N.Z. Vet. J. 54: 210. 
Lakritz J., Barr B.C., George L.W., Wisner E.R., Glenn J.S., East N.E. and Pool R.R. (1995) J. Vet. 

Intern. Med. 9: 393. 
Nisbet D.I. and Renwick C.C. J. Comp. Pathol. (1961) 71: 177. 
Pérez V., Suárez-Vega A., Fuertes M., Benavides J., Delgado L., Ferreras M.C. and Arranz J.J. 

(2013) BMC Vet. Res. 9:156. 
Ross M.E., Swanson K. snd Dobyns W.B. (2001) Neuropediatrics. 32: 256. 
Santos J.R.S., Dantas, A.F.M., Pessoa, C.R.M., Silva, T.R., Simões S.V.D., Correa, F.R. and Pedroa 

D. (2013) Ciência Rural. 43: 1858. 
Santos B.L., Damé M.C.F., Coelho A.C.B., Oliveira P.A., Marcolongo-Pereira C. and Schild A.L. 

(2016) Ciência Rural. 46: 1622. 
Suárez-Vega A., Gutiérrez-Gil B., Cuchillo-Ibáñez I., Sáez-Valero J., Pérez V., García-Gámez E, 

Benavides J. and Arranaz, J.J. (2013) PLoS One. 8: e81072. 
Tammen, I., Houweling, P.J., Frugier, T., Mitchell, N.L., Kay, G.W., Cavanagh, J.A., Cook, R.W., 

Raadsma, H.W. and Palmer, D.N. (2006) Biochim. Biophys. Acta 1762: 898. 
Windsor P.A. (2006). Aust. Vet. J. 84: 169. 
Woolley, S.A., Hayes, S.E., Shariflou, M.R., Nicholas, F.W., Willet, C.E., O'Rourke, B.A. and  

Tammen, I. (2020)  BMC Genet. 21: 106. 
Woolley, S., Tsimnadis, E., Tulloch, R., Hughes, P., Hopkins, B., Hayes, S., Shariflou, M., Bauer, 

A., Hafliger, I., Jagannathan, V., Khatkar, M., Willet, C., and Tammen, I. (2019) Proc. Assoc. 
Advmt. Anim. Breed. Genet. 23: 270. 



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 187-190 

187 

A GENOME-WIDE ASSOCIATION STUDY (GWAS) FOR CARCASS TRAITS IN 
HANWOO CATTLE USING IMPUTED WHOLE GENOME SEQUENCE DATA 

 
H. Kim, S. de las Heras-Saldana, N. Moghaddar and J.H.J van der Werf 

 
School of Environmental & Rural science, University of New England, Armidale, NSW, 2351 

Australia 
 

SUMMARY 
The identification of genomic region that are associated with phenotypic traits differences is 

important for improving genomic prediction accuracy. In this study, we aimed to find significant 
genomic regions for carcass traits in Hanwoo cattle using imputed whole genome sequence data on 
13,715 animals. For carcass weight we found 285 SNPs in 7 QTL regions in which 54 candidate 
genes were identified on BTA4, BTA6 and BTA14. For back fat thickness we found 249 SNPs in 2 
QTL regions containing 27 candidate genes on BTA17 and BTA19. The candidate genes from the 
top 5 significant SNPs were ZFAT, TG and TOX for carcass weight and NOG for back fat thickness. 
No significant SNPs for eye muscle area and marbling score were observed. 

 
INTRODUCTION 

The fast development of the genomic technology enables the use of genomic information to 
improve the selection of animals in breeding programs. A genome-wide association study (GWAS) 
identifies associations between genetic variants along the genome and variation in phenotypes. 
These associations have been used to identify quantitative trait loci (QTL) and candidate genes for 
complex traits for humans and for diseases and production traits in livestock. QTL information can 
be used to prioritize genetic markers in order to improve the accuracy of genomic prediction of 
breeding value. Hanwoo is a Korean native beef cattle breed with the characteristic of high quality 
meat, mainly caused by high levels of intra muscular fat, also known as marbling. For finding 
significant QTLs for carcass traits, many GWAS studies have been reported on Hanwoo, However, 
many of those studies are limited due to their small sample size and low density of genetic markers. 
The objective of this study is to identify candidate genes for carcass traits using a larger number of 
samples with imputed sequence data.  

 
MATERIALS AND METHODS 

In total, 13,715 animals with genotypes and phenotypes for carcass traits were used in this study. 
The four carcass and meat quality traits recorded were carcass weight (CWT), back fat thickness 
(BFT), eye muscle area (EMA) and marbling score (MS).  

 
Table 1. Summary statistics for carcass traits  
 

Traits Mean Standard deviation Min Max Coefficient of variation 
CWT (kg) 425.48 59.84 152 692 0.14 
BFT (mm) 13.42 5.23 1 57 0.39 
EMA (cm2) 92.61 12.56 22 156 0.14 
MS (1-9) 5.68 1.98 1 9 0.35 

 
The phenotypic data were adjusted for fixed effects using a linear mixed model in ASReml v.4.1. 

(Gilmour et al. 2014): 
y = CG + Sex + age + e 
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Where y is the observation vector, CG is the fixed effect of contemporary group, defined by birth 
season (4 season per year) and farm, Sex and age are covariates and e is the vector with residuals, 
which will be used as adjusted phenotypes in our GWAS.  

Animals were genotype with the Illumina Bovine SNP 50K Bead Chip. After quality control, 
only 14K SNPs were remaining and these were used to first impute from 14K to 50k, then to high 
density, and finally to sequence with 203 reference animals using Beagle V5.1. The imputed SNPs 
with an accuracy of imputation (R2) lower than 0.4 were removed. Finally, 17,549,506 SNPs and 
13,715 animals were used in this study. A single SNP regression, GWAS was performed under a 
mixed linear model in (MLMA) in GCTA v.1.93 (Yang et al. 2011): 

y* = 𝜇𝜇 + Xb + g + e 
Where y* is a vector with adjusted phenotypes one for each of the four traits, 𝜇𝜇 is the overall mean, 
b is the allele substitution effects and X is the vector of genotype codes for SNP fitted. g is a vector 
of additive genetic effects with  𝑔𝑔 ~ 𝑁𝑁�0,𝐺𝐺𝜎𝜎𝑔𝑔2�, where G is the genomic relationship matrix (GRM) 
calculate from 17,549,506 SNPs in PLINK v.1.9 and e is the residual effect. Manhattan plots were 
produced using ggplot2 packages in R. To reduce type-1 errors, the significance threshold was set 
at (P < 1.54-E08), derived as 0.05 divided by the number of independent variants, which in turn was 
calculated after not counting SNPs in linkage disequilibrium > 0.5 with other SNPs (Sham and 
Purcell 2014; Bedhane et al. 2019). We used the Ensamble database for Bos taurus UMD3.1 to 
identify the candidate genes that were located within 1Mb of the significant SNPs.  
 
RESULTS AND DISCUSSION 

We identified 9 QTL regions for carcass traits in Hanwoo.  

Figure 1. Manhattan plot for carcass weight (A), back fat thickness (B), eye muscle area (C) 
and marbling (D) 

The Manhattan plot from the results of GWAS are shown in Figure 1 for all traits. In total, 285 
SNPs in 7 QTL regions were detected for CWT on Bos Taurus autosome 4 (BTA4), BTA6 and 
BTA14, these chromosomes include 80, 8 and 197 SNPs respectively. The most significant QTLs 
for CWT were located on BTA14 which contained 32 candidate genes. The 22 candidate genes were 
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found on BTA4 and nine candidate genes were found on BTA6 (Table 2). Previous GWAS also 
reported QTL for CWT on BTA4, BTA6 and BTA14 in Hanwoo (Lee et al. 2012; Srikanth et al. 
2020) and BTA6 and BTA14 contains QTL regions in Chinese Simmental and multiple beef cattle 
breeds (Lu et al. 2013; Chang et al. 2018; Wang et al. 2020).  

Significant SNPs associated with BFT were located on BTA17 and seven genes were found close 
to significant SNPs on BTA19. Significant QTL regions for BFT in Hanwoo were detected on 
BTA13 and BTA16 (Lee et al. 2012) and BTA19 (Srikanth et al. 2020) similar to the results obtained 
in this study. 
 
Table 2. QTL regions and candidate genes associates with carcass traits 
 

Traits Chr Position (Mb) Candidate genes 

Carcass 
weight 

4 7.82 - 9.07 FZD1 

4 9.35 - 12.4 
KRIT1, ANKLB1, TMBIM7, GATAD1, PEX1, RBM48, CDK6, 
SAMD9, CALCR, TFPI2, GNGT1, GNG11, BET1, VPS50, 
HEPACAM2, COLA2, CASD1, SGCE, PEG10, PPP1R9A, PON1 

6 38.52 - 39.52 LAP3, MED28, FAM184B, LCORL, DCAF16, NCAPG 
6 40.4 - 42.11 SLIT2, PACRGL, KCNIP4 
14 4.91 - 6.33 COL22A1, FAM135B 

14 6.58 - 10.89 KDHRBS3, ZFAT, ST3GAL1, NDRG1, WISP1, TG, SLA, 
PHF20L1, TMEM71, LRRC6, KCNQ3 

14 23.99 - 27.65 
RP1, KR4, TMEM68, TGS1, LYN, RPS20, MOS, PLAG1, 
SDR16C5, SDR16C6, PENK, IMPAD1, FAM110B, UBXN2B, 
SDCBP, CYP7A1, NSMAF, TOX, CA8 

Back fat 
thickness 

17 64.84 - 65.84 

SIRT4, MSI1, SRSF9, GATC, TRIAP1, COX6A1, COQ5, 
DYNLL1, RNF10, POP5, CABP1, MLEC, UNC119B, ACADS, 
SPPL3, HNF1A, OASL, C17H12orf43, ANKRD13A, GIT2, 
TCHP, GLTP, TRPV4 

19 7.02 - 8.15 FAM222A, ANKFN1, NOG, C19H17orf67, DGKE, TRIP25, 
COIL, SCPEP1 

 
No significant SNPs were detected for EMA and MS. In another recent study, no significant 

QTLs were detected for the MS in Hanwoo (Srikanth et al. 2020). MS appears to be mainly affected 
by many genes, each with a small effect.  
 
Table 3. Top 5 significant SNPs and candidate genes associated with carcass traits 
 

Traits Chromosome Position  P-value Candidate genes 
 

Carcass weight 
14 8,160,456 1.20E-15 ZFAT 
14 9,518,339 1.41E-13 TG 
14 26,619,895 3.60E-13 TOX 
14 26,621,673 3.60E-13 TOX 
14 26,622,060 3.60E-13 TOX 

 
Back fat thickness 

19 7,645,081 3.02E-12 NOG 
19 7,620,479 3.31E-12 NOG 
19 7,646,102 6.87E-12 NOG 
19 7,620,249 8.93E-12 NOG 
19 7,618,889 1.21E-11 NOG 

 
The ZFAT (zinc finger and AT-hook domain containing) gene which is located near to the most 
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significant SNP for CWT has the potential for semi-lethality in Aberdeen Angus (Jenko et al. 2019) 
but was also associated with growth in humans and horses (Lango Allem et al. 2010; Makvandi-
Nejad et al. 2012). The TG (thyroglobulin) gene plays a role in metabolism and has been associated 
with carcass and growth traits in cattle (Zhang et al. 2015). The TOX (thymocyte selection associated 
high mobility group box) gene has been associated with reproductive traits (de Camargo et al. 2015). 
All top five significant SNPs for BFT were located on BTA 19 were close to the NOG (Noggin) 
gene. NOG plays a role in inducing adipogenesis (Sawant et al. 2012) and was previously associated 
with BFT in Hanwoo (Srikanth et al. 2020).  

 
CONCLUSIONS 

This study shows identified QTL regions and candidate genes associated with carcass traits in 
Hanwoo. Seven QTL regions with 63 candidate genes were found for carcass weight and two QTL 
regions with 31 candidate genes for back fat thickness. There were no significant genomic regions 
for eye muscle area and marbling score. This result can be helpful as genomic information to 
improve the accuracy of genomic prediction in Hanwoo breeding. 
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SUMMARY 

Inbreeding is not heritable. This means that breeding for low inbreeding generally has a transient 
and non-accumulating impact over generations. This is a bit like selecting for a trait that has a 
heritability of zero. However, coancestry (taken as the mean coancestry between an individual and 
the rest of the selected population) is heritable. Breeding for low coancestry in any one generation 
has a lasting impact over generations to increase genetic diversity and decrease the population mean 
inbreeding level. These issues have been poorly understood in some industries. Appropriate 
management of both coancestry and inbreeding is required to optimise the balance between short-
term and long-term genetic gains, as well as to maintain genetic diversity. This paper tests and 
illustrates the implementation of such strategies. Management of coancestry is critical, whereas 
management of progeny inbreeding is of some transient value. 

 
INTRODUCTION 

A high rate of genetic gain for the desired breeding objective(s) is central to most breeding 
programs. However, to sustain a high rate of gain in the long term, genetic diversity has to be 
maintained. Without genetic diversity, the better individuals are no better genetically than the worse 
individuals, and genetic gain stops. 

Genetic diversity reduces more quickly in smaller breeding populations: In any one generation, 
few individuals contribute to the genetic mix in the long-term. Moreover, their contributions become 
less evenly distributed, giving more loss of diversity. This is because few parents in each future 
generation means that some individuals’ descendant lineages die out, just by random chance. 
Selection on an index accelerates this loss of diversity, as less meritorious lineages die out more 
quickly than by chance. 

This loss of diversity is essentially the same as the increase in the level of inbreeding. With a 
small population size, it becomes inevitable that relatives are mated with each other, and their 
progeny are thus inbred.   

The inbreeding coefficient of an individual is the probability that the two genes that it inherits 
from its two parents are identical by descent – they are exact copies of a gene carried by an ancestor 
that is in the pedigree of both of its parents. However, an individual cannot pass its merit for 
inbreeding to its progeny – for that to happen we would have to squeeze two genes into one sperm 
or egg, and that is not how it works. Inbreeding is not heritable. 

Highly inbred individuals have more identical genes, and thus have less genetic diversity or 
variation within themselves, and this is a key reason that they tend to survive and perform poorly. 
However, within a small closed breeding population, there is also generally less genetic variation 
among individuals, because they share so many recent ancestors in common. The reduction in 
genetic diversity is simply related to the increase in average inbreeding coefficient: 

Genetic variation = (1 – average inbreeding coefficient) x genetic variation without inbreeding. 
So, inbreeding in a small closed population leads directly to loss of genetic diversity. We can 

reduce the rate of increase in inbreeding in three related ways: 
1. Use more individuals as parents 
2. Select individuals that are on average less related to each other across the group 
3. Allocate more matings to individuals that are less related to the rest of the population 
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All of these are accommodated in correct balance with each other when we select parents and 
the numbers of matings to allocate to each by minimising the mean Parental Coancestry (PC) of 
the selected group. The coancestry between two individuals is the same as the inbreeding coefficient 
of the progeny they would produce. This means that Parental Coancestry would be the expected 
mean inbreeding in progeny if we had random mate allocation, including self-mating at random! We 
cannot achieve this in most species, so Parental Coancestry is in fact a measure of contribution to 
inbreeding in later generations – if we keep Parental Coancestry low, we keep long-term inbreeding 
low. When combined with consideration of genetic gain, this constitutes Optimal Contributions 
Selection, whether coancestry and inbreeding are derived from pedigree or genomic information 
(Meuwissen et.al. 2021). 

The three points above all relate to selection of individuals to be used as parents, with no attention 
to mate allocations. So, in addition, we can delay the expression of inbreeding by avoiding the 
mating of relatives, reducing inbreeding in the next generation. However, this only delays the 
inevitable mating of relatives in later generations. So, if we avoid the mating of relatives, we keep 
short-term inbreeding low. This paper examines the interplay of these two inbreeding management 
strategies, together with the degree of emphasis on genetic gains. 

 
MATERIALS AND METHODS 

A small population was simulated using PopSim (https://www.youtube.com/watch?v=5K4Q7SkBdMk&t) 
with the following properties: Discrete generations for simplicity, 25 breeding females each 
producing 4 offspring of random sex, maximum 10 females mated per male, BLUP selection on a 
single trait with heritability 25%. 

Parental Coancestry was targeted to increase over t = 20 
generations at the same closely-controlled set of rates across 
treatments for Progeny Inbreeding. The rates chosen were 
dictated using different values for the balance between genetic 
merit (“Progeny Index”) and Parental Coancestry, these being 
0, 25, 45 and 75 Target Degrees (TD), where 0 degrees puts 
full emphasis on high Progeny Index, and 90 degrees puts full 
emphasis on low Parental Coancestry (Figure 1; and Kinghorn 
and Kinghorn, 2021).    

However, policies on avoiding Progeny Inbreeding (and 
many other factors) can affect outcomes for Parental 
Coancestry. For example, strong emphasis on decreasing 
Progeny Inbreeding can result in decreased Progeny Index and 
increased Parental Coancestry in any one generation, as seen 
for the current solution in the Figure 1. 

So rather than using TD, a hard limit was placed on 
maximum permissible Parental Coancestry, increasing each 
generation. This was done by first generating simulated populations at each of the three TDs > 0 (as 
0 TD is unconstrained for Parental Coancestry), and the realised values for Parental Coancestry in 
each generation were then used to set a target maximum Parental Coancestry each generation in 
subsequent simulations. This approach was needed to give comparable results across treatments. 

For each TD, three weightings for avoiding Progeny Inbreeding were applied (W = 0, -1, -100; 
See Kinghorn and Kinghorn 2021), plus a fourth treatment for which only close matings (full sibs, 
half sibs, parent-offspring) were avoided. All results are the means for 20 replicate simulations. 

 
RESULTS AND DISCUSSION 

Figure 2 shows a wide range of results for Progeny Inbreeding and Progeny Index across TDs 

Figure 1. Balancing Genetic 
merit and Genetic diversity 
using Target Degrees 

https://www.youtube.com/watch?v=5K4Q7SkBdMk&t
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and treatments for Progeny Inbreeding (F). It can be seen that a strong weighting against inbred 
progeny (W=100) strongly reduces F, especially at low TDs. However, the need to select individuals 
able to give this outcome results in much lower Index response. For all TDs, the best strategy for 
genetic gain is a moderate weighting (W=1) against Progeny Inbreeding. 

 
 Progeny Inbreeding (F) Progeny Index (G) 

0 

  

25 

  

45 

  

75 

  
   

Figure 2. Mean Progeny Inbreeding and Index by year for TargetDegrees ranging from 0 
(aggressive) to 75 (conservative). Treatments are weightings of W = 0, 1, and 100 against 
Progeny Inbreeding, plus avoidance of mating close relatives, “avoid”. 
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The “avoid” strategy gives substantially reduced Parental Coancestry (Figure 2). Detailed 
observation shows that this is because avoiding the mating of close relatives has usually required 
selection of individuals that would not otherwise be selected. This causes increased diversity 
(reduced Parental Coancestry), but it also decreases selection response. However, this is due to the 
very small population size used here.  In most breeding programs, use of this strategy will lead to 
re-shuffling of matings to avoid mating close relatives with little or no effect on selections. 

Does the reduced inbreeding under W>0 mean we are increasing genetic diversity? Not at all! 
Mean Parental Coancestry is the measure of diversity, and this is essentially identical for W=0 and 
W=1 in Figure 3. Progeny Inbreeding for W=0 lags behind Parental Coancestry as follows: one 
generation, because the inbreeding in an animal equals the coancestry between its parents, plus about 
one more generation in this case, because calculation of Parental Coancestry includes self 
relationships, as indicated previously. It is this latter bit that accommodates the very real impact of 
small population size on long-term inbreeding. Progeny Inbreeding is usefully reduced by using 
W=1 in figure 3, with no cost to coancestry or genetic gain. In fact there may be some positive effect 
on gain due to reduced inbreeding depression. 

As a “bottom line”, Figure 4 shows that breeding to strongly reduce progeny inbreeding (TD=0, 
W=100) results in poor selection response. Moderate pressure to reduce progeny inbreeding (TD=0, 
W=1) is much better, but long-term response is reduced because of lack of attention to Parental 
Coancestry. The best strategy here is moderate attention to both Parental Coancestry and Progeny 
Inbreeding (TD=25, W=1). This strategy gave 12.2% more response in Index, and leaves the 
population with 61.5% more genetic variation after 20 generations. Overall, for genetic gain, 
coancestry management was 4.9 times more valuable than inbreeding management, and it was 7.7 
times more valuable for genetic diversity. 

 
CONCLUSIONS 

To manage inbreeding and genetic gain in breeding populations, attention to keep Parental 
Coancestry low (eg. choosing and invoking an appropriate Target Degrees) is generally very much 
more important than steps to reduce Progeny Inbreeding. However, both play a role and both should 
be attended to appropriately. 
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Figure 3. Parental Coancestry and Progeny 
Inbreeding trends for W=0 and W=1 under 
TD=25 

Figure 4. Genetic gains for strategies to 
decrease progeny inbreeding, coancestry, 
and both 
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SUMMARY  
Rapid, on-farm genotyping may be an alternative to SNP chip genotyping for genomic selection 

in certain agriculture industries. This study aimed to assess the accuracy of genomic breeding values, 
estimated from simulated Oxford Nanopore derived genotypes. Oxford Nanopore Technologies’ 
(ONT) single nucleotide sequencing and genotyping accuracy was calculated from real sequencing 
runs of cattle DNA, and used to alter 50K SNP array genotypes in a population of 868 Brahman 
heifers. Genomic breeding values for age of first corpus luteum (an indicator of age of puberty, were 
estimated from the simulated ONT genotypes. The accuracies were compared to accuracies 
calculated using the original SNP array genotypes. Simulated ONT genotypes representing as little 
as 4 X sequencing coverage were able to generate accuracies not statistically different to SNP chip 
genotype accuracies.  
 
INTRODUCTION 

Genomic selection (GS) first described by Meuwissen et al. (2001), is a technique widely used 
in agriculture, which uses genomic information to predict the genomic estimated breeding value 
(GEBV) of an individual for key traits. Typically, single nucleotide polymorphism (SNP) arrays are 
used to cost effectively genotype tens-of-thousands of SNPs, spread evenly across the genome, for 
genomic selection. Given a sufficiently large reference population of genotype and phenotype data, 
the GEBV can be accurately predicted from the SNP genotypes.  

Turnaround time has limited the use of SNP genotyping and GS in Australia’s northern beef 
industry, where cattle are often only handled once a year. With Queensland, the Northern Territory 
and Western Australia accounting for 62% of Australia’s national beef herd, the difficulty of 
adopting GS in northern Australia represents a significant loss of potential productivity. We 
previously proposed a solution to this problem, namely crush-side genotyping (Lamb et al. 2020). 
Crush-side genotyping describes the use of ONT’s MinION sequencer to rapidly, genotype cattle 
on-farm as they pass through the crush. A major limitation to the technology, is its high error rate. 
Improvements in flow cell chemistry and base calling algorithms has seen the error rate steadily 
decrease in recent years. However, the current error rate (between 5-8%) is still significantly higher 
than that of SNP array genotyping. The objective of this study was to ascertain the effect of ONT 
sequencing errors on the accuracy of genomic estimated breeding values in Brahman cattle. 

 
MATERIALS AND METHODS  

Ethics. All analysis was performed using phenotypes and DNA samples previously collected 
with approval by the J.M. Rendel Laboratory Animal Experimental Ethics Committee (CSIRO, 
Queensland) as approvals TBC107 (1999 to 2009) and RH225-06 (2006 to 2010).  

Nanopore Sequencing Error Rates. To determine ONT sequence error rates, ONT sequence 
data (approximately 8 X coverage) from a Brahman cow sequenced on MinION R9 flow cells was 
aligned against the Brahman genome (assembled from data from the same animal ; Ross 2019) using 
minimap2 (Li 2018) with the default settings for ONT alignment. Samtools mpileup (version 1.2, Li 
et al. 2009) was used to create a genome wide mpileup of the reads aligned to the reference genome. 
A maximum read depth of 50 was used to avoid chimeric repeats or ambiguously aligned regions of 
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the genome. The number of single nucleotide mismatches for each locus across the genome was 
calculated from the mpileup using R. The error rates were reported as percentages of mismatches 
for each nucleic acid, given the total number of observations of nucleotides at all reference sites of 
a particular nucleic acid. For example, adenosine-guanine errors are the number of Guanine 
mismatches divided by all observations at reference adenosine sites.  

Nanopore Genotyping Error Rates. A subset of reads, representing 4 X, 6 X, 8 X, 10 X and 
18 X coverage from a second Brahman cow sequenced on the MinION, were then aligned using 
Minimap2 to the Bos taurus reference genome. Reference assembly UMD 3.1.1 was used to ensure 
reference loci and strand direction matched between sequencing and SNP chip genotypes. Samtools 
and BCFtools were used with a probability threshold (P value) of 1 for SNP discovery and a phred 
scaled base accuracy threshold (Q score) of 7, to genotype loci on the BovineSNP50 BeadChip 
(Illumina, San Diego, CA). Three methods (variable allele count, set ratio and minimum allele count) 
for assigning genotypes from the sequence were examined.  The variable allele count method 
grouped loci by total coverage, and used a separate minimum allele count for each group to verify a 
genotype (Figure 1). This method was hypothesised to better distinguish between sequencing noise 
and heterozygous genotypes at higher coverages. The set ratio method called a particular observation 
as a likely true genotype if the allele was observed in greater than 10% of total observations at that 
loci. Finally, the minimum allele count method called a true genotype if a particular allele was 
observed more than twice no matter the total coverage. Any loci with more than two different alleles 
observed were considered incorrect genotype calls.  All genotypes were then compared to the SNP 
chip genotypes to calculate genotyping accuracy, as well as the percentage of missing calls (loci 
with less than 2X coverage).   

Figure 1. Genotyping method. Three different SNP genotyping methods were used to call 
variable loci  
 

Simulating Nanopore Genotypes and Genomic Breeding Value Prediction. The cattle used 
in this experiment represent a subset of the Northern Breeding Project population, established by the 
Cooperative Research Centre for Beef Genetic Technologies. Phenotypes and management history 
for this herd have been extensively documented (Johnston et al. 2009; Engle et al. 2019). Records 
from a subset of 868 Brahman heifers was taken, including management history and age of first 
corpus luteum (AGECL), as determined using ultrasound scanning. The 868 heifers were also 
genotyped using the BovineSNP50 BeadChip (Illumina, San Diego, CA; Hawken et al. 2012).  

Herd of origin, management cohort and birth month were concatenated into a single factor: 
contemporary group, which was modelled as a fixed effect (Engle et al. 2019). As only a Brahman 
subset was used in this study Bos indicus content was excluded as a covariate.  



Proc. Assoc. Advmt. Anim. Breed. Genet. 24:195-199 

197 

Genomic best linear unbiased prediction (GBLUP) was used to calculate GEBVs for AGECL 
using the univariate model:   

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝑒𝑒 
Where 𝑦𝑦  is the vector of phenotypes, 𝑋𝑋 is a design matrix allocating phenotypes to fixed effects, 

𝑋𝑋 is a vector of the fixed effect contemporary group, 𝑍𝑍 is a matrix of SNP genotypes and 𝑍𝑍 is a 
vector of additive SNP effects.  

The genotyping error rate for each coverage was used to randomly select a number of SNP 
genotypes in Z to alter. The calculated Nanopore sequencing error rate was then used to simulate 
errors at these loci consistent with the Nanopore error profile. The percentage of missing genotypes 
was also used to introduce missing SNPs.   

To calculate the GEBV accuracy for AGECL 5-fold cross validation was used, with each 
validation population representing 20% of the total population (n = 868). Validation animals were 
included in the G matrix but coded with missing phenotypes. The package MTG2 (Lee and van der 
Werf 2016) was used for the predictions and the accuracy was calculated using 𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑟𝑟(𝐺𝐺𝐺𝐺𝑋𝑋𝐺𝐺,𝐴𝐴𝐺𝐺𝐺𝐺𝐴𝐴𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟)/√ℎ2  where ℎ2 = 0.55. The 95% confidence interval was used to compare 
accuracies across the different simulations.  

Two scenarios were simulated when calculating the accuracy of the GEBVs. The first simulation 
represented a scenario where, all animals, both reference and validation populations, were genotyped 
using ONT. This was simulated by simulating ONT errors in all animals. The second simulation 
represented, the more realistic situation where the reference population was SNP chip genotyped, 
while the validation population was genotyped using ONT. This was simulated by inducing errors 
into only animals in the validation population.  
 
RESULTS AND DISCUSSION  

Cytosine and thymine were found to have the lowest sequencing accuracies with 0.84% and 
0.83% of bases at cytosine and thymine loci being inaccurately sequenced. The sequencing error 
rate revealed that for each nucleotide there was a single nucleic acid which was significantly more 
likely to be incorrectly called than the other nucleic acids (Table 1). For example, errors at adenosine 
loci were three time more likely to be called as  guanine than either cytosine or thymine.  

 
Table 1. Nanopore sequencing error rates. The distribution of substitution errors observed 
in Nanopore sequencing data mapped to the reference genome built from the same animal  

  
Reference Nucleotide1   

A C T G 

Alternate  
Nucleotide2 

A NA 18.03% 68.74% 16.34% 
C 17.85% NA 13.13% 65.83% 
G 65.70% 13.27% NA 17.83% 
T 16.46% 68.70% 18.13% NA 

1 The observed nucleotide in the reference genome 

2 The nucleotide observed in the mapped Nanopore reads 

 
The minimum allele count method performed best at high coverages while the set ratio method 

had better genotype calling accuracies at lower coverages. Despite this the variable allele count 
method still outperformed the other two methods across all coverages (Table 2). At 18 X coverage 
the maximum genotyping accuracy achieved was 93.89%, in order to further increase the genotyping 
accuracy methods to disseminate between systematic sequencing errors, such as methylation, may 
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still be required. Strand bias for example, could be used to filter out methylation signals to increase 
the accuracy of genotyping.  

 
Table 2. Nanopore genotyping accuracies and percentage of missing genotypes for various  
coverages  
 

 

 
The genotyping errors observed (Table 2) also supported the ratios of nucleotide sequencing 

errors (Table 1), for example, at homozygous adenosine loci (AA) for 10 X coverage, 95.5% of loci 
were called correctly as AA or TT (the reverse compliment), while 3.3% of loci were called 
incorrectly as AG or GA. The other 12 genotype combinations shared the remaining 1.2% of AA 
loci evenly. This supports the earlier findings that A-G errors are more than three times more 
common in Nanopore sequencing than A-C or A-T. This pattern was observed in the results across 
all genotype combinations and could be leveraged to further increase the accuracy of Nanopore 
genotyping by incorporating a more stringent threshold for calling a genotype which corresponds to 
the most error prone nucleic acid given the reference loci. Using the AA example above, this would 
mean increasing the threshold for a guanine genotype call at an adenosine reference locus to decrease 
incorrect AG/GA genotype calls.  

The GEBV accuracy of AGECL from the SNP chip genotypes was 0.39 ± 0.03 which is not 
statistically different to the accuracy reported by Engle et al. (2019), although removing tropical 
composites from the herd (effectively decreasing the reference population by 1,000 animals) likely 
describes the difference in average accuracy. At coverage as low as 4 X, there was no difference 
between the SNP chip accuracy and the simulated Nanopore genotype accuracies (Figure 2). 
Another study using Nanopore sequence data to predict genomic breeding values in cattle for three 
other traits: body condition score, hip height and body weight also reported accurate genomic 
predictions were possible from 4 X sequencing coverage without imputation (Lamb et al. 2021). 
This demonstrates accurate genomic prediction from Nanopore data is possible for a range of 
desirable traits.  

A difference between the 95% confidence interval in the two different genotyping scenarios 
(reference and validation versus validation only) can be seen at 4 X coverage. However, this 
difference appears to decrease at higher coverages, likely due to the overall increase in genotyping 
accuracy.   

Coverage 
 4 6 8 10 18 

Percentage of loci not called1 41.2% 9.5% 4.4% 4.1% 0.6% 

Accuracy (Variable allele count)2 84.5% 87.4% 89.7% 91.4% 93.9% 
Accuracy (Minimum allele count)3 66.9% 74.8% 81.5% 86.8% 93.7% 
Accuracy (Set ratio)4 84.4% 87.1% 89.2% 90.3% 93.0% 
1 Loci which did not meet the minimum depth criteria (>2 reads) for genotyping 
2 Variable SNP calling criteria were used based on the sequencing depth at each loci (See Figure 1) 
3 Alleles were called as present if observed more than 2 times 
4 Alleles were called as present if they comprised more than 10% of observed alleles at that locus 
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Figure 2: GEBV accuracies for AGECL calculated from 33k genotyped loci. Genotypes were 
either directly observed in the SNP array data or had the error profile observed in SNP calling 
from ONT data simulated in the dataset. ONT errors were either simulated in both the 
reference and validation population or only in the validation population to represent two 
different sequencing scenarios 
 
CONCLUSIONS  

Here, we have demonstrated genotyping accuracies as high as 85% are achievable with just over 
4 X Nanopore sequencing coverage. Using a SNP chip genotyped reference population, simulated 
Nanopore genotypes generated GEBV accuracies that were not significantly different (P > 0.05) 
from accuracies achieved using entirely SNP chip genotypes. This suggests ONT genotyping at low 
coverages can provide comparable GEBV accuracies to traditional SNP chip genotyping. 
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SUMMARY 
A SNP array of 50k SNP markers was used in single-step GBLUP (SS-GBLUP)  models to 

estimate breeding values in the Australian sheep genetic evaluation system. In 2019, Neogen 
launched a new GeneSeek Genomic Profiler Ovine 50k chip, which included ~5000 SNPs that were 
identified based on Sheep CRC research as highly predictive for growth, carcass and eating quality 
traits. The objective of this work was to apply a five-fold cross-validation approach to compare 
different models for the use of predictive SNPs for post-weaning weight (PWT), carcass eye muscle 
depth (CEMD), carcass fat at C site (CCFAT), intramuscular fat (IMF) and shear force (SF5) based 
on the LAMBPLAN terminal sire genetic evaluation. Correlation and regression coefficients 
between adjusted phenotypes and SS-GBLUP EBVs for validation animals from the different 
models were calculated. The results indicated that adding predictive SNPs slightly improved the 
correlation and regression coefficient of EBVs, but there was no advantage in giving them more 
weight via a separate term in the model, confirming that the current industry evaluation model using 
a single genomic relationship matrix is the best of the tested models for these traits. 
 
INTRODUCTION 

Single-step genomic BLUP (SS-GBLUP) procedures have been implemented in the Australian 
sheep genetic evaluation system since 2017 (Brown et al. 2018). Prior to 2020, the genomic 
relationship matrix (GRM) used in SS-GBLUP analyses was built using an ovine 50k panel of 
common SNPs. Recent genome-wide association studies have identified ~5000 predictive SNP 
markers for carcass and eating quality traits in sheep (Moghaddar et al. 2019). In 2019, Neogen 
launched a GeneSeek Genomic Profiler Ovine (GGP) 50k panel, which included these predictive 
SNPs. To accommodate these markers, the set of SNPs used in routine genetic evaluations was 
modified to be the union of all SNPs included on all panels used for sheep genotyping, resulting in 
a set of 60,410 SNPs. This set of SNPs was then implemented in the sheep SS-GBLUP analyses in 
a single genomic relationship matrix (GRM) from 2020. However, this method assumes equal 
weighting for all SNPs. An alternative approach is to use an additional term in the model, using a 
separate GRM based on predictive SNPs, effectively giving them more weight to those SNPs. In 
this study, models with one or two GRMs fitted in the SS-GBLUP model for the calculation of 
breeding values were investigated using a five-fold cross-validation approach. The correlation and 
regression of SS-GBLUP EBVs with adjusted phenotypes from the different models were compared.  

 
MATERIALS AND METHODS 

Phenotype data. This study was conducted using data from the LAMBPLAN terminal sire 
industry evaluation, due to the new predictive SNPs targeting growth, carcass and eating quality 
traits. The data consisted of records from animals measured for the main slaughter traits in the Sheep 
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CRC Information Nucleus Flock (van der Werf et al. 2010) and the MLA Resource Flock databases 
which are used in the industry evaluation. Phenotypes were pre-adjusted for a combination of birth 
type, rearing type, age, and age of dam, depending on the trait. Five traits from two data sets were 
used in SS-GBLUP analyses to estimate breeding values for cross-validation (Table 1). The first 
data set included 9688 animals that had all five traits observed as well as SNP genotype information 
(the “small data set”). To investigate whether the extra phenotypes from ungenotyped animals 
affected the cross-validation results for those genotyped animals, the second data set extended the 
small data set by including all ungenotyped animals with at least one trait observed for any of the 
five traits in the analysis (the “large data set”). A summary of the two data sets is presented in Table 
1. Pedigree information was extracted from the LAMBPLAN database and included 44,874 and 
1,985,749 animals for the small and large data sets, respectively.  

 
Table 1. Traits (units), number of animals (N), mean and standard deviation (sd) for the  small  
(animals with all phenotypes and genotypes) and large (all animals including ungenotyped 
animals with at least one phenotype) data sets in this study 
 

Trait Unit 
Small data set Large data set 

N mean sd N mean sd 
Post-weaning weight (PWT) kg 9688 58.58 9.47 1,674,789 58.00 9.71 
Carcass eye muscle depth (CEMD) mm 9688 31.31 3.87 16,753 31.43 3.77 
Carcass fat at C site (CCFAT) mm 9688 4.13 1.96 16,560 4.63 2.48 
Intramuscular fat (IMF) % 9688 4.24 0.99 14,832 4.35 1.04 
Shear force (SF5) Newtons 9688 34.88 15.22 14,840 34.24 15.16 

 
The five-folds subsets derived from the 9688 genotyped animals were used as the cross-

validation data set for SS-GBLUP analyses. Animals were crosses between terminal sire breed rams 
and Merino ewes or Border Leicester x Merino ewes. The main ram breeds represented were White 
Suffolk (323 sires,3801 progeny), Poll Dorset (319 sires, 4080 progeny), Suffolk (40 sires, 499 
progeny), White Dorper (35 sires, 309 progeny), Texel (31 sires, 413 progeny) and Dorper (29 sires, 
235 progeny). Five-fold subsets were randomly allocated stratified by ram breeds and sire families 
with five replicates with the average number of sires and progeny ranging from 161 to 167 and from 
1679 to 2043 for each subset, respectively.  

Genomic data. Three sets of SNPs were used in this study: unselected (random) SNPs (55,709), 
the predictive SNPs (4,701) and the combined set (60,410). The first set was a combination of the 
original ISAG 50k sheep panel and the additional random SNPs from the Neogen GGP 50k, where 
the actual number of SNPs used is the set remaining after applying quality control measures. The 
predictive 4,701 SNPs (Moghaddar et al. 2019) were those originating from the CRC research  that 
were then commercialised on the GGP 50k. Genomic relationship matrices ( GRMs ) were 
constructed based on these SNP sets, using the implementation of the breed-adjusted GRM as 
described by Gurman et al. (2019) and as implemented in the LAMBPLAN terminal sire SS-GBLUP 
analysis. Three genomic relationship matrices were calculated: 𝐆𝐆𝑟𝑟, based on the random SNPs; 𝐆𝐆𝑝𝑝, 
based on the predictive SNPs and 𝐆𝐆𝑟𝑟𝑝𝑝, based on the combined set. 

Models. The multivariate linear mixed model used for estimating breeding values was Y = Xb 
+ ZQg + Zt + e, where Y is data in the multivariate form; Xb is the fixed contemporary group effects 
(defined as combinations of the management group, flock, year, sex, breed type and date of 
measurement); ZQg is the random genetic group effects; Zt represents combined effects of breeding 
values based on pedigree and genomic effects from different SNP sets, and e is residuals. Maternal 
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effects were included as permanent environment effects for PWT. Four combinations of polygenic 
and genomic effects were compared to identify appropriate models: 1) A model: 𝒁𝒁𝒁𝒁 =  𝒁𝒁𝒁𝒁; 2) A+Gr 
model: 𝒁𝒁𝒁𝒁 =  𝒁𝒁𝒁𝒁 + 𝒁𝒁𝒖𝒖𝒓𝒓; 3) A+Grp model: 𝒁𝒁𝒁𝒁 =  𝒁𝒁𝒁𝒁 + 𝒁𝒁𝒖𝒖𝒓𝒓𝒓𝒓; and 4) A+Gr+Gp model: 𝒁𝒁𝒁𝒁 =  𝒁𝒁𝒁𝒁 +
𝒁𝒁𝒖𝒖𝒓𝒓 + 𝒁𝒁𝒖𝒖𝒓𝒓 , where a, ur, up and urp are N(0, 𝑨𝑨⨂𝚺𝚺𝒁𝒁 ), N(0, 𝐇𝐇𝒓𝒓⨂𝚺𝚺𝒈𝒈𝒓𝒓 ), N(0, 𝐇𝐇𝑝𝑝⨂𝚺𝚺𝒈𝒈𝒓𝒓 ) and 
N(0, 𝐇𝐇𝑟𝑟𝑝𝑝⨂𝚺𝚺𝒈𝒈𝒓𝒓𝒓𝒓) respectively, with Hr, Hp and Hrp matrices derived from combining the genomic 
relationship matrixes Gr, Gp and Grp with pedigree relationship matrix A, respectively. 𝚺𝚺𝒁𝒁, 𝚺𝚺𝒈𝒈𝒓𝒓, 𝚺𝚺𝒈𝒈𝒓𝒓 , 
and 𝚺𝚺𝒈𝒈𝒓𝒓𝒓𝒓  are the multivariate genetic variance-covariance matrices due to those corresponding 
relationship matrices as estimated by Gurman et al. (2021). 

The average accuracy of the different models was assessed by the correlation coefficient between 
EBVs and phenotypes adjusted for contemporary group effects (solutions from the same models 
with the full data set) for the animals in the test set which were removed from the analysis. Note that 
correlations were presented without scaling by heritability. The bias was evaluated based on the 
regression coefficient of adjusted phenotype on EBVs. This process was repeated for all five cross-
validation sets. 

 
RESULTS AND DISCUSSION 

The average correlation and regression coefficient for validation animals across the five cross 
replicates from cross-validation are shown in Table 2 for the small data set and in Table 3 for the 
large data set. Results from both data sets show that the average correlation increased by the largest 
amount when adding genomic information, from model A to model A+Gr, with much greater 
improvement for carcass and eating quality traits (17.6 ~ 43.5% increase) than growth traits (5.3 ~ 
7.9 % increase for PWT). The correlation was also generally higher in the large data set compared 
to the small data set. There were small improvements in correlation when adding predictive SNPs 
in the combined GRM, from A+Gr to A+Grp, but no apparent benefit was observed in fitting 
predictive SNPs in a separate GRM in model A+Gr+Gp. The results confirm that the current 
LAMBPLAN model (A+Grp), including predictive SNPs in a combined GRM is an appropriate 
solution to exploit the additional benefits of these SNPs. 
 
Table 2. Average correlation and regression coefficients for validation animals for post-
weaning weight (PWT), carcass eye muscle depth (CEMD), carcass fat at C site (CCFAT), 
intramuscular fat (IMF), and shear force (SF5) for models A, A+Gr, A+Grp and A+Gr+Gp  
across 5 replicates for the small data set 

 
Models PWT CEMD CCFAT IMF SF5 
   Correlation   
A 0.38 0.17 0.17 0.23 0.18 
A+Gr 0.40 0.20 0.23 0.33 0.23 
A+Grp 0.41 0.21 0.24 0.36 0.25 
A+Gr+Gp 0.40 0.19 0.22 0.34 0.23 
  Regression coefficient  
A 0.97 1.01 0.90 0.92 0.92 
A+Gr 0.93 0.97 0.98 1.10 1.01 
A+Grp 0.94 0.99 1.00 1.15 1.03 
A+Gr+Gp 0.93 0.83 0.88 1.08 0.91 

1 Standard deviation for correlation and regression coefficients ranged from 0.002 to 0.008 
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Table 3. Average correlation and regression coefficients for validation animals for post-
weaning weight (PWT), carcass eye muscle depth (CEMD), carcass fat at C site (CCFAT), 
intramuscular fat (IMF), and shear force (SF5) and for models A, A+Gr, A+Grp and A+Gr+Gp 
across 5 replicates for the large data set 

 
Models PWT CEMD CCFAT IMF SF5 
   Correlation   
A 0.38 0.19 0.22 0.31 0.20 
A+Gr 0.41 0.23 0.27 0.39 0.25 
A+Grp 0.41 0.24 0.28 0.41 0.26 
A+Gr+Gp 0.41 0.22 0.26 0.39 0.24 
  Regression coefficient  
A 0.87 0.91 0.95 0.93 0.96 
A+Gr 0.81 0.82 0.89 1.08 0.94 
A+Grp 0.81 0.83 0.90 1.12 0.95 
A+Gr+Gp 0.82 0.74 0.83 1.08 0.84 

1 Standard deviation for correlation and regression coefficients ranged from 0.002 to 0.008  
 
Regression coefficient estimates were generally within an acceptable range around the 

expected value of 1 in both data sets, although there was a greater degree of over-prediction 
(regression coefficient < 1) in the large data set relative to the small data set. This could be due to 
the variance components used in both data sets were estimated using the small data set. Over-
prediction regression coefficient was also more remarkable for the weight trait, PWT. It is interesting 
to note that IMF is the only trait with under-prediction regression coefficient (regression coefficient 
>1), especially for the A+Grp model.  

 
CONCLUSIONS 

Cross-validation analyses comparing the predictive ability of breeding values demonstrated the 
benefits of including genomic information, and that predictive SNPs do increase correlation by a 
small amount, and they can be included in a single genomic relationship matrix with all SNPs rather 
than used for an additional random term. This method is equivalent to the current industry evaluation 
model for these traits, highlighting that the current method is the more accurate of those investigated. 
 
ACKNOWLEDGEMENTS 

This work was funded by MLA Project L.GEN.1815. 
 

REFERENCES 
Brown D.J., Swan A.A., Boerner V., Li L., Gurman P.M., McMillan A., van der Werf J.H.J. (2018) 

Proc. World Congr. Genet. Appl. Livest. Prod. Species-Ovine:460. 
Gurman P.M., Bunter K.L., Boerner V., Swan A.A., Brown D.J. (2019) Proc. Assoc. Advmt. Anim. 

Breed. Genet. 23:254. 
Gurman P.M., Li L., Swan A.A., Moghaddar N., and van der Werf J.H.J. (2021) Proc. Assoc. Advmt. 

Anim. Breed. Genet. 24:. 
Moghaddar N., Khansefid M., van der Werf J.H.J., Bolormaa S., Duijvesteijn N., Clark S.A., Swan 

A.A., Daetwyler H.D. and MacLeod I.M., 2019. Genet. Sel. Evol. 51(1), 72. 



Contributed paper 

204 

RANKING BRAHMAN BULLS FOR FEMALE REPRODUCTIVE PERFORMANCE IN 
NORTHERN AUSTRALIAN COMMERCIAL ENVIRONMENTS USING DNA POOLING  

 
Y. Li1, L. Porto-Neto1, R. McCulloch1, S. McWilliam1, P. Alexandre1, J. McDonald2, A. 

Reverter1 and S. Lehnert1 
 

1 CSIRO Agriculture and Food, St Lucia, QLD, 4067 Australia 
2 MDH Pty Ltd, Cloncurry QLD 4824, Australia 

 
SUMMARY 

Female fertility is one of the important reproductive traits that directly impact the profitability 
of commercial beef breeding herds. DNA pooling of cows with reproductive records can provide a 
cost-effective way for assessing and predicting the contribution of individual bulls to the fertility of 
their female offspring. However, panels of different SNP density exist and their impact on genomic 
prediction is unknown when DNA pooling is applied. In this study, using the genotype and 
phenotype (pregnancy test and lactation status) from two Brahman cattle populations in north 
Queensland, one containing 715 samples genotyped with 54,791 SNPs, the other consisting of 290 
samples genotyped with 74,584 SNPs, we investigated genetic relationships between the two 
populations as well as rankings of individual bulls based on genomic prediction for pregnancy test 
outcome of their progeny. Our results show different outcomes obtained from using different density 
SNP panels in separating cow pooling samples, and estimating genomic breeding values for 
pregnancy test outcome of individual bull’s progeny. The research highlights that extreme caution 
needs to be taken for choosing SNP panels of different densities to rank and select bulls for 
commercial beef production based on DNA pooling technology.   
 
INTRODUCTION 

Genomic prediction of breeding values based on a genomic relationship matrix has 
revolutionized the ability to identify genetically superior livestock for improving traits that are 
difficult to measure (van der Werf 2009). However, in commercial herds, it is impractical to 
individually genotype all animals. DNA pooling of cows with reproductive records can provide a 
cost-effective way for assessing and predicting the contribution of individual bulls to the fertility of 
their female offspring (Reverter et al. 2016). A question that remains to be answered is what density 
SNP panel should be used to genotype DNA pooled cows to rank bulls to achieve accurate prediction 
of reproductive performance of their progeny? In this study, using two Brahman cattle populations 
in north Queensland, we aimed to investigate the impact of SNP panels of different density on the 
ranking of bulls. 
 
MATERIALS AND METHODS 

Animals. Datasets from two Brahman cattle populations in north Queensland were used for the 
study. One (SmartF) consists of 290 samples from 2012-2014 herds (177 individual bulls and 113 
pools representing 2,648 cows) genotyped with 74,584 SNPs (770K BovineHD BeadChip 
platform). The other (MDH2020) contains 715 samples from the 2020 herd (482 individual bulls 
and 233 pools representing 2,452 cows) genotyped with 54,791 SNPs (Neogen Australasia GGP 
TropBeef 50K chip). DNA pools were formed based on the pregnancy test (i.e. not pregnant or 
pregnant) and lactation status (dry or wet) of cows at 2nd joining. Details of the phenotype of 
pregnancy test outcome (PTO) and pooling techniques can be found in Reverter et al. (2016). In 
brief, animals were separated into 6 categories, that is, dry and empty (not pregnant, scored as 1), 
dry and early pregnant (scored 2), dry and mid pregnant (scored 3), dry and late pregnant (scored 
4), wet and empty (not pregnant, scored as 5), and wet and pregnant (scored 6). DNA samples of 
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animals with identical phenotypic scores were pooled together.  The individual pool size ranged 
from 4-45 animals for SmartF (Reverter et al. 2016) and from 5-12 animals for MDH2020, 
depending on the number of animals available in each category. Details of the two datasets are 
presented in Table 1.  

 
Table 1. Composition of two genotyped populations  
 

Population Sex Year DNA samples Total 
SmartF Cows 2012 41 (pools)  

(74,584 SNPs)  2013 31 (pools)  
  2014 41 (pools) 113 
 Bulls 2013 27  
  2014 150 177 

MDH2020 Cows 2020 233 (pools) 233 
(54,791 SNPs) Bulls 2020 482 482 

 
Imputation of genotypic data. Between the two populations, there were 19,089 SNP in 

common. The imputation from low to high-density SNP genotypes was conducted to both SmartF 
and MDH2020, using 730,000 SNPs from 5,040 Beef CRC Brahman cattle as the reference. PLINK 
(Change et al. 2015) and Eagle v2.4.1 (Loh et al. 2016) were applied for phasing and imputation, 
respectively. After quality checks with the threshold of R-square value >0.8 and removing SNPs on 
the sex chromosome, this resulted in 615,310 SNPs. 

Principal Component Analysis (PCA). To visualize genetic relationships between two 
populations, we conducted a PCA using genotypes from either the low density (19,089 common 
SNP) or imputed high-density panel (615,310 SNP, HD). 

Genomic prediction. Genomic estimated breeding values (GEBVs) of PTO of progeny for 
individually genotyped bulls were derived within each population. The conventional genomic 
prediction method was applied to derive GEBVs, that is, a mixed animal model was used by fitting 
a polygenic random effect with the GRM (genomic relationship matrix). The fixed effects included 
the size of pool (30 levels) and contemporary group (5 levels) for SmartF, and SNP chip row (3 
levels) and column (24 levels) information for different pools in MDH2020, respectively. The GRM 
was constructed using the method described by Reverter et al. (2016). In brief, the B-allele 
frequencies from the genotypes of the pools of cows (≤0.25, >0.25 and <0.75 or ≥0.75, best fitted 
the three genotypes based on the individual DNA samples and the genotype call algorithm employed 
by Illumina) were converted into the three possible genotypes (i.e. 0, 1 and 2 for AA, AB, and BB, 
respectively) and these were merged with the individual genotypes of each bull to generate a single 
GRM relating bulls with pools of cows. Then the Qxpak5 software program (Pérez-Enciso and 
Misztal 2011) was used to fit the GRM in a mixed animal model and obtain genomic estimates of 
variance components and genomic predictions (GEBVs) for PTO of the testing population. For 
comparison purposes of different density panels within populations, GEBVs were derived using four 
GRMs, either with 19,089, 54,791 (for MDH2020 only), 74,584 (for SmartF only), or high density 
(HD) SNP.  
 
RESULTS AND DISCUSSION 

Relationships between animals of two populations. The results from the PCA on all 1,005 
animals (290 from SmartF and 715 from MDH2020) are shown in Figure 1. When a low-density 
SNP panel data (19,089, Figure 1a) was used, 346 DNA pooled cow samples from both populations 
were clustered together with very small variation among them, suggesting high similarity in the 
number of alleles between pooled samples. For the 659 individually genotyped bulls (red and blue 
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dots), there was a much wider range of variation than for cows. However, when the high-density 
SNP panel was applied (HD, Figure 1b), there was a clear separation of cow samples of within and 
across two populations. But bulls remained mixed up as low-density results show, with a much 
narrower range of variation. This indicates that the bulls in the two populations had some degree of 
relatedness among themselves, but not among the cows. Therefore, the separation of pooled cows 
would not have been detected if the HD was not used. 

individually genotyped bulls (Bull2020), 233 were pools of cow DNA samples (COW2020), 177 
were individually genotyped SmartF bulls (SmartFBull) and 113 were pools of SmartF cows 
(SmartFCow). a) 19,089 common SNP; b) High density SNP 
 

Genomic predictions of bull’s PTO with different panels of SNP density. Assuming the 
results from HD are true, Table 2 shows the Pearson’s correlations among the PTO GEBVs from 
three SNP panels (19,089, 54,791 and HD) in the MDH2020 and SmartF respectively. Within 
MDH202, the correlations between GEBVs of PTO of 482 bulls were 0.74 between 19,089 and HD, 
and 0.82 between 54,791 and HD. The correlations were much lower (0.39 and 0.45 respectively) if 
only the top 25% bulls were considered (see Table 2 correlation for top 25%). Similar trends were 
observed in SmartF when the correlations of GEBVs for 177 bulls were compared (Table 2), despite 
slightly higher correlations between 19089 and 74584 with HD when the top 25% bulls were 
selected (0.54-0.59, Table 2). These suggest that if low-density panels were used to genotype pooled 
DNA cows for estimating the EBVs of PTO of bulls, at least 40-50% of the best bulls would not be 
selected.  

When further investigating the bull GEBVs of PTO estimated using HD, Table 3 illustrates the 
profiles of the GEBVs of 482 MDH2020 bulls in different quartiles. The average GEBV difference 
between top and bottom 25% of bulls was 0.292, which is much larger than the difference obtained 
using low-density panels (0.120 from 19,089 or 0.158 from 54,791, results are not shown here). For 
animals being dry and empty (score 1) to become wet and pregnant (score 6), there could take 
conservatively up to 21-27 months to achieve. The GEBV difference of 0.292 from HD would 
translate into earlier conception by 1.31 months for the female progeny of the top 25% sires.  

The study presents preliminary results for the comparison of different panels of SNP density in 
ranking commercial bulls in two populations. The phenotype score (1-6) of the 2nd joining pregnancy 
test outcome was treated as a continuous trait in which wet and non-pregnant was scored as “5” 
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instead of “2”. Further research is underway to explore the impact of different score systems on 
ranking differences.  

 
Table 2. Pearson’s correlations among GEBVs estimated from using 19,089, 54,791 and HD 
SNP panels within MDH2020 and SmartF populations, respectively 
 

Population MDH2020 SmartF 
 SNP 19089 54791 HD 190

89 
74584 HD 

All bulls 
 

19089 1 0.90 0.74 1 0.76 0.72 

54791 
/ 74584  1 0.82   

1 
 

0.81 

HD   1   1 

Top 25% 
 

19089 1 0.81 0.39 1 0.52 0.54 

54791 
/ 74584  1 0.45   

1 
 

0.59 

HD   1   1 
 
Table 3. Average genomic breeding values (GEBVs) of progeny pregnancy testing outcome 
(PTO) of the MDH2020 bulls in four quartiles using HD SNP panel  
 

Quartile # Bulls Av. GEBV Min Max 
1 -Top 25% 120 0.136 0.0833 0.323 
2 120 0.055 0.0275 0.0831 
3 121 -0.004 -0.0341 0.0261 
4 – Bot. 25% 121 -0.156 -0.2771 -0.0345 
All 482 0.023 -0.277 0.323 

 
CONCLUSION 

This research highlights the need for extreme caution to be taken when applying SNP panels of 
low or medium densities to study genetic relationships, and rank and select top bulls for commercial 
beef production based on DNA pooling technology.  
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SUMMARY 
While genome-wide association study (GWAS) is an important tool for gene discovery for economic 
traits in livestock, its use of large numbers of genetic markers necessitates the use of multiple testing 
correction methods. Several of these methods have been suggested, but their optimality is not as 
well studied. The aim of this study is to present a deterministic algorithm to provide a framework 
for estimating the power and false positive rate (FPR) in a GWAS, and using these estimates to test 
the optimality of these correction method based on the Receiver Operating Characteristic (ROC) 
curve. This study suggests that both Bonferroni correction and Benjamini-Hochberg False 
Discovery Rate are overly conservative even if under the assumption of independence between 
markers. 
 
INTRODUCTION 

Genome-wide association studies (GWAS) are commonly used to identify genes associated with 
quantitative traits. Due to the increasingly large number of markers used in GWAS however, it had 
been plagued by an unprecedented level of a multiple testing problem. To avoid the correspondingly 
increased number of false positives, a multiple testing method that increases the threshold for 
significance had been utilized in GWAS (Gondro 2015; Tam et al. 2019; Visscher et al. 2017).  

The Bonferroni correction was originally proposed due to its effectiveness in controlling the 
false positives (Narum 2006), but has since been widely criticized for its conservativeness (de Smet 
et al., 2004; Narum 2006; Tam et al. 2019). Alternative correction methods with reduced stringency 
in their threshold such as the frequently used Benjamini-Hochberg False Discovery Rate (BH-FDR) 
method have been suggested. A test on threshold optimality, defined as its ability to optimally 
balance the power and FPR of GWAS is lacking. Such an optimal threshold may depend on sample 
size, QTL effect distribution and marker allele frequencies. 

The aim of this study is to test the degree of optimality of thresholds provided by Bonferroni and 
BH-FDR methods under varying relevant parameters. Optimality will be derived from an estimate 
of power and FPR of a GWAS using a deterministic algorithm, and using these estimates to establish 
the optimality of these thresholds.  

  
THEORY 
In this study a threshold would be considered optimal if it could balance the power and FPR in a 
GWAS. Given a threshold 𝑇𝑇𝑇𝑇𝑇𝑇, alongside with effect size of the marker 𝑎𝑎, phenotypic variance 
𝑉𝑉𝑎𝑎𝑉𝑉(𝑝𝑝), allele frequency 𝑝𝑝, sample size of GWAS 𝑁𝑁 and number of QTL 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, the power of GWAS 
can be defined as follow:  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉 =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑉𝑉 𝑝𝑝𝑜𝑜 𝑛𝑛𝑉𝑉𝑁𝑁𝑝𝑝 𝑄𝑄𝑇𝑇𝑄𝑄𝑄𝑄 𝑛𝑛ℎ𝑎𝑎𝑛𝑛  𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇 �−𝑛𝑛𝑝𝑝𝑙𝑙10(𝑝𝑝𝑝𝑝𝑎𝑎𝑛𝑛𝑁𝑁𝑝𝑝)�

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 

The expected 𝑝𝑝𝑝𝑝𝑎𝑎𝑛𝑛𝑁𝑁𝑝𝑝 of a locus could in turn be calculated using the following equation: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑛𝑛𝑁𝑁𝑝𝑝 =  2 − 2𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶 �𝑎𝑎�
2𝑝𝑝(1 − 𝑝𝑝)(𝑁𝑁 − 2)

𝑉𝑉𝑎𝑎𝑉𝑉(𝑃𝑃) − 2𝑝𝑝(1 − 𝑝𝑝)𝑎𝑎2
 ,𝑁𝑁 − 2� 



Proc. Assoc. Advmt. Anim. Breed. Genet. 24:208-211 

209 

Where 𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛,𝑛𝑛) is the cumulative density function (CDF) of Student’s t-distribution with test 
statistic 𝑛𝑛 and degree of freedom 𝑛𝑛. While 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is not estimated in this study, deterministic 
algorithms for this estimation are available with assumption on the distribution of QTL effect sizes, 
for example see Hall et al. (2016). With the same threshold 𝑇𝑇𝑇𝑇𝑇𝑇, the FPR could be defined as 
follow:  

𝐹𝐹𝑃𝑃𝑇𝑇 =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑉𝑉 𝑝𝑝𝑜𝑜 𝑛𝑛𝑁𝑁𝑛𝑛𝑛𝑛 𝑁𝑁𝑎𝑎𝑉𝑉𝑚𝑚𝑝𝑝𝑉𝑉 𝑛𝑛ℎ𝑎𝑎𝑛𝑛 𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑉𝑉 𝑝𝑝𝑜𝑜 𝑛𝑛𝑁𝑁𝑛𝑛𝑛𝑛 𝑁𝑁𝑎𝑎𝑉𝑉𝑚𝑚𝑝𝑝𝑉𝑉
 

As this model assumed independence between markers, linkage disequilibrium is not assumed, 
and null marker are modelled with effect size 0. Modelling of simulated null markers suggested that 
𝐹𝐹𝑃𝑃𝑇𝑇 followed a 1-CDF of gamma distribution with shape and scale parameter of 1 and 0.4344 
respectively, and FPR depends only on 𝑇𝑇𝑇𝑇𝑇𝑇. Thus the equation of 𝐹𝐹𝑃𝑃𝑇𝑇 can be rewritten as follow:  

𝐹𝐹𝑃𝑃𝑇𝑇 =  (1 − 𝑙𝑙𝑎𝑎𝑁𝑁𝑁𝑁𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇𝑇𝑇;  1, 0.4344)) 
Where 𝑙𝑙𝑎𝑎𝑁𝑁𝑁𝑁𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶(𝑒𝑒;  𝑚𝑚,𝜃𝜃) is the CDF of gamma distribution at point 𝑒𝑒 with shape and scale 
parameter 𝑚𝑚 and 𝜃𝜃. To test the optimality of 𝑇𝑇𝑇𝑇𝑇𝑇, a receiver operating characteristic (ROC) curve 
was used. The conventional ROC curve have its FPR and power plotted at x and y-axis, respectively, 
with optimal threshold being the point where the tangent of the curve equal to 1 (as described by de 
Smet et al. (2004) and mathematically proven by Kaivanto (2008)). Another interpretation which 
was used in this study, is the difference between number of true and false positives, which represent 
the numerator of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉 and 𝐹𝐹𝑃𝑃𝑇𝑇 respectively. The optimal threshold can then be defined as the 
argument of the maxima of this differences, where the power is maximized and FPR minimized. 
This interpretation can also take into account the unequal chance between finding true QTLs and 
null markers. A sample of this reinterpreted ROC curve would be provided in Figure 1.  
 
VALIDATION OF THE MODEL 

The model was validated through simulation using Python (Version 3.7.3), where the optimality 
of threshold calculated by Bonferroni and BH-FDR was compared under varying parameters. 

A GWAS experiment with 𝑁𝑁 sample size was simulated with a genotype array with 𝑀𝑀 number 
of independent markers with their allele frequencies following a beta-distribution. A vector of effect 
sizes was assigned to 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 markers, which were considered QTL with their effect sizes following a 
gamma distribution while other markers had effect size of 0. Only markers with effect size of > 0.1 
σ were considered in the calculation of power. For all simulations the heritability of the trait was set 
to 0.3. Using the genotype array, effect sizes and heritability, a vector of phenotypes was calculated, 
and a GWAS was conducted using Single SNP Linear Regression with the genotype array and 
phenotype vector. Using Bonferroni correction and BH-FDR at alpha = 0.05, the number of true and 
false positives were recorded. The ROC score was calculated by subtracting number of false 
positives from number of true positives. Correction methods with higher ROC score are deemed 
having its threshold more optimal and provide better balance between power and FPR. This 
simulation was repeated 200 times. When a parameter is under study the other parameters were kept 
at the Default Value. The parameters tested are presented in Table 1.  
 
Table 1. Parameter tested in this experiment 
 

Parameter Default Value Alternative Value 
Sample Size  2000 800 
Number of Markers  20k 80k 
Distribution of QTL Effect Size  Gamma(0.4, 1) Gamma(0.8, 1) 
Distribution of Allele Frequency  Beta(0.5, 0.5) Beta(0.2, 0.2) 
Number of QTLs  100 2000 
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Figure 1. The reinterpreted ROC curve under default scenario with Bonferroni correction, 
with TP and FP representing number of true and false positives respectively 
 
RESULTS AND DISCUSSION 

The number of true and false positives from each correction method are provided in Table 2, and 
the ROC score and threshold of each correction methods were provided in Table 3.  
 
Table 2. The number of true positives (TP) and false positives (FP) for each correction methods 
under varying parameter values1  
 

Parameter Tested Values Multiple Testing Correction Method 
Optimal 
Threshold 
from ROC 

Bonferroni 
Correction 

BH-FDR 

TP FP TP FP TP FP 
Sample Size (Default)1 2000 11.36 0.86 7.82 0.09 9.77 0.63 
                     (Alternative) 800 4.70 0.42 2.64 0.04 3.35 0.20 
Number of Markers 80k 9.53 0.72 6.92 0.05 8.30 0.44 
Distribution of QTL Effect Size Gamma(0.8,1) 11.70 1.01 7.52 0.02 9.72 0.50 
Distribution of Allele Frequency Beta(0.2, 0.2) 9.96 0.61 7.37 0.07 8.84 0.48 
Number of QTLs 2000 6.77 2.31 1.08 0.02 1.47 0.07 

1 The default values are provided in Table 1.   
 
Table 3. The threshold (THR) and ROC score for each correction methods under varying 
parameter values1 

 
Parameter Tested Values Multiple Testing Correction Method 

Optimal 
Threshold 
from ROC 

Bonferroni 
Correction 

BH-FDR 

THR ROC THR ROC THR ROC 
Sample Size (Default)1 2000 4.29 11.18 5.60 7.49 4.62 9.10 
                     (Alternative) 800 4.73 4.05 5.60 2.61 5.09 2.86 
Number of Markers 80k 5.06 8.82 6.20 6.88 5.28 7.86 
Distribution of QTL Effect Size Gamma(0.8,1) 4.32 10.84 5.60 7.79 4.58 9.41 
Distribution of Allele Frequency Beta(0.2, 0.2) 4.46 9.35 5.60 7.30 4.64 8.36 
Number of QTLs 2000 3.93 4.58 5.60 0.93 5.34 1.24 

1 The default values are provided in Table 1.   
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Compared to both the Bonferroni and the BH-FDR methods, the threshold optimal to the ROC 
curve has a significantly higher number of false positives in all scenarios, which is associated with 
a significantly lower threshold. This suggests that the threshold optimal to ROC is less stringent 
compared to both correction method. Despite this, as suggested by the increased ROC score, the 
increment of power of GWAS due to the decreased threshold is more significant than the increment 
of FPR, which could suggest that both Bonferroni correction and BH-FDR are overconservative for 
all the scenarios in this study. 

Between the two existing correction methods, BH-FDR provided a better balance between power 
and FOR when compared to the Bonferroni correction. While the number of false positives also 
increased in this correction method, as suggested by Huang et al. (2018), the increment in true 
positives is more significant than the increment of false positives. While with the Bonferroni 
correction, the power is significantly lower than with BH-FDR, it also had a significantly smaller 
proportion of false positives. Indeed, the Bonferroni correction had successfully maintained the 
number of false positives between 0.02 and 0.09 in all scenarios, whereas BH-FDR failed to 
maintained it in all the scenarios. 

While this experiment has illustrated the optimality of threshold from the multiple correction 
methods, there were several assumptions being made. One of the main assumptions is the 
independence of the markers, which is unlikely to occur in actual GWAS. Huang et al. (2018) 
suggested threshold from correction methods that assumed independence between markers had 
increased conservativeness compared to those without such assumption. Despite this, even if this 
assumption is held, as in this experiment, both correction methods are still overconservative in 
respect with the optimal threshold. Further study on the effect of correlated markers on the optimality 
of thresholds from these correction methods would be required. 
 
CONCLUSION 

This study had provided a framework for estimating the power and false positive rate of GWAS 
using a deterministic algorithm, and using these measures to test the optimality of threshold from 
two common multiple testing correction methods. This study had demonstrated the excessive 
conservativeness in both correction methods, especially in Bonferroni correction. The BH-FDR 
attained a better balance between true and false positives in the setting of independent markers and 
thus a more optimal threshold. Despite this the optimality of these threshold from correlated markers 
still warranted further study.  
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SUMMARY 
Imputation to whole-genome sequence data has been successfully exploited in livestock for fine-

mapping causal variants, meta-GWAS and increasing the accuracy of genomic prediction. However, 
imputation of sequence variants from marker panel (SNP chip) genotypes involves several key 
challenges that do not generally cause issues for SNP chip level imputation. Here we consider the 
challenges and potential solutions for issues such as rare variants, sequencing errors, misalignment 
in regions with large segmental duplications and/or copy number variants. 

 
INTRODUCTION 

Imputation of genotypes to sequence generally requires that target animals first have imputed or 
real marker panel (SNP chip) genotypes. Then the missing sequence variants between the markers 
are filled in using a reference set of real sequence genotypes. Imputation algorithms rely on the 
premise that animals sampled from a population will share a mosaic of haplotypes along the 
chromosome in common with one or more animals in the population. Even across breeds there are 
shared haplotypes due to their common ancestral origins. The observed length of the shared 
haplotypes depends on the marker density, local recombination rates, effective population size and 
importantly the level of relationships between the target individuals and the reference set. In 
livestock, it is commonplace to impute genotypes from lower density SNP chips to higher density 
chips. This imputation is highly accurate using a range of software (Calus et al. 2014) and has 
enabled genomic prediction of breeding values to become routine in the dairy, beef and sheep 
industries. 

Imputation to whole-genome sequence from SNP panel genotypes is routinely undertaken for 
livestock research. The use of imputed sequence has been demonstrated to enable fine mapping of 
causal variants (e.g. Pausch et al. 2017), to facilitate meta Genome-Wide Association Studies (e.g. 
Bouwman et al. 2018) as well as increasing the accuracy of genomic prediction (e.g. Brøndum et al. 
2015; Moghaddar et al. 2019; Xiang et al. 2021).  

However, huge challenges remain compared to SNP chip level imputation for several reasons. 
First, 99% of the sequence variants are missing in high density SNP chip genotypes (HD: ~600k 
SNP) and the reference sequence data has higher error rates than SNP chip genotypes. This affects 
the accuracy of determining matching haplotypes between target and reference animals. Second, a 
large proportion of the sequence variants are less common (Minor Allele Frequency, MAF < 0.01) 
or rare compared to those selected for industry SNP chips and therefore may not be in strong linkage 
disequilibrium (LD) with the more common SNP on chips. This leads to inaccuracies for matching 
target to reference haplotypes. Third, it is costly to develop and maintain large representative 
sequence reference sets: a task that in addition to sequencing, requires considerable computational 
resources. Therefore, an attractive solution is for research groups to continue global collaborations 
to ensure that the databases continue to develop and grow by sharing costs/resources for sequence 
processing, storage and access.  

The aim of this paper is to use examples from our own imputed and real sequence data to 
demonstrate the impact of some of the above challenges and briefly discuss potential solutions. 
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MATERIALS AND METHODS 
We imputed sequence data into over 46,000 sheep and over 200,000 cattle using Minimac3 and 

pre-phased with Eagle software following Pausch et al. (2017). The sheep in the target set 
represented a range of breeds and crosses common to the Australian sheep industry, while the target 
cattle were dairy breeds and their crosses (mainly Holstein, Jersey and Australian Reds). Both sheep 
and cattle target populations had been imputed first to HD genotypes (~600k SNP). The sheep 
sequence reference used for imputation included 726 animals from European breeds and crosses in 
SheepGenomesDB Run2 (Daetwyler et al. 2017). The reference cattle sequences were from Bos 
taurus Run 6 and Run 7 of the 1000 Bull Genomes project (Hayes & Daetwyler 2019) and included 
2333 and 3090 animals representing > 50 breeds and crosses. There were several key differences in 
the Run 6 (Daetwyler et al. 2017) and Run 7 pipeline: Run 6 was aligned to the UMD3.1 reference 
genome, while Run 7 used the improved ARS-UCD1.2 reference genome (Rosen et al. 2020). Run7 
used GATK v3.8 for variant calling instead of Samtools (Run 6).  

Prior to imputation, the variants called in the sheep and cattle reference sequences were pre-
filtered to retain only bi-allelic variants (most imputation algorithms do not impute multiallelic 
variants) with minor allele counts of 4 or more (to remove variants that may be sequencing errors or 
so rare they cannot be well imputed). Additional pre-filtering was applied in Run 7 where we 
retained variants with Beagle R2 >0.9 (from the imputation of missing genotypes) and variants in 
GATK Tranche 99.0 or better. We also identified chromosome segments of ≥ 0.5Mb with excessive 
heterozygosity among genotyped individuals: i.e. > 2% of variants with heterozygote frequency > 
0.55 (maximum expected heterozygosity is 0.5 for neutral loci). These segments generally coincided 
with regions of large duplications (>1 kb) that generate alignment errors and false SNP calls, 
therefore variants in these regions with heterozygote frequency >0.5 were removed.  

 
RESULTS AND DISCUSSION 

The pre-imputation filtering of variants in sheep Run 2 and cattle Run 6 reference sequences 
removed up to 25% of all variants called but this increased to 47% in Run 7, largely due to extra 
filters imposed. Table 1 compares the proportion of imputed variants above two Minimac R2 
thresholds because the Minimac R2 statistic is a good proxy for empirical imputation accuracy 
(Bolormaa et al. 2019). The sheep imputation retained a larger number of imputed variants at 
Minimac R2 thresholds >0.4 and >0.8 compared to imputed cattle data. This is potentially due to 
the imputation target sheep having very recent relatives in the reference set compared to the cattle 
where relationships were more distant between the target and reference sets.   

 
Table 1. Numbers of variants (M=Millions) imputed into sheep and cattle 
 

No. of Variants Sheep Run2 Cattle Run 6 Cattle Run 7 

Total Imputed 40 M (77% of total) 34 M (75% of total) 32 M (53% of total) 

Minimac R2 > 0.4 31 M (77% of imputed) 18 M (53% of imputed) 21 M (66% of imputed) 

Minimac R2 > 0.8 22 M (55% of imputed) 14 M (41% of imputed) 19 M (59% of imputed) 
 
Overall, only 40 to 60% of variants had a MinimacR2 >0.8. The main reason for this is due to 

the very high proportion of sequence variants with a MAF <0.01 (e.g. Figure 1) that are difficult to 
impute with accuracy above 0.8 (Pausch et al. 2017). Further, we hypothesise that due to purging 
selection, rare mutations with strong deleterious effects will tend to have arisen relatively recently, 
and therefore will be more difficult to impute accurately compared to rare variants that have been 
segregating in the population longer because they have small or neutral effects. Indeed, we found 
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some evidence of this in both sheep (Bolormaa et al. 2019) and cattle where for example, missense 
and frameshift mutations (potentially damaging protein activity) showed a higher proportion of less 
accurately imputed variants compared to intergenic and intronic variants (Figure 1). In part, we may 
be able to improve the accuracy of imputation for rare variants by strategies such as skim whole 
genome sequencing (Daetwyler et al, these proceedings) but also by increasing the number of 
sequenced animals in the reference sets. An increase in the number of animals in cattle Run 7 may 
have helped increase the number of variants with Minimac R2 >0.8 compared to Run 6 (Table 1). 
However, other factors including the improved ARS-UCD1.2 reference genome map, different 
variant calling software and more stringent filtering of variants prior to imputation may also have 
contributed to the improvement and this will be further evaluated.  

Figure 1. MAF (Minor Allele Frequency) and Minimac R2 distribution in functional categories 
of variants from cattle Run7. Frameshift and missense variants show the highest frequency of 
variants with low imputation R2  
 

Another important factor causing low sequence imputation accuracy is an erroneous calling of 
SNP in the reference sequences, for example, due to alignment errors of short-read sequencing. 
Typically, this more frequently occurs in the many genome-wide regions of up to several Mb long 
that harbour large segmental repeats (each ≥ 5 kb in length) and/or large structural variants such as 
copy number variants (CNV) (Liu et al. 2010). For example, the major histocompatibility complex 
region has many segmental duplications and CNV (>86% synteny between cattle and sheep; Gao et 
al. 2010) and across this region the mean empirical accuracy within segments of 1 Mb length drops 
well below 0.8 in both sheep and cattle (Pausch et al. 2017; Bolormaa et al. 2019). In these regions, 
we typically observe excessive heterozygosity among reference sequence variants (i.e. 
heterozygosity >0.5) (Fig 2). Thus, in Run 7, prior to imputation we filtered out variants with 
heterozygosity >0.5 in these regions under the assumption that these are false SNP calls and may 
decrease the imputation accuracy of surrounding variants. As a result, on Chr X the Run 7 pre-
imputation filtered variant set included only half the number of variants compared to Run 6 but the 
number of imputed variants in Run 7 with R2 >0.8 was almost double that of Run 6. Although 
stringent pre-filtering may be helpful, the low imputation accuracy of these regions (covering >3% 
of the genome) cannot be fully addressed with the current sequence reference sets because the short 
sequence reads (~150bp) cannot be accurately aligned, even though the reference genome map may 
be very accurate. A potential solution is to develop a reference resource where animals are sequenced 
using long-read technology as well as improved methods to impute large structural variants. 
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Figure 2. Frequency of heterozygous genotypes for real sequence variants on Chr X (non-
pseudo autosomal region) and Chr 27. The data was derived from 2470 bulls sequenced to > 
10x average read depth). Banded regions of excessive heterozygosity (>0 on Chr X and >0.5 
on Chr27) coincide with large segmental repeats and copy number variants. On Chr X in 
addition to bands of high heterozygosity, we also observe ubiquitous random errors across the 
genome: i.e. these were bull X chromosome sequences that should be haploid, with 
“homozygous” genotypes 
 
CONCLUSIONS 

Although imputed sequence has already advanced livestock genomics research there remain 
considerable challenges: including rare variant imputation and limitations of short-read sequencing. 
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SUMMARY 

Genotype by environment interactions can be caused by both macro- and micro-genetic 
environmental sensitivity (GES). In the current study, 400 day weight (400DW) measured on 
Australian Angus was analysed using a variability model and a reaction norm model to obtain 
estimates for genetic variation due to macro- and micro-GES. The results showed additive genetic 
variance for both macro- and micro-GES. Over the range of contemporary group means the macro-
GES impacted the genetic variance and ranking of sires across environments. The presence of micro-
GES indicated the possibility of selecting to reduce the variability of phenotypes, but further 
investigation into the consequences is needed. 
 
INTRODUCTION 
Genotype by environment interactions (G×E) occur when the phenotypes of different genotypes 
respond unequally to different environments. The genetic control of G×E is called genetic 
environmental sensitivity (GES). The environmental differences may be definable, such as 
temperature, location etc. These environments are termed macro-environments and are typically 
experienced by a cohort of animals (Falconer and Mackay 1996). Macro-environments are numerous 
in most livestock populations. Within macro-environments are micro-environments, which are 
experienced by individual animals and can be observed via differences in variation among progeny 
(Hill and Mulder 2010). Animals can exhibit GES in response to changes in both macro- and micro-
environments, and GES is thus split into macro- and micro-GES.  

The aim of this study was to estimate the levels of genetic variation due to macro- and micro-
GES for 400 day weight in Australian Angus data. 

 
MATERIALS AND METHODS 

Data. Angus Australia provided 400 day weight (400DW) measured in kg on live animals. 
Contemporary groups (CGs) were constructed by concatenating herd, year, observation date and 
breeder defined management group for each record (see Graser et al. (2005)). The records were then 
cleaned in four stages. Firstly, all records had to be measured at 301-500 days of age, from animals 
with known sex, sire and dam and the recorded weight could not be more than 3 standard deviations 
from the phenotypic mean of its CG. Secondly, repeated measurements were removed by keeping 
the record belonging to the largest CG out of the available records for that animal. Thirdly, records 
from animals born prior to 2015 were removed. Lastly, animals with less than 4 paternal half-sibs 
and animals belonging to CGs with less than 60 animals or to single sire CGs were removed in an 
iterative procedure, which ensured all 3 criteria were met in the final data set. The final data 
contained 52,446 400DW records (mean 393.15kg; SD 74.83kg) from 1370 sires (mean number of 
offspring 38.3; SD 79.2) and 33,201 dams (1.58; 1.43) distributed over 443 CGs (mean number of 
records 118.39; SD 81.67). The animals were reared across the temperate Australia. The pedigree 
spanned 13 generations. 

Statistical analysis. Micro-GES was investigated using a two-step approach described in Mulder 
et al. (2009) where step 1 is a traditional animal model and step 2 is a variability model where the 
ln-transformed squared residual form step 1 was used as the phenotype (Mulder et al. 2009). The 
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animal model (step 1) was also used to obtain the estimated environmental effect of CGs, which 
were used as environmental covariate in a linear reaction norm model to examine macro-GES 
(Falconer and Mackay 1996).  

Animal model.  
𝐘𝐘 = 𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙 + 𝐖𝐖𝐖𝐖 + 𝐞𝐞 (1) 

where 𝐘𝐘 was a vector containing the 400DW records, 𝐗𝐗, 𝐙𝐙, 𝐖𝐖 and 𝐞𝐞 were vectors of fixed effects (age 
at observation and sex), additive genetic animal effects, random effect of CGs and random residuals, 
respectively. 𝐗𝐗, 𝐙𝐙, and 𝐖𝐖 were design matrices linking records to fixed effects, animals and CGs, 
respectively. The distribution assumptions were 𝐙𝐙~𝑁𝑁(𝟎𝟎,σa2 ⊗ 𝐀𝐀), 𝐖𝐖~𝑁𝑁(𝟎𝟎,σc2𝐈𝐈𝐖𝐖) and 𝐞𝐞~𝑁𝑁(𝟎𝟎,σe2𝐈𝐈e), 
where 𝐀𝐀 was the numerator relationship matrix and 𝐈𝐈𝐖𝐖 and 𝐈𝐈e were identity matrices of appropriate 
dimensions. 

Variability model.  
𝐥𝐥𝐥𝐥(𝐞𝐞𝟐𝟐) = 𝐗𝐗𝐯𝐯𝐗𝐗𝐯𝐯 + 𝐙𝐙𝐯𝐯𝐙𝐙𝐯𝐯 + 𝐞𝐞𝐯𝐯 (2) 

where 𝐥𝐥𝐥𝐥(𝐞𝐞𝟐𝟐) was the ln-transformed squared residuals from the animal model, 𝐗𝐗𝐯𝐯 contained the 
fixed effects of age at observation and sex, 𝐙𝐙𝐯𝐯 and 𝐞𝐞𝐯𝐯 were the additive genetic variance and random 
residuals of the variability of 400DW. 𝐗𝐗𝐯𝐯 and 𝐙𝐙𝐯𝐯 were design matrices linking records to fixed 
effects and animals, respectively. The distribution assumptions were 𝐙𝐙𝐯𝐯~𝑁𝑁(𝟎𝟎,σav

2 ⊗ 𝐀𝐀) and 
𝐞𝐞𝐯𝐯~𝑁𝑁(𝟎𝟎,σev

2 𝐈𝐈e). The genetic variance estimated in this model (σav
2 ) was on the scale of the natural 

logarithm and thus a conversion was done to obtain the genetic variance of the additive genetic effect 
contributing to the residual variance σaR

2 = σav
2 �σav

2 + σev
2 �−12(σe2)2 (Mulder et al. 2009). 

Reaction norm model. 
𝐘𝐘 = 𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙𝐢𝐢𝐥𝐥𝐢𝐢 + 𝐇𝐇𝐙𝐙𝐬𝐬𝐥𝐥 + 𝐖𝐖𝐖𝐖 + 𝐞𝐞 (3) 

where 𝐙𝐙𝐢𝐢𝐥𝐥𝐢𝐢 and 𝐙𝐙𝐬𝐬𝐥𝐥 were the additive genetic animal effects for the intercept and slope, respectively, 
of the reaction norm and 𝐇𝐇 contained the estimated CG effects. The distribution assumption of the 

additive genetic effect was �
𝐙𝐙𝐢𝐢𝐥𝐥𝐢𝐢
𝐙𝐙𝐬𝐬𝐥𝐥 �~𝑁𝑁 �𝟎𝟎, �

σaint
2 σaintasl

σasl,aint σasl
2 � ⊗ 𝐀𝐀�. The remaining effects and 

distribution assumptions were as in equation 1. 
All analysis was performed in ASReml v4.1 (Gilmour et al., 2015). 

Heritabilities. The heritability for the animal model was h2 = σa2

σa2+σe2
. The heritability of the 

residual was hR2 =
σaR
2

3σaR
2 +2�σa2+σe2�

2 (Mulder et al. 2009). The heritability of the reaction norm model 

was only calculated for the average environment, i.e. replacing σa2 with σaint
2 in the formula given for 

the animal model. 
 
RESULTS AND DISCUSSION 

Results in Table 1 show additive genetic variance due to both macro- and micro-GES. The 
variation due to macro-GES (slope of reaction norm) were relatively low when compared to the 
intercept. However, while it is often assumed that breeding stock is exposed to similar environmental 
conditions across cohorts, we found that the mean value of CGs ranged from -149 to 173kg. The 
variation due to CG (σc2) was 2399kg2 and thus the standardised estimated range of CG effects were 
-3.04–3.52σc. Over a given environmental range it is commonly assumed that the bulk of the data 
is present in non-extreme environments, resulting in low accuracy of estimated environmental 
effects. While the bulk of CGs have effects in non-extreme environments (Figure 1), the data 
filtration in the current study has resulted in a significant number of animals in all environments, 
ensuring accurate estimation of CG effects across the full range. Across a large range of 
environmental effects even a low genetic variance due to macro-GES can have significant impacts 
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on the additive genetic variation across environments (Figure 2). The presence of macro-GES can 
result in scaling effects and/or re-ranking (Falconer and Mackay 1996). Scaling effects are 
differences in variance across macro-environments, which is of statistical concern and should be 
accounted for during analysis e.g. by using a reaction norm model. Re-ranking is of more practical 
concern since it occurs when animals are superior to others in one environment, but not in another. 
The estimated breeding values (EBVs) of the five most influential sires estimated with the reaction 
norm model show both scaling and re-ranking effects across environments (Figure 3). The sire 
represented by the grey line is the second poorest performer in the -3.0σc environment and the best 
in the 3.5σc environment, while the red sire performs consistently better than the black, blue, and 
green sires. If these sires were evaluated without consideration to macro-GES the red sire would be 
considered the best of the 5 sires (legend of Figure 3). 
 
Table 1. Additive genetic variance (SE) from the animal model (𝛔𝛔𝐙𝐙𝟐𝟐) and the variability model 
(𝛔𝛔𝐙𝐙𝐯𝐯

𝟐𝟐 ) and the additive genetic variance of intercept (𝛔𝛔𝐙𝐙𝐢𝐢𝐥𝐥𝐢𝐢
𝟐𝟐 ) and slope (𝛔𝛔𝐙𝐙𝐬𝐬𝐥𝐥

𝟐𝟐 ) from the reaction 
norm model 
 

Model* σa2 σav
2  σaR

2  σaint
2  σasl

2  σasl,aint h2 hv2 hR2  
Animal  509.07  

(19.26) 
- - - - - 0.43 - - 

Variability - 0.59 
(0.05) 

96937.08 - - - - 0.11 0.03 

Reaction 
norm 

- - - 473.65 0.12 
(0.00) 

0.44 
(0.13) 

0.45 - - 

*the units for σa2, σaint
2 , and σasl

2  were kg2, for σav
2 the unit was kg4, and the unit for σasl,aint was kg. 

 
The genetic correlation between intercept and slope was only 0.06 meaning there was little 

association between the breeding value for the level and the macro-GES. It should thus be possible 
to select animals with high EBV for intercept and low EBV for slope. This would be relevant if 
breeders wish to breed for high producing, robust animals, i.e. animals that are less sensitive to 
changes in macro-environments and thus performs similarly in all environments. However, if a 
breeder is consistently providing a superior environment for their animals it may be relevant to select 
on environmental specific EBVs to ensure maximum profit.  

Figure 1. Frequency of the contemporary group effects (standardised) 
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Figure 2. Additive genetic variance across the contemporary group effects (standardised) 

 
Figure 3. Estimated breeding values (EBVs) of the 5 most influential sires. Lines represent 
EBVs from the reaction norm model plotted across the contemporary group effects 
(standardised). Legend shows the corresponding EBVs from the animal model 
 

Micro-GES affects the variability of phenotypes within macro-environments. A ten generation 
divergent selection experiment on litter size in rabbits have shown that selection to alter the 
variability of phenotypes is possible (Blasco et al., 2017). Thus, reducing micro-GES could reduce 
the variability and ensure more uniform production. This is especially relevant for traits, such as 
body weight in broilers, where the final product is penalised for falling outside a desired range 
(Mulder et al., 2009), i.e. traits with a non-linear profit margin. While 400DW itself does not have 
a non-linear profit margin it is an indicator trait for mature body weight and carcass weight, both of 
which may be penalised as slaughterhouses are not able to handle very small or overly large animals. 
The relatively high estimated variation due to micro-GES in 400DW showed that it should be 
possible to reduce the variation around the population mean for this trait, thus reducing the risk of 
the animals falling outside of the desired range for mature weight and carcass weight. 

It has been shown that the variability model used in the current study has lower prediction ability 
than a double hierarchical generalised linear model (DHGLM) for estimation of micro-GES. Iung 
et al. (2017) observed lower accuracies of EBVs, partly because a DHGLM allows for estimation of 
the genetic correlation between σa2 and σav

2 . However, Iung et al. (2017) did not find significant 
differences between estimated variances. A DHGLM was not fitted in the current study due to the 
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more stringent data structure requirements compared to variability models, but further research will 
be done to try and apply the DHGLM to the data and examine the difference between the two models.  
 
CONCLUSION  

In conclusion, the analysis showed evidence of macro-GES in 400 d weight in Australian Angus 
causing re-ranking across environments amongst the five most influential sires. It would therefore 
be possible to select on macro-GES to either reduce the overall impacts of changes in macro-
environments or to ensure high performance in specific macro-environments. Considerable levels 
of micro-GES were also present in 400 day weight, showing the potential to increase uniformity, 
but further research is needed to improve the analysis and investigate the outcomes of selection on 
micro-GES.  
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SUMMARY 

New and improved assemblies for bovine genomes have been released in the past two years, 
contributing to the growing field of livestock genomic information, but they still require to be more 
comprehensively evaluated in RNA-seq bioinformatic pipelines in terms of their reproducibility in 
mapping and differential gene expression analysis. The present study aimed to evaluate these 
parameters by mapping Brangus-derived leukocyte sequence data to three bovine reference genome 
assemblies (Hereford, Brahman, and Angus) in order to find differentially expressed genes related 
to ectoparasite host resistance. We observed similar mapping rates across the three genome 
assemblies and a similar number of differentially expressed genes (DEGs) detected with each 
genome (84-86 genes). However, using haplotype-resolved genomes (Angus and Brahman) was 
found to be important to discover an additional 45 DEGs that could not be identified with the 
non−haplotype-resolved Hereford reference genome.  

 
INTRODUCTION 

High-throughput RNA sequencing technology (RNA-Seq) is currently the most powerful 
approach for profiling transcriptomes and identifying differentially expressed genes (DEGs) 
between experimental conditions (Wang et al. 2009). This technology is now extensively applied in 
the field of animal research, particularly to better understand the mechanisms responsible for genetic 
variation in complex phenotypes in livestock (Georges et al. 2019). In cattle, for instance, genetic 
improvement to enhance traits such as host resistance against parasites is highly desirable since the 
reduction of parasitic burden can improve animal welfare and increase productivity (Tabor et al. 
2017). Ectoparasites such as the cattle tick (Rhipicephalus microplus species complex) represent a 
major animal health challenge for the cattle industry; thus, finding effective ways to control tick 
infestations is a priority for producers.  

One of the most feasible options to protect cattle herds from ticks is through the use of tick-
resistant breeds which have Bos indicus genetics, as Bos taurus breeds are mostly susceptible (Utech 
et al. 1978). Crossbred cattle (B. indicus x B. taurus), such as Brangus, have more desirable meat 
quality than purebred Bos indicus but exhibit a range of tick-resistant and susceptible phenotypes. 
On top of this, targeting host resistance for genetic improvement is challenging because the 
underlying biological mechanisms are not yet fully understood (Tabor et al. 2017). Previous work 
suggests that variation in immune gene expression can contribute to the variation in the phenotype 
(Piper et al. 2010). Therefore, it is hypothesised that biomarker discovery by differential gene 
expression analysis could provide feasible opportunities for selecting for tick-resistant hosts in cattle 
with Bos taurus content.  

The accurate quantification of gene expression heavily relies on the availability of high-quality 
genomes and their corresponding annotations (Oshlack et al. 2010). Currently, the Bos taurus 
ARS_UCD1.2 assembly (Rosen et al. 2020), which originated from an inbred Hereford animal, is 
widely accepted as the reference genome for taurine and indicine cattle. However, Low et al. (2020) 
released two novel reference-quality assemblies UOA_Angus_1 and UOA_Brahman_1 from Angus 
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and Brahman parental haplotypes of an F1 B. taurus x B. indicus hybrid (Brangus), which provides 
the opportunity to further study breed-specific gene expression patterns that could be related to the 
expression of host resistance. Therefore, this study aimed to investigate if the choice of bovine 
reference genome (Hereford, Angus, and Brahman) may affect the mapping rate of short-read 
sequencing data and produce substantial differences in downstream differential gene expression 
analysis in circulating leukocytes from Brangus cattle of high and low resistance to tick infestation.  

 
MATERIALS AND METHODS 

Animals. 30 Brangus steers (~9 months old) without previous exposure to ticks were recruited 
for this study conducted under animal ethics approval (QAAFI/469/18).  The animals were exposed 
to artificial infestation with approximately 10,000 tick larvae (R. australis) over 12 weeks, during 
which animals were ranked for their resistance to infestation and blood samples were collected. The 
number of developing adult ticks after an infestation cycle (21 days) was estimated with a tick 
scoring scale from 1 (<50 ticks = Resistant) to 5 (>300 ticks = Susceptible). The animals 
subsequently classified as the most resistant (R, n=3), and most susceptible (S, n=5) hosts were 
selected for RNA sequencing of leukocytes isolated from blood collected immediately before 
primary infestation.  

RNA extraction and sequencing. RNA was extracted from frozen leukocytes in Qiazol reagent 
with the miRNeasy mini kit (QIAGEN, USA) as per manufacturer’s instructions. RNA samples 
were treated with DNAse and RNA was quantified using the Nanodrop 2000 (Thermofisher, USA). 
The RNA RIN quality analysis was evaluated with the 2100 Bioanalyzer Instrument (Agilent 
Technologies, USA). The cDNA libraries were prepared with the TruSeq Stranded mRNA kit and 
sequenced as 100 bp single-end reads in one flow cell lane on the Illumina NovaSeq 6000 sequencer 
(Illumina, USA) through the Australian Genome Research Facility.  

Bioinformatics pipeline. The RNA-Seq pipeline for this study is shown in Figure 1. Briefly, 
read quality control was performed with FastQC v.0.11.4 (Andrews 2015) and adapters were 
removed with Trimmomatic v.0.35 (Bolger et al. 2014). The reads were mapped with STAR .2.5.2b 
(Dobin et al. 2012) to the ARS-UCD1.2 (Rosen et al. 2020), UOA_Angus_1, and UOA_Brahman_1 
(Low et al. 2020) assemblies. Genomes and annotations were sourced from the Ensembl Release 
102 (https://asia.ensembl.org). The gene count matrices were processed in RStudio with the edgeR 
Bioconductor package (Robinson et al. 2009). A generalized linear model was fitted to test 
phenotype (S vs. R) as the main factor with sample RIN number as a covariate. Differentially 
expressed genes (DEGs) were considered significant based on a false discovery rate (FDR) < 0.05 
and |log2 (fold change)| >1.  

Figure 1. RNA-Seq pipeline for differential gene expression in leukocytes of tick-susceptible 
(S) compared to resistant (R) Brangus cattle pre-infestation 
 
RESULTS AND DISCUSSION 

RNA-Seq mapping. The sequencing produced an average of 36.2 million raw single-end reads 
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per sample. After the adapter trimming and QC steps, the average number of reads per sample was 
35.5 million. The percentage of reads that uniquely mapped to the ARS_UCD1.2 genome was higher 
by approximately 4% and 6% compared to the UOA_Brahman_1 and UOA_Angus_1 genomes, 
respectively (Table 1). Additionally, the percentage of multi-mapped reads was between 5.1 and 7.1 
across all three genomes, but a larger proportion (4%) of unmapped reads was obtained with the 
Angus genome. Therefore, for this Brangus-derived transcriptomic dataset, mapping rates were 
consistently high with all three genomes, but the performance of the STAR aligner improved slightly 
when using the Hereford assembly.  

Differential gene expression. In total, 131 DEGs were identified in the circulatory leukocytes 
from tick-resistant compared to tick-susceptible Brangus with all three bovine reference genomes 
(Figure 2). Of these genes, 51 (38.9%) were commonly identified by all three genomes, 47 (35.9%) 
were common to the taurine genomes (ARS_UCD1.2 and UOA_Angus_1), and 19 (14.5%) were 
unique to the indicine genome (UOA_Brahman_1). Overall, mapping our sequencing data to the 
haplotype-resolved reference genomes was useful to identify an additional 45 DEGs that otherwise 
could not have been identified by the ARS_UCD1.2 genome alone; however, many of these genes 
did not have full annotations. This result further highlights the need for an improved gene annotation 
pipeline for both the UOA_Brahman_1 and UOA_Angus_1 assemblies, particularly to be able to 
characterise indicine-derived DEGs and their relevance in conferring host resistance against ticks.  

Moreover, it was found that choice of reference genome did not significantly alter the total 
number of genes that were differentially expressed in the two phenotypes of host resistance 
(susceptible vs. resistant), but the number of up- and down-regulated genes varied slightly for each 
reference genome (Table 1).  
 
Table 1. RNA-seq mapping results (%) for three bovine reference genomes and the resulting 
number of differentially expressed genes (DEGs) in leukocytes from tick-susceptible compared 
to tick-resistant Brangus cattle  
 

 Hereford 
ARS_UCD1.2 

Angus 
UOA_Angus_1 

Brahman 
UOA_Brahman_1 

Uniquely mapped reads 94.07 88.63 90.43 
Multi-mapped reads 5.15 6.56 7.07 
Unmapped reads 0.42 4.46 2.14 
Total no. of DEGs 86 84 84 

Up-regulated 33 26 20 
Down-regulated 53 58 64 

 
CONCLUSIONS 

Continuous improvement to the cattle reference genome has led to the latest release of the B. 
taurus ARS_UCD1.2 assembly. Although this is generally considered a high-quality assembly, it is 
based on an inbred taurine animal and does not hold the potential to characterise all the variation 
that exists in other cattle subspecies, i.e. B.t. indicus, B.t. africanus, and crosses thereof (Low et al. 
2020). The UOA_Brahman/Angus_1 haplotype-resolved genomes provide an opportunity to 
address these concerns, but they have not been extensively tested in RNA-Seq bioinformatic 
pipelines. This study explored how the choice of reference genome input can influence short-read 
mapping and differential gene expression in leukocyte transcriptomic data from crossbred Brangus 
cattle. 
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Figure 2. Venn diagram showing the number of unique and overlapping DEGs (tick-
susceptible vs. -resistant Brangus) detected from three bovine reference genomes.  

 
It was found that the choice of bovine reference genome had a mild effect on read mapping and 

different gene expression detection, likely reflecting on the very high-quality of all three genomes. 
Importantly, using haplotype-resolved genomes allowed the detection of additional DEGs that 
appeared to be specific to the indicine and taurine components of the Brangus breed (an Angus and 
Brahman cross). However, many of these genes are yet to be fully annotated, thus, further gene 
overlap could still be expected in addition to 51/131 DEGs discovered with all three genomes, once 
gene annotations pipelines improve. Further work on characterising which unannotated up- and 
down-regulated DEGs are homologous to other ARS_UCD1.2 sequences or orthologous to other 
species (human or rat) will be the first step towards elucidating these novel genes and potentially 
shed light on the biological mechanisms underlying tick host resistance. Ultimately, testing a variety 
of high-quality genome resources in well-established bioinformatic pipelines such as RNA-Seq can 
greatly improve interpretations from transcriptomic data, particularly if the end goal is discovering 
biomarkers that can assist for genetic improvement of a wider range of cattle breeds.   
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SUMMARY 

A challenge of including feed intake in a breeding goal is to have sufficient phenotypic records 
of feed intake, given how difficult it is to measure on an individual cow basis. With new tools 
available, such as 3D cameras, this problem might be overcome. This is a preliminary study on 
estimating genetic parameters for dry matter intake (DMI) and body weight (BW) measured using 
3D cameras to posteriorly calculate residual feed intake (RFI). A total of 24,746 weekly records of 
DMI and BW recorded from 3D cameras during 2019-2021 were available from 963 commercial 
Danish Jersey cows. These weekly records were complemented with milk and milk content records 
for the same period, and energy corrected milk (ECM) was calculated. Residual feed intake was 
calculated as the partial regression of dry matter intake on energy sinks (Tempelman et al., 2015). 
Estimated heritabilities were 0.08 (RFI), 0.18 (DMI), 0.35 (BW) and 0.29 (ECM). Genetic 
correlations between DMI with ECM (0.69) were highly positive and DMI with BW (0.37) were 
moderate positive. Genetic correlations of RFI and DMI were highly positive (0.90), whereas 
between RFI and BW (0.12) and ECM (0.39) were low to moderate with large standard errors. 
Phenotypic correlations of RFI with ECM and RFI with BW were close to zero as expected, whereas, 
between RFI and DMI were close to one. With these results, we conclude that feed efficiency (RFI) 
calculated using DMI and BW measured by 3D cameras is heritable. Given that DMI and BW were 
measured only on 963 animals in four commercial farms, adding more farms, animals and records 
may change the genetic parameters for DMI, BW and RFI.  
 
INTRODUCTION 

In the last decade, several countries have included feed efficiency in their breeding goal 
(Veerkamp et al. 2014; Pryce et al. 2015). The Saved feed index in the Nordic Total Merit Index 
(NTM; NAV, 2020) now includes the breeding value for feed efficiency (also called metabolic 
efficiency) and maintenance (Lidauer et al. 2019). Residual feed intake (RFI) has been proposed as 
proxy trait for feed efficiency in several species including cattle, pig and poultry (Martin et al. 2021). 
Residual feed intake is commonly defined as the difference between the actual measured feed intake 
and the expected feed intake, and is a measure of how efficiently a cow utilizes the feed consumed. 
One way to calculate RFI is as the partial regression of dry matter intake on energy sinks (energy-
corrected milk; ECM, metabolic body weight; BW, and BW change; Tempelman et al. 2015).  

As dry matter intake (DMI) and BW records are required to calculate RFI, new technologies are 
being developed to fulfil the demand of individual records in an easy way. Using artificial 
intelligence and 3D cameras, the Cattle Feed InTake System (CFIT, Viking Genetics, 2020; Lassen 
et al. 2018) is one of the latest alternative tools to record feed intake and BW. Through CFIT 3D 
cameras located in barns can identify individual cows and using artificial intelligence algorithms, 
record individual DMI and BW for the entire herd. However, as with every new phenotype, the traits 
(DMI and BW) need to be quantified genetically and determine its associations with other traits 
(such as ECM). The first CFIT data are now available for Jersey cows. In this study, we estimated 
the genetic parameters including genetic correlations between DMI, BW (obtained by 3D cameras) 
and ECM in 963 Danish Jersey commercial cows, to posteriorly, calculate RFI.  



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 226-229 

227 
 

MATERIALS AND METHODS 
Data. The data included 24,746 weekly records of DMI and BW from 963 Danish Jersey cows. 

Only data from 1st to 6th parity from the first 330 days in milk was utilized in the genetic evaluation 
of RFI. The Jersey cows were recorded for DMI and BW using 3D cameras technology on four 
commercial farms in Denmark during 2019-2021. The cows were fed with a total mixed ration diet 
that mainly consisted of maize silage, grass silage and concentrates. The cameras were located above 
the feeding area floor, and the cows were recorded when eating. An algorithm based on artificial 
intelligence identify the cows and translate their 3D images into phenotypes (DMI and BW). Lassen 
et al. (2018) have presented a complete description of the 3D cameras methodology to measure 
DMI. Body weight is also predicted using 3D images of the back of the cow (paper in preparation). 
From these images, couvertures of the back were obtained. Using a PLS method, a prediction model 
was developed based on scale measures of the cows. The prediction was done with high accuracy 
(0.9) and RMSE of 18 kilo. Posteriorly DMI and BW weekly averages were calculated. Weekly 
milk yield and content were available through the national milk recording system. Energy corrected 
milk was calculated using the following formula (Sjaunja et al. 1991), ECM (kg) = 0.25 Milk (kg) 
+ 12.2 Fat content (kg) + 7.7 Protein content (kg). Residual feed intake (RFI) was the residual of the 
partial regression of DMI on metabolic BW (MBW), ECM and body weight change (∆BW) 
(according to the two-steps RFI from Tempelman et al. 2015), along with fixed effects described 
posteriorly in the model. Metabolic BW (MBW) was defined as BW0.75. Body weight change (∆BW) 
is described as change in kg per day.  

RFI calculation. The model used to calculate RFI is the one used to calculate the breeding values 
for RFI by the Nordic Cattle Genetic Evaluation (NAV; Stephansen et al. 2021): 
 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑃𝑃) + 𝐴𝐴𝐴𝐴𝐴𝐴2𝑖𝑖(𝑃𝑃) + YSLACP𝑖𝑖 + 𝐸𝐸𝐴𝐴𝐸𝐸 + 𝐸𝐸𝑀𝑀𝐿𝐿 + ∆𝑀𝑀𝐿𝐿

+ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
 
where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the phenotype for RFI; μ is the mean; HTYS is the fixed effect i for herd-trial-year-
season; LW is the fixed effect j for week of lactation; ACC (P) is the fixed effect of the k age of cow 
at calving with parity nested, ACC2 (P) is the fixed effect of the l age of cow at calving squared with 
parity nested; YSLACP is the fixed effect m for year-season-lactation period, ECM is the regression 
on energy corrected milk, MBW is the regression of metabolic body weight, ∆BW is the regression 
of body weight change. 

Statistical analyses. A univariate animal model for repeated measures was performed to 
estimate the variance and covariance components using DMU software (Madsen and Jensen 2014). 
The model used to estimate the variance components for DMI, BW, and ECM was: 
 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑃𝑃) + 𝐴𝐴𝐴𝐴𝐴𝐴2𝑖𝑖(𝑃𝑃) + YSLACP𝑖𝑖 + 𝑎𝑎𝑖𝑖 + 𝑝𝑝𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

 
where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the phenotype for DMI, BW, ECM; μ is the mean; HTYS is the fixed effect i for 
herd-trial-year-season; LW is the fixed effect j for week of lactation; ACC (P) is the fixed effect of 
the k age of cow at calving with parity nested, ACC2 (P) is the fixed effect of the l age of cow at 
calving squared with parity nested; YSLACP is the fixed effect m for year-season-lactation period. 
Random effects are as follows: a is the additive genetic effect n distributed as N (0, Aσ2a), in which 
A is the pedigree relationship matrix and σ2a is the genetic variance, pe the permanent environmental 
effect o (within and across parities) distributed as N (0, Iσ2pe), in which I is an identity matrix and 
σ2pe is the permanent environmental variance and e is the residual effect p of 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. To estimate 
the genetic correlations, pairwise bivariate models between all four traits were fitted. The pedigree 
included 6,903 animals up to 5 generations. The model to estimate variance components for RFI 
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only included the additive genetic effect, the permanent environmental effect and the residual as RFI 
has been previously adjusted by fixed effects. 
 
RESULTS AND DISCUSSION 

Descriptive statistics. Descriptive statistics for DMI, BW, ECM and RFI in Danish Jersey cows 
are presented in Table 1. The mean DMI was 21.88 kg with a phenotypic standard deviation of 3.87 
kg, whereas, the mean BW was 467.98 kg with standard deviation of 41.73 kg. Both were slightly 
higher than averages reported previously in literature for Jersey cows by Li et al. (2018; primiparous 
cows) and Halachmi et al. (2011).  
 
Table 1. Descriptive statistics for dry matter intake (DMI), body weight (BW), energy 
corrected milk (ECM), residual feed intake (RFI) in Danish Jersey cows 
 

Trait No. of 
records 

No. of 
animals 

Mean SD Min Max CV (%) 

DMI 24,746 963 21.88 3.87 8.21 36.55 18 
BW 24,746 963 467.98 41.73 312.0 603.0 9 
ECM 24,746 963 33.99 6.97 4.05 55.88 20 
RFI 24,746 963 0.00 3.10 -14.64 14.45 -- 

SD=standard deviation, CV= coefficient of variation. 
 

Genetic parameters. There are few studies available reporting genetic parameters for feed 
intake and feed efficiency in Jersey cows. Genetic and permanent environmental variances, 
heritabilities, genetic correlations, and phenotypic correlations of DMI, BW, ECM and RFI in 
Danish Jersey cows are shown in Table 2. The genetic variance for DMI in this study was slightly 
higher (2.11) than previously reported by Li et al. (2016) who reported a range from 0.6 to 1.8 
(depending on the lactation stage of Jersey cows), however DMI heritability (0.18) was within the 
range reported (0.17 to 0.52). Likewise, heritability for ECM was within the range of values (0.14-
0.53) previously reported by Ulutas et al. (2008), Sabedo et al. (2018) and Li et al. (2018) in 
primiparous Jersey cows. Estimated heritability for BW was slightly lower than the values (0.46-
0.61) reported by Li et al. (2018) across lactation stages. Genetic variance for RFI was in the range 
(0.4-1.4) reported by Li et al. (2017) in Holstein cows, same than the permanent environmental 
variance reported values (1-3.5). However, heritabilities were higher (0.10-0.23) than the reported 
in this study (0.08). 

 
Table 2. Genetic and phenotypic variances, heritabilities (diagonal), genetic correlations 
(lower diagonal) and phenotypic correlations (upper diagonal) of dry matter intake (DMI), 
body weight (BW), energy corrected milk (ECM), residual feed intake (RFI) in Danish Jersey 
cows 
 

Trait (unit) σ2a σ2pe DMI BW ECM RFI 

DMI (g/d) 2.11 3.69 0.18 (0.05) 0.19 (0.02) 0.35 (0.02) 0.93 (0.00) 
BW (kg) 338.20 387.74 0.37 (0.15) 0.35 (0.07) 0.02 (0.02) 0.02 (0.02) 
ECM (kg/d) 9.55 12.12 0.68 (0.10) 0.12 (0.15) 0.29 (0.06) 0.03 (0.02) 
RFI (g/d) 0.76 2.70 0.90 (0.03) 0.12 (0.18) 0.39 (0.16) 0.08 (0.03) 

 
Correlations between traits.  Moderate to high genetic correlations were estimated between 

DMI and BW, and DMI and ECM, these values were within the range of values previously reported 
in Danish Jersey cows across lactation stages (Li et al. 2018). Furthermore, Manzanilla et al. (2017) 
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reported lower genetic correlations (0.59) for DMI and ECM and higher (0.43) between DMI and 
BW in Dutch Holstein cows. Genetic and phenotypic correlations between RFI and DMI were large 
and positive (0.90 and 0.96, respectively) as expected given that RFI is the residual of DMI after 
been corrected by ECM, MBW and ∆BW. Phenotypic correlations between RFI and its regressors 
(BW and ECM) were close to zero as expected, whereas genetic correlations were low (0.12) for 
RFI-BW and moderate positive (0.39) for RFI-ECM, however, due to the large standard errors, the 
values between RFI and BW are not significantly different from zero. The correlations between DMI 
and BW-ECM show the importance of having a trait as RFI that is phenotypically independent of 
economically important traits as ECM and BW.  

 
CONCLUSIONS 

This study shows that feed efficiency calculated using DMI and BW measured by 3D cameras 
is heritable. Despite the slightly low heritability of DMI, which could be influenced by the small 
number of farms, animals and records, the results of this study appear promising, endorsing a new 
technique of recording feed intake and weight that can be implemented in commercial farms. 
Measuring larger number of animals in more commercial farms, extending the period of measuring 
and making adjustments in the algorithm and the editing procedure might help to get better quality 
data and consequently more accurate estimates for genetic parameters.   
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SUMMARY 

Heat stress is a principal factor limiting production of animal protein in subtropical and tropical 
regions, and its impact is expected to increase dramatically. Development of effective strategies to 
improve the ability to cope with heat stress is imperative to enhance productivity of the livestock 
industry and secure global food supplies. However, selection focused on production and ignoring 
adaptability results in beef animals with higher metabolic heat production and increased sensitivity 
to heat stress. The heritabilities estimated in this study in an Angus-Brahman multibreed 
population demonstrate genetic variation, which supports the hypothesis that selection for 
improved thermal tolerance is possible. Moreover, the estimated genetic correlations are favorable 
and indicate the opportunity to develop genomic tools for simultaneous improvement of tolerance 
to heat stress as well as production. 

 
INTRODUCTION 

In tropical and subtropical regions where more than half of the world cattle are maintained, 
climatic stress is a major limiting factor of production efficiency. This stress is expected to 
increase due to predicted changes in climate. Beef cattle when exposed to environmental high 
temperature and humidity, exhibit significant declines in feed intake, growth, fertility and welfare. 
Selection to increase productivity disregarding the genotype x environment interaction is likely to 
increase susceptibility to climatic stress. This makes the quest for heat-tolerant cattle with 
increased efficiency of production and reproduction increasingly important. Bos indicus cattle 
exhibit increased resistance to environmental stressors but they also have slower growth, are less 
fertile and have poorer meat quality relative to Bos taurus cattle. Beef producers in tropical and 
sub-tropical environments are incorporating a certain proportion of ‘indicus’ genes in their herds 
but, without knowledge of genes associated with thermotolerance, this also brings along negative 
aspects of indicus cattle. Research is needed to uncover the phenotypic and genetic relationships 
underlying this thermotolerance-production complex and subsequently identify the functional 
variants for thermotolerance without an antagonistic pleiotropy on production and reproduction. 
This will allow the incorporation of the GxE interaction in genomic selection programs for 
improvement of economically important traits in a predicted hotter world. 

Animals vary in their ability to dissipate heat and, therefore, in their ability to cope with heat 
stress, and this variability has a genetic component. The goal of this research is to describe novel 
traits which can be used to characterize genetic pathways for thermotolerance which are 
independent or positively associated with production performance. This will allow the 
incorporation of the GxE interaction in genomic selection programs for improvement of 
economically important traits in a predicted hotter world. 

 
MATERIALS AND METHODS 

Animal population. The University of Florida Institutional Care and Use Committee approved 
the research protocol (Approval no. 201203578). The population consisted of 330 heifers from the 
University of Florida multibreed herd (Elzo and Wakeman 1998; Elzo et al. 2016, 2017) over 2 
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years in 2017 and 2018. For mating purposes, animals in the multibreed herd are assigned to 6 
breed groups based on breed composition: 100% Angus = 100% to 80% Angus; 75% Angus = 
79% to 60% Angus; Brangus = 62.5% Angus; 50% Angus = 59% to 40% Angus; 25% Angus = 
39% to 20% Angus; and 100% Brahman = 19% to 0% Angus. Heifers were managed similarly 
across both years. DNA was extracted from blood samples from all animals and genotyped with 
the Bovine GGP F250 array (Illumina Inc., San Diego, CA, United States). 

Skin biopsies. Skin samples were taken during summer (July 17, 2017 and August 7, 2018) 
between 0700 and 1100 h. Skin samples were collected from the back, 4 inches down from spine 
and halfway along horizontal axis. The skin was cleaned and disinfected with 70% ethanol and 
chlorhexidine (Clorhexidine 2%; VetOne, Boise, ID). A skin biopsy sample was collected using a 
0.6 cm diameter punch biopsy instrument (Biopsy Punch, Miltex Inc., PA) and fixed in 10% 
formalin for approximately 24 h. Samples were dehydrated in 70% ethanol and infiltrated in liquid 
paraffin and stored until sectioned and stained at the UF Molecular Pathology Core. Sections were 
cut on a microtome with a thickness of 7 um, and sections were placed on slides, then stained with 
Harros-Eosin Hematoxylin. All histological sections were analyzed from digitized images 
obtained from a Nikon T3000 inverted phase microscope equipped image capture equipment 
(DMZ1200F with NIS Image Elements software). Images were obtained with the microscope in 40 
X, and analyzed with ImageJ software. Sweat gland area (mm2) and sweat gland depth as the 
distance from the top of the sweat glands to the skin surface (mm) were determined from a 
constant 4.6 mm2 cropped image area.  

Hair samples. Hair samples were collected from the shoulder, 4 inches down from spine and 
halfway along horizontal axis of each animal, as described in Hamblen et al. (2018). Hair samples 
were measured for length using ImageJ software. Five long and 5 short hairs from each individual 
were measured to evaluate the length of the topcoat and undercoat, respectively. The averages of 
the 5 short and long hairs were used in the statistical analysis.  

Body temperature. Core body temperature was measured as vaginal temperature at 15-min 
intervals for 5 d using an iButton data logger (Dikmen et al. 2014) inserted into a blank CIDR 
device and then into the vagina of each animal. Each iButton was calibrated before the study 
started and pre-programmed to record body temperature at 15-min intervals on a 24-h cycle. 
Ambient environmental conditions were monitored using HOBO data loggers which continuously 
record temperature, humidity dew-point temperature with HOBO-U23 data logger (Onset 
Computer Corp., Bourne, MA), and black globe temperature by using HOBO-U22 data logger. 
The temperature humidity index (THI) was calculated as:  

THI = (1.8 × T + 32) − [(0.55 − 0.0055 × RH) × (1.8 × T − 26)], 
where T = air temperature (°C) and RH = relative humidity (%). This equation has been shown 

to be a good indicator of heat stress (Dikmen and Hansen 2009). Only body temperatures from the 
3 continuous days when cattle were on pasture undisturbed were analyzed, as described in Sarlo 
Davila et al. (2019). Based on the thresholds defined by the livestock weather hazard guide and the 
THI level encountered during our experiment, THI conditions between 84 and 86 were considered 
high THI. Body temperatures at high THI for each individual were calculated by averaging all the 
body temperature measurements collected during the time that the THI windows occurred. This 
was accomplished for each heifer by averaging the body temperature from all 15-minute windows 
when the heifer was exposed to a high THI interval. 

Carcass traits. A certified technician recorded ultrasound images from yearling calves using 
an Aloka 500 ultrasound system (Hitachi Aloka Medical, Ltd., Wallingford, Connecticut, USA). 
Analysis of the ultrasonic images with UICS Scanning Software by Walter and Associates, LLC 
(Ames, 106 Iowa, USA) yielded yearling ultrasound backfat (UFAT, cm) and yearling ultrasound 
percent intramuscular fat (UPIMF, %) phenotypes. 

Statistical analyses. Average information restricted maximum likelihood (AIREML) variance 
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components, heritabilities, additive genetic correlations, and phenotypic correlations were 
estimated using single-trait and pairwise two-trait animal linear mixed models. The statistical 
model for both analyses included the direct additive genetic and residual as random effects, breed 
group (based on genomic breed composition) and group of data collection as class effect, except 
for short hair length and skin biopsy records, where group was not significant, and age at 
measurement as a covariate. The pedigree file consisted of 2,327 individuals, 715 sires and 1,286 
dams. All analyses were performed using the airemlf90 package from BLUPF90 software (Misztal 
et al. 2002). 

 
RESULTS AND DISCUSSION 

Heritability estimates for skin histology characteristics, hair characteristics, body temperature 
under high THI conditions, and ultrasound carcass traits are provided in Table 1. A high 
heritability of 0.69 was estimated for the sweat gland area while the sweat gland depth had a low 
heritability estimate of 0.09. Heritability was estimated to be 0.33 for short hair length (undercoat) 
and 0.16 for long hair length (top coat). Heritability for coat score has been estimated to be 0.6, 
(Turner and Schleger 1960) and McEwan Jenkinson et al. (1975) estimated the heritability of hair 
follicle measurements to range from 0.15 to 0.76. The heritability for body temperature under high 
THI conditions was estimated to be 0.13 which is similar the heritability estimated reported for 
rectal temperature in a Brahman x Angus crossbred population (0.19; Riley et al. 2012) and dairy 
cattle (0.17; Dikmen et al. 2012). Both studies utilized cattle located in Florida. High heritability 
estimates were obtained for backfat (0.76) and intramuscular fat (0.37) ultrasound measures.  

 
Table 1. Additive genetic variance (σ2a), residual variance (σ2e), and heritability (h2) 
estimates for skin histology characteristics (sweat gland area and depth), hair characteristics 
(short and long hair length), core body temperature under high THI conditions, and 
ultrasound carcass traits (backfat thickness and intramuscular fat) with approximate 
sampling errors (in parentheses) 

 
Trait1 σ2a σ2e h2 

Sweat gland area (mm2) 2.03 (0.62) 0.89 (0.49)  0.69 (0.18) 
Sweat gland depth (mm) 0.002 (0.004) 0.02 (0.004) 0.09 (0.15) 
Short hair length (mm) 1.95 (1.07) 3.97 (0.99) 0.33 (0.18) 
Long hair length (mm) 3.21 (3.39) 16.82 (3.42) 0.16 (0.17) 
Temperature at high THI (°C)                  0.02 (0.02) 0.10 (0.018) 0.13 (0.15) 
UFAT (cm) 0.001 (0.0003) 0.0003 (0.0002) 0.76 (0.19) 
UPIMF (%) 0.22 (0.12) 0.38495 (0.11) 0.37 (0.19) 
1UFAT, ultrasound backfat (cm); UPIMF, ultrasound intramuscular fat (%). 

 
Two-trait AIREML estimates of direct additive genetic and phenotypic correlations between 

skin histology characteristics, hair characteristics, body temperature under high THI conditions, 
and ultrasound carcass traits are presented in Table 2. Sweat gland area had a negative genetic 
correlation with sweat gland depth (-0.49), short and long hair length (-0.45 and -0.28, 
respectively), and body temperature under high THI conditions (-0.65). These negative 
correlations suggest a similarity in the genetic control underlying these traits which would allow 
for selection of animals with large sweat glands, short hair (both topcoat and under coat), and able 
to maintain a lower body temperature under high THI conditions. More importantly, although 
weak, the genetic correlations between sweat gland area and the two production traits (backfat and 
intramuscular fat) were favorable (0.22 and 0.20, respectively). Similarly, there was a medium 
negative genetic correlation between the body temperature under high THI and the two ultrasound 
carcass traits, suggesting animals able to maintain a lower body temperature would be more 
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productive.  
 

Table 2. Two-trait AIREML estimates of phenotypic (above diagonal) and direct additive 
genetic (below diagonal) correlations between skin histology properties, hair characteristics, 
and carcass traits  

 
Trait1 SWGA SWGD SHL LHL THighTHI UFAT UPIMF 

SWGA 0.69  -0.18 -0.22 0.02 -0.23 -0.05 -0.13 
SWGD -0.49 0.10 0.32 0.26 0.12 0.08 0.22 
SHL -0.45 0.27 0.33 0.75 0.23 0.07 0.17 
LHL -0.28 0.02 1.00 0.16 0.23 0.04 0.11 
THighTHI                 -0.65 -0.61 -0.28 -0.45 0.13 -0.17 0.04 
UFAT 0.22 -0.57 -0.34 -0.60 -0.38 0.76 0.23 
UPIMF 0.20 0.49 0.08 0.09 -0.33 0.42  0.37 
1SWGA, sweat gland area (mm2); SWGD, sweat gland depth (mm); SHL, short hair length (mm); LHL, long 
hair length (mm); THighTHI, temperature at high THI (°C); UFAT, ultrasound backfat (cm); UPIMF, 
ultrasound intramuscular fat (%). 

 
CONCLUSIONS 

The values of heritability estimated in this study indicate a large, exploitable genetic variance 
which can be used in selection programs to improve heat tolerance in cattle. Novel traits 
describing the thermotolerance phenotype such as sweat gland area, short hair length and body 
temperature under high THI conditions had medium to high heritabilities. More importantly, the 
genetic correlations estimated in this population are encouraging, indicating favorable 
relationships between the thermotolerance phenotypes and the production traits. This would 
suggest that genetic programs to improve resilience to environmental stress could be successful 
and opportunities exists for simultaneous improvement of production related traits.  
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SUMMARY 

Widespread use of sexed semen among other factors has resulted in a dramatic increase in dairy 
cows being mated to beef bulls. Economic selection indexes were developed to identify the best 
Angus bulls, a predominant breed in this market, to use on Holstein and Jersey cows. Through 
interviews and site visits with key participants in the dairy beef supply chain, production and 
economic parameters were sourced to inform the modification of the standard American Angus 
terminal sire index $Beef. $Angus-on-Holstein Value ($AxH) and $Angus-on-Jersey Value ($AxJ) 
were developed and although highly correlated to each other (0.96), were considered to rank bulls 
different enough, especially at the top end, that both were needed. Generally, the dairy indexes 
identify bulls with the best $Beef but avoid three particular traits that are problematic in the dairy 
industry, with non-linear emphasis. Calving ease had relatively lower emphasis with a similar 
penalty in both the $AxH and $AxJ indexes, where muscling was heavily weighted with greatest 
emphasis in $AxJ and a penalty for excessive yearling height EPD was implemented in $AxH in an 
effort to reduce excessively long carcasses in that cross. These new indexes provide dairy farmers 
and players in the supply chain through to slaughter a tool to select Angus bulls to produce calves 
that are better suited to the requirements of this unique sector. 

 
INTRODUCTION 

America’s dairy cattle have always been one source in the beef supply chain. In recent years, 
this source of beef has been evolving due to a convergence of factors. Sexed semen has been 
revolutionary in dairy cattle, where breeders can target replacement heifers from their best cows and 
breed the remainder for beef production. Before sexed semen, the feeding of straight Holstein steers 
was common, and although this practice remains, there has been a movement towards less demand 
for these from processors, increasing incentives for breeding dairy cows to beef bulls. Jerseys are 
gaining market share in the USA but their straight Jersey male calves have very little value, making 
beef breedings even more attractive. Low milk prices and contraction in the dairy industry reduces 
the demand for surplus replacements, again pushing the incentive for more beef matings.  

Angus has been the most common breed of sire for beef on dairy matings in the USA. $Angus-
on-Holstein Value ($AxH) and $Angus-on-Jersey Value ($AxJ) were developed to help dairy 
farmers identify the most profitable Angus sires for those markets. Although these were the first 
indexes developed in the USA for beef bulls crossed on Dairy cattle, such indexes have been in place 
in other countries where beef from the dairy industry is significant such as in Ireland (Berry et al. 
2019). 

Described are the unique aspects that were considered in the development of the beef on dairy 
indexes. Differences in resulting selection choices and trait emphasis between $Values is described.  
 
MATERIALS AND METHODS 

The development of the Angus on dairy $Values released in 2020 built on the Angus $Value 
indexes, released in 2019 which were the result of a complete rebuild of the bio-economic model at 
the time and included an industry wide survey described in Santos et. al. (2019). Beef Value or 
$Beef is a terminal index related to profitability differences on a per carcass basis when all progeny 
are fed through to slaughter. Differences in post-weaning performance and carcass revenue are 
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considered. There is no emphasis on calving ease in $B as it is assumed that terminal matings involve 
mature cows only, which have a negligible dystocia incidence when bred to Angus bulls.   

The biological models behind $Beef were adjusted to reflect differences in the production and 
performance of the Dairy cross calves. The dairy model considered the calves performance from 
birth, including calving ease and pre-weaning growth EPD. Differences in post-weaning 
performance, feed efficiency and mean carcass grading performance in Dairy cross calves were all 
considered. Information about the unique aspects and challenges, along with mean performance 
characteristics were obtained by visiting supply chain participants in the USA by way of in-person 
interviews and facility visits through the mid and Southwest. Included were dairy farms, calf raisers, 
feedlots and the processing sector. In addition to this production tour, interviews were also held with 
the USDA scientists behind dairy selection indexes (Drs. Paul VanRaden and John Cole pers comm). 
These interviews ascertained the importance of calving ease in the dairy production system as 
described in VanRaden et al. (2018). 

The dairy cross calves were characterized with slower post-weaning growth and poorer feed 
conversion efficiency, lighter carcass weights, less back-fat but similar marbling compared to the 
straight beef animals as modelled in $Beef. Unique aspects of the dairy cross calves were also 
apparent, including problems with carcass length in the Holstein cross calves and lack of muscling 
in both Holstein and Jersey. Differences in mean growth and feed efficiency performance were 
relatively straight forward adjustments to the bio-economic model behind $B.   

Lack of muscling in the dairy cross calves creates two problems. The term “sunken strips” was 
revealed through the packer interviews to describe the problem of some steak cuts, like strip loins, 
that are undesirable from a visual, “plate appeal” standpoint due primarily to shape. These poorly 
muscled animals also create a problem in the live animal as it is a way for the marketplace to visually 
distinguish animals from the dairy industry. To prevent discounts in the market, these beef animals 
resulting from the beef-on-dairy cross need to look like beef animals and not the stereotypical 
“narrow” dairy character.   

Deficiencies due to muscling required the development of a genetic trait for use in the indexes, 
but is not reported. Standard American Angus carcass Expected Progeny Differences (EPD) are 
presented on an age constant basis (Miller et al. 2018). Muscling was determined via a genetic 
regression using the component traits of ultrasound rib-eye area in bulls adjusted for weight at time 
of ultrasound scanning (yearling age) using similar methodology employed for feed efficiency as 
described in MacNeil et al. (2011). To rank high for muscling an animal needs to have a large ribeye 
area relative to their weight.  

The economic impact of deficient muscling was modelled in a similar manner to other carcass 
traits in the $B model, where different categories have different prices. With the thresholds where 
prices change being known, a new cumulative price can be determined based on a shift in the mean 
performance. Changes in the developed muscling trait was used to model the economic impact of a 
different proportion of animals being discounted for lack of muscling, which creates a non-linear 
relationship between muscling EPD and $Value, where increasing economic discounts are applied 
with decreasing muscling. Improved muscling was most important with the Jersey crosses. 

The same approach was applied to yearling height EPD as a predictor of carcasses being out of 
specifications in $AxH with 20% of carcasses being over-length with 20 USD per 45.4 kg discount. 
This approach to modelling categorical traits resulting in a non-linear emphasis is described in 
Quinton et al. (2019).  

Correlations were determined using Microsoft Excel between $Value indexes and related EPDs 
Sires in the analyses included 25,914 current sires with indexes reported for both $AxH and $AxJ. 
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RESULTS AND DISCUSSION 
 

 
Figure 1. Relative emphasis on each trait segment in $B, $AxH and $AxJ (from center)  
 

The dairy indexes are different in the traits that are added to $Beef and as a result, reduce emphasis 
on existing traits as illustrated in Figure 1. Although the emphasis on growth and efficiency remained 
similar, the additional traits of calving ease and muscling in both dairy indexes as well as yearling 
height in $AxH reduced the emphasis on marbling and yield compared to $Beef considerably. The 
heavy emphasis on muscling stands out as distinctly different with the greatest emphasis in $AxJ. 

  
Table 1. Correlations between $Value Indexes1 and some important trait EPD2 related to 
Angus on Dairy Indexes 
 

 $Beef $AxH $AxJ 
Calving Ease 0.01 0.27 0.20 
Post-Weaning Gain 0.75 0.53 0.63 
Marbling 0.66 0.49 0.44 
Yearling Height 0.54 0.09 0.28 
Muscling 0.31 0.79 0.79 
$Beef  0.72 0.78 
$AxH   0.96 

1$Value indexes are economic selection indexes developed for American Angus including a standard terminal 
index $Beef when Angus bulls are bred to Angus cows along with newly developed indexes when Angus 
bulls are mated to Holstein ($AxH) and Jersey ($AxJ) dairy cows. Expected Progeny Differences are the 
genetic evaluation estimates from the American Angus weekly genetic evaluation.   
 

Resulting $AxH and $AxJ were considerably different to $Beef with correlations of 0.72 and 
0.78, respectively (Table 1). As most dairy matings are via artificial insemination, considerable re-
ranking among top bulls on the $AxH and $AxJ indexes justified both indexes in the market place 
despite their high correlation to each other (0.96).   

Calving ease

Growth

Marbling

Yield

Efficiency

Muscling

Height
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The emphasis on calving ease in both $AxH and $AxJ resulted in a low to moderate correlation 
with calving ease direct EPD of 0.27 and 0.20, respectively. This is different to the near zero 
correlation observed between $Beef and calving ease EPD, which can be surprising considering 
$Beef is a terminal index with considerable weight on growth and weight traits with a 0.75 
correlation with post-weaning gain EPD. Amongst the current sires analysed the correlation between 
calving ease EPD and post-weaning gain EPD was only -0.04 and this combined with a positive 
correlation of 0.22 between calving ease direct and marbling, a heavily weighted trait in $Beef, are 
contributing to this neutral correlation observed.  

There was a positive correlation between EPDs for yearling height and weight (0.59) and since 
traits like post weaning gain and carcass weight are positively weighted in $Beef, a positive 
relationship between $B and Yearling height (YH) EPD (.53 correlation) exists. High yearling height 
EPD sires then come to the top of $Beef rankings, which are not desirable sires for Holstein cows 
due to the problem with carcass length. This was addressed in $AxH with downward non-linear 
emphasis on yearling height resulting in a very small (0.09) correlation between YH EPD and $AxH. 
It is interesting that although there is no direct emphasis on YH in the $AxJ indexes, there was 
reduced correlation with YH EPD (0.28) compared to $Beef (0.54). This is partly due to the negative 
correlation (-0.10) between muscling and yearling height where the increased emphasis on muscling 
in $AxJ is putting downward pressure on height. Also, as traits are added to the dairy indexes, 
compared to $Beef, proportional emphasis on traits like growth are also reduced, which could also 
be influencing the relationship with height. 

The indexes developed addressed a need from dairy farmers and participants in the dairy beef 
supply chain that was not being met with current tools. The main differences between the indexes 
developed and the standard $Beef index was the relationship with calving ease and the elimination 
of bulls at the top of the index rankings that are best described as “tall and narrow”. Such genetics 
are not a favourable cross on dairy cattle as they tend to magnify the phenotype that buyers and 
processors identify as being less desirable. The resulting $AxH and $AxJ indexes were well received 
by semen companies, who are the primary marketers of genetics to dairy farmers. 

 
CONCLUSIONS 

The $AxH and $AxJ indexes developed to select Angus sires to breed Holstein and Jersey cows 
address important and unique aspects relevant to these dairy crosses that don’t exist in the straight 
beef supply chain, which the existing terminal index for American Angus, $Beef was designed for. 
The moderate correlation between $Beef with the $AxH and $AxJ indexes illustrates the major re-
ranking that will exist with these new indexes compared to the standard terminal index for straight 
beef matings and hence their need in the marketplace.  
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SUMMARY 
Growth differentiation factor 9 (GDF9) is a known autosomal gene which regulates ovulation 

rate in mammals. In sheep, numerous polymorphisms have been reported in coding regions of GDF9 
with a significant impact on ovulation rate and hence litter size. To study the effect of GDF9 on 
litter size in Australian sheep breeds, an association analysis was performed between 1,600,633 
imputed sequence single nucleotide polymorphisms (SNPs) on OAR5 and litter size phenotypes in 
8,850 Merino and 7,613 maternal sheep breed ewes (predominantly Border Leicester, Coopworth, 
Corriedale and composite maternal lines) respectively. Results showed a significant association 
between litter size and SNPs in the GDF9 region in maternal breeds. After filtering for high linkage 
disequilibrium, a highly significant SNP (p_value = 9.09E-09) was found in an intron of the GDF9 
gene at OAR5:41841588, which accounted for a 0.22 increase in litter size and explained 4.75% of 
the total genetic variance. This SNP and the surrounding SNPs in the region of GDF9 were not 
significantly associated with litter size in Merinos. Information on this SNP genotype could be useful 
for obtaining a more accurate estimate of genetic merit for reproduction traits in some breeds of 
sheep.  

 
INTRODUCTION 

Sustainable livestock farming requires a constant increase in productivity and profitability of the 
enterprise. Reproductive performance is among the economically important traits in sheep breeding 
objectives as it directly affects the profitability of the enterprise. In sheep populations, the rate of 
genetic improvement in reproduction traits with conventional selection, based on breeding values 
derived from phenotypes and pedigree information, can be low. This is mainly due to low heritability 
of reproduction traits, incomplete recording in the industry, phenotypes being sex-limited and only 
available later in life, in particular for adult ewe performance.  

Application of genomic information in breeding programs, including using information about 
polymorphisms affecting the genetic variation of a trait, can increase the accuracy of estimated 
breeding values (Moghaddar et al. 2019) and potentially can lead to significant improvements in 
genetic gain for reproduction traits. GDF9 is a known autosomal gene with a significant impact on 
fertility traits in different mammals, including some sheep breeds. Literature shows some 
polymorphisms in GDF9 are responsible for increased ovulation rate and higher litter size in both 
heterozygous and homozygous genotypes (e.g. Hanrahan et al. 2004; Silvia et al. 2011; Våge et al. 
2013). However, sterility is reported for homozygous genotypes of some other mutation in GDF9 
gene in some sheep breeds, such as Belcare, Cambridge and Icelandic sheep breeds (Hanrahan et al. 
2004; Davis 2005; Nicol et al. 2009; Pérez-Ruiz et al. 2020). The objective of this study was to 
perform a genetic analysis of segregating variants of the GDF9 gene and estimate impact on litter 
size of adult ewes in Australian Merino and maternal sheep breeds using recently available whole 
genome sequence data. 

 
MATERIALS AND METHODS 

Phenotypes. Adult litter size (LS) phenotypes for Merinos and maternal breeds, which were 
respectively derived from the national Sheep Genetics database MERINOSELECT and 
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LAMBPLAN were used in this study. Both data sets included research (Information Nucleus Flocks 
and MLA resource flock) and industry animals (Sheep Genetics). Merino population consisted of 
purebred animals and the maternal population were a multi-breed/admixture of maternal sheep 
breeds including predominantly Border Leicester, Coopworth, Corriedale and composite maternal 
lines. Litter size phenotypes reflected the number of lambs counted at birth or were derived from 
pregnancy scanning records (Bunter et al. 2019, 2021). The total number of genotyped animals with 
LS recorded were 8,850 and 7,613 respectively for Merinos and maternal breeds, and 82% and 43% 
of these ewes had repeated records for Merino and maternal data set respectively. These data 
belonged to ewes born between 2007 and 2018. 

Genotypes. Imputed sequence data on OAR5 were used in this study. A description of the 
imputation procedure is provided in Bolormaa et al. (2019). Briefly, research and industry data with 
low-density genotypes (12k, 15k) were imputed to 50k genotypes based on a large 50k reference 
set, and then all the 50k genotypes were imputed to high-density genotypes (500k: HD) using a 
2,266 multi-breed reference set. Subsequently, animals with HD genotypes were imputed to 
sequence level using 726 multi-breed animals as a reference set (with on average 10x coverage). 
The final set of sequence data provided 1,600,633 variants on OAR5 after quality control and 
filtration for variants with low imputation accuracy (r < 0.63). SNPs with minor allele frequency of 
greater than 0.005 and at least 0.95 call rate were used in this study. 

Statistical analysis. Phenotypes used in the association study were first corrected for 
environmental effects separately for research and industry data and according to the following 
equation in ASReml 4.1 (Gilmour et al. 2009): y= Xb + Z1a + Z2pe + Z1Qg + e. In this equation, y 
represents the phenotypes, b is a vector of fixed effects, consisting of mean, contemporary group 
(cohort of flock, birth year, management group) and age at lambing, a is the random direct additive 
genetic effect of the animal, fitted through the pedigree relationship matrix, pe is random permanent 
environmental effect of the animal, g is random effect of reed and e is random residual effect. X, Z1 
, and Z2 are corresponding incidence matrices and Q is a matrix of contributions of genetic groups 
for all animals in the pedigree. The pre-corrected phenotype for each individual was the sum of the 
within group genetic and residual effects (𝑦𝑦∗ = 𝑍𝑍1𝑎𝑎� + �̂�𝑒 ).  

Association analysis was performed according to the single SNP mixed model regression method 
based on the following equation y*=Xb + Zu + e in the Gemma V0.96 program (Zhou et al. 2014). 
In this equation y* refers to the pre-corrected phenotypes, b refers to mean and allele substitution 
effect of the investigated SNP, u refers to the random additive genetic effect of the animal fitted by 
genomic relationship matrix (G), and e is the residual effect. G was calculated using 50k genotypes 
based on Yang et al. 2011, and X and Z are incidence matrix relating fixed and random effects to 
phenotypes. 

 
RESULTS AND DISCUSSION 

The litter size results showed the maternal breeds on average were more prolific (LS = 1.73) than 
Merinos (1.34) (Table 1). However, the heritability of litter size was higher in Merinos (0.13) 
compared to maternal breeds (0.08). 

 
Table 1. Summary statistics of phenotypes and pedigree-based heritability of litter size in 
Merino and maternal sheep populations 
 

Population No. of Records No. of Animals Average sd range h2(se) 
Merinos 547,807 295,748 1.34 0.53 1- 4 0.13 (0.02) 
Maternal breeds 703,503 305,916 1.74 0.63 1- 5 0.08 (0.01) 

 
The association results showed that SNPs in the GDF9 region significantly affected LS in 
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maternal breeds (41,841,034 to 41,843,517 bp, Oar_V3.1, Ensembl Genome Browser; 
www.ensembl.org) (Figure 1). However, SNPs in this region did not have a significant effect on LS 
in Merinos. The significant region in maternal breeds was within the GDF9 gene as well as both 
upstream and downstream of the gene. A total of 298 SNPs in this region were significantly 
associated initially (-log p value ≥ 6). However, the number of significant SNPs retained in this 
region after pruning for high LD (LD≥0.95) was 34 and spanned from position 40,685,116 to 
45,175,518 bp on OAR5. Conditional and joint analysis of these remaining SNPs in stepwise 
multiple regression (Yang et al. 2012) identified that the most significant SNP within the GDF9 
coding region to be located at OAR5:41841588, which is in  intron location of the GDF9 gene. This 
SNP was associated with a 0.22 increase in LS and explained 4.75% of the total genetic variance. 
The frequency of this SNP was 1.2% in the maternal breed population. However, this SNP was not 
segregating in Merinos and other SNPs in the GDF9 region were also not significantly associated 
with LS in Merinos. 

 

 

Figure 1. Manhattan plot of p_value of association between genetic markers on OAR5 and 
litter size in maternal breeds (a) and the associated QQ plot (b). Green dots show SNPs 
located within GDF9 coding region 

 
The GDF9 gene, located on OAR5 in sheep, is important for normal folliculogenesis. Some 

polymorphisms including missense mutations in GDF9 have been associated with between 0.2 to 
0.7 increase in litter size (Davis, 2005) in various sheep breeds. In this study, we observed a highly 
significant region in GDF9 and prioritized a SNP located within intron of GDF9 in the maternal 
breeds only. This significant SNP was 243 base pairs apart from the causative mutation reported in 
Norwegian White Sheep (Våge et al. 2013), which was introduced to this breed by crossing with 
Finnish Landrace sheep. It is highly possible that the significant region found in maternal breeds 
here also originated from Finnish Landrace, due to historical introductions. The increase in litter 
size (0.22 lambs) in maternal breeds observed herein was within the range of increase in litter size 
reported for Finnish landrace (Våge et al. 2013).  

Sterility associated with homozygous genotypes for some mutations in GDF9 has been reported 
in some breeds (e.g. Nicol et al. 2009). However, in other breeds, such as Finnish Landrace, 
Norwegian White Sheep and Santa Ines, and for other mutations in GDF9, homozygous genotypes 

5:41,841,588 

 

a b 

http://www.ensembl.org/
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have been reported to be fertile (Våge et al. 2013; Silvia et al. 2011). Herein, three animals 
homozygous for the significant SNP in the GDF9 region were all fertile and showed higher LS than 
population average. However, due to low frequency of the SNP markers in the significant region 
and the small number of homozygous genotypes in this study, further investigation is required to 
confirm the fertility status in homozygous animals. 
 
CONCLUSIONS 

This study showed sequence variants located in GDF9 were significantly associated with litter 
size in maternal breeds. The allele frequency of the favourable allele was 1.2% in the maternal 
population and explained 4.75% of the total genetic variance in LS. No such association was 
observed in Merinos. Further work is required to investigate the relationship between the significant 
region in GDF9 with other reproductive traits and also the impact of homozygous genotypes on 
fertility and litter size. Information about GDF9 could be useful for more accurate prediction of the 
genomic merits of selection candidates for LS in some breeds. 
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SUMMARY 

Increasing the adoption of female genomic testing, as a driver to accelerate the rate of genetic 
gain for net profit is a key priority for the Australian dairy industry. The aim of this research was to 
understand the motivations and barriers to adoption of female genomic testing through semi-
structured interviews and self-administered questionnaires. The results showed that farmer 
awareness of genomics was high, but many had limited understanding of the practicalities of testing. 
An awareness-building campaign should therefore focus on building understanding of how 
genomics fits within a farm business. Ensuring farmers have the necessary support to make use of 
their results will be critical in achieving sustainable adoption. These findings provide the ‘people 
perspective’ to inform research, development and extension strategies to increase the rate of 
adoption of female genomic testing by farmers. 

 
INTRODUCTION 

Commercial genomic testing of bulls began in Australia in 2011 and has played a significant role 
in increasing the rate of genetic gain in the Australian dairy herd and the range of traits (Pryce et al. 
2018; Newton et al. 2021). Adoption of genomic testing of bulls has been rapid. Of the Holstein and 
Jersey bulls registered for artificial breeding and born in the past 5 years, 91% and 84%, respectively, 
have genotypes included in DataGene’s genetic evaluation.  

Genomic testing of females has the potential to enable a quantum leap in genetic gain in the 
Australian dairy herd. It offers significant benefits to individual dairy herds (Newton et al. 2021). 
Genomic testing of females at a young age gives dairy farmers the ability to identify high, medium 
and low genetic merit animals and the opportunity to manage them differently (DataGene 2019b). 
The ImProving Herds project determined that the direct benefits of genomics outweighed the testing 
costs in more than half Australian herds (Newton et al. 2018) with the greatest benefits being in 
herds with low replacement rates and high reproductive performance. DataGene reports that around 
20,000 females are tested annually which is less than 1% of heifers born each year. As a proportion 
of the number of herd recorded cows, the animals genotyped in Australia is 4% (DataGene 2019a, 
2020) compared to 22% reported by the Council on Dairy Cattle Breeding in the USA (2020).    

Previous studies have shown that farmer breeding choices and attitudes towards genetics vary 
(Nettle et al. 2010; Martin-Collado et al. 2015; Ooi et al. 2021). The aim of this study was to better 
understand farmers’ motivations to undertake routine female genomic testing and the barriers to 
adoption in order to advise the development of industry communication and extension activities 
directed at increasing the rate of genomic testing.  

 
MATERIALS AND METHODS 

We conducted semi-structured telephone interviews with 17 dairy farmers and two managers of 
commercial GSP (GSP) businesses. The interviews involved a semi-structured conversation process 
that captures what people think and enables participants to reflect on why they hold these views 
(Stanfield 1997). Interviewee selection was based on purposeful sampling (Patton 2002). We aimed 
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to gather a full range of perspectives while understanding that it is more likely that ideas are repeated 
as the number of interviewees increases (Ooi et al. 2021). We interviewed two managers from GSP 
first, to gain insight from their broad experience in discussing genomics with farmers.  

Discussion topics for farmer interviews were modified slightly according to their level of interest 
in genomics which we described as: ‘genomics convert’, ‘genomics is on my radar’, and ‘non-
converts’. Number of interviewees for each of these categories were 7, 8 and 2; respectively. 

The self-administered survey of commercial GSPs was conducted through email with follow up 
phone calls to prompt responses. The survey asked GSPs what they thought were motivations for, 
and barriers to, the adoption of genomic testing by farmers, based on experience. Eight people from 
GSPs were invited to participate, with seven responses received by the deadline.  

Responses from both interviews and survey were collated and similar ideas were grouped into 
themes by the research team.  

 
RESULTS AND DISCUSSION 

The initial attractions of genomics were similar across all farmer interviewees, with the two 
biggest attractions being parentage verification (especially for crossbred or large herds with 
intensive calving blocks) and to identify heifers to keep as replacements and not having the expense 
of rearing those animals unlikely to perform in the herd (Table 1). With experience, converts had 
discovered additional benefits of female genomics, e.g. identifying suitable candidates for sexed 
semen to breed replacements and beef semen as a terminal cross which are more sophisticated 
applications to their business. 

 
Table 1. Reasons why farmers genomic test females 
 

Parent (and pedigree) verification, especially in herds with crossbreeding programs or large herds with 
intensive calving batches. 
Heifer rearing decisions 
• Select the right heifers to rear as replacements  
• Sell heifers that don’t have a future in the milking herd (“Identify the tail end of the herd”) 
Breeding decisions 
• Matching different types of straws to animals of high, medium, and low genetic merit (e.g. sexed over 

high; conventional over medium, beef over low) 
• Monitor impact of breeding decisions 
Business decisions: developing alternative income streams e.g. elite genetics, heifer exports. 
 
Overwhelmingly, the non-convert farmer interviewees had heard of genomics, and the ability to 

test young females, however their understanding was limited in terms of how the test worked, the 
costs involved, practicalities of sampling, the application of the results to decision making and the 
benefits/value to their business. This presents a communication challenge, as one GSP pointed out: 
“Nobody wants to look silly and admit they don’t know about genomics.” 

There appeared to be regional variation in understanding, with it being greater in areas where 
peers had tried genomics. For example, in Western Australia, ‘everyone around us is testing’ so 
hearing peer success had given them confidence in genomics. 

The lack of commercial genomic service for crossbred and minority breeds was a barrier for 
some farmers in the ‘on my radar’ category. 

Barriers cited by ‘non-convert’ interviewees fell into the following themes: the herd/business 
was not yet ready for genomics, other priorities, logistics, costs and confidence in the technology. 
The barrier of ‘other priorities’ has been previously recognised in the context of animal breeding 
and genetics extension programs (Dodd et al. 2015) and highlights the need for repeated activities 
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to maintain farmers’ awareness of, and interest in female genomics. 
One interviewee summed it up as: “Genomics is currently in my too hard basket and it’s easier 

to justify spending money elsewhere.”   
Converts reported similar concerns before deciding to test. While the cost was initially off-

putting, converts’ focus changed from cost to ‘value’ of genomics once they began using the results. 
This is reflected in the very high repeat testing rate (at least 80%) reported by GSPs interviewed and 
surveyed. Both converts and GSPs confirmed that the logistics of sampling, especially the first time, 
was a genuine challenge for many farmers. This could be overcome with practical support and farm 
protocols to incorporate the testing process into routine activities such as vaccination and disbudding 
or calf feeding. GSPs also highlighted the importance of providing follow up support, tools and 
reports to help farmers interpret the results and make breeding and management decisions. They saw 
it as vital to take people through the results the first time with some farmers needing ongoing support 
(with each new set of results).  

Based on these insights, the research team developed a four-phase adoption pathway for female 
genomic testing in Australian dairy herds: awareness and understanding, consideration and 
overcoming barriers, deciding and sampling and interpreting and applying the results (Figure ).  

Figure 1: Adoption pathway for female genomics by farmers 
 

This pathway has some similarities with the Transtheoretical model of behaviour change 
(Prochaska et al. 1992). It has formed the basis of developing and delivering a communication and 
extension program to fast track the uptake of female genomics by the Australian dairy industry.  

The communication and extension program requires tailored communication formats for the 
different stages of the adoption pathway. Nettle et al. (2010) and Ooi et al. (2021) have previously 
reported that farmers’ decisions are influenced by a range of advisors. Therefore, a collaborative 
approach across the herd improvement industry is expected to be the most effective way to support 
farmers in their journey along the adoption pathway for female genomics. Different actors in the 
industry are better equipped to deliver via different communication formats (Table 2). Online 
delivery formats offer the opportunity to allow farmers to engage with communication and extension 
resources when the time is right for their individual circumstances.  

This study found that Australian dairy farmers have heard of genomic testing but understanding 
and application of the test results is variable. Those who have not previously tested have limited 
understanding of the costs, practicalities of sampling, the application of the results and the 
benefits/value to their business. One-way communication involving mass media is essential in 
maintaining awareness and can help build understanding. However, fast-tracking adoption will also 
require interactive communication such as group activities, learning resources and, in some cases, 
individual one-on-one support. 
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Table 2: Communication formats suited to stages in the adoption pathway 
 

Stage in adoption 
pathway 

Communication/extension formats Potential delivery 
partners 

Awareness and 
understanding  

Mass media, including industry/trade media, print, 
digital, social media. 

Dairy Australia (DA) 
DataGene, GSPs 

Consideration and 
overcoming barriers 

Group activities e.g. such as pub nights, field days, 
discussion groups, local industry events.  
Peer testimonials and case studies. 

Regional Programs 
DataGene, GSPs 

Decide and sample Special interest discussion groups (virtual) 
One-on-one conversations 
Practical (on-farm) support with sampling 
Tools / resources e.g. how-to videos, checklists 

DataGene 
GSPs 
Dairy Australia 
 

Interpret results and 
apply to decisions 

Practical (one-on-one) support 
One-on-one conversations, individual support  
Learning resources (including online)  
Report demonstrations (including online) 
Special interest discussion groups (virtual) 

GSPs, DataGene 
Breeding Advisers 
Semen resellers 
Dairy Australia 

 
CONCLUSIONS 

Understanding the hurdles and motivations for on-farm adoption of female genomic testing adds 
to the existing knowledge of genetic trends. These insights provide the ‘people perspective’ to 
inform research, development and extension strategies designed to increase the rate of adoption of 
female genomic testing by farmers. The proposed adoption pathway can inform the development of 
a communication and extension program to promote the uptake of female genomics in dairy herds. 
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SUMMARY 
This study estimated variance components of body condition and growth traits and the genetic 

relationships across time and traits for approximately 2,200 females from three tropically adapted 
northern Australian beef breeds. Body condition score, measured in yearling heifers and 
subsequently at the commencement of their annual mating seasons (1st and 2nd), was estimated to be 
heritable (h2: 0.32to 0.36) and with high genetic correlations (rg) over time, ranging from 0.76 to 
0.85. Hip height was also estimated to be strongly heritable at the three time points (h2: 0.59 to 0.67) 
and was genetically the same trait across the time points (rg: 0.94 to 0.99). Similar results were found 
for live weight, with heritability estimates ranging between 0.61 and 0.65 and weight being strongly 
correlated across the different time points (rg: 0.81 to 0.95). Genetic correlations between traits 
within the same time point showed that when cows were undergoing the fastest growth 
(commencement of mating 1) the genetic relationships varied compared to times points with slower 
growth. As yearling heifers and into mating 2 the genetic relationship between hip height and body 
condition score was small to moderately negative. However, at commencement of mating 1, a strong 
negative genetic correlation was observed. Likewise, the genetic correlation between live weight 
and body condition score was moderately positive, except for the commencement of mating 1, when 
it was not significantly different from zero. Body composition is moderately heritable but the 
physiological state impacts on the genetic relationships between traits, so having a clearly defined 
time of measurement will be essential in the trait definition. 

 
INTRODUCTION 

Cow body condition score is an important trait in beef production. It describes body reserves of 
fat and is potentially an indirect measure of both fertility and survival. Wolcott et al. (2014b) 
demonstrated in Australian Brahman females a positive moderate genetic correlation between body 
condition score and pregnancy success from the first mating. Overall body condition is affected by 
both environmental conditions and the physiological state of the cow. A thorough understanding of 
the genetics of body condition score (reflecting composition) is required to be included into a genetic 
evaluation programme. This requires evaluating different physiological states and the genetic 
relationships to other traits. 

The aim of this study was to estimate the genetic parameters for body condition score, hip height 
and live weight, within and across ages in tropically adapted northern Australian beef breeds. 

 
MATERIALS AND METHODS 

Female reproduction traits have been extensively recorded as part of the RepronomicsTM project 
in northern Australia (Johnston et al. 2017). Briefly, three breeds (Brahman, Droughtmaster and 
Santa Gertrudis) were managed together at two sites in Queensland (QLD). Approximately 2,200 
measurements were considered from females measured as yearling heifers (~14 months) and at the 

 
∗ A joint venture of NSW Department of Primary Industries and the University of New England 
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commencement of the annual mating seasons1 (~26 months) and 2 (~38 months). Cows not 
producing a calf were culled and data at mating 2 is censored with only lactating cows included.  

Cow body condition score was assessed based on a 1 (poor) to 5 (fat) scoring system, with 
plus/minus amendments to scores allowed. Where a plus/minus score is recorded the body condition 
score is adjusted by 0.33 increments, for example 3-, 3 and 3+ are analysed as 2.66, 3.0 and 3.33, 
respectively. Within each cohort a single experienced assessor scored all animals. Hip height (cm) 
was recorded in the crush as the distance from the ground to the top of the hip. Live weight (kg) was 
recorded using electronic scales.  

Statistical models were developed for each trait using PROC MIXED in SAS (SAS Institute, 
2007), sire was fitted as random and model terms were tested with step-wise elimination until only 
significant terms remained. All traits were analysed as linear, with breed (Brahman, Droughtmaster 
and Santa Gertrudis) and cohort fitted as significant fixed effects. A cohort was defined as purebred 
females born together at the same site in the same year. All breeds at each site were managed 
together. Mating outcomes were recorded and included the date of birth and sex of calves. Animals 
with unknown parentage, calf sex, date of birth or dam age were removed from the dataset, as were 
multiple births and animals that were not purebred.  

For body condition score at matings 1 and 2 and all hip height measures, birth month and dam 
group (a concatenation of dam’s project herd, breed type, herd of origin and age group) nested within 
cohort was also significant. Except formating 2 live weights, age at measurement was a significant 
linear covariate fitted for all traits, with the quadratic age term also significant for mating 1body 
condition score. The first order interaction between birth month and measurement age was included 
in the final model for all body condition score traits and mating 1 hip height. Calf birth month,dam 
group nested within birth cohort and the interaction between calf birth month and cohort were 
significant for mating 2 hip height, and calf birth month and age of calf at foot were significant for 
live weight at the start of mating 2.  

To estimate genetic parameters, mixed linear animal models including significant fixed effects 
were fitted using ASReml (Gilmour et al. 2009). Univariate models were fitted to estimate variance 
components, with genetic relationships estimated fitting tri-variate models that grouped traits by 
stages (i.e. all mating 1 traits) or by trait type (i.e. all body condition score traits). Fitting a tri-variate 
model accounts for data censorship at the later time points. A combined breed pedigree was used 
including up to 3 generations where available. 

 
RESULTS AND DISCUSSION 

The number of records by time and trait are presented in Table 1. There are fewer animals at the 
later time points due to data censoring from culling cows that do not calve from mating 1 and recent 
cohorts not yet being mated a 2nd time. The largest increase in skeletal size and live weight occurred 
between the yearling heifer and commencement of mating 1 times. Skeletal structure and live weight 
still increased (at a slower rate) between matings 1 and 2 as the cows grew, but body condition score 
decreased as cows were rearing calves and losing condition. Cows were leanest at the 
commencement of mating 2 and there was more raw variation in body condition score at mating 2 
compared to body condition scores at the earlier ages. Averagehip height and live weight increased 
with each subsequent measurement, but the raw variation increased initially but was then similar for 
mating 1 and 2.  

Estimated variance components (Table 1) showed that all traits were heritable, and that 
heritability was similar across the different time points considered in this study. Body condition 
score heritability estimates were moderate (h2=0.32 to 0.36) with large estimates for hip height 
(h2=0.59 to 0.67) and live weight (h2=0.61 to 0.65). After adjusting for significant fixed effects, 
including age and reproduction status, the phenotypic variance of body condition score at the 
commencement of mating 2 was approximately twice the size compared with the variance at the 
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commencement of mating 1 and the variance of live weight also increased over time. The greater 
variation in body condition score and live weight observed at mating 2 reflects that at this stage cows 
are meeting the energy demands associated with both lactation and growth. The variance of hip 
height also increased initially but was then similar for mating 1 and 2. 

 
Table 1. Data summary statistics, estimated additive variance and heritability for body 
condition score (1 – 5 score), hip height (cm) and live weight (kg) measured in yearling heifers 
and at the commencement of mating seasons 1 and 2 for pooled breeds (Brahman, 
Droughtmaster and Santa Gertrudis) 

 
 N Mean Standard 

deviation 
Range Additive Variance Heritability 

Body condition score 
Yearling Heifer 2,253 3.02 0.41 1.66 – 4.00 0.019 0.32 (0.05) 
Mating 1 2,219 3.13 0.41 1.66 – 4.66 0.033 0.36 (0.05) 
Mating 2 1,585 2.66 0.59 1.00 – 4.33 0.064 0.36 (0.06) 

Hip height  
Yearling Heifer 2,167 124.4 4.5 109 -141 8.27 0.61 (0.05) 
Mating 1 2,213 135.7 5.4 115 - 156 10.5 0.67 (0.05) 
Mating 2 1,548 140.3 5.1 121 - 162 9.24 0.59 (0.08) 

Live weight  
Yearling Heifer 2,391 258 37.3 142 - 381 317.7 0.64 (0.05) 
Mating 1 1,979 381 60.8 176.5 - 572 612.1 0.61 (0.06) 
Mating 2 1,486 431 61.9 244 - 648 1111.6 0.65 (0.06) 
 
Table 2. Genetic (above diagonal) and phenotypic (below diagonal) correlations (standard 
errors) between body condition score (BCS, 1 – 5 score), hip height (HH, cm) and live weight 
(LW, kg)measured in yearling heifers and at the commencement of mating season 1 and 2 for 
pooled breeds (Brahman, Droughtmaster and Santa Gertrudis) 
 

  Yearling heifers Mating 1 Mating 2 

Y
ea

rl
in

g 
he

ife
rs

  BCS HH LW BCS HH LW BCS HH LW 
BCS  -0.19 

(0.09) 
0.38 

(0.08) 
0.79 

(0.07) 
  0.85 

(0.08) 
  

HH -0.02 
(0.03) 

 0.66 
(0.04) 

 0.99 
(0.01) 

  0.94 
(0.03) 

 

LW 0.30 
(0.02) 

0.62 
(0.02) 

   0.95 
(0.02) 

  0.81 
(0.04) 

M
at

in
g 

1 

BCS 0.39 
(0.02) 

   -0.50 
(0.08) 

-0.11 
(0.10) 

0.76 
(0.08) 

  

HH  0.75 
(0.01) 

 -0.25 
(0.02) 

 0.67 
(0.05) 

 0.98 
(0.01) 

 

LW   0.79 
(0.01) 

0.10 
(0.03) 

0.56 
(0.02) 

   0.91 
(0.02) 

M
at

in
g 

2 

BCS 0.26 
(0.03) 

  0.33 
(0.03) 

   -0.17 
(0.12) 

0.27 
(0.10) 

HH  0.71 
(0.02) 

  0.80 
(0.01) 

 -0.12 
(0.03) 

 0.71 
(0.06) 

LW   0.64 
(0.02) 

  0.73 
(0.01) 

0.36 
(0.03) 

0.55 
(0.02) 
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Table 2 presents estimates of genetic correlation between traits recorded at the same time point 
and for individual traits across time points. All traits were strongly correlated across the different 
time points. Body condition score was estimated to have very strong genetic correlations (between 
0.76 and 0.85) across time points. Likewise, genetic correlations for live weight across time were 
very strong ranging between 0.81 and 0.95. Genetic correlation estimates for hip height indicated 
that the trait was genetically the same at each time point with all correlations greater than 0.94. 
Wolcott et al. (2014a) reported similar relationships between pre-calving and mating 2 
measurements for all three traits considered in this study. These correlations indicate that selection 
based on records of younger animals will have a consistent impact on the trait genetically through 
mating 1 and 2.  

Hip height and live weight at all stages were strongly correlated (rg: 0.66 to 0.71). In contrast, 
the correlation between hip height and body condition score varied depending on the physiological 
state. As a growing yearling heifer and at the commencement of mating 2 (i.e. lactating heifer) there 
were small negative genetic correlations that were not significantly different from zero. At the 
commencement of mating 1, a moderate negative correlation (rg=-0.50) was estimated between hip 
height and body condition score. This suggests that in periods of high growth, genetically taller cattle 
put energy towards structural growth before laying down body condition. Similarly, genetic 
correlations between body condition score and live weight varied at the different stages. At the 
commencement of mating 1, the genetic relationship was not significantly different from zero, but 
at the other times in the study, a moderate positive genetic correlation was estimated. Wolcott et al. 
(2014a) from Brahman and Tropical Composite animals reported similar results for traits measured 
pre-calving and at mating 2.  
 
CONCLUSIONS 

This study confirms that body condition score, hip height and live weight were heritable when 
recorded in yearling heifers and at the commencement of mating 1 and 2. Further, within trait 
estimates of genetic correlations across time showed that selection of animals at one physiological 
state can be effective when selecting to improve the same trait at another physiological state, 
however it is not genetically the same trait. The between trait genetic correlations illustrate how 
animals with more rapid growth (i.e. at the start of mating 1) tend not to lay down body condition 
whilst they are growing in skeletal size. Once the active growth slows, these animals partition more 
resources to body condition and there is no longer a significant genetic relationship between body 
condition score and hip height. Genetic selection of body composition is achievable but having a 
clearly defined time of measurement will be essential in the trait definition. 
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SUMMARY 
Using industry records (n=12,912), the effect of ewe reproductive status (defined as combined 

lambing outcomes during previous and current production cycles) on adult greasy fleece weight 
(AGFW) was estimated for pre-joining and pre-lambing shearing systems. Increasing ewe 
reproductive output significantly decreased AGFW, by up to 26% over 2 cycles of shearing. 
Differences in adjustments between shearing systems reflected that AGFW was most affected by 
the reproductive cycle completed before shearing. Estimated breeding values for AGFW of sires and 
ewes were little affected by bias due to reproductive status (< 1% for the highly reproductive ewes 
comprising 36% of the data) and re-ranking of animals was limited. Nevertheless, adjusting AGFW 
for reproductive status is proposed, but this would be difficult under the current low recording levels. 

 
INTRODUCTION  

The recording of lifetime productivity traits in Merino ewes is encouraged by both Sheep 
Genetics and, more recently, through the activities of the Merino Lifetime Productivity project 
(Ramsay et al. 2019). This follows studies (Brown et al. 2013; Swan and Brown 2013) which 
confirmed that recording of at least 1 measurement of adult greasy fleece weight (AGFW) would 
increase genetic gains in AGFW and overall selection accuracy for lifetime wool production. These 
studies used available expressions of AGFW recorded on both males and females from 
MERINOSELECT flocks. Reproductive level of ewes was not included as a fixed effect in models 
fitted to AGFW due in part to constraints with the genetic evaluation software at that time. 

For a production system where ewes were shorn with a lamb at foot, Waters et al. (2000) reported 
that ewes rearing multiple lambs during the current production cycle had 0.12 kg lighter AGFW 
than ewes rearing single lambs, but effects due to rearing performance during the previous 
production cycle were not significant. Richards et al. (2018) examined effects of cumulative lifetime 
reproductive performance on clean fleece weight of Merino ewes, finding generally no significant 
differences in fleece weight between ewes with higher and lower number of lambs scanned over 3 
consecutive reproductive records. As their study used data from 2 commercial flocks, genetic and 
environmental influences could not be separated, and it was not clear when ewes were shorn in 
relation to stage of the reproduction cycle. 

Using data from the MERINOSELECT database, this study aimed to evaluate the effects on 
AGFW of ewe reproductive status, defined as the combined lambing outcomes from its previous 
and current production cycle. The effect of ewe reproductive status was estimated for these 
consecutive cycles within 2 shearing systems. 

 
MATERIALS AND METHODS 

Greasy fleece weights of ewes with known and consecutive reproductive outcomes recorded 
between their second and fifth adult shearings were extracted from the MERINOSELECT database. 

 
∗ A joint venture of NSW Department of Primary Industries and the University of New England 
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The fleece weights were collected under 2 annual shearing systems, where ewes either were shorn 
pre-joining (dry period) or pre-lambing (mid-gestation). For each shearing system, initially 
reproductive performance at each ewe’s previous and current cycle was described as not pregnant 
(DRY), single lamb born and lost (S_L), single lamb born and reared (S_S), multiple lambs born 
and lost (M_L), multiple lambs born but a single lamb reared (M_S) and multiple lambs born and 
reared (M_M). Ewe reproductive status then was defined by concatenating reproductive 
performance during the previous and current production cycles (36 levels per shearing system). A 
total of 12,912 AGFW records from 9,934 ewes across shearing systems were available for previous 
and current reproductive performances relevant to each fleece weight’s production cycle (Table 1). 

Analysis of the effect of ewe reproductive status on AGFW was conducted using ASReml 
(Gilmour et al. 2015). The fixed effects fitted included the birth-rearing type of the ewe (3 levels), 
age of dam (10 levels), age in days at measurement (fitted as a linear covariate), contemporary group 
(defined as combinations of flock, birth year, date of measurement and management group) and its 
reproductive status, described above. Random effects included sire and ewe permanent environment, 
to accommodate repeated records for ewes. Predicted means for greasy fleece weight for the 
reproduction effects were estimated using solutions from the full model. The impact of fitting 
reproductive status on BLUP estimated breeding values (EBVs) for AGFW was evaluated using 
single trait models with and without the effects of reproductive status within shearing system. 

 
Table 1. Descriptive statistics for adult greasy fleece weight (kg) in each shearing system 
 

 Number of 
records 

Number of 
ewes 

Mean (SD) Minimum Maximum Mean ewe 
age (days) 

Pre-joining 6636 5226 5.6 (1.32) 2.2 12.8 1436 
Pre-lambing 6276 4708 4.9 (1.58) 1.2 13.8 1267 

 
RESULTS AND DISCUSSION 

The predicted means for AGFW were higher for the pre-joining system (5.3 kg for DRY ewes, 
Table 2), but this difference at least partially reflected a change in the predominant type of ewe: 
stronger wool ewes tended to be shorn pre-joining, whereas fine-ultra fine wool ewes were mainly 
shorn during gestation. Within a single shearing cycle, reductions in AGFW from DRY to M_M 
were 14% within pre-joining and 20% within pre-lambing shearing systems. The high reproductive 
output of twice M_M ewes (M_M-M_M category) reduced AGFW by 22% and 26% when 
compared to twice DRY ewes under pre-joining and pre-lambing shearings respectively. For twice 
S_S ewes, the reduction was 18% and 21% respectively. These highly reproductive ewes (S_S-S_S 
and M_M-M_M categories combined, Table 2) contributed 36% and 37% of records to the pre-
joining and pre-lambing shearing data, respectively. In agreement with the finding of Bunter and 
Swan (2021), of small unfavourable genetic correlations between reproduction and AGFW, having 
accurate reproduction records would assist Merino breeders to avoid culling of ewes with lower 
fleece weight but higher reproductive output, and so improve both fleece weight and reproduction. 

Reproductive status had a significant detrimental impact on AGFW, increasing in magnitude 
with number of lambs reared over more than one annual cycle (Table 2). Ewes with persistently high 
reproductive performance will have reduced AGFW as a result of competition for limiting 
nutritional resources during pregnancy and lactation, with lactation taking priority (Corbett 1979). 
This result was consistent across both shearing systems. However, a difference in timing of shearing 
relative to lambing and lactation altered which of current or previous reproductive outcome (i.e. 
lambing was several months before or shortly after the shearing event) influenced AGFW more. The 
largest effects were evident where the full reproductive cycle (including lactation) was completed 
prior to shearing. Therefore, current reproduction effects were larger under the pre-joining system  
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Table 2. Predicted means of adult greasy fleece weight (kg) for ewe reproductive status 
categories of ewes shorn under pre-joining and pre-lambing shearing systems 
 

Previous reproduction  Current reproduction1 

  
 DRY S_L S_S M_L M_S M_M 

Pre-joining shearing        

 N 297 347 2901 164 97 2010 

Previous DRY 468 5.29 4.86*** 4.54*** 4.68** 4.56*** 4.54*** 

reproduction S_L 441 5.02 4.68*** 4.45*** 4.45*** 4.42*** 4.12*** 

  S_S 3357 5.07* 4.64*** 4.36*** 4.65*** 4.34*** 4.21*** 

  M_L 150 4.89‡ 4.70** 4.39*** 4.32*** 4.34*** 4.24*** 

  M_S 815 5.29 4.73*** 4.44*** 4.61*** 4.34*** 4.15*** 

  M_M 1405 5.22 4.58*** 4.36*** 4.53*** 4.27*** 4.10*** 

Pre-lambing shearing              

  N 421 509 2933 235 744 1434 

 DRY 302 3.74 3.40** 3.37*** 3.96 3.46 3.68 

 S_L 520 2.88*** 3.25*** 3.14*** 3.28** 3.17*** 3.25*** 

  S_S 3725 3.02*** 2.96*** 2.95*** 2.99*** 2.98*** 3.00*** 

  M_L 105 3.45 2.83*** 3.06*** 2.94** 3.15** 3.09*** 

  M_S 608 2.80*** 2.80*** 2.81*** 2.93*** 2.81*** 2.96*** 

  M_M 1016 2.98*** 2.89*** 2.80*** 2.87*** 2.84*** 2.77*** 
1 DRY: not pregnant; S_L: single lamb born, lost; S_S: single lamb born, reared; M_L: multiple 
lambs born, lost; M_S: multiple lambs born, single lamb reared; M_M, multiple lambs born, reared. 
***, P < 0.001, **, P < 0.01, *, P < 0.05 and ‡, and P ≤ 0.10 tested within each shearing system as 
a contrast to DRY_DRY predicted mean. 

 
(range of 12-22% reduction in AGFW of M_M ewes within each previous reproduction category), 
while previous reproduction effects were larger under the pre-lambing system (range of 14-29% 
reduction in AGFW of M_M ewes within each current reproduction category). 

The difference between unadjusted and adjusted EBVs for AGFW of ewes (i.e. bias) was around 
2.5% for twice dry ewes, but much less in ewes consecutively bearing and raising singles (S_S) and 
twins (M_M) (Figure 1A). The large positive bias in AGFW EBVs for twice DRY ewes indicated 
that their EBVs were overestimated when reproductive status was not accounted for during genetic 
evaluation. However, very few records for AGFW were available for twice dry ewes (1% of records 
for both shearing systems), similar to industry flocks where ewes are usually culled if dry once, and 
so few ewes would have EBVs affected. Across the other reproductive categories, industry recording 
of AGFW is also low, e.g. industry data used by Bunter and Swan (2021) had 6% of AGFW with 
known previous reproductive status. For both ewes and sires, EBVs based on models where AGFW 
was unadjusted and adjusted for ewe reproductive status were highly correlated (correlations > 0.98; 
Figure 1B, D), indicating that little re-ranking of animals on AGFW would occur when reproductive 
effects are ignored. Independently, the relationship between an EBV for litter size and bias in AGFW 
for sires was negative and not strong (Figure 1C). While sires with lower EBVs for litter size had 
higher EBVs for AGFW after adjusting for reproduction status, the overall effect was small as 
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daughters of sires were spread across all reproductive categories. 
 

 
 

Figure 1. Bias in and impact on estimated breeding values (BV) for adult greasy fleece weight 
(AGFW) in ewes (A and B respectively) and sires (C and D respectively) 
 
CONCLUSIONS 

Ewe reproductive status significantly influenced AGFW, with timing of shearing relative to the 
reproductive cycle influencing size of the effects. Sire and ewe EBVs for AGFW, though, were little 
affected by bias due to reproductive status and re-ranking of animals was limited, largely because 
reproductive status was mainly unknown in industry data. Current low levels of recording for ewe 
reproductive status make it difficult to apply such adjustments to AGFW. However, it is proposed 
that applying these adjustments would increase confidence in using EBVs for AGFW by ram 
breeders and producers. Well-recorded reproductive information is needed to avoid culling of more 
reproductive ewes with lower fleece weights and for increased selection accuracy of young animals. 
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SUMMARY 
Carcass value and its components were evaluated for a range of Merino sires based on progeny 
performance in diverse climates and production systems. Sire adjusted means for carcass value had 
a range of $31.33 under a mixed farming system while the range under a fine wool production system 
was $62.48. This preliminary analysis shows that considerable variation exists in carcass value of 
individual Merino sires when based on a simple economic model.  

 
INTRODUCTION 

Incorporating meat production traits together with traditional fine wool traits into sheep breeding 
programs is driven by an increased demand for sheep meat and changes in relative prices paid for 
wool and meat. Gross margin analyses of 10 model sheep enterprises by the NSW Department of 
Primary Industries (NSW DPI) have shown over time that sheep enterprise performance over a 10-
year period has been steadily improving, driven by increases in both returns from wool and sheep 
sales (G.C. Casburn, personal communication). 

Genetic benchmarking of Merinos through central test sire evaluation has been focussed on the 
performance recording of measured and visually assessed traits that are relevant to wool production, 
such as yearling, hogget and early adult fleece traits. Establishment of the Merino Lifetime 
Productivity (MLP) project, through a partnership between Australian Wool Innovation Limited and 
the Australian Merino Sire Evaluation Association combined with committees and hosts at 5 sites 
(Ramsay et al. 2019), has enabled the design of a sire evaluation scheme, which will assess lifetime 
productivity of ewe progeny across a range of environments. At 2 sites, an additional project has 
recorded the performance of sire progeny for a range of carcass composition and meat quality traits, 
providing comparative information on Merino sires for these traits. Previously, Clarke et al. (2019) 
reported variation between sires in value of production (wool and meat), based on live animal data 
being used to assign animals to market segments and therefore estimate sale value. For Merino 
producers looking to diversify their businesses and take advantage of the potential higher returns 
from running self-replacing flocks and selling trade wether lambs, such information would assist in 
identifying sires more suited to their commercial enterprises. 

A preliminary study of carcass value and its components for a range of Merino sires based on 
their wether progeny born and raised in diverse climates and production systems is presented in this 
paper. 

 
MATERIALS AND METHODS 

Data were recorded on the carcasses produced from F1 wethers at 2 MLP sites managed within 
 

∗ A joint venture of NSW Department of Primary Industries and the University of New England 



Contributed paper 

256 
 

mixed farming (Macquarie, MCQ) and fine wool production (New England, NE) systems. The 
design of the MLP project has been described by Ramsay et al. (2019), with the protocols that 
produced the F1 progeny at the MCQ site described by Egerton-Warburton et al. (2019). These 
protocols were implemented also at the NE site. The data were recorded on the F1 wethers born in 
2017 and 2018 following AI mating of industry sires in each of two years to foundation ewes. The 
MLP project web site (https://merinosuperiorsires.com.au/mlp-project) provides details on the 
sources of sires and foundation ewes at each site. The wethers were the progeny of 30 (MCQ) and 
28 (NE) sires, with 2 sires used across both sites. From weaning to slaughter, the wethers were 
production fed to achieve a target liveweight of 48 kg due to drought conditions affecting both sites. 
Following supplementation on pasture, the NE wethers were finished in a commercial feedlot, whilst 
MCQ wethers were finished on-site. The wethers were weighed and transported to a commercial 
abattoir, and held overnight in lairage with water before slaughter the next day.  

The MCQ wethers were slaughtered during mid-March to late-May in 2018 and mid-February 
to early-May in 2019, whereas the NE wethers were slaughtered in early-August and mid-September 
in 2018 and early-July and mid-August in 2019. MCQ wethers were slaughtered at an average age 
of 11.6 months and 11 months while NE wethers were slaughtered at an average age of 11.7 and 
10.8 months in 2018 and 2019, respectively.  

Assessments on each carcass included: hot carcass weight (HCWT, kg), dressing percentage 
(DP, %), and tissue (fat) depth at the 12th rib, 110 mm from the backbone and measured using a GR 
knife (GRFAT, mm). The carcass data were collected from 462 and 499 MCQ wethers and 242 and 
244 NE wethers in 2018 and 2019, respectively. Carcass value (CVAL, AUD$ per head) was 
calculated for each carcass using its HCWT, GRFAT and over the hook (OTH) price information 
from the abattoir feedback reports for the slaughters.  GRFAT was used to adjust for carcasses being 
outside specifications i.e. deductions of $0.30 per kg for carcasses with fat score 1 (≤5 mm) or of fat 
score 5 (≥21 mm). Summary statistics for the sites are shown in Table 1. 

 
Table 1. Descriptive statistics for carcass traits in MCQ and NE data 

 
Birth year  Macquarie New England 

 Mean (SD) Range Mean (SD) Range 
2017 HCWT 24.4 (1.87) 19.3 - 33.7 23.8 (2.64) 16.7 - 33.0 
 DP 45.0 (2.31) 38.5 - 61.9 46.7 (2.11) 35.6 - 51.8 
 GRFAT 10.8 (4.04) 2 - 25 13.8 (3.81) 3 - 25 
 CVAL 153.21 (15.16) 110.01 - 215.68 174.90 (26.24) 113.56 - 254.10 
2018 HCWT 25.9 (1.86) 21.4 - 32.3 29.5 (3.38) 21.4 - 40.1 
 DP 46.7 (1.94) 38.8 - 52.0 47.9 (2.18) 35.3 - 54.5 
 GRFAT 14.4 (3.32) 7 - 31 21.7 (5.13) 11 - 42 
 CVAL 164.64 (12.76) 128.40 - 206.72 224.20 (29.11) 149.80 - 308.77 

 
For each data source, separate analyses to calculate adjusted sire means for each trait were 

performed using ASReml (Gilmour et al. 2015). The fixed effects of sire, ewe bloodline and their 
interaction were first tested, with non-significant effects then excluded from the model.  Random 
effects fitted in the model were birth type (single, twin, triplet (MCQ data only)), rearing type 
(single, twin) and dam age (2 (NE data only), 3, 4, 5, 6 and 7 year old at mating), as well as a 
contemporary group effect (accounting for management and slaughter group effects).  

 
RESULTS AND DISCUSSION 

Sire was significant for all traits at both sites (P < 0.001), while ewe bloodline was significant 
for HCWT (P < 0.05) and CVAL (P < 0.05) at the MCQ site only. The interaction between sire and 
ewe bloodline was not significant for any trait at either site. 

https://merinosuperiorsires.com.au/mlp-project
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Figure 1. Adjusted sire means for a) HCWT, b) DP, c) GRFAT and d) CVAL at MCQ and 
NE sites, with black diamonds and triangles representing median values within site for 2017 
and 2018 birth years respectively 

 
At the MCQ site, sire adjusted means for HCWT, DP, GRFAT and CVAL ranged between 
23.5±0.30 and 27.8±0.30 kg, 43.7±0.35 and 48.1±0.35%, 9.2±0.67 and 17.0±0.57 mm and 
$145.78±2.24 and $177.11±2.20 per head, respectively (Figure 1). Across both birth years, the 
averages were 25.2 kg, 45.9%, 12.5 mm and $159.06 per head for these traits, respectively. The 
ranges in sire adjusted means at the NE site, where the wethers were finished in a commercial 
feedlot, were 24.4±0.85 to 31.6±1.00 kg, 45.9±0.50 to 49.6±0.53%, 16.4±1.25 to 25.1±1.20 mm and 
$180.82±7.91 to $243.30±9.21 for HCWT, DP, GRFAT and CVAL, respectively (Figure 1). The 
average values across birth years for these traits were 28.2 kg, 47.5%, 19.7 mm and $212.49 per 
head, respectively. Among the sires of the 2017 born progeny at the MCQ and NE sites, the ranges 
in CVAL means were $17.99 and $51.87, respectively. The ranges in CVAL for the 2018 born 
progeny were $23.46 and $60.23, respectively. 

Due to the assumptions used in this study, carcass value was essentially determined by carcass 
weight (Figure 2a; unity correlation between CVAL and HCWT at both sites). However, for sires 
with similar adjusted means for carcass value, a range in mean carcass fat levels was evident (Figure 
2b, correlations of HCWT with GRFAT of 0.81 at the MCQ site and 0.69 at the NE site).  

Sires were only compared within site and consequently within their own finishing system, where 
both systems had a target liveweight of 48 kg at slaughter. This, together with the NE progeny being 
finished under feedlot conditions, produced fatter carcasses from the NE wethers at the same weight 
and similar ages to carcasses from the MCQ wethers. Adjusted sire means for GRFAT were 21 mm 
and over for 29% of NE sires, versus none for MCQ sires. This contrasts with the perception that 
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fine wool Merinos are late maturing (Hopkins et al. 2005) and suggests that the progeny of certain 
NE sires may not have been managed for best expression of their genetic potential for growth 
balanced with fat level, probably due to feedlot finishing. This was not apparent for progeny of sires 
at the MCQ site that were pasture finished. 

Figure 2. Deviations of adjusted sire means from the average at each site for carcass value 
relative to a) hot carcass weight and b) fat depth at the GR site 

 
MLA market reports of OTH indicators for NSW show that during both 2018 and 2019 prices 

received at the time of slaughters of NE progeny were much higher than when MCQ wethers were 
processed (as for the feedback reports), hence their higher carcass values. Also, information was not 
readily available on the impact of price differentials for fat levels on carcass prices to use in 
predicting carcass value. Future work will involve more rigorous economic analyses, where both 
returns and costs are considered for both finishing systems, wool value is included, the impacts of 
reproduction are evaluated and relationships with breeding values are estimated (following Hall et 
al. 1997). Furthermore, rather than relying on actual prices received at one point in time, the analyses 
will evaluate the sensitivity of income from carcasses to changes in the relative value of component 
traits. In conclusion, this preliminary study has shown that considerable variation exists in carcass 
value of individual Merino sires when based on a simple economic model.  
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SUMMARY 

The importance of early environmental effects, and their estimates, on yearling and adult fleece 
traits recorded in 2 flocks managed under Lifetime Ewe Management (LTEM) guidelines were 
evaluated. Significance and overall influence of the effects of birth type and rear type were generally 
consistent with previous reports. However, estimates of the size of effects were generally larger than 
those previously reported, with the specific context of LTEM and impacts of management on early 
environmental effect estimates requiring further investigation. 

 
INTRODUCTION 

In breeding programs, we seek to disentangle the effects of genes from environment to obtain 
accurate estimates of the genetic merit of individuals and maximise genetic progress. To do so, 
adjustment factors are applied in the MERINOSELECT genetic evaluation system (Brown et al. 
2007) to account for environmental influences such as age of dam, birth type, rear type, and date of 
birth or age at trait assessment. For example, classer grades are known to be influenced by 
birth/rearing type (Clarke and Thompson 2021; Mortimer et al. 2009) and age of dam (Mortimer et 
al. 2009). From the earliest genetic studies of Merino sheep, summarised by Turner and Young 
(1969), it is established that most fleece traits are influenced by early environmental effects, with 
later work showing these effects to be important across a range of ages (e.g. Huisman et al. 2008). 
Genetic evaluation systems in Australia generally use ‘multiplicative’ adjustments to account for 
different levels of performance across breeds and sites when accounting for fixed effects (Graser et 
al. 2005; Gilmour 1993). 

The Lifetimewool project established that improving the nutritional management of Merino ewes 
during pregnancy and lactation resulted in their progeny having heavier, finer fleeces across several 
shearings (Thompson et al. 2011). Guidelines from this project underpin the Lifetime Ewe 
Management (LTEM) program (http://www.lifetimewool.com.au/), providing recommendations for 
base ewe management in sire evaluation flocks (AMSEA 2018). This paper reports the importance 
and persistence of early environmental effects (birth/rearing type, dam age) on measured fleece traits 
assessed at 2 ages (yearling, and first adult shearings) and at 2 locations in progeny from dams 
managed to LTEM targets. 

 
MATERIALS AND METHODS 

Data used in these analyses were from 2 shearings of the F1 ewe and wether progeny of the 
Merino Lifetime Productivity (MLP) project conducted at the Macquarie (MCQ) and New England 
(NE) sites. The design of the MLP Project has been described previously by Ramsay et al. (2019). 
Assessment data were collected according to the AMSEA guidelines (AMSEA 2018). Dams of the 

 
∗ A joint venture of NSW Department of Primary Industries and the University of New England 
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progeny were managed in line with Lifetimewool regional guidelines, with multiple bearing ewes 
managed differentially to single bearing ewes (http://www.lifetimewool.com.au/guidelines.aspx). 

F1 progeny at the MCQ site were born in May-June, whilst F1 progeny at the NE site were born 
in late August/early September of each year. At each site, a yearling (Y, 300 to 400 days age) and 
an adult (A, 540 days or older) fleece assessment were completed. Shearing at the MCQ site occurred 
in late February (Y) and mid October (A), whilst shearing at NE occurred in August (Y) and July 
(A). Greasy fleece weight (GFW, kg), clean fleece weight (CFW, kg) and fibre diameter (FD, µm) 
data were analysed.  

For each data source (MCQ or NE site), analyses were performed using R (R Core Team 2020). 
Significance of early environmental effects was tested in models that fitted a random effect of sire. 
For both sites, the fixed effects examined included birth type (BT: single, twin, triplet), rearing type 
(RT: single, twin, triplet) and age of dam (DAGE: 2, 3, 4, 5, 6 and 7 years old at mating), as well as 
a contemporary group effect defined by year of birth, management group, ewe bloodline source and 
sex. Interactions among the BT, RT and DAGE were tested but were found to be not significant for 
these traits and therefore were not fitted in the final models. Age at observation was fitted as a linear 
covariate. Table 1 summarises the data available at each site for each trait. 

 
Table 1. Descriptive statistics for selected fleece traits (including number of records, n) 

 
  YGFW AGFW YCFW ACFW YFD AFD 
Macquarie Mean1 3.8 

(0.75) 
7.6 

(1.30) 
2.4 

(0.51) 
4.7 

(0.89) 
17.2 

(1.38) 
18.8 

(1.46) 
 n 2013 961 2013 961 2015 961 
 Range 1.6 - 6.2 3.4 - 12.0 1.0 - 4.2 1.4 - 7.8 13.1 - 22.1 15.0 – 24.4 
New 
England 

Mean 2.7 
(0.66) 

4.5 
(0.68) 

2.0 
(0.47) 

3.3 
(0.53) 

15.2 
(1.05) 

16.1 
(1.26) 

 n 2170 2151 2170 2151 2175 2152 
 Range 1.2 - 5.6 2.7 - 7.3 0.8 - 4.2 1.9 - 5.5 11.4 - 19.9 12.5 - 21.0 

1Standard deviations shown in brackets below the mean 
 

RESULTS AND DISCUSSION 
All Y and A fleece weight traits examined were influenced significantly by BT (Table 2). The 

lighter fleeces of multiple-born animals relative to single-born animals were still evident at their first 
adult shearing, consistent with effects on fleece weights of yearlings, hoggets and adults reported 
previously by Huisman et al. (2008). Rearing type (RT) was significant for Y and A fleece weight 
traits at the NE site, but only significant for the Y fleece weight traits at the MCQ site. Early 
environmental effects were not significant for FD at either Y or A stage at the MCQ site; only BT 
was significant for YFD and AFD at the NE site. In general, the significance of the effects of RT 
and dam age declined with stage. The significance of the BT effect on fleece weight traits was 
maintained across the two shearings, although the size of the effect generally tended to decrease. 
Age at shearing was only significant for the Y fleece weights at the NE site (P < 0.0001). 

The results of this analysis contrast with those of Huisman et al. (2008) who reported that the 
RT effects on Y fleece weights were approximately half of those of BT effects. Additionally, when 
effects are converted to a ‘multiplicative’ basis (Table 2), the adjustments for BT≥2 are larger than 
published estimates for sheep (Gilmour 1993), but do decline with stage. The size of the estimate of 
the BT and RT effects on fleece weight at these MLP sites are large in comparison with those 
reported by Thompson et al. (2011), on a site in Victoria across annual shearings from 15 months 
of age. Our results are consistent with Thompson et al. (2011) with respect to fleece weight (e.g. 
their estimate had twin-born animals producing 0.19 kg less wool than single-born animals), but do 
not in general support their effects reported for FD (twin born animals had 0.26 µm broader fibres).    

http://www.lifetimewool.com.au/guidelines.aspx
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This is an important observation considering that the intent of the differential management of 
multiple bearing ewes under LTEM is to provide optimal nutrition to offset any lifetime effects of 
BT and RT. Further investigation of this finding could be achieved by extending this analysis to 
other MLP sites, especially the Balmoral site whose environment and sheep type are most similar to 
the Victorian site at which data were collected and reported by Thompson et al. (2011). In addition 
to MLP sites where LTEM management is known to be applied, identifying the size of these effects 
in the wider MERINOSELECT database is also necessary. 

This exploratory study will also be expanded to examine other measured and visual wool traits 
at the two sites reported herein, and later stages of assessment (third adult and later shearings). 
 
CONCLUSIONS 

This study of the importance of early environmental effects, and their estimates, on yearling and 
adult fleece traits recorded in two flocks managed under Lifetimewool guidelines found the 
significance and overall influence of the effects of birth type and rear type were generally consistent 
with previous reports. Estimates of effects were generally larger than those previously reported, but 
the specific context of LTEM and impacts of management on early environmental effect estimates 
requires further investigation. 
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SUMMARY 

As most dairy cows require more than one artificial insemination (AI) to fall pregnant, 
prioritising more fertile cows for insemination with expensive semen could support optimised semen 
usage. In this study, we explored two approaches for identifying high (H) and low (L) fertility cows 
in dairy herds; the use of calving dates (CD) and probability of conception to first service (pMIR) 
predicted from milk mid-infrared (MIR) spectra and other early lactation data. We found cows 
classified as H fertility by pMIR had 1st service and overall conception rates (CR_1, CR_O) 2.0 to 
6.2% higher compared to those classified H by CD. Both H subgroups had higher CR_1 and CR_O 
than herd average with the reverse also true for L subgroups. Differences in CR_1 between H and L 
cows were approximately 50% greater (up to 17.7%) when pMIR was used to classify cows 
compared to CD (up to 10.8%). This shows pMIR was better than CD at identifying cows most and 
least likely to conceive at first service. However, total number of AI events between cows classified 
using pMIR or CDs were similar. A preliminary case study exploring three strategies for assigning 
sexed dairy semen (SS), conventional dairy semen (DS) and beef semen (BS) in dairy herds found 
that the net benefit (calf values minus semen costs) was greatest when pMIR was used to assign SS 
and BS to H and L fertility cows, respectively, followed by CD and random semen allocation, $70.26 
± 3.05, $68.68 ± 3.05 and $66.73 ± 3.11/cow, respectively. Differences in net benefit were largely 
due to the higher number of heifer replacements generated in the pMIR strategy. Therefore, pMIR 
has promise as a tool for identifying the most and least fertile dairy cows. The pMIR predictions 
could be used alone, or in conjunction with other fertility indicators to support optimised allocation 
of semen, including sexed semen, in dairy herds and offer the next generation of breeding tool.  

 
INTRODUCTION 

Average CR_1 in dairy herds in Australia is 39% but ranges from 22 to 61% (Dairy Australia 
2011). This indicates there are differences in the ability to conceive at first service. Being able to 
identify cows that are more likely to conceive at first service could support optimised semen usage, 
particularly the incorporation of more expensive semen, such as sexed semen, into breeding 
programs. Cows with well-managed transition periods are more likely to fall pregnant again (Roche 
et al. 2013), conversely cows that calve later in the calving period are less likely to conceive in the 
subsequent joining period (Dennis et al. 2018). New phenotyping technologies and computational 
approaches offer additional opportunities to identify more fertile cows. Ho and Pryce (2020) have 
previously demonstrated that mid-infrared (MIR) spectroscopy and other data collected on-farm in 
early lactation can be used to rank cows on the probability of conception to first service (pMIR) with 
accuracies of up to 76% achieved in identifying cows that are least likely to fall pregnant. The 
hypothesis of Ho and Pryce (2020) is that cows that are phenotypically divergent in fertility give 
clearer biological signals for training MIR prediction models. Our aims were two-fold: firstly, to 
compare reproductive performance of cows identified as high or low likelihood of conceiving to 
first service based on pMIR or CD and second, to explore the net benefit of three strategies for 
allocating semen in dairy herds: random allocation, allocation based on earliest to latest CD and 
allocation based on highest to lowest pMIR. 
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MATERIALS AND METHODS 
Lactation parameters including MIR data from first herd test after calving, subsequent AI records 

and calving details were available for 11,369 dairy cows (13,379 records) across 76 herd-year-
calving seasons (HYC). The pMIR was generated for each cow using a model which combines MIR 
spectral data and other on-farm parameters (milk production, milk SCC, days from calving to 
insemination, calving season, days in milk and age at calving) previously described in Ho and Pryce 
(2020). Briefly, a training population of cows with good (conceived to first service) and poor (did 
not conceive within the mating season and had only one insemination) fertility was created and used 
to train a prediction model using partial least squares discriminant analysis. This model was then 
used to derive pMIR (0 to 1) of cows in a new herd that had not been included in the training set. To 
test the ability of pMIR to identify cows with higher and lower fertility compared to other 
approaches, each HYC was divided into H and L subgroups using one of the 2 classification 
approaches and reproductive parameters calculated for each subgroup. The H and L fraction 
(increments from 5 to 50%) of each HYC was selected based on pMIR in the first instance, and in 
the second approach were selected based on earliest (H subgroup) and latest (L subgroup) CD. Then 
CR_1, CR_O, average number of inseminations overall and to achieve a pregnancy were calculated 
and compared between H and L subgroups and to HYC average performance.  

As similar trends in performance of H and L subgroups were seen irrespective of fraction 
selected, a case study was used to compare 3 strategies for allocating SS, DS and BS. The case study 
assumed 20% of cows (H subgroup) were assigned to SS at first service and DS for subsequent 
services, 20% of cows (L subgroup) received BS only, and the remaining 60% of cows received DS 
within each HYC. The strategies were as follows: 

Strategy 1 (pMIR): cows were assigned to H and L subgroups based on pMIR.  
Strategy 2 (CD): cows were assigned to H and L subgroups based on earliest to latest CD.  
Strategy 3 (random): cows within a HYC were randomly sorted using a random number 

generator then split into subgroups representing 20%, 60% and 20% of cows and assigned SS, DS 
and BS, respectively. The results were averaged over 100 replicates of random sampling.  

Net benefit was calculated as calf values minus semen costs, assuming number of AI events and 
calves born remained static across strategies. National average semen prices of $50, $20 and $10 
were assumed for SS, DS and BS, respectively, while dairy heifers, male dairy calves and dairy-beef 
crossbred calves were valued at $275, $54.30 and $100, respectively (Byrne et al. 2016). All 
analyses were conducted within HYC with overall averages presented here.  
 
RESULTS AND DISCUSSION 

High subgroups selected by CD and pMIR both identified cows with higher conception rates 
than HYC averages, regardless of the fraction of the herd chosen (Figure 1a,b). However, cows with 
higher pMIR had higher CR_1 and CR_O than cows that calved earliest in the calving period. For 
example, the average CR_1 in the data set was 38.8%. When 20% of cows were selected as H using 
pMIR, CR_1 was 45.7% compared to 41.5% when H cows were selected using CD, thus showing a 
4.2% advantage of using pMIR. Conversely, CR_1 was on average 2.8% lower in L sub-herds 
selected on pMIR, compared to CD. Both L subgroups had lower conception rates than average 
HYC, regardless of fraction of herd compared. The difference in CR_1 between H and L subgroups 
ranged from 9.7% to 17.7% when cows were chosen based on pMIR, while the difference was only 
5.6 to 10.8% when cows were chosen based on CD. This suggests that pMIR may be better than CD 
at identifying cows with highest and lowest likelihood of conceiving.  

When more than 15% of cows were selected (Figure 1c), H subgroups had slightly fewer total 
AI events that L subgroups ranging from 0.05 to 0.08 fewer AI events/cow. No clear difference was 
seen between classification based on pMIR or CD. When less than 20% of HYC was selected, H 
cows had up to 0.11 and 0.09 more AI events to conceive than L cows, for CD and pMIR, 
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respectively (Figure 1d). In scenarios above 20%, L cows had more AI events to achieve pregnancy 
though differences were small (<0.03). These small observed differences in AI records could be 
influenced by the strategy used for classifying L cows using pMIR. Ho and Pryce (2020) defined a 
poor fertility as a cow with only 1 recorded AI event who did not fall pregnant. A failure to show 
return of oestrus after first insemination could indicate physiologically different reasons for not 
conceiving than a cow who fails to conceive after multiple AI events.  

 
Figure 1. Comparison of average (av.) 1st service conception rate (CR), overall CR, number of 
artificial insemination (AI) events and number of AI events to achieve pregnancy in a variable 
(5-50%) proportion of cows within a contemporary group, selected as having highest (H) or 
lowest (L) probability of conceiving to 1st service (pMIR) or earliest (H) or latest (L) calving 
date (CD). Dotted line shows herd av.  

 
In our case study, semen allocation using pMIR resulted in a higher net benefit than CD or 

randomly assigning semen, though all strategies showed a high level of variability (Table 1). 
Average net benefit per cow for pMIR was $70.26 ± 3.05 compared to $68.68 ± 3.05 for CD and 
$66.73 ± 3.11 for random semen allocation. Average semen costs only differed by ~$0.10/cow 
across the 3 strategies. Differences in net benefit were mainly driven by differences in the number 
of each calf type, with 1.0 and 3.28 more dairy heifer calves in the pMIR strategy compared to CD 
and random semen allocation strategies, respectively. This was largely driven by higher CR_1 to SS 
in H cows selected by pMIR. Conversely, lower CR_1 in L subgroups saw fewest dairy-beef calves 
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in the pMIR strategy, followed by CD while random allocation resulted in most dairy beef calves. 
As a preliminary case study of potential applications of pMIR applications on farm, the net benefit 
calculations solely considered semen prices and calf value. Potential effects of reduced CR_1 with 
SS were ignored. Although SS conception rates are approaching parity with DS, this area warrants 
further study. Future analyses could also consider a wider range of semen prices, calf genetic merit 
and the impact of calving date on a calf’s future value on-farm.  
 
Table 1. Overview of average (and standard error1) net benefit ($/cow, calf value minus semen 
costs), number of dairy heifers and dairy beef calves for 3 semen allocation strategies, 
allocation based on MIR predictions of fertility (pMIR), calving date (CD) or random 
allocation 
 

Semen 
strategy 

Net benefit 
($/cow)  

Calf value 
($/cow)  

Semen costs 
($/cow)  

No. heifers No. dairy beef 
calves 

1. pMIR 70.26 (3.05) 109.55 (2.90) 39.29 (0.90) 56.26 (4.78) 18.38 (1.85) 
2. CD 68.68 (3.05) 115 (3.18) 39.23 (0.91) 55.26 (4.73) 19.80 (2.01) 

3. random 66.73 (3.11) 106.07 (2.96) 39.33 (0.92) 52.98 (4.64) 23.52 (2.07) 
1reported across herd-year-season contemporary group (n=76)  

 
These preliminary results show pMIR has potential to support an optimised semen allocation 

strategy. While the additional net benefit from allocating semen using pMIR is small, given the 
importance of fertility to dairy farms opportunities for incremental net benefit increases should be 
considered. More accurate identification of cows most likely to conceive at first service may be 
possible through the development of an index which combines pMIR predictions with other easily 
accessible information like past calving dates, fertility breeding values or novel phenotypes like 
sensor data. As pMIR is derived from first herd test after calving, there could be a period of up to 8 
weeks between availability of pMIR data and the start of joining. This could also offer opportunities 
to provide management interventions for cows, especially those identified as least likely to conceive 
at first service (Ho and Pryce, 2020). Validating whether management interventions based on pMIR 
data are then capable of increasing herd reproductive performance could be challenging to achieve, 
but if successful would create a strong value proposition for adoption of the pMIR by industry.  

 
CONCLUSION 

This study shows that pMIR identifies the most and least fertile cows in the milking herd better 
than CD and has potential as a next generation breeding tool. The pMIR predictions could be used 
alone, or in conjunction with other fertility indicators to support optimised allocation of semen, 
including sexed semen, to increase the number of dairy heifer replacements on farm or to support 
additional income streams like dairy beef.  
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SUMMARY 

Many of the current imputation benchmarking studies are performed on autosomes with 
limited studies addressing the X chromosome. Furthermore, the X chromosome genome map has 
recently been updated in the new ARS-UCD1.2 bovine reference genome. In this study, we 
evaluated the empirical accuracy of imputation from a low-density SNP array (LD) to 50K and 
then high-density (HD) for the pseudo-autosomal region (PAR), non-PAR, and autosomes across 
several scenarios using multiple dairy breed groups. Overall, imputation accuracies for the PAR 
were very low when imputing from LD to 50K, while accuracy for the non-PAR was comparable 
with autosomes. We demonstrated that imputation accuracies for the PAR increased when the 
PAR & non-PAR were merged for imputation. However, while this strategy performed well for 
imputing LD to 50K, there was no advantage when imputing from real 50K genotypes to HD. In 
addition, when imputing all chromosomes to HD level, imputing from real 50K to HD resulted in 
an overall higher accuracy than imputing from LD to 50K to HD, with the PAR region showing 
the most improvement.  By separately imputing only the end segment of five autosomes and 
comparing accuracy with the PAR region, we demonstrated that the PAR region is more difficult 
to impute accurately, perhaps due to higher recombination rates. Therefore, future SNP genotyping 
panels should have SNP density in the PAR at least equivalent to that of the 50K SNP panel to 
achieve a good imputation result. 

 
INTRODUCTION 

Genomic selection (Meuwissen et al. 2001) has created a dramatic breakthrough in the dairy 
industry during the last two decades. Accurate prediction of breeding values requires medium to 
high-density genome-wide markers, but many of the dairy genomic reference populations have 
been genotyped on a range of lower density platforms (6,000 to 25,000 markers) to reduce costs. 
Genotype imputation is considered an effective approach to provide the marker density required 
by the industry. To date, most studies that examined the empirical accuracy of imputation from 
low-density (LD) to medium (50K) or high-density (HD) SNP genotypes investigated imputation 
of autosomes only and this is generally highly accurate (Calus et al. 2014). The X chromosome 
generally requires modifications to the imputation pipeline because it has a 5.7 Mb region of 
homology between chromosome X & Y called the pseudo-autosomal region (PAR) and a larger 
non-PAR that is haploid in males. Two studies investigated the accuracy of imputation on the X 
chromosome (LD to 50K) and found it was much less accurately imputed compared to autosomes 
in cattle (Su et al. 2014; Mao et al. 2016). However, the imputation of the X chromosome warrants 
further study for three key reasons. First, these studies used the UMD-3.1 reference genome map, 
while recently the X chromosome map has been extensively updated on the ARS-UCD1.2 bovine 
reference, in particular the PAR region (Figure 1A). Second, these authors tested imputation to 
50K density only and did not investigate strategies to improve the PAR imputation accuracy. 
Third, there may be important genetic variation on the X chromosome for economically important 
traits as reported for fertility (Pacheco et al. 2020). In this study, we evaluated the empirical 



Contributed paper 

268 
 

accuracy of imputation from a LD SNP array to 50K and then to HD for the pseudo-autosomal 
region (PAR), non-PAR and autosomes across several scenarios using multiple dairy breed groups. 

 
MATERIALS AND METHODS 

The target animals used for this study included 35 Jersey (JER), 35 Holstein (HOL), and 35 
crossbred (HOL, JER) bulls (CRB) and were genotyped using the Illumina® BovineHD chip. 
GenCall threshold score was set at 0.6: animals and SNP were removed if >10% of genotypes fell 
below this threshold. The marker map positions were based on the ARS-UCD1.2 reference 
genome (Rosen et al. 2020). The boundary between the non-PAR and PAR (hereby noted as 
Chr30 and Chr32 respectively) was set to 133,300,518bp (Johnson et al. 2019). Chr30 and Chr32 

 
Figure 1. (A)  Bovine HD SNP coordinates on Chr30 (Left) and Chr32 (Right) on ARS-
UCD1.2 and UMD-3.1.1 reference genome. Red dots represent SNPs that were relocated 
from other chromosomes. (B) Average imputation accuracy for autosomes and Chr30 
imputed from LD to 50K, error bars represent Standard deviation (SD) of accuracies across 
autosomes. (C) Average imputation accuracy for autosomes and Chr30 imputed to HD level 
from either LD (via 50K) or direct from real 50K. Error bars represent SD of accuracies 
across autosomes.  (D) Imputation scenario accuracy for Chr32 at 50K level. Error bars 
represent SD of accuracy across SNP. (E) Imputation scenario accuracy for Chr32 imputed 
to HD either from LD (via 50K) or direct from real 50K. Error bars represent SD of accuracy 
across SNP.  
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were imputed separately unless otherwise stated. We masked the HD genotypes (714,452 SNPs) to 
simulate either a LD SNP-chip of 7,135 markers or the 50K chip (40,397 markers). Two sub-
experiments were conducted: (1) All autosomal (Chr1 to 29), non-PAR (Chr30), and PAR (Chr32) 
LD genotypes were either imputed to 50K and then to HD level or from real 50K genotypes to 
HD. (2) For comparison between accuracy of imputation on the PAR and autosomes, we selected 
the last 5,708,563 bp segment (equivalent to the length of Chr32) on Chr 1,2,3,4 and 5 and re-
imputed only these short segments. On these autosomal segments the LD SNP density (N≈30) was 
double that of the PAR, therefore we compared imputation at two SNP densities: first we reduced 
every other marker of the autosome sets to mimic the density on Chr32 (N=15), and second, we 
doubled the density on Chr32 by including several 50K variants to mimic the LD marker density 
on autosomal segments (N=30).  Imputation was performed using FImpute V3.0 (Sargolzaei et al. 
2014). We estimated the accuracy of imputation as Pearson’s correlation coefficient (r) between 
imputed and real genotypes and results are reported based on the mean per-SNP accuracy. 
Imputation to 50K was performed with a reference set of 14,000 animals that included HOL and 
JER, and imputation to HD was conducted with a similar mixed breed reference of 2,700 animals.  

 
RESULTS AND DISCUSSION 

In this study, we tested several imputation strategies for the PAR & non-PAR on the X 
chromosome and compared the accuracy to that of the autosomes. At 50K level, we found that 
pooling all samples (HOL, JER, and CRB) and using a mix breed reference gave similar 
imputation accuracy compared to imputing HOL or JER target sets separately with only the same 
breed in the reference. Therefore, we present results using pooled target and reference sets but 
show average accuracies for each breed group. We found some differences in accuracies between 
the breed groups: the CRB were lowest for LD to 50K (Fig. 1B) but as high as HOL and JER 
when imputing from real 50K to HD (Fig. 1C). However, the CRB were more related to the 
smaller HD reference than the 50K reference, implying that this caused the variation in imputation 
accuracies, to confirm this, we masked the HD reference down to 50K level to act as a new 50K 
reference and found similar imputation accuracy for all three breed groups (~0.96) .  

We found that Chr30 imputation accuracy was high (>0.97) and comparable to autosomes for 
both 50K (Figure 1B) and HD level across target breed sets (Figure 1C), indicating that it is useful 
to include imputed genotypes from the non-PAR for downstream analysis. Conversely, Chr32 
imputation accuracy was very low when imputing from LD to 50K (Figure 1D). Although it is 
recommended that Chr30 and Chr32 are imputed separately, by combining Chr32 and Chr30 (and 
re-extracting Chr32 genotypes) the accuracy increased by at least 15% for all breed groups when 
imputing to 50K (Figure 1D). Nonetheless, the accuracy is still rather low for downstream 
analysis. It should be noted that this strategy slightly reduced the imputation accuracy on Chr30 
(results not shown), so markers on Chr30 should be imputed separately. Per SNP statistics for 
Chr32 showed that accuracy was improved in the borderline region between Chr30 & Chr32. This 
strategy of merging Chr30 and Chr32 provides a practical approach for historical datasets with 
low-density genotypes because increasing SNP density is not an option but should also be tested in 
females because our target animals were all males. When the SNP density was doubled on Chr32 
(15 to 30) to mimic the number of SNPs in the last 5.7 Mb segment of Chr 1,2,3,4 and 5 the 
accuracy increased further (Figure 1D). At HD level, imputation of Chr32 from real 50K 
genotypes was always more accurate (0.92-0.97) than imputation from LD regardless of scenario 
(0.29-0.84). Although this was a little lower than the accuracy for Chr30 and autosomes, it was of 
high enough quality for downstream analyses. Notably, there was no longer an advantage in 
merging Chr32 with Chr30 for imputation from real 50K to HD (Figure 1E). This contradicts the 
result observed for LD to 50K level, suggesting that the denser markers available on the 50K SNP 
chip on Chr32 (99 SNPs) enable good resolution of Chr32 haplotypes.  
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One potential reason for the 
low accuracy on Chr32 may be 
simply that it is a very short 
segment to impute, and typically 
on all chromosomes the 
imputation accuracy tends to 
drop at the ends of the 
chromosomes. However, the 
results of our autosomal segment 
imputation test, demonstrated 
that when the marker density was 
made equivalent (either reducing 
density on the autosomal 
segments 1-5 or increasing 
density on Chr32), the accuracy 
was always better for the 
autosomal segments relative to 
Chr32 (Figure 2). We believe 
that higher recombination 
frequencies on Chr32 compared 
to the autosomes (Van Laere et 
al. 2008) might be responsible 
for increased haplotype 
complexity of this region. 
Therefore, when designing SNP 
panels for genotyping, it is 
perhaps critical to use SNP 
densities on Chr32 that are at least equivalent to those on the 50K chip.  

 
CONCLUSIONS 

This study compares accuracy of imputation for autosomes and the X chromosome including 
several imputation scenarios for the PAR on bovine genome ARS-UCD1.2. We demonstrated that 
the accuracy of PAR imputation can be improved from LD to 50K by imputing the PAR & non-
PAR together and re-extracting the PAR markers. However, if designing new SNP genotyping 
panels, we recommend SNP density in the PAR should be equivalent to that of the 50K SNP panel 
because this can greatly increase imputation accuracy. 
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SUMMARY 

A community based pilot goat breeding program (CBBP) is being implemented under Project 
Mesha which seeks to improve goat production in Muzaffarpur district of Bihar state in India. Goat 
performance recording and selection of male kids for breeding have been carried out since 2018. 
The breeding goal established through consultation with rearers, targets improved kid growth rate 
and twinning. Birth weight, weight at 3 and 6 months, average daily gain (ADG) up to 120 days and 
adult doe weights were analysed with fixed models. There is wide variation in each trait, indicating 
potential for selecting animals with very high values for breeding goal traits. The progress of the 
CBBP is encouraging.  

 
INTRODUCTION 

Bihar is one of the poorer states of India. The per capita net state domestic product of Bihar was 
US$663 in 2019, 31% of India’s per capita gross domestic product (MOSPI 2019). Eighty nine per 
cent of Bihar’s population lives in rural areas, and about 34% of this rural population live below the 
poverty line. The literacy rate is 64%, but women’s literacy is only 54%. In Muzaffarpur district, 
36% rural houses are temporary structures (Census of India 2011). As some villages get inundated 
by flood waters during the monsoon, residents have to move with their livestock to higher ground 
for varying periods every year.   

Bihar state has a goat population of 12.8 million out of 149 million goats in India (BAHS, 2019). 
The predominant goat breed type is the highly prolific Black Bengal (BB) reared for meat production 
(Dey et al. 2007). Small size and low weight of these goats are constraints on goat production (BLSA 
2019). The importance of goats to support livelihoods of socio-economically marginalized 
households through income generation and enhancing financial resilience is well recognized 
(Barooah et al. 2016). The Aga Khan Foundation is therefore implementing a community based 
program called Project Mesha since 2016 for about 50,000 households in 240 villages of 4 out of 16 
blocks of Muzaffarpur district of Bihar to improve goat production, transform the lives of the rural 
poor and bring about rural women’s empowerment. Any increase in income from goat rearing is 
expected to lead to an improvement in the well-being and status of women as they primarily care 
for goats.  

Project Mesha’s approach is improvements in goat nutrition, health, shelter, genetics and 
marketing through community institutions. As a part of Project Mesha, a community based pilot 
goat breeding program (CBBP) is being implemented with participation of the goat rearer 
communities since 2018.  

This paper describes the participatory processes of the CBBP including the effective use of the 
database tool Dtreo (https://abacusbio.com/ventures/dtreo/) and findings from an analysis of the 
records collected.  

 
MATERIALS AND METHODS 

Participatory processes. A cadre of trained women community based small ruminant health 
workers (pashu sakhis) has been established by Project Mesha. Pashu sakhis provide a range of fee-
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based preventive health services for goats and also castration of male kids to be raised for meat 
production. Each step in the CBBP was taken in consultation with the goat rearer women by holding 
several meetings with the ‘producer groups’ established under Project Mesha. 

Production system. The average number of adult does per household in the project area is 2 and 
goats are mostly grazed or tethered in harvested fields, fallows or other common property grazing 
grounds (Barooah 2016). Goat nutrition and other management vary greatly among households. 
Before the start of the CBBP, does were mostly mated by roaming bucks let lose as a customary 
ritual or by young male kids that go grazing together with does. Before Project Mesha and the advent 
of pashu sakhis, mortality rates of up to 40% in adult goats and 50% in kids were reported 
(Population Council 2018). 

Selection of villages to establish recording. Individual goat identification with numbered tags 
(with a unique number for each goat) and performance recording were started in 4 villages in 2018 
and then increased to 8 after 2 years. The criteria used for village selection were partly external such 
as reasonable availability of goat feed resources. Community-related criteria were also important, 
such as willingness of the community to participate, at least 200 breeding does with reasonably even 
ownership, average or above average performance of goats compared to the general goat population 
in the Project Mesha area, indicating reasonable proficiency in goat rearing and substantial income 
being obtained from goat rearing.  

Determination of breeding goals and selection criteria. The breeding goals for Project Mesha 
were determined in consultation with goat rearers. These are: increased size and weight, faster 
growth up to 90 days, twinning but not litter sizes larger than twins (although at this stage only a 
small number of kids have an identified sire), increased adaptation to local conditions and kid rearing 
ability of the dams. A scoring system to calculate an overall index score for buck kids was devised 
in consultation with the field team. The criteria used in the scoring system are measured by trained 
enumerators and include the predicted weight of each buck kid at 100 days and four traits of the 
kid’s dam which are, the dam’s chest girth, its condition at the time of assessment, its litter size 
history and kid survival history.  

Recording and evaluation system. The Dtreo (dtreo.io) software application has been 
customized to capture performance data (online and offline), store data while ensuring its integrity 
and convert it into information based on the needs of goat rearers, the CBBP and genetic analysts. 
Data recording can be done in English or Hindi which is the language used in the CBBP area. Dtreo 
has been set up to calculate the index score for each buck kid and make it available in a report for 
the field team to use for primary selection. Data entries are usually made by the veterinarians in the 
Project Mesha field team. They also monitor the data, assess the buck kids attaining the requisite 
index score and maintain a continuous dialogue with the goat rearing community.   

Buck purchase and rotation. After the primary selection, the buck kid’s owner’s consent has 
to be obtained to keep the buck uncastrated until the second selection point. The buck is weighed 
and its soundness for breeding assessed every month up to the age of 6 to 8 months. If approved, the 
buck is purchased by Project Mesha at a price premium over its market value for meat. It is then 
transported to a village, at least 20 km away where it is placed with a willing buck-keeper household. 
Thirteen bucks have so far been placed for mating does in different villages. The bucks are moved 
again to another village at the end of a year to control inbreeding in accordance with rules specially 
formulated by genetics advisers to Project Mesha.  

Data and models. Average daily gains (ADG) of kids that were weighed >3 times up to the age 
of 120 days, were estimated with a regression of weight on age for each kid. Kid weight at birth 
(BWT), 3 months (3WT), 6 months (6WT), ADG and adult doe weights (DOEWT) were analysed. 
The number of records was 93 for BWT, 148 for 3WT, 151 for 6WT, 353 for ADG and 301 for 
DOEWT. Fixed models were fitted with the effects of village (6 classes), year of birth (2018, 2019, 
2020), season of birth (rainy, summer, winter), kid birth type (single, twin, triplet, quadruplet) and 
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kid sex (male, female). The effect of dam parity (first and ‘later or unknown’) could be fitted only 
for ADG as almost all the records for the other traits were for the ‘later or unknown’ parity. Only 
the effect of village was fitted for DOEWT as data for other effects was not available. No interactions 
were fitted because of the limited number of records. Least squares means (LSM) were estimated 
with only significant effects in the model.  

 
RESULTS AND DISCUSSION 

Twenty per cent of the does had singles, 51% had twins, 26% had triplets and 3% had 
quadruplets, yielding an average litter size of 2.14, similar to Dey et al. (2017) who reported an 
average litter size of 2.1 under field conditions in Bihar. The BB field unit of the All India 
Coordinated Research Project on Goat Improvement (AICRP 2017) has reported an average litter 
size of about 1.8 in BB goats in West Bengal state.   

There was substantial variation in each trait. BWT ranged from 0.5 to 3 kg, 3WT from 2.5 to 
11.1 kg, 6WT from 6 to 20 kg and ADG from 10 to 140 g. There is thus a good chance of identifying 
candidates superior for the breeding goal traits and using them for further breeding.  

 
Table 1. Significance of fixed effects for the traits analysed 
 

 Fixed effects  
Traits Village Year of birth Season of birth Kid birth type Kid sex Dam parity 
BWT * * not significant * not significant not fitted 
3WT * * * * not significant not fitted 
6WT * * not significant * * not fitted 
ADG * * * * not significant * 

DOEWT * not fitted  not fitted  not fitted not fitted not fitted 
*Significant 

 
6WT of bucks was higher by about 14% than that of does. BWT, 3WT and ADG declined from 

2019 to 2020. This could be because of the addition of new villages for data collection.  
The LSM (kg) for BWT, 3WT, 6WT and DOEWT were 1.5±0.2, 6.3±0.4, 9.1±0.5 and 23.5±0.7 

respectively. The LSM for ADG was 57.5±4.5 g. Dey et al. (2017) report BB goat ADG of 30 g and 
adult doe weight of 12 kg. AICRP (2017) has reported BWT, 3WT and 6WT to be 1.23 kg, 5.30 kg 
and 7.50 kg respectively for BB goats. It is likely that weights in this study are higher because of the 
way villages were selected for recording. There may also have been selection of more cooperative 
households or of larger does for recording. 

Thirteen bucks have been selected based on their index scores being above the set threshold and 
used for breeding in different villages. About 500 does have so far been mated with these bucks. 
Observations of their progeny have shown excellent vigour and growth, indicating that the 
improvement may be due to reduction in inbreeding.  

The CBBP has created awareness among the community about the basic principles of genetic 
improvement, inbreeding and its impact. Before the CBBP, it was thought here that for genetic 
improvement, ‘good’ breeding bucks had to be brought from outside the state. It was also felt that 
no one would be willing to maintain a breeding buck. The Project Mesha team has now compiled a 
list of households in several villages ready to maintain breeding bucks. There are still challenges for 
the CBBP but the progress is encouraging. As data accumulates over time and pedigree records build 
up, more accurate genetic evaluations will be possible, leading to more progress. The success of 
Project Mesha’s CBBP is likely to lead to expansion of the program in more blocks of Muzaffarpur 
district and then many more districts of Bihar.  
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CONCLUSIONS 
The CBBP reported here is likely to be the first systematic CBBP for goats in India. Many 

difficulties have been overcome and the goat rearer community has cooperated well with the CBBP 
implementing team. There is good opportunity to exploit hitherto untapped genetic variation in the 
highly adapted local breeds to improve goat productivity genetically.  
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SUMMARY 
Fertility in dairy cattle has declined as an unintended consequence of selection for high milk 

yield. The negative genetic correlation between milk yield and fertility is now well-documented, 
however, the underlying biological causes are still uncertain. The objective of this study was to 
examine this problem from a genomic perspective by first identifying the variants that link dairy 
fertility and milk production traits, and then using an archetypal clustering method to group variants 
with similar patterns of effects. Each cluster was finally subjected to over-representation analysis to 
identify the biological processes underpinning variants with similar effects. Nine groups with 
distinct effects on production, fertility and conformation traits were identified. Initial results from 
over-representation analysis suggest that the clusters formed are consistent with prior knowledge 
about the associated genes, but also suggest new areas of interest for further research.  

 
INTRODUCTION 

Fertility in dairy cattle has declined over the last 50 years as an unintended consequence of 
selection for high milk yield. Lactation is obviously contingent on parturition, making fertility a key 
driver of profitability, particularly on pasture-based dairy farms. The ideal cow does not only 
conceive – she does it at the right time, on the first attempt, and achieves and maintains pregnancy 
despite producing 60+ litres of milk per day.  

The exact physiological mechanisms linking fertility and milk production are still uncertain, 
despite significant research investment. Results from observational studies and in vivo 
experimentation have been equivocal – largely because nutrition, health, management interventions 
and environmental factors all combine to confound analysis of herd reproductive performance.  

Advances in genomics allow a direct approach to testing hypotheses. However, from a genetic 
perspective, fertility is a complex trait composed of successive biological events, with phenotypes 
that are difficult to measure. In this study, the use of a genome-wide association study incorporating 
large multi-breed reference population and a subset of variants which have been pre-selected for 
significance gives us significantly more power to identify variants of interest. It also allows us to 
identify variant clusters that have similar effects on multiple traits possibly indicating a common 
physiological pathway. 

This study aims to uncover the physiological mechanisms underlying milk production and 
fertility, which may assist herd managers in uncoupling these traits to breed cattle that are both 
productive and highly fertile. 

 
MATERIALS AND METHODS 

Data preparation. Genotype and phenotype data for a total of 5,123 bulls and 29,081 cows from 
DataGene, Australia were used for this study. This data included a mix of Holstein-Friesians (4,061 
bulls/22,899 cows) and Jerseys (1,062 bulls/6,174 cows). 

Genotypes included a total of 46,771 sequence variants, which were selected from a total of 
17,669,372 imputed variants prepared according to a multi-phase method which includes regression 
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involving FAETH scores, variant clustering and pruning, and Bayesian approaches (Xiang et al. 
2021). Two hundred and forty-seven variants thought to be informative for milk fat and protein 
percentage from an analysis performed by van den Berg et al. (2020) were also included. 

Phenotype data included trait deviations and daughter trait deviations for cows and bulls, which 
were calculated using a model that corrects for fixed effects including herd, season, and year. Twelve 
traits were selected which are thought to have effects on production and/or fertility, including protein 
yield, fat yield, protein percentage, fat percentage, milk yield, fertility, direct survival, stature, 
angularity, bone quality, udder texture and body condition score. 

Single-trait GWAS. Each trait was analysed one at a time in each sex with linear mixed models 
using GCTA (Yang et al. 2011). Results for both genders were then combined using a weighted 
meta-analysis based on a method described in (Xiang et al. 2018). This allowed us to fully utilize 
GWAS summary data and thereby expand the power of our analysis.  

Although most of the initial 46,771 variants were the result of LD pruning in the set of 1.7 million 
variants identified by (Xiang et al. 2021), we found that for known QTL with large effects such as 
DGAT1, some variants remained in high LD. To remove these, further post-processing was 
undertaken using the snp_clumping function within R package bigsnpr (Privé et al. 2018). This 
function is analogous to the –clump function implemented in PLINK 1.9 but has been adapted for 
memory-efficient usage within the R environment. For our study, as we were most interested in the 
relationship between milk production and fertility traits, we used fertility t-values as our ranking 
statistic. This reduced the starting set of 46,771 variants to 15,220 variants. 

Archetype-based clustering. We then clustered the sequence variants according to their pattern 
of effects on the 12 traits of interest. This was done by first ranking the variants in descending order 
according to the magnitude of their effect size on these traits, and then completing iterative pairwise 
comparisons of their cosine similarity. Whenever a variant was identified which had < 0.8 cosine 
similarity with the index variant, it was considered a new archetype. Subsequent variants were 
considered to represent new archetypes only if this held true for all preceding archetypal variants. 

Using this method, we identified 9 archetypal sequence variants with unique patterns of effects 
on the traits of interest. The remaining 15,211 variants were then assigned to the archetype with 
which they had the highest measure of cosine similarity, forming 9 variant clusters. The direction of 
effects was standardised across variants.  

Enrichment analysis. To better understand the underlying biology for each of the 9 clusters, 
pathway analysis was performed on each cluster using the over-representation analysis (ORA) 
function provided by a gene-set analysis toolkit, WebGestalt (Liao et al. 2019).  

 
RESULTS AND DISCUSSION 

It is important to note in Figure 1 that, as the fertility trait is measured by calving interval, positive 
effects represent infertility. With this in mind, we can distinguish 4 broad groups amongst the 9 
variant clusters. One primarily affects fertility (i.e., clusters 3 and 8), one affects production traits 
with a negative effect on fertility (i.e., cluster 9), and one affects production traits without impacting 
fertility (i.e., clusters 1, 5). Another group could be considered to include clusters which have 
varying effects on conformation, particularly in clusters 4 and 8. 

Cluster 1 includes genes such as DGAT, FASN and MGST1, which have all be implicated in fat 
synthesis. The pattern of effects is consistent with this, with fat, fat percentage and protein 
percentage traits in the opposite direction to milk yield and protein. There is little impact on other 
traits. The most represented GO terms reported by ORA include fat cell differentiation, carbohydrate 
derivative biosynthetic process, response to toxic substance, lipid biosynthetic process and 
endocrine system development. 
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Figure 1. Nine clusters exhibiting shared patterns of effect for 15,220 variants on 12 traits 
 

Cluster 2 has strong effects on protein and fat percentage, which is likely due to an antagonistic 
effect on milk volume. Notable genes include RORA, LAMA4 and PROX1. The most represented 
GO terms included cardiovascular system development, tube morphogenesis, regulation of cellular 
response to stress, and cell fate commitment.  

Cluster 3 displays strong effects on fertility, direct survival, and angularity. Notable genes 
include NOG, ASCL1 and GDNF. The most represented GO terms included neuron death, neuron 
development, appendage development, regulation of system process, and regulation of cell 
development.  

Cluster 4 also has strong effects on fertility and direct survival, with some interaction with 
conformation traits and weaker but consistent effects on production traits. Notable genes include 
LRRK2, DHX36 and BMP7. The most represented GO terms included regulation of nervous system 
development, regulation of cell development, regulation of cell projection organisation, regulation 
of secretion, and response to inorganic substance. 

Cluster 5 represents very strong production effects, without impacting conformation or fertility. 
Notable genes include ADCYAP1, EDN1, and TGFBR1. The most represented GO terms included 
carbohydrate derivative transport, multicellular organismal response to stress, circulatory system 
process, anion transport, and response to growth factor. 

Cluster 6 comprises variants with effects on fat, protein and milk yield that do not affect fat and 
protein percentage. Notable genes include BMP4, TP63 and WNT5A. The most represented GO 
terms included negative regulation of developmental process, signal transduction by p53 class 
mediator, cranial skeletal system development, positive regulation of cell proliferation, and 
epithelial cell proliferation. 

Cluster 7 affects protein percentage and not much else. Notable genes include BCL2, IL6 and 
ISL1. The most represented GO terms included peptidyl-threonine modification, peptidyl-serine 
modification, tricarboxylic acid metabolic process, negative regulation of transcription, and 
regulation of ion transport.  

Cluster 8 represents conformation traits, along with body condition score and possibly fertility. 



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 276-279 

279 
 

Notable genes include BMP7, MEF2C and SYK. The most represented GO terms included 
connective tissue development, cardiovascular system development, appendage development, tube 
morphogenesis, and integrin-mediated signaling pathway. 

Cluster 9 is similar to cluster 2 in that it primarily affects protein and fat percentage. However, 
unlike cluster 2 it also has effects on fertility, direct survival, and stature. Notable genes include 
ARRDC3, LGR4 and CIB1. The most represented GO terms included second-messenger-mediated 
signaling, G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second 
messenger, secretion by cell, cellular component disassembly, and cell-cell adhesion. 

Care must be taken when interpreting these preliminary results, particularly when pathway 
analysis has been performed. Pathway analysis is still a developing area in computational biology, 
with no current consensus as to the best tool, method, or annotation database to utilise. Pathway 
analysis also requires a gene to be linked to each variant, which is a complex problem. Although 
GWAS can identify genetic loci associated with complex traits, the causal gene associated with each 
locus is often difficult to determine. This is because firstly, LD between loci can mask the identity 
of the causal variant and secondly, the causal variants at most associated loci are not coding, instead 
acting through gene regulatory mechanisms which are difficult to determine (Weeks et al. 2020). 
Validation of our results is still ongoing, through the development of new statistical methods and 
the cross-validation of our findings against experimental datasets comprising expression QTL 
results. 

 
CONCLUSIONS 

This study shows that clustering variants by their patterns of effects and combining the results 
with pathway analysis may help to elucidate the underlying genes and biological processes which 
link genetically associated traits.  
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SUMMARY 

Australian sheep genetic evaluation is conducted routinely for millions of animals for many 
traits. In the current analysis implemented by the OVIS software, phenotypes are pre-adjusted for 
systematic fixed effects to make fair genetic comparison between animals. This study assessed 
whether correction factors used in OVIS remain valid, and to explore whether the pre-adjustment 
method is still suitable and is comparable with a linear model. Furthermore, importance of 
interactions between body weight and sex, or body weight and flock were estimated. Regression 
slopes were calculated from forward prediction, using eye muscle depth data on 234,810 White 
Suffolk and 249,136 Poll Dorset sheep and fat depth data on 246,149 White Suffolk and 268,002 
Poll Dorset sheep. Updated pre-adjustment factors produced regression slopes of progeny 
performance on their sire’s estimated breeding values (EBVs) equal to 0.67 and 0.62 (averaged over 
breeds) for eye muscle depth and fat depth, respectively. Regression slopes were same for eye 
muscle depth and slightly better for fat depth than OVIS (0.66 and 0.64 respectively). A linear model 
produced significant improvements in regression slopes (0.60 and 0.50 respectively). Including 
interaction effects between fixed effects did not significantly influence the accuracy of prediction of 
progeny performance. A linear model will be implemented in future OVIS evaluation for ultrasound 
scan carcass traits.   
 
INTRODUCTION  

Genetic evaluation is conducted to provide information to breeders about the genetic merit of 
their animals in the form of estimated breeding values (EBVs) and selection index values. EBVs are 
calculated by correcting observed phenotypes for systematic environmental effects to allow fair 
genetic comparisons between animals. There are two common approaches to correct for the 
environmental effects: 1) pre-adjustment of phenotypes for environmental effects before genetic 
evaluation (Brown and Reverter 2002; Schaeffer 2019) or 2) fitting environmental effects in the 
mixed model equations to estimate them jointly with the breeding values (Laird and Ware 1982; 
Meyer 2004). The analytical software that implements the Australian genetic evaluation for sheep 
(OVIS) uses a pre-correction method, including correction of scanned carcass traits for the animal 
weight at scanning animal via linear and quadratic regression coefficients. The only fixed effect that 
is directly fitted in an animal model in OVIS is the contemporary group (CG) which includes breed, 
flock, management group, sex, and year of measurement subclass (Brown et al. 2016). 

Theoretically, fixed effects such as the weight of animals and interaction effects between fixed 
effects should be included directly into the mixed model equation because the linear model corrects 
for the systematic environmental effects and gives an unbiased estimate of breeding value directly 
from the model (Laird and Ware 1982; Henderson 1984; Meyer 1998). However, estimating all 
effects jointly in the routine analysis increases the computational burden which can be prohibitive 
for large-scale genetic evaluation with millions of animals for many traits. With increasing 
computing power and further advances in analysis algorithms, this is becoming less problematic. 
Another consideration in potentially changing adjustment methods is that pre-adjustment factors are 
multiplicative and hence non-linear, and such corrections cannot always be implemented in a linear 
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mixed model in the same manner. The current adjustment factors were estimated many years ago 
and they may need to be updated.   

Given these considerations, this paper aims to determine whether the adjustment factors 
currently used by OVIS are still appropriate, and to propose updated adjustment factors if required. 
Furthermore, we examined whether correcting scanned carcass traits for body weight differs 
significantly between sexes or flocks. Finally, we compared the effectiveness of a linear model in 
the evaluation compared to using pre-correction factors.   
 
MATERIALS AND METHODS 

Data were retrieved from the LAMBPLAN database, comprising ultrasound measurements of 
eye muscle depth (EMD) and fat depths (FD) and associated body weight recorded at post-weaning 
in Australian and New Zealand sheep. A subset of the terminal dataset was extracted including 
animals born from 2009 onwards. Data were filtered according to the guidelines of OVIS (Brown et 
al. 2000). There were 234,810 and 249,136 animals for eye muscle depth and 246,149 and 268,002 
animals for fat depth for the White Suffolk (WS) and Poll Dorset (PD) breeds, respectively. 
Estimated variance components were estimated for the scanned traits using the following mixed 
model equation:  

𝑦𝑦 = 𝑿𝑿𝟏𝟏𝑏𝑏 + 𝒁𝒁𝟏𝟏 𝑎𝑎 + 𝒁𝒁𝟐𝟐𝑚𝑚 + 𝒁𝒁𝟑𝟑𝑚𝑚𝑚𝑚 + 𝒁𝒁𝟒𝟒𝑠𝑠𝑠𝑠𝑦𝑦 + 𝑒𝑒 
Where y is the vector of observations, b is a vector of fixed effects, 𝑎𝑎 is a vector of breeding values 
of animals, 𝑚𝑚 is a vector of maternal breeding values, 𝑚𝑚𝑚𝑚 is a vector of maternal permanent 
environmental effects, sfy is a vector of sire by flock year interaction effects, and  𝑒𝑒 is a vector of 
random residuals. X1 is an incidence matrix relating b to y and Z1, Z2, Z3 and Z4 are incidence 
matrices relating a, m, mp and sfy to y. Then, variance components were used to estimate BLUP 
EBVs using the above mixed model equation. Contemporary group was only fitted as the fixed effect 
component, b, when EBVs were estimated from pre-adjustment because phenotypes were already 
adjusted for other fixed effects.   

Estimating fixed effects and their interactions. The fixed effects currently included in OVIS 
for scanned carcass traits are contemporary group and a linear and quadratic regression on body 
weight of the animal and these effects were fitted in a complete linear mixed model that was used 
as a reference model. The reference linear model was expanded by adding interaction effects, one at 
a time, including sex by body weight, year of birth by body weight, flock by body weight and flock 
by sex by body weight. A complete mixed model was fitted and the significance of extra interaction 
effects was evaluated. Significant interaction effects were then tested for their effect on the EBVs 
through forward prediction(Huisman et al. 2015; Legarra and Reverter 2017).  

Regression of progeny performance on sire EBVs. Forward prediction was conducted to test 
the predictive ability of the EBVs from the various models and their effectiveness in predicting 
progeny performance. The breeding values of sires for post-weaning body weight were estimated 
from the training data by different mixed models and by pre-adjustment of the phenotype. The 
training data included animals born before 2017. EBVs of sires were validated only if they had 
progeny born after 2016. Progeny performance was corrected for all of the fixed effects using 
solutions from a linear model, and were regressed on their sire’s EBV. The expectation of the 
regression coefficient is 0.50. A lower value indicates an over-dispersion of sire EBVs relative to 
the variance observed in the progeny performance data, while a higher value reflects under-
dispersion.  

 
RESULTS AND DISCUSSION 

Genetic parameters. Variance components estimated from the current data are presented for 
eye muscle depth and fat depth in Table 1. Heritability estimated for post-weaning eye muscle depth 
and fat depth were 0.25 and 0.18 respectively, averaged over breeds. These heritability values were 
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smaller than previous estimates of 0.32 and 0.26 for post-weaning EMD and FD respectively (Brown 
et al. 2016). The difference might be due to that previous study not including a sire by flock-year 
interactions in the model, this study having more recent records and heritability estimates in this 
paper are breed specific while the latter are across-breeds estimates.  
 
Table 1. Variance components used to estimate BLUP solutions 
 

Traits(Breed) Va Vm Vmp Vsfy  Ve h2  
EMD (WS) 1.17 0.050 0.03 0.028 3.24 0.25 
EMD (PD)  1.10 0.064 0.08 0.073 3.37 0.23 
FD (WS)  0.08 0.005 0.01 0.009 0.35 0.18 
FD (PD) 0.09 0.005 0.01 0.009 0.35 0.19 

EMD: Eye Muscle Depth, FD: Fat Depth, WS: White Suffolk, PD: Poll Dorset 
Va, additive genetic variance, Vm, maternal genetic variance, Vmp, permanent environment effect of the dam, 
Vsfy, sire by flock year variance, h2, direct heritability  
 

Comparison between pre-adjustment factors.  The average linear regression of eye muscle 
depth on body weight is higher (0.38; Table 2) than the OVIS assumption (0.31) indicating that the 
eye muscle depth of animals, relative to the body weight, has increased over the years. On the other 
hand, the average linear component for fat depth (0.08) was lower than the current OVIS factor 
(0.09) (Brown and Reverter 2002), indicating that fat depth of the animals relative to the body weight 
has decreased over the years.   
 
Table 2. Adjustment factors currently used in OVIS and updated estimates 
  

Fixed 
effect 

Level OVIS 
EMD 

Updated EMD OVIS FD Updated FD 
WS PD WS PD 

weight  Intercept 27.44 28.48 29.01 3.03 3.39 2.88 
Linear 0.31 0.38 0.38 0.09 0.07 0.08 
Quadratic -0.001 -0.003 -0.003 -0.004 -0.0001 -0.0004 

EMD: Eye Muscle Depth, FD: Fat Depth, WS: White Suffolk, PD: Poll Dorset 
 

Comparison between the linear model and pre-adjustment of data. Updated pre-adjustment 
factors produced a slightly better regression slope (0.62) than pre-adjustment factors that are 
currently used in OVIS (0.64) for fat depth but identical prediction for eye muscle depth (Table 3). 
The complete linear model produced significantly better regression slopes of progeny performance 
on sire EBV (0.60 and 0.50) than with the EBVs based on pre-adjustment (0.67 and 0.62), comparing 
values averaged across breeds for eye muscle depth and fat depth, respectively. The regression slope 
for eye muscle depth was higher than 0.50, indicating under-dispersion of EBVs. Regression slopes 
for fat depth were close to 0.50, indicating that sire EBVs were able to predict progeny performance 
reliably. Further, regression slopes are closer to expectation in White Suffolk than in the Poll Dorset 
breed. Moreover, the regression slopes obtained from models with interactions did not give 
significantly different estimates of slope. Models with extra interaction effects, use significantly 
more computation time, and require more degrees of freedom. Based on these results, including 
interaction effects in routine evaluation may not be necessary.  
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Table 3. Regression slopes of progeny performance on sire EBVs for ultrasound scan traits 
  

Models  
  

Eye muscle depth  Fat depth  
White Suffolk  Poll Dorset  White Suffolk  Poll Dorset   

Pre- adjustment (OVIS) 0.63±0.01  0.70±0.01 0.61±0.02 0.67±0.02 
Pre-adjustment (updated) 0.63±0.01 0.71±0.01 0.58±0.02 0.66±0.02 

Linear models 
1 = (CG + Wt + Wt2) 0.57±0.01 0.64±0.01 0.49±0.02 0.50±0.02 
1 + sex*Wt + sex*Wt2 0.56±0.01 0.64±0.01 0.49±0.02 0.50±0.02 
1 + YOB*Wt + YOB*Wt2 0.56±0.01 0.64±0.01 0.49±0.02 0.50±0.02 
1 + flock*Wt + flock*Wt2 0.58±0.01 0.64±0.01 0.50±0.02 0.52±0.02 
1 + flock*sex*Wt + F*S*Wt2 0.58±0.01 0.63±0.01 0.49±0.02 0.52±0.02 

CG: Contemporary Group, Wt: Weight, S: Sex, YOB: Year of Birth, F: Flock,  
 
CONCLUSIONS 

The predictive ability of a model can be improved marginally by using updated pre-adjustment 
factors for ultrasound scanned carcass traits, and is not recommended. A complete linear model 
brings more improvement in the capability of EBVs to predict future progeny performance and is 
recommended for use in future OVIS evaluations if it is computationally feasible. Interaction effects 
between body weights with other fixed effects did not significantly increase the predictive capability 
of a model and can be ignored to simplify computation.  
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SUMMARY 

This study, through the method of quantitative survey, investigates bull selection criteria 
preferences and understanding of genetic technologies of Australian beef producers and breed 
utilisation within their operation. The survey captured 1,023 producer responses from a 
representative proportion of beef cattle businesses in each state. Participants were asked to value 
bull selection criteria preferences on a 1 (lowest value) to 10 (highest value) scale. Respondents 
were also asked to rate their knowledge of genetics and nominate their breed of choice utilized in 
their operations. Nationally, temperament was ranked the most valued bull selection criteria, 
followed by polledness, visual appraisal and BullCHECK. The results were relatively consistent 
between states. Angus was the dominant breed in the female breeding population, with 5.6 million 
head (48%) of the Australian breeding female herd influenced by Angus genetics. Members of breed 
societies, particularly Angus Australia members, rated their knowledge of genetics more highly than 
their non-member counterparts. 
 
INTRODUCTION 

The development and commercialisation of genetic selection tools have provided an accurate 
and objective description of genetic merit upon which producers can select breeding candidates and 
achieve breeding objectives (Johnson 2007). It is commonly recognised that Angus genetics and 
associated genetic technologies (e.g. Estimated Breeding Values, genomics) have made a significant 
contribution to the wider beef industry in terms of lifting productivity through gene introgression 
and genetic gain for commercially relevant traits (Parnell 2015). However there have been few wide 
scale studies that have been formally undertaken to understand producer perception and utilisation 
of these technologies.  

Quantifying producer knowledge in genetics and the emphasis that they attribute to the objective 
information available for selection identifies extension and development opportunities for applicable 
genetic tools and technology (Bell et al. 2019). To provide this knowledge, Angus Australia 
facilitated a study by way of quantitative survey methodology via an independent market research 
group. The study aimed to determine the level of penetration of Angus and Angus influenced 
genetics throughout Australia, in addition to gauging beef producer’s knowledge and attitudes 
towards the available genetic technologies, the latter being the focus of this paper. The broader 
findings of this study have been extensively reported in the Australian Beef Breeding Insights report 
(Angus Australia 2020). 
 
MATERIALS AND METHODS 

The independent research market group Chi Squared was engaged due to their experience in 
agricultural market research and primary producer focus. A quantitative survey process was 
conducted over a 50-day period (11th May to 30th June 2019) and gathered 1,278 responses through 
four streams; 

1. Telephone interviews conducted by an Australian based call centre, consisting of retired 
producers and agricultural students; 

2. Online survey promoted via email correspondence to the Crackerjack Farming 
database; 
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3. Online survey promoted via email correspondence to the Angus Australia membership; 
4. Online survey promoted via the Angus Australia website and Facebook page 

To ensure the survey captured responses that were representative of viable beef breeding 
enterprises across the wider beef industry there were disqualifying parameters put in place. These 
included; 

• Herd size less than 20 head of breeding females; 
• Participant younger than 18 years of age; 
• Less than 3 years of experience; 
• Participant wasn’t actively involved in the management decision making process of 

the operation; 
• Main enterprise did not involve breeding or trading; 
• Participant didn’t intend to be breeding cattle in 5 years’ time 

This ultimately resulted in 1,023 eligible, unique responses. Sample size was monitored to ensure 
that the proportion of responses was comparable to the proportion of beef producing business entities 
in each state, as reported by the Australian Bureau of Statistics (Australia Bureau of Statistics, 2020). 
Due to the limited sample size of Northern Territory respondents, no values have been reported in 
this paper for this state. 

Participants were asked a series of questions regarding their operations including knowledge of 
genetics (1 being poor, 10 being excellent), breed of choice and perceived value (1 of least value 
and 10 of greatest value) of selection criteria available when selecting bulls, such as EBVs. 

In order to gain survey results that reflected the Australian beef industry, the bias of Angus 
members participating in the survey was corrected. This was achieved by removing those 
respondents who were contacted through the Angus Australia membership streams and focussing 
on the randomized data collection of the Chi Squared and Crackerjack farming databases. Overall, 
781 responses formed the ‘adjusted’ data on which the breed influence findings in this study were 
based. Where findings are reported for the selection criteria preference and rating of genetic 
knowledge, respondents from all four streams were included. 
 
RESULTS AND DISCUSSION 

Bull selection criteria preferences. The results of the survey suggest that, overall, producers 
prioritise bull selection criteria related to fitness for purpose (e.g. temperament, polledness, visual 
appraisal and BullCHECK (Australian Veterinary Association (2007))) before criteria associated 
with genetic progress (EBVs, Pedigree, DNA enhanced EBVs, Selection Indexes) (Table 1).  

These priorities were generally consistent across most states however there were some variations 
reflecting the difference between past experiences and education, production systems, profit drivers 
and climate. For example, producers in NSW placed higher importance on EBVs compared to raw 
data (e.g. weight, ultrasound scans) for bull selection, while this was opposite in Queensland.  

The bull selection criteria related to DNA factors (e.g. sire/parent verification, enhanced EBVs) 
generally rated at the lower end of importance. This may be a result of the relatively recent 
availability of these selection criteria, particularly DNA enhanced EBVs for bull selection.     

Selection indexes were consistently ranked the lowest importance criteria for bull selection. 
Further research is warranted to understand this outcome and determine strategies to increase the 
importance placed on selection indexes for bull selection.   
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Table 1. Importance rating of bull selection criteria nationally and by state 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
The value that Angus Australia members put on each selection criteria was generally higher than 

their non-member and other breed society member counterparts (Table 2). Their priorities generally 
reflected the national results however information of genetic conditions was rated more highly, 
resulting from exposure to some of the genetic conditions identified in the Australian Angus herd. 
Also of an elevated priority was coat colour, reflecting their breed preference. Selection indexes 
were also of the lowest value to this group of respondents. 

Participants belonging to breed societies other than Angus Australia, placed the lowest value on 
polledness of the groups. Meanwhile, non-members, both Angus users and other breed users alike, 
placed least value on DNA enhanced EBVs and sire/dam DNA verification, reflecting the 
commercial nature of their operations. 

 
Table 2. Importance rating of bull selection criteria by breed society membership 

Selection Criteria 
Angus Australia 

Members 
Non-members Other Societies 

Members Angus users Other breeds 
Temperament   9.3 9.2 9.3 9.4 
Visual Appraisal   8.9 8.5 8.5 8.8 
Polledness   8.9 9.0 8.6 8.1 
Information on genetic conditions   8.5 7.4 7.2 8.1 
BullCHECK   8.3 7.9 7.8 8.3 
Coat Colour   8.1 7.4 6.6 7.1 
EBVs   7.9 7.5 7.1 7.4 
Pedigree   7.8 6.8 6.8 7.6 
Sire/dam DNA verification   7.7 5.9 5.7 7.1 
DNA enhanced EBVs   7.2 6.0 5.9 6.7 
Raw data   7.2 7.1 7.0 7.5 
Selection Indexes   6.6 6.4 6.3 6.5 
Ratings are an average value score of a 1 (of least value) to 10 (greatest value) scale 

 
Genetic knowledge. Producers associated with a breed society rated their knowledge of genetics 

more highly than their non-member counterparts, with Angus Australia members having the greatest 
confidence in their knowledge of genetics (7.9), by comparison to members of other societies (7.4). 
Non-members of breed societies reported an average score of 6.4. When observed on a state basis, 

Selection Criteria National NSW Qld SA Tas Vic WA 
Temperament 9.3 9.3 9.3 9.3 9.7 9.3 9.3 
Polledness 8.7 8.5 8.5 9.3 9.4 9.0 8.9 
Visual Appraisal 8.7 8.7 8.6 8.7 8.7 8.9 8.7 
BullCHECK 8.1 8.1 8.4 8.0 7.2 7.8 8.3 
Information on genetic conditions 7.9 7.9 7.7 7.9 7.9 8.0 8.0 
EBVs 7.6 7.7 7.1 7.6 7.1 7.7 8.0 
Coat Colour 7.5 7.7 7.1 7.7 6.9 7.8 7.1 
Pedigree 7.3 7.4 7.1 7.2 7.5 7.5 7.5 
Raw data 7.2 7.1 7.4 7.4 7.2 7.2 7.0 
Sire/Dam DNA verification 6.7 6.8 6.4 6.5 6.8 7.0 6.8 
DNA enhanced EBVs 6.5 6.6 6.3 6.3 6.2 6.8 6.7 
Selection Indexes 6.5 6.5 6.3 6.6 5.8 6.4 7.0 
Ratings are an average value score of a 1 (of least value) to 10 (greatest value) scale  
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Victoria and New South Wales had the highest averages (7.3 and 7.2, respectively), reflecting the 
greater Angus Australia membership base in those states. 

Breed influence. Nationally, a total of 48% of females had some percentage of Angus influence 
in their breeding (Table 3). Angus was the most utilized breed in all states except Queensland. 

The female beef cattle population figures for each state from the ABS Agricultural Commodities 
report for 2018-19 (Australia Bureau of Statistics, 2020) were used to extrapolate the breed findings 
of the survey. This resulted in an estimated population of 5.6 million head influenced by Angus 
genetics in Australia – with the largest populations of Angus females in Queensland (1.8 million 
head) and New South Wales (1.5 million head). 
 
Table 3. Estimated proportion of Angus influenced females and extrapolated herd size by 
state 
 

 National NSW Qld SA Tas Vic WA 
Influence 48% 78% 32% 78% 53% 77% 40% 
No. of head 5,606,199 1,461,977 1,824,097 311,002 104,382 768,429 425,927 

 
CONCLUSIONS 

The survey approach implemented in this study proved to be an effective method of identifying 
the breed and selection criteria preferences of Australian beef breeders. The representative nature of 
surveys is an obvious limitation however the robust number of participants lends credibility to the 
finding. The results suggest that producers value a bull’s contribution to the current herd, such as 
their ability to join and produce a viable calf, alongside safety and welfare considerations, above 
selection criteria associated with genetic progress. The number of Angus influenced cattle in the 
Australian breeding herd, as well as the higher confidence of Angus Australia members in their 
knowledge of genetics, illustrate the magnitude that any advances in technology, performance and 
research can be amplified through engagement and extension with Angus breeders. It further 
illustrates the benefits that could be gained through similar extension activities in the wider beef 
industry.  
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SUMMARY 

While individual properties arising from interactions between individuals can have a significant 
impact on trait expression across a vast range of species in both animals and plants, nowhere does 
this become more immediately apparent than in trait definition and assessment of honeybees. 

Due to the eusocial nature of these insects, phenotypic observations are, for the most part, limited 
to the superorganism, a complex community of up to 80,000 honeybees. Individual assessment of 
the behaviour and physiology of both worker and queen bees is possible (e.g. aggression in workers, 
egg-laying in queens) but of limited usefulness since the opportunity for their expression in the 
context of the honeybee colony might be limited or favoured via their interaction. As a result, a 
different overall phenotype can be expressed by the colony than would be expected based on the 
individual assessment. 

By including a “community” component in our understanding of trait expression, we can explore 
the many layers of individual trait expression which contribute to worker brood viability in honeybee 
colonies and their intersection with both genetic and environmental factors. The inclusion of 
community aspects allows us to include fundamentally separate aspects that cannot be explained or 
captured by traditional models defining phenotypes as a result of G, E and GxE. 

 
INTRODUCTION 

Great strides have been made in genetic improvement of plants and animals over the past 
decades, but some challenges in genetic evaluations remain, especially around behavioural traits 
(Chang et al. 2020). Complex phenotypes and a limited understanding of all the factors influencing 
the expression of traits hinder the adequate parcelling and attribution of variation, both genetic (G) 
and non-genetic or environmental (E). In the classic partitioning of variation into components of 
genetic and environmental variation, variation due to interactions of the individuals with the external 
world is often lost in the environmental component or masked (Foris et al. 2018). This was partially 
overcome by the introduction of an interaction component between the genetics of an individual and 
the environment, thereafter referred to as GxE (Falconer 1952). However, the G+E+GxE framework 
neglects the role that social interactions as well as underlying factors such as population density and 
population structure play for the realisation of genetic potential.  

Phenotypic variation is not fully explained by current methods, although additional aspects like 
epigenetics can contribute to our understanding of the occurrence of variation (Triantaphyllopoulos 
et al. 2016). Contributors to phenotypic variation that can be considered both “environmental” and 
“social” have been recognised in the field of animal breeding since the 1970s (Willham 1972) and 
have found entry into genetic evaluations in some species in the form of maternal effects (Solé et al. 
2021). However, a large proportion of community-driven factors that contribute to variation (e.g. 
competition, genetic makeup of the population) are still often either considered completely 
environmental or entirely due to individual genetics. 
 
METHODS AND DISCUSSION 

Understanding individual contributions to the superorganism. As eusocial insects, 
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honeybees are limited to a small number of reproductively active females, the queens, who are 
supported by functionally sterile female worker bees at a ratio from 1:5,000 to 1:80,000. This puts 
them in a unique situation where phenotypic observations are, for the most part, limited to the 
superorganism, a complex community of tens of thousands of honeybees, while selection can only 
act on the core individual, the queen.  

While some traits, such as the reaction to Varroa mite infestations, can be assessed in individual 
workers (e.g. Currie and Tahmasbi 2008), these observations are of limited usefulness since they 
might not find an opportunity to be expressed by the individual in the context of the entire colony.  

Honeybee traits are often the result of multiple populations within a colony working together in 
cohorts of sisters of a similar age, which means that the exact expression of any trait relies on the 
performance of hundreds of individuals, each of them with an individual response threshold that 
triggers behaviours which contribute to the observed trait (Beshers and Fewell 2001). An approach 
trying to integrate studies of the behavioural, physiological and neurobiological aspects of division 
of labour developed a push-pull model explaining the relationship between different castes and their 
respective ages under natural conditions (Johnson 2010). 

The GCE model in theory. Assuming that division of labour impacts on trait expression, a new 
approach is needed to interpret observations of honeybee performance before these can be used as 
the basis of genetic evaluations. The required model must allow for the consideration of modifiers 
that contribute to the outcomes for an individual worker and her life history. These modifying factors 
can be split into two classes: effectors and responses.  

To fully explain the expression of the genetics of an individual bee, effectors are both the 
community that the individual partakes in and the environment they live in. These two effectors are 
necessary for the expression of an individual’s genetics but exist largely independently from an 
individual bee’s life or are only slightly influenced by her individual contribution (see circles in 
Figure 1). 

 
Figure 1. Intersections between individual genetic basis, environmental aspects and 
community in honeybee trait expression 
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The responses that an individual show as a result of their interaction with the effectors are 
adaptable outcomes of said interactions which are specific to the individual, since they are based on 
their individual response thresholds. These responses serve as measurable phenotypic outcomes that 
add to the individual’s life history and in turn contribute to the phenotype of the superorganism. 
Responses arise from the interaction of individual genotypes with the environment (GxE), and the 
other members of the community (GxC) which is influenced by environmental effects on the 
community through individual interactions with the environment (CxE). 

Applying the GCE model to worker brood viability. In applying the GCE framework to a 
particular trait, contributors to trait expression can be broken down and attributed directly to their 
source, rather than having to rely on a theoretical ability to control for these contributors. 

Worker brood viability, the percentage of brood cells that are capped over in a patch of brood of 
similar age, is a complex phenotype driven by numerous factors.  

Queen egg laying rate (see Figure 2, “Community”) establishes an upper limit for the number of 
worker brood cells that can be capped at any time, since it determines how many eggs are developing 
within the roughly 10-day time frame that covers larval and pupal development under wax caps, the 
only time when brood viability can be readily observed. While queen laying traits are hard to observe 
without somehow limiting their expression (e.g. by supplying a limited number of cells in a confined 
area of the hive for a set number of hours), they can be measured. However, they do not present an 
adequate representation of the colony’s ability to live up to the upper limit they present. 

Brood care is a core part of the inner workings of a honeybee hive, and its success depends on 
the availability of capable nurse bees (who need to be of the correct age to be able to produce larval 
food) as well as the availability of food. Food can be stored as nectar, honey and bee bread, which 
can be assessed by the beekeeper and would reduce its function as an effector to an environmental 
effect. However, at times of high food availability outside the hive and depleted stores, the standard 
situation in spring, food resources can be directly distributed by worker bees foraging outside of the 
colony. This both brings in an aspect of a community dependency as well as a complication for the 
observation and quantification of the environmental effectors by the beekeeper since these 
transitional food sources are almost impossible to assess. 

The individual genetic factors which contribute to observed brood viability apply to the larvae 
in development at the time of observation of brood viability, and include genetic disease resistance, 
response thresholds for nutritional and environmental factors like the ability to tolerate variation in 
brood comb temperature, and the allele status at the honeybee sex determination locus csd, which 
homozygosity at which can result in non-viable diploid male larvae see Figure 2, “Individual”). 
Limitations of the model. While the GCE model presented here can serve to identify contributors 
to honeybee trait expression that were previously impossible to determine in the context of the 
superorganism, it cannot be readily applied in the interpretation of honeybee performance to improve 
on genetic evaluations with the use of traditional observational data collected by beekeepers, as this 
information is not of sufficient granularity to generate insights into the community effector. 
However, with the increased use of beehive telemetry in routine beekeeping, datasets are becoming 
available which will allow the application of the GCE model to hive performance data in order to 
tease apart environmental and community contributions to superorganism phenotypes and thus fully 
define the genetic contribution and increase accuracy in honeybee genetic evaluations. 
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Figure 2. Worker brood viability as an emergent property of the interaction of Genotype, 
Community and Environment 

 
CONCLUSIONS 

Treating phenotypes of the honeybee superorganism as emergent properties of the interaction 
between genetics, environment, and the community within the colony can help define contributors 
to observed variation and strip away variation which has previously clouded our understanding of 
the genetic effect on honeybee performance. 

While the framework can be most readily applied in eusocial insects, it is likely to have 
applications in other livestock species, e.g. in defining the effects of competition on performance 
and survival, as well as in plant production systems where competition for natural resources and 
space cannot be avoided via translocation. 
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SUMMARY 

Trait prioritisation processes as the basis of the formulation of breeding objectives can be 
difficult in situations where the economic impact of traits on the production system are poorly 
understood. Surveys can be a great tool to interact with the industry, gather information and 
ultimately generate enough context information to allow for the implementation of stringent genetic 
evaluation systems. We surveyed New Zealand beekeepers to identify traits of importance from a 
list of 9 preselected honeybee characteristics to be included in a national genetic improvement 
scheme. Trait preferences were found to vary between groups within the industry (e.g., commercial 
beekeepers vs. queen breeders), but emphasis on varroa mite resistance, honey yield and gentle 
temperament leading to better workability was put on by all groups. 

 
INTRODUCTION 

Despite being an important agricultural species, the Western honeybee, Apis mellifera, has 
received considerably less attention in animal breeding than more traditional livestock species with 
more accessible life histories. Selection is often performed ad hoc and based mainly on beekeeper 
intuition and experience (Cauia et al. 2011), and the adoption of structured breeding programs 
applying genetic evaluation tools has generally been low among commercial beekeepers. Linguistic 
discrepancies between beekeepers and other livestock producers around the use of the term 
“breeding” (which in industry jargon is used almost exclusively to refer to the multiplication of 
queens, both from selected and unselected dams) and honeybee mating strategies complicate the 
direct transfer of animal breeding methodologies from other industries. 

For the formulation of a clear honeybee breeding objective, an instrumental tool in making 
beneficial livestock selection decisions (Dickerson 1970), beekeepers from different sectors of the 
industry (honey- and pollination fee-driven) need to be part of the process, both to improve the 
understanding of the profitability of commercial beekeeping operations and to disseminate the 
fundamental concepts of modern animal breeding strategies before making the corresponding tools 
available to the wider industry. 

Industry consultation through surveys has been found to increase adoption rates of genetic 
evaluation services by aligning the breeding objective with the requirements of breeders and end-
users of improved genetics across multiple industries and species such as pasture crops (Smith and 
Fennessy 2011, 2014), sheep (Byrne et al. 2012) and dairy cattle (Martin-Collado et al. 2015). 
Involving beekeepers directly in the formulation of a breeding objective will hopefully result in 
similar improvements in the adoption both of genetic evaluation services while lifting the 
understanding of both the promise and the limitations of genetic evaluation and mate selection tools. 

 
MATERIALS AND METHODS 

Trait pre-selection. 9 honeybee traits were selected based on literature research and preliminary 
beekeeper consultation for relevance, measurability, presumed heritability and observed variation in 
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the field (for details on this see Petersen 2019). An overview of the traits included in the survey, 
their unit (or observation, where units are hard to define) as well as the levels addressed as part of 
the prioritisation process can be found in Table 1. 

 
Table 1. Honeybee traits included in a survey to determine trait prioritisation in the New Zealand 
beekeeping industry 
 

Trait Unit or Observation  Levels 
Honey production kg / hive / season Unchanged / +1kg / +2kg 
Worker brood viability percentage of viable brood 90% / 100% viable 
Workability (Gentleness) Likelihood of bees stinging Less likely / unchanged / more likely 
Defensive behaviour Ability of bees to defend the hive Less able / unchanged / more able 
Swarming Swarming urge Management needed / not needed 
Queen longevity Queen survival 1 season / 2 seasons 
Varroa destructor mite 
resistance 

Ability of bees to control mites Treatment needed / not needed 

Body colour Colour of drones produced Drones are the same colour / different 
Wintering ability % surviving bees Current winter survival / 4% better 

 
Survey design and beekeeper recruitment. The survey was entirely designed and distributed 

online. It consisted of a demographics part built in SurveyGizmo (Alchemer Inc., Boulder CO, USA) 
and the core trait prioritisation using multi-criteria decision-making tool 1000minds® (1000minds 
Ltd, Dunedin, New Zealand). Beekeepers were streamed into 3 distinct sets of demographic and 
management questions (commercial operator, designated queen breeder and hobbyist) based on their 
response to the first question and asked questions about their operation (e.g., size in hives, location, 
staff), hive management strategies, beliefs, and preferences around queen selection. After 
completing the demographic survey, they were directed to 1000minds®, where they were asked to 
make a number of trade-off decisions to determine their personal priorities (for details see Hansen 
and Ombler 2008). 

The survey was made available to the public via a link on the website of a national honeybee 
genetic improvement research project, and beekeepers were encouraged to participate throughout 
the 2019 Apiculture NZ conference. When participation continued to be low throughout the 
beekeeping season 2019/20, a priority set of around 50 beekeepers was identified and contacted 
directly, with the survey being conducted interview style. 

Data analysis. Data analysis was carried out on the combined dataset of the demographic survey 
as well as 1000minds® in R. The Kruskal-Wallis test was used to determine the difference in traits 
preference ranks for different beekeeper demographics. Principal component analysis (PCA) was 
employed to reduce the dimensionality of the data and to investigate patterns of preferences in trait 
rankings. PCA was followed by Correspondence Analysis (CA) of the principal components. 
Hierarchical clustering was performed using Ward’s criterion on the selected principal components. 
K-means clustering was used to improve the initial partition obtained from hierarchical clustering 
and to determine the final number of clusters. 

 
RESULTS AND DISCUSSION 

A total of 61 responses were recorded. Survey responses were excluded from the sample if they 
did not complete the 1000minds® survey. The final sample used in the analysis was 41 responses 
made up of 24 commercial operators, 11 queen breeders and 6 hobbyists.  
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Results from the combined dataset of all 3 beekeepers demographics showed a strong preference 
for varroa mite resistance and workability, two traits primarily associated with operational costs 
(e.g. mite treatments, labour), as well as honey yield, which was stated to be the source of at least 
50% of income for all beekeepers. Defensive behaviour against wasps and other intruders, and body 
colour were found to be the least preferred traits (Figure 1, left). 

While the general trend seen in the whole dataset was also found in the preferences of 
commercial beekeepers only (Figure 1, right), the ranking of honey yield was significantly higher 
among commercial beekeepers, while body colour was considered irrelevant. 

  
Figure 1. Ranking of trait preferences for all respondents compared to commercial beekeepers 
Boxplots represent mean (blue), median (solid lines), first and third quartiles (contained in the boxes), and outliers (open 
points) of the distribution of the ranks of each trait improvement. Order of preferences for trait improvements is from most 
preferred (left) to least preferred (right). Different letters indicate significant (P-value<0.05) differences between the traits. 
 

PCA revealed underlying patterns in the trait preferences, the most surprising of which was that 
although varroa mite resistance ranked highly in the results overall, the preference for mite 
resistance showed a high level of variation within the principal component (Figure 2, left). Honey 
yield in contrast was found to have almost no variation, due to having been given high emphasis by 
all respondents. Further analysis of the trait preferences showed the existence of heterogeneity even 
among players in the same value chain i.e. commercial operator, where 3 clusters spearheaded by 
queen longevity, varroa mite resistance and winter survival respectively could be identified (data 
not shown).   

 
Figure 2. Patterns of trait preferences in varying respondent groups 
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One of the questions central to both commercial beekeepers who purchase queens from breeders 
and queen breeders themselves is whether queen breeder selection goals match the perceived needs 
in the industry. Comparing the patterns of preferences for all respondents with commercial 
beekeepers and queen breeders (Figure 2) reveals that this might not always be the case, since queen 
breeders more consistently put emphasis on mite resistance and traits that are low priority for 
commercial beekeepers, such as body colour, while showing variation in their emphasis on honey 
yield. Honey yield only placed fifth overall out of the 9 traits in the preferences of queen breeders 
(data not shown), indicating that they are either not able to observe honey production due to the 
constant “interference” with hives that is required during the queen rearing process, or that they do 
not consider honey yield a trait that can primarily be manipulated by selection. 

An obvious limitation of this study is the number of responses from beekeepers, which limits its 
ability to identify e.g. clusters of preferences that could form the basis of different selection indices. 
However, representation of certain industry groups is strong; New Zealand currently has around a 
dozen specialised queen breeders out of which 11 responded to the survey or were interviewed. 
Within the group of 24 commercial operators, 10 fell into the range of >3,000 hives or “mega 
commercial” operators, representing 20.5% of these businesses which currently manage around 50% 
of the country’s honeybee population (New Zealand Ministry for Primary Industries 2020). 

Based on these rates of representation, our results can be considered meaningful despite their 
small sample size. 
 
CONCLUSIONS 

The presented study showed that there is considerable heterogeneity in the trait preferences of 
different groups within the beekeeping industry, but that surveys present a valuable tool in ranking 
traits with no direct monetary value attached to them (such as bee behaviour traits) to allow scaling 
them to production traits (e.g. honey yield) with a set value or to potentially verify a calculated value 
based on a set of vague assumptions against their perceived value based on ranking. 
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SUMMARY 
The direct effect of the Booroola gene, Fec B, on ewe reproduction rates and ewe productivity 

traits has been evaluated in a typical Border Leicester x Merino prime lamb production system. The 
ovulation rate and prolificacy of the Border Leicester x Booroola Fec Bb+ ewes were significantly 
higher than those of traditional Border Leicester x Merino ewes. This advantage was offset by 
significantly lower lamb rearing ability with the result that there was no advantage in terms of lambs 
weaned/ewe joined or in $ returned/ewe joined. Targeted supplementary management strategies 
(ultra-sound scanning, supplementary feeding) appear to show promise in realising the gains from 
the increased prolificacy.  

 
INTRODUCTION 

In a previous report (Bindon and Piper 1990), the role of the Booroola Merino in the Australian 
prime lamb industry was evaluated in a series of experiments conducted at the Armidale, NSW, 
CSIRO research stations, Longford and Arding during the period 1982-1992. Bindon and Piper 
(1990) reported results from a seven-year period (1982-1988) of a typical autumn joining system 
where Border Leicester x Booroola (BLxB) or Border Leicester x Merino (BLxM) ewes were joined 
with Suffolk, Polled Dorset or SIROMT (Bindon et al. 1984) rams. Over that period, (Bindon and 
Piper 1990, Table 7), the BLxB ewes “ had a 56% higher ovulation rate, a 43% higher prolificacy 
(lambs born per ewe lambing, LB/EL), a 22 % lower lamb survival (lambs weaned per lamb born, 
LW/LB) and a 15 % higher lambs weaned per ewe joined (LW/EJ) than the BLxM ewes, This 
resulted in an advantage of 7 % in revenue returned per ewe joined in favour of the BLxB ewes)”. 

In the Bindon and Piper (1990) study, the BLxB ewes were generated by crossing Border 
Leicester rams with Booroola Merino ewes maintained in an auxiliary flock independent of the main 
Booroola Merino breeding flock. This flock contained a mixture of the three Fec B genotypes (bb; 
b+; ++) and the resulting BLxB ewes were therefore also a mixture of Fec B genotypes (b+; ++). As 
a result, the effect of the Booroola gene, Fec B, on productivity in the Border Leicester x Merino 
prime lamb production system, was not clearly established. 

This paper extends the scope of the original study by reporting new analyses on the estimated 
direct effect of the Booroola gene, Fec B, on ewe reproduction rate and productivity in a typical 
autumn joined Border Leicester x Merino prime lamb production system.  

 
MATERIALS AND METHODS 

Sheep. The ewes in this study were generated by joining Border Leicester rams with Booroola 
Merino or Control Merino ewes each year from 1976 to until 1990 except for 1981. The CSIRO 
Booroola Merino and the randomly bred Control Merino flocks have been described in detail 
elsewhere (Turner 1978; Piper and Bindon 1982). In all, 2243 records from 560-587 (depending on 
the trait being analysed) Border Leicester x ewes comprised the data analysed in this study. Over 
the period of the study (1982-1992) the ewes were joined with rams from the Suffolk, Poll Dorset 
or SIROMT (synthetic line derived from crosses of the Dorset Horn, Corriedale and Cheviot) breeds. 
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Traits Measured. For each of the ewes in each of the lambing years (1982-1992) the traits 
recorded were: Ovulation Rate (OR, assessed by laparoscopy), Fertility (ewes lambing/ewe joined, 
FERT), Prolificacy (or litter size, lambs born/ewe lambing, LS), Ewe Rearing Ability (lambs 
weaned/lamb born, ERA), Reproduction Rate (no. lambs weaned/ewe joined, NLW) and three ewe 
productivity traits, Lambs Sold/ewe joined (LSO/EJ), Lamb Weight Sold/ewe joined (LWS/EJ) and 
Revenue Returned/ewe joined ($ ret/EJ). The management of the ewe flocks and the reproduction 
rate and productivity traits observed have been described by Bindon et al. (1984). 

Statistical Methods. For the analyses to estimate ewe genotype at the Fec B locus, the lifetime 
prolificacy and ovulation rate records of the BLxB (B) ewes and of their Booroola Merino dams, 
were analysed using segregation analysis methodology developed by Elsen et al. (1988) and by 
Foulley and Elsen (1988). The software returns a probability that each of the B ewes is either b+ or 
++. The data set analysed comprised 2243 records (1181 records from BLxC (C)) ewes and 1062 
records from B (b+, ++) ewes with probabilities of being b+ (631 records) or ++ (431 records)) 
ranging between 0.9 and 1.  

The reproduction traits were analysed using repeated record, mixed linear models adjusting for 
fixed effects using ASReml (Gilmour et. al. 2014). The model employed was: 

y ~ mu + ewe type i + ewe age j + lambing year k + sire breed of lamb l + ewe im + within ewe imp 
Ewe type (B b+, B ++, C) ewe age (2-7), lambing year (1982-1992) and Ram type (sire breed of 

lamb - Suffolk, Poll Dorset, SIROMT) were fitted as fixed effects while the between ewe effects 
(ewe im ) were fitted as random effects. 
 
RESULTS 

The means and standard errors (se) for the ewe reproduction and ewe productivity traits are given 
in Table 1. For the reproduction traits, and by comparison with the C ewes, the B ewes had 47% 
higher OR (P<0.001), 5% lower FERT (P=0.047), 35% higher LS (P<0.001), 16% lower ERA 
(P<0.001) and 2% lower NLW (n.s.). For the same reproduction traits, and by comparison with the 
++ ewes, the b+ ewes had 100% higher OR (P<0.001), 11% lower FERT (P<0.001), 68% higher LS 
(P<0.001), 31% lower ERA (P<0.001) and 3% lower NLW (n.s.). 

 
Table 1. Reproduction trait and ewe productivity trait means for the Border Leicester x 
Control (C), BorderLeicester x Booroola (B) and for the B++ and Bb+ ewes 
  

Trait No. ewes C B  ++    b+ 
OR 584 2.09 ± 0.04 3.08 ± 0.04 2.04 ± 0.06 4.07 ± 0.05 
FERT (EL/EJ) 587 0.82 ± 0.02 0.78 ± 0.02 0.83 ± 0.02 0.74 ± 0.02 
LS (LB/EL) 560 1.72 ± 0.04 2.33 ± 0.04 1.74 ± 0.05 2.93 ± 0.05 
ERA (LW/LB) 560 0.85 ± 0.02 0.71 ± 0.02 0.83 ± 0.02 0.57 ± 0.02 
NLW (LW/EJ) 587 1.16 ± 0.05 1.14 ± 0.04 1.15 ± 0.06 1.12 ± 0.05 
Lambs sold/EJ (LSO/EJ) 587 1.13 ± 0.05 1.09 ± 0.04 1.12 ± 0.06 1.06 ± 0.05 
Lamb weight sold (LWS/EJ) 587 37.85 ± 1.49 35.51 ± 1.37 36.81 ± 1.97 33.17 ± 1.74 
Revenue ($ ret/EJ) 587 22.2 ± 1.23 21.75 ± 0.87 23.1 ± 0.94 20.4 ± 1.09 

 
For the Ewe productivity traits, and by comparison with the C ewes, the B ewes had 4% lower 

LSO/EJ (n.s.), 6% lower LWS/EJ (n.s.) and 2% lower $ ret/EJ (n.s.) For the same Ewe Productivity 
traits, and by comparison with the B++ ewes, the Bb+ ewes had 5% lower LSO/EJ (n.s.), 10% lower 
LWS/EJ (P=0.007) and 12% lower $ ret/EJ (P=0.011). 

 
The analyses of variance for the ewe reproduction and productivity traits are given in Table 2. 
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Table 2. Probabilities from the Analyses of variance of the ewe reproduction and productivity 
traits. 

Source Mu B v C      ++ v b+ Lambing 
Year 

Ewe 
Age 

Ram 
Type 

df 1 1 1 10 6 2 
OR <0.001 <0.001 <0.001 <0.001 <0.001 0.904 
FERT (EL/EJ) <0.001 0.047 <0.001 <0.001 0.002 <0.001 

      LS (LB/EL) <0.001 <0.001 <0.001 0.015 <0.001 0.687 
ERA (LW/LB) <0.001 <0.001 <0.001 <0.001 0.059 0.627 
NLW (LW/EJ) <0.001 0.907 0.606 <0.001 <0.001 0.024 

       LSO (LSO/EJ) <0.001 0.677 0.204 <0.001 <0.001 0.022 
LWS (LWS/EJ) <0.001 0.495 0.007 <0.001 <0.001 0.050 
$ ret/EJ ($/EJ) <0.001 0.704 0.011 <0.001 <0.001 0.118 

 
For the fixed effects in the model, the differences between lambing years and between ewe ages 

were almost always significant. The effect of Ram Type varied and was not significant for OR, LS, 
ERA, or $ ret/EJ. There were significant differences between Ram Types for FERT (P<0.001), NLW 
(P=0.024), LSO (P=0.022) and for LWS (P=0.05). 

 
DISCUSSION 

At the time of this experiment, genotyping at the Fec B locus was not available because the 
causative mutation on the Bmpr1b gene was not discovered until about 10 years later (Souza et al. 
2001; Wilson et al. 2001; Mulsant et al. 2001) and no blood samples were preserved. Utilisation of 
the segregation analysis software developed by Elsen et al. (1988) and Foulley and Elsen (1988) 
was therefore needed to estimate Fec B genotype, and to estimate the direct effect of the Fec B gene 
on reproduction rate and ewe productivity in a typical Border Leicester x Merino prime lamb 
production system.  

The analyses reported above demonstrate that the increased ovulation rate and litter size of the 
B ewes is a direct effect of the Fec B gene. However, the lower fertility and ewe rearing ability of 
the B b+ ewes compared with the C ewes results in there being no advantage to the B ewes in NLW 
or any of the ewe productivity traits. These results agree with those of Southey et al. (2001) who 
reported that Merino–Rambouillet crossbred ewes introgressed with the Fec B allele do not produce 
more total weight of lamb at 30, 60 or 120 days postpartum than purebred Rambouillet ewes in spite 
of their higher reproductive performances.  

These results contrast with those from Bindon et al. (1984) where the BLxB ewes had 21% 
higher NLW (LW/EJ) and 18% higher $ ret/EJ than the BLxC ewes. They also contrast with the 
results reported by Bindon and Piper (1990) where the BLxB ewes had 15% higher NLW (LW/EJ 
and 7% higher $ ret/EJ then the BLxC ewes. It is not clear why the results of the present analyses 
differ from those obtained from the smaller and earlier sub-sets of the data analysed by Bindon et 
al. (1984) and by Bindon and Piper (1990). These results also contrast with results from studies of 
the productivity of heterozygous Booroola Merino d'Arles ewes (MAb+) which is higher than that 
of the MA++ and pure-breed Merinos d'Arles (MA) under the pastoral management of the Merinos 
d'Arles breed in south-eastern France. The weight of 70-day lamb produced per ewe joined increased 
by 41% compared to non-carrier MA++ and MA, despite a lower lamb body weight at 70 days 
(Teyssier et al. 1998).  

However, lower ERA is the main contributor to the lack of difference between the B and the C 
ewes in NLW, and a study by Hinch et al. (1996) demonstrates that ERA can be significantly 
improved (from 58% to 73%) by a combination of targeted supplementary feeding and pregnancy 
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scanning strategies. These results suggest that optimum utilisation of the Fec B gene in prime lamb 
production systems will require additional management inputs to capitalise on the increased LS of 
ewes carrying one copy of the Fec B gene. 

The lack of difference between the C and the ++ ewes in all of the ewe reproduction and 
productivity traits is perhaps surprising given that the CSIRO Booroola Merino flock was under 
continuous selection for increased reproduction rate from 1965 to 1990. However, this outcome may 
have been a consequence of the selection process focussing on recruiting Fec B genotypes (bb and 
b+) resulting in the development of a negative linkage disequilibrium between the Fec B locus and 
reproduction trait genes of small effect. In these situations, the polygenic values are negatively 
selected (e.g. Gibson 1994). 

Utilisation of the Fec B gene in prime lamb production systems has been facilitated by the 
transfer of the Fec B gene into the Border Leicester breed creating a new sheep breed named the 
Booroola Leicester (Bindon et al. 1997). Rams homozygous for Fec B can be utilised to create 
BLxMerino ewes heterozygous for Fec B with prolificacy (LB/EL) 20-40 % higher than traditional 
BLxM ewes. And, as outlined above, the increased prolificacy, may be converted into increased $ 
ret/EJ by appropriate additional management inputs. 

 
REFERENCES 
Bindon B.M. and Piper L.R. (1990) The role of the Booroola Merino in the Australian prime lamb 

industry. Armidale, NSW: CSIRO Division of Animal Production; 1990.  
Bindon B.M., Nethery R. D. and Piper L.R. (1997) Final report Meat Research Corporation Project 

CS.141. Armidale, NSW: CSIRO Division of Animal Production; 1997.  
Bindon B.M., Piper L.R. and Ch’ang T.S. (1984) In “Reproduction in Sheep”, AWC Tech. 

Publication (1984) Proc. of Conference, Lorne, Victoria. Eds. D.R. Lindsay and D. T Pearce. 
Elsen J.M., Vu Tien Khang J. and Le Roy P. (1988) Génét. Sél. Evol., 20: 211. 
Foulley J.L. and Elsen J.M. (1988). Génét. Sél. Evol., 20: 227. 
Gilmour A. R., Gogel B. J., Cullis B. R., Welham S. J. and Thompson R. (2014) ASReml User 

Guide Release 4.1 Functional Specification. VSN International Ltd, Hemel Hempstead, HP1 
1ES, UK. 

Gibson J. (1994) In Proc. 5th WCGALP: 7-12 August 1994. Guelph:1994 
Hinch G.N., Lynch J.J., Nolan J.V., Leng R.A., Bindon B.M. and Piper L.R. (1996) Aust. J Exp. 

Agric., 36: 129. 
Mulsant P., Lecerf F., Fabre S., Schibler L., Monget P., Lanneluc I., Pisselet C., Riquet J., Monniaux 

D., Callebaut I., Cribiu E., Thimonier J.,Teyssier J., Bodin L., Cognie Y., Elsen J.M., (2001) 
Proc. Natl. Acad. Sci. U.S.A., 98: 5104. 

Piper L.R. and Bindon B. M. (1982) In L.R. Piper, B.M. Bindon and Nethery, R.D. (eds). The 
Booroola Merino, CSIRO, Melbourne, 9-19. 

Southey B.R., Thomas E.R., Gottfredson R.G. and Zelinsky R.D. (2001) Livest. Prod. Sci. 75: 33. 
Souza C.J., MacDougall C., Campbell B. K., McNeilly A.S. and Baird D.T. (2001) J. Endocrinol 

169: R1. 
Teyssier J., Elsen J.M., Bodin L., Bosc P., Lefevre C. and Thimonier J. (1998) In: Proc. VI World 

Congress on Genetics Applied to Livestock Production, Armidale, pp. 117–120, Vol. 24. 
Turner H.N. (1978) Aust. J Agric. Res.,29: 327. 
Wilson T., Wu X.Y., Juengel J.L., et al. (2001) Biol. Reprod., 64: 1225. 



Contributed paper 

300 

MULTIBREED GENOMIC PREDICTION FOR MALE FERTILITY IN TROPICAL 
BEEF CATTLE 

 
L.R. Porto-Neto1, J. Bertram2, S. McWilliam1, M.R.S. Fortes3, P. Alexandre1, M.R. 

McGowan4, B.J. Hayes5 and A. Reverter1 
 

1 CSIRO Agriculture & Food, St Lucia, QLD 4067 Australia 
2 Agriculture Consultant, Livestock management and breeding, Toowoomba QLD 4350 Australia 
3 The University of Queensland, School of Chemistry and Molecular Bioscience, St Lucia, QLD 

4072 Australia 
4 The University of Queensland, School of Veterinary Sciences, St Lucia, QLD 4343 Australia 
5 The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St 

Lucia, QLD 4072 Australia 
 

SUMMARY 
Regardless of the mating method (natural or artificial insemination), bull fertility impacts the 

reproductive outcomes of any breeding herd. There is a need to improve our ability to genetically 
select fertile bulls, and genomic selection approaches could assist this process. Aiming at this gap 
in genomic approaches, we collected phenotypes and SNP genotypes on more than 6,000 bulls 
across six tropically-adapted breeds. Phenotypes related to male fertility were measured during Bull 
Breeding Soundness Examinations. The genomic correlations of the same trait observed in different 
breeds were positive for scrotal circumference and sheath score in most breed comparisons but close 
to zero for percentage normal sperm, suggesting a divergent genetic background for this trait. We 
confirmed the importance of breeds being part of the reference population while estimating breeding 
values in an across-breed scenario. Using this dataset, multibreed genomic predictions were obtained 
with useful accuracies. 

 
INTRODUCTION 

Fertility is a key driver of profitability for beef breeding herds in tropical and semi-arid 
environments. The standardized bull breeding soundness examination (BBSE) involves a general 
physical examination, a detailed examination of the external and internal genitalia, and a 
microscopic examination of semen cells (Entwistle and Fordyce 2003). Quantitative traits of the 
BBSE are heritable (Corbet et al. 2013) and can be improved by selection. However, the BBSE is 
labor intensive resulting in a limited number of animals being tested every year, which hinders the 
assembly of a reference population. By combining information across breeds, we were able to 
generate a reference population of reasonable size (>6,000 animals,) and we postulate that the use 
of multibreed genomic selection approaches could allow the estimation of breeding values with 
useful accuracy to assist the improvement of commercially relevant male traits.  

 
MATERIALS AND METHODS 

Animals and phenotypes. Phenotypic data was sourced on bulls from six different populations 
varying in number from 535 to 1,093 (Table 1). These were Brahman (BB) and Tropical Composite 
(TR) from the Beef CRC (Barwick et al. 2009), and cattle from four performance recorded breeding 
herds in Queensland, a Santa Gertrudis (SG), a Droughtmaster (DM), a Belmont Tropical Composite 
(BT) and an Ultra Black (UB) herd. The observed phenotypes included scrotal circumference (SC, 
cm), sheath score (Sheath, score 1-5), and the percentage of morphologically normal spermatozoa 
(PNS, %). The age at which the phenotype was observed varied across the populations; for the CRC 
cattle, the mean age at SC was around 360 d, and for Sheath and PNS around 700 d. For SG and 
DM all phenotypes were observed at around 600 d of age, while for UB and BT were around 440 d 
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and 390 d, respectively. 
Genotypes. Most animals were genotyped using a commercial SNP chip with ~50K markers. 

Genotypes were imputed to ~720K SNP using a reference population that combined Beef CRC and 
industry cattle genotyped on the higher density platform. Genotypes were first phased using Eagle 
(Loh et al. 2016) and then imputed using Minimac3 (autosomes) or Minimac4  (BTAX) (Das et al. 
2016). SNP with imputation r2 > 0.8 were kept for further analyses. To visualise the genetic 
relationship between animals a principal components analyses were calculated using PLINK1.9 
(Chang et al. 2015).  
 
Table 1. Number of records and descriptive statistics of the observed traits* 

 
  Number of records Mean (SD) of measurements 
Population** SC Sheath PNS SC Sheath PNS 

BB  1,089 1,093 947 21.26 (2.69) 3.79 (0.92) 73.70 (21.95) 
TR  985 985 985 26.55 (3.17) 3.12 (1.54) 73.01 (20.59) 
SG 918 928 896 34.46 (3.10) 2.95 (0.78) 73.28 (21.57) 
DM 568 722 680 33.68 (3.13) 3.14 (0.68) 63.55 (26.28) 
UB 836 841 771 33.80 (3.38) 1.78 (0.80) 68.77 (25.30) 
BT 527 535 429 28.11 (3.29) 1.64 (0.59) 54.65 (29.70) 

* SC scrotal circumference (cm), Sheath score (1-5), PNS percentage of normal sperm (%). 
** BB Brahman, TR Tropical Composite, SG Santa Gertrudis, DM Droughtmaster, UB Ultra Black, BT 
Belmont Tropical Composite. 

 
Statistical analyses. The phenotypes were adjusted using SAS 9.4 (www.sas.com) before the 

genomic analyses. The model for adjustment included the fixed effects of population (one per farm), 
year of birth and management group (within farm). The covariates of age and the first two principal 
components were also used. The genomic relationship matrices (GRM) were constructed following 
method 1 of VanRaden et al. (2008). Univariate, and the GBLUP analyses were run using QXPAK 
(Perez-Enciso and Misztal 2011).(Porto-Neto et al. 2015) The accuracies of the genomic predictions 
were calculated as the correlation of adjusted phenotypes divided by the square root of heritability 
and by the method LR (Legarra and Reverter 2019) that compares the predictions based on the whole 
and partial datasets to estimate accuracies and biases. 

 
RESULTS AND DISCUSSION 

The estimates of heritability for SC, Sheath and PNS across-breeds were moderate, with mean 
heritabilities, estimated using across-breed bivariate models, of 0.45, 0.59, and 0.33, respectively. 
These were at the lower end of the reported estimates for SC, but similar to values reported in the 
literature for the other traits (Corbet et al. 2013; Fortes et al. 2020). The mean genomic correlation 
between these traits calculated using the same across-breed bivariate analyses were close to zero, 
apart from a modest 0.11 between SC and Sheath (results not shown in Tables). 

Using bivariate models, we also estimated the genomic correlation of the same trait observed in 
different breeds. The mean correlation estimate for all pair-wise combinations of populations were 
0.34, 0.40 and 0.00 for SC, Sheath and PNS, respectively (Table 2). There is very low genomic 
correlation between all pair-wise combinations for PNS, suggesting different genetic architecture of 
the trait in the different breeds, except for BB and TR with a moderate -0.30. For SC, the relative 
lower genomic correlation between BB and the other breeds suggests that this trait is more 
genetically different when comparing BB to other breeds. The strong genomic correlations between 
breeds for SC and for Sheath might hint at the presence of common haplotypes affecting the traits 
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in both populations.    
 
Table 2. Genomic correlation for a given trait in two separate populations*, ** 

  
Pop 1 Pop 2 SC Sheath PNS 

BB  TR  0.2694 0.7217 -0.3052 
BB  SG 0.1248 0.5781 0.0133 
BB  DM 0.1619 0.5123 0.0289 
BB  UB 0.1036 0.5498 -0.0191 
BB  BT 0.0151 0.2347 -0.0124 
TR  SG 0.5370 0.4773 -0.0017 
TR  DM 0.6504 0.4785 -0.0024 
TR  UB 0.5445 0.7920 0.0431 
TR  BT 0.4803 0.2636 0.1332 
SG DM 0.8174 0.0303 -0.0003 
SG UB 0.5693 0.7512 -0.0093 
SG BT 0.0627 0.0301 0.0209 
DM UB 0.2470 0.2925 0.0006 
DM BT 0.0263 -0.0051 0.0038 

UB BT 0.5031 0.2610 0.0126 
Mean 0.3408 0.3979 -0.0063 

* Analyses performed using a bi-population GRM (ie. for the two populations under comparison). ** 
Traits and populations as described in Table 1. 

 
GEBV accuracy estimates for a breed, when the breed was not represented in the reference, were 

lower than those when some animals of the breed were included in the reference (comparison 
between scheme 1 vs 2, Table 3), with the largest impact on BB. This observation was expected 
given the known relationship between accuracy and genetic distance to the reference population for 
a given test animal (de Roos et al. 2009). Moreover, BB is the most divergent breed among the six 
populations, even though it was used during the formation of some of the other breeds.  
 
CONCLUSIONS 

There are some genomic correlations between the same trait observed in different breeds, 
implying there exists at least some similarities in the genetic background across breeds; however, 
this was not observed across all traits. We confirmed that higher accuracies are obtained by including 
the targeted breed in the reference population. Finally, it was possible to estimate GEBVs with useful 
accuracies, for fertility-related traits in bulls, in a multibreed scenario. This approach could be 
further developed in the future, aiming at a broader adoption of the technology by the industry.  
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Table 3. Multibreed genomic prediction accuracies calculated using the method LR** 
 

Population SC Sheath PNS Mean 
Scheme #1: From a given population, all records missing in the reference 

BB 0.217 0.217 0.217 0.217 
TR 0.479 0.696 0.211 0.462 
SG 0.367 0.366 0.233 0.322 
DM 0.497 0.358 0.251 0.368 
UB 0.381 0.512 0.176 0.356 
BT 0.263 0.323 0.227 0.271 

Mean 0.367 0.412 0.219  

Scheme #2: From a given population, a random 20% records missing in the reference (mean 
across five 80/20 cross-validation splits) 

BB 0.513 0.399 0.319 0.410 
TR 0.648 0.812 0.402 0.621 
SG 0.501 0.412 0.341 0.418 
DM 0.593 0.402 0.473 0.489 
UB 0.629 0.573 0.406 0.536 
BT 0.610 0.343 0.510 0.488 

Mean 0.582 0.490 0.408  

* Traits and populations as described in Table 1. ** Legarra, and Reverter (2019) 
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SUMMARY 

Identifying causal variants in the bovine genome is difficult as there are millions of variants. 
Work in humans shows that most variants affecting complex traits lie in non-coding functional 
regions. However, functional regions are generally species specific and not well annotated in non-
model organisms. This project annotated functional regions directly in dairy cows using a laboratory 
technique called ChIP-seq (Chromatin Immunoprecipitation followed by sequencing). 

We generated 86 functional datasets across 6 tissues from 3 lactating Holstein dairy cows. This 
represents millions of putative functional regions in the bovine genome including, for the first time, 
in the mammary gland of lactating dairy cows. These regions were highly enriched for putative 
causal variants (eg milk trait QTL and eQTL). The results represent the largest database of functional 
regions in the bovine genome to date and can be used to narrow the search space for causal variants 
and improve genomic predictions. 

 
INTRODUCTION 

Genomic prediction aims to predict the phenotypes of animals based on their genotypes. It does 
this by finding genotypes which associate with the phenotype in a training population. However, 
this association could be based on linkage disequilibrium (LD) and not a direct causal relationship 
between the trait and the genotype. This means the accuracy of genomic predictions can break down 
over time as LD breaks down and is not useful in breeds which have different LD to the training 
population. If we could use the genetic variant which is directly affecting the phenotype (the causal 
variant) in our predictions, this would not occur (Hayes et al. 2016).  

Work in other species has found that causal variants are enriched in functional regions (Schaub 
et al. 2012). Until recently, these were not well annotated in the bovine genome (Fang et al. 2019). 
Functional regions can be identified with Chromatin Immunoprecipitation followed by sequencing 
(ChIP-seq) to identify functional marks which pinpoint these regions in the genome. Examples of 
functional marks include histone modifications and transcription factors. Histone modifications are 
alterations to the histone proteins which DNA is wrapped around in the cell. Four histone 
modifications of interest are H3K4Me3-found at promoters, H3K4Me1-found at enhancers, 
H3K27ac-found in active regions and H3K27Me3-found in inactive regions (Kimura 2013). 
Another marker of interest is the binding site for the transcription factor CTCF which is found at 
insulators and other regions of importance (Kim et al. 2015). This study annotated these functional 
markers in 6 tissues (mammary, liver, kidney, spleen, lung and heart) in Holstein dairy cows and 
tested whether these regions are enriched for causal variants.  

 
MATERIALS AND METHODS 

Chromatin Immunoprecipitation and Sequencing. Heart, kidney, liver, lung, mammary 
gland, and spleen were sampled from 3 Holstein dairy cows post-mortem and snap frozen in liquid 
nitrogen before being stored at -80°C until use. At sampling animals were at 5th, 7th, and 1st parity 
and 208, 173 and 65 days of lactation respectively. Ethics approval for 2 of the cows were obtained 
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from Department of Jobs, Precincts and Regions Ethics Committee (Application No. 2014-23). The 
3rd cow was not euthanised for this study but culled as a result of injury. Frozen tissue was ground 
for 3 minutes in the Geno/Grinder (SPEX SamplePrep) and fixed for 10 minutes with 10% 
formaldehyde. Chromatin was prepared using the Magnify Chromatin Immunoprecipitation kit 
(ThermoFisher) as per the manufacturer’s instructions. Fixed chromatin was sheared to 200-500bp 
using the Covaris S2 (Covaris) for three minutes, duty cycle five, % intensity four and 200 cycles 
per burst. Chromatin immunoprecipitation was performed using the Magnify Chromatin 
immunoprecipitation kit (ThermoFisher) with some modifications. Sheared chromatin was 
immunoprecipitated with 0.25-0.5µg of antibody for the histone modifications (H3K4Me3, 
H3k4Me1, H3K27ac and H3K27Me3) or 10µl of antibody for CTCF. Sequence libraries were 
prepared for each ChIP sample and a control for each chromatin preparation (input sample) using 
the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs) as per the 
manufacturer’s instructions and run on the Hiseq 3000 (Illumina) in a 150 cycle paired end run. Each 
library was sequenced with 20-300 million reads. Raw sequence reads were trimmed of adapters 
and poor-quality bases at the ends (quality less than 20) using Trimmomatic (Bolger et al. 2014). 
Trimmed reads with length less than 50 were removed. Trimmed reads were mapped to UMD3.1 
bovine genome using BWA mem with default settings (Li 2013). Poor-quality reads with q>15 were 
removed with Samtools (Li et al. 2009) and marked duplicate reads were also removed. MACS2 
with default settings was used to call peaks from mapped ChIP reads with input reads as control 
(Zhang et al. 2008). The quality of peaks was checked with deepTools plotFingerprint (Ramirez et 
al. 2016) and SPP (Kharchenko et al. 2008). 

Enrichment of Causal SNP in Functional Regions. Enrichment of putative causal SNP in 
functional regions was calculated using the formula described in (Ernst & Kellis 2010) as outlined 
below. A variety of SNP datasets were used as putative causal SNP (Table 1). Statistical significance 
of enrichment or depletion was calculated in R using a hypergeometric test. 

Enrichment=(C/A)/(B/D) where: 
A= number of positions under peaks 
B=number of positions under peaks and also a putative causal SNP 
C=number of positions that were putative causal SNP 
D=number of positions in the genome 

 
RESULTS AND DISCUSSION 

In total we sequenced 86 ChIP-seq samples, with three biological replicates in 6 tissues assayed 
for 5 marks (four samples were excluded due to low quality). There was an average of 480,000 peaks 
per sample covering an average of 13% of the genome. All samples were high quality. These data 
represent millions of putative functional regions in the bovine genome.  

Peaks were significantly enriched for putative causal variants (P<0.001) as expected (Table 2). 
The QTL for milk traits were particularly strongly enriched within peaks and particularly enriched 
within peaks found in the mammary gland (Figure 1). This is consistent with studies in other species 
which show that trait QTL are particularly enriched within histone markers specific to tissues 
relevant to the trait (Trynka et al. 2013). The 80k SNP dataset was the least enriched although these 
were still significantly enriched within peaks. It is possible that this is because these SNPs are 
contributing to multiple traits which may not be relevant to the tissues represented in this study. 
 
CONCLUSION 

This work substantially increases the number of putative functional regions found in different 
tissues in the bovine genome, including the mammary gland of lactating dairy cows. As seen in other 
species, these regions are substantially enriched for putative causal variants for important traits 
suggesting SNP within these regions should be prioritised for genomic selection. 
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Table 1. Details of putative causal SNP tested for enrichment within functional regions 
 

Dataset Number 
of SNP 

Description Reference 

Allele specific 
eQTL 1,100,446 

Allele specific expression QTL from white blood 
cells and milk cells in 112 holstein cows (P<1e-4) 

(Chamberlain et al. 
2018)  

Exon eQTL 945,832 
Exon expression QTL from white blood cells, milk 
cells, liver and muscle in 209 holstein cows (P<1e-4)  

(Xiang et al. 2018, 
Xiang et al. 2019)  

Gene eQTL 110,200 
Gene expression QTL from white blood cells, milk 
cells, liver and muscle in 209 holstein cows (P<1e-4) 

(Xiang et al. 2018, 
Xiang et al. 2019)  

Conserved 
regions 378,472 

SNP conserved in 100 species lifted over from human 
to bovine genome 

(Xiang et al 2019) 

SNP 80k 83,454 
Top 80,000 sequence variants ranked for their 
contributions to 34 traits 

(Xiang et al. 2021) 

Splice QTL 1,112,324 
Splice QTL from blood, milk cells, liver and muscle 
in 209 holstein cows (P<1e-4) 

(Xiang et al. 2018, 
Xiang et al. 2019) 

QTL Protein 
Yield 3,317 

GWAS in 32347 cows for protein yield with P<1e-7 (Xiang et al. 2020)  

QTL Fat yield 4,815 GWAS in 32347 cows for fat yield with P<1e-7 Xiang et al. 2020)  

QTL Milk 
Yield 6,883 

GWAS in 32347 cows for milk yield with P<1e-7 Xiang et al. 2020)  

QTL Fat 
percentage 12,373 

GWAS in 32347 cows for fat percentage with P<1e-7 Xiang et al. 2020)  

QTL Protein 
percentage 17,012 

GWAS in 32347 cows for protein percentage with 
P<1e-7 

Xiang et al. 2020)  

 

Figure 1. Enrichment of 3 sets of milk trait QTL within H3K27ac peaks. Peaks in mammary 
gland have the highest enrichment for these milk trait QTL 
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Table 2. Enrichment of causal SNP in ChIP-seq peaks. Enrichment of each SNP dataset 
within each histone modification or CTCF averaged across tissues  
 

 H3K4Me3 H3K27ac CTCF H3K4Me1 H3K27Me3 

Allele specific eQTL 1.86 1.96 1.93 1.76 1.69 

Exon eQTL 1.68 2.21 1.73 1.61 1.33 

Gene eQTL 2.24 2.37 2.27 1.97 1.82 

Conserved regions 1.66 1.46 1.42 1.21 1.14 

SNP 80k 1.20 1.16 1.18 1.16 1.15 

Splice QTL 1.70 1.77 1.75 1.63 1.58 

QTL Protein Yield 4.46 4.27 4.06 3.21 2.93 

QTL Fat yield 3.72 3.46 3.43 2.82 2.60 

QTL Milk Yield 3.09 2.79 2.85 2.35 2.24 

QTL Fat percentage 2.78 2.51 2.58 2.19 2.16 

QTL Protein percentage 1.85 1.91 1.80 1.58 1.40 
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SUMMARY 

Angus Australia, in collaboration with the Commonwealth Scientific and Industrial Research 
Organisation (CSIRO), have developed new genomic tools for early life evaluation of commercial 
straightbred Angus heifers and steers. To aid producers to make optimal multi-trait selection 
decisions, two new commercial economic indexes have been developed. These indexes are based 
on economic value models for core GEBVs calculated with the new genomic products.  

The heifer index is designed to aid selection of replacement heifers in commercial herds and is 
based on costs and revenues from cows and their offspring in Australian short/mid-fed and long-fed 
production systems. This index contains maternal (birth weight, weaning weight, milk, mature cow 
weight) and terminal (post-wean growth, feedlot growth and intake, rib fat and marbling) traits. Non-
linear functions are applied to value birth weight as it relates to calving ease, milk, and marbling. 
This index should identify more efficient heifers with genetic potential to produce progeny with 
improved post-wean growth, feed efficiency and carcase merit. 

The long-fed steer index is designed to identify steers best suited to Australian long-fed 
production systems. This index focuses on feedlot growth and intake, and carcase traits rib fat and 
marbling. This index should identify efficient steers with high marbling.  

 
INTRODUCTION 

Angus Australia, in collaboration with the Commonwealth Scientific and Industrial Research 
Organisation, have developed new genomic products to evaluate commercial straightbred Angus 
beef heifers and steers. The products include GEBVs for birth weight (BW), weaning weight (WW), 
yearling weight (YW), mature cow weight (MCW), milk, average daily gain (ADG), dry matter 
intake (DMI), carcase weight (CWT), eye muscle area (EMA), MSA marbling (MSA), rib fat (RIB), 
ossification, antibody, cell-mediated antibody and ImmuneDEX (Hine et al. 2021 submitted). These 
evaluations are designed to aid producers to make early life selection and management decisions on 
commercial animals. 

For commercial cow herds, a major decision is selection of heifer calves to be retained as 
replacements. A commercial heifer selection index was needed to identify heifers with genetic 
potential for maternal traits they (and possibly their daughters) will express, as well as beef traits 
expressed by their calves.  

For commercial market animals, producers have a management decision to direct steers to either 
short/mid fed (SF) production, or to long-fed (LF) production. A LF steer index was needed to 
identify steers with genetic potential for marbling as well as feedlot growth and feed efficiency. 

The objective of this work was to develop two new commercial economic indexes to aid the 
above decisions. These indexes are based on economic value models for core GEBVs calculated 
with the new genomic products and consider amount and timing of gene expression in animals’ 
lifetimes.  
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MATERIALS AND METHODS 
Economic index model. An economic index model was built to calculate index traits’ economic 

values (EVs) and discounted genetic expression coefficients (DGEs). This contains models for 
Australian Angus commercial breeder cow daily growth and feed requirements, and separate models 
for steer and heifer daily growth, feed requirements and carcase value in short/mid fed (SF) and long 
fed (LF) production systems. The SF model assumed 70% steers in feedlot from 420 to 520 days 
old with exit live weight (LW) 640 kg, and 30% heifers in feedlot from 360 to 430 days old with 
exit LW 490 kg. The LF model assumed only steers in feedlot from 420 to 620 days with exit LW 
760 kg. Both models assumed age-constant slaughter endpoints. Feed requirements were based on 
Primary Industries Standing Committee (2007) metabolizable energy. Carcase value and feed costs 
were based on Australia industry averages in last 5 years. System-specific trait EVs were calculated 
as described below, as well as trait DGEs. Ossification and immune traits GEBVs were not included 
in these indexes.  

Heifer Index. This index contains maternal and terminal traits. Calculations assume 75% of 
surplus calves will enter SF systems and 25% will enter LF systems. 

Birth weight (kg) is valued with a non-linear EV function based on its relationship with heifer 
calving ease and associated effects on labour, heifer survival and calf survival. Angus Australia data 
of bull BW EBVs and their daughters’ calving ease phenotypes were applied to fit an exponential 
function that related BW EBVs to calving costs (based on observed calving difficulty scores). This 
approach has been applied in other beef indexes to value dystocia (Quinton et al. 2019). 

Weaning weight (kg) linear EV was calculated as change in profit expected from a 1 kg increase 
in WW, assuming animals grow at the same rate post-weaning to reach 1 kg heavier live weight at 
slaughter age. This increases carcase weight and revenue, with increased feed requirements and 
costs. 

Milk (kg, defined as maternal genetic WW) is valued with a non-linear EV function as 
differences in milk genotype have the greatest economic impact, compared to other traits, at low 
GEBVs, but less relative economic impact at higher GEBVs. This approach has been applied in 
other beef maternal indexes (Quinton et al. 2019). The EV function incrementally decreases EV of 
milk up to an optimum GEBV, above which all individuals receive the same value. The optimum 
GEBV was defined as midpoint of 10th and 90th percentile of bull population GEBVs.  

Mature cow weight (kg) linear economic weight was calculated from 3 component EVs. 
Replacement heifer MCW EV was calculated from the increase in feed costs associated with 1 kg 
additional growth from yearling to maturity (2nd calving), expressed in heifers. Annual cow MCW 
EV was calculated from the increase in maintenance feed costs for a 1 kg heavier cow, expressed 
annually from maturity over the cow’s lifetime. Cull cow MCW EV was calculated from the increase 
in carcase revenue from a 1 kg LW heavier cow, expressed at average culling age. The MCW index 
economic weight was calculated as the sum of each component EV multiplied by the component 
DGE. 

Post-wean gain (PWG, kg) was defined as a proxy trait where GEBVPWG = GEBVYW – 
GEBVWW. This was done because YW is composed of two phenotypes WW + post-wean growth; 
but the EVs for WW and growth between weaning and 1 year need to be independent. The PWG 
linear EV was calculated as change in profit expected from 1 kg increase in PWG, assuming animals 
grow at same rate pre-weaning and post-yearling to reach 1 kg heavier live weight at slaughter age. 
This increases carcase weight and revenue, with increased feed requirements and costs. 

Feedlot gain (FG, kg) was also defined as a proxy trait where GEBVFG = (GEBVCWT / dressing 
%) – GEBVYW. This was done because CWT is composed of YWT=WW+PWG at fixed dressing 
% and post-yearling growth, but these EVs need to be independent. Note FG differs from the ADG 
GEBV which is defined differently. The FG linear EV was calculated from change in revenue 
expected from 1 kg increase in FG, assuming animals grow at same rate pre-feedlot. This increases 



Contributed paper 

310 

carcase weight and revenue. This EV is independent of feedlot feed costs valued via DMI. 
Feedlot DMI (kg/d) linear EV was calculated from increased feed costs from 1 kg/d increased 

intake during fixed feedlot time.  
Rib fat (RIB, mm) linear EV was based on industry rib fat pricing categories which penalize 

under- and over-fat carcases. Assuming RIB has an underlying standard normal distribution which 
is expressed as percentages of animals that occur in the rib fat price categories, the EV is calculated 
from the change in carcase revenue that results from shifting the distribution of RIB by 1 mm with 
according changes in proportions of animals in the rib fat price categories. 

MSA marbling (MSA, score) is valued as a non-linear economic value based on the shift in 
marbling distribution expected for an individual GEBV. Marbling is assumed to have a normal 
distribution, with thresholds determining the value paid for an animal within a proportion of the 
distribution. A change to the proportion of animals falling within each marbling price category 
occurs in response to a shift in the distribution mean. The function also considers the different SF 
and LF industry marbling pricing categories and weights the value according to the proportions of 
animals in each system.  

For WW, PWG, FG, DMI and RIB, separate EVs were calculated for SF and LF systems and a 
weighted average EV was calculated based on Australian industry proportions. Other traits’ EV 
calculations incorporated SF and LF parameters. For each trait, EVs were multiplied by DGE 
coefficients that incorporate timing and frequency of expression in heifers and their calves. 

The structure of this index is as follows, where f(GEBV) represent non-linear functions and b are 
linear index economic weights, to calculate an index value in units $/heifer at selection: 
𝐼𝐼𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵) + (𝑏𝑏𝐵𝐵𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵𝐵𝐵) + 𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀) + (𝑏𝑏𝑀𝑀𝑀𝑀𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀𝐵𝐵)

+ (𝑏𝑏𝑃𝑃𝐵𝐵𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝐵𝐵𝑃𝑃) + (𝑏𝑏𝐹𝐹𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐹𝐹𝑃𝑃) + (𝑏𝑏𝐷𝐷𝑀𝑀𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐷𝐷𝑀𝑀𝐷𝐷) + (𝑏𝑏𝑅𝑅𝐷𝐷𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑅𝑅𝐷𝐷𝐵𝐵)
+ 𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀) 

Long-fed Steer Index. This index contains only terminal beef traits FG, DMI, RIB and MSA. 
Economic value calculations for these traits followed the same methods as described for the heifer 
index, but incorporated only LF system parameters. These traits were assumed to be expressed at 
steer slaughter and therefore DGEs were set to 1. 

This structure of this index is as follows to calculate an index value in units $/steer fed: 
𝐼𝐼𝑀𝑀𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻 = (𝑏𝑏𝐹𝐹𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐹𝐹𝑃𝑃) + (𝑏𝑏𝐷𝐷𝑀𝑀𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐷𝐷𝑀𝑀𝐷𝐷) + (𝑏𝑏𝑅𝑅𝐷𝐷𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑅𝑅𝐷𝐷𝐵𝐵) + 𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀) 

Preliminary index selection predictions. At this time, the pipeline for routinely calculating 
GEBVs for commercial heifers and steers is under development and the availability of GEBVs for 
large numbers of individuals is limited. For this study, the effectiveness of each selection index was 
assessed using a set of GEBVs from 333 bulls that represent the range of genotypes in the population 
(Table 1). Because the bull GEBVs are based on DNA only, we expect very similar outcomes from 
heifer or steer GEBVs. Mean GEBVs were calculated and compared for all bulls in the set and for 
the top 20% of bulls according to each index.  

 
RESULTS AND DISCUSSION 

Mean GEBVs of the top 20% of bulls selected according to preliminary versions of the new 
indexes are shown in Table 1.  

Top bulls with the Heifer Index had substantially higher mean GEBVs for growth (WW, YW, 
PWG, FG), CWT, EMA and MSA, with only slightly higher DMI, as well as lower RIB and MCW. 
Mean GEBVs for BW, WW and Milk were similar to the population average. Therefore, this index 
should identify heifers that are on average more efficient at maintaining similar mature weight and 
milk production, but with genetic potential to produce progeny with improved post-wean growth, 
feed efficiency and carcase merit.  

Top bulls with the LF Steer Index had substantially higher mean GEBVs for FG, CWT, EMA 
and MSA than population average, but lower mean DMI and RIB. Therefore, this index should 
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identify efficient steers with high marbling suited to long-fed production systems. The LF steer index 
contains growth only in terms of feedlot gain and therefore does not differentiate between steers that 
have different feedlot entry weight but the same growth rate in feedlot. This index assumes that the 
user accounts for pre-feedlot growth value by selling/purchasing steers on a per kg basis.    

 
Table 1. GEBV means, SD, minimum and maximum values for all bulls in data set and mean 
GEBVs of top 20% selected according to the Heifer Index, and Long-fed Steer Index  
 

 All bulls (N=333) Heifer Index 
Top 20% bulls 

LF Steer Index 
Top 20% bulls 

GEBV, unit mean SD min max mean mean 
BW, kg -1.24 1.80 -6.76 3.51 -1.29 - 
WW, kg -2.94 6.35 -24.30 16.71 -0.25 - 
YW, kg 2.48 10.65 -36.45 31.08 10.24 - 
PWG, kg 5.43 6.92 -22.46 26.81 10.49 - 
FG, kg 12.23 28.94 -78.44 78.81 37.05 26.03 
MCW, kg -5.45 14.88 -44.63 39.35 -7.36 - 
Milk, kg -5.39 3.70 -15.51 6.93 -4.77 - 
ADG, kg/day 0.03 0.09 -0.21 0.33 0.07 0.03 
DMI, kg/day 0.51 0.71 -1.46 2.51 0.69 0.38 
CWT, kg 8.09 19.01 -51.87 51.71 26.01 15.17 
EMA, cm2 0.73 4.35 -11.19 12.94 4.18 3.29 
MSA, score 90.57 59.03 -76.19 262.34 136.79 157.55 
RIB, mm 0.08 1.66 -4.69 5.37 -0.08 -0.08 

 
CONCLUSIONS 

The recent development of commercial genomic tools for cost-effective evaluation of 
commercial Angus heifers and steers provide producers with new information to access an animals’ 
genetic potential for performance in different sectors of the Australian beef industry. The new 
commercial replacement heifer and long-fed steer indexes offer tools to aid producers in multi-trait 
selection and management decisions. 
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SUMMARY 

Currently, there are no measures of ewe longevity recorded by Australian sheep breeders for 
utilisation as part of their breeding objective. In the absence of disposal codes, this study explored 
the potential to use production records to define ewe longevity in Merino sheep and estimate genetic 
parameters for the resulting trait. The longevity trait was defined as the ewe’s total life (TL) in the 
flock from birth to their last available production record. To identify suitable non-censored data, 
cohorts were selected based on the amount of pedigree and consistent annual production recording. 
Under these assumptions, the MERINOSELECT database provided 267,517 longevity records from 
143 flocks. The heritability of TL was 0.22 ± 01. Adjusting TL for the ewe’s lifetime reproductive 
performance, accounted for 94% of the variation in TL, reduced the heritability to 0.11 ± 01. The 
results herein indicate that it is possible to describe longevity in the Merino ewes using production 
records from the MERINOLSELECT database. TL was found to be heritable but further exploration 
is required before incorporation in industry breeding objectives.  

 
INTRODUCTION 

Longevity can be defined as the duration of a ewe’s productive life in the flock. In Australian 
Merino, ewes are usually first mated at 1.5 years old with most ewe’s final mating at 4.5 to 6.5 years 
of age, after which they are culled as cast for age ewes (Kleemann et al. 2016). Age based culling is 
extensively used in Australian commercial sheep flocks (Hatcher et al. 2009), most commonly at 6 
years of age. Longevity is a composite trait describing aspects of production, health, and 
reproduction and it is considered a trait of high economic importance for sheep production systems 
(McLaren et al. 2020). Greater longevity in sheep production leads to an increased overall mean age 
of the flock, more lambs available for sale, and higher reproductive performance (Conington et al. 
2004). Conington et al. (2001) defined longevity as the period from birth to culling or death (days). 
According to previous research, the heritability estimates of longevity commonly ranges between 
0.05 to 0.08 with a range from 0 to 0.33 depending on the species, production system and trait 
definition (Conington et al. 2001; El-Saied et al. 2005). In the MERINOSELECT database (Brown 
et al. 2007), culling date and reason are sparsely recorded. Therefore, building on the proposition 
by McLaren et al. (2020), we explored the potential of using the ewe’s last production record as a 
proxy for culling age. The objective of this study was to define ewe longevity using production 
records and estimate genetic parameters for the resulting trait. 

 
MATERIALS AND METHODS 

Describing Longevity. At the time of the analysis, there was no standard recording practice for 
capturing ewe longevity and limited recording of disposal date in the MERINOSELECT database. 
The MERINOSELECT database, described by Brown et al. (2007), currently includes pedigree and 
phenotypic records for 3,078,163 animals from 1,759 flocks submitted by Australian and New 
Zealand Merino breeders. A longevity trait was built based on the birth date of an individual and the 

 
∗ A joint venture of NSW Department of Primary Industries and the University of New England 



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 312-315 

313 

date of their last submitted production record, which was suggested by McLaren et al. (2020) as an 
alternative to a specified culling date. Total life of the ewes was referred to as the time between these 
two dates in years and aligns with the longevity traits presented by Conington et al. (2001); El-Saied 
et al. (2005). For TL to reflect the lifetime of the ewe it was assumed that the ewe’s cohort (site of 
birth, flock and year of birth) is routinely recorded and so the absence of the ewe record reflects her 
departure from the flock and not that the cohort was not recorded. Cohorts considered to have 
suitable data were characterized as; 1) born since 2000, 2) had a minimum of 3 years of production 
records, 3) had an annual record for wool and reproduction recorded up to 6 years of age, and 4) 
contained at least 30 ewes and a minimum of 70% of the animals were assigned a sire. 
Approximately 20% of ewes in the database were from a cohort with sufficient recording (Table 1).  

 
Table 1. Number of flocks, cohorts and animals represented in the cleaned data set after 
implementing each of the data assumptions to ensure the eventual phenotype will reflect the 
animal’s longevity in the flock are instated 

 
Assumptions Flocks Cohorts Animals 
Ewes 1,086 7,923 1,574,855 
Born since 2000 771 5358 1,371,799 
Minimum lifespan of cohort  3+ years 676 4,410 1,187,133 
Cohort recorded annually up to 6 years of age 447 3,249 1,147,498 
Cohorts contain at least 30 ewes and > 70%  of animals assigned sire 285 1,451 473,698 
Cohorts had annual reproduction and wool production records  143 746 267,517 

 
Statistical Analysis. Genetic parameters for TL were estimated from a series of univariate 

analyses using an animal model in ASReml version 4.1 (Gilmour et al. 2015). A pedigree spanning 
2 generations back from the phenotyped animals, due to computational restraints, was extracted 
from the MERINOSELECT database (Brown et al. 2007) and incorporated 335,704 animals.. The 
phenotyped individuals descended from 6,030 sires and 103,730 dams. The base animal model 
(Model 1) used in the analysis can be described by the following equation: 

𝑌𝑌 =  𝑋𝑋𝑋𝑋 + 𝑍𝑍1𝑎𝑎 + 𝑒𝑒 
Where Y is the vector of TL records, b is the vector of fixed effects that include the birth type (1, 

2, 3, 4+), rear type (1, 2, 3+), age of dam (linear) and cohort. Where cohort was defined by the 
animals’ site of birth, flock and year of birth. a is the vector of animal genetic effects with X and Z 
the incidence matrices that relate the respective effects to Y and e is the vector of the random residual 
effect. The phenotypic variance was calculated as the sum of the additive and residual variance. 

TL reflects the lifetime of the ewe in the flock, which describes both the ewe’s fitness and 
survivability but also the ewe’s production performance and merit relative to the flock’s breeding 
objective. To create a trait that more closely reflects the ewe’s fitness and survivability and 
understand the underlying factors that may impact the ewe’s time in the flock, TL was adjusted by 
fitting a series of co-variates, nested within cohort.  

The covariates included; 1) the ewe’s Merino Production Plus (MPP) index value (Swan et al. 
2017), 2) the ewe’s annual wool production across their lifetime (AWP, total lifetime greasy fleece 
weight (kg) / TL), 3) proportion of successful lambing opportunities (SLO, number of successful 
lambing opportunities / TL), and 4) proportion of lambs born (ALP, sum of lambs given birth to / 
TL). Animals culled from the flock prior to producing a lamb or fleece were assigned covariate 
values of zero. In Model 2, the covariates were fitted as fixed effect terms where they were nested 
within cohort. To better understand the proportion of variation in TL described by each of the 
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covariates and which of these is having the greatest impact on the phenotypic and additive variance, 
the terms were fitted as random effects (Model 3). 

 
RESULTS AND DISCUSSION 

The result of the final assumption filters left 267,517 ewes with TL records from 143 flocks 
across 746 cohorts (Table 1). Only 76% of ewes born stayed in the flock to the yearling stage (42% 
to 2 years of age). This includes 203,350 ewes with at least one record describing lambing outcomes 
or fleece production (missing covariates were given a value of 0). The average TL for the Merinos 
was 2.37 (SD = 1.89) years with a maximum of 13.06 years. The results are much lower than 4.5 to 
6.5 years reported by Kleemann et al. (2016) in Merino breeding flocks. In another study in Merino 
commercial flocks, Hatcher et al. (2009) stated that animals are usually culled at 6 years of age. This 
is in part likely due to the greater selection pressure placed on the ewe flock to achieve desired 
genetic gains within the seed stock sector. The mean SLO and ALP were 0.30 (SD = 0.30) and 0.41 
(0.45), respectively.  

The phenotypic variance and heritability of TL using Model 1 were 3.34 ± 0.02 and 0.22 ± 0.01, 
respectively (Table 2). After adjusting for the overall genetic merit, wool production, and 
reproductive performance (Model 2) the phenotypic variance and heritability were reduced to 1.22 
± 0.01 and 0.11 ± 0.01. The heritabilities herein for TL align with the low heritability estimates 
reported in the literature of 0.08 ± 0.01 in Scottish Blackface ewes by Conington et al. (2001) and 
0.02 ± 0.01 to 0.06 ± 0.02 in Spanish Churra ewes by El-Saied et al. (2005). In an Australian Merino 
research flock, Hatcher et al. (2009) reported the heritability of ewe survival at 2nd, 3rd, 4th and 5th 
year in a range from 0 to 0.12. Brash et al. (1994) also described a heritability in an Australian 
Dorset sheep population of 0.06. As mentioned earlier, the breeders submitting data to the database 
tend to apply selection pressure and maintain heavily selected ewe flocks, which leads to censored 
data, which in part might explain the higher heritability of Model 1.  

 
Table 2: Variance components estimates (± se.) for total life with Model 1 (base), Model 2 (base 
+ covariates nested within cohort) and Model 3 (base + covariates nested within cohort and 
fitted as random effects). The percent column represents the proportion of total variation 
accounted for by each random effect fitted in Model 3 
 

 Model 1 Model 2 Model 3 Percent 
Heritability (h2) 0.22 ± 0.01 0.11 ± 0.01 0.11 ± 0.01  
Phenotypic (σ2p) 3.34 ± 0.02 1.22 ± 0.01 1.22 ± 0.01  
Residual (σ2e) 2.61 ± 0.01 1.08 ± 0.01 1.08 ± 0.01 4 % 
Direct additive (σ2a) 0.73 ± 0.02 0.14 ± 0.01 0.14 ± 0.01 1 % 
Cohort   0.16 ± 0.01 1 % 
Success rate of lambing opportunities (SLO)*   14.94 ± 0.83 63 % 
Annual lamb production (ALP)*   7.25 ± 0.42 31 % 
Annual wool production (AWP)*   0.03 ± 0.01 0 % 
Merino production plus index (MPP)*   0.00 ± 0.01 0 % 

*Covariates were fitted as nested terms within cohort 
 
The majority of the variation in ewe longevity was described by the ewe’s reproductive 

performance (94%) with the more fertile (SLO = 63%) and larger litter producing (ALP = 31%) 
ewes retained in the flocks longer (Table 2). This suggests that the underlying factor determining 
the length of time ewes are retained in the flock is associated with breeders’ selection decisions 
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around reproduction and not necessarily because of the ewe’s inherent fitness to survive. 
Reproduction is one of the most important traits in the profitability of sheep farming enterprises, and 
ewes with high reproductive performance are most likely to perform better in the longer term (Zishiri 
et al. 2013). In the current study, AWP explained only a small proportion of the variation in ewe 
longevity, and it is hypothesised that variation in wool produced across her lifetime seems to have 
had little impact on the breeders’ selection decisions to keep the ewe in the flock.. However, genetic 
merit for wool production is likely to have a significant influence on the ewe’s value to the flock 
and this could be explored further by estimating the genetic association between longevity and wool 
production and quality traits. The MPP index explained no variation in the TL of the ewe. This may 
be in part because the index values used in this study was based on the information available at time 
of analysis not when the animal was being dispersed from the flock.As the flock’s breeding 
objectives are likely to differ, the MPP index whilst moderately correlated with most flock’s 
breeding objectives may not entirely reflect all the selection decisions placed on the ewe flock at the 
individual breeder level. 

 
CONCLUSIONS 

The results of this study indicated that it is possible to capture and define longevity in Australian 
Merino ewes by utilizing performance records available within the MERINOSELECT database. 
Reproductive performance is the largest factor behind ewe longevity and should be accounted for if 
the desired trait is to more closely reflect the ewe’s fitness to survive and not just her ability to 
produce a lamb. Correlations between longevity and key production traits as well as the estimation 
of its economic value require exploration before determining the value of TL within industry 
breeding objectives.  
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SUMMARY 
Analyses of selection signature are extensively used to detect chromosomal regions underlying 

phenotypic diversity which have been subjected to selective pressure. However, breeds with 
common origin, recent divergence, or similar production types are often confounded because the 
candidate and reference populations, compared in such analyses, exhibit similar patterns in genomic 
data. This study has applied a circular genome permutation method to generate a reference 
population to investigate selection signatures in Angus cattle (n=29) by using 1.6 million SNPs and 
applying the composite selection signals (CSS) method. Significant CSS were compared in two sets 
of analyses based on different reference populations, i.e., CSS-1: using circular genome permutation 
to form the breed neutral reference population (n=29) for Angus, and CSS-2: using five beef breeds 
as a reference population (n=36). Notably, several genomic regions were detected using CSS-1 (e.g., 
on chromosome 14, 16, 21) in Angus underlying commonly known genes of major effects on beef 
traits which were not detected by CSS-2 because of the confounding genetic background of Angus 
with the reference beef breeds. The results highlight the importance of selecting an appropriate 
reference population to circumvent the confounding breed effects.  

 
INTRODUCTION 

In livestock species, genomic data of various breeds are compared for genotypic and haplotypic 
distributions against each other, individually or as groups, to characterize the historic selective 
pressures for breed specific traits of production, health and adaptation. These signatures of selection 
can be used to discover genetic variants and genes to understand the biological control of agricultural 
and health traits (Kemper and Goddard 2012). Genomic investigations are frequently resource-
intensive; however, detection of selection signatures can provide insights into the genetic 
architecture underlying breed-specific traits in a relatively cost-effective manner (Gibbs et al. 2009). 
Ubiquitous cattle breeds, such as Angus have been selectively improved for economic traits by 
increasing the frequency of beneficial alleles throughout the genome.  

A review of recently published signatures of selection showed that a few regions are commonly 
found in multiple breeds, suggesting genomic hotspots underlying genes of major effect, e.g., 
PLAG1 on bovine autosome 14 (BTA14) (Randhawa et al. 2016). It was noted that the locations of 
selection signatures generally varied in those studies due to differences in sample size, SNP density 
and reference population. Rapidly lowering costs have allowed a larger number of samples to be 
assayed for high-throughput genotyping and genome-wide sequences. However, selection of an 
appropriate reference panel and thus avoiding confounding effects of the reference population 
remains a challenge.  Inclusion of related breeds in the reference population can mask the detection 
of common selection signatures. This study has applied a new approach of circular chromosomal 
permutations (Cabrera et al. 2012) to generate a breed neutral reference population though 
permutation of the genome of the same breed used in the comparison and thus is likely to be free 
from breed bias. This approach was used to detect selection signatures in Angus and the results were 
compared with conventional breed-vs-breed approach. 
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MATERIALS AND METHODS 
Briefly, the circular genomic permutation approach considered SNPs along each chromosome 

as a circular fragment, which was then rotated for each sample (animal) to pick a starting location 
randomly. The approach shuffles the chromosomal fragments while keeping intra-sample haplotypic 
and linkage structures. All permuted samples were assembled and considered as a reference 
population for the same breed used in the comparison, expecting genome-wide neutral and uniform 
genetic diversities. The composite selection signal (CSS) method (Randhawa et al. 2014) was used 
to detect across-breed selection signatures in two data sets, i.e., CSS-1: Angus vs Permuted reference 
genome (using the 29 Angus samples), and CSS-2: Angus vs 5 beef breeds as reference. A total of 
65 beef cattle samples (Table 1) and ultra-high density genotypic data (1,583,288 SNPs) were used. 

 
Table 1. Cattle breeds, their geographic origin, country of sampling and DNA samples 
  

Breeds Type Geographic origin Country of sampling Samples 
Angus Beef Scotland USA, New Zealand, Australia 29 
Brahman Beef India India, Brazil, USA, Australia 8 
Hanwoo Beef Korea South Korea 11 
Murray Grey Beef Australia Australia 1 
Simmental Beef Switzerland USA 6 
Wagyu Beef Japan USA 10 
Total - - - 65 
 

RESULTS AND DISCUSSION 
Genome-wide analyses detected a number of expected genomic regions in Angus by CSS-1 

(within breed), while CSS-2 (between breeds) missed most of the regions, as shown by three 
example chromosomes (BTA14, BTA16 and BTA21) in Figures 1, 2 and 3.  

 
Figure 1. Composite selection signals on chromosome 14 in Angus cattle, computed by using 
two different reference populations; A) Permuted genomes, B) Beef breeds. Blue lines at 
genome-wide top 0.1%. Arrow at the top shows position of the expected signatures of selection 
in Angus 
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Figure 2. Composite selection signals on chromosome 16 in Angus cattle, computed by using 
two different reference populations; A) Permuted genomes, B) Beef breeds. Blue lines at 
genome-wide top 0.1%. Arrow at the top shows position of the expected signatures of selection 
in Angus 

 
Figure 3. Composite selection signals on chromosome 21 in Angus cattle, computed by using 
two different reference populations: A) Permuted genomes, B) Beef breeds. Blue lines at 
genome-wide top 0.1%. Arrow at the top shows position of the expected signatures of selection 
in Angus 
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On BTA14 (24-27 Mbp of UMD3.1 bovine genome assembly), a strong selective sweep has 
been established due to selection targeting beneficial variants in PLAG1-CHCHD7 in Angus and 
many other breeds (Randhawa et al. 2016). On BTA16 (42-48 Mbp), an extensive region under 
selection has been found underlying several genes important for both dairy and beef production. At 
the start of BTA21 (0.3-4 Mbp), many breeds (Angus, Belgian Blue, Brahman, Holstein) have 
shown strong selection signatures (Randhawa et al. 2016). Therefore, this study expected to find 
significant CSS on the target regions of BTA14, BTA16 and BTA21. CSS-1 succeeded in detecting 
these regions, while the genetic composition of reference population composed of beef breeds in 
CCS-2 showed a major confounding influence on detection of selection signatures in Angus (Figures 
1-3). Interestingly, several genomic regions, e.g., BTA1, BTA4 and BTA13, also strongly selected 
in Angus were captured by both CSS-1 and CSS-2 (results not shown). This suggested that only the 
genomic patterns of allele frequencies and haplotype structures which are relatively more similar in 
a candidate breed and reference population can neutralise the across-breed statistics of selection 
signatures. Moreover, the magnitude of CSS values also varied between CSS-1 (max: 2.85, top 
0.1%: 1.6) and CSS-2 (max: 5.67, top 0.1%: 3.1). The circular permutation approach was initially 
proposed to decide on a significance threshold for the empirical genome-wide association (Cabrera 
et al. 2012) and selection signatures (Stainton et al. 2015). The genome-wide results suggest that 
using the maximum value of CSS-1 as a significance threshold for conventional CSS-2 approach 
may have recovered a few confounded regions. However, most of the expected regions did not show 
a cluster of high values in CSS-2 analyses. Thus, our new approach of using permuted genomes as 
the reference population has been proved advantageous. This approach can be used to detect 
selection signatures from single breed data by permuting from its own samples where data are 
limited, or a unique set of variants is available through whole-genome sequencing.  
 
CONCLUSIONS 

Molecular data can provide insights into historical natural or artificial selection events and the 
genetic architecture underlying breed-specific traits. This study examined the impact of reference 
population to validate known genomic regions under selection in Angus cattle. The results provide 
evidence that a reference population of closely related or phenotypically similar to the candidate 
breeds affects the power to detect selection signatures. Our new approach of circular genomic 
permutations can potentially limit such confounding effects and resource-limited data can be 
efficiently analysed to detect historic selection pressures in any species. 
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SUMMARY 

This research has investigated genomic data (770K SNP genotypes) on 197 animals of 
Brahman, Droughtmaster and Hereford. Analyses of genome-wise association (GWAS) and 
composite selection signals (CSS) were conducted to find genomic regions underlying polledness 
(test) and scurs (discovery) in individual and combined (multi-breed) cohorts of horned, polled and 
scurred animals. Both GWAS and CSS successfully detected the poll-locus, whereas the GWAS 
results failed to localize any novel or previously proposed scur regions. CSS results coincided with 
4 out of 7 previously detected regions as well as found several novel genomic regions. However, 
none of the significant regions harbour genes of profound effect on scur development. Overall, the 
results suggest that scur genetics has complex inheritance patterns and we discuss that many 
genetic factors and non-genetic effects interact variably to control development of scurs in cattle. 

 
INTRODUCTION 

Scurs are horn-like-structures, grow slower than horns and remain unattached from the cranium 
in cattle. Scurs appear in genetically heterozygous (HP) animals at the POLL locus – genomic 
region on bovine autosome (BTA) 1 associated with complete absence of horns and scurs called 
polledness (PP), which is caused by either Celtic (Pc) or Friesian (Pf) types of insertion-deletions 
(mutations). However, scurs are seen in a relatively smaller proportion of a cattle population, 
given that many heterozygous animals remain polled due to conditional factors, such as sex of the 
animal (Aldersey et al. 2020). Eradication of scurs in cattle is as vital as horns due to the related 
economic and welfare impact because scurred animals often undergo dehorning and certainly 
transmit a horn (H) allele to their offspring. Inheritance of scurs has been alleged to be under  
single gene control (White and Ibsen 1936). However, the “scur gene” in cattle remains to be 
discovered. To date, investigations to identify a causal gene have pointed to different genomic 
regions across different cattle breeds. A well-known region on BTA19 (26-29 Mbp of ARS-
UCD1.2 bovine assembly location) was initially discovered in Canadian beef cattle and recently 
affirmed an epistatic interaction with the POLL locus (Asai et al. 2004; Ketel and Asai-Coakwell 
2020). Those findings were not sustained in Hereford, Angus and French Charolais cattle (Capitan 
et al. 2009). A dominant inheritance pattern was later reported in the French Charolais and their 
proposed type-2 scurs development has been linked to TWIST1 gene on BTA4 (Capitan et al. 
2011). Notably, appearance of type-2 scurs was specific to heterozygous French Charolais and the 
underlying homozygous frameshift mutation has embryonic lethality. The scurs locus in 
Simmental cattle was mapped on BTA19 (48-49 Mbp), which is a different location from those 
reported earlier (Tetens et al. 2015). The study also pointed to a multi-locus involvement regarding 
the development of scurs. Recently, genic and non-genic regions on BTA5 (44-45 Mbp), BTA12 
(7.5-8.5 Mbp), BTA16 (40-41 Mbp, SUCO gene) and BTA18 (46-47.5 Mbp, ARHGAP33 gene) 
were found in a multi-locus association in Holstein (Gehrke et al. 2020). As yet, the reported 
studies have not converged and elucidation for inheritance patterns and genetic control of scur 
development is an ongoing task. Investigation of scurs in other breeds and by using high-density 
genotyping dataset can be valuable in understanding the scurs genetics. This study has performed 
the analyses of genome-wide association and signatures of selection to localize scur genomic 
regions within Brahman, Droughtmaster and Hereford breeds and in a multi-breed framework. 
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MATERIALS AND METHODS 
A total of 197 animals of 3 breeds (Table 1) were sampled (tail-hair or blood), phenotyped 

(horned, polled and scurred), and diagnosed for the POLL genotype by the optimized poll testing 
(OPT) assay (Randhawa et al. 2020). Genomic DNA were used for Illumina BovineHD 
Genotyping BeedChip array. The 770K genotypes were quality control filtered to remove SNPs 
with MAF < 5% and call rate < 90%, and 657,543 SNPs were retained. Imputation of missing 
genotypes and haplotype phasing was performed with BEAGLE 3.3 (Browning and Browning 
2009). The genome-wise association (GWAS) analyses were performed using the qtscore function 
(trait = “binomial”) in R-package: GenABEL (Aulchenko et al. 2007). A significance threshold of 
p < 1.0-7 was used to detect putative SNPs underlying the phenotypes. The composite selection 
signal (CSS) analyses were performed in R program for pairwise contrasting phenotypes 
(Randhawa et al. 2014). The smoothed CSS scores were used to capture the putative genomic 
regions using the top 0.1% threshold. Analyses of GWAS and CSS were conducted to find 
genomic regions underlying polledness (control: HH-horned vs PP-polled) and scurs (HP-scurred 
vs HP-polled) in individual and combined (multi-breed) cohorts (Table 1). 
 
Table 1. Phenotyped and genotyped animals for genome-wide analyses 
 

Breeds Control (Horn vs Poll) Discovery (Poll vs Scur) Total Horned (HH) Polled (PcPc) Polled (HPc) Scurred (HPc) 
Brahman 8 9 25 24 66 
Droughtmaster 8 8 25 25 66 
Hereford 8 8 24 25 65 
Combined 24 25 74 74 197 

HH: homozygous horned animals, PcPc: homozygous polled animals, HPc: heterozygous animals 
 
RESULTS AND DISCUSSION 

Analyses to localize POLL region (control) were successful by CSS for all datasets. However, 
GWAS showed sensitivity to sample size with significant peak for only combined data (Figure 1). 

 
Figure 1. CSS (blue, positive) and GWAS (red, negative) results to detect the POLL region 
on chromosome 1 in A) Brahman, B) Droughtmaster, C) Hereford and D) Combined data. 
Red and blue lines show genome-wide significance at top 0.1% (CSS) and p=10-7 (GWAS), 
respectively 
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Figure 2. Manhattan plots of CSS results in breed-wise and combined data using 657,543 
SNPs. Peaks above the red and below the blue dashed lines capture candidate regions for 
scurs and polledness, respectively at the significance thresholds (0.1%) 

 
In the discovery analyses, CSS detected multiple regions within Brahman, Droughtmaster, 

Hereford and the combined dataset (Figure 2). However, GWAS analyses failed to reach above the 
significance thresholds, although many regions were found above a suggestive threshold of –log10 
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(p)10-5 (results not shown). Note that CSS found some genes – SUCO (BTA16) and ARHGAP33 
(BTA18) – and non-genic regions (BTA5, BTA19) that overlapped with previous research (Tetens 
et al. 2015; Gehrke et al. 2020). Multiple genomic regions identified by CSS (Figure 2) suggest 
that many genes interacting through complex polygenic networks may control scurs development. 
Hence, the finding does not support a simple mono-genic inheritance model as initially proposed 
by White and Ibsen (1936). However, the results are non-conclusive to identify regions or genes 
with strong association with the scurs phenotype. The GWAS analyses might have limited power 
for successful association mapping for the complex trait of scurs due to lower sample size. 
Therefore, further investigations by including higher sample sizes and improved phenotyping 
accuracy will increase the power of genomic association mapping of scur controlling variants. 
Nonetheless, other factors, such as POLL locus heterogeneity (Pc, Pf) and sex of the animal 
further complicate the understanding of scurs genetics (Gehrke et al. 2020), thus extensive 
research designs are suggested. Although scurs are substantially less common than horns 
(Randhawa et al. 2020), and are less damaging and easily manageable, they will continue to 
appear as the beef breeds transition from horned to polled cattle. With increased frequencies of 
polled alleles (Pc and Pf), and as more homozygous polled breeding stock become available, the 
incidence of scurs is expected to decrease.  

 
CONCLUSIONS 

Generally scurs develop in genetically heterozygous cattle, which carry an allele of either 
Celtic or Friesian mutations at the POLL locus. However, understanding of scurs genetics remains 
limited because it is unclear why some heterozygous animals remain polled. Interestingly, 
previous studies have associated 7 genomic regions on 6 chromosomes and none of them 
coincided in independent populations. This study has found 4 out of 7 previously detected regions 
as well as identifying several novel genomic regions, suggesting a polygenic inheritance model. 
None of the significant regions harbour genes of profound effect on scur development. Several 
factors including sex and mutation type have also been found to effect scur development, but the 
discovery of “scur genes” remains a challenge.  
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SUMMARY 
Genetic testing for the presence of POLL gene in cattle has been proposed in Australia because 

it helps avoid dehorning and disbudding in young calves. Animals can be true polled if they carry 
two copies of either Celtic (PcPc) or Friesian (PfPf) mutations, or one of each (PcPf). Optimized 
poll testing (OPT) – a 5 SNPs based assay to detect both type of mutations – was developed to 
improve efficiency of commercial tests, which are used in selective breeding for rapidly increasing 
the poll gene frequency in herds. This study evaluates the efficiency of OPT assay across various 
breeds by using a high number of commercial test results (n=98,744). Overall, OPT consistently 
showed high success rate of 99.56% in commercial tests, which is consistent with previous results 
(99.60%) based on experimental data. The OPT has been rapidly adopted across the industry 
leading to greater accuracy and more confidence. OPT has been equally efficient for the taurine 
(99.50%) and indicine (99.63%), Zebu and other indicus-influenced composite breeds. 

 
INTRODUCTION 

The genetics of horns and polledness (absence of horns) is complex in the bovidae family. In 
cattle, inheritance of polledness (P) is dominant to horns (H); however, the underlying genes and 
causal mutations display an array of genetic heterogeneity and phenotypic diversity (Medugorac et 
al. 2012; Wiedemar et al. 2014). Genetic control of the polledness – the so called “POLL gene” – 
has been mapped on the starting end of bovine chromosome 1 (BTA1) (Long and Gregory 1978). 
To date, four different genetic mutations that can cause polledness have been identified in cattle 
worldwide, all of which are physically located in a narrow neighbourhood on BTA1 (Figure 1, 
(Aldersey et al. 2020)). The known mutations are named according to their geographic origin in 
cattle (Capitan et al. 2011; Tetens et al. 2015; Medugorac et al. 2017; Utsunomiya et al. 2019) 
e.g., Celtic (Pc), Friesian (Pf), Mongolian (Pm) and Guarani (Pg). Of those, only Pc and Pf have 
been found prevalent in Australian cattle herds. Animals can be true polled if they carry two 
copies of either Celtic (PcPc) or Friesian (PfPf) mutations, or one copy of each (PcPf). Due to the 
genetic complexity the heterozygous animals (HP: HPc or HPf) which carry one copy of horn (H) 
and one copy of a poll (Pc or Pf) can be polled or may develop small size and unattached horn-
like-structures called scurs (Aldersey et al. 2020; Gehrke et al. 2020). 

As a consequence of rising concerns about animal welfare and the costs of bruising and 
dehorning (Huertas et al. 2015), increasing the polled cattle population is a way forward for a 
sustainable beef industry. Identification of true polled cattle has been a challenge (Connors et al. 
2018), given that some HP animals can be polled but can potentially pass on an H (horn) allele to 
its offspring. Therefore, two phenotypically polled animals can produce a horned offspring. 
Genetic testing for the presence of POLL gene in cattle has been proposed in Australia because it 
helps avoid dehorning and disbudding in young calves (Prayaga 2007). Poll gene testing has been 
in practice since 2012 and has evolved through the use of different types of genetic markers, 
initially based on microsatellites and more recently based on single nucleotide polymorphisms 
(SNPs). Optimized poll testing (OPT) – a 5 SNPs based assay to detect both type of mutations – 
was developed to improve efficiency of commercial tests (Randhawa et al. 2020), which are used 
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in selective breeding for rapidly increasing the poll gene frequency in Australian herds. This study 
evaluates the efficiency of OPT assay across various breeds by using a high number of test results. 
 
MATERIALS AND METHODS 

Genetic markers for the prediction of Celtic (Pc) and Friesian (Pf) types of poll associated SNP 
alleles (Table 1) are available on commercial bovine BeadChip assays (Illumina) including 
Neogen’s proprietary GGP Bovine 100Kand GGP Indicus 50K assays (Neogen Corporation, 
Lincoln, NE). The Pc genotype is predicted by translating a single SNP marker rs383143898 
(ARS-UCD1.2 position on BTA1: 2,429,319) based on its horn or poll allele (Table 1). The Pf 
genotype is predicted based upon four markers associated with Pf (Table 1, Figure 1). Pf 
associated markers include: rs801127025 (BTA1: 2,372,456), rs799403053 (BTA1: 2,486,811), 
rs210350155 (BTA1: 2,491,161) and rs797088784 (BTA1: 2,578,598). Results of OPT represent 
reconciled outcomes from both Pc and Pf predictions to generate genotypes such as HH, HPc, HPf 
PcPc, PcPf or PfPf. However, if the Pc-associated SNP or more than one Pf-associated SNPs fail 
during genotyping, or one or more SNPs differ in predicted genotype (H versus Pf) then the result 
is considered ambiguous and termed as a “No Result”. For this study, OPT results on commercial 
samples (n=98,744) were obtained to check the efficiency of mutation predictions. In addition, call 
rate, genotyping error and prediction efficiency of the OPT and an additional SNP: rs799920960 
(BTA1: 2,748,715), which is also available on the above mentioned commercial genotyping 
assays, were investigated by using a subset of the commercial tests and previous data (Randhawa 
et al. 2020). 
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Figure 1. POLL region on chromosome 1 (Bovine assembly: ARS-UCD1.2) showing locations 
of four known insertion-deletions (Celtic, Friesian, Mongolian and Guarani) associated with 
polledness across various worldwide breeds of cattle. The Optimized Poll Test (OPT) is 
based on the 5 coloured SNPs (1-green to predict Celtic and 4-purple to predict Friesian 
mutations). The blue SNP is localized close to Friesian and have shown strong linkage with 
Pf. The remaining SNPs have been used in poll testing assays previously and are available on 
most SNP chip assays 
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Table 1. Single nucleotide polymorphisms (SNP) on BTA1 for predicting the Celtic (Pc) and 
Friesian (Pf) mutations 
 

SNPs Positions* Mutations Poll alleles Predicting mutation 
rs801127025 2,372,456 P5ID T Friesian (Pf) 
rs383143898 2,429,319 P202ID T Celtic (Pc) 
rs799403053 2,486,811 T>C C Friesian (Pf) 
rs210350155 2,491,161 C>A A Friesian (Pf) 
rs797088784 2,578,598 G>A A Friesian (Pf) 

* Genomic positions based on bovine genome assembly ARS-UCD1.2 (GCA_002263795.2). 
 
RESULTS AND DISCUSSION 

Table 2 shows results from the obtained commercial tests performed using OPT based 
predictions. The available data were combined into two groups: Taurine (Bos taurus) and Zebu 
(Bos indicus and composite), based on the breed information about each sample. A total of 53,310 
Taurine and 45,434 Zebu results show that OPT was generally successful with 99.56% efficiency. 
The remaining 0.44% (438) samples providing “No results (NRs)” are more likely be due to a 
failure to amplify one or more markers during the genotyping process. Previously, Zebu cattle 
showed very high number of failure rate with over 10% of NRs by using previously available 
POLL gene testing assays (Randhawa et al. 2020). Hence, we compared the NRs from OPT 
between the Taurine and Zebu, and respectively found that 0.50% and 0.37% of their samples 
returned an NR (Table 2). As such, these results are markedly lower than the previous tests and 
within the expected range of genotyping errors (Wu et al. 2019). However, the results suggest that 
the Zebu (n=170 out of 45,434) had significantly less (Fisher’s Exact test, p<0.001) NRs than the 
Taurine (n=268 out of 53,310). This suggests that OPT test has successfully overcome the high 
rates of NRs in the commercial application, especially for the Zebu and composite breeds. 
Moreover, results may suggest that the Taurine breeds have an undetectable lack of LD between 
some of the SNP markers and the POLL mutations or an additional variation within the 
genotyping probe regions, either of which is causing the decrease in POLL gene prediction. A 
preliminary investigation of the collected samples and previously available results suggest that one 
of the SNPs (rs801127025) – to predict Pf – is likely the frequent cause of NRs in several breeds, 
including genotyping error and mismatch with the rest of Pf predicting markers (Randhawa et al. 
2020). Note that rs801127025 is located farthest from Pf, rather upstream of the Pc (Figure 1). 
Given the potential for recombination (~0.2%) between the Pf and Pc, and a slightly higher chance 
between Pf and rs801127025, there is the possibility that unique haplotypes may exist in some 
breeds or herds. We emphasise that the rate of NRs (~0.44%) should not be taken as a lack of 
performance of OPT per se. However, there can be a simple alternative to further reduce the NRs.  

We investigated another SNP (rs799920960) in a small dataset, which has not shown 
genotyping error or discordance with Pf. Hence, rs799920960 can be used either to substitute 
rs801127025 or as an additional marker for a leverage to accept two mismatches in OPT. The 
proposed marker is strongly linked to Pf because it is closely localized than any other SNPs being 
used to predict Pf (Figure 1). However, we suggest that additional research is required to evaluate 
the utility of SNP marker (rs801127025) of the OPT assay and the proposed increase in the 
efficiency in some breeds by including the additional marker (rs799920960). Overall, the OPT is 
performing as expected by providing commercial efficiency (99.56%) concordant to previously 
reported experimental results (99.6%) used to design the OPT (Randhawa et al. 2020). OPT has 
shown greater accuracy of head phenotype predictions, but phenotyping and sampling errors may 
deflect. All in all, the OPT has been rapidly adopted – replacing the poll haplotype test (Connors et 
al. 2018) – across the industry for poll breeding to achieve sustainable beef production. 
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Table 2. Performance efficiency of OPT in the Taurine and Zebu breeds 
 

OPT output Taurine Zebu Total Percentage 
HH 24,011 (45.04%) 19,908 (43.81%) 43,919 44.48% 
HPc 14,968 (28.07%) 17,147 (37.74%) 32,115 32.52% 
HPf 796 (1.49%) 445 (0.97%) 1241 1.26% 
PcPf 1,224 (2.29%) 333 (0.73%) 1557 1.58% 
PfPf 185 (0.34%) 12 (0.02%) 197 0.20% 
PcPc 11,858 (22.24%) 7,419 (16.32%) 19,277 19.52% 

No results (NR) 268 (0.5%) 170 (0.37%) 438 0.44% 
Total 53,310 45,434 98,744 - 

 
CONCLUSIONS 

This study shows that OPT has been very successful (99.56%) for commercial testing of POLL 
gene in Australian beef cattle, both Taurine (99.50%) and Zebu (99.63%) breeds. Being 
compatible with genomic products, the test is also available at lower cost than the previous stand-
alone tests. The OPT is performing as expected and it has been rapidly adopted across the industry 
leading to greater accuracy and more confidence to achieve a more sustainable beef industry. 
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SUMMARY 
Efficient reproduction is considered the backbone of sustainable livestock production. This study 

has evaluated the estimated breeding values (EBVs) of seven beef breeds (Charolais, Hereford, 
Limousin, Shorthorn, Brahman, Droughtmaster and Santa Gertrudis). Intra-breed genetic merits 
(EBVs) were compared between the polled and horned cohorts using 548,775 animals born between 
2000 and 2018 for five traits (scrotal size, gestation length, days to calving, calving ease direct and 
calving ease daughters). All breeds have shown genetic gain in the reproductive traits. Moreover, 
more traits in polled cohorts were found to have higher genetic merit as compared to horned cohorts. 
For example, scrotal size were found significantly higher in polled cohorts of Charolais, Hereford, 
Limousin, Brahman, Droughtmaster and Santa Gertrudis, and in horned cohort of Shorthorn. EBVs 
of gestation length were significantly lower (desirable) in polled cohorts of all breeds. All in all, this 
research concludes that polledness has no detrimental effects on the genetic merit of reproductive 
traits in beef cattle. 

 
INTRODUCTION 

Cattle breeding programs require reproductively sound animals of superior genetics. Genetic 
merits of the nucleus herds are routinely computed as estimated breeding values (EBVs) of recorded 
production and reproduction traits to rank animals and select them for various breeding programs. 
Reproductive traits have been generally found with low-to-moderate heritability (Meyer et al. 1990), 
and genetically favourable to neutral correlations with the production traits have been reported in 
beef cattle (Wolcott et al. 2013). Therefore, several reproductive traits, both in male and female, are 
measured and genetically evaluated (EBVs) for selective breeding (Barwick et al. 2013). In male, 
scrotal size (SS) is measure from scrotal circumference (cm) of bulls at 300-700 days (adjusted for 
400 days of age). Higher EBVs of SS are favourable because the larger scrotal circumference is 
associated with more semen production and earlier age at puberty in bulls. Furthermore, heifer 
progeny of Brahman and Tropical Composite bulls with larger SS reached puberty earlier and had 
shorter days to calving (Johnston et al. 2013). Heifers and cows are measured for several 
performance traits, including gestation length (GL), days to calving (DTC), calving ease direct 
(CEdr) and calving ease of daughters (CEdt). EBVs of GL (days) calculated based on the number 
of days from the date of conception to the date of calf birth. Lower EBVs are favourable because 
shorter GL is generally associated with lighter birth weight, improved calving ease and improved 
re-breeding performance among dams. In addition, calves born with a shorter GL are often heavier 
at weaning due to more days of growth. For DTC, lower values are favourable for EBVs estimated 
from the date when the female is introduced to a bull (joining period) until subsequent calving. Note 
that the time taken by cows to conceive after the commencement of the joining period primarily 
cause variation in DTC. Moreover, cows that had early puberty as heifers and return to oestrous 
earlier after calving will have lower DTC EBVs. Both CEdr and CEdt are favourable at lower EBVs, 
which are based on the ability of a sire’s calves to be born unassisted from 2-year-old heifers and 
ability of a sire’s daughters to calve at 2 years of age without assistance, respectively. Recently, due 
to increased awareness of animal welfare, consumer choices and costs and risks associated with 
physical dehorning, commercial beef producers and feedlots have emphasized on poll breeding. 
Polledness has been perceived by some farmers to have negative effect on some beef traits, including 
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reproduction. Therefore, genetic merit of reproductive traits between the polled and horned cohorts 
of beef cattle are compared in this study.  

 
MATERIALS AND METHODS 

Phenotypes for horn status (polled or horned) and EBVs (accuracy > 50%) of five reproductive 
traits (SS, GL, DTC, CEdr and CEdt) were obtained on a total of 548,775 animals (birth years: 2000 
to 2018) of seven beef breeds (Charolais = 14,219, Hereford = 25,2837, Limousin = 43,351 
Shorthorn = 58,603, Brahman = 81,617 Droughtmaster = 17,686 and Santa Gertrudis = 80,462) from 
BREEDPLAN database (https://breedplan.une.edu.au). Within each breed, dataset analyses were 
performed for the poll-vs-horn cohorts (Table 1) by using the R program (R Core Team 2021) to 
compute the summary statistics of Mean ± Standard Deviation (SD). Descriptive statistics for 
pairwise comparisons between the means were performed by the t-tests with pooled SD, and p-
values were obtained by using the t.test function in R-package “stats”. Effect sizes on each trait due 
to polledness within breeds were computed using the Cohen’s d (Cohen 1977; Lakens 2013).  

 
RESULTS AND DISCUSSION 

 
Figure 1. Boxplots of EBVs of Days to Calving for horn and poll cohorts. Red lines in the 
background show overall annual averages (pink: 95% confidence intervals). Dotted (….) and 
dashed (----) lines refer to breed-averages at the start (2000) and end (2018) of the selected 
period  
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Genetic merit for reproductive traits of the seven beef breeds have been consistently improving 
since 2000 though at variable rates. For example, Figure 1 shows EBVs of DTC for five breeds with 
decreasing trends depicting that all breeds have achieved shorter calving intervals. Intra-breed 
comparisons showed that genetic merit of DTC in the polled animals improved at significantly (p < 
0.05) higher rates in Hereford and Brahman than horned cohorts, and vice versa in Shorthorn and 
Santa Gertrudis (Table 1). EBVs of SS were significantly higher with high effect sizes (d = 0.14-
0.65) in polled cohorts of all breeds except Shorthorn (d = -0.1). The favourably decreasing trends 
for GL of polled animals in five breeds showed significantly better genetic gains (d = -0.11 to -0.77) 
except for Brahman (d=0.17), while Shorthorn were non-significant. Both CEdr and CEdt have 
genetically improved as measured in polled cattle. However, Hereford and Limousin have shown 
significantly lower EBVs for calving difficulty in their polled cohorts. It is also evident that the 
number of polled animals were higher in five breeds (Charolais, Hereford, Limousin, Shorthorn and 
Droughtmaster) as compared to Brahman and Santa Gertrudis (Table 1). While the polled and 
horned cohorts were generally represented by higher sample sizes, Shorthorn (horned = 5-7%) and 
Brahman (polled = 7-13%) had uneven representation for horned and polled respectively, and 
therefore both breeds may have shown discordant trends of EBVs from 2000 to 2018 born animals. 

 
Table 1. Sample sizes, descriptive statistics, effect size (Cohen’s d)and p-values of the 
comparison between polled and horned cohorts for five reproduction traits in beef breeds 

 
Trait Breed Polled Horned Mean±SDP Mean±SDH d * p-value 

SS (cm) Charolais 8,742 4,461 1.20±0.87 0.65±0.83 0.65 <0.0001 
 Hereford 159,151 86,357 1.71±0.85 1.43±0.72 0.36 <0.0001 
 Limousin 16,424 5,851 1.06±0.70 0.73±0.67 0.48 <0.0001 
 Shorthorn 55,626 2,761 1.26±0.70 1.33±0.67 -0.10 <0.0001 
 Brahman 5,783 71,526 1.20±1.11 0.75±1.22 0.39 <0.0001 
 Droughtmaster 12,258 3,592 1.53±0.86 1.41±0.81 0.14 <0.0001 
 Santa Gertrudis 20,875 57,317 0.69±0.88 0.41±0.93 0.31 <0.0001 

GL (days) Charolais 9,211 4,635 -3.36±2.11 -1.77±2.04 -0.77 <0.0001 
 Hereford 115,106 41,739 -0.45±1.77 -0.27±1.56 -0.11 <0.0001 
 Limousin 26,928 15,292 -2.66±2.19 -0.93±2.05 -0.81 <0.0001 
 Shorthorn 28,806 1,497 -1.45±1.49 -1.40±1.44 -0.03 0.22 
 Brahman 600 4,458 -0.03±1.06 -0.24±1.35 0.17 <0.0001 
 Droughtmaster 538 401 0.32±1.78 0.67±1.63 -0.20 0.002 

DTC (days) Hereford 8,064 1,602 -2.53±2.27 -1.78±1.93 -0.36 <0.0001 
 Shorthorn 6,077 421 -1.26±3.29 -1.90±3.11 0.20 <0.0001 
 Brahman 2,541 34,293 -5.87±6.89 -4.45±7.28 -0.20 <0.0001 
 Droughtmaster 1,885 840 -0.65±4.76 -0.47±5.60 -0.03 0.43 
 Santa Gertrudis 8,975 23,820 -0.66±5.74 -0.87±5.47 0.04 0.0028 

CEdr (%) Charolais 4,426 2,272 2.65±7.32 -0.90±6.18 0.52 <0.0001 
 Hereford 56,827 18,933 -0.32±5.85 -2.34±6.42 0.33 <0.0001 
 Limousin 7,759 3,541 1.59±3.61 -0.16±4.03 0.46 <0.0001 
 Shorthorn 21,511 1,152 0.23±5.93 0.10±6.48 0.02 0.51 

CEdt (%) Charolais 2,028 1,333 -0.26±6.73 -0.30±6.73 0.01 0.89 
 Hereford 17,689 3,516 0.74±4.34 -1.39±4.74 0.47 <0.0001 
 Limousin 4,588 2,484 1.28±3.37 0.31±4.50 0.24 <0.0001 
 Shorthorn 7,500 459 -0.33±5.22 -0.33±5.29 0.01 0.99 

* Cohen’s d (effect sizes) are interpreted as; d 0.01: very small, d 0.20: small, d 0.50: medium, d 0.80: large, d 
1.20: very large, d 2.0: huge (Sawilowsky 2009).  
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Overall, the results suggest that genetic improvements in reproductive traits and selection for 
polledness have been favourably in action in the nucleus herds of beef cattle during the last two 
decades. Given the positive associations between polledness, production (Randhawa et al. 2021) 
and studied traits, selection could be undertaken to improve them simultaneously to achieve 
sustainable beef production. Breeding polled animals can continually improve fertility and 
pregnancy traits at a rate governed by the respective trait’s heritability. However, generalization of 
genetic potentials for some breeds with significantly unequal samples represented in their polled and 
horned cohorts may be substantially biased. In addition, phenotyping accuracy of head-status and 
subsequent recording in the BREEDPLAN database may have confounded the comparisons of this 
study (Connors et al. 2018). Poll gene testing assays can not only eliminate the impacts of 
phenotyping bias, but can also exclude genetically heterozygous animals (i.e., carry a horn allele but 
phenotypically polled (Randhawa et al. 2020). With widespread gene diagnostics tools and high-
density genotyping being implemented into nucleus and commercial herds, larger proportion of 
genomic evaluated breeding animals will become available for future investigations based on 
genotype-phenotype concordant head-status to account for the perceived bias.  
 
CONCLUSIONS 

This study shows that reproductive traits in beef cattle have generally improved along with the 
proportion of polled animals and their genetic merits in most of the studied breeds. Selection for 
polledness and reproductive traits could be undertaken simultaneously to achieve sustainable beef 
production. However, the findings require caution, as bias may be introduced through limited 
sampling, phenotyping inaccuracy and underlying genetic heterogeneity in the polled phenotypes. 
Further investigations by using recently developed poll diagnostic assays in genome-evaluated 
larger populations will enhance our understanding about the true genetic merit of polled cattle. 
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EBVS PREDICT PROGENY PERFORMANCE DIFFERENCES 
 

M.J Reynolds1, C.J Duff1, P.F Parnell1 and A.I Byrne1, 
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SUMMARY  

Estimated Breeding Values (EBVs) form a key component of modern cattle breeding programs 
and are the foundation for genetic improvement within the Angus breed in Australia. Demonstrating 
the ability of EBVs to predict differences in progeny performance in a practical, real world scenario 
is seen as vital to ensure the continued growth in industry acceptance of EBVs.  

This work explores the ability of EBVs predicted differences in progeny performance of sires 
entered in cohorts 5, 6 and 7 of the Angus Sire Benchmarking Program (ASBP) by comparing the 
expected differences in progeny performance based on EBVs with the observed differences in 
average progeny performance.  

The study demonstrated that EBVs predicted differences in the breeding value of sires in the 
ASBP for birth, growth and carcase traits, and reinforces the merits of focussed adoption strategies 
pertaining to EBVs within the Angus genetic improvement pipeline.  

 
INTRODUCTION  

EBVs function as both a breeding and marketing tool within modern cattle breeding programs 
with strong adoption by Angus seedstock and commercial breeders (Angus Australia 2020). The 
continued availability of evidence-based support of the technology is seen as vital to ensure 
confidence and increased use of the technology, enabling the industry to benefit from improvements 
in the rate of genetic gain.   
 
MATERIALS AND METHODS  

The TransTasman Angus Cattle Evaluation includes pedigree, performance and genomic 
information from the Angus Australia and Angus NZ databases to evaluate Angus and Angus-
influenced animals. The major components of this analysis rely on BREEDPLAN analytical 
software developed by the Animal Genetics and Breeding Unit (Graser et al. 2005).  

To evaluate the ability of EBVs to predict differences in average progeny performance the EBVs 
of sires prior to entering the ASBP were collated as follows;  

• Cohort 5 – 46 sires – March 2015 TransTasman Angus Cattle Evaluation 
• Cohort 6 – 41 sires – March 2016 TransTasman Angus Cattle Evaluation  
• Cohort 7 – 34 sires – March 2017 TransTasman Angus Cattle Evaluation 

The average EBV difference between the highest 10 and lowest 10 sires within each cohort were 
calculated for each trait to determine the expected difference in average progeny performance 
between the two sire groups. With the expected difference, half the EBV difference, reflecting the 
contribution of the sire genetics to the average performance of progeny.  

Performance data from the sires progeny was collected as part of the ASBP program. Calves are 
produced in co-operator herds, which involves the joining of approximately 2,500 females each year 
via fixed time artificial insemination to 40 sires. Performance measurements for birth and early 
growth traits are then collected on all calves, with male progeny castrated. Male progeny are grown 
to feedlot entry weight, before being measured for feed intake over a 70-day test period, at which 
point they enter a commercial feedlot finishing program. Meat quality traits were assessed in the 
steer carcases following slaughter, with samples taken for meat science assessment (e.g. IMF%, 
shear force) (Parnell et al. 2019).  
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The range of progeny number per sire for birth weight was 12 to 47, and 8 to 47 for the growth 
traits. The progeny number per sire for carcase traits was lower (from 4 to 27 progeny), as only male 
progeny were measured for these traits.  

The progeny performance data for each trait was analysed through the Statistical Analysis 
System (SAS) to generate Least Squares Means (LSMs) for each sire, within their cohort. The LSMs 
were estimated using adjusted data and accounting for contemporary group as explained by Graser 
et al. (2005).  

The LSMs are used to determine the observed differences between the mean progeny 
performance of the highest and lowest EBV sire groups. The expected differences were then 
compared to the observed differences to determine the reliability of the EBVs in predicting 
differences in progeny performance.  
 
RESULTS AND DISCUSSION 

A comparison of the average EBV differences and observed differences in progeny performance 
for birth and growth traits is shown in Table 1 and Table 2. When the average expected difference 
is compared to the average actual difference, the results demonstrate that EBVs predict differences 
in the genetic merit of animal’s for birth weight and the growth traits. As an example, for Birth 
Weight, the average EBV difference between the highest 10 and lowest 10 EBV sires was 3.7kg. 
The EBV difference was then halved to determine the average expected difference, of 1.9kg, and 
compared to the average actual difference of 1.5kg. 
 
Table 1. Comparison between average EBV difference and progeny performance for Birth 
Weight of the highest 10 and lowest 10 EBV sires for this trait 
 
 Cohort 5  Cohort 6  Cohort 7  Average  
Average High EBV (kg) 6.1  6.7 6.0 6.3 
Average Low EBV (kg) 2.6 2.7 2.4 2.6 
Difference in EBV (kg) 3.5 4.0 3.6 3.7 
Expected Difference (kg) 1.8 2.0 1.8 1.9 
Average High LSM (kg) 38.5 38.3 38.4 38.4 
Average Low LSM (kg) 37.3 36.3 37.1 36.9 
Actual Difference (kg) 1.2 2.0 1.3 1.5 
 

The results for the carcase composition traits show alignment with those seen in birth and growth 
traits, when the average expected difference is compared to the average actual difference. This was 
most evident in Carcase Weight (Table 3), Eye Muscle Area (Table 4) and Intramuscular Fat (Table 
7). The results show that the expected differences in performance based on EBVs was observed in 
the differences in average progeny performance, apart from carcase rump fat (Table 6). The 
discrepancy observed for carcase rump fat may be a function of unintended abattoir effects, such as 
hide puller damage, leading to lower precision in measuring this trait.  

The methodology enabled the ability of EBVs to predict differences between progeny 
performance to be assessed, but did not fully account for the effect of the low number of progeny 
per sire. To fully account for this effect and to fully understand the statistical significance a much 
larger study would need to be undertaken.  
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Table 2. Comparison between average EBV difference and progeny performance for 200 Day 
Weight of the highest 10 and lowest 10 EBV sires for this trait 
 
 200 Day Weight 400 Day Weight 600 Day Weight 
Cohort  5  6  7  Avg.   5  6 7 Avg.   5 6  7  Avg.  

Average High 
EBV (kg) 

55.4 56.4 58.4 56.7 102.5 101.8 105.7 103.3 137.8 137.2 138.2 137.7 

Average Low 
EBV (kg) 

33.4 40.5 44.2 39.4 63.8 76.5 82.3 74.2 81.6 99.0 106.1 95.6 

Difference in 
EBV (kg) 

22.0 15.9 14.2 17.3 38.7 25.3 23.4 29.1 56.2 38.2 32.1 42.1 

Expected 
Difference (kg) 

11.0 8.0 7.1 8.7 19.3 12.7 11.7 14.6 28.1 19.1 16.0 21.1 

Average High 
LSM (kg) 

251.0 217.6 231.6 233.4 375.7 360.4 362.9 366.3 571.3 623.2 586.8 593.8 

Average Low 
LSM (kg) 

237.4 209.2 227.9 224.8 359.2 347.0 350.2 352.1 545.7 603.2 572.6 573.8 

Actual 
Difference (kg)  

13.6 8.4 3.7 8.6 16.5 13.4 12.7 14.2 25.6 19.9 14.2 19.9 

 
Table 3. Comparison between average EBV differences and progeny performance for Carcase 
Weight of the highest 10 and lowest 10 EBV sires for this trait 
 

 Cohort 5 Cohort 6 Cohort 7  Average 
Average High EBV (kg) 77.3 83.2 86.3 82.3 
Average Low EBV (kg) 40.6 52.9 60.8 51.4 
Difference in EBV (kg) 36.7 30.3 25.5 30.8 
Expected Difference (kg) 18.4 15.1 12.7 15.4 
Average High LSM (kg) 429.3 435.2 429.9 431.5 
Average Low LSM (kg) 411.2 423.4 419.8 418.1 
Actual Difference (kg)  18.1 11.9 10.1 13.4 

 
Table 4. Comparison between average EBV difference and progeny performance for Carcase 
Eye Muscle Area of the highest 10 and lowest 10 EBV sires for this trait 
 

 Cohort 5  Cohort 6 Cohort 7 Average (cm2) 
Average High EBV (cm2) 10.6 11.1 8.4 10.0 
Average Low EBV (cm2) 2.8 3.6 3.6 3.3 
Difference in EBV (cm2) 7.8 7.5 4.8 6.7 
Expected Difference (cm2) 3.9 3.8 2.4 3.3 
Average High LSM (cm2) 89.2 94.1 90.3 91.2 
Average Low LSM (cm2) 87.3 89.7 88.8 88.6 
Actual Difference (cm2)   1.9 4.4 1.6 2.6 
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Table 5. Comparison between average EBV difference and progeny performance for Carcase 
Rib Fat of the highest 10 and lowest 10 EBV sires for this trait 
 

 Cohort 5  Cohort 6 Cohort 7  Average  
Average High EBV (mm) 1.9 2.1 1.8 1.9 
Average Low EBV (mm) -2.2 -1.5 -1.6 -1.8 
Difference in EBV (mm)  4.1 3.6 3.4 3.7 
Expected Difference (mm)  2.0 1.8 1.7 1.8 
Average High LSM (mm) 18.2 14.7 15.3 16.1 
Average Low LSM (mm) 15.6 14.6 12.8 14.3 
Actual Difference (mm)   2.6 0.1 2.5 1.8 

 
Table 6. Comparison between average EBV difference and progeny performance for Carcase 
Rump Fat of the highest 10 and lowest 10 EBV sires for this trait 
 

 Cohort 5  Cohort 6 Cohort 7 Average 

Average High EBV (mm) 2.2 19.9 1.3 1.8 
Average Low EBV (mm) -2.6 -1.9 -2.2 -2.2 
Difference in EBV (mm) 4.8 3.8 3.5 4.0 
Expected Difference (mm) 2.4 1.9 1.7 2.0 
Average High LSM (mm) 19.6 19.6 22.9 20.7 
Average Low LSM (mm) 19.5 19.6 20.3 19.8 
Actual Difference (mm)  0.1 0.0 2.6 0.9 

 
Table 7. Comparison between average EBV difference and progeny performance for Carcase 
Intramuscular Fat of the highest 10 and lowest 10 EBV sires for this trait 
 

 Cohort 5  Cohort 6 Cohort 7 Average  
Average High EBV (%) 2.8 3.9 4.0 3.6 
Average Low EBV (%) 0.5 0.9 1.4 0.9 
Difference in EBV (%) 2.3 3.0 2.6 2.6 
Expected Difference (%) 1.2 1.5 1.3 1.3 
Average High LSM (%) 9.9 9.3 9.4 9.5 
Average Low LSM (%) 8.4 7.8 7.8 8.0 
Actual Difference (%)  1.5 1.5 1.6 1.5 

 
CONCLUSIONS  

The work has demonstrated that EBV differences are a predictor of differences in progeny 
performance for birth, growth and carcase traits. The expected difference in progeny performance 
calculated from the difference between the average initial EBV of the highest 10 and lowest 10 sires 
provided a prediction of the observed difference in progeny of the two groups of sires, assessed 
through the ASBP program.  

Breeders should have confidence in using EBVs to identify genetics that are most aligned with 
their breeding objectives, as EBVs provide an indication of the genetics that sires are delivering to 
a breeding herd. 
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(P.PSH.0528). The results of this study are part of the “Lessons from the Angus Sire Benchmarking 
Program” resources, the full suite of resources can be found by visiting the Angus Australia website.  
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SUMMARY 
Differences in profitability between genetically different sire groups at the Macquarie site of the 

Merino Lifetime Productivity Project (MLP) were compared using GrassGro™ to simulate animal 
performance based on the interactions between animal production and pasture growth determined 
by historical climate data. Mean gross margin (GM) differences of $13/Dry Sheep Equivalent (DSE) 
and $42/head (hd) were found between sire groups for wool and meat median prices. In median to 
high markets wool income had a higher influence on GM/DSE than meat income, with fibre diameter 
being the trait of most influence. In low markets meat income had a greater influence on GM/DSE 
with weaning rate the most influential single trait. Utilising a combination of traits, through either 
of three different selection indexes, showed the strongest correlations with GM/DSE.  

 
INTRODUCTION 

Previous studies (Clarke et al. 2019) have reported large (over $50) differences in production 
value of wether progeny on a per head basis between sire groups. Analysis of combined wether trial 
data using GrassGro™ (Merino Bloodline Performance, www.merinobloodlines.com.au) also 
reveals differences among bloodlines of up to $13/hd. However, one limitation of using wether data 
is an inability to account for differences in reproductive performance in the financial analysis. 

GrassGro™ (Moore et al. 1997) is a decision support tool that enables the economic performance 
of livestock enterprises to be simulated using animal production data and their interactions with 
seasonal variation in pasture, historical weather data and specified market scenarios. 

The MLP project was designed to evaluate 134 diverse industry sires based on the lifetime 
performance of their ewe progeny for a wide range of wool, growth, carcase, reproduction and 
disease resistance traits. This paper presents a preliminary analysis using GrassGro™ to investigate 
differences in economic performance between sire groups using a production dataset generated from 
the first one and two reproductive opportunities of the 2018 and 2017 drop ewes, respectively, at the 
Macquarie site of the MLP project.  
 
MATERIALS AND METHODS 

The design of the MLP project has been described by Ramsay et al. (2019). The specific design 
of the Macquarie site has been described by Egerton-Warburton et al. (2019). Data from ewes born 
at the Macquarie site in 2017 (n=425) and 2018 (n=536) were available for analysis. Ewes were 
joined by artificial insemination in December to lamb the following May, with shearing occurring 
in October after the weaning of progeny in August. Traits evaluated included greasy fleece weight 
(GFW, kg), clean wool yield (YLD, %), mean fibre diameter (FD, µm), bodyweight (WT, kg) and 
reproduction (conception and number of lambs weaned per ewe joined, LW/EJ) in adult ewes. 

A representative model farm was set up in GrassGro™ for the Macquarie site. Historical climate 
and rainfall data for Trangie Agricultural Research Centre (TARC, Lat -31.99, Long 147.95) was 
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sourced from SILO (Jeffrey et al. 2001) for the period 1970 to 2019, commencing when the required 
data set became available. The base parameters of the model were set to reflect the annual calendar 
of operations, and livestock management policies (feeding, selling) at TARC. A conservative fixed 
stocking rate (1.5 animals/ha) was used to ensure heavier sire groups were not unreasonably 
restricted in average seasons and was based on the regional estimate of 3-7 DSE/ha (Hassall and 
Associates 2006). 

An across-year analysis was undertaken using the MERINOSELECT OVIS software (Brown et 
al. 2007) to estimate sire breeding values (BVs), accounting for fixed effects such as birth and rear 
type, dam age, dam source and management group. Predicted sire progeny group means were then 
calculated as mean flock production level + 0.5 × sire group BV, with assumed production level 
means shown in Table 1. Body weight sire group means were then adjusted to reflect animals in 
condition score 3 (standard reference weight). These predicted sire group means were used as inputs 
to the GrassGro™ simulation, and the range between sire group means are shown in Table 1. Sire 
differences in survival rate cannot be expressed (in combination with conception rates) in 
GrassGro™. Therefore, adjustments to conception rates were used to achieve desired weaning rate 
differences. The proportion of empty ewes was entered and then conception rates for singles and 
twins were adjusted in GrassGro™ to reflect desired weaning rate outcomes in alignment with 
weaning rate BVs for each sire group.  
 
Table 1. Mean, minimum and maximum predicted sire group means for production inputs to 
the GrassGro™ decision support tool 
 

 FD (µm) GFW (kg)  YLD (%) Standard reference 
WT (kg) 

LW/EJ 

Mean 19.5 7.0 71.4 60.0 0.98 
Minimum  18.4 6.5 69.8 57.9 0.86 
maximum 20.6 7.3 72.7 62.3 1.11 

 
Three wool and meat price scenarios (30, 50 and 70th percentile, denoted as low, median and 

high) were used from weekly Australian Wool Exchange (AWEX) and Meat and Livestock 
Australia (MLA) market reports between January 2015 to December 2019 and supplementary feed 
costs (barley) were averaged over the same timeframe (ABARES 2020). Husbandry costs were 
calculated from NSW DPI Farm Enterprise budgets (18µm Merino) in 2019 
(https://www.dpi.nsw.gov.au/agriculture/budgets/livestock).  

Mean GM/DSE was simulated for each sire group in response to historic seasonal conditions 
over the period from 1970 to 2019 using median prices for 2015 to 2019. GM/DSE was plotted 
against four adult production traits (GFW, FD, WT and LW/EJ) as a deviation from the mean of all 
sire groups. Three selection indexes based on the Dual Purpose Plus (DPP), Merino Production Plus 
(MPP) and Fibre Production Plus (FPP) MERINOSELECT standard indexes (Brown and Swan 
2016), were used to combine the production traits into index values, which were then correlated with 
GM/DSE under the 3 wool and meat price scenarios. Each of these indexes were modified to only 
include yearling and adult sire BVs for the traits in Table 1 and excluded any additional traits. 

 
RESULTS AND DISCUSSION 

On average, GM/DSE ranged $13 between the top and bottom sire groups under median and 
high market scenarios and $10 per DSE with low prices. Mean GM/DSE may undervalue higher 
weaning rates and mean GM/hd provides an alternative comparison for properties that are 
understocked and can accommodate additional lambs without increasing supplementary feed or 
reducing ewe numbers. There was a difference in GM/hd of $35, $42 and $45 in low, median and 
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high price scenarios respectively between the highest and lowest sire groups. There was a range of 
3.8 to 4.5 mean DSE/ha between the highest and lowest sire groups in the scenario examined. Mean 
GM/DSE will be used for all other comparisons in this paper to account for changes in resource 
requirements, such as increases in feed. 

Figure 1 shows the resulting distributions of mean GM/DSE at median prices against FD, CFW, 
WT and LW/EJ for each sire group as a deviation from the mean of all sire groups. The correlations 
between GM/DSE and these traits were -0.65, 0.32, -0.06 and 0.42, respectively. Wool income had 
a larger effect on GM/DSE (r = 0.62) than meat (r = 0.42) with FD the main trait of influence, 
followed by LW/EJ. Higher wool and meat prices resulted in similar trends in the relationship 
between traits of influence and the GM/DSE as those of median prices. Interestingly, when wool 
and meat prices were lower, meat income had a greater influence (r = 0.69) than wool (r = 0.17) on 
GM/DSE and the trait of largest influence was LW/EJ (r = 0.68) then CFW (r = 0.47).  

 
Figure 1. Gross margin per DSE for each sire group against adult ewe a) FD, b) CFW, c) WT 
and d) LW/EJ as deviations from the mean of all sire groups at Macquarie (median prices) 

 
Correlations of GM/DSE for high and low prices with median prices were 0.99 and 0.84 

respectively. This suggests that ranking of sires on GM/DSE will be similar in median and high 
markets. However, due to a higher emphasis on meat prices when wool and meat markets decline, a 
stronger influence of LW/EJ and CFW may lead to a re-ranking of sires during these periods.  

 
Table 2. Correlations between DPP, MPP and FPP MERINOSELECT indexes and GM/DSE 
in low, median and high market prices 
 

 DPP MPP FPP 
Low 0.93 0.92 0.79 
Median 0.72 0.82 0.92 
High 0.76 0.87 0.95 
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Combining traits, using a selection index, resulted in higher correlations with GM/DSE than 
single traits, as shown in Table 2. These results show stronger correlations for the DPP and MPP 
indexes when markets were low and the FPP index when markets were high. This reflects the earlier 
findings where wool income had a stronger influence on GM/DSE in higher markets and meat 
income in lower markets. 

The various seasonal conditions between 1970 and 2019 resulted in simulated mean production 
values that differed from the predicted sire means that were entered as breed references in 
GrassGro™, but these inputs and outputs were highly correlated (r>0.98). Variation between sire 
progeny group weaning rates had a large influence on GM/DSE, highlighting the importance of 
accounting for differences in reproductive performance between genotypes. However, it was 
difficult to model these directly in GrassGro™, and more accurate results may be achieved if genetic 
differences in survival rates could be included as inputs. Different resources (eg. nutrition) are 
required for similar weaning rates depending on variations in conception and survival rates. 

 
CONCLUSIONS 

This study shows large differences of up to $13/DSE and $42/hd mean GMs between sire groups 
under a median price scenario when based on simulated environmental impacts across multiple 
seasons. It would be valuable to extend these results for these sire groups in different environments 
and across a larger range of sire groups within the MLP project. The value in including weaning rate 
differences between sire groups when comparing GM/DSE is evident especially when experiencing 
low wool and meat markets.  
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SUMMARY 
Parentage testing in cattle based on DNA markers generates pedigree information for predicting 

breeding potential, as well as for the inclusion of animals in breed specific stud books. Here we 
present a method that could potentially be used for parentage assignment of calves. We propose the 
use of the portable minION (Oxford Nanopore Technologies; ONT) sequencer to achieve the 
parental assignments. The method uses ultra-low-coverage sequence data and a combination of 
genetic distances taken from a genomic relationship matrix, and simple Mendelian inheritance 
patterns - if both parents are homozygous for the same allele at a loci, then the offspring must also 
be homozygous at that loci.  

The method was tested by simulating base calls based of the read length, loci distribution, and 
error profile observed in a real ONT sequenced sample of Brahman (Bos indicus) tail hair. These 
variables were used to simulate the expected data that would be obtained from sequencing the 
genome of 1500 Brahman calves with 100,000 mapped reads each. The algorithm assigned 98.7% 
of calves to the same sire/dam pair as the DNA based pedigree information. This study suggests that 
ONT could be successfully used to perform parentage testing in cattle.  

 
INTRODUCTION 

Genotype based parental assignment in cattle is the most accurate way of pairing up bulls and 
cows with their progeny (e.g. McClure et al 2018). For cattle that are handled often, there is ample 
opportunity to sample tissue for DNA analysis and later make management decisions based on the 
results. For cattle in regions such as Northern Australia, cattle are rarely handled and so the time 
between taking a sample for DNA analysis and getting the parental assignment results that are 
needed to make management decisions is a limiting factor in the technologies use. 

Portable sequencers are now available that can sequence long stretches of DNA in a single read. 
These have been applied in the field to address circumstances that require rapid turnaround of results, 
such as disease outbreaks (e.g O’Donnel et al. 2020). Here we suggest a new application: parentage 
testing of cattle. The implementation of parentage testing has the potential to be the first step towards 
crush-side-genotyping, where animals are genotyped and have genomic estimated breeding values 
calculated on farm, allowing for rapid management decisions to be implemented.  

 
MATERIALS AND METHODS 

SNP data. 2675 Brahman heifers, cows and bulls from a single property were genotyped with 
the Neogen TropBeef V2 array, with 50045 SNP (after quality control, with genotypes with QC 
score <0.6 set to missing, monomorphic SNP excluded and SNP with all heterozygous calls 
excluded). All animals genotypes were imputed to 611,000 SNP on the Bovine HD array (following 
further QC) using Eagle (Loh et al. 2016) for phasing and Minimac3 (Das et al. 2016) for imputation. 

All of the dams and bulls (1175 in total) were used as the potential parental population against 
which each calf was tested. 

ONT data. DNA was extracted from the tail hair of a Brahman heifer from Queensland Australia 
that was collected as part of routine industry genomic evaluation by a commercial supplier. DNA 
was extracted using the PureGene (Qiagen) DNA extraction kit. The DNA was quantified on a Qubit 
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4.0. A sequencing library was prepared from the DNA using the SQK-LSK109 kit from ONT. The 
library was sequenced on a flow cell (FLO-MIN106; ONT) for 72 hours. Guppy v4.2.2 was used to 
convert the raw data to fastq format. The fastq data was aligned to the ARS_UCD1.2 Bos taurus 
genome using minimap2 version 2.17 (Li 2018). Alignment positions for each read were extracted 
from the .sam output file. The observed sequence lengths and alignment locations were then used to 
simulate the expected SNP coverage in the test population of animals.  

The error rates of the ONT data were taken from Lamb et al. (2021), where ONT data was 
mapped back to a reference assembly generated from the same animal. The frequency of each 
substitution error was then calculated for each of the four possible reference nucleotides.  

ONT Simulation algorithm. For each read the start position of the alignment to the reference 
genome and the read length were used to calculate if that read is expected to overlap a SNP location 
in the 700K SNP data. If the read did not overlay a SNP the algorithm moved onto the next read. If 
the read did overlay a SNP location, the “true” genotype of the test animal at that location was taken. 
If the animal was heterozygous at that location one of the two alleles was randomly chosen as the 
allele that was sequenced. An error was then induced into the base call using the specific ONT error 
rates for each base, such that the error profile of the final base call reflected the error profile of the 
real ONT data. The SNP location and basecall was then output to be tested by the parentage calling 
algorithm. Additionally, an error rate of ten times the observed rate was also tested, by increasing 
the probability of each error by a factor of 10. 

Parentage assignment algorithm. Each calf was individually assigned to a parental pair. To 
reduce the search space a two-stage parental algorithm was used. First the simulated ONT genotype 
calls for the test calf were merged with the imputed SNP array genotypes of all potential sires and 
dams (N=1175). For each test calf loci without simulated ONT coverage were removed from the 
matrix, approximately 30K SNP remained in the matrix. The genotype matrix was used to calculate 
a genomic relationship matrix (GRM) using the A.mat command (default settings) of the rrBLUP 
package v4.6.1 in R version 4.0.0.  The relationship values between the test calf and each bull were 
extracted, and the 50 bulls with the highest relationship value to the calf were used in the next step 
of the parentage assignment. The same approach was taken to highly related cows (n = 50). 

The 50 bulls and 50 cows that were selected for further parentage testing were combined into 
2500 possible parental pairs (50 x 50). A minimum minor allele frequency (MAF) cutoff was used 
to avoid large numbers of loci being homozygous in the parental pair and calf by chance. Unless 
otherwise stated, a MAF of 0.4 was used to filter SNP, and SNP on unplaced scaffolds and the X 
chromosome were removed. Then, for each pair of potential parents, loci where both the bull and 
the cow were homozygous were identified. If the test calf simulated ONT data had coverage in this 
location then the loci was used to create a score. The score was initialized at 0. For every loci that 
was homozygous in the bull and the cow, and where the calf had matching simulated ONT data, a 
+1 was added to the ‘match’ score. Alternatively, for every loci that was homozygous in the bull 
and the cow, and where the calf had a different simulated ONT genotype, +1 was added to the ‘non-
match’ score. The final parental score for the bull cow pair was returned as M/(M+Nx10), where M 
is the match score and N is the non-match score. The unmatched loci were weighted more highly 
than the matched loci because the likelihood of them appearing by chance in the true sire-dam-calf 
trio is expected to be very low, proportionate to the error rate of the sequence data. This was repeated 
for all 2500 bull/cow combinations. The highest score was used to identify the most likely parental 
pair. If another pair of animals was greater than 90% of the highest score, that parental pair was also 
reported. The most likely parental pair was then compared to the pedigree data of the animals.  

 
RESULTS AND DISCUSSION 

A known trio of animals consisting of a cow-bull-calf families were used to test the hypothesis 
that the highest level of concordance in homozygous sites would be between the true parents and 
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their offspring. An additional 18 animals from the same herd were used to assess the method.  At 
each minimum MAF tested the highest proportion of concordant calls was the correct parental pair 
(Table 1). The second highest level of concordance at all MAF contained at least one of the true 
parents. The difference between the true parental pair and the next highest match increased as the 
minimum MAF increased (Table 1). Interestingly, when the GRM from the same calf was examined, 
the highest relationship to any bull was not to the true sire, but to one of his sons (a half sibling of 
the test calf). The difference between the top (correct) match and the next highest match increased 
with an increase in the MAF. 

 
Table 1. Details of loci used to assign calves to sire and dam  
 

Min MAF N loci Correct parental 
match1 

Highest incorrect 
match2 

Highest incorrect 
match (No parents)3 

0 676430 97.84% 95.08% 93.97% 
0.1 420021 95.48% 89.02% 86.65% 
0.2 289094 93.82% 84.22% 80.35% 
0.3 183804 92.45% 80.08% 75.02% 
0.4 89926 91.42% 76.63% 70.72% 
1 Matches between the test calf and the true parents 
2 Matches between the test calf and the highest incorrect sire/dam pair (one parent can be correct) 
3 Matches between the test calf and the highest sire/dam pair where neither sire or dam is correct 

 
The parental assignment algorithm described, which includes identifying the 50 most likely bulls 

and cows that for the parental pair of the calf being tested, was applied to simulated ONT base calls 
of 1500 calves. For the simulated reads only 11 (0.73%) calves had two or more potential sire/dam 
matches. When the error rate in the simulated reads was increased 10 fold, this number increased to 
19 (1.26%).  

When the parentage assignment results were compared to the pedigree information and historical 
mating records, the concordance was 98.7% and 98.6% for the low and high simulated error rates 
(Figure 1). After consultation with the producer, all but 5 of the calves were found to have errors in 
the pedigree data including misreporting of animal ID numbers. A number of the calves had been 
assigned to one of two potential bulls in the pedigree – with the DNA identifying the other as the 
true sire. Overall, after consultation with the producer, the level of agreement between the algorithm 
presented here and the pedigree information was 99.7% and 99.6%.  

The best algorithm for parentage testing needs to play to the strengths of the technology being 
used. Here we opted for low pass sequencing, which allows many samples to be processed 
simultaneously. At the depth presented here approximately 100 samples could be processed on a 
flow cell, with an overall cost of under AU$20 per sample. This results in approximately 1 hour of 
sequencing per animal, which is a reasonable time to hold animal in yards while the parentage is 
determined, and clearly much shorter than the several weeks that other DNA parentage assignment 
tests take. Read alignment of the data can be performed in parallel with the sequencing on the device, 
and so does not add time to the test.   

While using a GRM based approach with this data is possible, we observed that in at least some 
animals the highest relationship score of the potential bulls tested was not to the true sire, but rather 
to a half sibling of the test animal. Although the GRM is calculated on a reasonable number of loci 
(~30,000 loci), the genotype calls were constrained to information from one read, and hence 
heterozygous loci were randomly genotyped as homozygous. Consequently, the GRM alone was not 
sensitive enough to accurately differentiate between relationship levels of highly related individuals.  
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Figure 1. Concordance between parental pairs assigned based on simulated ONT sequencing 
data and producer curated pedigree information. NCalves =1500; NDams=1034; NSires=141 

 
One consideration is that the number of usable loci is directly affected by the genetic distance 

between the cow and the bull. Animals that are highly related are expected to share alleles by 
descent, therefore have a higher number of matching homozygous loci. In this population we 
observed 600-700 matching homozygous loci per bull/cow pair. The required amount of sequence 
data may differ based on the genetic diversity of the test animals.  

The assignment of each calf took approximately 25 seconds of computational time, which 
includes the calculation of the GRM. The GRM calculation constitutes > 95% of the computational 
time. Potentially, the GRM based potential parents selection could be removed from the algorithm, 
and the costs in terms of computational time should be considered based on the size of the test 
population, which would typically be much smaller than what was tested here. One important 
consideration is that the number of scores that the homozygosity based test must calculate is equal 
to the product of the potential sires times potential dams. Hence, with 50 bulls and 50 cows the 
number of tests is 2500, while with 100 of each the number of tests is 10,000 (a four fold increase 
even though the population has only doubled). Hence, where the size of the potential sire/dam herd 
is large, some reduction in the number of animals being tested is likely to save significant 
computation time. While the computational time for the test is minimal, and the sequencing and 
bioinformatics analysis can be completed in ~ 1 hour per animal. Laboratory methods (DNA 
extraction, library preparation) have not been examined here, research into the optimisation of those 
approaches is being undertaken with promising results (Mason and Botella 2020; Gowers et al. 
2019). 
 
CONCLUSIONS 

Here we present an algorithm for parentage testing from data obtained from ONT sequencing. 
When tested on simulated ONT data of 1500 calves, the accuracy of parental assignment (compared 
to curated pedigree information) was 99.7%. This work is the first step towards using ONT data to 
perform on-farm parentage assignment of cattle.  
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SUMMARY 

Optimum polygenic and genomic weights enhance the accuracy of breeding value estimates in 
single-step genomic evaluations. This study estimated the contribution from marker information to 
total additive genetic variation referred as λ using an extended single-step model in a multi-trait 
variance component estimation based procedure using data for six Australian Angus carcase traits. 
The λ for these traits ranged from 0.54 (for carcass intramuscular fat) to 0.79 (for carcass eye muscle 
area). Heritabilities were similar between the pedigree only and the extended single-step multi-trait 
model when using the total genetic variance, and ranged from 0.37 (for carcass rib fat) to 0.53 (for 
carcass weight), suggesting that the single-step model did not explain more genetic variance than 
pedigree based models. Results suggest that the scalar λ in the current single-step routine evaluation 
could be replaced by an extended single-step model allowing for different proportions of the additive 
genetic co-variance explained by markers for all elements of the genetic co-variance matrix. 
 
INTRODUCTION 

Increasing availability of genomic information requires ongoing modification to incorporate 
genotypes efficiently in routine genetic evaluation of Australian beef cattle. Single-step genomic 
evaluation developed by Legarra et al. (2009) and Christensen and Lund (2010) combines both 
pedigree and genotypes in a unified analysis. This method integrates numerator relationship matrix 
(𝑨𝑨) and genomic relationship matrix (𝑮𝑮) into a single 𝑯𝑯 matrix, depicting co-variance between both 
genotyped and non-genotyped animals in the analysis. An improved 𝑮𝑮 matrix (𝑮𝑮𝒘𝒘) that can be 
obtained as 𝜆𝜆𝑮𝑮 + (1 − 𝜆𝜆)𝑪𝑪 was suggested by Christensen and Lund (2012), where 𝑪𝑪 is often the 
numerator relationship matrix among the genotyped animals, and λ is a non-zero weight with 0 <
𝜆𝜆 < 1. λ is usually referred to as the proportion of additive genetic variance explained by the marker 
effects. For current BREEDPLAN single-step multi-trait breeding value estimation λ is set to a 
scalar value of 0.5, implying that for all genetic co-variances in the model, the same proportion is 
explained by markers.   

Previous studies aimed at estimating λ by a cross-validation grid-search procedure to maximise 
the accuracy of predicted breeding values expressed as �𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢� , 𝑦𝑦) 𝜎𝜎𝑢𝑢�𝜎𝜎𝑦𝑦⁄ � ∗ �1 ℎ2⁄ , with the cross-
validations performed on single trait data sets using a genetic variance 𝐻𝐻𝜎𝜎 (McMillan et al., 2017; 
Zhang et al. 2017). However, the problem with the cross-validation approach is that contradicting 
values for λ in two single-trait analysis are difficult to accommodate when both traits are included 
in a multi-trait evaluation. Further, a multi-trait cross-validation grid-search would have to evaluate 
a high dimensional grid, which makes the approach computationally infeasible.  

It can be shown that a model using 𝑮𝑮𝒘𝒘 = 𝜆𝜆𝑮𝑮 + (1 − 𝜆𝜆)𝑪𝑪 is simply the condensed form of the 
extended single-step model containing two genetic factors, one using 𝑨𝑨⨂𝚺𝚺𝑨𝑨 and the other using 
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𝑯𝑯⨂𝚺𝚺𝑯𝑯 with 𝑮𝑮𝒘𝒘 = 𝑮𝑮 + 𝑰𝑰0.001 where 𝚺𝚺𝑨𝑨 and 𝚺𝚺𝑯𝑯 are co-variance matrices and 𝑰𝑰 is an identity matrix. 
The total genetic variance 𝚺𝚺𝑮𝑮 = 𝚺𝚺𝑯𝑯 + 𝚺𝚺𝑨𝑨 with a scalar λ only being obtainable if 𝚺𝚺𝑯𝑯 ⊘ 𝚺𝚺𝑮𝑮 ≡ 𝒊𝒊𝒊𝒊′𝑘𝑘 
where 𝑘𝑘 is a scalar and 𝒊𝒊 is an identity vector. Therefore, the partitioning of the genetic variance 
implicit in λ can be obtained by variance component estimation using the general model with two 
genetic factors, where the results may not support a scalar λ and in turn may require the use of the 
general model in genetic evaluation. However, the estimation of variance components for such a 
model via restricted maximum likelihood (REML) is challenging due to the mixed model coefficient 
matrix containing large non-zero blocks, and REML algorithms using the phenotypic co-variance 
matrix are severely limited with regard to the number of observations that can be accommodated.  

This study investigated methods to optimally partition the genetic variances in Australian Angus 
carcass data. To overcome REML limitations, Bayesian methods were used. 

 
MATERIALS AND METHODS 

A total of 59,616 pre-corrected records (Graser et al. 2005) for Australian Angus carcass traits 
were analysed consisting of carcass weight (CWT), carcass rib fat (CRF), carcass P8 fat (CP8), 
carcass eye muscle area (CEA), carcass retail beef yield percentage (CMY), and carcass 
intramuscular fat (CIM). Numbers of phenotypes, genotypes, and pedigree information available for 
each trait are given in Table 1. The pedigree consisted of 2.6 million animals, 110,000 of which 
were genotyped with 56,009 markers per genotype. 
 
Table 1. Number of phenotypic records, number of genotyped animals, and descriptive 
statistics for carcass traits, weight (CWT (kg)), rib fat (CRF (mm)), P8 fat (CP8 (mm)), eye 
muscle area (CEA (cm2)), retail beef yield (CMY (%)), and intramuscular fat (CIM (%)) 
 

Trait  Records  Genotyped Mean  Stddev Minimum Maximum 
CWT 16875 3340 422.9 60.2 186.8 636.0 
CRF 5319 1059 15.5 5.1 1.6 36.8 
CP8  14793 3054 19.7 5.6 1.6 42.7 
CEA 7392 839 83.9 9.1 41.8 120.7 
CMY 2140 505 69.0 4.6 55.8 77.9 
CIM 13097 2630 8.8 3.4 1.7 30.9 

 
Models. A multi-trait linear mixed model (model 1) was fitted as follows: 
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where [𝑦𝑦1, . ,𝑦𝑦6] is a vector of phenotypic observations for traits 1 to 6, matrices [𝑋𝑋1, . ,𝑋𝑋6] and 
[𝑍𝑍1, . ,𝑍𝑍6] link fixed effects of contemporary group and random additive genetic effects, respectively 
to their respective observations, and [𝑒𝑒1, . , 𝑒𝑒6] is a vector of residuals. [𝑢𝑢1, . ,𝑢𝑢6]~𝑁𝑁([0, . , 0],𝑨𝑨⨂𝚺𝚺) 
where 𝚺𝚺 is the co-variance matrix between genetic factors and A is the pedigree derived co-variance 
matrix between animals. 

The single-step multi-trait linear model (model 2) was fitted as follows: 
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where [𝑢𝑢1, . ,𝑢𝑢6]~𝑁𝑁([0, . , 0],𝑨𝑨⨂𝚺𝚺𝑨𝑨) is a vector of polygenic effects and 
[𝑔𝑔1, . ,𝑔𝑔6]~𝑁𝑁([0, . , 0],𝑯𝑯⨂𝚺𝚺𝑯𝑯) is a vector of genomic effects. Matrix 𝑯𝑯 contains a genomic relationship 
matrix 𝑮𝑮 = 𝑴𝑴𝑴𝑴′ + 𝑪𝑪, where 𝑴𝑴 is centred and scaled marker genotypes matrix and 𝑪𝑪 is a diagonal 
matrix of small values (e.g. 0.0001) ensuring invertability of 𝑮𝑮. The total additive genetic variance 
(𝚺𝚺𝑮𝑮) is equal to 𝚺𝚺𝑨𝑨 + 𝚺𝚺𝑯𝑯, and when there are no genotyped animals model 2 essentially becomes 
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model 1. Therefore, an underlying assumption about λ is that 𝒖𝒖 and 𝒈𝒈 are vectors of orthogonal 
random effects. 

Variance components based on model 1 and model 2 were estimated using Gibbs sampling. The 
analysis were conducted with model 1 using 𝑨𝑨 and with model 2 using 𝑨𝑨 and 𝑯𝑯, where in both cases 
the blocks of 𝑨𝑨 and 𝑯𝑯 related to the union of all phenotyped individuals were extracted from 𝑨𝑨 and 
𝑯𝑯 built using all animals in the pedigree and all available genotypes. For the pedigree model prior 
variances were calculated from the phenotypic variances. For the extended single-step model prior 
variances were those obtained from the pedigree model, with a prior variance partitioning equal to 
𝚺𝚺𝑯𝑯 = 0.1𝚺𝚺𝑮𝑮 and 𝚺𝚺𝑨𝑨 = 0.9𝚺𝚺𝑮𝑮. However, for both models the prior weight was zero. Variance 
components and genomic weights were obtained by discarding the first 30,000 samples as burn-in 
and averaging the sum of every 100th sample from a total of 200,000 samples.   

 
RESULTS AND DISCUSSION 

The heritabilities for six carcass traits for model 1 which used 𝑨𝑨 as the between animals co-
variance matrix, and for model 2 where the variances were partitioned between the genomic and 
polygenic factor are presented in Table 2. The total heritabilities for six carcass traits in model 2 
ranged from 0.37 for CRF  to 0.53 for CWT , and they were almost identical to those derived from 
model 1 (Table 2).  

The proportion of additive genetic variation explained by markers (λ) is greater for almost all 
carcass traits than the λ assumed in the current BREEDPLAN evaluations of 0.5, and ranged from 
0.54 for CIM to 0.79 for CEA (Table 2). Therefore, future genetic evaluations should allow higher 
and different λ in BREEDPLAN routine genetic evaluation of carcass traits. These results suggest 
that the BREEDPLAN genetic evaluation model would have to allow for two genetic factors where 
the implications for model dimensionality, solver convergence rate, and breeding value accuracy 
must be investigated. 
 
Table 2. Pedigree based heritability (𝒉𝒉𝟐𝟐) when using model 1 and matrix 𝑨𝑨, and polygenic (𝒉𝒉𝑨𝑨𝟐𝟐 ), 
genomic (𝒉𝒉𝑯𝑯𝟐𝟐 ) and total heritability (𝒉𝒉𝑮𝑮𝟐𝟐 ), genomic weights (λ) and phenotypic variances (𝝈𝝈𝒑𝒑𝟐𝟐) 
when using model 2 for 6 Australian Angus carcase traits 
 

Parameter CWT1 CRF2 CP83 CEA4 CMY5 CIM6 
ℎ2 0.51 (0.03)a 0.38 (0.05) 0.45 (0.03) 0.47 (0.04) 0.51 (0.07) 0.46 (0.03) 
ℎ𝐴𝐴2 0.17 (0.03) 0.12 (0.04) 0.13 (0.03) 0.10 (0.04) 0.23 (0.07) 0.22 (0.04) 
ℎ𝐻𝐻2  0.35 (0.02) 0.25 (0.03) 0.34 (0.03) 0.37 (0.03) 0.29 (0.07) 0.25 (0.02) 
ℎ𝐺𝐺2  0.52 (0.03) 0.37 (0.04) 0.47 (0.03) 0.47 (0.04) 0.52 (0.05) 0.47 (0.03) 
λ† 0.67 (0.04) 0.68 (0.08) 0.73 (0.06) 0.79 (0.08) 0.56 (0.13) 0.54 (0.05) 
𝜎𝜎𝑝𝑝2 844.40 (13) 16.80 (0.40) 21.89 (0.36) 46.51 (0.92) 2.72 (0.10) 5.50 (0.09) 

1weight, 2rib fat, 3P8 fat, 4eye muscle area, 5retail beef yield, 6intramuscular fat; astandard deviation from 1700 
samples in parenthesis; †𝜆𝜆 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔(𝚺𝚺𝑯𝑯)/𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔(𝚺𝚺𝑮𝑮) 
 

Directions (and values) of between trait total genetic correlations from model 2 were similar to 
those from model 1 (Table 3). However, comparison of trait correlations between polygenic and 
genomic factor in model 2 shows that for many traits this correlation is in the in opposite direction 
(Table 4). One notable example is CEA where positive genetic correlations were observed for 
polygenic factor whereas those correlations were negative in genomic factor (Table 4). Global 
correlations between CEA and fat traits (CRF and CP8) were negative regardless of whether model 
1 or model 2 was used. However, for model 2 genomic correlations remained negative whereas 
polygenic correlations turned positive. The opposite pattern was observed for correlations between 
CEA and CMY, where the global correlation remained positive, but was larger, and the polygenic 
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correlation turned negative. It needs to be confirmed whether these findings have a biological 
foundation or were caused by insufficient variance partitioning due to the low number of genotyped 
and phenotyped animals for CEA and CMY. 
 
Table 3. Genetic correlation (lower triangle) when using model 1 and total genetic correlation 
(upper triangle) when using model 2 for 6 Australian Angus carcass traits 
 

Trait1 CWT CRF CP8 CEA CMY CIM 
CWT  -0.03 (0.02)a -0.12 (0.02) 0.01 (0.02) 0.10 (0.02) 0.04 (0.02) 
CRF -0.02 (0.02)  0.55 (0.01) -0.14 (0.02) -0.43 (0.02) 0.01 (0.02) 
CP8 -0.12 (0.02) 0.55 (0.01)  -0.19 (0.02) -0.25 (0.02) -0.02 (0.02) 
CEA 0.08 (0.02) -0.19 (0.02) -0.23 (0.02)  0.39 (0.01) 0.05 (0.02) 
CMY 0.11 (0.02) -0.54 (0.03) -0.29 (0.02) 0.43 (0.01)  -0.08 (0.02) 
CIM 0.07 (0.02) 0.02 (0.02) -0.07 (0.02) 0.03 (0.02) -0.02 (0.02)  

1CWT, weight; CRF, rib fat; CP8, P8 fat; CEA, eye muscle area; CMY, retail beef yield; CIM, intramuscular 
fat; astandard deviation from 1700 samples in parenthesis 
 
Table 4. Polygenic factor correlation (upper triangle) and genomic factor correlation (lower 
triangle) matrix when using model 2 for 6 Australian Angus carcass traits 
 

Trait1 CWT CRF CP8 CEA CMY CIM 
CWT  0.31(0.02)a -0.13 (0.03) 0.22 (0.02) -0.09 (0.03) 0.33 (0.02) 
CRF -0.20 (0.03)  0.49 (0.01) 0.27 (0.02) -0.50 (0.04) 0.04 (0.02) 
CP8 -0.12 (0.03) 0.57 (0.01)  0.06 (0.02) -0.22 (0.03) -0.15 (0.03) 
CEA -0.07 (0.03) -0.30 (0.03) -0.27 (0.03)  -0.21 (0.03) 0.10 (0.02) 
CMY 0.22 (0.02) -0.40 (0.04) -0.27 (0.03) 0.69 (0.01)  -0.06 (0.03) 
CIM -0.15 (0.03) 0.00 (0.03) 0.05 (0.02) 0.03 (0.02) -0.10 (0.03)  

1CWT, weight; CRF, rib fat; CP8, P8 fat; CEA, eye muscle area; CMY, retail beef yield; CIM, intramuscular 
fat; astandard deviation from 1700 samples in parenthesis 
 
CONCLUSIONS 

The proportion of additive genetic variation explained by markers (λ) ranged from 0.54 to 0.79 
for the six carcass traits in Australian Angus beef cattle. This finding is significant because the 
current BREEDPLAN single-step evaluation uses a single λ for all traits, 0.5. The results of this 
study do not support the use of the same λ for all traits. However, accounting for these findings 
requires a change in the BREEDPLAN model which must be preceded by further investigations into 
computational feasibility and breeding value accuracy.  
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SUMMARY 
The absence of data capture systems and structures to produce information is a chronic problem 

of many livestock industries, particularly in developing countries. Information can be a key driver 
of transformation for these industries and could be created through data collection and integration 
across livestock supply chains, resulting in more efficient, profitable, and sustainable production 
systems. A technology platform, Dtreo, has been developed to transform livestock performance data, 
initially captured to promote breeding initiatives, into actionable information, supporting farmers 
and connecting producers to markets. The availability of data also has the potential to address a 
major issue for establishing breeding programs in unstructured livestock industries – namely the lack 
of phenotyping systems to support genetic evaluation models including genomic selection initiatives. 
The Dtreo platform has now been deployed in community-based breeding programs in Ethiopia, 
India, and Uganda with an initial focus on genetic improvement. Our current objective is to expand 
its implementation to facilitate better coordination of decision making across the supply chain. 

 
INTRODUCTION 

The livestock sector in many countries is affected by the absence of basic structures to capture 
data and enable flows of information, impacting farmers, traders, and processors. In most developing 
countries around the world there is limited ability to provide support, advisory services, and to create 
functional information systems, thus weakening the market leverage of small holder farmers, and 
creating many inefficiencies in supply chain function. 

Genetic improvement initiatives are a critical component of developed livestock industries. The 
infrastructure required to establish these initiatives rely on data and information systems. These same 
information systems are frequently used to inform other areas of the livestock production sector, 
including the market. Unsurprisingly the livestock sector of most developing countries can be 
unstructured, lacking availability of data and information which limits their ability to provide support 
to their farmers in key areas, such as extension and animal health. Similarly, information on volume 
and quality of supply to the market is frequently absent in such unstructured industries. 

In many developing countries livestock markets have been operational for centuries. In most 
cases however, such markets provide minimal returns to smallholder farmers. In these cases, it is 
common that traders and intermediaries capture most of the value that could be otherwise destined 
to farmers, especially if there were supporting data and information systems in place. 

Prediction of livestock performance can be reasonably accurate when phenotypic measures of 
performance, production system (including traditional practices and environmental data), and 
parentage information datasets are available. However, when none of these exist, predicting and 
understanding productivity in each population is challenging.  

A technology platform has been developed to support improvements in livestock production 
outcomes and boost self-sufficiency in rural communities. The Dtreo platform combines breeding 
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principles with livestock production initiatives through data and information, enabling farmers 
globally to generate genetic insights for tangible improvements. The system was developed to have 
a low fixed cost, to be presented in local languages, and to be easy to use.  

A subset of case-studies is presented in this paper to illustrate the mechanisms through which 
principles of genetic improvement can be used to support development of livestock industries in 
countries which lack the basic infrastructure to support their farmers. 

 
MATERIALS AND METHODS 

The platform enables online and offline data collection and flow of information to support 
decision making at multiple levels in specific production systems, or across one or multiple supply 
chains. It enables capturing animal characteristics and performance recording of quality data. The 
data collected in remote locations, where connectivity is often limited, is transferred into a designed 
Microsoft Azure table storage and Cosmos DB SQL API which uses entity (e.g. location, flock/herd, 
animal, etc.) and event (e.g. birth, weaning, sales, etc.) associations to produce information based on 
analysis of the relationships within and across multiple entities and events. 

Dtreo is now deployed in several countries (including Ethiopia, India, and Uganda), where most 
users are smallholder low-input farmers and the technicians (enumerators) that provide support. 
Farmers, technicians, and breeders use the platform and its analytics to make decisions in support of 
traditional practices that have been established for many years, whilst the flow of information 
supports other stakeholders. The platform facilitates the digitalization process, enabling users to 
record, store and analyse animal performance, reproductive management (including artificial 
insemination), and animal health interventions. It delivers analytic reports for decision making 
associated with these events, as well as data integration for genetic evaluation and access to market. 

Examples of development projects in which Dtreo is currently used are: 
1) Community-based breeding programs, CBBP (Ethiopia), supporting smallholder farmers 

organized in breeding cooperatives to address market demand for small ruminants by 
tailoring genetic improvement programs to local pastoral systems (Getachew et al. 2018). 

2) Project Mesha (India), supporting village production of goats and establishing a genetic 
improvement strategy in Bihar state in collaboration with Nimbkar Agricultural Research 
Institute (NARI) and the Aga Khan foundation. Project Mesha aims at improving the quality 
of life for marginalized landless people and empowering and raising the incomes of women 
goat keepers through improving productivity of their goats. 

3) PigBoost (Uganda), bridging the gap between pig farmers, veterinarians, and extension 
service-providers, providing a platform to capture data and produce information. Pig 
production has been largely influenced by increased demand for pork in Uganda. Different 
research and development initiatives have been associated with PigBoost to leverage the 
value of the data and information produced. 

 
RESULTS AND DISCUSSION 

By February 2021, 70,753 animals have been recorded in the Dtreo platform (Table 1). A total 
of 4,091 households have been impacted in the referred programs - CBBP, Project Mesha, and 
PigBoost. Outcomes are still early stage, and these results are based on projects that have only 
recently been established, or initiated usage of Dtreo as their main data platform. 

Since its inception the CBBP in Ethiopia has directly benefited more than 3,200 households in 
more than 40 villages and over 18,000 people across the supply chain. Increased productivity (more 
births, better growth, and reduced mortality), as well as increased income from small ruminant 
production has been achieved. Breeder cooperatives have been formed to commercialize rams and 
bucks from the program, building on the initial revolving funds supported by the project (Haile et 
al. 2020). The CBBP communities have a sufficiently large and equally distributed sheep/goat 
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flock/herd, frequently with more than 500 ewes/does in the combined flock/herd of the village. More 
than 68,000 animals have been included in the Dtreo platform so far. The flock is composed of local 
breeds, mainly Bonga, Doyogena, Horro, Konso, Menz and Pare. The data recorded has been used 
to inform within-flock (village) selection of young sire candidates based on a set of agreed selection 
traits. The retained individuals are then further judged based on weights (at birth, weaning, six 
months and one year), functional conformation, and body scores reflecting carcass value, relative to 
contemporaries, all adjusted for maternal information. The aim is that selection decisions align with 
traditional practices (i.e. where selection was based only on size and colour), improving acceptance 
within the community, and eventually enabling new market channels and/or supply agreements to 
be established. 

Project Mesha has established individual goat identification and initiated performance recording 
in a limited number of villages. An overall index score for buck kids was created including the 
criteria of 100-day weight, dam chest girth, condition at the time of assessment, litter size and kid 
survival history. Dtreo calculates and reports the index score for each buck kid as one of the selection 
criteria. So far, thirteen bucks have been selected based on their index scores and about 500 mated 
with these bucks. Further details on the achievements and context of Project Mesha can be found in 
Nimbkar et al. (2021). 

PigBoost has developed a package of services to support pig-farmers in Uganda, focusing on 
animal identification and data collection. Since early in 2021, approximately 200 pig owners were 
recruited, with over 1,000 pigs included in the database. The most common breeds are Camborough 
(46%), Landrace (32%), and Large White (17%), all crossed with local breeds. Data on 
inseminations and matings, farrowing, weights and animal health interventions have been collected. 
There is high awareness of biosecurity, given the incidence of serious diseases in some of the herds, 
and the impact of pig mortality to the overall farm profitability. Major challenges reported by farmers 
are incidence of diseases (68% of farmers), finances (57%), poor growth rates (30%) and poor 
fertility/abortions/still births (16%). Most striking was that African Swine Fever was reported to 
have affected 25% of herds in the last 12 months. Other diseases of major concern are skin lesions, 
gastrointestinal, and nervous syndromes. Main services required by farmers are disease treatments 
(85% of farmers), management support (75%), diagnostic services (72%), artificial insemination 
(38%), and improved breeding (26%). Almost all farmers intend to expand their activities in the next 
12 months (96%), with strong emphasis on better genetics (98%), and market access (98%). 

 
Table 1. Numbers of households and livestock impacted by development projects as of 
February 2021 using the data platform Dtreo for data capturing and information flow 
 

Program Country Species 
Households 

included 
Animals 
included 

Target 
households 

Target 
animals 

CBBP Ethiopia Sheep/Goats 2,073 68,365 11,000 250,000 
Project Mesha India Goats 1,812 1,319 50,000 500,000 

Pigboost Uganda Pigs 206 1,069 10,000 50,000 
Total - - 4,091 70,753 71,000 80,000 

 
There are important challenges to overcome before wider adoption of data recording is observed, 

and before delivery of genetic improvement impact is realized. These challenges are: 
1. Extension & education – support and training to smallholder farmers is required, such 

thatfarm management practices, feeding strategies, and animal health interventions are 
provided, optimising traditional production systems, whilst maintaining sustainable 
interaction with local environmental conditions. 
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2. Infrastructure – unstructured livestock industries frequently lack the required data and 
information systems, genetic improvement pipeline, and market access. Basic systems for 
developed industries (such as animal identification, phenotyping tools, breeding 
organizations, and market information) are inexistent in most developing countries. 

An important limitation in establishing structured smallholder systems is defining breeding 
schemes that are suitable for the low-input, smallholder farming (Gizaw et al. 2014). The small size 
and weak genetic connectedness amongst flocks/herds is challenging to support approaches that 
allow separation of genetic and environmental effects in these conditions (Selle et al. 2020). A 
centralized dataset that combines animal performance records, and parentage information, from 
smallholder farms introduces a potential alternative to the paradigm of dealing with traditional 
breeding approaches in these systems. For instance, genetic evaluation models in which 
contemporary groups or herd effects are defined using production levels derived from data might be 
a feasible solution for smallholder farming systems (Ojango et al. 2019). These examples assume 
that a minimal structure to mitigate the absence of routine phenotyping exists, something that could 
be a reality with the use of a data platform for data capture and collation. 

According to (Ojango et al. 2019), the need for a simple approach to data capture from 
smallholder systems is critical to support estimation of genetic parameters for these systems. This 
should be coupled with tangible incentives for continued recording and longer-term monitoring of 
the livestock population as a basis for implementation of sustainable genetic improvement programs. 
These systems would also support establishing a new paradigm of market integration through data 
and information, using digital technology. 

 
CONCLUSIONS 

Digitalisation of performance records and information is a requirement that should be met if 
livestock industries of most developing countries intend to improve output, efficiency, and 
sustainability. Data can influence farm management, application of principles of genetic 
improvement, and access to market. There are several challenges involved in this process, 
particularly given smallholder farmers normally maintain a low number of animals in their herds 
and flocks. Nevertheless, the large number of smallholder farmers operating under specific groups, 
sharing similar environmental conditions, provide a sufficiently large population to be used as a 
source of information for breeding programs, and volume/scale for commercialisation. 

The case-studies presented in this short summary demonstrate that smallholder farmers in 
developing countries, when assisted by proper infrastructure and digital technology, can be 
stimulated to participate in initiatives that will ultimately result in improved livelihoods through 
better structured livestock supply chains. 
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SUMMARY 

This study aimed to evaluate the benefits of including primal cut measures of pig carcases in the 
breeding objective by comparing the efficacy of two different approaches; a detailed approach and 
a simpler approach. The detailed approach included economic values for the loin and belly primals 
separately ($1.54 and $2.24/pig respectively), where the simpler approach included an economic 
value for the combination of these (the ‘middle primal’ at $1.89/pig). Each approach was evaluated 
in two different scenarios by adding information on the primal cut(s). Inclusion of primal traits in 
the breeding objective increased the predicted response to selection by 2.47% and 3.20% for both 
approaches (I and II) and primals contributed 15% and 12% to the new breeding objectives. The 
predicted response to selection was greater for the approach that included the middle primal, which 
was consistent with moderate to high genetic correlations with other traits in breeding objectives. 

 
INTRODUCTION 

The current pig carcase payment system in Australia focuses on fat depth at a given carcase 
weight without giving any consideration to variation in primal cut weights. Moreover, selection 
pressure to change back fat has been substantially reduced over the last decade, and further reducing 
genetic carcase fatness presents little opportunity for economic benefit (Hermesch 2005). However, 
there are significant premiums in wholesale markets for the belly and the loin primals, which 
combined make up the middle portion of a pig carcase. According to Mérour et al. (2009), substantial 
economic differences in carcase value are connected to the variability in individual primal cut 
weights at a fixed carcase weight and fat depth. The aim of this study was to compare two different 
approaches for incorporating primal cuts into pig breeding objectives that either included economic 
values for the loin and belly primals or placed economic emphasis only on the middle portion of the 
carcase, which combined the loin and belly primals to produce a single trait. 
 
MATERIALS AND METHODS 

Data sets. Data describing primal traits were available for 2,198 pig carcases collected from 
March to September 2012. Pigs came from three different terminal sire lines, which were nested 
within five different grow-out facilities. Variance and covariance components were estimated with 
an animal model using ASReml 4.1 (Gilmour et al. 2015). 

Estimation of primal price at the farm gate level. Firstly, the wholesale prices of different 
primals obtained from the Australian Pork Limited (APL) weekly reports were converted back to 
farm-gate-level price (FP). The farm-gate prices for loin (FPLn), belly (FPB) and middle (FPM) were 
obtained as follows,  

FPLn = WPLn. k, FPB = WPB. k and FPM = (FPLn + FPB)/2, 
where k was a constant derived as k = Pp / (WPSh*pCwtSh + WPL*pCwtL + WPLn*pCwtLn + 
WPB*pCwtB), where, Pp was the total price of the carcase adjusted to a fixed weight of 80 kg and a 

 
1 AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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price of $AU3.05/kg carcase weight. The wholesale prices for different primal cuts (shoulder, leg, 
loin and belly) were denoted by WPSh, WPL, WPLn and WPB, and pCwtSh, pCwtL, pCwtLn and pCwtB 
were the proportion that each primal represented of an 80kg carcase, respectively.  

Estimation of the economic value of primals. The economic values for the loin and belly 
primals were considered to improve as a percentage basis rather than weight to look at the effect of 
changing proportions of the carcase to improve profitability. The economic values for either loin, 
belly or middle were the price difference between each of these primals and the average price of the 
shoulder and leg primals. This price difference was multiplied by 0.80, since a 1% increase of either 
loin, belly or middle represented 0.8 kg of a carcase (Table 1). 

Index description. The existing pig breeding objective (I0) includes six traits: average daily gain 
(ADG, g/d), back fat thickness (BFT, mm), feed conversion ratio (FCR, kg/kg), post-weaning 
survival (PWS, %), belly fat percentage (BFP, %), drip loss percentage (DLP, %) and two selection 
criteria traits; juvenile insulin-like growth factor-I (IGF1, ng/ml) and muscle depth (MD, mm). This 
study expanded the breeding objective to include primal cut traits (loin percentages, LnP and belly 
percentages, BP or middle percentages, MP), as shown in Table 1. The genetic parameters and 
economic values outlined in Table 1 were based on Hermesch et al. (2015) and Hermesch and Jones 
(2010). The heritabilities for primal percentages were estimated in this study and were corresponded 
to heritabilities for weights of primal cuts presented by Sarker et al. (2019) based on these data.  

 
Table 1. Heritabilities (h2), genetic standard deviations (GSD), economic values (EV), genetic 
(below diagonal) and phenotypic (above diagonal) correlations between traits 
 

Trait1 h2 GSD EV ADG BFT FCR PWS BFP DLP IGF1 MD LnP BP MP 
ADG 0.31 30.00 0.09  11 -2 0 -6 6 9 12 -1 27 21 
BFT 0.33 1.00 -1.70 2  6 0 45 -8 6 8 -11 -7 -15 
FCR 0.12 0.15 -27.4    -20 27  0 20 -8 15 1 -14 2 0 
PWS 0.05 0.04 1.82 0 0 0  0 0 0 0 0 0 0 
BFP 0.34 10.96 -0.20 16 63 21 0  -4 0 1 -20 20 0 
DLP 0.23 0.84 -2.25 11 -18 -16 0 -4  0 -7 3 -10 0 
IGF1 0.21 13.07 0.00 6 20 57 0 0 0  0 0 0 0 
MD 0.30 1.93 0.00 35 16 -8 0 1 20 0  -1 -5 -5 
LnP 0.13 0.57 1.54 -3 -4 -13 0 -37 1 0 -12  -27 70 
BP 0.21 0.62 2.24 59 65 1 0 32 -8 0 19 6  56 
MP 0.24 0.94 1.89 36 44 -17 0 0 -1 0 8 64 76  

*Traits in Italics represent referenced results. Genetic and phenotypic correlations were multiplied by 100. 1 

Trait1 abbreviations: ADG: average daily gain (g/day), BFT: back fat thickness (mm), FCR: feed conversion 
ratio (kg/kg), PWS: post-weaning survivability (%), BFP: belly fat percentage (%), DLP: drip loss percentage 
(%), IGF1: juvenile insulin-like growth factor-I (ng/ml), MD: muscle depth (mm), LnP: loin percentage (%), 
BP: belly percentage (%), MP: middle percentage. h2: heritability, GSD: genetic standard deviation and EV: 
economic value 
 

The information for ADG, BFT and MD was available for the selection candidates, sires, dams, 
5 full sibs and 30 half sibs. For FCR, records were only available for the candidates, sires, 1 full sib 
and 5 half sibs because this trait is expensive and difficult to measure. For IGF1, the candidates, 
sires, dams, 2 full sibs and 10 half-sibs had records. For PWS, it was assumed that only the sires had 
information available. Carcase traits BFP, DLP, LnP, BP and MP were assumed to be available for 
2 full sibs and 10 half sibs. Index calculations were performed using the MTIndex program of van 
der Werf (https://jvanderw.une.edu.au/software.htm). 

Approaches to include primal cut percentages in pig breeding objectives. Approaches that 
included the loin and belly primals or fitted the combined (middle) term (Approaches I and II, 
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respectively) were evaluated under two different scenarios (A and B). In the first scenario for both 
approaches (IA and IIA), the economic values of different primal cuts were included in the breeding 
objective, while the second scenario (IB and IIB) included information for different primals from 
relatives. 

 
RESULTS AND DISCUSSION 

Genetic correlations between primal cuts and breeding objective traits. Results presented in 
Table 1 show that the loin primal (LnP) had negative genetic correlations with BFT and BFP which 
were favourable for selection (rg = -0.04 and -0.37), but the genetic association of LnP with FCR 
and MD were unfavourable (rg = -0.13 and -0.12). In comparison, BP had favourable genetic 
correlations with ADG and MD and was highly positively correlated with BFT and BFP (rg = 0.59, 
0.19, 0.65, and 0.32 respectively). A favourable correlation existed between MP and ADG (rg = 
0.36), but MP had unfavourable correlations with FCR and BFT (rg = -0.17 and 0.44). The genetic 
and phenotypic correlations between MP and LnP or BP were high because of the part-whole 
relationship between these traits. Overall, MP had favourable correlations with most other traits. 

Comparisons of different scenarios for adding approaches. Adding primal cut traits to 
existing pig breeding objectives without including additional data in the analyses produced a positive 
correlated response in LnP, while BP had a negative response (I0) (Table 2). In comparison, MP 
showed a negative response due to the genetic correlations with other breeding objective traits in the 
index (Table1).  

Current breeding objectives do not usually take these correlated responses with primal weights 
into account. Adding economic values for different primal cuts to existing pig breeding objectives 
in the first scenario increased the overall response in the breeding objective. The individual 
responses of LnP, BP and MP were positive for both approaches (I and II). The economic 
implications can be calculated by multiplying each primal response by its economic weight (0.046 
and 0.067 for loin and belly, respectively and 0.094 for middle cut). The overall response was $4.07 
per pig in first scenario for both approaches (IA and IIA) and an increase of 0.74% relative to the base 
index I0. The addition of information describing loin and belly or middle primal cuts to the breeding 
objective both produced changes in the relative contribution of index components. The overall 
responses in the second scenario were highest for approach II (3.22%) compared to approach I 
(2.47%). The differences in response for the two approaches could be associated with 
inconsistencies in butchering practices of the loin and belly primals that affects genetic parameters 
as well.  

In the first scenario, (IA and IIA) index accuracies were lower for both approaches when compared 
to the base index (I0) when adding primal cuts as breeding objectives trait without including any 
additional information. However, accuracies were increased in the second scenario where 
information from relatives for different primal cuts was added to the index. 

Impact of primal cuts to other breeding objective traits. The responses for ADG and MD 
increased for the first approach in both scenarios when compared to the base index by including 
primals in breeding objectives. This change was due to the positive genetic correlation between 
muscle depth and growth rate. However, in the second approach, for ADG, responses were slightly 
lower when compared to first approach for both scenarios. In comparison, the MD responses were 
similar in both scenarios for approach I and II. The responses for BFT and BFP were reduced for 
both approaches and all scenarios when information on the middle primal (or loin and belly) were 
included in the breeding objectives due to the high genetic correlation between these fatness and 
primal traits.  

The relative contribution of different traits to both existing and extended breeding objectives 
indicates that including information about the loin and belly or middle primals led to a decreased 
percent contribution of the original index traits. The relative contribution of LnP, BP and MP cuts 
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were 6% and 9% or 12% of the relative emphasis in their respective approaches (I and II), 
respectively, demonstrating the importance of these traits in pig breeding objectives.  

Based on the conducted research, it is worth mentioning that the inclusion of additional trait(s) 
is important in the estimation of the commercial value of pig carcases. These results show that the 
approach which fitted information about the combined middle primal was superior as it produced 
the highest genetic response in comparison to the approach which fitted the loin and belly primals 
separately. Moreover, the proposed approach effectively improves the total carcase value of pigs 
and reduces the costs as well as relative errors or biasness for the individual measurements of the 
loin and belly. 
 
Table 2. Traits measured in indexes, the response in individual traits for different indexes, 
and resulting index value and accuracy  
 

Traits Indices Relative contribution of different 
traits in breeding objectives (%) 

I0 IA IB IIA IIB Base index 
I0 

Index 
 IB 

Index  
IIB  

ADG 10.33 12.67 12.76 12.16 12.13 21 18 19 
BFT -0.50 -0.40 -0.38 -0.41 -0.38 13 11 12 
FCR -0.06 -0.06 -0.06 -0.06 -0.06 32 28 28 
PWS 0.00 0.00 0.00 0.00 0.00 57 49 50 
BFP -3.51 -2.84 -2.93 -2.98 -3.06 17 15 15 
DLP 0.07 0.05 0.05 0.06 0.06 15 13 13 
IGF1 -3.79 -3.59 -3.58 -3.64 -3.60 0 0 0 
MD 0.19 0.25 0.25 0.24 0.24 0 0 0 
LnP 0.03* 0.03 0.06    6  
BP -0.05* 0.03 0.05    9  
MP -0.02*   0.05 0.11   12 
$ Index 4.04 4.07 4.14 4.07 4.17    
Accuracy 0.60 0.58 0.59 0.57 0.58    

For trait1 abbreviations and index descriptions see Table 1. Extended breeding objective includes both LnP 
and BP or MP. 
*Correlated responses due to selection using the current breeding objective I0 
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SUMMARY 
Thermotolerance, the ability to maintain production under heat stress conditions, is a complex 

trait determined by many component traits. Recent approaches combining traditional genome wide 
associations studies (GWAS) with gene network interactions theory could be more efficient in 
dissecting the genetic architecture of complex traits such as thermotolerance. Genes in common 
between several different gene ontology (GO) term groups might point towards key regulator genes 
with a greater impact on the thermotolerance complex. Highly connected genes identified in this 
analysis include SYK, NOS2, and CD36. While these genes have not been previously associated with 
thermotolerance, they have been associated with adaptation to other extreme environments including 
cold climates and high altitudes. These results indicate that there may be crucial genetic architecture 
responsible for environmental adaptation regardless of the nature of the challenging environment.  

 
INTRODUCTION 

Thermal stress in hot and humid conditions limits beef cattle production. Over 65% of the 
world’s cattle (beef and dairy) reside in tropical or subtropical climates known for their hot and 
humid conditions. Thermotolerance, the ability to maintain production under heat stress conditions, 
is a complex trait determined by many component traits. Component traits related to heat loss are 
particularly of interest as there is a strong correlation between production level and metabolic heat 
production (Renaudeau et al. 2012). Greater capacity for heat loss rather than a lower metabolic heat 
level may allow cattle to maintain elevated production levels in the presence of heat stress (O’Brien 
et al. 2010). Many of the component traits that impact an animal’s ability to lose heat are found at 
the hair-skin interface. Sweating capacity is of great importance as animals lose a majority of their 
heat through sweating when heat stress conditions become severe (Finch 1986). However, hair 
characteristics impact the effectiveness of sweating. Short, sleek hair coats allow for effective 
evaporative cooling during sweating, as well as reflect a greater proportion of solar radiation and 
facilitate conductive and convective heat flow (Hansen 2004). Recent approaches combining 
traditional GWAS with gene network interactions theory could be more efficient in dissecting the 
genetic architecture of complex traits such as thermotolerance. One advantage of association weight 
matrix/partial correlation information theory (AWM/PCIT) methodology is the ability to include 
SNP with relatively small effects that do not reach genome-wide statistical significance but are 
potentially linked to elements controlling the trait of interest. It is well recognized that many 
elements with minor effects are usually not able to reach significance at the genome level but will 
be uncovered through a gene network when multiple correlated traits are used in the analysis. GO 
term analysis of significant genes can be used to explore the functional mechanisms underlying 
thermotolerance.  

 
MATERIALS AND METHODS 

The University of Florida Institutional Care and Use Committee approved the research protocol 
used in this study (Approval no. 201203578). This study utilized 2,409 commercial Brangus heifers 
from the Seminole Tribe of Florida, Inc. Samples were collected from 12 groups of 200 animals: 4 
groups over 4 consecutive weeks in each (August 15- September 12), 4 groups over 4 consecutive 
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weeks in 2017 (July 31 – August 28), and 4 groups over 4 consecutive weeks in 2018(July 26-
August 23). Heifers within a year were from the same cohort and approximately the same age (about 
2 years old). 

The length and diameter of the undercoat (shorter coat closer to the body of the animal) and 
topcoat (longer coat that covers the undercoat) measured as described by Sarlo Davila et al. (2019). 
Coat score was measured for each heifer while in the chute and scored as 1 = very smooth, 2 = 
smooth, 3 = long, and 4 = woolly, as described by Hamblen et al. (2018). Sweating rate was 
measured using a calibrated, digital moisture sensor (Vapometer, Delphin Tech. Ltd, Kupio, 
Finland) that determines trans-epidermal water loss. The Vapometer uses a closed system approach, 
free of ambient airflow, to measure ambient relative humidity and temperature. The average body 
temperature of each heifer for each THI class from 0600 to 2000 hour was used in a random 
regression mixed model to estimate the reaction norm parameters for each individual: an intercept 
(RN intercept) and a slope (RN slope), as described in (Mateescu et al. 2020). The RN intercept 
describes the body temperature when animals are exposed to low heat stress (THI of 74 to 76), and 
the RN slope describes the change in body temperature in response to an increase of 5 THI units.  

DNA was extracted from blood samples and genotyped with the Bovine GGP F250 array 
(Illumina Inc., San Diego, CA, United States). GWAS was performed as described by Sarlo Davila 
et al. 2020). The p-values and additive genetic values for each SNP were obtained for each 
phenotype and used to construct the association weight matrix (AWM) (Reverter and Fortes 2013). 
The AWM approach was used to synthesize the results from the GWAS. Topcoat length was chosen 
as the key phenotype to describe the complex of traits related to both thermotolerance and 
production. An initial set of 620 SNP with additive effects for topcoat length were selected based 
on their raw P < 0.005. To build the AWM, a vector of posterior mean estimates of the 620 SNP 
effects from topcoat was enhanced with the vectors of effects of all the other 7 phenotypes. This 620 
x 8 matrix of posterior mean estimates of SNP effects was used as the input for PCIT to detect 
similar effects for any SNP across multiple phenotypes. All SNP pairs within the matrix were tested 
for association with at least one other SNP in order to establish network connections. SNP pairs 
without a significant partial correlation to at least one other SNP were removed from the dataset and 
discarded from subsequent network association analysis as they would appear isolated. SNP were 
then replaced with the gene the SNP were located in (within 2.5 kb), resulting in a network of 363 
genes. 

GO term enrichment and clustering were performed on all annotated genes from the AWM as 
well as the top genes from the GWAS for each trait. Functional grouping based on kappa score and 
visualization in a functionally grouped network was performed using the ClueGO plugin (Bindea 
et al. 2009) in Cytoscape. A kappa coefficient of 0.4 was used as a threshold value. 
 

Table 1. GWAS results for the eight thermotolerance traits 
  

 
  

Trait 
 

n Mean Min Max h2 Top Genes 

Topcoat length (mm) 2163 14.95 3.84 33.53 0.36 PRLR 
Undercoat length (mm) 2163 6.98 2.19 23.11 0.22 PRLR, PCCA 
Topcoat diameter (mm) 2163 0.16 0.039 0.70 0.11 MYC, RUNDC3A 

Undercoat diameter (mm) 2163 0.14 0.039 0.795 0.08 RUND3CA, MYC 
Coat Score 2397 1.35 1 4 0.23 PRLR, MMP19 

Sweating Rate 1319 60.68 2.00 218.0 0.11 UBE2D2, CLIC3 
RN Intercept 2067 38.75 36.54 39.74 0.18 ANKH, HELB, MGAT4B, PLA2G4 

RN Slope 2067 0.22 -0.001 0.442 0.10 SLC22A10, RUNDC3A, LRRC49 
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RESULTS AND DISCUSSION 
A total of 363 annotated genes were found to be associated with at least one other gene and had 

significant direct and partial correlations. This correlation network generated a gene network 
consisting of 363 genes (nodes) and 22,928 relationships (edges). The top connected genes from the 
AWM were RUNDC3A, TIGD7, OR4F73, YIPF1and PTPN21. A functionally grouped annotation 
network was created from a list of 374 genes, combining the AWM results with the top GWAS 
results (Table 1). A network (Figure 1) was developed and visualized using the ClueGO plug-in for 
Cytoscape. 233 genes were associated with 103 biological function GO terms and pathways, forming 
16 functional groups. The most representative group of terms was “anion transport” (18.52%), 
followed by “positive regulation of myeloid cell differentiation” (16.67%), and “organic acid 
transport” (11.11%). Higher connectivity between GO terms with similar molecular functions is to 
be expected, however, a high priority in terms of future research will be placed on genes in common 
between several different GO term groups as these might point towards key regulator genes with a 
greater impact on the thermotolerance complex. Highly connected genes include SYK(spleen 
associated tyrosine kinase), NOS2 (Nitic Oxide Synthase 2), and CD36 (thrombospondin receptor). 
SYK and NOS2 were both connected to seven different functional groups while was CD36 connected 
to six.  

 
Figure 1. Functionally grouped network for thermotolerance. Biological process terms 

and genes (in red) as nodes. The node size represents the enrichment significance of the term  
 
While none of these genes have been previously associated with thermotolerance, they have all 

been previously associated with adaptation to other harsh environments. SYK and CD36 regulate 
brown adipose tissue and have been identified as candidate genes for adaptation to extreme cold.  
SYK was identified in a selection signature in two Russian breeds of cattle (Yurchenko et al. 2018) 
and CD36 in Yanbian cattle (Shen et al. 2020). SYK is involved in brown adipocyte differentiation 
and SYK inhibition has been demonstrated to impair thermogenesis in mice (Knoll et al. 2017). 
CD36 facilitates the uptake of energy substrates by brown adipose tissue and is essential for 
thermogenesis during cold exposure. CD36 KO mice have been shown to have a drastically reduced 
body temperature after cold exposure (Putri et al. 2015). Brown adipose tissue is a key organ in non-
shivering thermogenesis and helps cattle to conserve body heat in extremely cold environments. It 
is possible the absence of brown adipose tissue may help cattle lose excess body heat in hot 
environments.  

NOS2 has been identified as a candidate gene for high altitude adaptation in cattle native to the 
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Ladakh region of India (Verma et al. 2018) as well as Zhangmu cattle native to China (Liu et al. 
2020). NOS2 upregulation was found to prevent hypoxia and is related to vasodilation. Enhanced 
expression of NOS2 may increase the production of NO, resulting in vasodilation and increased 
blood flow to increase the O2 supply (Verma et al. 2018). Increased blood flow to the skin also 
allows for effective heat dissipation via sweating (Finch 1986).  

 
CONCLUSIONS 

These results indicate that there may be crucial genetic architecture such as fat content and blood 
responsible for environmental adaptation regardless of the nature of the challenging environment, 
although the direction of selection for these traits changes with the environment. However, fat 
content, in particular, can also impact the production value of beef cattle as it affects meat quality. 
Further investigation of the impact of these traits on beef production is warranted. 
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SUMMARY 

Milk products from cows that are homozygous for the A2 β-casein allele are marketed in several 
countries by the A2 Milk Company. The alleles present at the β-casein locus of genotyped sires is 
published by DataGene and available to farmers when making selection decisions, alongside the 
estimated breeding values and selection indices. We hypothesised that intense selection for the A2 
allele may have resulted in increased inbreeding. In this study we compared differences in genome 
wide and regional homozygosity between the two homozygotes of the β-casein alleles (A1 and A2) 
using medium density genotypes (50K SNP chips) of Holsteins cows. The A2 mutation was imputed 
into study animals, having first validated this approach in a group of bulls with known or certified 
genotypes for the β-casein locus. This study shows that the frequency of the A2 homozygote has 
increased by 20% since 2000 in Holstein cows. Our results suggest that selection for the β-casein 
A2 allele has increased inbreeding both across the genome and on chromosome 6 in Holstein cows 
that are homozygous for the A2 allele. Animals that had two A2 alleles were twice more likely to 
have a run of homozygosity of at least 35 SNP or 1000 kb long across the β-casein locus compared 
to animals that were homozygous for A1. 

 
INTRODUCTION 

Seventy-five percent of milk protein content and composition can be linked to four casein genes 
CSN1S1, CSN2, CSN1S2, and CSN3, encoding the casein proteins alpha S1 (αS1), beta (β), alpha 
S2 (αS2), and kappa (κ), respectively (Ferretti et al. 1990, Threadgill and Womack 1990). This 
casein cluster spans ~250kb on BTA 6 (Boettcher et al. 2004). Selection for the A2 β-casein allele, 
has increased rapidly due to the commercialisation of milk products by the a2 Corporation in 2000. 
Milk products from the A2 Corporation are produced from cows that are homozygous for the A2 β-
casein protein where herds need to have cows that are exclusively A2 homozygous. The alleles 
present at the β-casein locus of genotyped sires is published by DataGene and available to farmers 
when making selection decisions alongside the estimated breeding values and selection indices. 
Female genotyping at the β-casein locus can also be pursued by farmers who wish to build an A2 
homozygous herd.  

An implication of this is that intense selection for homozygosity at a given locus (A2) may result 
in increased inbreeding. Inbreeding can result in a loss of genetic diversity, decreased response to 
selection, reduced animal performance and ultimately, decreased farm profitability. Traditional 
pedigree methods to calculate inbreeding often underestimate the level of inbreeding due to 
incomplete pedigree and errors. With the availability of genotype information, we can now calculate 
inbreeding coefficients more accurately and are able to distinguish between recent and ancient 
inbreeding using runs of homozygosity. With the introduction of genomic selection the rate of 
inbreeding per year has increased (e.g. Doekes et al. 2018, Doublet et al. 2019, CDCB 2020), 
irrespective of the selection for specific alleles.  

In this study we determined the frequency of homozygotes of the β-casein alleles (A1 and A2) 
over an 18-year period (2000-2017) in Australian Holstein cows and compared differences in 
genome wide and regional homozygosity between the two homozygotes of the β-casein allele using 
50K SNP chip genotypes. 
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MATERIALS AND METHODS 
Data. A total of 139,898 genotyped individuals were available for Holsteins, Jerseys and their 

crosses from DataGene. The genotyping was carried out by various commercial providers. 
DataGene imputed the genotypes to a standard set of 45,685 SNP genotypes for routine evaluations 
(Nieuwhof et al. 2010). The breed of genotyped cows (Holstein) was validated using the 
ADMIXTURE program (Alexander et al. 2009). After correcting the breed information we had 
114,567 Holsteins cows for subsequent analysis. Of these 73,003 cows born between 2000 and 2017 
were used . 

We imputed the A2 alleles while imputing animals to whole genome sequence. Genotypes were 
imputed in a stepwise fashion by imputing any low-density genotypes to 50k, then to high density 
and finally full sequence. The sequenced reference population used for imputation was Run 7 of the 
1000 Bull Genomes project that includes 3090 Bos taurus animals after QC (Hayes and Daetwyler 
2019). Only homozygote animals for the A1 and A2 alleles were selected for analysis. This 
imputation approach for the A1 and A2 alleles was validated in a group of 443 bulls with known or 
certified genotypes for the β-casein locus and showed 98.4% concordance.  

Inbreeding coefficients. Genomic inbreeding coefficients were calculated from runs of 
homozygosity (ROH), identified across autosomes. A ROH was defined as a homozygous segment 
of at least 35 SNPs or 1000 kb long, with at least one SNP per 75 kb. Two consecutive SNP could 
not be included if they were more than 300 kb apart. ROH were identified using the PLINK 
“homozyg” function (Purcell et al., 2007) (command link: plink --cow --bfile 
genotyping_data_filename --homozyg --homozyg-kb 1000 --homozyg-snp 35 --homozyg-window-
snp 50 –homozyg-window-density 75 --homozyg-gap 300 --out output_filename). ROH-based 
inbreeding estimates, FROH,i, were computed as the proportion of the genome included in the ROH 
as follows: 

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅,𝑖𝑖 =
∑𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅,𝑖𝑖
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 , 

where ∑𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅,𝑖𝑖  is the total length of ROH for individual i, and Lauto the length of the autosome 
genome covered by SNPs after withholding gaps longer than 300 kb between two SNPs, 
corresponding to the length of the autosomal genome on which ROH can be detected. This parameter 
allowed for the detection of ROH on 92.2% of the autosomal genome.  

For each individual, we also calculated the mean ROH length which is defined as:  
𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 = 𝛴𝛴𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅,𝑖𝑖

𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅,𝑖𝑖
, 

where 𝛴𝛴𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅,𝑖𝑖  is the total length of ROH for individual i in kb, and 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅,𝑖𝑖the total number of 
ROH for individual i.  

Additionally, we also compared genomic inbreeding (ROH) for Holstein cows that were 
homozygous for A2 and A1 alleles specifically on chromosome 6 (Chr6:87181619). 

Wilcoxon-Mann Whitney tests were used to determine if there were significant differences 
between the two homozygote groups (A1/A1 versus A2/A2) in inbreeding levels for: all animals 
(born between 2000-2017) as well as between the same groups but only for young animals (born 
after 2013). A Chi-squared tested was used to determine if there was a difference between the 
observed versus expected number of animals with ROH over the A2 position. A total of 39,157 cows 
had both a known homozygosity over the β-casein locus and inbreeding coefficient and were used 
for the analysis.  

 
RESULTS AND DISCUSSION 

Frequency. There were more than four times the number of A2/A2 cows (31,814) compared to 
A1/A1 (7,335) in the dataset. Figure 1 demonstrates how the frequency of the β-casein allele has 
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changed in Holstein females since 2000. The A2/A2 frequency has increased from 32% in 2000 to 
52% in 2017, suggesting growth of interest in β-casein possibly sparked by the a2 Corporation.  

 
Figure 1 Frequency of the A1/A1 and A2/A2 homozygous Holstein cows born in 2000 to 2017 

 
Inbreeding. The median FROH was consistently higher in A2 than A1 homozygotes (Table 1). 

Over the whole genome, larger differences were observed when all animals were included 
(difference of 0.43%) than only young animals (animals born after 2013; difference 0.15, p = 0.002).  

We observed significantly more regional inbreeding on Chromosome 6 for A2/A2 animals than 
for A1/A1, with median FROH of 9.44% and 8.07%, respectively. 

 
Table 1 The median genomic inbreeding values (FROH*) for all animals (born in 2000-2017) 
or young animals (born in 2014-2017) homozygous for the β-casein A1 or A2 allele and the 
Wilcoxon-Mann Whitney significance test p-values 
 

 No. A1/A1 No. 
A2/A2 

Median  
FROH A1/A1 

Median FROH 
A2/A2 p-value 

Whole Genome      
All 7,335 31,814 7.89 8.32 < 2.2e-16 
Young Animals 3,907 18,893 8.63 8.78 0.002 
Chromosome 6     
All 5407 25301 8.07 9.44 < 2.2e-16 
Young Animals  3055 14977 8.89 9.60 8.211e-05 

*ROH - Runs of homozygosity 
 

Inbreeding over the β-casein locus. We found that while A2/A2 animals were more likely to 
have a ROH over the β-casein locus (chi-square statistic 262, p < 0.00001), the length of the ROH 
was longer for the A1/A1 animals (median ROH length 6,136 kb vs. 3,706 kb). When comparing 
this subset of animals to the median inbreeding observed over the whole genome, we found that 
animals with an ROH over the β-casein locus had higher overall level of inbreeding (median FROH 
10.0% subset vs. 7.89% population and 9.2% subset vs. 8.2% population for A1/A1 and A2/A2 
animals, respectively).  
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In this study, we did not determine if the genotyped cows were representative of the entire 
population. It is possible that farmers who breed strictly for A2/A2 individuals are more likely to 
genotype their cows than those not breeding for A2/A2, resulting in an overestimation in this study 
of the frequency of A2/A2 homozygous cows across the Australian dairy industry. Additionally, we 
did not determine if the differences in inbreeding between A1 and A2 homozygotes was due to 
selection for A2 rather than simultaneous selection for protein yield or other economic traits. Further 
work using imputed sequence genotypes across the region encompassing the casein gene cluster as 
well as the heterozygote individuals may allow us to determine these differences. Understanding 
these mechanisms could have a wider implication for assessing the benefits and shortcomings of 
narrow selection strategies. Perhaps farmers that are interested in selecting for particular alleles 
should pay attention to monitoring inbreeding and its through the use of appropriate mate selection 
methods. This may have implications for breeders that may consider selection for specific alleles 
that are currently at low frequency, such as, the polled region. 
 
CONCLUSIONS 

This study shows that the frequency of the A2 homozygote has increased by 20% since 2000 in 
Holstein cows. Our results suggest that A2/A2 animals were more inbred over the whole genome as 
well as on chromosome 6 and were more likely to have a ROH over the β-casein locus.  
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SUMMARY 
Residual feed intake (RFI) is difficult to measure, involving either labour-intensive 

measurements of feed intake and liveweight or specialised equipment, which makes genomic 
methods ideal for industry-wide selection. We estimated genetic parameters and investigated the 
accuracy of genomic prediction using five-fold cross-validation, using RFI phenotypes obtained 
from 465 Maternal Composite ewes measured at post-weaning, hogget and adult ages as a reference 
population. A genomic relationship matrix was constructed from 37,035 imputed markers. Uni- and 
multivariate GBLUP for RFI was performed, where records at different ages were either included 
as repeated measures or treated as separate traits. The first five principal components of the genomic 
relationship matrix were fitted as fixed effects to account for breed composition. The h2 of RFI was 
estimated at 0.19 (±0.04) when all ages were fitted together, and genetic correlations between PW-
hogget, PW-adult, and hogget-adult were estimated as 0.29 (±0.28), 0.24 (±0.43), and 0.50 (±0.37), 
respectively. The accuracy of genomic prediction across all ages was 0.22 (±0.03), and the bias was 
1.00 (±0.19). The results suggest that after increasing the training set, breeding values for RFI in the 
Maternal Composite ewes could be developed. 
 
INTRODUCTION 

Feed is the highest cost of sheep production. Subsequently, the sheep industry could potentially 
increase its profits by selecting for improved feed conversion efficiency (FCE). Residual feed intake 
(RFI) is the difference between actual and predicted dry matter intake (DMI) required for 
maintenance, growth, and production (Koch et al. 1963) and can be considered to be an indicator of 
FCE. However, an accurate measurement of DMI of animals at pasture is difficult, and thus RFI 
testing relies on the measurement of DMI and liveweight gain of intensively housed animals. The 
process is time-consuming expensive and may require specialised equipment, making it difficult to 
record at scale on commercial farms. For that reason, RFI is a good candidate trait for improvement 
through genomic selection. 

Genomic selection predicts genomic estimated breeding values (GEBVs) for selection 
candidates based on their genotype even when their phenotype is unknown (Meuwissen et al. 2001). 
As a reference population, 445 crossed ewes from a population that included Coopworth, East 
Friesian, Finn, Border Leicester, South African Meat Merino, Texel, Poll Dorset, White Suffolk, 
Merino, Corridale, NZ Romney and Perendale were recorded for feed intake. Using a common 
training population usually leads to higher accuracies than using breed-specific reference 
populations, especially for crossbreeds (Bolormaa et al. 2013). 

This study estimated genetic parameters and investigated the accuracy of genomic prediction via 
5-fold cross-validation for RFI in a reference population of Maternal Composite crossbreds.  
 
MATERIALS AND METHODS 

Phenotypes and genotypes. The feed intake and growth rate of 445 Maternal Composite ewes, 
251 born in 2013 and 194 in 2014, was obtained using the automated feed intake facility validated 
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by Muir et al. (2020a) at Agriculture Victoria, Hamilton, Victoria (Australia). From the 2013 born 
ewes, 81 were measured at post-weaning (PW), 195 at hogget, and 218 at adult ages. From the 2014 
born ewes, 193 were measured at PW and 189 at hogget ages. At start of the tests, the ewes were 
313 (±14), 534 (±19), and 858 (±23) days old at PW, hogget and adult ages, respectively. Animals 
were adapted to the pelleted diet for 10-14 days before the ad libitum feed intake was recorded 
individually in a group pen with automated feeders. Ewes were distributed across 10 group pens 
considering a balanced distribution of sires and ewes' liveweights across pens. All sheep were 
offered hay-based pellets for the duration of feed intake measurements. Pellets had 65% (±2.4) 
digestibility, 9.8% (±1.6) crude protein, 48% (±3.18) neutral detergent fiber, and 9.6 (±0.58) MJ/kg 
of dry matter. Feed intake measurements lasted 53 (±3), 42 (±3) and 32 (±0) days for PW, hogget, 
and adult age ewes, respectively. Live weights were measured three times weekly for the duration 
of the feed intake measurements. Details of the phenotypes and measurements were reported by 
Muir et al. (2020b). 

The animals were genotyped with 12,785, 15,000, or 54,241 single nucleotide polymorphism 
(SNP) chips and imputed to 38,379 SNPs using Fimpute (Sargolzaei et al. 2014). Then, SNPs with 
minor allele frequency <0.05 were removed, and 37,035 remained for downstream analysis. A 
genomic relationship matrix (G) was constructed using the function Gmatrix of the R package 
AGHmatrix (Amadeu et al. 2016) using the method of Yang et al. (2010). 

Residual feed intake. RFI was calculated as the residual DMI after energy sinks and corrected 
by fixed effects with the expression  

Observed DMI = μ + b1ADG + b2MMWT + b3YOB + b4PEN + b5 STAGE + b6AGE + RFI,  
where observed DMI is average daily dry matter intake over the measurement period, μ is the overall 
mean, b1-b6 are partial regression coefficients, ADG is average daily gain (kg/day), MMWT is 
metabolic mid-weight (kg), YOB is the year of birth, PEN is the pen, STAGE correspond to PW, 
hogget, or adult, and AGE is the age (days) at the start of the experiment. MMWT was calculated 
as the average between the liveweight at the start and the final of the test to the power of 0.75. RFI 
is the residual error of the equation. This model was used to estimate the RFI for the different life 
stages for all stages together, as preliminary analyses showed that a higher correlation between 
observed and predicted DMI was obtained when the three life stages were fitted together. 

Genomic prediction analysis. Uni- and multivariate genomic best linear prediction (GBLUP) 
for RFI was performed with the R package ASReml-R (Butler et al. 2009). The univariate model 
fitted the trait at combined PW, hogget, and adult ages as a single trait with repeated measures. 
Additionally, univariate models for RFI at PW, hogget, and adult as different traits were also 
conducted. Those distinct traits were also included independently in a multivariate model. The 
number of records in the models was 876, 274, 384, and 218 for all ages as a single trait, PW, hogget, 
and adult, respectively. The first five principal components of the genomic relationship matrix were 
fitted as fixed effects to account for breed composition in all models. 

Measurement of accuracy and bias. The accuracy and bias of genomic prediction were 
estimated for each univariate model using five-fold cross-validation. Initially, the animals were 
randomly grouped into five cohorts. One of the cohorts was used as a validation cohort by removing 
its RFI records from the dataset and training with the remaining four cohorts' RFI data and their 
genotypes. Prediction accuracy was calculated as the Pearson correlation between the GEBVs and 
the RFI phenotypes. The model bias was assessed as the regression slope of RFI on the GEBV.  This 
was repeated with every validation cohort and averaged across cohorts. 

 
RESULTS AND DISCUSSION 

Genetic and phenotypic parameters. The univariate model across all ages resulted in an RFI 
heritability of 0.19 (±0.04, Table 1). The heritabilities (h2) at PW was higher in the univariate (0.72 
± 0.21) and multivariate (0.69 ± 0.22) models. The heritabilities of RFI at the hogget age were 0.40 
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± 0.16 in the univariate and 0.40 ± 0.15 in the multivariate models, consistent with the literature 
reported for growing animals.  Most reported heritabilities of RFI in growing sheep are between 
0.17 ±0.07, and 0.45 ±0.08 (François et al. 2002; Snowder and Van Vleck 2003; Paganoni et al. 
2017; Hess et al. 2019; Tortereau et al. 2020). A lower heritability of 0.11 ±0.05 in growing sheep 
was also reported by Cammack et al. (2005), possibly because their RFI estimation did not adjust 
for metabolic weight.  

 
Table 1. Heritabilities and genomic prediction accuracies of RFI at PW, hogget, and adult ages 
 

Age  Univariate models Multivariate model *** 
h² ** Accuracy Bias PW Hogget Adult 

All ages * 0.19 ± 0.04 0.22 ± 0.03 1.00 ± 0.19    
PW 0.72 ± 0.21 0.20 ± 0.19 0.69 ± 1.09 0.69 ± 0.22 0.29 ± 0.28 0.24 ± 0.43 
Hogget 0.40 ± 0.16 0.24 ± 0.07 1.05 ± 0.71 0.18 ± 0.06 0.40 ± 0.15 0.50 ± 0.37 
Adult 0.35 ± 0.27 0.11 ± 0.16 0.46 ± 1.12 0.00 ± 0.13 0.24 ± 0.07 0.37 ± 0.21 

SE in brackets. * Univariate model fitted with RFI at all ages as a single trait with repeated measures. ** h² = 
narrow-sense heritability. *** h² in the main diagonal, genetic correlations (upper triangle), and phenotypic 
correlations (lower triangle). 

 
The heritabilities in adults were 0.35 ± 0.27 and 0.37 ± 0.21 in the univariate and multivariate 

models, respectively. The heritability in adults being lower than in growing animals is consistent 
with the literature. In Australia, Merino sheep were measured at PW (n = 1,866), hogget (n = 1,010), 
and adult (n = 444) ages, with their heritabilities estimated at 0.29 ± 0.08, 0.17 ± 0.07, 0.07 ± 0.08, 
respectively (Paganoni et al. 2017). The heritabilities and their standard error in our study were 
larger than estimated by Paganoni et al. (2017), probably due to the smaller data set in our work. 

The correlations had a large standard error, which suggests that the dataset was not large enough 
to obtain accurate correlations. The phenotypic correlations were 0.18 ± 0.06, 0.00 ± 0.13, and 0.24 
± 0.07 for PW-hogget, PW-adult, and hogget-adult, respectively. Similar correlations between the 
same ages in Australian Merino were reported, being 0.15 ± 0.03, 0.04 ± 0.05 and 0.33 ± 0.04, 
respectively (Paganoni et al. 2017). With the same population as used in our study, the phenotypic 
correlation between PW and hoggets born in 2014 was 0.20, and between hogget and adults born in 
2013 was 0.17 (Muir et al. 2020b). These phenotypic correlations are similar, but not equal to the 
estimates reported here probably due to the differences in RFI estimation methods and the number 
of animals included in the analyses derived from the restriction per year Muir et al. (2020b) 
implemented.  

The genetic correlation of RFI measured between PW and hogget, PW and adults, and hogget 
and adults were 0.29 ±0.28, 0.24 ±0.43, and 0.50 ±0.37, respectively. The genetic correlations for 
the same ages in Australian Merino were 0.36 ± 0.22, 0.00 ±0.53, and 0.75 ±0.74, respectively 
(Paganoni et al. 2017). The higher genetic correlation between hoggets and adults in Paganoni et al. 
(2017) agree with our results. It remains to be confirmed with a larger population whether RFI 
measurements in lambs are genetically correlated with measurements as adults. 

Genomic prediction accuracy and bias. The all-ages single trait model (n = 876) achieved an 
accuracy of genomic prediction of 0.22 ±0.03, and the bias was 1.00 ±0.19. This model had a lower 
standard error and was less biased than the univariate models per age. The accuracy of RFI at PW 
(n = 274), hogget (n = 384), and adult (n = 218) were 0.20 ±0.19, 0.24 ±0.07, and 0.11 ±0.16, 
respectively and the bias values of those models were 0.69 ±1.09, 1.05 ±0.71, and 0.46 ±1.12, 
respectively. Adult RFI was less accurate than the other models, which is expected as RFI in adults 
had higher variance than RFI at PW and hogget ages.  

In cattle, genomic selection for RFI is expected to improve feed efficiency, although the 
reference population size and its relationship to the predicted population are still factors that limit 
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high reliabilities (Li et al. 2020). The reliability (~accuracy2) of genomic predictions obtained in 
3,947 Holstein cows in the USA with a 5-fold cross-validation was 0.34 (Li et al. 2020). The same 
study reported a high RFI reliability in the top 10 sires with most RFI daughters (0.85), but the 
reliability dropped to < 0.17 in the remaining animals (Li et al. 2020). In Australia, GEBVs for RFI 
were estimated in 4,106 unphenotyped Holstein sires from a reference population of 2,036 
individuals obtained with a multi-trait GBLUP model and the reliability was 0.06 ±0.07. (Pryce et 
al. 2015). 
 
CONCLUSIONS 

Our results suggest that it is feasible to develop genomic breeding values for RFI in the Maternal 
Composite ewes. However, expanding the training set is required in order to achieve higher 
accuracies and to confirm whether RFI in lambs and adults is the same trait.   
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ABSRTACT 

In this study, we investigated the ability of three machine learning algorithms, Naïve Bayes (NB), 
Random Forest (RF) and Multilayer Perceptron (MLP), in the prediction of cases of lameness. 
Performance of these algorithms were compared with logistic regression (LR) as the gold standard 
approach for binary classification. There were negligible differences between LR, NB and RF, while 
MLP underperformed the other three methods. However, the F1-score in NB (22%) outperformed 
LR (11%), suggesting NB potentially could be a more reliable method for prediction of lameness in 
practice if there is enough relevant data available for proper training.  

 
INTRODUCTION 

Lameness along with mastitis and fertility problems are the most prevalent health issues in dairy 
cattle which have detrimental effects on the welfare and economic performance of the cows (Bruijnis 
et al. 2010). The direct economic impact of lameness which includes the costs of treatment and early 
culling are evident. However, the effects of lameness on reduced milk yield and impaired fertility 
are less obvious but have large contribution in total economic loss due to lameness incidence (Green 
et al. 2002; Huxley 2013).  

Genetic improvement to reduce lameness is difficult because the accuracy of lameness 
predictions is often low. Considering the complexity of prediction of lameness incidence, machine 
learning (ML) was shown to have promise to detect the risk level of lameness at the herd level 
according to 20 routinely pre-collected farm based records related to management, housing, 
production, reproduction, longevity and genetics merits (Warner et al. 2020).  

Predicting lameness incidence at the cow-level can help farmers detect susceptible cows (high 
risk category). Hence, the objective of this study was to evaluate the usefulness of ML approaches 
in the prediction of lameness incidence and compare it with classic binary classification method. 
 
MATERIAL AND METHODS 

Data. Lameness scores, milk production and conformation traits data were collected from 11 
Australian dairy farms in spring 2018. The lameness scoring was performed by trained classifiers 
after morning milking according to Dairy Australia guidelines1; where 0=walking evenly, 
1=walking unevenly, 2=moderate difficulty in walking and 3=severe lameness. In this study, cows 
were classified to either sound (score 0) or unsound (score 1-3) group because there were a limited 
number of cows with non-zero scores. The milk production traits were test-day milk yield, fat, 
protein and lactose percentage as well as somatic cell count (SCC) measured within a week before 
the lameness scoring visit. Further, we also investigated the following potential predictors in our 
study; breed, parity, age at calving (in months), age at lameness scoring visit (in months), days in 
milk (DIM) at lameness scoring and test-day visit.  

Any column or row with more than 50% missing values was excluded. The remaining data 
comprised 2,640 cows in 11 herds with records of lameness and 42 predictor features. Missing 

 
1 https://www.dairyaustralia.com.au/dairytas/animal-management-and-milk-quality/animal-
health/lameness  

https://www.dairyaustralia.com.au/dairytas/animal-management-and-milk-quality/animal-health/lameness
https://www.dairyaustralia.com.au/dairytas/animal-management-and-milk-quality/animal-health/lameness
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values for about 30% of lactose percentage and parity number were imputed using rfImpute 
procedure from randomForest packages in R (Liaw and Wiener 2002). Feature selection was 
performed using combination of mean reduction in Gini index and mean decrease in accuracy from 
randomForest Package combined with the potential predictor traits reported in previous literature 
(Solano et al. 2015; Ranjbar et al. 2016; O'Connor et al. 2020). In total 31 features were selected as 
predictors of lameness incidence. Four of these features were categorical; breed (Holstein, Jersey, 
Holstein × Jersey and Holstein × non-Jersey crossbreds); herd (11 levels); parity (1, 2, 3, 4, and 4+); 
and month of calving (MOC; 12 levels). The summary statistics of the rest of the predictors used in 
this study is provided in Table 1.  

Lameness prediction. Three machine learning methods were used in this study and their 
performance was compared with the classic binary prediction method, logistic regression (LR). 
Multilayer Perceptron (MLP) is a feedforward artificial neural network that calculates a sequential 
linear combination of inputs into a set of appropriate outputs via its hidden layers and activation 
functions (Mitchell 1997). Package ‘h2o’ in R was used for this purpose (LeDell et al. 2020). Naïve 
Bayes (NB) is one of the most efficient and effective inductive learning algorithms for machine 
learning and data mining. It is a statistical classifier based on Bayes rule (Domingos and Pazzani 
1997). Package ‘e1071’ in R was used for this purpose (Meyer et al. 2019). Random Forest (RF) is 
one of the ensemble prediction methods in which predictor trees are trained on bootstrap samples 
drawn from the training data (Ho 1995; Breiman 2001). Package ‘randomForest’ in R was used for 
this purpose (Liaw and Wiener 2002). 

Hyper-parameter tuning was conducted via a grid search on 50% of randomly selected data. 
Training and testing of models were performed using 10-fold cross validation and repeated 10 times. 
Performance metrics were aggregated. The entire training and validation process was conducted in 
R v4.0.2 programming language (R-Core-Team 2020). 

 
RESULTS AND DISCUSSION 

Table 2 shows model performance metrics for algorithms used in this study to predict incidence 
of lameness. There was not a consistent best performer among algorithms used to predict lameness. 
In terms of accuracy (ACC) and precision (PRE) LR outperformed the ML algorithms at 0.86 and 
0.28 respectively. Among the ML algorithms, MLP had the lowest false positive rate (FPR) at 0.04, 
however, it had a high standard deviation in performance. Considering true positive rate (TPR), it 
was NB that outperformed the other methods with a relatively low standard deviation (0.26). As the 
current study encountered an unbalanced classification problem (unbalanced numbers of lame to 
sound cows), using F1 score (harmonic average of precision and recall) was a more suitable metrics 
for comparing different classification algorithm. The naïve Bays classifier had the highest TPR and 
F1 score (0.22) and moderate precision relative to other tested algorithms. In real life different types 
of misclassification error varies in cost, without considering those costs, identifying the optimum 
classifier is not possible (Shahinfar et al. 2015). In the absence of misclassification cost, we base 
our classifier selection on F1-score.  

The Area under ROC curve (AUC) indicates the overall performance of classifier 
asymptotically. In the current study LR had the highest AUC at 0.65 followed by NB (AUC= 0.63). 
Warner et al. (2020), reported AUC = 0.73-0.75 for risk prediction of lameness at the herd level. 

Considering all the performance criteria, NB had significantly higher F1 Score compare to LR, 
therefore NB would be the recommended algorithm to predict incidence of lameness. Nevertheless, 
NB still misclassified a large proportion of animals (i.e. high FPR and low PRE). This sub-optimal 
performance can be firstly due to the fact that the training data set was limited in size and highly 
imbalanced; and secondly, lameness is indeed a very complex trait affected by genetics, environment 
and management factors such as nutrition, production level, bedding, weather, walking track, 
laneway quality and pasture condition (Ranjbar et al. 2016; O'Connor et al. 2020). Thus, for an 
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accurate prediction of lameness incidence, a very comprehensive dataset of management factors 
affecting lameness (both at farm and animal level) is needed, which is often not accurately and 
consistently collected in dairy farms (O’Connor et al. 2020).  
 
Table 1. Summary of data used in this study 
 

trait mean sd min max mean decrease 
accuracy 

mean decrease 
Gini 

Age at calving 47.71 22.33 22 161 6.44 22.4 
Age at lameness 
scoring 52.33 22.72 23 162 7.36 21.9 

BCS 3.59 0.76 1.0 8.0 3.28 15.44 
Dairy strength 11.02 1.67 3 16 3.68 14.3 
Feet & legs 10.52 1.55 3 15 2.35 12.83 
Mammary system 10.28 1.35 5 14 1.77 11.02 
Overall type 9.88 1.32 1 13 2.98 10.81 
Rump 10.88 2.12 1 16 2.1 17.57 
DIM at lameness 
scoring 138.68 145.25 1 485 8.37 22.45 

DIM at milk test-day 115.75 105.56 2 314 8.67 27.06 
Fat % 3.85 0.97 1.13 9.84 4.3 27.72 
Lactose% 5.05 0.26 3.61 5.84 7.26 29.04 
Angularity 5.55 0.98 2 8 4.62 10.43 
Body depth 6.03 1.09 2 9 2.36 9.98 
Bone quality 6.8 1.11 1 9 0.22 12.24 
Median suspensory 6.4 1.07 2 9 3.19 9.86 
Foot angle 5.36 0.92 2 9 1.41 10.29 
Heel depth 5.64 0.83 2 9 1.5 11 
Loin strength 6.34 0.91 2 9 2.52 10.77 
Pin width 6.24 1.32 1 9 2.11 14.5 
Rear attachment width 5.63 1.31 1 9 5.1 12.38 
Rear legs - rear view 5.92 1.03 1 9 1.3 13.99 
Stature 6.29 1.51 1 9 1.46 12.19 
Udder depth 5.31 1.39 1 9 2.13 13.36 
Milk yield 27.25 8.93 32 606 8.23 27.08 
Protein % 3.44 0.38 2.00 5.86 3.34 27.41 
SCC 129.84 477.43 1 9590 2.88 26.81 
Breed * * * * 1.21 2.1 
Herd * * * * 12.18 27.86 
Parity * * * * 3.59 9.15 
MOC * * * * 5.46 19.39 

‘*’these features were considered as factor 
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Table 2. Model performance metrics for algorithms used in prediction of incidence of lameness 
in dairy cows. ACC=Accuracy; PRE=Precision; TPR=True Positive Rate; FPR=False Positive 
Rate; F1 = F1 scores  
 

algorithm ACC PRE TPR FPR F1-score 
LR 0.86(0.032)ab 0.28(0.072)a 0.09(0.086)b 0.04(0.046)ab 0.11(0.072)b 

MLP 0.88(0.022)a 0.17(0.173)b 0.03(0.038)c 0.02(0.029)a 0.04(0.045)c 

NB 0.80(0.036)c 0.20(0.015)b 0.26(0.070)a 0.14(0.048)c 0.22(0.020)a 

RF 0.84(0.057)b 0.22(0.097)ab 0.13(0.130)b 0.07(0.080)b 0.12(0.084)b 

* The values with different superscript letters in each column are significantly different (p<0.05) according to 
Tukey-HSD multiple comparison test. 
 
CONCLUSION 

Prediction of incidence of lameness in dairy cattle is a difficult task. Multiple environmental 
effects influence lameness and their interactions and causal-effect pathways are often not considered 
in lameness prediction. Prediction of incidence of lameness on the cow level is possible with Naive 
Bayes classifier and logistic regression. Lack of a comprehensive dataset was the main limitation of 
this study. Although the classification performance was suboptimal in our study, we expect 
additional information on the herd level such as bedding, nutrition, and weather will improve 
prediction accuracy. Nevertheless, this study provided proof of concept for prediction of lameness 
at the cow level.  
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SUMMARY 
The current genetic evaluation of female fertility in New Zealand (NZAEL2.0) is based on the 

binary phenotype of calving rate in the first 6 weeks of the calving season. Recent research suggests 
that using a continuous phenotype and including a heifer calving trait would increase the accuracy 
of fertility breeding values. This paper describes and investigates these factors in the context of a 
new fertility model proposed for New Zealand (NZAEL3.0). Industry implementation steps and 
results and comparisons of the validation work undertaken on NZAEL2.0 and NZAEL3.0 are 
presented. The results of the validation undertaken show that NZAEL3.0 is substantially better at 
predicting future fertility phenotypes compared to NZAEL2.0. 

 
INTRODUCTION 

In New Zealand, fertility is currently evaluated in NZAEL2.0 using two binary traits measured 
in first parity: calving rate within 6 weeks (CR) from planned start of calving (PSC) and percentage 
mated within 3 weeks (PM) from planned start of mating (PSM). This model has been substantially 
reduced compared to the previous model (NZAEL1.0) which used data across parities 1 to 3 (Harris 
et al. 2005). The reduction was to enable computational feasibility of the model when used in 
conjunction with genomic data. Research undertaken since 2013 indicated that redefining fertility 
as a continuous calving season day trait (CSD, Table 1) instead of using binary scores as per the 
current trait definition would increase the accuracy of the fertility evaluation (Bowley et al. 2015; 
Stachowicz et al. 2014a; Stachowicz et al. 2014b). This research has been summarised by 
Stachowicz et al. (2015), where rationale and recommendations for the proposed changes have been 
provided. The proposed model would consist of seven traits: four CSD and three PM traits. However, 
with application of genomic methodology such a model would not be computationally feasible. 
Therefore, a number of reduced models were tested (data not shown) and a seven-trait three breeding 
value model, where CSD or PM traits in parities 1 to 3 are modelled with the same breeding value, 
was selected for further assessment. Variance components estimated for this selected model as well 
as validation of the NZAEL2.0 and NZAEL3.0 models are presented in this paper. 

 
MATERIALS AND METHODS 

The proposed model for genetic evaluation of fertility consists of seven traits: CSD0, CSD1, 
CSD2, CSD3, PM1, PM2, and PM3, and three breeding values (EBVs): CSD0, CSD123, and PM123 
(Table 1), where CSD1-3 and PM1-3 are records for 2nd to 4th calvings and matings leading to those 
calvings. For the purposes of variance component estimation, the data and the model described by 
Amer et al. (2016) and Stachowicz et al. (2015) was employed but fit with a repeated records model 
for CSD123 and PM123. Variance component estimation was carried out using ASReml software 
(Gilmour et al. 2009). NZAEL3.0 evaluations were carried out using BOLT software (Garrick et al. 
2018) where the required 7x7 residual covariance matrix was derived from the estimated residual 
and permanent environment variance components estimated by the repeatability model fit in 
ASReml. The 3x3 additive genetic covariance matrix remained unchanged. 
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Current testing has focused on a lifetime fertility estimated breeding value:   
Fert EBV = -1*(0.28*CSD0 + 1.32*CSD123) 

where the coefficients applied to CSD0 and CSD123 are based on a relativity determined by the 
number of discounted expressions, and a scale based on conversion of CSD to CR scale. 

The following validation approach was used. The genetic evaluation model was run on national 
data but with the last four seasons of phenotypic data removed (2016-2019). The full pedigree of 
~26.7 million animals including those for cows with removed phenotypes was retained. Fertility 
records were extracted for 200 herds (approximately 19,000 cows). These cows were all born in 
2014 and were sourced from 100 sire proving scheme herds of two breeding companies (CRV & 
LIC) and a further 100 herds identified as having high data quality scores. Table 1 describes in detail 
the phenotypes that were derived for these animals. 

The validation approach involved classifying these ~19,000 cows into quintiles (5 groups of 
equal size) based on a specific genetic evaluation option where records from 2016 onwards are 
excluded (set to missing). Thus, we have 5 groups of animals ranging from high parent average 
prediction for fertility to low parent average prediction for fertility. We then fit each of the validation 
phenotypes (Table 1) from the 19,000 cows as a dependent variable in a model with quintile, 
contemporary group associated with the validation phenotype, and age at corresponding calving also 
fitted as independent variables. Least Squares Means (LSM) for quintile groups are then compared. 
A higher separation between the 1st and the 5th quintile group LSMs of validation phenotype values 
indicates a better performing genetic evaluation system for the target traits of interest. 

 
Table 1. Abbreviations and trait definitions of validation phenotypes 
 

Abbreviation Trait definition 
CR0 Calving rate for heifers, =1 (success) if calved in the first 6 weeks from PSC (binary) 
CR1-3 As above but for cows’ 2nd to 4th calving 

TCD1-3 Timing of conception, days from PSM until the last recorded (successful) mating date after 
1st to 3rd calving 

3wICR1-3 3 week in-calf rate, =1 (success) if conceived within 3 weeks from PSM after 1st to 3rd 
calving (binary) 

6wICR1-3 6 week in calf rate, =1 (success) if conceived within 6 weeks from PSM after 1st to 3rd 
calving (binary) 

CSD0 Calving season day for heifers, days from PSC to 1st calving 
CSD1-3 Calving season day for cows, days from PSC to calving for 2nd to 4th calving 
PM1-3 Presented for mating in the 1st 3 weeks from PSM (binary, 1=success) after calvings 1 to 3 
GL1-3 Gestation length culminating at 2nd to 4th calving 

 
RESULTS AND DISCUSSION 

The estimated variance components for the proposed model are presented in Table 2. 
Heritabilities and genetic correlations from the repeated records model tended to be higher than 
corresponding values from the multiple trait model (Stachowicz et al. 2015). 

 
Table 2. Heritabilities (repeatabilities; on diagonal) and genetic correlations (off diagonal) for 
proposed repeated records model for genetic evaluation of fertility 
 

 CSD0 CSD123 PM123 
CSD0  0.034   
CSD123  0.686  0.047 (0.272)  
PM123 -0.525 -0.828  0.069 (0.143) 

 
The results of the validation work are presented in Tables 3-5. Table 3 shows the phenotypic 
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performance contrast between the 1st and 5th quintiles when validation heifers were assigned to 
these based on alternative parent average genetic predictions. The NZAEL3.0 fertility EBV 
outperformed the NZAEL2.0 fertility EBV for predicting 6-week in-calf rate, with the difference 
being substantial (i.e. roughly twice as good) for later parities. Typically, second calving cows 
constitute a little under 20% of the herd, and so when it comes to predicting whole herd fertility, a 
paradigm shift in accuracy of fertility genetic merit prediction should be expected with the new 
approach. There was less difference between the methods for predicting submission rate than there 
was for in-calf rate after three weeks (Table 4). The NZAEL3.0 fertility EBV was substantially 
better than the NZAEL2.0 EBV for predicting the ability of cows to calve earlier in the season (Table 
5), and also to conceive earlier in the season. 

 
Table 3. Phenotypic performance difference between animals assigned to their 1st versus 5th 
quintile based on alternative parent average (PA) EBVs taken from alternative evaluation 
validation runs – Six week in calf rate (6wICR) and gestation length (GL) 
 

Fertility 
EBV 

PA 
Spread1 
Proposed 

PA 
Spread1 
Current 

6wICR1 6wICR2 6wICR3 GL1 GL2 GL3 

NZAEL 3.0  10.63  2.92  0.076  0.070  0.070 -0.9 -1.2 -1.2 
NZAEL 2.0  6.41  4.57  0.068  0.048  0.031 -0.7 -0.6 -0.5 
CSD0 -7.24 -1.81 -0.048 -0.041 -0.035  1.3  1.1  1.3 

1PA spread for current and proposed EBV indicate the predicted differences in parent average based spread 
between the first and 5th quintiles of validation animals for the proposed new fertility breeding value, and for 
the current fertility breeding value, respectively. 
 

The NZAEL3.0 fertility EBV will be expected to bring heifer calving forward (e.g. 1.5 day 
difference and 1.5% more calving in the first 6 weeks between the 1st and 5th quintiles when 
compared with the NZAEL2.0 EBV in Table 4), with about 1/3 of the difference (i.e. about 0.5 days 
when weighted across parities) attributable to shorter gestation length (Table 3). In general, the 
relationship between fertility EBV and gestation length is only slightly stronger for NZAEL3.0 than 
for NZAEL2.0 EBV. For example, NZAEL3.0 gives a 66% increase in separation for 6-week in calf 
rate weighted across parities, and this corresponds to a 100% increase in separation for gestation 
length (Table 3). In general, it seems likely that farmers would accept a 1.2 day shorter average 
gestation length as part of a genetic package that gives a 7% gain in 6-week in calf rate. Further, a 
comprehensive analysis of NZ data by Jenkins et al. (2016) indicated that the disadvantages at the 
extreme short end of the gestation length scale from shortening population average gestation length 
are more than offset by the gains from reduction in calvings at the extreme long gestation length end 
of the scale. While earlier born heifer calves have one less day in utero, they have one more day 
post-partum before the commencement of the heifer mating season. 
 
Table 4. Phenotypic performance difference between animals assigned to their 1st versus 5th 
quintile based on alternative parent average EBVs taken from alternative evaluation 
validation runs – Three week in calf (3wICR) and three week submission rates (PM) 
 

Fertility EBV 3wICR1 3wICR2 3wICR3 PM1 PM2 PM3 
NZAEL 3.0  0.114  0.134  0.103  0.107  0.119  0.102 
NZAEL 2.0  0.074  0.091  0.063  0.092  0.101  0.094 
CSD0 -0.069 -0.071 -0.058 -0.042 -0.058 -0.043 

 
The alignment between the difference in EBVs between quintiles, and the difference in 
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phenotypic performance for calving by 6 weeks was approximately 1:1 for the NZAEL3.0 EBV 
(compare 10.63% difference in PA in Table 3 with .104 to .125 proportional differences observed 
in CR1, CR2 and CR3 in Table 4). In comparison, the 6.41% difference in PA from the NZAEL2.0 
EBV in Table 3 under predicted the .07 to .09 differences in CR1 observed phenotypically). 

Results for a univariate prediction of breeding values for calving season day for first calving 
heifers have been included in Tables 3 to 5. Low values (earlier calving) are better for this trait, so 
the signs of the phenotypic differences between the 1st and the 5th quintiles is negative for validation 
phenotypes where positive is favourable. These roughly reflect the likely outcome of evaluating 
bulls based on the first calving dates of their first crop of daughters at their first calving using the 
proposed fertility evaluation. This would give an indication of fertility approximately 3 months 
earlier than evaluations based on submission rate after 1st calving. The degree of separation in 
validation phenotypes with selection on CSD0 EBVs from the NZAEL3.0 model is very 
encouraging, albeit not quite as good as the NZAEL2.0 model, and only 50 to 60% as effective as 
when using the full evaluation that incorporates all phenotypes. While these evaluations, based on 
first calving date records only, will have a stronger association with shorter gestation length (Table 
3), the values are not of sufficient magnitude to be of concern. 
 
Table 5. Phenotypic performance difference between animals assigned to their 1st versus 5th 
quintile based on alternative parent average EBVs taken from alternative evaluation 
validation runs – Calving traits (CR and CSD) 
 

Fertility EBV CR0 CR1 CR2 CR3 CSD0 CSD1 CSD2 CSD3 
NZAEL 3.0  0.047  0.116  0.104  0.125 -4.13 -6.93 -6.89 -5.97 
NZAEL 2.0  0.032  0.091  0.084  0.074 -2.58 -5.66 -5.27 -3.95 
CSD0 -0.041 -0.083 -0.071 -0.073  3.65  5.04  4.86  4.19 

 
CONCLUSIONS 

This study shows that the proposed NZAEL3.0 model for genetic evaluation of fertility 
outperforms the current NZAEL2.0 model for all of the phenotypes tested. Higher accuracies of 
fertility breeding values would be expected with the NZAEL3.0 model as well as the improvement 
in early predictions due to the inclusion of the heifer calving trait into the evaluation. The increased 
indirect response in shortening of gestation length could become a concern over time, and future 
work is planned to identify a new phenotype for evaluation based on pregnancy diagnosis, which 
targets earlier conception and is independent from gestation length. 
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SUMMARY 

The aims of this study were to: 1) update the Australian (dairy) breeding value (ABV) for 
lifetime residual feed intake (RFIlife, covering RFI at the growth and lactation stages) using 3,711 
Holstein female records (584 Australian cows, 824 Australian heifers and 2,440 foreign cows) 
using a multivariate model and 2) re-evaluate the Feed Saved ABV in Holstein (HOL) bulls. Cow 
numbers have doubled compared to the original 2015 Feed Saved ABV model. Genomic 
heritability estimates of RFI were 0.18, 0.27, and 0.36 for Australian (AUS) and overseas (OVE) 
cows, and AUS heifers, respectively. The genetic correlations were 0.47 between AUS cow and 
heifer traits and 0.94 between AUS and OVE cow traits, but these estimates were associated with 
large standard errors. The standard deviation of Feed Saved (FS) ABVs in HOL bulls was 79 
kg/yr. The reliability of the residual feed intake component of Feed Saved increased from 11% to 
20%. The next step in calculating FS is to combine RFI ABVs with maintenance requirements 
estimated using bodyweight ABVs. The overall reliability of FS ABVs has increased from 33% to 
43% on average. The correlations of RFIlife and FS ABV between the prediction equations of 
2015 and 2020 in 20k Holstein bulls (born from 2010 to 2020) were 0.65 and 0.80, respectively. 
We conclude that expanding the reference population, especially with inclusion of the 
international data, has improved the reliability of feed efficiency EBVs. 

 
INTRODUCTION 

Feed costs make up a large proportion of the variable and total costs on a dairy farm and 
improving production efficiency remains a key breeding objective. The dairy industry has seen 
tremendous gains in milk yield, without a proportional increase in maintenance requirements, 
leading to an improvement in gross efficiency (Pryce et al. 2018). However, further improvements 
can be achieved through genomic selection for residual feed intake (RFI), defined as the difference 
between actual and predicted feed intake. In 2015, DataGene released the world’s first Feed Saved 
breeding value (FS ABV) to the dairy industry, which includes the genetic component of RFIlife 
combined with the maintenance requirements calculated from liveweight EBV. The FS ABV has 
been incorporated in the Balanced Performance Index (BPI) to select for overall economic merit 
(Pryce et al. 2015). Selecting animals based on the best FS ABV, especially in combination with 
the BPI, is expected to reduce energy requirements for similar amounts of milk production.  

Genomic prediction for RFI that was used to calculate FS ABV in 2015 was developed using a 
small reference population (n = 2,036) including 234 Australian cows. We have doubled the 
number of AUS cows with genotypes and phenotypes for RFI and additionally have had access to 
a larger dataset of non-Australian cows by participating in the Efficient Dairy Genome Project 
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(EDGP; an international database including research herds from Europe and North America). 
These 2 data sources have provided an opportunity to increase the size of reference population and 
hence to update the FS ABV. The aim of this study was to estimate the prediction equations of 50k 
SNP effects for RFIlife, to reassess the ABV and its reliability for FS, and to compare with the 
2015 ABV.  

 
MATERIALS AND METHODS 

A total of 3,711 animals were used in this study including: 584 lactating Australian cows and 
824 heifers and 2,440 OVE cows (USA, Canada (CAN), Netherlands (NLD), United Kingdom 
(UK), Denmark (DNK), and Switzerland (CHE)). The genotypes and phenotypes of the AUS and 
OVE cows except NLD and UK were downloaded from EDGP database, while the NLD and UK 
data were part of the original dataset used in the development of the 2015 FS ABV (Pryce et al. 
2015). Additionally, the genotypes of approximately 20,000 Holstein bulls born between 2010 and 
2020 were received from DataGene (Melbourne, Australia). The genotypes of cows from the 
EDGP database were on a variety of medium to HD SNP chips, and sporadic missing genotypes 
were filled using FImpute (Sargolzaei et al. 2014). In total, 41,276 SNP were in common between 
cow, heifer and bull data sets. This SNP set was chosen to conform to DataGene’s national 
genomic evaluation for dairy cattle (i.e. the same set is used for all traits), which is based on 
UMD3.1 reference genome map positions. However, all the imputation of the genotypes was 
undertaken using ARS-UDC1.2 reference genome map positions. Before merging each country’s 
genotypes, the allele frequency of each SNP in each country was checked to ensure that the 
homozygotes were likely to be in the same direction. The genomic relationship matrix (GRM) was 
constructed based on the 41,276 genotypes with or without the 3,413 AUS HOL bull genotypes 
using the method of Yang et al. 2010. 

All 3,711 animals had milk production traits, energy corrected milk (ECM) and dry matter 
intake (DMI) data available on most days over a 28-day period, starting at a mean minimum of 5 
days in milk (DIM). Trait deviations for RFI in AUS heifers were previously calculated as means 
of the difference in actual and predicted DMI that was measured over a 6-7-week period at heifers 
of around 6 months of age (Pryce et al. 2015). RFI for AUS cows was calculated based on the 
average DMI over the 28-day experimental period using the same model described in Pryce et al. 
(2015). The phenotypes of RFI for OVE cows were calculated as RFI = DMI – (mean + parityST 
+ DIM + HYS + poly(age,-2) + trial + ECM + BWT + ∆BWT), where DMI is the daily dry matter 
intake (DMI). Energy corrected milk (ECM), mean body weight (BWT), daily BWT change 
(∆BWT), days in milk (DIM), and age of cows (poly(age,-2) were all fitted as covariates. Daily 
BWT change (∆BWT) was calculated by fitting fifth-order orthogonal polynomial regression on 
DIM (5 to 206 DIM) to daily BWT, and then ∆BWT was calculated as the difference in predicted 
BWT between consecutive days. The fixed effects in the OVE cows were parity stage (parityST), 
herd-year-season (HYS), and trial (diets). 

A trivariate GREML analysis, where the traits were RFI in AUS cows and heifers and OVE 
cows, was used to calculate genetic correlations between RFI traits and GEBV. Prediction of SNP 
effects for RFI cow and RFI heifer was βˆ = Z’(ZZ’)-1gˆ, where Z is the n × 41,276 matrix of the 
genotypes of 3,711 animals in the reference set, and gˆ is the descaled DGVs for the trait RFI in 
Australian cows. Prediction equations of SNP effects were used to predict breeding values of 
3,413 Holstein bulls that overlapped with the data used in 2015. RFI DGV for AUS cows and 
heifers were combined to produce a genomic breeding value of RFIlife covering the growth and 
lactation stages. Then FS ABV was calculated by subtracting RFIlife from the amount of the feed 
required to maintain 1kg of extra body weight per year (Feed_BW_kg). The Feed_BWT_kg is a 
function of BWT and calculated as EVBWT * (EBVBWT - 100) / ( feedcost  * MJME ), where 
EVBWT (economic value of maintenance) is A$5.14, feedcost (the cost of feed in MJ) is 
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AUS$0.032/MJ, and MJME (the energy content of feed) is 11.9 MJ/kg of DMI. Details of the 
calculation of FS ABV and its reliability are described in Pryce et al. (2015).  

 
RESULTS AND DISCUSSION 

Heterozygosity predicted from GRM was compared with mean observed heterozygosity per 
country and heterozygosity assuming Hardy-Weinberg equilibrium. There was good concordance 
between these population measures, with all genotype groups displaying a similar range of 
heterozygosity (0.32-0.34), showing that the GRM constructed using animals from different 
groups is a good representation of the relationships between and within group of animals. 

Phenotypic standard deviations of the RFI phenotypes were 0.42 kg/d for AUS heifers, AUS 
cows, and OVE cows were 1.28 kg/d and 1.82 kg/d, respectively. The single trait and multi-trait 
analyses provided similar genomic heritability estimates (h2 ± S.E.) for RFI (0.18 (±0.086) for 
AUS cow, 0.36 (±0.086) for AUS heifer, and 0.27 (0.034) for OVE cow). Due to the increase in 
size of the reference data set, the standard errors of h2 estimates were much smaller than the 
comparable estimates obtained using the data available in 2015, particularly for AUS cows. The 
genetic correlations (rg ± S.E.) were 0.47 (±0.274) between AUS cow and AUS heifer, 0.94 
(±0.297) between AUS cow and OVE cow, and 0.20 (±0.175) between OVE cow and AUS heifer 
traits. The rg between AUS cow and OVE cow was higher than the estimates in 2015, where it was 
0.76 (±0.60). However, the estimates are associated with quite large standard errors.  

The standard deviation of FS in the 3,413 bulls was 79 kg/yr (Table 1), which was 14kg/yr 
higher compared with the estimates in 2015. Cows with ABVs that are one standard deviation 
above the mean of 0 (i.e. +79 kg/yr) could save 1.3% of annual feed costs as reported in Pryce et 
al. (2015). The correlations of RFI life and FS ABV between the prediction equations of 2015 and 
2020 were 0.65 and 0.80, respectively. This is anticipated to cause some re-ranking of the bulls 
based on their updated BPI values with the new model. 

 
Table 1. Mean, SD, and range of EBV and reliabilities for RFI cow, RFI heifer, RFI life, feed 
required for BWT (Feed_BWT_kg), and feed saved (FS) in 3,413 Holstein (HOL) bulls 
 

  
RFI cow RFI heifer RFI life Feed_BW_kg FS BWT 

(kg*10/d) (kg*10/d) (kg/yr) (kg/yr) (kg/yr) (kg/yr) 

ABV       
Mean 1 0.23 23.2 8.7 -14.4 99.4 

SD 2.88 0.89 65.6 46.8 79.2 3.5 

Max 11.7 3.1 262.9 195.7 250.1 113.9 

Min -6.86 -2.38 -154.4 -141.7 -268.3 85.6 

Reliability       
Mean 0.22 0.12 0.20 NA 0.47 0.71 

SD 0.038 0.035 0.036 NA 0.039 0.062 

Max 0.45 0.29 0.39 NA 0.69 0.99 

Min 0.07 0.01 0.06   NA 0.28 0.45 
NA= not estimated.   
 

The genetic trend for RFI life, Feed_BWT_kg, and FS in 20,817 genotyped Holstein bulls that 
were born from 2010 onwards using the equation 2020 is shown Figure 1. From Figure 1A, since 
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2010 there is an increase in RFI life and a decrease for feed required for BWT, and hence a 
negative (unfavourable) trend for FS. The change in FS was at a much higher rate (about > 1/2 
genetic SD) until the FS ABV was included as part of BPI which occurred in 2015. This change 
has slowed down (<1/4 SD of FS ABV) over the last 5 years, showing that adopting FS in BPI has 
been reasonably effective in reducing the unfavourable genetic trend in FS. The correlation 
between bodyweight EBV and FS EBVs was -0.5. For breeds other than Holsteins, FS is 
calculated using only the BWT component, as RFI is only measured in Holsteins. 

The genetic variance of RFI life and BW in kg of feed DM per year was 30,318 kg2/yr and 
33,325 kg2/yr, respectively, and hence the variance of FS was 63,643 kg2/yr. The mean reliabilities 
for RFI life and FS in the 3,413 bulls were 0.20 and 0.47, respectively (Table 1). A distribution of 
the reliability of FS for 20k bulls that were born from 2010 onward using the equation 2020 is 
presented in Figure 1B, where the mean was 0.43 (sd = 0.045), ranging from 0.15 to 0.61. This 
was about 10% higher than using the equation predicted based on the data set 2015 where the 
reference population was almost half the size.  

Compared with the milk production traits, the reliability of FS is still low. Using the 
deterministic equation described in MacLeod et al. (2014), over 20,000 cows and heifers are 
needed to have a reliability of 0.50 for RFI life with the given effective population size (Ne) of 210 
and a constant reliability of 0.12 for RFI heifer (assuming no more additional data is added at the 
growing stage). With the given reliability of 0.50 for RFI life, the reliability for FS would be 
around 0.58. Expanding the heifer population has little impact because weight on it is only 20%.  

 
Figure 1. a) Genetic trend of EBV for RFI life, Feed_BWT_kg, and Feed Saved (FS) in 20k 
genotyped Holstein bulls, b) Histogram of reliability of FS EBV in 20k Holstein bulls 

 
The reliability of RFI cow using the bivariate model with AUS cow and AUS heifer traits 

applied to 3,413 HOL bulls was low (0.08) compared with the reliability using the tri-variate 
model, showing a large benefit of using of overseas data. Continuing international collaborations 
for traits that are expensive to measure, such as feed intake, is immensely valuable.  

The FS ABV, using the updated 2020 model, has recently been released by DataGene for 
farmers and breeders to use (December 2020) in addition to being included in BPI and Health 
Weighted Index (HWI). The economic weight of FS from the economic model (Byrne et al. 2016) 
used to derive weights for the BPI was halved based on advice from industry stakeholders to avoid 
a reduction in milk production gains and live weight of mature cows indirectly due to strong 
correlation to FS. However, the full value ($0.385/kg) has been applied in the HWI. The 



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 377-381 

381 

correlation between HWI and FS ABVs using bulls born from 2010 is 0.19, while between BPI 
and FS is 0.03, so a favourable selection response for FS is still only anticipated with selection on 
HWI.  

 
CONCLUSIONS 

An updated 2020 model for the FS ABV using over 3,700 Australian cows and heifers, and 
overseas cows implemented using a multivariate model has improved the reliability of FS by about 
10% compared with the 2015 model. Feed Saved derived by combining RFI and BWT originally 
implemented in BPI using the 2015 model has an apparent effect on the genetic trend. The 
implementation of FS ABV and its inclusion in BPI and Health Weighted Index (HWI) is expected 
to further improve the genetic trend of FS in the Holstein bulls and cows and improve feed 
efficiency in dairy cattle. The current reference population based on Australian animals is still 
small, therefore international collaboration is still crucial to achieve higher reliabilities of feed 
saved ABV across dairy populations. 
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DERIVING BREEDING VALUES FOR NET REPRODUCTION RATE FROM 
COMPONENT TRAITS IN SHEEP 

 
A.A. Swan and K.L. Bunter 

 
Animal Genetics Breeding Unit∗, University of New England, Armidale, NSW, 2351 Australia 

 
SUMMARY 

Genetic analyses for sheep reproduction traits in LAMBPLAN and MERINOSELECT have 
recently been upgraded to separate number of lambs weaned per ewe joined (NLW) into the 
component traits of conception (CON), litter size (LS) and ewe rearing ability (ERA). Methodology 
was developed to combine breeding values for component traits post-analysis into the net 
reproduction traits: reproduction rate (RR, lambs born per ewe joined) and weaning rate (WR, lambs 
weaned per ewe joined). Comparisons from the LAMPLAN maternal analysis show that RR and 
WR breeding values were closely aligned to single trait number of lambs born per ewe joined (NLB) 
and number of lambs weaned per ewe joined breeding values, ≈0.93 for RR with NLB, and ≈0.85 
for WR with NLW. The derived net reproduction breeding values are useful as a tool for transition 
from old to new upgraded analyses. 

 
INTRODUCTION 

New genetic analyses for component traits of sheep reproduction have been developed for 
LAMBPLAN maternal breeds in 2019 (Bunter et al. 2019), and MERINOSELECT in 2020 (Bunter 
et al. 2020), and have been available to breeders as research breeding values (RBVs). These are 
scheduled for transition to Australian Sheep Breeding Value (ASBV) status in 2021. The component 
traits are conception (CON, ewes pregnant per ewe joined), litter size (LS, lambs born per ewe 
lambing), and ewe rearing ability (ERA, lambs weaned relative to lambs born). Together, these traits 
describe the reproductive cycle from mating to lambing and then weaning. This development allows 
breeders to select on components separately, as determined by their relative importance in different 
production systems. In this paper we show how breeding values for component traits can be 
combined post-analysis into a breeding value for net reproduction rate which can be used to support 
legacy indexes, and as a transitionary mechanism to assist breeders who are currently familiar with 
an equivalent net reproduction breeding value, number of lambs weaned (NLW). 

 
MATERIALS AND METHODS 

Two derived net reproduction traits are defined, reproduction rate (RR) which combines 
conception and litter size, and weaning rate (WR) combining all three components (CON, LS, ERA). 
Units for RR are number of lambs born per ewe joined, and for WR are number of lambs weaned 
per ewe joined. Therefore, RR is a replacement for the current NLB breeding value, and WR for 
NLW. Further, WR can be used as a replacement for NLW in existing selection indexes. 

To derive net reproduction breeding values, component traits are expressed relative to 
phenotypic performance. Firstly, baseline phenotypic means are calculated for each component trait 
with an adjustment for genetic trend. For example, the baseline mean for CON is: 

𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐 = Σi(𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 − 𝑢𝑢�𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖)𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐
−1  

 
∗ A joint venture of NSW Department of Primary Industries and the University of New England 
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Where 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 is the phenotype for the 𝑖𝑖𝑡𝑡ℎ animal, 𝑢𝑢�𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 the estimated breeding value, and 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 
the number of CON phenotypes in the analysis. Baseline means for LS and ERA are calculated 
accordingly (𝜇𝜇𝑙𝑙𝑙𝑙 and 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒).  

Predicted daughter performance is then calculated for the 𝑖𝑖𝑡𝑡ℎ animal, for CON as: 
𝑐𝑐𝑐𝑐𝑛𝑛𝑖𝑖 = 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐 + 0.5 × 𝑢𝑢�𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 

And for LS as: 
𝑙𝑙𝑠𝑠𝑖𝑖 = 𝜇𝜇𝑙𝑙𝑙𝑙 + 0.5 × 𝑢𝑢�𝑙𝑙𝑙𝑙𝑖𝑖 

The expected frequencies of the 𝑗𝑗𝑡𝑡ℎ litter size category given 𝑙𝑙𝑠𝑠𝑖𝑖 (𝑝𝑝𝑖𝑖𝑖𝑖 , 𝑗𝑗 = 1,2,3,4) are then 
derived using the mathematical model of Amer et al. (1999), graphically represented in Figure 1. 
We note that this model is very accurate and repeatable across populations and breeds, including 
across countries. 

 

 
Figure 1. Frequency of litter size categories given mean flock litter size (Amer et al. 1999) 

Predicted daughter performance for RR can then be calculated as: 
𝑟𝑟𝑟𝑟𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑖𝑖 × Σ𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 . 𝑗𝑗 

Where 𝑟𝑟𝑟𝑟��� is the mean predicted daughter performance for all animals in the pedigree. 
Derivation of WR requires calculation of survival rates for each litter size category (𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑗𝑗 =

1,2,3) given predicted daughter performance for LS (𝑙𝑙𝑠𝑠𝑖𝑖) and ERA (𝑒𝑒𝑟𝑟𝑎𝑎𝑖𝑖), the latter calculated as: 
𝑒𝑒𝑟𝑟𝑎𝑎𝑖𝑖 = 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 + 0.5 × 𝑢𝑢�𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 

Individual survival rates are not straightforward because survival is a much more random 
biological process than litter size, so we use numerical optimisation of the following equations: 

𝑠𝑠𝑖𝑖1 − (𝑒𝑒𝑟𝑟𝑎𝑎𝑖𝑖 − (𝑝𝑝𝑖𝑖2 × 𝑠𝑠𝑖𝑖2 + 𝑝𝑝𝑖𝑖3 × 𝑠𝑠𝑖𝑖3)/𝑝𝑝𝑖𝑖1) = 0
𝑠𝑠𝑖𝑖2 − (𝑒𝑒𝑟𝑟𝑎𝑎𝑖𝑖 − (𝑝𝑝𝑖𝑖1 × 𝑠𝑠𝑖𝑖1 + 𝑝𝑝𝑖𝑖3 × 𝑠𝑠𝑖𝑖3)/𝑝𝑝𝑖𝑖2) = 0
𝑠𝑠𝑖𝑖3 − (𝑒𝑒𝑟𝑟𝑎𝑎𝑖𝑖 − (𝑝𝑝𝑖𝑖1 × 𝑠𝑠𝑖𝑖1 + 𝑝𝑝𝑖𝑖2 × 𝑠𝑠𝑖𝑖2)/𝑝𝑝𝑖𝑖3) = 0

 

Subject to the constraints: 
0.8 ≤ 𝑠𝑠𝑖𝑖1 < 1
𝑠𝑠𝑖𝑖1 − 𝑠𝑠𝑖𝑖2 ≤ 0.2
𝑠𝑠𝑖𝑖2 − 𝑠𝑠𝑖𝑖3 ≤ 0.2

 

With litter size frequencies (𝑝𝑝𝑖𝑖𝑖𝑖) determined by predicted daughter performance for LS (𝑙𝑙𝑠𝑠𝑖𝑖) as 
above. Also note that survival rates are only calculated for singles, twins and triplets: frequencies 
for quadruplets are too low for reliable calculation. 

Optimised survival rates calculated using this method on the LAMBPLAN maternal 
reproduction analysis (8 December 2020) are shown in Figure 2. 
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Predicted daughter performance for WR is then calculated as: 
𝑤𝑤𝑟𝑟𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑖𝑖 × Σ𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖 . 𝑝𝑝𝑖𝑖𝑖𝑖 . 𝑗𝑗 

The derived breeding value for WR is: 
𝑢𝑢�𝑤𝑤𝑒𝑒𝑖𝑖 = 2 × (𝑤𝑤𝑟𝑟𝑖𝑖 − 𝑤𝑤𝑟𝑟����) 

The methods were validated using the LAMBPLAN maternal reproduction analysis of 8 
December 2020. Firstly, single trait REML analyses were run for the directly observed traits NLB 
and NLW derived from CON, LS, and ERA phenotypes, with the resulting breeding values 
compared to RR and WR breeding values calculated from component trait breeding values from the 
full multi-trait LAMPLAN analysis.  
 

 
Figure 2. Survival rates (y-axis) for litter size categories (LS=1,2,3) calculated by optimisation 
given predicted daughter performance for Flock ERA (𝒆𝒆𝒆𝒆𝒂𝒂𝒊𝒊, x-axis) and Flock LS (𝒍𝒍𝒔𝒔𝒊𝒊) 

RESULTS AND DISCUSSION 
Results in Table 1 show high correlations between direct breeding values for NLB or NLW and 

corresponding derived net breeding values within-flock, higher for NLB with RR (≈0.93) than for 
NLW with WR (≈0.85). In within flock analyses with complete reproduction records these 
correlations can exceed 0.95 (analyses not presented). The correlations in Table 1 are expected to 
be lower than within flock results because derived net breeding values originate from the full multi-
trait analysis (15 traits described by Bunter et al. 2019) with different data, and because of 
incomplete observations of the complete reproductive cycle for many females. That is, in the across 
flock analysis it is common for females to have records for LS but not CON or ERA, due to quality 
control filtering at the flock and contemporary group levels. There were also genetic group effects 
apparent, with lower correlations (not shown) observed in composite breeds compared to straight-
bred animals. 

An alternative to deriving net reproduction traits post-analysis would be to explicitly include 
NLB and NLW phenotypes as additional traits in the new analysis, but with yearling and adult 
expressions this would mean adding four traits to multi-trait models which currently have up to 19 
traits. This would involve substantial effort in developing covariance matrixes, made difficult by 
dependencies between component and net traits, and would increase analysis run-times.  

A second reason not to include NLW explicitly relates to the modelling of contemporary groups 
at different points of the reproductive cycle. For CON and LS groups are defined at joining because 
the outcomes are determined at this time (apart from low level impacts of foetal loss on LS). By 
contrast, for ERA, groups are defined from lambing. Because NLW covers the whole cycle both 
groupings are relevant. However, breeders routinely group animals for lambing based on pregnancy 
scanning for management purposes i.e., single bearing and multiple bearing ewes are grouped 
separately for differential feeding. This means that lambing groups can often be highly confounded 
with NLW trait values. We have previously observed that when such groups are modelled for NLW 
the resulting breeding values are poor predictors of phenotypic performance. 
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Table 1. Comparison of NLB with RR and NLW with WR breeding values for sires and 
dams used from 2015 in the LAMBPLAN maternal across flock analysis (data from 8-Dec-
2020). Comparisons include correlations, standard deviations ([trait]_sd), and intercept and 
slope from regression of “direct” trait on “derived” (e.g. NLB ~ RR) 

Group NLB with RR 
 number corr NLB_sd RR_sd intercept slope 
Sires 1542 0.928 0.138 0.156 0.01 0.82 
Dams 82990 0.933 0.124 0.137 0.01 0.84 
 NLW with WR 
 number corr NLW_sd WR_sd intercept slope 
Sires 1472 0.855 0.091 0.110 0.01 0.71 
Dams 72403 0.853 0.079 0.095 0.02 0.71 

 
CONCLUSIONS 

New reproduction analyses for LAMBPLAN maternal sheep and MERINOSELECT represent a 
major advance on the current analysis of NLB and NLW, due to a greatly improved data processing 
pipeline, use of genomic information, and because they provide breeders with the ability to focus on 
components of reproduction separately. Net reproduction rate breeding values (RR and WR) derived 
from component trait breeding values post-analysis are useful as a tool to transition from the old to 
the new analyses and are shown in this study to be highly correlated with comparable breeding 
values for NLB and NLW. 
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SUMMARY 

Inherited diseases are often rare but their cumulative impact is substantial. The published data 
about inherited conditions in animals, and particularly about monogenic disease with known likely 
causal variants, is steadily increasing. However, limited information is available about how 
frequently these conditions occur. Animal owners and veterinarians often don’t know how to report 
emerging genetic conditions, how to find out about available information about existing conditions 
or how to connect with researchers who would be interested to investigate such conditions. This 
problem can be addressed by the provision of a curated portal for the reporting of potential inherited 
disorders by owners or veterinarians. This paper describes the initial planning of a centralised 
resource for surveillance, reporting and control of inherited diseases of animals in Australia. 

 
INTRODUCTION 

For humans, the global reference compendium Online Mendelian Inheritance in Man (OMIM, 
https://omim.org/) includes 5,762 monogenic inherited diseases and other traits for which causal 
variants have been reported (https://omim.org/statistics/geneMap). Most of these could also occur 
in any animal species. However, while the number of monogenic traits and diseases in animals for 
which causal variants are known is steadily increasing (Figure 1), to date these represent only a 
relatively small number of inherited monogenic diseases for any of the major domesticated animal 
species (Table 1). 

Figure 1. Likely causal variants for monogenic traits and diseases reported per year in Online 
Mendelian Inheritance in Animals (OMIA, https://omia.org/)  
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Table 1. Summary of information about inherited conditions (phenes) in major domestic 
species in Online Mendelian Inheritance in Animals (OMIA, https://omia.org/). Phenes 
include disorders as well as non-disorder traits such as blood systems and most pigmentation 
traits. The numbers for deleterious conditions for each category are listed in brackets  

  
Dog Cattle Cat Pig Sheep Horse Chicken Goat 

Total phenes (disorders) 787 
(731) 

555 
(503) 

363 
(328) 

286 
(239) 

258 
(195) 

242 
(210) 

223 
(163) 

90 
(53) 

Mendelian phenes 
(disorders) 

364 
(331) 

261 
(228) 

117 
(92) 

92 
(69) 

112 
(71) 

49 
(41) 

132 
(93) 

20 
(12) 

Mendelian phenes 
(disorders) with likely 
known causal variant(s)  

299 
(269) 

167 
(146) 

84 
(68) 

41 
(28) 

59  
(32) 

46 
(29) 

51 
(29) 

15 
(8) 

 
Population genetics modelling and whole genome sequence analyses suggest that all humans and 

animals are likely to be carriers of multiple deleterious alleles, further highlighting that inherited 
diseases pose a significant risk to health and welfare. 

In animal populations, inbreeding and small effective population size increase the risk of 
recessive diseases: deleterious allele frequencies can amplify rapidly if particular sire lines are 
widely used. The result is that the risk of inherited diseases is greater in animals than in humans. 
Furthermore, inherited diseases in animals are often misdiagnosed, and are under-reported due to a 
lack of reporting structures, and concerns from many animal breeders that reporting suspected 
inherited conditions to their breed societies could cause reputational damage.  

However, if an emerging disease is identified as inherited, effective mating plans can be 
implemented to reduce the risk of affected animals being born, either by predicting genotypes by 
pedigree analysis or by implementing DNA diagnostics once the disease-causing mutation(s) has 
been identified. Control of inherited diseases by these means has a direct effect on the betterment 
and welfare of animals.   

Currently, Australia has no centralised resource for surveillance, reporting and control of 
inherited diseases in animals. Internationally, such resources are limited and often species-specific. 
Bequest funding has become available for the development of the Anstee Hub for Inherited Diseases 
of Animals (AHIDA) to provide a solution for preventing and controlling inherited diseases in 
animals throughout Australia, aiming at: 

1. Establishing and maintaining an Australia-wide surveillance and reporting resource for 
inherited diseases in animals,  

2. Prioritising emerging inherited diseases for research and control, based on published criteria 
that include incidence, welfare and (where relevant) financial impact 

3. Facilitating undergrad/postgrad research projects on the highest-priority inherited diseases,  
4. Disseminating information on emerging inherited diseases and, more generally, on the 

incidence/occurrence of inherited diseases and their management, to veterinarians, breed 
societies and the public, mainly via Online Mendelian Inheritance in Animals (OMIA) 
 

This paper will outline the proposed structure of AHIDA, and the presentation will provide 
additional information on how stakeholder feedback from an online workshop held in August 2021 
will be used to refine our vision.  
 
PROPOSED STRUCTURE FOR AHIDA 

AHIDA is a proposed online portal with designated entry points for researchers, veterinarians 

https://omia.org/
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and animal owners, for reporting and surveillance of inherited conditions in animals. 
Veterinarians and animal owners will be prompted to submit to the database information about 

animals with suspected or confirmed inherited conditions.  
Data submission will be guided using standardised nomenclature for species, breed (Universal 

Breed ontology, UBO) and disease phenotype (Universal Phenotype Ontology, UPO) using  
standardized nomenclature for diseases, clinical signs and pathology.  

The breed and phenotype ontologies are currently being developed in collaboration with the 
leaders of the Monarch (ontology) Initiative (Shefchek et al. 2019), and  aim to combine information 
from available resources such as DADIS (http://www.fao.org/dad-is/en/), LBO 
(https://www.animalgenome.org/bioinfo/projects/lbo/), SAVSNET 
(https://www.liverpool.ac.uk/savsnet/), SNOMED-CT (https://www.snomed.org/snomed-ct/why-
snomed-ct) and VeNom (http://venomcoding.org/)..  

Once fully integrated, AHIDA will directly link submitters with information about similar 
genetic conditions listed in animals (OMIA) or humans (OMIM), link to providers of DNA tests, 
provide generic information about management and control of inherited diseases in animals, and if 
requested, connect submitters with species expert panels for further advice.  

Our aim is to develop species expert panels which include geneticists, clinicians and pathologists 
who can provide genetic counselling advice and link submitters with research teams that have 
expressed an interest in a specific disease, disease group or species. 

AHIDA will report – in a format to be developed in collaboration with stakeholders – occurrence 
of genetic diseases, likely based on type of disease and species and breed. When fully operational, 
it is envisaged that additional information about occurrence of inherited diseases will be available 
via reciprocal links to VetCompass Australia (https://www.vetcompass.com.au/) and the soon-to-
be-developed Veterinary and Animal Research Data Commons, and interested genotyping providers 
could report allele frequencies for monogenic diseases for which likely causal variants are tested. 
This will generate more accurate information about occurrence of inherited diseases in Australian 
animals and will inform research initiatives and management strategies. 

We hope to be able to link OMIA and AHIDA to existing image repositories so that images or 
videos relating to the disease phenotype can be shared among submitters, species expert teams and 
researchers.  

Limited funding will be available for research students at the University of Sydney to investigate 
emerging conditions that have been prioritised according to evidence-based criteria. Prioritisation is 
likely to consider incidence, welfare impact, population characteristics (e.g., effective population 
size, International Union for Conservation of Nature (IUCN) status), likelihood/costs to develop an 
efficient management approach, availability of research and (where relevant) financial impact of the 
genetic condition. 

 
CONCLUSIONS 

While generous bequest funding has been made available for the initial development of this 
initiative, ongoing support from key industry stakeholders and breed societies, the veterinary 
profession and the wider research community will be required for the vision to succeed. A workshop 
to collect stakeholder feedback will have been conducted by the time of the conference and we will 
report on the reshaped vision. 
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SUMMARY 
Online Mendelian Inheritance in Animals (OMIA) is a freely available curated database that 

contains information on inherited traits and disorders (called phenes in OMIA) across more than 250 
species.  OMIA entries relating to pigs were reviewed, as a relatively low number of Mendelian 
phenes, as well as low number of phenes for which likely causal variants were listed, were noted 
when compared to other companion and livestock species. Of the 277 pig phenes recorded within 
the database at the beginning of this study in March 2020, 228 were classified as defects, 87 were 
Mendelian traits and for 37 of these, 45 likely causal variants were published. This study aimed to 
identify gaps in the information for pig phenes within OMIA. Changes to 30 pig phenes were made 
with a focus on updating information in OMIA’s downloadable tables of known likely causal 
variants, One phene had previously been missed and was added, and 8 phenes were added as part of 
ongoing curation. 
 
INTRODUCTION 

Online Mendelian Inheritance in Animals (OMIA) (Nicholas 2020, Online Mendelian 
Inheritance in Animals 2021) is a freely available, curated, online database which provides 
researchers, veterinarians and breeders with up-to-date summary information on all the known 
harmful and beneficial variants in animals, together with background information on all known 
inherited disorders and beneficial traits. OMIA focuses on phenes with confirmed and suspected 
Mendelian modes of inheritance. However, phenes with unknown or complex modes of inheritance 
and phenes caused by somatic mutations, chromosomal abnormalities or genetic modifications or 
genome editing are also included. Furthermore, OMIA provides references for landmark and review 
articles and for papers describing genetic maps and reference genomes in animals (including 34 pig 
mapping and pig genome references). OMIA covers more than 3,500 phenes across more than 250 
species. The vast majority of OMIA entries are for the major domesticated animals (Table 1).  

One of the first causal variants identified in livestock was the variant causing malignant 
hyperthermia in pigs (OMIA 000621-9823, Fujii et al. 1991), and due to their anatomical similarities 
to humans, pigs are frequently used as models of human disease (Bassols et al. 2014). However, in 
comparison to other companion and livestock species, OMIA entries for pigs are relatively sparse. 
This is particularly evident for the number of Mendelian traits and numbers of likely causal variants. 
This study aimed to improve OMIA curation by adding new pig phenes and critically analysing and 
curating pig phenes currently recorded within OMIA, with a focus on updating variant information, 
as these data can be downloaded and used to develop DNA diagnostic tools. 

 
 
 

 
∗ A joint venture of NSW Department of Primary Industries and the University of New England 
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Table 1. Numbers of phenes, Mendelian traits, traits with at least one likely known causal 
variant and total number of likely causal variants known in major companion and livestock 
species in OMIA (Online Mendelian Inheritance in Animals, 2021) at the time of writing 
(February 2021)  
 

 Dog Cattle Cat Pig Sheep Horse Chicken Goat All 
species 

Total phenes 
(traits/disorders) 784 555 362 286 257 242 223 90 3683 

Total number of Mendelian 
traits 362 261 116 92 112 59 132 20 1553 

Total number of Mendelian 
traits with at least one 
likely causal variant 
known 

297 167 83 40 59 46 51 15 930 

Total number of likely 
causal variants known 435 226 131 50 76 98 66 26 1268 

 
MATERIALS AND METHODS 

Identification of missing porcine information in OMIA. A literature search for phenes or 
publications that describe genetic conditions in pigs that are not currently listed in OMIA was 
performed via PubMed (PubMed 2021), using key search words, such as ‘pigs’, ‘disease’, ‘inherited’ 
and ‘variant’, in various combinations. Identified references and phenes were added to the database.  

For Mendelian phenes where no gene or causal variant was recorded, the associated references 
were searched for variant information, including analysis of figures for clues, such as images of 
analysed sequence. Mendelian phenes without information on likely causal gene or likely causal 
variant were not investigated further. 

Updating porcine variant information in OMIA. For phenes with at least one likely causal 
variant, the data in the downloadable tables of known likely causal variants was reviewed and 
updated to represent location information in the Sscrofa11.1 reference genome to facilitate 
development of diagnostic tools. Variant locations and predicted effects on proteins were determined 
through various methods depending on availability of published data, and included remapping and 
confirmation of the variant effect using in silico variant effect prediction.  

Variant remapping. Any variants mapped in reference genomes other than the most recent, 
Sscrofa11.1, were remapped using the NCBI Genome Remap tool (National Center for 
Biotechnology Information 2021b). The input for the tool required selection of the source organism 
(Sus scrofa), source assembly, target assembly, variant location and chromosome number. No 
settings under the ‘remapping options’ or ‘data’ headings were altered. The input format for the 
variant location and chromosome followed the input guide provided by NCBI. New variant locations 
were confirmed using NCBI Genome Data Viewer (National Center for Biotechnology Information 
2021a) which allowed for visualisation of the variant, determination of which strand (PLUS or 
MINUS) the variant was located on, and identification if the variant had an European Variant 
Achieve (EVA) ID (EMBL-EBI 2021). Variant locations for variants that lacked reference genome 
information or contained information from reference genomes not recognised by the NCBI Genome 
Remap tool were mapped manually, based on information provided in the original reference. 

Variant effect prediction. Ensembl’s variant effect predictor (VEP) (Ensembl 2021) tool was 
used to obtain further information on some of the recorded variants, including the variant 
consequence, allele, exon, intron and cDNA position. All analysed variants were located within 
Sscrofa 11.1 and were input in the format outlined by the VEP program (Ensembl 2021). To obtain 
all available results, the option of ‘Ensembl and RefSeq transcripts’ was selected within the 
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‘Transcript database to use’ component of the input settings. Results were confirmed by comparing 
the variant location generated to that previously published, recorded in OMIA or found via genome 
remapping. 
 
RESULTS AND DISCUSSION 

At the time of data collection (March 2020), the OMIA database contained 277 phenes in pigs. 
Of these, 87 were classified as Mendelian traits/disorders and 37 were Mendelian traits with known 
causal variants. Of the 37 Mendelian phenes with known causal variants, 17 were identified to be 
disease traits. The PubMed literature search resulted in the addition of one missed phene: Vitamin 
C deficiency (OMIA 002268-9823) as well as the addition of several references and additions to 
text curation fields to existing phenes. 

Ongoing curation based on daily automated PubMed searches for all animal species resulted in 
the addition of further 8 porcine phenes. At the time of writing (February 2021) OMIA includes 286 
pig phenes of which 92 are Mendelian traits. Of the 40 Mendelian traits with 50 known likely causal 
variants, 31 phenes are defects or disease- related (Table 2), 6 are coat-colour phenes, 2 are related 
to ear phenes and 1 is a blood-group phene (Table 3). 

Updates made to OMIA’s downloadable likely causal variant tables are summarised in Table 2 
and Table 3. Chromosome (Chr), genomic DNA (g.), coding DNA (c.) and protein (p.) locations 
were added to 26, 26, 11 and 9 variants, respectively. Text was added to the verbal description field 
for 9 variants. Variant effect prediction was conducted for 16 variants, and EVA IDs were added for 
13 variants.  

The literature review has not been able to identify many additional porcine phenes or references 
and this suggests that the automated daily PubMed searches followed by manual curation have been 
an effective way to identify most genetic conditions in pigs. However, a broader literature search 
that searches journals that are not listed in PubMed may provide additional references and phenes. 
This study was able to update location information for many of the likely causal variants that are 
listed in OMIA, information that is particularly important in the absence of EVA IDs. In March 
2020, OMIA listed EVA IDs for only 3 porcine variants (ear size: rs338733115; coat colour, white 
belt, KIT-related: rs328592739, and malignant hyperthermia: rs344435545). The inclusion of EVA 
IDs for 13 additional variants will allow automated updates to location information if new reference 
genomes become available once OMIA is hyperlinked to EVA as part of a planned update.  

Further curation is needed to increase content in OMIA’s text entry fields for many of the porcine 
phenes, particularly in relation to information about clinical signs and pathology.   
  



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 390-396 

393 

Table 2. Defects/disease-related phenes - Summary information about Mendelian traits in pigs 
for which likely causal variants have been listed in OMIA (Online Mendelian Inheritance in 
Animals, 2021). OMIA ID, phene name, gene, year of publication and PubMed IDs of papers 
describing the likely causal variants are listed. Updates to variant information are summarised 
as updates to chromosome (Chr), genomic DNA (g.), coding DNA (c.)  protein (p.) locations, 
addition of EVA IDs (EVA), analysis of data via the Ensembl Variant Effect Predictor (VEP) 
and verbal description field (text). Location details are available in OMIA 
(https://omia.org/results/?search_type=advanced&gb_species_id=9823&result_type=variant). 
 

OMIA ID Phene (variant phenotype) Gene Year PubMe
d ID 

Updated 
information  

000499-
9823 Hypercholesterolaemia LDLR 1998 9556295 g. / VEP / EVA 

000576-
9823 Knobbed acrosome BOLL 2020 3297584

6  

000621-
9823 Malignant hyperthermia RYR1 1991 1862346 g. / VEP 

000636-
9823 

Membranoproliferative 
glomerulonephritis type II CFH 2002 1246611

9 Chr / g. 

000683-
9823 

Muscular hypertrophy (double 
muscling) MSTN 2008 1882209

8 Chr / g. / EVA 

000837-
9823 Vitamin D-deficiency rickets, type I 

CYP27B
1 2003 1291521

8 Chr 

CYP27B
1 2003 1291521

8 Chr 

000862-
9823 Resistance to oedema disease  FUT1 2000 1113214

9 
Chr /g. / c. / p. / 

VEP / EVA 
001058-
9823 Von Willebrand disease III VWF 2017 2920865

1 Chr 

001085-
9823 Meat quality (Rendement Napole) 

PRKAG
3 2000 1081800

1 
g. / c. / p. / VEP / 

EVA 
PRKAG

3 2001 1172915
9 

g. / c. / p. / VEP / 
EVA 

001128-
9823 Pale soft exudative meat PHKG1 2014 2534039

4 
Chr / g. / text / 

EVA 
001200-
9823 Tremor, high-frequency MYH7 2012 2315328

5 Chr / g. 

001334-
9823 Sperm, short tail SPEF2 2006 1654980

1 Chr 

001401-
9823 Waardenburg syndrome, type 2A MITF 2016 2734989

3 g. / text 

001436-
9823 

Non-shivering thermiogenesis, 
absence UCP1 2006 1693399

9 Chr 

001673-
9823 Spermatogenic arrest TEX14 2011 2213615

9 Chr 

001685-
9823 Stress syndrome DMD 2012 2269111

8 
Chr / g. / c. text / 

EVA / VEP 
001718-
9823 

Dwarfism, Schmid metaphyseal 
chondrodysplasia 

COL10
A1 2000 1113097

6 Chr / g. / c. / VEP 

001952-
9823 Microtia HOXA1 2015 2603586

9 g. / VEP 

https://omia.org/results/?search_type=advanced&gb_species_id=9823&result_type=variant
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001986-
9823 

Severe combined 
immunodeficiency disease, 
autosomal, T cell-negative, B cell-
negative, NK cell-positive, with 
sensitivity to ionizing radiation 

DCLRE1
C 2015 2632025

5 g. 

DCLRE1
C 2015 2632025

5 g. 

002161-
9823 Leg weakness, MSTN-related MSTN 2019 3069911

1  

002178-
9823 Abortion, BBS9-related BBS9 2018 3023102

1  

002180-
9823 Abortion due to haplotype DU1 

  
TADA2

A 
2019 3087537

0  

002181-
9823 Abortion due to haplotype LA1 POLR1

B 2019 3087537
0  

002182-
9823 Abortion due to haplotype LA2 URB1 2019 3087537

0  

002183-
9823 Abortion due to haplotype LA3 PNKP 2019 3087537

0  

002210-
9823 Congenital hypothyroidosis DUOX2 2019 3065127

7 g. / text 

002232-
9823 

Myopathy, congenital, SPTBN4-
related SPTBN4 2019 3185007

4  

002268-
9823 Vitamin C deficiency GULO 2004 1511211

0 Chr / text 

002283-
9823 Arthrogryposis multiplex congenita  KIF21A 2020 3268617

1  

002287-
9823 Hypopigmentation and deafness KIT 2020 3304240

8 g. / text 

002306-
9823 

Fecundity, BMP15-related 
(Infertility and increased litter size) BMP15 2021 3341310

3  
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Table 3. Non-disease related phenes - Summary information about Mendelian traits in pigs 
for which likely causal variants have been listed in OMIA (Online Mendelian Inheritance in 
Animals, 2021). OMIA ID, phene name, gene, year of publication and PubMed IDs of papers 
describing the likely causal variants are listed. Updates to variant information are summarised 
as updates to chromosome (Chr), genomic DNA (g.), coding DNA (c.)  protein (p.) locations, 
addition of EVA IDs (EVA), analysis of data via the Ensembl Variant Effect Predictor (VEP) 
and verbal description field (text).  
 

OMIA ID Phene (variant phenotype) Gene Year PubMed 
ID 

Updated 
information  

000209-
9823 Coat colour, dominant white KIT 1996 8875890 Chr 

001199-
9823 

Coat colour, extension (red) MC1R 1998 9799269 Chr / g. / c. / p. / 
text / EVA /VEP 

Coat colour, extension (red) MC1R 1998 9799269 Chr / g. / c. / p. / 
text / EVA /VEP 

Coat colour, extension (dominant 
black) MC1R 1998 9799269 Chr / g. / c. / p. / 

text / EVA /VEP 
Coat colour, extension (dominant 
black) MC1R 1998 9799269 Chr / g. / c. / p. / 

text / EVA /VEP 
Coat colour, extension (dominant 
black) MC1R 1998 9799269 Chr / g. / c. / p. / 

text / EVA /VEP 
Coat colour, extension (black 
spotting on red or white 
background) 

MC1R 2001 11404341
28411032 

Chr / g. / c. / p. / 
text / EVA /VEP 

001216-
9823 Coat colour, roan KIT 2011 21749430 Chr 

001249-
9823 

Coat colour, brown, TYRP1-
related 

TYRP
1 2011 20978532 Chr / g. 

001743-
9823 Coat colour, patch KIT 1998 9724328 Chr 

001745-
9823 

Coat colour, white belt, KIT-
related KIT 2012 23151514 Chr 

Coat colour, white belt, KIT-
related KIT 2016  g. / VEP / text 

000319-
9823 Ears, folded (Ear size) MSRB

3 2018 30587124  

001579-
9823 

Ear size (large floppy ears) PPAR
D 2011 21573137 g. / VEP 

Ear size (ear size) WIF1 2019 30815903  
001089-
9823 Blood group system ABO GGTA

1 2011 21554350 Chr 

 
CONCLUSIONS 

Despite the vast amount of research performed previously to investigate traits and disorders in 
pigs, there are gaps in the knowledge held and potentially new phenes to be found. In comparison 
to other companion and livestock species relatively few inherited diseases and traits have been 
characterised at the molecular level and research should focus on the identification and investigation 
of emerging inherited conditions in pigs.  

This study highlighted that further curation of OMIA data relating to pigs with a focus on 
updating textual fields is needed. Planned updates to OMIA will reduce the need to manually update 
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location information for variants that have an EVA ID and researchers are encouraged to submit 
likely causal variants to EVA to facilitate this process. Easy access to accurate location information 
of likely causal variants can facilitate the development of diagnostic SNP panels that can be used by 
industry to genotype animals for desirable or unfavourable alleles and therefore allow for more 
informed selection decisions; greatly improving the health and welfare of not only individual 
breeding populations, but the pig population as a whole.  

Feedback on current information presented in OMIA and suggestions for additional information 
can be emailed to the OMIA curators (frank.nicholas@sydney.edu.au or 
imke.tammen@sydney.edu.au). 
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SUMMARY 
To estimate relatedness between individuals, one can choose between the A matrix from pedigree 

data, the G matrix built from genome-wide SNP markers, or even a combination of both. Comparing 
both matrices is of interest to explore the possibility of initiating a genomic breeding program. We 
use data on 929 Santa Gertrudis bulls with 617,348 SNP genotypes to compare the matrices. The A 
and G matrices were positively correlated (0.91; P < 0.001), and diagonal and off-diagonal 
coefficients were very similar. This result indicates that the pedigree is correct, although some 
genomic-estimated relationships did not agree with the pedigree-based matrix. Subsequently, a 
genome-wide association study was performed for scrotal circumference (SC) using A and G 
matrices. 100 SNPs were associated with SC with a corresponding FDR (<0.05) in GWAS using G, 
with the highest peak at BTA 5. Previously, the peak on BTA 5 has been associated with sheath 
score in Brahman and Tropical Composite (TC) cattle. BTA 5 has also been associated with SC in 
TC. For GWAS conducted using the A, 2883 SNPs were associated with SC with a corresponding 
FDR (<0.05), with the highest peak at BTA 5 and other peaks at BTA 22 and chromosome X. The 
peaks in chromosome X and BTA 22 was not observed in GWAS using G. This warrants further 
investigation into the differences in estimated SNP effects resulting from using different matrices in 
GWAS. Additionally, combining both the A and G in an H matrix may make more accurate 
predictions than using G alone. Further analysis is required to investigate the use of H and to verify 
the SNP associations identified in this study and across other breeds. 

 
INTRODUCTION 

Traditionally, most analyses in livestock relied on the calculation of the A matrix from pedigree 
data. Today, DNA markers are also used to estimate relatedness between individuals for various 
genetic analyses (Makgahlela et al. 2013). The relationship matrix estimated from genotypes is 
termed the G matrix. One advantage of estimating G is detecting alleles identical by state, traced to 
common ancestors that are unknown and therefore not captured in the pedigree (VanRaden 2008). 
The G matrix coefficients may be more precise than those in A and could correct pedigree 
relationships assigned wrongly in A. However, it is expensive and often impossible to genotype the 
entire population, and sometimes the A is still used. In genome-wide association studies (GWAS), 
relationship matrices account for population structures while testing for SNPs association. As using 
either G and A may affect the results of GWAS, it becomes crucial to determine which one might 
be a better fit for GWAS. In this study, we compare A and G matrices to inform future GWAS work. 
 
MATERIALS AND METHODS 

Animals and genotypes. Scrotal circumference (SC) was measured in 952 Santa Gertrudis bulls. 
Animals that were genotyped using 50K SNP panels were imputed to high density (770K) using a 
phased reference generated by Eagle2 (v2.4.1) and imputed using Minimac3 for autosomes and 
Minimac4 for the X chromosome (Loh et al. 2016; Das et al. 2016). SNPs with a call rate of less 
than 0.90 were removed before imputation. After quality control (minor allele frequency >0.05), 
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617,348 SNPs were available for analysis. Contemporary groups (CG) accounted for management, 
year of record, and age groups. CGs with less than five bulls were discarded, leaving a final dataset 
of 929 bulls for analysis.  

G and A matrices. The G matrix was built using Method 1, as described by VanRaden (2008). 
Pedigree information on 4409 animals which were the genotyped animals and their ancestors, was 
used to compute the Wright coefficients in A described by Wright (1922) in SVS software (Release 
8.9.0, Golden Helix, Inc.).  

GWAS. GWAS was performed in SVS software (Release 8.9.0, Golden Helix, Inc.) using the 
Efficient Mixed-Model Association eXpedited method (EMMAX) (Kang et al. 2010). GWAS was 
performed for SC with A and G matrices separately. CG was fitted as a fixed effect, and age was 
fitted as a covariate. The first two principal components of the principal component analysis (PCA), 
calculated for the bulls included in this paper, were also fitted as a covariate. False Discovery Rate 
(FDR) was used to correct for multiple testing. 

 
RESULTS AND DISCUSSION 

Scatter and box plots comparing relationships estimated using both A and G matrices are shown 
in Figures 1 and 2. A and G matrix were highly positively correlated (0.91; < 0.001). The means of 
the diagonal and off-diagonal coefficients were very similar: they were 1 for A and 1.03 for G in the 
diagonal, and they were 0.02 for A and 0 for G in the off-diagonal. In some cases, according to A, 
unrelated animals were estimated to be similar to half-siblings in G (a coefficient of ~ 0.25). 
Whereas some animal pairs considered half-siblings in A (a coefficient of 0.25) were either full 
siblings or unrelated in G. In general terms, the genomic relationships (G) were within the expected 
range of the pedigree relationships. Thus, our analyses indicate that the pedigree for this population 
is accurate.  

 
 

Figure 1. Scatter plot of relationships coefficients for all pairwise combinations of 929 Santa 
Gertrudis bulls estimated using SNP markers (G) and pedigree (A) 
 

In the GWAS using the A matrix, a total of 2883 SNPs were detected with an FDR of less than 
0.05 for SC, with the highest peak at BTA 5 and other peaks at BTA 22 and chromosome X. The 
peak SNP at BTA 5 for GWAS using the A matrix corresponded to an FDR of 0.0005 for BTA 5. 
In GWAS using the G matrix, a total of 100 SNPs were detected with an FDR of less than 0.05 for 
SC, with the highest peak at BTA 5. The peak SNP for GWAS using the G matrix corresponded to 
an FDR of 0.0011 for BTA 5. Other peaks were also observed in BTA 4 and BTA 9 for GWAS 
using the G matrix. 
 



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 397-401 

399 

 
 

Figure 2. Boxplot comparing genomic relationship matrix (G) in blue against corresponding 
additive numeric matrix (A) coefficients in red of Santa Gertrudis bulls with the animal with 
itself (AWI), full-siblings (FS), half-siblings (HS), and unknown relationships (UR). The 
number of observations in each group has been annotated in black 

 
The Manhattan plot observed when using another G matrix, calculated without X chromosome 

SNPs, was very similar to the A matrix plot, with peaks observed on X. Therefore, building G 
without SNPs in the X chromosome may lead to different GWAS results (Druet and Legarra 2020). 

The largest concentration of SNPs associated with SC was located from 46.2 Mb to 50.2 Mb at 
BTA 5. The peak SNP for this region is found at 47.8 Mb, which accounted for 0.04% of the genetic 
variance in SC. Fortes et al. (2020) reported SNP associations with SC in BTA 5 in a study of 
Tropical Composite (TC) cattle which overlaps with the region reported for BTA 5 in our study. The 
significance of BTA 5 in cattle breeding and its association with other traits has been documented 
in previous studies. For example, Porto-Neto et al. (2014) reported significant SNP association at 
BTA 5 for sheath score in Brahmans and TC.  

Our study found peak SNPs associated with SC in BTA 4 (40.1 Mb) and 9 (32.2 Mb) for GWAS 
conducted using either A or G matrix. The peak SNP in the BTA 4 accounted for 0.02% and 0.03% 
of the variance in SC for GWAS conducted using the A and G matrix, respectively. Whereas the 
peak SNP in BTA 9 accounted for 0.03% and 0.04% of the variance in SC for GWAS conducted 
using the A and G matrix, respectively. A crossbred beef cattle study also reported an association in 
BTA 9 for SC, and another study reported a region in BTA 4 associated with SC in Nelore Cattle 
(Sweett et al. 2020; Sbardella et al. 2021). However, these regions did not overlap with the regions 
reported in our study for BTA 4 and BTA 9.  
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Figure 3. Manhattan plot of inverse log P-values for SC in GWAS using the A matrix (top) 
and the G (bottom). The inverse log p-values for each SNP are plotted on the y-axis for each 
chromosome. The chromosome number is labelled on the x-axis, and a variety of colours 
correspond to different chromosomes. The P-value line in black corresponds to an FDR (<0.05) 

 
The heritability estimated using G and A were similar, although subtle differences exist between 

genetic parameters estimated using the different matrices. G accounts for a higher genetic variance 
and has a lower variance of heritability compared to A, as shown in Table 2. The differences between 
both estimates may have resulted from differences in relationship estimates between the A and G 
matrices. However, more research is required to understand the differences seen in the parameters 
estimated by both matrices. The heritability estimates are similar to those reported in TC (0.43) but 
are lower than those reported in Brahmans (0.75) and another composite breed (0.67) (Corbet et al. 
2013; Roberts et al. 2010). 

 
Table 2. Genetic parameters obtained using G and A matrices 
 

Matrix Type Heritability Variance of 
heritability Vg Ve 

A 0.429 0.012 2.879 3.828 

G 0.466 0.005 3.125 3.578 

 
CONCLUSIONS 

This study shows that the matrix coefficients between animals using the A and G matrices are 
highly correlated but not identical. Utilising genomic information includes additional information, 
which results in capturing relationships otherwise undetected or missing in pedigree. GWAS reveals 
differences in SNP effect estimates resulting from the use of these different matrices. The G matrix 
may provide more accurate information and facilitate estimating genetic parameters and identifying 
significant SNPs. Future studies can explore combining both matrices in an H matrix, which might 
be better than the G matrix alone. The GWAS highlighted associations with SC in chromosomes 4, 
5, 9 and X in a population of Santa Gertrudis bulls. Future studies can further investigate these 
associations and if they occur in other breeds.  
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SUMMARY 

It is important in single-step genetic evaluations to use appropriate lambdas (λ) for calculating 
weighted average of NRM (numerator relationship matrix) and GRM (genomic relationship matrix) 
in joint relationship matrix. λ is usually estimated using a single-trait cross-validation procedure. 
However, it can be shown that a univariate single-step model applying a scalar λ is simply a 
condensed form of an extended model containing two genetic factors, factor 𝐻𝐻~𝑁𝑁(0,𝐻𝐻) and factor 
𝐴𝐴~𝑁𝑁(0,𝐴𝐴), where the partitioning of the total genetic variance reflects λ. For multivariate single-
step genetic evaluation, this model condensation implies that all involved genetic variances may 
yield the same λ, which is highly unlikely. Hence, it is required to estimate λ by accounting for its 
heterogeneity using the extended model for variance component estimation. This study used an 
extended single-step model to estimate variances and λs for calving difficulty (CD), gestation length 
(GL), and birth weight (BW) using Australian Angus data. A total of 129,851 animals with 45,575 
genotypes were analysed. Initial variances obtained from a pedigree-only model were then used as 
starting values for the extended single-step model assigning 90% of the genetic variance to factor 𝐴𝐴 
and 10% to factor 𝐻𝐻. Since CD is a categorical trait with three categories, a threshold model-Gibbs 
sampling method was used to estimate variances. Heritability estimates for the extended single-step 
model were very similar to those from the pedigree only model implying that the single-step model 
was not explaining more variation in the data than the pedigree only model. For CD, GL, and BW, 
the total heritability estimates were 0.39 ± 0.04, 0.68 ± 0.02, and 0.44 ± 0.01, respectively. For the 
same traits, the total maternal heritability estimates were 0.17 ± 0.02, 0.11 ± 0.01, and 0.09 ± 0.01, 
respectively. In contrast, to the Gibbs sampling starting values, the genetic variance was partitioned 
between 𝐴𝐴 and 𝐻𝐻 such that direct genetic λ estimates for CD, GL, and BW were 0.36 ± 0.05, 0.62 ± 
0.03, 0.75 ± 0.03, respectively. Maternal genetic λ estimates ranged from 0.01 ± 0.01 (for BW) to 
0.05 ± 0.01 (for CD). The results imply that λ values are heterogeneous in multivariate single-step 
genomic evaluation. Further studies are needed to investigate the consequences of using 
heterogenous λ values for direct genetic and maternal genetic components in multivariate single-
step evaluation in terms of model dimensions, solver convergence rate, and model forward 
predictive ability.  

 
INTRODUCTION 

Genomic selection has been implemented in Australia’s BREEDPLAN genetic evaluation using 
single-step genomic methods (Johnston et al. 2018). An important step in genomics-assisted genetic 
evaluation involves the use of unbiased genetic parameters, including weighing factors or lambdas 
(λ), which affect the accuracies of genomic estimated breeding values (GEBVs). Optimum λ 
estimates are usually obtained using single-trait cross-validation procedures, although other methods 
have been suggested (Zhang et al. 2018).  

It can be shown that a single-step model involving a scalar λ is simply a condensed form of an 
extended model containing two genetic factors, 𝑢𝑢𝐴𝐴~𝑁𝑁(0,𝐴𝐴⨂Σ𝐴𝐴) and 𝑢𝑢𝐻𝐻~𝑁𝑁(0,𝐻𝐻⨂Σ𝐻𝐻) where 𝐴𝐴 is the 
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pedigree derived numerator relationship matrix, 𝐻𝐻 is the joint relationship matrix, and Σ𝐴𝐴 and Σ𝐻𝐻 are 
covariance matrices. The total genetic variance (Σ𝑇𝑇) is equal to Σ𝐴𝐴 + Σ𝐻𝐻 , where it is assumed that 
Σ𝐻𝐻 ⊘ Σ𝑇𝑇 ≡ 𝑖𝑖𝑖𝑖′𝜆𝜆, where 𝑖𝑖 is an identity vector of respective dimension. However, in multivariate 
models or univariate models which contain several genetic factors (e.g. direct, maternal), Σ𝐻𝐻 ⊘ Σ𝑇𝑇 ≡
𝑖𝑖𝑖𝑖′𝜆𝜆 is very unlikely. Heterogeneous λs can be estimated and accounted for by using the extended 
single-step model in variance component estimation and best linear unbiased prediction. To our 
knowledge, no studies have published λs estimated for categorical traits such as calving difficulty 
using extended multivariate linear-threshold single-step models. The objective of this study was to 
estimate variances and optimum λs with an extended single-step model for calving difficulty (CD) 
together with gestation length (GL), and birth weight (BW) using Australian Angus data.  

 
MATERIALS AND METHODS 

Data. Phenotypes, genotypes, and pedigree for this study were obtained from the data extract 
submitted by Angus Australia for BREEDPLAN evaluation. Phenotypic data included CD, GL, and 
BW, with GL and BW were pre-adjusted for sex and age of the dam (Graser et al. 2005). GL and 
BW were measured in days and kilograms, respectively. CD was scored using three categories 
(Jeyaruban et al. 2016). Unassisted birth was represented by score of 1, while easy and hard pull 
were represented by scores of 2 and 3, respectively. 

Contemporary groups (CGs) were formed according to the BREEDPLAN format (Graser et al. 
2005). For each trait, CGs with less than 5 animals were discarded from the analysis. Further for 
CD, CGs with single CD score were eliminated. If the proportion of any score was less than 5% 
within a CG, that CG was discarded. The average number of observations per CG, for CD, GL, and 
BW were 84, 37, and 40, respectively. 

The data consisted of 129,851 animals with phenotypes. Frequencies for CD scores 1, 2, and 3 
were 78,653 (89.2%), 6,565 (7.4%), and 2,929 (3.3%), respectively. The number of dams with 
phenotypes for CD, GL, and BW were 7,536, 2,038, and 8,448, respectively. The pedigree included 
ancestors over 4 generations and consisted of 327,395 animals with 27,145 sires and 186,339 dams. 
A total of 45,575 animals were genotyped for 56,009 SNP markers. The GRM was constructed 
according to VanRaden (2008) and adding 0.0001 to the diagonal to guarantee positive definiteness. 

Analyses. The data were analysed with multivariate model 𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑢𝑢 + 𝑊𝑊𝑊𝑊 + 𝑒𝑒 (model p) 
and multivariate extended single-step model 𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑢𝑢𝐴𝐴 + 𝑍𝑍𝑢𝑢𝐻𝐻 + 𝑊𝑊𝑊𝑊 + 𝑒𝑒 (model h), where 𝑦𝑦 
is a vector of phenotypic observations of GL, BW, and CD, 𝑋𝑋 is a block-diagonal design matrix 
linking fixed effects to their respective observations; 𝑍𝑍 is a block-diagonal design matrix linking 
direct and maternal genetic effects in 𝑢𝑢~𝑁𝑁(0,𝐴𝐴⨂Σ𝐺𝐺),𝑢𝑢𝐴𝐴~𝑁𝑁(0,𝐴𝐴⨂Σ𝐴𝐴), and 𝑢𝑢𝐻𝐻~𝑁𝑁(0,𝐻𝐻⨂Σ𝐻𝐻) to 
their respective observations where Σ𝐺𝐺 , Σ𝐴𝐴, and Σ𝐻𝐻  are co-variance matrices, 𝐴𝐴 is the pedigree 
derived numerator relationship matrix, and 𝐻𝐻 is the joint relationship matrix using the genomic 
relationship matrix (𝐺𝐺) obtained as 𝐺𝐺 + 𝐼𝐼. 001, and 𝐼𝐼 is an identity matrix; 𝑊𝑊 is a block-diagonal 
design matrix linking maternal permanent environmental effects in 𝑊𝑊~𝑁𝑁(0, 𝐼𝐼⨂Σ𝑝𝑝) to their 
respective observations, and 𝑒𝑒~𝑁𝑁(0, 𝐼𝐼⨂Σ𝐸𝐸) is a vector of residuals. λ was estimated as Σ𝐻𝐻 ⊘ Σ𝑇𝑇, 
where Σ𝑇𝑇  is the total genetic variance obtained from model h.    

Given the categorical nature of CD, a multivariate threshold model Gibbs sampling approach 
was used to estimate Σs in models p and h. Starting values for Σs for model p were obtained from 
heuristic partitioning of the observed phenotypic covariance matrix. Starting values for Σs for model 
h were derived from the results of model p, where Σ𝐻𝐻 = Σ𝐺𝐺 × 0.1 and  Σ𝐴𝐴 = Σ𝐺𝐺 × 0.9. This implies 
that Σ𝑇𝑇 = Σ𝐻𝐻 + Σ𝐴𝐴. In all case, the prior degrees of freedom were zero. Results for models were 
confirmed by a second analysis with starting values Σ𝐻𝐻 = Σ𝐺𝐺 × 0.9 and Σ𝐴𝐴 = Σ𝐺𝐺 × 0.1. Thresholds 
for CD were fixed to be 0 and 1, and the residual variance was unconstrained. For all models, single 
chains of 200,000 iterations were sampled, and the first 50,000 samples were discarded as burn-in. 
To avoid autocorrelation, every 20th sample was stored, and a total of 7,500 samples were kept for 
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computing posterior means and standard deviations. 
 

RESULTS AND DISCUSSION 
Descriptive statistics for the studied traits are presented in Table 1. Table 2 presents the 

parameters derived from model p and h. The direct genetic and maternal genetic heritability 
estimates for CD, GL, and BW obtained from model p were similar to those obtained from model h 
when using Σ𝑇𝑇  (Table 2), implying that model h does not explain additional variation in the data 
compared to model p. The highest direct genetic heritability was obtained for GL (0.68), followed 
by BW (0.44) and CD (0.39), and the maternal heritability estimates ranged from 0.09 (for BW) to 
0.17 (for CD).  

 
Table 1. Descriptive statistics for calving difficulty (CD, score), gestation length (GL, days), 
and birth weight (BW, kg) 
 

Trait Animals   % genotyped Mean Min* Max* SD* 
CD 88,147 4 1.1 1 3 0.4 
GL 43,140 44 280.2 259.8 296.8 4.6 
BW 102,864 42 37.5 16.0 65.9 5.0 

*Min, minimum; Max, maximum; SD, standard deviation; ‡with phenotypes 
 
Table 2. Variances (𝝈𝝈𝟐𝟐), covariance (𝝈𝝈), heritabilities (𝒉𝒉𝟐𝟐), and correlation (𝒓𝒓) derived from 
pedigree only (p) and extended single-step (h) models for calving difficulty (CD), gestation 
length (GL), and birth weight (BW) 
 

Parameter*  Model p    Model h  
CD GL BW  CD GL BW 

𝜎𝜎𝑑𝑑2 2.56 ± 0.28 12.69± 0.74 7.26 ± 0.30  2.59 ± 0.28 13.23± 0.59 7.83 ± 0.28 
𝜎𝜎𝑚𝑚2  1.15 ± 0.16 1.89 ± 0.32 1.56 ± 0.13  1.15 ± 0.16 2.11±0.22 1.61 ± 0.13 
𝜎𝜎𝑑𝑑,𝑚𝑚 -0.68 ± 0.17 -1.87 ± 0.38 -0.45 ± 0.15  -0.71 ± 0.17 -2.26±0.30 -0.64 ± 0.13 
𝜎𝜎𝑐𝑐2 0.30 ± 0.13 0.66 ± 0.24 0.37 ± 0.10  0.31 ± 0.14 0.53±0.20 0.45 ± 0.11 
𝜎𝜎𝑒𝑒2 3.32 ± 0.23 6.01 ± 0.39 9.14 ± 0.18  3.26 ± 0.21 5.97±0.34 8.67 ± 0.16 
𝜎𝜎𝑝𝑝2 6.66 ± 0.23 19.38± 0.23 17.90± 0.11  6.61 ± 0.21 19.5 ± 0.22 17.92± 0.12 
ℎ𝑑𝑑2‡ 0.38 ± 0.04 0.65 ± 0.03 0.41 ± 0.02  0.39 ± 0.04 0.68 ± 0.02 0.44 ± 0.01 
ℎ𝑚𝑚2 ‡ 0.17 ± 0.02 0.10 ± 0.02 0.09 ± 0.01  0.17 ± 0.02 0.11 ± 0.01 0.09 ± 0.01 
𝑟𝑟𝑑𝑑,𝑚𝑚 -0.39 ± 0.07 -0.38 ± 0.05 -0.13 ± 0.04  -0.41 ± 0.07 -0.43 ± 0.03 -0.18 ± 0.03 

*Direct genetic (𝑑𝑑), maternal genetic (𝑚𝑚), permanent environment effect of dam (𝑐𝑐), residual (𝑒𝑒) and total 
phenotypic (𝑊𝑊) effects; ‡Total heritability estimates for model h. 

 
A higher proportion of direct genetic variance is explained by the genomic factor than the 

polygenic factor in model h for BW and GL yielding λ values 0.75 and 0.62, respectively (Table 3 
and Table 4). In contrast, the polygenic factor in model h explained the highest proportion of additive 
genetic variance for CD (Table 3) yielding a lower λ (0.36) than for BW and GL (Table 4). The 
observed pattern of variance partitioning between polygenic and genomic factors in model h for CD 
versus GL and BW suggests that λ values are highly sensitive to availability of genotypic 
information for each trait (Table 1), and therefore, heterogeneous in multivariate single-step 
genomic evaluation.  

The maternal genetic λ estimates were near zero, and ranged from 0.01 for BW to 0.05 for CD 
(Table 4) due to greater maternal genetic variance partitioning for polygenic factor in model h (Table 
3). This could be a result of low number of genotyped dams per trait in the current dataset, and 
therefore, maternal genetic λ values are expected to rise in the future if the number of genotyped 
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dams increases.   
 

Table 3. Genetic variances (𝝈𝝈𝟐𝟐), covariance (𝝈𝝈), correlation (𝒓𝒓), and heritabilities (𝒉𝒉𝟐𝟐) for 
direct genetic (𝒅𝒅) and maternal genetic (𝒎𝒎) components accounted by the polygenic and 
genomic factors using the extended single-step model (model h) for calving difficulty (CD), 
gestation length (GL), and birth weight (BW) 
 

 Polygenic factor  Genomic factor 
CD GL BW  CD GL BW 

𝜎𝜎𝑑𝑑2 1.66 ± 0.30 4.99 ± 0.56 1.97 ± 0.26  0.93 ± 0.04 8.23 ± 0.27 5.86 ± 0.15 
𝜎𝜎𝑚𝑚2  1.10 ± 0.17 2.03 ± 0.22 1.60 ± 0.12  0.06 ± 0.01 0.08 ± 0.01 0.02 ± 0.01 
𝜎𝜎𝑑𝑑,𝑚𝑚 -0.54 ± 0.18 -1.84 ± 0.30 -0.61 ± 0.13  -0.17 ± 0.02 -0.42 ± 0.04 -0.02 ± 0.03 
ℎ𝑑𝑑2  0.25 ± 0.04 0.25 ± 0.03 0.11 ± 0.01  0.14 ± 0.01 0.42 ± 0.01 0.33 ± 0.01 
ℎ𝑚𝑚2  0.17 ± 0.02 0.10 ± 0.01 0.09 ± 0.01  0.01 ± 0.03 0.00 ± 0.01 0.00 ± 0.01 
𝑟𝑟𝑑𝑑,𝑚𝑚 -0.40 ± 0.09 -0.58 ± 0.05 -0.35 ± 0.06  -0.76 ± 0.03 -0.53 ± 0.04 -0.08 ± 0.11 

 
Table 4. Estimates of lambdas (λ) for direct and maternal genetic components for selected 
traits using the multivariate linear-threshold single-step model (model h) 
 

Λ Calving difficulty Gestation length Birth weight 
Direct genetic 0.36 ± 0.05 0.62 ± 0.03 0.75 ± 0.03 
Maternal genetic 0.05 ± 0.01 0.04 ± 0.01 0.01 ± 0.01 

 
Our results suggest considering different λs for each trait rather than one global value across 

traits. An extended multivariate single-step model allows estimation of heterogeneous λs in variance 
component estimation. However, further studies are needed to investigate the consequences of using 
heterogenous λ estimates for multivariate evaluations in terms of model dimensions, solver 
convergence rate, and model forward predictability.   

 
CONCLUSIONS 

By using an extended multivariate linear-threshold single-step model, heterogeneous direct 
genetic λs were obtained for GL, BW, and CD, which ranged from 0.36 (CD) to 0.75 (BW). Maternal 
genetic λ estimates ranged from 0.01 for BW to 0.05 for CD. Results suggest employing an extended 
single-step model with variance partitioning between genomic and polygenic factors accounting for 
heterogeneous λs in future BREEDPLAN genomic evaluation for the studied traits.   
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ECONOMIC BENEFIT OF ADDITIONAL RECORDING FOR WELFARE TRAITS IN 
MATERNAL BREEDING OBJECTIVES FOR PIGS  

 
L. Vargovic, K.L. Bunter and S. Hermesch 

 
Animal Genetics Breeding Unit, University of New England, Armidale, NSW, 2351 Australia 
 

SUMMARY 
The purpose of this study was to investigate, using selection index calculations, the economic 

benefits of improving welfare by expanding recording within traditional pig breeding programs to 
include welfare-related traits. The genetic parameters were adapted from several Australian studies. 
A basic breeding objective including average daily gain, backfat thickness and number of piglets born 
alive was extended to include welfare traits and feed conversion ratio (FCR). Welfare traits were: 
survival of piglets at farrowing (FS) and until weaning (PWS), weaning to conception interval (WCI), 
sow mature weight (MWT) and sow longevity (LONG). Sow appetite before farrowing (FRBF) and 
body condition before farrowing (CAL) were considered as additional selection criteria. When 
welfare traits were absent from the breeding objective and selection criteria, this resulted in reduced 
LONG, higher MWT, prolonged WCI and overall lower genetic response in the index in comparison 
with other scenarios. Valuing and recording welfare traits resulted in desirable responses for both 
production and welfare traits and increased overall economic merit. Including FCR in the breeding 
objective made it more difficult to improve welfare traits, particularly if FCR was recorded. 

 
INTRODUCTION 

Historically, pig breeding programs focused on only economically important production and 
reproductive traits in breeding goals. Although very successful, this can have a detrimental impact on 
animal welfare (Rauw et al. 1998; Turner et al. 2018). To balance high performance and welfare, 
emphasis on welfare traits has increased, resulting in additional challenges for breeders. Welfare traits 
are difficult or expensive to measure, hard to assign economic values to (Olesen et al. 2000), and in 
some instances unfavourably genetically correlated with production traits (Kanis et al. 2005; Nielsen 
et al. 2011). Therefore, there can be a perception that more emphasis on welfare traits could result in 
slower overall genetic improvement. From a purely economic point of view, breeders could decide to 
dismiss welfare traits, and focus on short-term gain. However, although breeders are not necessarily 
paid for the enhanced welfare, the ethical value should not be neglected (Nielsen et al. 2011). The 
aim of this study was to quantify expected responses in individual production and welfare traits, and 
index changes depending on different selection criteria recorded, using recent knowledge of welfare 
traits and genetic correlations with production outcomes (Vargovic et al. 2019). 

 
MATERIALS AND METHODS 

An appropriate breeding goal including both production and welfare-related traits has already been 
derived elsewhere for the Australian pig industry and was adapted here (Amer et al. 2014). The traits 
that are commonly available were average daily gain (ADG), backfat thickness (BF), number of 
piglets born alive (NBA), feed conversion ratio (FCR), proportion of piglets surviving at farrowing 
(FS), and from farrowing until weaning (PWS), weaning to conception interval between first and 
second parity (WCI), weight of sow when reaching maturity (MWT) and the number of parities a sow 
achieves during her lifetime (LONG). Two additional traits, currently not routinely recorded, were 
considered as selection criteria: feed refusal before farrowing (FRBF), defined as the proportion of 
days when sows refused more than half of their allocated feed from entry to the farrowing shed until 
farrowing, and caliper score (CAL), representing body condition of sows upon transfer to the 
farrowing shed (~ 7 days before farrowing). These traits were correlated with positive lactation 
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outcomes (e.g. more piglets weaned) for breeding sows, implying improved welfare of both sow and 
piglets (Vargovic et al. 2019). 

A consensus of assumed genetic parameters (Table 1) adapted from several Australian studies 
(Tholen et al. 1996; Hermesch et al. 2008; Bunter et al. 2010; Hermesch et al. 2015; Vargovic et al. 
2019) was obtained. Since some of the traits (e.g. CAL or FRBF) were novel, correlations were 
assumed consistent with those previously reported for similar traits. Economic weights were 
expressed in $/gilt (Table 1). Repeatabilities for NBA (0.18), MWT (0.30), and CAL (0.25) were 
assumed to accommodate repeated records, and common litter effects were included for ADG (0.13), 
BF (0.05) and FCR (0.05). For other traits it was assumed that repeatabilities equalled heritabilities. 

 
Table 1: Economic weights (EW, $/gilt), genetic standard deviations (GSD), heritabilities 
(diagonal, bold), consensus genetic (below diagonal) and phenotypic (above diagonal) 
correlations  
 

 ADG BF FCR NBA FS PWS WCI LONG MWT CAL FRBF 
EW 1.49 -28.61 -462.62 91.93 107.17 1092.88 -3.60 86.90 -4.17 0.00 0.00 
GSD 31.7 1.15 0.25 0.83 0.08 0.03 2.54 0.69 9.02 1.42 0.41 
ADG 0.21 0.11 -0.20 -0.04 -0.01 0.03 0.02 -0.05 0.32 0.05 -0.16 
BF 0.02 0.38 0.06 0.02 0.05 0.03 -0.02 0.10 -0.01 0.32 0.00 
FCR -0.37 0.10 0.25 -0.01 -0.02 -0.03 0.01 0.03 -0.10 0.04 0.02 
NBA -0.19 -0.02 -0.07 0.09 0.07 0.07 -0.02 0.22 0.00 0.01 -0.04 
FS -0.01 0.00 0.05 0.13 0.13 0.06 -0.15 0.12 0.18 -0.01 -0.12 
PWS 0.27 0.07 -0.02 -0.19 0.28 0.05 -0.21 0.00 0.16 0.02 -0.10 
WCI -0.09 -0.24 -0.15 -0.20 0.09 -0.15 0.08 -0.05 0.00 -0.02 -0.01 
LONG -0.28 0.35 -0.02 0.30 -0.25 0.18 -0.22 0.14 -0.03 0.09 0.00 
MWT 0.30 -0.12 -0.15 -0.21 0.09 -0.22 0.00 0.10 0.18 0.26 0.03 
CAL 0.28 0.32 0.18 -0.07 0.19 0.21 -0.14 0.33 0.15 0.34 0.01 
FRBF -0.21 0.02 -0.07 0.30 0.00 -0.32 -0.36 -0.21 -0.27 -0.13 0.21 

Abbreviations: ADG: average daily gain (g/day); BF: backfat thickness (mm); FCR: feed conversion ratio (kg 
feed/kg gain); NBA: number of born alive piglets (piglets/litter); FS: farrowing survival (proportion); PWS: pre-
weaning survival (proportion); WCI: wean to conception interval between first and second parity (days); LONG: 
longevity (number of parities); MWT: sow mature weight (kg); CAL: number of increments on caliper; FRBF: 
proportion of days where sows refused more than half of their daily allocation (proportion) 
 

Index calculations (Hazel 1943) were performed using the MTIndex program 
(https://jvanderw.une.edu.au/) to obtain relative responses for trait and index combinations. These 
predicted responses are for a single generation of selection with a selection intensity of one. It was 
assumed that ADG and BF were available for the selection candidate, dam, sire, six full sibs and 40 
half-sibs. For FCR, data was available for sire, one full sib and five half-sibs. Data for NBA, FS, 
PWS, WCI, CAL and FRBF were available for the dam (two records, except WCI, one record) and 
three half-sibs. For LONG and MWT, the information was available for a dam only. The study 
investigated how response in individual traits and the index changed depending on what selection 
criteria are recorded, for a simple production breeding objective (Scenario 1) or a breeding objective 
including FCR and welfare traits (Scenario 2 or higher). Six different scenarios were compared: 
Scenario 1: economic weights and recording for ADG, BF and NBA only, without welfare traits; 2) 
Scenario 2 (Base): Breeding objective with welfare traits + recording of economic traits ADG, BF 

https://jvanderw.une.edu.au/
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and NBA only; 3) Scenario 3: Scenario 2 (Base) + recording of welfare traits FS + PWS + WCI and 
LONG; 4) Scenario 4: Scenario 3 + recording of MWT; 5) Scenario 5: Scenario 4 + recording of CAL 
and FRBF; and 6) Scenario 6: Scenario 4 +recording of FCR. 
 
RESULTS AND DISCUSSION 

The full breeding objective with welfare traits values FCR and some welfare-related traits (FS, 
PWS, WCI, LONG and MWT). When the breeding objective ignores the importance of welfare traits 
(Scenario 1), selection for production traits resulted in reduced (e.g. PWS) or undesirable (e.g. WCI, 
LONG, MWT) responses, but a desirable response in FCR. Applying the same selection criteria with 
the full breeding objective (Scenario 2) increased desirable responses across all welfare traits and 
increased index response from $36.28 to $43.17. At the same time, favourable responses in production 
traits were retained, but with different emphasis (e.g. increased ADG, reduced response in BF). 

 
Table 2: Predicted genetic changes under different scenarios with overall selection response 
(ΔG in $/gilt), accuracy of index (Acc) and response relative (RR) to Scenario 2 after one 
generation assuming a selection intensity of one 
 

 
Trait 

Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Scenario 
5 

Scenario 
6 

 BO 1   BO 2   
Productivity ADG 10.8 14.7 14.1 13.9 13.5 10.6 
and BF -0.584 -0.249 -0.233 -0.227 -0.223 -0.162 
efficiency FCR -0.05 -0.05 -0.05 -0.05 -0.05 -0.09 
 NBA 0.037 0.035 0.034 0.038 0.052 0.053 
Welfare FS 0.0008 0.0010 -0.0008 -0.0005 0.0000 -0.0014 
 PWS 0.0011 0.0023 0.0029 0.0033 0.0029 0.0020 
 WCI 0.18 -0.04 -0.09 -0.09 -0.14 0.04 
 LONG -0.17 -0.12 -0.09 -0.09 -0.10 -0.04 
 MWT 1.36 1.33 1.29 0.93 0.75 0.78 
Selection criteria CAL -0.10 0.08 0.10 0.09 0.08 -0.02 
(additional 
welfare traits) FRBF -0.02 -0.03 -0.03 -0.03 -0.004 -0.007 

 ΔG ($) 36.28 43.17 44.94 45.75 46.62 63.69 
 Acc 0.414 0.244 0.254 0.258 0.263 0.359 

 RR 84.03 100.00 104.11 105.99 107.99 147.54 
For trait abbreviations see Table 1. BO1: breeding objective without welfare traits, BO2: breeding objective with 
welfare traits. Italicized traits are recorded within the scenario. 
 

As additional selection criteria were used (Scenarios 3 to 6) overall index response increased. 
When information that is readily available from herd recording systems (FS, PWS, WCI, LONG and 
MWT) was added in Scenario 3, the undesirable responses observed in the breeding objective traits 
PWS, WCI, LONG and MWT were reduced, and the index response was higher ($44.94, +4.11%). 
At the same time, there were marginal changes in production trait responses, which does not support 
the general perception that including welfare traits into breeding programs will result in slower overall 
genetic improvement. When all of the production and reproductive traits were available, additional 



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 406-409 

409 

selection criteria such as MWT were more effective at maximising the overall response (Scenario 4), 
relative to Scenarios 2 and 3. Adding CAL and FRBF records (Scenario 5), which were not part of 
the breeding objective, additionally increased overall response (relative to Scenario 4) by 2.00%. The 
largest differences in individual trait responses were for MWT, WCI and NBA, whereas changes for 
other traits were small. In the present study, both CAL and FRBF are relatively inexpensive to 
implement, considering that the information is typically recorded in the farrowing shed for 
management purposes, but the resulting data may not be stored.  

Feed conversion ratio is not routinely recorded in maternal lines, but is of economic importance. 
If FCR is recorded, the overall response will be higher ($60.78/gilt) in a simple production breeding 
objective (BO1 with FCR included). However, correlated responses for welfare traits had undesirable 
directions (not shown). The trait FCR is costly to record, and has negative consequences that are not 
properly valued. In an attempt to combat these detrimental responses, Scenario 6 included recording 
for both FCR and welfare traits. This resulted in the largest overall response in comparison to the 
other scenarios (47.5% increase and a response of $63.69). However, the strong emphasis on feed 
efficiency resulted in undesirable (PWS, WCI, CAL) or lower response (ADG) for other traits, despite 
their contribution to the index. In general, if there is a need for a change in the overall response, a trait 
with high economic emphasis should be recorded. However, recording patterns are driven by both 
biological and cost constraints, and outcomes depend on the assumed economic weight, parameters 
and recording patterns. This could suggest reinvestigation of the calculations for assumed trait 
economic weights, if welfare traits are to be maintained. 

 
CONCLUSIONS 

Extending pig breeding programs with welfare traits that are correlated with performance 
outcomes results in long-term genetic gain. The overall economic value per pig increased, making 
these traits attractive for incorporating into breeding programs. However, larger data sets with welfare 
traits recorded may be required to obtain more accurate estimates of genetic correlations between 
traits, to ensure these index calculations are representative of likely outcomes. 
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GENETIC PARAMETERS FOR URINALYSIS TRAITS RECORDED ON GESTATING 
SOWS  

 
L. Vargovic, S. Hermesch and K.L. Bunter 

 
  Animal Genetics Breeding Unit∗, University of New England, Armidale, NSW, 2351 Australia 

 
SUMMARY 

Urinalysis can be used to detect sows that typically remain unidentified with health conditions 
such as urinary tract infection, and also provides data on physiological variables reflecting metabolic 
status (e.g. glucose, ketones). The urine was collected from gilts and sows (N=694) after animals 
were transferred to the farrowing shed. The traits were defined from the urinalysis test strip results, 
with additional subjective measurements of odour, colour and turbidity. Subsequently, a trait 
representing urinary tract infection was defined. Heritability estimates were in a range 0.08 to 0.36, 
except for the presence of blood (0.03). Strong genetic correlations were estimated between bilirubin 
and urobilinogen (0.78), but not other trait combinations. The study demonstrated that several 
urinalysis traits could be considered as selection criteria for increasing the health status of sows. 
However, alternative procedures to collect phenotypes are required to improve ease of data 
collection. The associations of urinalysis parameters with breeding objective traits requires further 
investigation. 

 
INTRODUCTION 

Undetected and untreated urinary tract infection (UTI), high ketones (demonstrating metabolic 
disorders) or low Vitamin C (potentially demonstrating nutritional deficiency) result in poor 
performance and increased sow removals (Almond 2005; Theil et al. 2013; Nielsen et al. 2019). 
Mazutti et al. (2013) proposed using reagent strips to detect UTI routinely, enabling treatment. In 
this study, we estimated genetic parameters for urinalysis variables recorded with reagent strips 
using urine samples from late gestation sows. To the knowledge of the authors, no previous study 
reported parameters for similar traits. Our hypothesis was that variation in health and metabolic state 
has a genetic basis, such that variables obtained from urinalysis are heritable, potentially providing 
opportunities to enhance health status of sows from both production and genetic perspectives. 
 
MATERIALS AND METHODS 

Data. Urinalysis data was recorded at two independent nucleus farms over 5 weeks, between 
October-November 2017 (Farm A, N = 254 sows), and 8 weeks between March-May 2017 (Farm 
B, N = 440 sows) according to kit instructions (CombiScreen®VET 11 PLUS). Urine was collected 
once per sow, on average 5 days before farrowing, in the early morning before the first feeding 
event. The urinalysis test strips evaluated levels of bilirubin, urobilinogen, ketones, Vitamin C, 
glucose, protein, blood, pH, nitrite, leucocytes, and specific gravity according to 
CombiScreen®VET 11 PLUS (Table 1). Each variable was scored in levels representing 
concentrations. Urine colour was subjectively scored on a scale of 1 to 3 (pale, normal, dark), while 
odour and turbidity were scored as absent (0) or present (1). The presence of a urinary tract infection 
(UTI) was inferred as absent (0) or present (1) if nitrite was positive and pH ≥ 6. Levels for urinalysis 
parameters are shown in Table 1.  

 
 

∗ A joint venture of NSW Department of Primary Industries and the University of New England 



Proc. Assoc. Advmt. Anim. Breed. Genet: 24: 410-413 

411 

Analyses. Data preparation was carried out using R (R Core Team 2020). During the process of 
data preparation, where the description of levels on test strip was expressed in characters, observed 
values were replaced with numeric values (e.g. nitrite + or ++ to 1 or 2). The square root 
transformation was performed for ketones, glucose, protein, blood and leucocytes, and for specific 
gravity x 100 (recorded in 0.005 increments), due to the non-normal distribution of data for these 
traits. Variances are presented on the transformed scale.  

Data from both farms were combined to estimate genetic parameters. Sows were progeny of 283 
sires and 553 dams. The pedigree was extended back by 5 generations to a total of 1261 sires and 
3274 dams. Estimates of variance components were obtained by fitting a linear mixed animal model 
using residual maximum likelihood procedures in ASReml (Gilmour et al. 2014). Systematic effects 
were parity group (4 levels: parities 1, 2, 3-4, >4) and selection line nested within farm (10 levels). 
Genetic (rA) and phenotypic (rP) correlations were estimated using a series of bivariate analyses. 
Both genetic and phenotypic correlations were reported only for traits where heritability was above 
0.05, due to the large standard errors, which would result in unreliable estimates for genetic 
correlations. 

 
RESULTS AND DISCUSSION 

Heritability estimates. Bilirubin and urobilinogen, typically indicators of liver disease, were 
moderately heritable, 0.33 ± 0.13 and 0.34 ± 0.14 (Table 1). 
 
Table 1: Urinalysis variables with recording levels, normal values and percentage of sows, 
heritability estimates (h2), phenotypic variance (σ2p) and the coefficient of determination (R2) 
 

Trait Units Levels Normal 
values 

Normal 
(%)  h2 ± SE σ2p R2 

(%) 
Bili mg/dl 0,1,2,4 0 60.5 0.33 ± 0.13 1.20 2.84 
Uro mg/dl 0,2,4 0 78.2 0.34 ± 0.14 0.61 20.6 
Ket* mg/dl 0,10,25,100 0 96.1 0.10 ± 0.11 0.96 0.46 
Vit C mg/dl 0,1,2 0 24.5 0.16 ± 0.10 0.45 3.60 
Glucose* mg/dl 0,2,5,14,28 0 92.1 NE   
Protein* mg/dl 0,15,30,100,500 0 27.3 0.20 ± 0.13 11.5 8.16 
Blood* Ery/ml 0,10,50,300 0 80.5 0.03 ± 0.09 6.95 1.28 
pH§  5.0-8.5 5.5-8.0 48.9 0.11 ± 0.10 0.44 0.26 
Nitrite µmol/l 0,1,2 0 93.9 0.36 ± 0.13 0.19 0.00 
Leuco* Leuco/µl 0,25,75,500 0 95.0 NE   
SpecG†  1-1.03 1.02-1.04 54.7 0.33 ± 0.13 1.00 1.77 
UTI 0/1 0,1 0 95.4 0.20 ± 0.12 0.04 0.00 
Odour 0/1 0,1 0 74.8 0.32 ± 0.13 0.17 10.8 
Colour  1-3 1-3  0.14 ± 0.10 0.38 2.04 
Turb 0/1 0,1 0 73.1 0.08 ± 0.10 0.15 0.60 

Notes: * square root transformation applied; § in 0.5 increments; Bili: bilirubin; Uro: urobilinogen; Ket: 
ketones; Vit C: Vitamin C; Leuco: leucocytes; SpecG † specific gravity in 0.005 increments (×100); Turb: 
turbidity; NE: not estimable 
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The heritability estimate for ketones was 0.10 ± 0.11. An increased level of ketones in urine is 
an indicator of ketosis or diabetes mellitus. Although ketosis in sows is not well investigated, it 
could affect feed intake during lactation, and consequently weight and fat loss during the late 
gestation and lactation (Alsop et al. 1994). Urine colour and odour were lowly to moderately 
heritable (0.14 ± 0.10 and 0.32 ± 0.13). These two traits are strongly dependent on the concentration 
of urine. In contrast, heritability for turbidity was low, 0.08 ± 0.10. Turbidity may indicate presence 
of contaminants, such as blood, bacteria, epithelia, cells or crystals, implying non-genetic variation. 
Similarly, the presence of blood in urine was not heritable. Heritabilities were not estimable for 
glucose and leucocytes due to the low number of positive animals for these measurements in one of 
the farms. The failure to detect urinary glucose pre-farrowing might reflect the practice of restricted 
feeding during gestation and pre-farrowing. The heritability for UTI inferred from nitrite and pH 
levels was 0.20 ± 0.12. This trait is considered as a predisposing factor for reproductive disorders, 
MMA (mastitis-metritis-agalactia), and lower milk production (Petersen 1983). Therefore, genetic 
variation in predisposition to developing UTI might be related to genetic variation in health and 
reproductive performance of sows.  

 
Correlations. The genetic correlation (rA) between bilirubin and urobilinogen was strong (0.78 

± 0.19, Table 2) and both are indicators of liver disease. 
 

Table 2: Genetic (above diagonal) and phenotypic correlations for urinalysis traits with 
standard errors in subscript 
 
 Bili Uro Ket Vit C Protein pH Nitrite SpecG UTI Odour Colour Turb 

Bili  0.78 
(0.19) 

0.07 
(0.51) 

0.99 
(0.20) 

0.85 
(0.17) 

-0.07 
(0.44) 

0.25 
(0.28) 

0.48 
(0.23) 

-0.04 
(0.36) 

0.35 
(0.26) 

0.29 
(0.35) 

0.43 
(0.50) 

Uro 0.46 
(0.03) 

 -0.17 
(0.48) 

0.45 
(0.31) 

0.74 
(0.27) 

0.21 
(0.46) 

0.21 
(0.28) 

0.28 
(0.28) 

-0.20 
(0.37) 

0.46 
(0.27) 

0.20 
(0.39) 

0.34 
(0.49) 

Ket -0.04 
(0.04) 

-0.01 
(0.04) 

 -0.27 
(0.53) 

-0.06 
(0.60) 

0.81 
(0.53) 

-0.99 
(0.63) 

-0.37 
(0.39) 

-0.64 
(0.55) 

-0.97 
(0.62) 

-0.30 
(0.54) 

-0.38 
(0.88) 

Vit C 0.36 
(0.04) 

0.22 
(0.04) 

0.00 
(0.04) 

 0.60 
(0.31) 

0.60 
(0.57) 

0.01 
(0.36) 

0.47 
(0.28) 

-0.68 
(0.47) 

0.29 
(0.34) 

0.94 
(0.32) 

0.62 
(0.56) 

Protein 0.55 
(0.03) 

0.32 
(0.04) 

0.01 
(0.04) 

0.31 
(0.04) 

 -0.16 
(0.56) 

-0.13 
(0.35) 

0.22 
(0.34) 

-0.26 
(0.44) 

0.22 
(0.36) 

0.40 
(0.42) 

0.73 
(0.58) 

pH 0.15 
(0.04) 

0.12 
(0.04) 

-0.04 
(0.04) 

-0.12 
(0.04) 

0.05 
(0.04) 

 0.78 
(0.58) 

-0.39 
(0.39) 

0.14 
(0.51) 

0.16 
(0.45) 

0.17 
(0.58) 

-0.08 
(0.80) 

Nitrite 0.11 
(0.04) 

0.20 
(0.04) 

0.02 
(0.04) 

0.02 
(0.04) 

0.16 
(0.04) 

0.01 
(0.04) 

 -0.51 
(0.30) 

0.96 
(0.19) 

1.00 
(0.31) 

-0.36 
(0.40) 

0.79 
(0.47) 

SpecG 0.38 
(0.04) 

0.17 
(0.04) 

0.03 
(0.04) 

0.46 
(0.03) 

0.33 
(0.04) 

-0.35 
(0.04) 

-0.03 
(0.04) 

 -0.86 
(0.41) 

0.27 
(0.27) 

0.78 
(0.23) 

0.29 
(0.47) 

UTI 0.06 
(0.04) 

0.09 
(0.04) 

-0.01 
(0.04) 

-0.02 
(0.04) 

0.12 
(0.04) 

0.22 
(0.04) 

0.63 
(0.02) 

-0.12 
(0.04) 

 0.91 
(0.37) 

-0.58 
(0.54) 

0.92 
(0.62) 

Odour 0.30 
(0.04) 

0.18 
(0.04) 

-0.04 
(0.04) 

0.10 
(0.04) 

0.25 
(0.04) 

0.07 
(0.04) 

0.29 
(0.04) 

0.18 
(0.04) 

0.23 
(0.04) 

 0.12 
(0.39) 

0.70 
(0.39) 

Colour 0.42 
(0.03) 

0.21 
(0.04) 

-0.04 
(0.04) 

0.40 
(0.03) 

0.35 
(0.04) 

-0.01 
(0.04) 

-0.03 
(0.04) 

0.59 
(0.03) 

-0.02 
(0.04) 

0.21 
(0.04) 

 0.05 
(0.67) 

Turb 0.21 
(0.04) 

0.22 
(0.04) 

-0.07 
(0.04) 

0.03 
(0.04) 

0.19 
(0.04) 

0.18 
(0.04) 

0.27 
(0.04) 

0.06 
(0.04) 

0.22 
(0.04) 

0.53 
(0.03) 

0.12 
(0.04) 

 

Bili: bilirubin; Uro: urobilinogen; Ket: ketones; Vit C: Vitamin C; SpecG: specific gravity; Turb: turbidity. 
Bold values are significantly different from zero. 
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Phenotypic correlations (rP) amongst several urinalysis traits suggest that values were not fully 
independent of each other. This could be because of correlated errors due solely to the test strip 
chemistry, or because urinalysis variables were correlated with each other from a physiological 
perspective. High Vitamin C levels can result in a false positives for bilirubin and nitrite 
(CombiScreen®VET 11 PLUS). Therefore, it is unclear whether strong rA (0.99 ± 0.20) and 
moderate rP (0.36 ± 0.04) correlations between Vitamin C and bilirubin were due to this effect. 
Phenotypic correlations were moderate to high between specific parameters and the traits that were 
conditional on their values (e.g. UTI and nitrite or pH levels). Scored variables (colour, odour, 
turbidity) were positively associated with each other and also many urinalysis parameters, indicating 
abnormal levels, but are not diagnostic of particular conditions. Strong, positive correlations were 
found between odour and nitrite and/or UTI, suggesting that strong urine odour could potentially be 
used as a trigger to initiate testing for the presence of an infection and treatment where required. 

 
CONCLUSIONS 

Urinalysis provides an opportunity to obtain data related to health and metabolic status of sows, 
which has utility from both management and genetic perspectives, and can be considered as selection 
criteria for breeding programs. However, associations with other selection criteria or breeding 
objective traits are required, along with proof that selection would generate meaningful changes in 
the health status of sows. Phenotypically, test strips are a useful tool to identify and treat unwell 
sows. However, collecting urine samples is laborious and better strategies need to be developed for 
routine recording. 
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SUMMARY 

Genotype by environment interactions and heterogeneity of variance may influence the 
effectiveness of breeding programs in developing countries. This study investigated optimization of 
dairy cattle breeding programs within Kenya for low, medium and high input and output production 
systems in the presence of genotype by environment interactions. Multi-trait selection index theory 
was applied using the SelAction software package to determine the optimum strategy that would 
maximise genetic gain across the three production systems. The breeding goal was to maximise 
overall gain for a breeding objective containing three traits: lactation milk yield; lactation fat yield 
and calving interval. Three selection strategies based on: 1) sire evaluation and selection within the 
high production systems only (single); 2) independent sire evaluation and selection within each 
production system (independent) and 3) sire evaluation across all production systems (joint), were 
evaluated under scenarios using progeny test information and genomic information. The joint 
strategy maximised the overall economic gain (1583 Kes) while the single strategy generated the 
least overall gain (1311 Kes). The dairy industry in Kenya would therefore benefit from 
implementing production system specific breeding strategies for bull evaluation and selection. In 
addition, implementing genomic selection could speed up the rate of genetic gain compared to 
progeny testing due to reductions in generation interval and higher selection accuracy with a 
moderately large reference population.  
 
INTRODUCTION 

Breeding programs are designed to generate and disseminate genetic improvement. The classical 
approach starts with definition of breeding objectives, followed by development of selection criteria, 
implementation of genetic evaluation allowing for the selection of superior animals, design of 
sustainable mating systems, and strategies to disseminate genetic superiority to commercial 
producers. Selection is however, challenging in developing countries where dairy cattle production 
systems are highly variable in terms of inputs and outputs (Wahinya et al. 2020). When sires are 
selected from a different environment, for example, from high input and output production systems 
or via the importation of semen, genotype by environment interactions can result in genotypes re-
ranking and reduce selection efficiency. This is likely to affect the accuracy of selection and the rate 
of genetic progress. In developing countries, genetic improvement programs are more likely to be 
successful if they are developed as an integrated livestock-production package and not in isolation 
(Kahi et al. 2005). This paper will evaluate different strategies to maximise overall genetic gain 
across three dairy production systems. 
 
MATERIALS AND METHODS 

Definition of environment and simulation of population structure. Definition of the target 
production system(s) is required for effective implementation of selection strategies. Multiple 
variables can be used to define production systems. Clustering of herds based on milk production 
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level has been applied as a classifier to quantify the influence environment has on performance 
(Ojango et al. 2019; Wahinya et al. 2020). Low, medium and high production systems were defined 
by Wahinya et al. (2020) using K-means cluster analysis of herd means for 305 days milk yield and 
applied in this study. Production parameters identified in that analysis were used to simulate three 
nucleus populations comprising a total of 5000 dams in each. A total of 219 sires were assumed 
across the three production systems. Sires and dams were spread across 8 age-classes. Every year 
10 bulls and 300 cows were selected for each production system. Dams were assumed to produce 
their first offspring in their third year while progeny information for the bulls was available at six 
years of age. The sex ratio was assumed to be 0.50 while calving and annual survival rates were 
0.67, 0.74 and 0.77, and 0.90, 0.93 and 0.94 for the low, medium and high production systems, 
respectively. 

Breeding strategies. Truncation selection was simulated using multi-trait index selection. 
Genetic gains were predicted for a dairy cattle breeding objective containing lactation milk yield 
(LMY in kg), fat yield (FY in kg) and calving interval (CI in days) under three production systems 
in Kenya. Animals were available for selection when all the information needed for selection was 
available. Male candidates were evaluated based on their half-sib sisters, daughters and dam’s 
information while females were evaluated on their performance records, half-sib sisters and parent’s 
information. An animal model was assumed for genetic evaluation considering all genetic 
relationships to estimate the breeding values for selection. Three selection strategies were evaluated 
based on the groups of test-bulls: 1) a breeding program for a single production system with bull 
evaluation and selection in the high production system (single); 2) production system specific 
breeding programs, each with bull evaluation and selection within each environment (independent) 
and 3) a joint breeding program with bull evaluation and selection in all three production systems 
(joint). These strategies were simulated under two scenarios using progeny testing and using both 
phenotypes and genotypes for selection. Genomic selection was simulated by adding an extra trait 
to represent the marker information as described in Dekkers (2007). Marker information was 
modelled using a trait correlated to the original trait with a heritability close to 1 (0.999). The 
accuracy of the estimated genomic breeding values was represented by the correlation between the 
original trait and the trait specified by marker information. The accuracy of genomic information is 
dependent on the reference population, the correlation between the true breeding value of a 
genotyped animal and phenotype as well as the effective population size and was calculated as 
shown in Dekkers (2007). Six strategies were therefore evaluated in total. The breeding program 
aimed to maximise genetic gain in the overall objective as follows: 

∆G = ∆GL + ∆GM + ∆GH 
where ∆GL,  ∆GM and ∆GH are the genetic gains in the low, medium and high production systems, 
respectively. The SelAction software package (Rutten et al. 2002) was used to predict genetic gains 
using a multi-trait selection index. The genetic and phenotypic standard deviations, economic 
values, heritabilities, genetic and phenotypic correlations used for the traits under the low, medium 
and high production systems are shown in Tables 1 and 2. 
 
Table 1: Genetic (σa) and phenotypic standard deviations (σp), and economic weights (EW) 
for lactation milk yield (LMY; kg), fat yield (FY; kg) and calving interval (CI; days) under 
low, medium and high production systems 
 

Trait   Low   Medium   High 
  LMY FY CI   LMY FY CI   LMY FY CI 

σa  285.94 9.94 33.30  467.32 26.97 15.81  613.03 28.66 13.72 
σp  626.1 29.7 130.85  923.12 60.47 97.56  1226.38 56.84 68.01 
EW   22.63 51.3 -114.69   21.45 56.91 -180.42   22.28 61.54 -296.71 
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Source: (Wahinya 2020) 

Table 2: Heritabilities (diagonal), genetic (above diagonal) and phenotypic (below diagonal) 
correlations for lactation milk yield (LMY; kg), fat yield (FY; kg) and calving interval (CI; 
days) under low, medium and high production systems 
 

System Trait Low  Medium  High 
LMY FY CI   LMY FY CI   LMY FY CI 

Low 
LMY 0.21 0.65 -0.11  0.42 0.56 -0.46  0.64 0.62 0.00 
FY 0.83 0.11 0.02  0.56 0.33 -0.01  0.66 0.84 0.15 
CI -0.01 0.08 0.06   -0.53 0.03 0.05   -0.07 0.06 0.08 

Medium 
LMY 0 0 0   0.26 0.54 0.34   0.75 0.61 0.51 
FY 0 0 0  0.84 0.20 -0.04  0.65 0.58 0.15 
CI 0 0 0   0.02 0.08 0.03   0.14 0.03 0.62 

High 
LMY 0 0 0   0 0 0   0.25 0.73 0.43 
FY 0 0 0  0 0 0  0.81 0.25 0.14 
CI 0 0 0   0 0 0   0.04 0.08 0.04 

Source: (Wahinya 2020); bending was used to make the correlation matrix positive definite 
 

Genetic gain was predicted using equilibrium parameters to account for the accumulation of 
pedigree information and reduction in genetic variance due to selection. The proportion of cows in 
the low (0.30), medium (0.33) and high (0.37) production systems in Wahinya et al. (2020) were 
used to weight the gains in the respective production systems to estimate the overall genetic gain. 
 
RESULTS AND DISCUSSION 

Animal breeders are faced with a challenge to implement selection in the presence of genotype 
by environment interactions which can be the case when ranking animals based on breeding values 
across environments. This has implications for the implementation of optimal design in breeding 
programs across environments (Mulder and Bijma 2006). Genetic improvement of dairy cattle in 
Kenya is currently based on genetic evaluation using pedigree information and selection 
implemented under high input and output production systems. However, due to the heterogeneity of 
variance across production systems, sires are re-ranked between the production systems (Wahinya 
et al. 2020). Animals from herds with more variability are therefore, likely to be selected, which can 
lead to bias if the higher variability is as a result of a better environment and not higher genetic 
variance. Table 3 shows the overall economic response of an index containing lactation milk yield, 
lactation fat yield and calving interval from the single, independent and joint breeding strategies 
using progeny testing and genomic information. Milk yield and CI have been reported to have the 
highest relative economic value under all three production systems while FY has an influence on the 
revenue from milk and on the energy requirements and hence feed requirements (Wahinya 2020). 
These results show that a joint selection strategy with genetic evaluation and selection occurring in 
all three production systems, would generate the highest overall economic response in the scenarios 
using progeny and genomic information.  Using the single breeding strategy with genetic evaluation 
and selection of candidate bulls only occurring in the high production systems would result in lower 
economic response (-18% and -30%) for the overall breeding objective compared to the joint 
strategy in all scenarios. System-specific breeding programs each with an independent genetic 
evaluation and selection of bulls within each environment would also generate lower response 
compared to the joint strategy but higher than the single strategy.  

A joint selection strategy is also more desirable because genetic evaluation of sires within 
production systems is likely to lead to selection of more robust animals which also helps to maintain 
diversity without necessarily developing specialised lines. Sires also benefit from the information in 
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all environments leading to a higher index accuracy. Use of genomic information in addition to 
phenotypic information is important to reduce generation interval and improve accuracy of selection 
leading to higher responses (Wahinya 2020). A strategy using genomic selection only could reduce 
the generation interval further but at a cost of lower accuracies of selection. Genomic information 
could also be applied for parentage assignment to enhance the pedigree for genetic evaluation where 
pedigree information is not available and to determine breed composition (Marshall et al. 2019). 
This has been applied for the small-holder dairy cattle in Kenya where pedigree records were 
unavailable or not reliable (Ojango et al. 2019). 
 
Table 3: Comparison of the economic response in Kenyan shillings (Kes) using three selection 
strategies when either phenotypic or genomic selection is practised 
 

Scenario Strategy Economic response (Kes) 
Progeny test  Single 1,311.37 

Independent 1,530.99 
Joint 1,583.06 

Genomic selection  Single 1,425.85 
Independent 1,816.24 
Joint 2,030.31 

 
A national breeding program involving genetic evaluation and progeny testing of sires, should 

be implemented across relevant production systems in Kenya since genomic information is still not 
available partly due to the cost and logistics of establishing a reference population. This would 
incentivize farmers to select their breeding animals and produce replacement animals through a 
genetic evaluation conducted within their own production system, minimising the impact of 
genotype by environment interaction between production systems. The program can work as a two-
tiered closed nucleus with performance recording herds under different production systems forming 
the nucleus. The non-recording herds can then form the commercial tier and then source their semen 
and replacement cows from the nucleus herds within similar production systems. 
 
CONCLUSION 

To maximise genetic gain for the dairy cattle population in Kenya, selection strategies should be 
based on a genetic evaluation across production systems to account for genotype by environment. 
Any selection index used should also account for the re-ranking of the breeding objective traits 
across the production systems. Introduction of genomic information in the current breeding program 
with a moderately large reference population is likely speed up the rate of genetic improvement. 
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SUMMARY 
The Southern Multi-breed project has been designed to generate data that will allow producers 

across Australia to directly compare bulls of different breeds via BREEDPLAN EBVs. The project 
incorporates six breeds (Angus, Hereford, Wagyu, Charolais, Shorthorn and Brahman) at five 
research sites across New South Wales. The following paper describes how the MateSel software 
was used to assist selection and allocation of sires within the project, to provide linkage across sites 
and years and minimise inbreeding within progeny.  

 
INTRODUCTION 

Genetic improvement is important to improve productivity and the competitive advantage of the 
Australian beef cattle industry (Swan et al. 2012). The BREEDPLAN genetic evaluation for the 
Australian beef industry delivered as breeds each having their own analysis. The Southern Multi-
breed (SMB) project has been developed to form a multi-breed reference population for genetic 
evaluations and aims to generate data enabling direct comparisons between animals of different 
breeds. This multi-breed, multi-herd project includes the five most common temperate breeds 
(Angus, Hereford, Wagyu, Charolais, Shorthorn) along with Brahman to establish linkage to similar 
projects in Northern Australia (Repronomics; Johnston et al. 2017). By the end of the project, hard 
to measure phenotypes, including female reproduction (puberty, post-partum anoestrous) and 
genotypes will be collected on c. 2000 cows per year plus followers. Walmsley et al. (2021) presents 
a comprehensive summary of the SMB project. 

The inclusion of DNA information into genetic evaluation, often termed genomic selection, has 
the potential to increase the rate of genetic improvement in many livestock species. Models that 
incorporate both genomic and pedigree information (single-step GBLUP) have already been 
implemented into Australia’s BREEDPLAN genetic evaluation system for beef cattle (Johnston et 
al. 2018). To capture all of the potential value genomic selection presents, genomic reference 
populations should have a low average relationship between the reference animals and yet the 
relationship between the reference population and the animals being evaluated is high (Clark et al. 
2012). Genetic and genomic evaluations have traditionally been limited to within single breed 
populations like Angus or Hereford (Boerner 2017). The collection of genotypes and phenotypes 
within the SMB will assist to underpin future BREEDPLAN multi-breed evaluations, and increase 
the accuracy of current genomic EBVs.  

The most efficient design for a multi-site or multi-contemporary group (cg)  projects is to have 
every sire represented in every cg, and the sires to be as diverse as possible. Physical restraints mean 
that this is difficult to achieve, as with comparisons across herds for the national evaluations, the 
ability to utilise information across research sites is reliant on genetic linkage across research sites, 
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breeds and contemporary groups (Graser et al. 2005). Consequently, selection of the sires and base 
dams within the SMB project should capture the diversity within and across the breeds, with the 
resulting matings designed to maximise diversity within the population, and genetic linkage across 
research sites. This paper describes the genetic diversity of the SMB base herd and how the software 
program MateSel (Kinghorn 2011) was used in sire allocation.  

 
BASE BREEDING HERD 

The SMB herd is managed across five research sites across NSW and include; Glen Innes (New 
England), Grafton (North Coast), Trangie (Western), Tocal (Hunter) and EMAI (Outer Sydney). 
Approximately 1800-2000 base cows have been mated through a combination of AI and natural 
matings to bulls of their own breed over the last two years, these matings generating the base 
experimental females. A small crossbred joining program between Angus, Hereford and Brahman 
also occurred at the Grafton research site (Walmsley et al. 2021). Breed and cow allocation at each 
site (Figure 1) was based on breed representation, carrying capacity of the site, whilst accounting 
for dam source and sire line as per Walmsley et al. (2021). Angus cattle provide the link breed across 
the 5 sites, representing 223 unique sire families and incorporating the DPI herds at Glen Innes and 
Trangie (Walmsley and McKiernan 2011; Herd et al. 2014). The base cows also represent 197 
Hereford, 99 Wagyu, 78 Brahman, 80 Charolais and 93 Shorthorn sire families.  

 

 
Figure 1: Number of cows for Angus (black), Brahman (orange), Charolais (blue, Hereford 
(maroon), Shorthorn (red) and Wagyu (green) represented at the five SMB research sites for 
the 2019 and 2020 matings 

 
SIRE SELECTION 

Sire selection was a balancing act between capturing the diversity of the breed and targeting high 
accuracy EBV bulls, such that the average accuracy of the progeny was as high as possible to allow 
the development of high accuracy across breed EBVs for animals. MateSel was used to aid selection 
within the industry nominated bulls, for the AI program, but ultimately final selection was heavily 
influenced by semen availability at the time of mating. The 2019/20 AI program used 171 bulls and 
incorporated 23 historic sires from previous Beef CRC projects (Upton et al. 2001, Figure 2), 
creating linkage to previous research herds and the different breed based Beef Information Nucleus 
projects through the use of project bulls and their sons for the southern breeds. Brahman bulls 
represented in the Repronomics project (14 bulls) (Johnston et al. 2017) and Beef CRC were also 
used as AI sires. Backup bulls are predicted to account for ~35% (AI success rate of ~50%) of the 
research animals. The selection of the 119 backup sires was done in conjunction with the AI sire 
selection, with herds and sires which were not represented in the AI sires favoured, within the 
limitations of the project budget. 
 
MATE ALLOCATION 

To avoid confounding between breed, site, year and sire effects, unique sire family lines needed 
to be spread across the fixed effects structure of the project, to maximise the ability to accurately 
remove the impact of environment. The aim was to generate the most genetically diverse progeny 
(low inbreeding) possible given the selected sires and dams, with sufficient linkage across sites via 
the sires. 
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MateSel is a software program for tactical implementation of breeding programs, based on an 
evolutionary algorithm (Kinghorn 2011). It accommodates the prevailing technical and logistical 
issues, including genetic gain, genetic diversity, trait distributions and the management of allele and 
genotype frequencies for individual genetic markers. Functions within the MateSel suite allows for 
the implementation of mating restrictions around the distribution of males for matings across groups 
of dams. 
 

 
Figure 2: Number of Southern Multi-Breed bulls used at each research site (diagonal) as well 
as bulls in common (off diagonal). Bulls in common with other research herds and the industry 
herds represented by number above linking arrows  

 
Methodology. The MateSel algorithm was provided with a complete set of selection candidates; 

AI sires and available dams, with index values (BREEDPLAN $Index value) and 4 generations of 
pedigree information back from the candidate. The objective of the mate allocation was to generate 
high genetic diversity in the progeny born in the project, as per Clark et al. (2012), by targeting a 
low co-ancestry between parents and placing a negative weighting on inbreeding. MateSel was able 
to do this under the physical restraints of the project that included;  

1) Sires are used enough to produce 6 to 8 daughters across the project  
2) Genetic linkage via the use of sires across research sites, years, cow groups (eg. heifers/cows) 
3) Sires linking across years (used at the same research site as previous years) 
4) Minimum sire usage within a research site / year / dam age group to make sure guaranteed 

representation of the sire in the heifer progeny (assuming a 50% AI success rate, and 50:50 
sex ratio of progeny) 

5) Avoid high birth weight bulls being mated to heifers and first time calvers   
The backup mating assignments followed the same AI mating rules, however, these allocations were 
also restrained by the sires’ physical location. Management restrictions meant that in some cases 
multi-sire backup groups needed to be allocated. 

Outcomes. The final AI mate allocations were chosen when the smallest co-ancestry was 
achieved and all selected dams and sires had met usage requirements and no mating would produce 
a progeny with an inbreeding coefficient, based on pedigree, greater than 7% (> 10% in Wagyu, due 
to smaller genetic diversity of the breed). Slightly higher inbreeding thresholds were observed in the 
backup mating due to the physical restraints associated with bull allocations. The low level of co-
ancestry within the mate allocations was achieved in conjunction with creating genetic links between 
sites via common sires as per. Figure 2. Alternatively, if the MateSel mate allocation had targeted 
the respective industry indexes, instead of genetic diversity, for Angus, Hereford and Wagyu the 
average level of inbreeding in the predicted progeny increased from 2.3% to 2.8%, 0.3% to 1.3% 
and 2.9% to 4.9%, for the three breeds respectively (Figure 3). Resulting in 12% of the predicted 
Wagyu progeny having an inbreeding coefficient of 10% or higher. Bulls used in the AI program 
were allocated between 4 and 24 matings / year (mean = 12), after two years of use have been 
allocated 8 to 33 matings ,with no less than 4 matings within a research site, year, dam age 
combination. Results from the 2019 mating reveal that the number of heifer progeny born per bull 
used across all matings ranged from 1 to 11 with an average of 3 heifer progeny.  
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Figure 3: Comparison of the estimates of progeny inbreeding (%) when mating allocation was 
based on genetic diversity (coloured) or targeted index merit (white) for Angus (a), Herford 
(b), and Wagyu (c) using MateSel  
 
CONCLUSIONS 

MateSel has aided the allocation of the base dams and sires across the research sites within the 
SMB project so that the resulting progeny will reflect the genetic diversity in industry whilst 
maintaining genetic linkage across cohorts within the SMB project and industry herds. However, it 
should be acknowledged that the genetic diversity of the progeny and their genetic relationship to 
the national herd will not be fully understood until the planned genotyping of the progeny has 
occurred. 

 
ACKNOWLEDGEMENTS 

The Southern Multi-Breed project is an initiative co-funded by NSW Department of Primary 
Industries, University of New England and Meat and Livestock Australia Donor Company. The 
authors give thanks to the efforts of the research station managers and their staff, our skilled team 
of technicians, ultrasound scanners, AI, DNA lab, data, project managers and scientists. Individual 
breeders, participating breed societies and the southern beef industry are thanked for their support. 
The authors also acknowledge the support of L.A. Penrose and T. Granleese for assisting with 
compiling pedigree and animal information. 

 
REFERENCES 
Boerner V. (2017) Proc. Assoc. Advmt. Anim. Breed. Genet.  22:97.  
Clark S. A., Hickey J. M., Daetwyler H. D. and van der Werf J. H. J. (2012) Gene. Sel. Evol. 44: 4. 
Graser H.-U., Tier B., Johnston D. J. and Barwick S. A. (2005) Aus. J. of Exp. Ag. 45: 913. 
Herd R. M., Arthur P. F., Donoghue K. A., Bird S. H., Bird-Gardiner T. and Hegarty R. S. (2014) 

J. Ani. Sci. 92: 5267. 
Johnston D., Grant T., Schatz T., Burns B., Fordyce G. and Lyons R. (2017) Proc. Assoc. Advmt. 

Anim. Breed. Genet.  22:385.  
Johnston D. J., Ferdosi M., Connors N., Boerner V., Cook J., Girard C., Swan A. and Tier B. (2018) 

Proc. World Congr. Genet. Appl. Livest. Prod.. 19: 269. 
Kinghorn B. P. (2011) Gene. Sele. Evol. 43: 4. 
Swan A. A., Johnston D. J., Brown D. J., Tier B. and Graser H.-U. (2012) Anim. Prod. Sci. 52: 126. 
Upton W., Burrow H. M., Dundon A., Robinson D. L. and Farrell E. B. (2001) Aus. J. Exp. Ag. 41: 

943. 
Walmsley BJ., Donoghue KA., Johnston DJ., Clark SA., Siddell JP., Walkom SF, Granleese T. and 

Arthur PF. (2021) these proceedings   
Walmsley B. and McKiernan W. (2011) Proc. Assoc. Advmt. Anim. Breed. Genet. 19:123.  



Proc. Assoc. Advmt. Anim. Breed. Genet: 23: 423-426 

423 

INITIATING THE SOUTHERN MULTI-BREED RESOURCE POPULATION 
 

B.J. Walmsley1,2, K.A. Donoghue3, D.J. Johnston1, S.A. Clark4, J.P. Siddell2, S.F. Walkom1, 
T. Granleese5 and P.F. Arthur6  

 
1Animal Genetics and Breeding Unit*, University of New England, Armidale, NSW, 2351  

2NSW Department of Primary Industries, Livestock Industries Centre, Armidale, NSW, 2351 
3NSW Department of Primary Industries, Agricultural Research Centre, Trangie, NSW, 2823 

4School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351 
5NSW Department of Primary Industries, Grafton Primary Industries Institute, Grafton, NSW, 

2460 
6NSW Department of Primary Industries, Elizabeth MacArthur Agricultural Institute, Menangle, 

NSW, 2568 
 

SUMMARY 
This paper describes the first year of a large 5-year breeding project being conducted across 

New South Wales involving five temperate beef breeds and the Brahman breed. Artificial 
insemination and back-up matings were designed to produce progeny that are representative of the 
genetic diversity in the national herd of each breed. Sires and dams were selected with a focus on 
high accuracies for the 400-day weight estimated breeding value (EBV) and reproduction EBVs. 
The project progeny will be managed in mixed-breed groups and intensively recorded head-to-
head for current BREEDPLAN and new economically important traits such as early-in-life female 
reproduction and worm egg counts. All animals will have high density SNP genotypes taken to 
contribute to the breeds’ genomic reference populations and for inclusion in BREEDPLAN 
genomic evaluations. The project design will facilitate development of genomic EBVs to allow 
across-breed comparisons, assist in increasing selection accuracy, particularly for young bulls, 
allow genotype by environment (GxE) investigations, and the potential development of new traits. 

 
INTRODUCTION 

Significant profitability gains have been generated in temperate Australian beef breeds through 
selection using EBVs and indexes (Swan et al. 2011). Currently, the EBVs, and the selection 
indexes they drive, are generated from within-breed genetic evaluations (Graser et al. 2005), 
limiting the capacity to compare animals across breeds. To overcome this, breeds must be 
managed, and performance recorded for these traits, on a head-to-head basis to facilitate the 
development of EBVs that allow for across-breed comparisons. Reproduction is one such trait that 
is of importance in indexes producing replacement heifers, but it has been poorly recorded (Gudex 
and Millen 2019). Recent studies (Wolcott et al. 2019; 2021) have also found only c.50% of 
heifers in key Hereford and Angus seedstock herds were pubertal prior to synchronisation for fixed 
time artificial insemination (AI). These findings suggest that given the increasing prevalence of 
AI, there is a need to monitor the capacity of temperate breed heifers to conceive early in their first 
mating season as a trait for inclusion in genetic evaluations. A new project (MLA P.PSH.1261) is 
being conducted over the next 5 years (2020 to 2025), known as the Multi-Breed Genomic Beef 
Cattle Resource or Southern Multi-Breed (SMB) project which aims to address these issues. This 
project will extensively phenotype progeny from temperate beef breeds and Brahmans, managed 
in mixed-breed groups at sites across NSW for existing BREEDPLAN and new economically 

 
* AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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important traits, such as early-in-life reproduction. The project has been designed to have links to 
past and current genetic research in Australia including the RepronomicsTM project (Johnston et al. 
2017). The project will genotype all sires, dams and progeny to capture the benefits of genomic 
evaluations (Johnston et al. 2018), particularly for hard-to-measure and new traits. This paper 
provides a brief description of the experimental design and current progress of the project. 

 
LOCATIONS AND BREEDS 

The research project is being conducted on New South Wales Department of Primary 
Industries (NSW DPI) and University of New England (UNE) research facilities. To reflect the 
diversity of production environments in southern Australia across years, the breeding herds are 
located on 5 NSW DPI research properties dispersed across NSW (Trangie Agricultural Research 
Centre, Trangie; Grafton Primary Industries Institute, Grafton; Tocal Agricultural Centre, Tocal; 
Glen Innes Agricultural Research and Advisory Station, Glen Innes; Elizabeth MacArthur 
Agricultural Institute (EMAI); Menangle). All steer progeny will be backgrounded prior to feedlot 
entry at 2 NSW DPI research properties (EMAI; Duck Creek Agricultural Field Station, Ballina) 
with feedlot finishing occurring at the UNE research feedlot, “Tullimba” (Kingstown). The project 
includes the 5 numerically largest temperate breeds (viz. Angus, Charolais, Hereford, Shorthorn 
and Wagyu) in southern Australia and the Brahman breed, which is commercially important in the 
sub-tropical regions of NSW and creates linkage to the Repronomics project. At all locations, the 
breeds are being managed and recorded in mixed groups. 

 
FEMALE SELECTION 

Base females were purchased from key industry seedstock herds. Angus females from the 
BREEDPLAN recorded NSW DPI muscling (Walmsley and McKiernan 2011) and feed efficiency 
selection (Herd et al. 2014) herds were also retained. All females were only purchased if they were 
pedigree and performance recorded in BREEDPLAN. The objective was to capture, as closely as 
possible, the genetic diversity of that breed’s national herd, with a focus on dams from sire lines of 
high current impact. There was also a focus on selecting females with high accuracy and diversity 
for the 400-day weight and reproduction EBVs; days-to-calving (Angus, Brahman, Hereford and 
Shorthorn) or scrotal size (Charolais and Wagyu). A visual inspection of females was conducted to 
assess structural soundness and maximise the chances they would produce 2 calves in the project. 
Females were allocated to research sites based on the site’s carrying capacity, the availability of 
females, the breed’s relevance to the local environment (e.g. Brahman cows are only present in the 
sub-tropical environment at Grafton) and the numbers of each breed required to provide 
meaningful comparisons. Angus females are used to link sites because not all breeds can be 
accommodated at all sites. Table 1 contains the number of base females at each research site. 

 
Table 1 Allocation of base females to the five NSW DPI research sites 
 
Site Angus Brahman Charolais Hereford Shorthorn Wagyu Total 
Trangie 75   67  66 208 
Grafton 139 201  157   497 
Tocal 104  75  105  282 
Glen Innes 64   59  44 167 
EMAI 105  121 90 122 116 554 
Total 490 201 144 373 227 226 1661 
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SIRE SELECTION 
Sires selected included both AI sires nominated by industry and those selected to provide direct 

linkage to past research, such as the Beef CRC and Beef Information Nucleus projects. In addition, 
natural mate back-up bulls were purchased by NSW DPI from key industry seedstock herds or 
Repronomics project (Johnston et al. 2017) bulls were purchased from the Queensland Department 
of Agriculture and Fisheries. All bulls were pedigree and performance recorded in BREEDPLAN. 
Sire purchasing was a key design feature of the project to achieve representation of each breed’s 
genetic diversity. There was a preference toward sire lines of influence that will shape the future 
makeup of the breed. Although not a primary objective, poll status was also taken into 
consideration. Straightbred matings will primarily occur with a small numbers of crossbreed 
matings at Grafton involving Brahman reciprocal matings to Angus and Herefords (i.e. BxA, AxB, 
BxH and HxB). Currently, ~290 sires have been used during the AI programs or as back-up sires 
in 2019 and 2020 with either calves weaned, or successful pregnancies diagnosed. Walkom et al. 
(2021) provide a brief description of the MateSel procedure used for allocating matings based on 
coancestry to limit inbreeding, with a small amount of emphasis placed on the index. 

 
PROGENY GENERATED 

The project aims to generate up to 8,000 progeny managed in mixed-breed contemporary 
groups. Currently, the project has generated ~1400 calves from the 2019 matings with ~1500 
diagnosed pregnancies from the 2020 matings. All progeny will be retained within the project and 
recorded until the steers are slaughtered or the females are surplus to requirement. The female 
progeny will be retained and grown out at each research site prior to joining the breeding herd as 
maidens at ~15 months of age with natural matings to sires of their own breed. These females will 
also be naturally mated to sires of their own breed as first-lactation cows and will be retained in 
their respective herds for a minimum of 3 matings. The male progeny will be castrated at marking 
and following weaning will be transported to 2 research sites (EMAI, Duck Creek) to undertake 
backgrounding until they reach feedlot entry weights. The steers will then be feedlot finished for a 
minimum of 100 days at the UNE Tullimba feedlot prior to slaughter. 

 
KEY TRAIT RECORDING 

All calves generated by the project will be recorded intensively from birth to the end of 
backgrounding (steers)/grow-out (heifers). Recording will include accurate recording of birth date, 
birth weight, calving ease and survival, gestation length (AI calves only), weaning weight, flight 
time, docility score, yearling weight, and structure. Other traits, such as worm egg count, will be 
recorded regularly beginning at weaning and continuing until the steers enter Tullimba feedlot and 
the heifers wean their first calf. Horn/poll assessments will be conducted on all calves at marking, 
with monitoring continuing while animals are involved in the project (Connors et al. 2021). 
Following weaning, the heifer progeny will have regular ovarian assessments conducted using 
real-time ultrasound performed by highly skilled ultrasonographers to determine follicle 
development, and, in particular, identify the presence of a corpus luteum as a measure of puberty. 
All first-lactation cows will be regularly scanned after calving to determine their return to 
oestrous. Females will have live weight, hip height, body condition score, eye muscle and 
subcutaneous fat depth recorded prior to mating and at weaning each year, and will be assessed for 
calving ease, teat and udder score at calving. Steer progeny will have weight and scan traits, as 
well as net feed intake, recorded while in Tullimba, with full abattoir, meat quality and consumer 
testing undertaken following slaughter. All BREEDPLAN traits will be quality checked and 
loaded into ABRI’s southern multi-breed research database. 
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ANIMAL GENOTYPING 
The implementation of single-step GBLUP (Johnston et al. 2018) represents a major evolution 

of the BREEDPLAN genetic evaluation system. To capture the benefits of these developments and 
extract full value from the investment in this project, all animals will be genotyped in alignment 
with BREEDPLAN (Connors and Ferdosi 2019). All base females have been DNA sampled and 
will be genotyped as a minimum with a 50K SNP chip. All current back-up and AI sires have been 
DNA sampled for genotyping. A group of 51 AI sires across all breeds have been selected based 
on the number of calves they produced from the 2019 AI program for full genomic sequencing at 
10x coverage for inclusion in the 1000 Bull Genomes Project (Hayes and Daetwyler 2019). All 
SNP data will be quality checked, stored on a project database and loaded into ABRI’s southern 
multi-breed research database. 

 
CONCLUSIONS 

The project is currently in the first 12 months of operation with all base females having been 
purchased and allocated to research sites. These females have undergone AI and back-up mating 
programs in 2019 and 2020 to ~290 different sires across the six breeds. The intensive recording of 
project-generated progeny is underway with the first ~1400 calves recorded at calving in 2020 and 
weaning in 2021. The recording of breeds on a head-to-head basis represents a significant industry 
and government investment which will allow genetics to be compared across environments and 
provide a resource to benchmark reproduction and other traits across-breeds, including hard-to-
measure traits. As such, the project will enable stronger selection for those traits contributing to 
value chain profit. 
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SUMMARY 
Genotype by environment interactions affecting post-weaning body weight in Australian sheep 

were investigated using a linear reaction norm incorporating genomic information. The definition 
of the environmental covariable used in the reaction norm was the best linear unbiased estimation 
of contemporary group effects for post-weaning growth rate. Significant variation in slope was 
estimated, and genetic correlations between low, medium and high growth environments ranged 
from 0.61 to 0.94, suggesting the presence of genotype by environment interaction. A putative QTL 
was detected on chromosome 11, significantly associated with both the intercept and slope of the 
reaction norm. Overall, SNP effects for the intercept and slope were highly correlated (0.87). The 
results suggest that selection based on (genomic) breeding values for the intercept and slope could 
yield animals that are more robust.  
 
INTRODUCTION 

Environmental extremes are very costly to agricultural systems. Annual farm-gate gross domestic 
product declined by approximately $3 billion AUD between 2017 and 2020 in Australia, due to 
drought (Reserve Bank of Australia, 2020). Climate change is expected to exacerbate this problem, 
with increasingly extreme and variable environments predicted for the future (Cowan et al. 2014). 
A potential response to this problem could be to breed livestock that are more robust to changes in 
the environment. An understanding of genotype by environment (GxE) interactions is necessary for 
this. 

Genotype by environment interactions occur when the performance of genotypes is dependent on 
the environment they are recorded in. GxE acts as a source of variation from which to select robust 
livestock; robust genotypes maintain their genetic merit across environments, while sensitive 
genotypes change in merit. Biologically, if significant GxE implies that performance in different 
environments can be considered  as different traits (Falconer 1952), a varying genetic architecture 
could be expected to determine merit across environments. Therefore, it should be possible to detect 
changes in the relative contribution of QTL influencing a trait across different environments using 
SNP and environmental data.  

A popular way to model GxE is using reaction norm models (RNM). These allow the breeding 
values of animals to change across an environmental trajectory, often modelled as a linear function. 
This results in two breeding values for each animal; one corresponding to its breeding value in the 
mean environment (the intercept), and the other corresponding to the degree of change in breeding 
value across environments (the slope). Selection of animals with high breeding values for intercept 
and small breeding values for the slope could increase the mean of a trait while maintaining 
robustness of a flock to environmental extremes. Breeding values for the slope could also be used 
in a genome-wide association study to detect QTLs with environmental-dependent effects that are 
responsible for causing GxE (Silva et al. 2014).  

Several QTLs affecting body weight are known to segregate in Australian sheep (Al-Mamun et 
al. 2015). This presents an interesting opportunity to investigate the behaviour of QTL in a trait with 
significant GxE (Clark et al. 2015). The aim of this study was to explore variance due to GxE and 
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identify genomic regions contributing to GxE and robustness in post-weaning weight using a 
genomic RNM.  
 
MATERIALS AND METHODS 

Data. Phenotypic data consisted of bodyweight records at weaning (64-120 days old) and post-
weaning (123-329 days old) on 21,131 lambs in 206 contemporary groups born between 2007 and 
2019 in the Information Nucleus Flocks and Resource Flocks. These flocks were located across 
Australia and were linked through common sires. All lambs were genotyped with an Illumina 50k-
Ovine panel. An additional 10k was imputed from a recent Neogen GGP-Ovine panel that contained 
SNPs not included on the original Illumina chip. In total, the genomic data consisted of 60,345 SNPs 
after quality control.  

The environmental covariable was defined by the best linear unbiased estimation of 
contemporary group effects using the rate of growth between weaning and post-weaning as the 
response variable, measured in grams/day. A minimum growth period of 40 days was applied to 
ensure the growth period was large enough to accurately reflect the environment. A small number 
of extreme contemporary groups were removed to prevent inflation of the regression coefficients. 
The environmental covariable ranged between -59.1 and +57.1 g/day when centred around zero, and 
was standardised between -1 and 1 for analysis.   

Statistical analyses. A genomic RNM model was fitted using MTG2 2.18 (Lee & Van Der Werf 
2016). The model was of the form: 𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝟏𝟏𝒂𝒂𝟎𝟎 + 𝒁𝒁𝟐𝟐𝒂𝒂𝟏𝟏 + 𝒁𝒁𝟑𝟑𝑸𝑸𝑸𝑸 + 𝒁𝒁𝟒𝟒𝒄𝒄 + 𝒆𝒆 where 𝒚𝒚 is a vector 
of post-weaning weight records for each lamb, 𝑿𝑿 is a vector of fixed effects, 𝑿𝑿 is  a design matrix 
linking fixed effects to records, 𝒁𝒁𝟏𝟏 and 𝒁𝒁𝟐𝟐 are the design matrixes linking records to additive genetic 
effects for the intercept (𝒂𝒂𝟎𝟎) and slope (𝒂𝒂𝟏𝟏), 𝒁𝒁𝟑𝟑 and 𝒁𝒁𝟒𝟒 are design matrices linking records to animals 
and dam environmental effects (𝒄𝒄), 𝑸𝑸 is a matrix linking animals to genetic groups, 𝑸𝑸 is a vector of 
genetic group effects and 𝒆𝒆 is the homogenous residual variance. Fixed effects included age at 
measurement, birth type and rear type interaction, sex, and contemporary group. The variance in 

intercept and slope was modelled as follows: �
𝑎𝑎0
𝑎𝑎1�~𝑁𝑁(0,𝑮𝑮⊗𝑲𝑲) where K= �

    𝜎𝜎𝑎𝑎0 
2        𝜎𝜎𝑎𝑎1𝑎𝑎0 

    𝜎𝜎𝑎𝑎0𝑎𝑎1      𝜎𝜎𝑎𝑎1 
2  

� and 

𝑮𝑮 is the genomic relationship matrix (VanRaden, 2008). An environment-specific genetic 
(co)variance matrix was calculated using: E = 𝜦𝜦𝑲𝑲𝜦𝜦′ where 𝜦𝜦 was a 3x2 matrix, with the first column 
containing a vector of ones for the intercept and the second column containing the standardised 
coefficient corresponding to the level in the environment. Three environmental levels were used to 
calculate E: -42 g/day (low growth), 0 g/day (average growth) and 42 g/day (high growth). SNP 
effects for the intercept and slope were estimated through back-solving genomic breeding values for 
𝑎𝑎0 and 𝑎𝑎1 (Strandén & Garrick 2009) . P-values were approximated following Gondro (2015). A 
threshold value of p > -log10(5) was chosen for significance.  
 
RESULTS AND DISCUSSION 

Variance components for the intercept and slope are reported in Table 1, along with genetic 
correlations between the three environmental levels. Genetic variance in the slope of the RNM was 
significantly different from zero. The correlation between intercept and slope was 0.50, indicating 
that genotypes with high performance in the average environment also tended to have a positive 
breeding value for slope. The genetic correlation between low and high growth environments was 
0.61, while additive genetic variance increased from low to high growth environments. This suggests 
that both scaling and re-ranking contribute to GxE in this population.  
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Table 1. Reaction norm variance components for intercept (σ2a0), slope (σ2a1), covariance (σ 

a0a1) and correlation (ra0a1), as well as genetic correlations between low, average and high 
growth environments and genetic variance (Va) in each 
 

RN variance component Genetic correlations 
σ2a0 6.63 (0.32)  Low Average High 
σ2a1 3.91 (0.58) Average 0.84 - - 
σ a0a1 2.56 (0.25) High 0.61 0.94 - 
r a0a1 0.50 Va 4.96 6.63 12.13 

 
Genome-wide SNP associations for the intercept and slope are shown in Manhattan plots (Figure 

1). Regions on chromosome 6 and chromosome 11 were significantly associated with the intercept. 
The region on chromosome 6 was previously associated with body weight in Al-Mamun et al. 
(2015), while the region on chromosome 11 has not previously been reported in the literature. The 
same region on chromosome 11 was also significantly associated with the slope of RNM. Overall, 
the intercept and slope of post-weaning weight appears to be highly polygenic.  

 
Figure 1. Genome-wide SNP associations for the intercept (top) and slope (bottom) of a 
reaction norm for post-weaning weight. The blue threshold line corresponds to p = 0.00001 
 

SNP effects for the intercept and slope are plotted in Figure 2. The QTL on chromosome 11 
appears to be contribute to GxE through a scaling effect, as its effect on slope is proportional to its 
effect on the intercept. The correlation between SNP effects was higher than anticipated (0.87), 
given that the genetic correlation between intercept and slope was 0.50. A possible explanation is 
that the breeding values for slope could be behaving similarly to a low-heritability trait in a multi-
trait analysis, drawing on information from the higher heritability intercept. Methods to make 
breeding values for the intercept and slope more independent such as canonical transformation could 
remove variation in slope due to the intercept and yield a more useful GWAS for robustness. Further 
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investigation of this observation is warranted to better understand what the SNP effects for slope 
actually represent. This study serves as a preliminary investigation of GxE using genomic 
information. Several improvements for future analysis will be to model heterogenous residual 
variance, use a higher density SNP panel and explore higher-order polynomials or splines.  

Figure 2. SNP effects for the slope regressed over SNP effects for the intercept. SNPs 
corresponding to the QTL on chromosome 11 are highlighted in red, while all other SNPs with 
p > 0.0001 are highlighted in dark blue.  The Pearson correlation coefficient was 0.87 
 
CONCLUSIONS 

Significant genotype by environment interactions were detected using a linear genomic reaction 
norm. The genetic variance in intercept and slope indicated that breeding for robustness is feasible 
based on reaction norm models. The SNP effects for intercept and slope were highly correlated, with 
a QTL detected on chromosome 11 which affected both intercept and slope.  Research into methods 
that remove variation in the slope due to the intercept could improve GWAS studies for robustness. 
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SUMMARY 

Birth and weaning weights are two traits which ultimately influence traits of economic relevance 
in the beef cattle industry. In this study, multi-breed genomic analysis was performed using three 
Australian beef cattle breeds to detect genomic regions that influence birth and weaning weights. 
Principal component analysis revealed a clear genetic separation between the Hereford, Simmental 
and Charolais breeds. A genome-wide association study based on 29k density SNP genotypes 
revealed significant SNPs associated with birth and weaning weights on chromosomes 5, 6, 7 and 
20 in a multi-breed dataset after correction for genetic relationship between animals and population 
stratification. GREML results suggested a top marker present on chromosome 6 accounted for 11% 
and 5% of the additive genetic variance for BW and WW respectively. Results of this study may 
indicate a role for weighted GBLUP evaluations when very large effect QTL for production traits 
are evident in beef cattle. 

 
INTRODUCTION 

Quantitative trait loci (QTL) mapping is an important step to identify genetic variants associated 
with economically important traits in livestock industries. Traits such as birth weight (BW) and 
weaning weight (WW) contribute significantly to the profitability of beef breeding enterprises by 
way of impact on calving outcomes and post-birth growth potential, as well as influencing 
reproductive and nutritional management decisions. There are several biological events and 
associated genes involved with these two traits, with both having a moderate to high pedigree-based 
heritability that is favourable for the detection of genomic regions. Several genome-wide association 
studies (GWAS) have been conducted for Bos taurus, Bos indicus and crossbred cattle types, with 
specific chromosomes and genomic regions being identified for BW and WW (Akanno et al., 2018; 
Saatchi et al., 2014; Utsunomiya et al., 2013). 

The aim of the present study was to investigate the presence of significant genomic regions in 
association with BW and WW in each of three Australian beef breeds, as well as in a combined 
(multi-breed) context. Total genetic variation explained by such informative SNPs was quantified.  

 
MATERIALS AND METHODS 

The BW and WW data for Australian Hereford, Simmental and Charolais used in this study were 
derived from data extracts as used in the BREEDPLAN analysis undertaken for each breed (Graser 
et al., 2005). Single-animal contemporary groups were excluded from further analysis as were 
contemporary groups for animals born prior to 2000. Breed-specific variance components were 
estimated for BW and WW using WOMBAT (Meyer, 2011). Records were pre-adjusted for age of 
dam (BW and WW) and age of calf (WW only) effects, with each model including random effects 
for direct genetic, maternal genetic and dam permanent environment (PE) and with contemporary 
group as a fixed effect. Variance components were used to perform within-breed BLUP analyses for 
BW and WW to obtain the direct genetic and residual solutions. Both solutions were combined to 
give phenotypes (corrected for maternal genetic, dam PE and contemporary group effects) for use 
in the subsequent GWAS. 
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Genomic data for animals with BW and WW records were subjected to quality control (QC) and 
imputation. Several different platforms were used for genotyping, predominantly different versions 
of the GGP-LD product, with 14,904 animals genotyped with the 50k SNP panel (BovineSNP50 
BeadChip, Illumina Inc., San Diego, CA.) used for the analysis.  QC of genomic data was conducted 
using PLINK software (Chang et al., 2015), with SNPs removed at a  minor allele frequency of 
<0.01 and a deviation from Hardy–Weinberg equilibrium of p<1E-6  as exclusion cut-off. SNPs with 
a call rate less than 90% and SNPs located on sex chromosomes were excluded. Animals with a call 
rate lower than 85% for all loci were excluded. Sporadic missing SNPs were imputed by FImpute 
(Sargolzaei et al., 2014). For the multi-breed GWAS, a total of 29,101 combined genotypes were 
used. Principal component analysis (PCA) was carried out to determine the genetic structure of the 
three breeds and was performed on the genomic relationship matrix (GRM) based on the method of 
VanRaden (2008). Although some crossbred genotypes were represented in the combined extract, 
only those animals regarded as “registered purebreds” and separated by PCA results were selected 
for further analysis. 

GWAS analysis of SNP effects and significance was conducted for each trait using the program 
GCTA (Yang et al., 2011), following a linear mixed model as below: 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆 
where 𝒚𝒚 is a vector of corrected phenotypes, 𝑿𝑿 is a vector of overall mean, SNP effect and the 

first and second principal components as linear covariates, 𝒁𝒁 is a vector of random additive genetic 
effects and 𝒆𝒆 is a vector of random residual effects. 𝑿𝑿 and 𝒁𝒁 are incidence matrices that relate fixed 
effects to phenotypes and additive genetic effects to each animal respectively.  

Additive genetic effects in the GWAS were assumed to be normally distributed 
as: 𝑎𝑎 ~ 𝑁𝑁(0,𝑮𝑮𝜎𝜎𝑎𝑎2), where 𝑮𝑮 is a genomic relationship matrix based on the 29k SNP genotypes, and 
𝜎𝜎𝑎𝑎2  is the additive genetic variance. Significant SNPs were identified using a Bonferroni correction 
with α=0.05 and –log10 (p)=5.76 as well as with P<0.001.  Significant SNPs (based on the P<0.001) 
present in the same genomic regions were subjected to joint multivariate regression analysis using 
GCTA with P<1.712e-06 to identify the most informative SNPs for the particular trait. 

 Restricted maximum likelihood analysis with GTCA including the genomic relationship matrix 
(GREML) was used to estimate trait heritability and the proportion of additive genetic variation 
explained by the most informative SNPs. Individual SNP variances were calculated as  
2𝑝𝑝𝑝𝑝𝑝𝑝2where p and q are allele frequencies and α is the SNP effect.  

 
RESULTS AND DISCUSSION 

PCA revealed clear genetic separation between the three Australian beef breeds. The first 
principal component (PC1) separated Hereford from the other two, whereas the second principal 
component (PC2) separated Simmental and Charolais. PC1 explained 79% of total variation between 
animals, with PC2 explaining a further 5%.  

Data structure and variance components for BW and WW in each breed are presented in Table 
1. Hereford gave higher additive genetic variance and heritability for BW, whereas Simmental gave 
higher additive genetic variance and heritability for WW. The descriptive statistics for the data used 
for GWAS are also shown in Table 1. A greater number of Hereford animals with both phenotype 
and genotypes were available for GWAS compared to other two breeds. 

There were 124, 59 and 57 SNPs of significant (P<0.001) association with BW, with 48, 2 and 
12 SNPs remaining after Bonferroni correction for Hereford, Simmental and Charolais respectively 
in single breed GWAS. For WW, there were 74, 32 and 27 SNPs showing a significant (P<0.001) 
association in Hereford, Simmental and Charolais respectively. After Bonferroni correction, 
however, only 14 significant SNPs were evident and for Hereford only.  

Figure 1 gives the Manhattan plots derived from the multi-breed GWAS results of BW and WW.  
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Both traits have highly significant SNPs present on chromosomes 6 and 20, with BW also showing 
some significant genomic associations on chromosome 5. There were 106 significant SNPs present 
on chromosome 6, 20, 7, 5, 25 (in descending number of SNPs) with chromosomes 1, 4, 13, 19 and 
21 also having a significant SNP associated with BW. Only 34 SNPs remained after Bonferroni 
correction. Multivariate regression of these SNPs resulted in 5 significant SNPs remaining. Initially 
there were 62 significant SNPs associated with WW, 13 remained after Bonferroni correction and 
only 2 significant SNPs remaining after multiple regression, present on chromosomes 6 and 20. 
 
Table 1. Additive genetic variance (VG) and heritability (h2) estimated for BW and WW using 
BLUP within breed and descriptive statistics for data used for GWAS 
 

BLUP  GWAS 
Breed No. V(G) h2+SE No. Mean SD Min Max 
BW(kg)         
Hereford 265,406 6.97 0.37+0.006 7,398 40.53 5.59 16.40 65.40 
Simmental 48,557 5.10 0.31+0.014 1,325 40.96 5.73 24.00 63.00 
Charolais 68,457 4.86 0.32+0.012 1,211 43.23 5.49 24.80 70.20 
WW(kg)         
Hereford 333,800 120.99 0.16+0.004 8,363 259.70 52.54 105.10 512.70 
Simmental 30,442 206.36 0.26+0.017 1,011 309.60 52.63 138.60 487.90 
Charolais 68,953 158.20 0.20+0.011 1,249 285.30 45.11 161.10 484.90 

(– log10 (1.718154e-06)) for Bonferroni correction 
 

Saatchi et al. (2014) identified significant SNPs for BW and WW in  Bos taurus breeds, present 
on chromosomes 2, 4, 5, 6, 7, 14, 20, 21 and 29. Genomic regions significant for BW and WW 
include chromosome 5 (106Mb), 6 (38Mb), 7 (93Mb) and 20 (4Mb), these being associated with 
genes responsible for tissue development, ossification, adipose tissue development and regulation 
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of transport activities (Saatchi et al., 2014). In the present multi-breed GWAS, the final significant 
SNPs identified for BW (Table 2) explained 19% of additive genetic variance, with a major 
contribution (11%) coming from SNPs on chromosome 6 (39Mb region). This appears to be a well-
known QTL region affecting body weight in other beef breeds (Snelling et al., 2010) and animal 
species (Metzger et al., 2013). For WW, the final significant SNPs explained 9% of additive genetic 
variance (Table 2), with a major contribution coming from the same SNP on chromosome 6 (39Mb 
region) as for BW. 

 
Table 2. Significant SNPs associated, variance and heritability of the BW and WW of  
multi-breed GWAS* 

Trait Chr Mb P-values V(G) V(snp)/V(G) h2 
BW         5 106 1.610E-06 4.56 ± 0.25 0.01 0.32 ± 0.01 
 6 39 1.17E-35  0.11  
 7 93 5.80E-11  0.03  
 20 4.6 8.03E-17  0.04  
WW 6 39 3.08E-12 82.67+6.57 0.05 0.18 ± 0.01 
 20 6.3 5.25E-11  0.04  

* Chr = Chromosome; Mb = Mega base pairs position according to UMD3.1 resemble; V(G) = total genetic variance =; 
V(snp)/V(G) = total genetic variance explained by significant SNP, h2= heritability. 

 
CONCLUSIONS 

This study detected several SNPs as having a significant association with birth and weaning 
weight, with these SNPs being located on chromosomes 5, 6, 7 and 20. Of the final significant SNPs 
identified, they accounted for 19% and 9% of the total genetic variance for BW and WW 
respectively. Results of this study may have application for genetic evaluations where specific SNPs 
are included to improve the accuracy of prediction for birth and weaning weight in beef cattle. 
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SUMMARY 

Structural soundness has the potential to affect the length of a productive life in beef cattle. The 
objectives of this study were to estimate genetic parameters for structural traits and to examine their 
relationship with production traits (mature weight, body condition score, 18-month weight and 
yearling hip height) measured in beef cattle in New Zealand. Heritabilities for structural traits were 
low to moderate ranging from 0.09 to 0.25. Genetic correlations among structural traits ranged from 
0.18 to 1.00 whereas phenotypic and genetic correlations with production traits were generally low 
positive to moderate negative (-0.54–0.23) indicating only a limited impact on production. 

 
INTRODUCTION 

Structural soundness is believed to influence fitness of cattle in extensive pasture-based farming 
systems. Beef cattle may be required to walk long distances to graze so unsound structure may 
impact on cow performance. Scientific literature on structural traits of beef cattle is sparse and there 
are no previous reports from New Zealand. Research on structural soundness has been 
predominantly conducted in dairy cattle (Dechow et al. 2002) and there is some evidence that 
females with good conformation stay in the herd for longer (Berry et al. 2005). Most reports, 
however, have been focused on type traits other than feet and leg scores. Therefore, the objectives 
of this study were to estimate genetic parameters for 9 structural feet and leg traits recorded in 
commercially farmed beef cattle in New Zealand and to examine their relationship with mature cow 
weight (MWT), body condition score (BCS), 18-months weight (W18) and yearling hip height (HH). 

 
MATERIALS AND METHODS 

Dataset. The project was approved by the AgResearch Invermay Animal Ethics Committee. 
Data were obtained from an ongoing progeny test initiated in 2014 on 5 commercial New Zealand 
hill country farms to compare the performance of progeny derived from matings of Angus, Hereford, 
Simmental, Stabilizer and Charolais bulls over Angus or Hereford cows (Weik et al. 2021). The 
current study used data recorded between 2014 and 2020 for structural and production traits. Birth 
dates were not recorded, but age was assigned based on fetal age scanning.  

Trait definitions. Structural traits were assessed according to the Beef Class Structural 
Assessment system (Breedplan 2021). Seven traits were recorded: front feet angle (FA), front feet 
claw set (FC), front legs front view (FF), rear feet angle (RA), rear feet claw set (RC), rear legs hind 
view (RH) and rear legs side view (RS). Records were available for a total of 2,294 animals for RA, 
2,670 animals for RH and RS and 2,671 animals for all other structural traits at approximately 16–
20 months of age by the same experienced Breedplan accredited assessor across all farms. Each trait 
was recorded following a linear assessment on a 1 to 9 scale, with 1 and 9 representing biological 
extremes with 5 as the intermediate optimum. No animals were scored at the extreme ends of the 
scale (1–2 or 9, respectively) and 99.6% of observations were between 5 and 7 (Table 1). Overall 
feet score was calculated for each animal by taking the worst score for FA and RA, or FC and RC, 
for overall feet angle (OA) and overall claw set (OC), respectively. 

Four production traits were included in the correlation analyses, namely MWT, BCS, W18 and 
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HH. A total of 39,464 records were available for MWT. Data were obtained at 3 timepoints annually, 
prior to mating, at calf weaning and prior to calving for cows aged over 2 years. Cow BCS was 
recorded at the same times, generating 39,467 records based on visual assessment on a 1 to 10 scale 
(1=emaciated, 10=obese; Hickson et al. (2017)). Both traits were adjusted to a constant 6 years of 
age using fixed effect models with age and contemporary group (CG) as factors in the model. 

A total of 7,048 progeny were recorded for weaning weight (WWT) between 110 and 228 days 
of age. Measures on W18 were available for 4,189 individuals measured between 455 and 752 days 
of age. Each animal was recorded once for WWT and W18. Linear and quadratic adjustments to 200 
and 600 days of age were applied for WWT and W18 using a multiplicative approach similar to that 
described by Reverter et al. (2000). Records for HH were obtained once per animal between 277 
and 417 days of age for 5,125 individuals, and adjusted to 365 days, using quadratic age adjustments.  

Observations for production traits further than 3 standard deviations from the CG mean were 
deleted. For all structural traits, WWT and W18, CG comprised farm, sex, recording date and 
management group from birth until the day of recording. The CG for MWT and BCS consisted of 
farm, time of year, recording date and management group at the time of data collection. The HH 
CGs were made up of farm, sex and recording date. Individuals with missing CG information or CG 
containing only 1 animal were excluded from analyses. All production traits were tested for evidence 
of heterogeneity. Traits with a significant regression of CG mean on CG SD were scaled to 
homogenize the variance (Pickering et al. 2012). 

Statistical analysis. Data quality control and pre-adjustments of phenotypes were conducted 
using R version 3.6 (R Core Team 2019). (Co)variance parameters were estimated using ASREML 
4.1 (Gilmour et al. 2009). For all traits, WWT was included as a correlated trait to account for 
preselection. Thus, heritability estimates were obtained from bivariate animal models and genetic 
and phenotypic correlations from (co)variance parameters using a range of trivariate animal models. 

Fixed effects included for all traits were CG, breed percentage and heterosis (purebred = 0, first-
cross = 1). Age of dam was fitted as a factor for all structural traits as well as WWT, W18 and HH. 
Age at scoring was fitted as a linear covariate in the model for each structural trait. An animal effect 
and a residual error term were fitted as random effects for each trait, a permanent environmental 
effect was fitted for MWT and BCS due to repeated measures over time and a maternal additive 
genetic as well as a permanent environmental effect of the dam were fitted for WWT. Variance 
structures for the random effects were assumed as follows: var(a) = A𝜎𝜎𝑎𝑎2, var(m) = A𝜎𝜎𝑚𝑚2 , var(pe) = 
I𝜎𝜎𝑝𝑝𝑝𝑝2  and var(e) =I𝜎𝜎𝜀𝜀2. No covariance was fitted between direct and maternal genetic effects. The 
numerator relationship matrix (A) included 13,325 animals with 394 sires and 4,098 dams. 

 
RESULTS AND DISCUSSION 

Means, phenotypic standard deviations and estimated heritabilities from bivariate analyses with 

Figure 1. Distribution of scores for front feet angle (FA), front feet claw set (FC), front legs 
front view (FF), rear feet angle (RA), rear feet claw set (RC), rear legs hind view (RH), rear 
legs side view (RS), overall feet angle (OA) and overall claw set (OC) 
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WWT for each structural trait are presented in Table 1. The means of all structural traits ranged from 
5.1 to 6.0. The standard deviations (SD) were similar for most traits except RC. The limited number 
of extreme scores meant that SD were low for all structural traits. 

 
Table 1. Raw means, phenotypic standard deviations (𝝈𝝈𝑷𝑷) and heritabilities (h2) for 
structural traits with standard errors shown in brackets 
  

FA FC FF RA RC RH RS OA OC 
Mean 5.8 5.8 5.6 5.6 5.1 5.9 5.7 6.0 5.8 
σ𝑃𝑃 0.53 

(.09) 
0.52 
(.09) 

0.50 
(.08) 

0.53 
(.09) 

0.26 
(.04) 

0.57 
(.10) 

0.53 
(.09) 

0.43 
(.07) 

0.51 
(.09) 

h2 0.23 
(.05) 

0.10 
(.04) 

0.09 
(.04) 

0.17 
(.05) 

0.09 
(.04) 

0.22 
(.05) 

0.12 
(.04) 

0.25 
(.06) 

0.11 
(.04) 

*For structural trait abbreviations see Figure 1 
 

Table 2. Genetic (below diagonal) and phenotypic (above diagonal) correlations (se) from 
trivariate animal models among structural and production traits in New Zealand beef cattle 
 
 FA FC FF RA RC RH RS OA OC MWT BCS W18 HH 
FA  0.38 

(.02) 
0.22 
(.02) 

-0.03 
(.02) 

0.07 
(.02) 

0.14 
(.02) 

0.12 
(.02) 

0.74 
(.01) 

0.36 
(.02) 

-0.07 
(.03) 

-0.06 
(.03) 

-0.09 
(.02) 

0.00 
(.02) 

FC 0.99 
(.12)  0.17 

(.02) 
0.02 
(.02) 

0.02 
(.02) 

0.12 
(.02) 

0.14 
(.02) 

0.27 
(.02) 

0.95 
(.00) 

-0.03 
(.03) 

-0.04 
(.03) 

-0.03 
(.02) 

0.04 
(.02) 

FF 0.54 
(.20) 

0.66 
(.27)  0.08 

(.02) 
0.04 
(.02) 

0.21 
(.02) 

0.12 
(.02) 

0.15 
(.02) 

0.16 
(.02) 

-0.06 
(.03) 

-0.08 
(.03) 

-0.13 
(.02) 

0.01 
(.02) 

RA 0.24 
(.20) 

0.19 
(.26) 

0.69 
(.24)  0.15 

(.02) 
0.09 
(.02) 

0.08 
(.02) 

0.39 
(.02) 

0.04 
(.02) 

-0.07 
(.03) 

0.00 
(.04) 

-0.12 
(.02) 

-0.06 
(.03) 

RC 0.33 
(.23) 

0.57 
(.32) 

0.27 
(.32) 

0.36 
(.26)  0.04 

(.02) 
0.03 
(.02) 

0.12 
(.02) 

0.20 
(.02) 

-0.05 
(.03) 

-0.04 
(.03) 

0.01 
(.02) 

0.01 
(.02) 

RH 0.21 
(.17) 

0.38 
(.21) 

0.61 
(.21) 

0.50 
(.18) 

0.43 
(.24)  0.29 

(.02) 
0.11 
(.02) 

0.12 
(.02) 

-0.08 
(.03) 

-0.14 
(.03) 

-0.17 
(.02) 

0.07 
(.02) 

RS 0.42 
(.19) 

0.60 
(.25) 

0.18 
(.28) 

0.72 
(.21) 

0.53 
(.30) 

0.26 
(.20)  0.12 

(.02) 
0.13 
(.02) 

-0.06 
(.03) 

-0.14 
(.03) 

-0.14 
(.02) 

-0.02 
(.02) 

OA 0.92 
(.04) 

0.76 
(.15) 

0.79 
(.19) 

0.53 
(.16) 

0.32 
(.23) 

0.27 
(.16) 

0.56 
(.18)  0.26 

(.02) 
-0.10 
(.03) 

0.00 
(.03) 

-0.11 
(.02) 

-0.03 
(.03) 

OC 0.91 
(.12) 

1.00 
(.02) 

0.61 
(.26) 

0.22 
(.24) 

0.66 
(.26) 

0.34 
(.21) 

0.59 
(.25) 

0.69 
(.15)  -0.05 

(.03) 
-0.05 
(.03) 

-0.02 
(.02) 

0.04 
(.02) 

MWT -0.19 
(.07) 

-0.10 
(.11) 

-0.21 
(.12) 

-0.16 
(.09) 

-0.16 
(.12) 

-0.16 
(.08) 

-0.16 
(.10) 

-0.20 
(.07) 

-0.13 
(.11)     

BCS -0.07 
(.09) 

-0.14 
(.13) 

-0.27 
(.14) 

-0.10 
(.11) 

-0.09 
(.14) 

-0.54 
(.10) 

-0.35 
(.12) 

-0.03 
(.09) 

-0.12 
(.12)     

W18 -0.17 
(.12) 

-0.04 
(.17) 

-0.30 
(.17) 

-0.53 
(.13) 

-0.27 
(.18) 

-0.09 
(.12) 

-0.06 
(.16) 

-0.32 
(.11) 

-0.08 
(.16)     

HH 0.07 
(.12) 

0.15 
(.17) 

0.23 
(.18) 

-0.19 
(.15) 

-0.07 
(.18) 

0.19 
(.12) 

-0.12 
(.16) 

-0.03 
(0.12) 

0.14 
(0.16)     

*For structural trait abbreviations see Figure 1; MWT=mature cow weight, BCS=body condition score, 
W18=18-month weight, HH=yearling hip height 

The estimated heritabilities for structural traits were in the low-to-mid range from 0.09 to 0.25, 
consistent with Jeyaruban et al. (2012) and Vallee et al. (2015). Heritabilities for front feet 
observations were higher than their rear counterparts. The highest heritabilities were estimated for 
FA, RH and OA. Production traits were moderately to highly heritable with 0.57 (0.03) for MWT, 
0.54 (0.04) for W18 and 0.52 (0.04) for HH and the estimated heritability was lowest for BCS at 
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0.25 (0.03). Those values are consistent with estimates from the literature.  
Genetic and phenotypic correlations are shown in Table 2. Phenotypic correlations among 

structural traits were generally positive and lower than genetic correlations. The estimated genetic 
correlations were positive among all structural traits ranging from 0.18 to 1.00. The highest 
correlations were observed between FA and FC (0.99) and the part-whole correlations FA and OA 
(0.92) and FC and OC (1.00). Correlations between both rear feet traits and the overall foot scores, 
however, were lower with 0.53 between RA and OA and 0.66 between RC and OC, indicating that 
overall feet scores are primarily driven by the condition of the front feet. Jeyaruban et al. (2012) 
reported high genetic correlations between FA and RA, which were considerably lower in the current 
study (0.24). The correlation between FC and RC (0.57) in this study, however, was consistent with 
their reported estimate of 0.63. Genetic correlations were generally higher among traits measured 
on the front feet (0.54–0.99) than on the rear feet (0.26–0.72). 

The phenotypic correlations were generally low between structural and production traits, 
indicating that there is no evidence that structural traits in this study have a substantial impact on 
those production traits measured later in life. Genetic correlations between structural and production 
traits were similar for MWT, BCS and W18 and were generally low and negative and this may be 
attributable to low variation of the observed structural traits. The only moderate genetic correlations 
further than 2 standard errors from 0 were the negative correlations between BCS and RH (-0.54), 
BCS and RS (-0.35), W18 and RA (-0.53) and between W18 and OA (-0.32). Given the distribution 
of scores above the optimum these suggest that selecting for BCS and W18 is unlikely to increase 
the frequency of animals with unsound structure. The genetic correlation between structural traits 
and HH were low overall with the highest genetic correlation estimated for HH and FF (0.23).  

 
CONCLUSIONS 

Low to moderate heritabilities for structural traits exist in commercially farmed beef cattle in 
New Zealand. Genetic and phenotypic correlations among structural and production traits were 
generally low to moderate and negative, indicating only weak associations and, thus, a limited 
impact of structural traits on the recorded production traits in this study. 
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SUMMARY 

Age at puberty has become a key trait in the genetic evaluation of female reproduction for 
tropically adapted beef breeds in northern Australia. This study aimed to characterise the trait in 
Australian Bos taurus seedstock heifers and determine the degree to which it, and associated traits, 
were under genetic control. Angus heifers (N = 3093) from nine seedstock herds were serially 
ultrasound scanned to determine age at puberty, via detection of their first corpus luteum, at 
approximately 4 week intervals from 10.5 to 13.6 months of age, when heifers were synchronised 
for artificial insemination. Results showed that only 53% of Angus heifers were pubertal at 
synchronisation for AI and that within this category, age at puberty had a heritability of 0.33. When 
a penalised record (maximum age at puberty for a contemporary group plus 21 days) was included 
for heifers that were not pubertal into mating, heritability increased to 0.42. For sires with EBV 
accuracy greater than 0.7, EBVs for age at puberty ranged from -69 to +70 days. The ability of 
heifers to conceive early in their first mating season has been linked to lifetime reproductive 
performance. These results suggest that the proportion of heifers that have reached puberty as they 
enter their first mating is significantly less than 100% and that opportunities exist to monitor and 
apply selection to improve age at puberty in Australian Angus heifers. 

 
INTRODUCTION 

Results from the Co-operative Research Centre for Beef Genetic Technologies Northern 
Breeding Project (Beef CRC) showed that age at puberty, identified by serial ultrasound scanning 
to determine the date at first ovulation, was heritable in tropically adapted beef genotypes (Johnston 
et al. 2009). Associated research also demonstrated that lower age at puberty was moderately and 
favourably genetically correlated with lifetime reproductive outcomes (rg = -0.29 to -0.40), and that 
selection to improve (reduce) age at puberty would have favourable consequences for lifetime 
reproductive performance (Johnston et al. 2014). Morris et al. (2000) showed moderate heritability 
for age at puberty (first observed oestrus) in Angus heifers (h2 = 0.31), and a high genetic correlation 
with first mating pregnancy rate in naturally mated (or AI to observed oestrus) heifers (rg = -0.89), 
and Wolcott et al. (2019) reported a similar heritability (h2 = 0.38) for Hereford heifers in Australia. 
Continuing from that work, the current study aimed to exploit methods developed in the Beef CRC 
to characterise age at puberty in Angus heifers, to determine the heritability of the trait and its 
potential to provide a means to monitor and select to improve age at puberty for the breed.  
 
MATERIALS AND METHODS 

Animals and management. Heifers involved in this study were made available by nine Angus 
seedstock breeders. Herds were selected for inclusion based on a history of high quality pedigree 
and performance recording, and a willingness to endure the significant imposition associated with 
serial ultrasound scanning required to identify first oestrous. Calving periods for heifers evaluated 
for the study ranged from 2 – 3 months. The heifers included in the analysis were the progeny of 
260 sires, with 78% being the daughters of sires with at least 10 progeny, and 34% of heifers from 
sires with daughters evaluated in at least two herds. 
_____________________________ 
 ∗ A joint venture of NSW Department of Primary Industries and the University of New England. 
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Heifers were weaned at an average age of 6.5 months, with a range of weaning ages from 5.3 to 
8.0 months. On average, heifers weaned in 2018 were reared under significantly dryer conditions 
than those in 2017. This meant that more supplementary feeding was provided for heifers in 2018, 
but all animals received the same nutritional interventions within herd and year. This also applied 
to routine management practices (animals’ identification and branding, vaccination, parasite control 
treatments, etc.). Limited culling for conformation related traits between weaning and 
synchronisation for AI took place though this was assumed to be independent of any understanding 
of genetic reproduction. All herds routinely submit data to BREEDPLAN for genetic evaluation. 
For the heifers involved in this study, this included pedigree information, date of birth and weaning 
weight, and these were extracted from the Angus Australia database for these analyses. 

Scanning for ovarian function. Ultrasound scanning to detect first oestrous followed the 
protocols described by Johnston et al. (2009) for tropical beef females in the Beef CRC. Within herd 
and year, scanning was performed by one of three technicians using a Mindray M7Vet real-time 
ultrasound unit equipped with a variable frequency 6LE5Vs intra-rectal transducer, set at 8MHz. 
The timing of first scans to detect the presence of a corpus luteum (CL), was undertaken when 
managers at each location observed the first signs of heat in the heifer cohorts examined for this 
study (subsequently referred to as their ‘post-weaning’ record). Subsequent scans took place at 4 - 
6 week intervals until the first progesterone-based synchronisation treatment occurred in each herd, 
prior to artificial insemination (or their ‘into-mating’ record). All heifers in a cohort were scanned 
post-weaning) and at synchronization for AI, with interim scans performed on heifers that had not 
previously displayed a CL. This resulted in most heifers being scanned three times up to 
synchronisation, with the average number of scans per animal, within herd and year, between 2.2 
and 3.9.  

Based on ovarian scanning results, the following traits were defined: 
• Age at puberty (AP) was a trait in females that displayed a CL prior to mating, calculated as 

the scanning date at which the first CL was detected minus their date of birth. 
• Penalised AP (APP) generated an age at puberty record for heifers that had failed to display a 

CL prior to mating. APP was calculated for these animals as the maximum AP for their 
contemporary group plus 21 days. For a small number of heifers that failed to display a CL 
prior to mating and were in small contemporary groups (for which the maximum AP was based 
on too few records (N ≤ 3) to be reliable) no APP was analysed (N = 15 heifers). 

• Pubertal into mating (PUB) was a binary trait that identified heifers that had cycled at any 
time up to mating (1) or not (0). 

• Antral follicle count (FC) was the total number of follicles greater than 2mm, visible by 
ultrasound examination of both ovaries at the first scan in heifers which did not display a CL. 
FC was recorded in this project to investigate its genetic associations with economically 
important female reproduction traits based on favourable results presented by researchers 
examining dairy cow performance in New Zealand (Martinez et al. 2016). 

Growth and body composition traits. At each scan, records of liveweight weight (LWT in kg), 
hip height (HH in cm) and body condition score (BCS on a 1- to 5+ scale) were collected for each 
heifer following the protocols for growth and body composition traits described by Johnston et al. 
(2009). P8 fat depth (P8 in mm) was also measured at each scan using the scanner’s inbuilt callipers. 

Modelling, variance component and EBV estimation. Descriptive statistics were generated 
using PROC MEANS in SAS. Contemporary group information was extracted from the Angus 
Australia database and was built based on information supplied by participating breeders as 
described by Graser et al. (2005).  

The contemporary group for BREEDPLAN 200-day weight was used to analyse heifer growth, 
body composition and the descriptors of ovarian function evaluated for this study. For growth and 
body composition traits, dam age and linear animal age were fitted as covariates. Consistent with 
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the protocols established by Johnston et al. (2009) heifer age was modelled for scanned ovarian 
traits as the month of birth nested within herd and year. Variance components for each trait were 
estimated in univariate analyses in ASReml (Gilmour et al. 2009), with EBVs for all animals in the 
three generation pedigree estimated as the solution for the random animal effect. For this study, 
genetic parameters for the binary PUB trait were estimated on the observed scale. 
 
RESULTS AND DISCUSSION 

Growth and body composition traits. Summary statistics, additive variances and heritabilities 
for post-weaning growth and body composition traits are presented in Table 1. On average, heifers 
were 10.6 months of age at their post-weaning scan, with mean ages at first scan being reasonably 
consistent across herds and years. Additive variances and heritabilities for post-weaning LWT and 
HH were consistent with those reported by Donoghue et al. (2018) for Angus and Hereford females 
prior to their first calving (h2 = 0.45 and 0.57), and with results from this study previously reported 
by Wolcott et al. (2019) for Hereford heifers (h2 = 0.55 and 0.49). The heritability for post-weaning 
P8 was lower than that reported by Donoghue et al. (2018) for Angus females prior to their first 
calving (h2 = 0.44), but was comparable for BCS (h2 = 0.14), while almost identical results were 
presented by Wolcott et al. (2019) for Hereford heifers (h2 = 0.29 and 0.20 for P8 and BCS 
respectively). The technicians who collected ultrasound data describing ovarian traits were not 
accredited BREEDPLAN carcass scanners, and it is possible that a degree of measurement 
inaccuracy may account for the slightly lower than expected heritability for scanned fat depth.  
 
Table 1. Number of records analysed (N), mean and standard deviation (SD), with additive 
variance (σa2) and heritability (h2) (and standard error (s.e.) for h2 estimates) for post-weaning 
growth and body composition and scanned ovarian traits in Angus heifers 
 

Traits Units N Mean SD σa2 h2 s.e. 
Post-weaning growth and body composition 

AGE Days 3093 319.9 46.6  -  - - 
LWT kg 3085 314.5 48.3   339.2 0.37 0.06 
HH cm 1816 116.9   4.5       7.1 0.57 0.08 
P8 mm 3039     5.0   2.9       0.8 0.21 0.06 

BCS Score (1 – 5) 3093     2.8   0.7        0.04 0.29 0.06 
Ovarian scanned traits 

AP Days 1634 345.2 63.2   378.1 0.33 0.08 
APP Days 3078 392.5 71.1 1224.0 0.42 0.06 

PUBA 1/0 3077       0.53     0.50        0.06 0.32 0.05 
FC Count 2544   21.9   8.9     21.1 0.34 0.06 

  A Variance components for PUB estimated on the observed scale. 
 

Ovarian scanned traits. Additive variances and heritabilities (and associated standard errors) 
for scanned ovarian traits are also presented in Table 1. A key result from this work was the 
proportion of Angus heifers that were pubertal into mating (PUB = 0.53). This was consistent with 
the result presented by Wolcott et al. (2019) for Hereford heifers involved in the same project (PUB 
= 0.52), and reinforces the need to understand the genetics of puberty traits in temperate breeds. The 
phenotypic and additive variance for APP (2882.8 and 1224.0 days respectively) were substantially 
lower than those reported by Johnston et al. (2009) for tropically adapted heifers, consistent with 
the much shorter scanning period in temperate breeds where maiden matings occur approximately 
12 months earlier. The moderate heritability estimated for APP (h2 = 0.42) suggests that the 
opportunity exists to improve the trait by selection in the Angus breed. Both AP and APP were under 
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significantly greater genetic control than days to calving (h2 ~ 0.05), which is currently the key 
descriptor of female reproductive performance in the BREEDPLAN evaluation for the breed.  

For sires with greater than 70% EBV accuracy, EBVs for APP ranged from -69 to +70 days. 
These results suggest that sire selection could impact age at puberty in the resulting progeny by at 
least two months. With only 52% of females pubertal into their first mating, and mating periods as 
low as 2 months in commercial beef breeding herds in southern Australia, this could have 
implications for reproductive outcomes for naturally mated maiden heifers.   

Mean and standard deviation for post-weaning FC were consistent with those reported by Walsh 
et al. (2014) for dairy heifers in the US and Ireland, with heritabilities also comparable (h2 = 0.25 
and 0.31 respectively). Antral follicle count was assessed in this project to allow investigation of its 
genetic association with female reproduction traits, and this will be the subject of future analyses. 

 
CONCLUSIONS  

This study presents an initial investigation of the genetics of age at puberty and associated traits 
in Australian Angus seedstock heifers. Results showed that the opportunity exists to improve 
(reduce) age at puberty by selection in the breed and, by including the trait in the breed’s genetic 
evaluation, to monitor this aspect of female reproduction as selection is applied to improve other 
economically important traits. The proportion of heifers that were not pubertal as they entered their 
first mating was a key result of this study. The increasing prevalence of artificial insemination and 
the associated treatments to synchronise (and possibly induce), first oestrous suggest that genetic 
factors which impact a heifer’s capacity to conceive early in their first mating season warrant 
monitoring and inclusion in the genetic evaluation for temperate beef breeds. It is acknowledged 
that serial ultrasound scanning to detect first oestrous is an expensive and labour-intensive operation, 
making it a prime candidate for evaluation in intensively recorded reference populations. 
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SUMMARY 
This study investigated the current animal-level and herd-level variation for enteric fermented 

methane emissions across pasture-based dairy farms in New Zealand. We used the DairyNZ core 
database consisting of 2,398 herds and 751,981 cows as the inputs, and inferred crucial but unknown 
variables including methane emissions per unit of feed from department of environment, food&rural 
affairs (DEFRA), and live weight from New Zealand animal evaluation limited database to predict 
methane emissions for individual dairy cows. Methane emissions were predicted using dry matter 
intake (DMI) with an Intergovernmental Panel on Climate Change tier 2 approach. While individual 
methane emissions (R2 =0.29) were poorly predicted, but excellent predictability of herd average 
methane emissions were well predicted (R2=0.95) based on variables including herd, age, 
replacement rate, DMI, live weight (LW) and milk solids. The results showed an advantage of 
predicting methane emissions at herd level than individual cow level. Based on the results, the NZ 
dairy industry should focus on new traits and breeding objectives, with the support of trait 
prioritisation, a monitoring plan, policy making and incentivisation for farmers. 

 
INTRODUCTION 

More than 95% of methane emissions in a life cycle of dairy production come from enteric 
fermentation (Fonterra co-operative group limited, 2017). There is variation in greenhouse gas 
emissions among dairy farms caused by variation in production practices, environment, and regional 
historical disparity (Latham 2010; Beukes et al. 2010). To facilitate farmers in compliant with the 
future regulation, it will be important to establish objective, data driven and, practical and easy-to-
implement methods of monitoring emissions levels at an individual farm level.  

Currently animal identification and performance recording in New Zealand dairy farms are 
generally not well linked, due to the difficulty in tracking large herds on seasonal pasture-based 
production system (Edge and Kavalali 2018), although many farms have some level of recording in 
place for the purpose of herd improvement (3.67 million out 4.95 million cows, LIC and DairyNZ 
2019). For example, the national database such as New Zealand dairy core database (DairyNZ 
Hamilton, New Zealand) have performance records unlinked to animal ID, such as live weight. 
Additionally, the current techniques for measuring methane per unit of feed was difficult to apply 
on a large scale (DEFRA 2014). With the introduction of new data and IT systems, it would be 
possible to create a database infrastructure that would allow dairy cow GHG emissions to be 
predicted at the individual cow level and aggregated to individual farm level. 

Due to aforementioned reason,  the objectives of this study were 1) to combine multiple existing 
data sources to predict the variation among individuals and herds for dairy cattle enteric fermentation 
methane emissions for New Zealand dairy farms; 2) assess the requirement of future data 
infrastructure and technologies in order to monitor methane emissions at animal and herd level and; 
3) infer the emission mitigation strategies enabling the adoption of future on-farm emission policies 
and technologies. 

 
MATERIALS AND METHODS 

Data. New Zealand dairy core database containing herd test and movement records of 
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27,288,426 cows from 1989 to 2014. Breeds included Jersey, Holstein-Friesian and crossbred. 
Records of cows calving between June 1st and October 1st, 2005 were extracted, and quality control 
such as removing cows with lactation length beyond 365 days was applied. 751,981 cows with 
records in 2,398 herds were obtained in the end. 

General approach. DMI approach illustrated in the IPCC 2000 (Pickering et al. 2020; Clark et 
al. 2003) as 𝐸𝐸 = 𝐹𝐹 ∙ 𝛼𝛼, where E is methane emissions/cow/year, F is the annual DMI (kg DMI/year) 
and α is the methane emissions per unit of feed (g CH4/kg DMI). 

Estimation of live weight. Simulated from mean live weight by age and breed (Livestock 
Improvement Company 2008; DairyNZ 2019), a CV of 0.105 (Zhang et al. 2019), a phenotypic 
correlation of 0.15 between LW and milk yield during the first 240 days of lactation (Correa-Luna 
et al. 2018). 

Prediction of total lactation milk yield from test day records. Obtained by fitting quantile 
splines to each lactating cow for their milk volume, protein and fat production during lactation using 
smooth.spline function in R(v3.5.3).  

Prediction of DMI from live weight and energy requirements. First calculated the energy 
requirement following Nicol and Brookes (2007) and Clark et al. (2003) as the summation of 
maintenance, lactation, replacement and gestation energy requirement; then converted energy to 
DMI by multiplying the average diet energy. 

Prediction of methane emissions from DMI. First obtained the mean and SD of methane 
emissions per unit of feed, α, from experiments (DEFRA 2014) by removing research institute, 
measuring method, diet type, breed, sex and physiological status effects. Then sample α from this 
distribution and assign it to each cow i, multiplied by their DMI to obtain the prediction of E. 

Statistical analysis.  The summary statistical tests were calculated for measured and predicted 
variables (results not shown). Pearson correlations between E and energy related traits were also 
calculated (results not shown). To access the variance of variables in relation to E, an OLS linear 
model was fitted with herd as random effect, and milk solids, live weight, survival of individual 
cows and the herd averages of all previous effects as covariates. 

 
RESULTS AND DISCUSSION 

The methane emissions per unit of feed was estimated as 20.72 ± 4.24 g CH4/kg DM. Variances 
of each variable regressed on individual and herd average E are shown in Table 1. Factors including 
herd, milk solids per cow, cow live weight and survival could predict individual feed intake well 
(R2=0.29) but not individual methane output (R2=0.29). The reason is the substantial variation that 
exists in methane eructed per unit of feed consumed, which is also difficult to measure in practice 
(Beukes et al. 2010; Herrero et al. 2013; DEFRA 2014). Additionally, in practice, farmers are 
unlikely to mitigate emissions by reducing production. Therefore, new technologies such as e-collars 
that measure cow activity for the use of predicting DMI is also likely to be of limited use in practice. 

Herd average milk solids and live weight were powerful in predicting herd average methane 
emissions (R2=0.95), hence policy based on farm level rather than individual cow level could be 
more effective in reducing methane emissions on an industry wide basis. 
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Table 1. Model comparisons for dry matter intake (DMI, kg) and methane emissions (E, kg) 
during the lactation for each cow and for the herd average (𝑫𝑫𝑫𝑫𝑫𝑫������� and 𝑬𝑬�) 
 

Dependent 
variable1 Model formula2 R2 R 

Model 
variance 

Total 
variance 

𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑖𝑖𝑖𝑖 

~ ℎ𝑖𝑖𝑖𝑖 0.28 0.52 232,627 845,228 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ 0.25 0.50 211,555 845,228 

~ 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.11 0.33 94,448 845,228 

~ 𝑀𝑀𝑆𝑆𝑆𝑆𝚤𝚤∙������� 0.01 0.09 6,943 845,228 

~ 𝑎𝑎𝑎𝑎𝑎𝑎𝚤𝚤∙������� 0.01 0.09  7,011   845,228  

~ ℎ𝑖𝑖𝑖𝑖 + 𝐷𝐷𝑀𝑀𝑖𝑖𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 0.78 0.88 661,980 845,228 

Eij 

~ ℎ𝑖𝑖𝑖𝑖 0.10 0.32 100 985 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ 0.09 0.30 91 985 

~ 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.04 0.20 41 985 

~ 𝑀𝑀𝑆𝑆𝑆𝑆𝚤𝚤∙������� 0.003 0.06 3.09 985 

~ 𝑎𝑎𝑎𝑎𝑎𝑎𝚤𝚤∙������� 0.003 0.06 3.02 985 
~ ℎ𝑖𝑖𝑖𝑖 + 𝐷𝐷𝑀𝑀𝑖𝑖𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 0.29 0.54 285 985 

𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝚤𝚤∙��������� 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ 0.89 0.94 198,896 224,645 

~ 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.41 0.64 92,298 224,645 

~ 𝑀𝑀𝑆𝑆𝑆𝑆𝚤𝚤∙������� 0.02 0.14 4,512 224,645 

~ 𝑎𝑎𝑎𝑎𝑎𝑎𝚤𝚤∙������� 0.01 0.10 2,411 224,645 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ + 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.97 0.99 218,726 224,645 

𝐸𝐸𝚤𝚤∙��� 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ 0.86 0.93 85 98 

~ 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.40 0.63 39 98 

~ 𝑀𝑀𝑆𝑆𝑆𝑆𝚤𝚤∙������� 0.02 0.14 1.96 98 

~ 𝑎𝑎𝑎𝑎𝑎𝑎𝚤𝚤∙������� 0.01 0.11 1.27 98 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ + 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.95 0.97 93 98 
1 Calculated for fall 2005 to spring 2006 season. i indicates i-th herd and j indicates j-th animal. DMI and E 
are accumulated predictions across the whole lactation. 
2 Dependent variables were herd (ℎ𝑖𝑖𝑖𝑖), herd average accumulated milk solids (𝐷𝐷𝑀𝑀𝚤𝚤∙������, kg), herd average mean 
live weight (𝐿𝐿𝐿𝐿𝚤𝚤∙�����, kg), herd average survival (𝑀𝑀𝑆𝑆𝑆𝑆𝚤𝚤∙�������, year), herd average age (𝑎𝑎𝑎𝑎𝑎𝑎�����𝑖𝑖𝑖𝑖, year), accumulated milk 
solids (𝐷𝐷𝑀𝑀𝑖𝑖𝑖𝑖, kg), mean live weight (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 , kg) and survival (𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖, year). Herd was fitted as a random effect 
and other effects were fitted as covariates. 

 
CONCLUSIONS 

This preliminary study identified a key antagonism between farmer desire for profitable 
utilisation of farm feed resources and a national need to moderate the overall methane emissions 
from the dairy industry. Technologies that only predict individual feed intake will have limited value 
for practical mitigation of enteric methane emissions. Rather, additional mechanisms would be 
required to effectively incentivise mitigation opportunities that reduce emissions per unit of feed. A 
well-linked comprehensive animal level database infrastructure could support effectively 
incentivising some levels of farm and animal level changes to reduce enteric methane emissions.  
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SUMMARY 

Percent trait emphasis is a concept used to interpret the selection effort of a trait in a selection 
index. Zhang and Amer (2021) published a sub-index weighted percent emphasis and demonstrated 
its advantage over the traditional method. The objective of this study is to apply this method to a 
current selection index and compare that with the traditional method. The results showed that 1) the 
new methods for calculating trait percent emphasis outperform conventional methods, 2) differences 
in trait accuracy of prediction impact their real percent emphasis, and 3) unfavourable correlations 
among traits reduce their effective emphasis in indexes. 

 
INTRODUCTION 

Percent trait emphasis is commonly used to describe selection indexes used in national genetic 
evaluations to help farmers and other users to interpret the selection effort being applied to 
competing traits. The currently accepted and widely used methods to calculate trait percent emphasis 
use the product of trait mean EBV and genetic SD as the base measurement, and the summation over 
all traits as the scaling factor (VanRaden 2002; Miglior et al. 2005, 2017). The sub-index weighted 
method (Zhang and Amer 2021) also accounts for accuracy of trait evaluation and correlations 
among traits. This method has been applied to USDA net merit of young bulls with lower accuracies 
compared to proven bulls (VanRaden et al. 2021). The aim of this study is to apply both methods to 
Australian HWI index and compare their results and impacts. 
 
MATERIALS AND METHODS 

Selection index emphasis methods. The method is described in Zhang and Amer (2021). In 
short, the traits in the selection indexes are clustered based on their genetic correlations or accuracy 
adjusted EBV correlations. Then traits relative emphases are weighted by the corresponding cluster 
weights calculated as the percentage of the cluster variance over the sum of variances of all clusters. 

Materials. We used the Australian dairy Health Weighted Index (HWI) and Balanced 
Performance Index (BPI) in 2020 to test the emphasis methods. We used a set of genomic Australian 
Breeding Value (ABV) predictions of 9,283 Holstein-Friesian cows with a minimum single trait 
evaluation accuracy of 60% except the trait feed saved (AUS HWI, DataGene 2020a; Axford et al. 
2021). Table 1 shows the trait economic weights, Australian Breeding Values (ABV) SD and mean 
trait accuracies. The ABV correlations are shown in Appendix 3, Table 7 of DataGene (2020b). 

 
RESULTS AND DISCUSSION 

The hierarchical clustering grouped traits with high within-cluster and low between-cluster 
absolute genetic or (G)EBV correlation traits together (Figure 1). Most of the sub-index groups were 
also consistent with their trait function groups, except FAT had been grouped separately from MILK 
and PROT, and PINSET and OTYPE were also separated, indicating that trait functions may not be 
an ideal way to group traits.  
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Table 1. Summary statistics of 2020 Australian HWI selection index1 
 

Trait Trait 
abbreviation 

Unit Economic Weight ($) ABV 
SD 

Mean 
accuracy 

(%) HWI BPI 
Milk protein PROT kg 4.36 6.67 8.02 NA 
Milk fat FAT kg 1.35 2.08 12.1 NA 
Milk volume MILK L -0.07 -0.11 365 76.0 

Survival 

SURV % surv one 
parity to 
next 7.20 7.2 3.16 61.8 

Fertility 
FERT 42d 

calving% 14.1 6.94 5.14 69.0 
SCC SCC count/ml 0.69 0.69 21.3 76.4 
Mastitis 
Resistance 

MAS resistance 
ABV unit 6.75 6.75 3.19 71.3 

Milking speed MSPEED ABV unit 5.02 5.02 2.13 68.5 
Temperament TEMP ABV unit 3.60 3.6 1.75 NA 
Mammary 
system MAMM ABV unit 3.59 2.76 4.18 NA 

Overall type 
OTYPE % increase 

in score 1.36 1.36 3.97 68.1 

Pin set 
PINSET % increase 

in score 0.78 0.78 4.78 NA 

Feed saved 
FEEDEF kg DM 

saved 0.3853 0.1927 74.8 34.8 
Udder depth UDDEP ABV unit 0 0.82 4.09 NA 

1Axford et al. (2021) 
 
Compared to the emphasis calculated by the traditional method, the sub-index emphasis of group 

1 traits increased 10% in both HWI and BPI, whereas emphasis of group 2 traits decreased 8% in 
HWI and decreased 11% in BPI (Table 2). Group 1 was a favourable trait combination, because both 
their covariances and economic weights were positive, resulting in a higher cluster weight, wk, i.e. 
[ak′Gkkak]

1
2 , compared to the cluster weight using the traditional method, which is a simple 

summation of relative economic weight without considering the covariances, i.e. [ak′I𝑘𝑘σg𝑘𝑘𝑘𝑘
2 ak]

1
2. 

Group 2 traits MILK and PROT formed an unfavourable trait combination, because their covariance 
was positive (137,249) but their economic weights were in opposite directions (HWI: $4.36 for 
PROT and $-0.07 for MILK; BPI: $6.67 for PROT and $-0.11 for MILK), resulting in a lower cluster 
weight, wk, compared to that using traditional method.  

The new emphasis methods results are more realistic because they will better reflect the selection 
response in practice. Using the traditional method, the emphasis of group 1 was likely 
underestimated whereas emphasis of group 2 was likely exaggerated. With the adjustment in the 
sub-index weight method, traits with small weights were given slightly higher weights. 
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Figure 1. Correlation and hierarchical clustering of the main estimated breeding value traits 
included in the Australian BPI and HWI indexes 
 
Table 2. Sub-index total percent emphases across methods and datasets and changes of the 3 
new methods compared to the traditional method 

 
Sub-index 

group 
Traits HWI BPI 

Percent emphasis by method 
(%) 

Percent emphasis by method 
(%) 

Traditional Sub-index 
weighted Traditional Sub-index 

weighted 

1 FERT, SURV, SCC, 
MAS, UDDEP 47 57 36 46 

2 MILK, PROT 22 14 35 24 

3 OTYPE, MAMM, 
FEEDEF 18 16 12 10 

4 TEMP, MSPEED, FAT, 
PINSET 13 13 17 19 

Total changes compared to Traditional  20  25 
 
A common argument against the percent emphasis method is that selection response solely can 

be enough to describe the selection pressure in practice. This is not true when the trait undergoes 
genetic change due to effects other than selection, such as natural selection, drifts, or correlations 
with other preselected traits. We often see traits with no economic weightings undergo genetic 
changes and some traits with positive economic weightings undergo negative genetic changes due 
to correlated responses. In the current study, in HWI, the predicted selection response for SCC and 
FERT are 0.6 and 0.8 SD units (Datagene 2020b), respectively, very similar in value. Whereas the 
emphases for these two traits are 6.44% and 32% (Table 2), indicating that FERT is undergoing a 
much higher selection pressure than SCC to achieve similar selection response. It is also very hard 
to express trait responses in a way that makes them add up to 100%, making interpretation difficult 
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for practical breeders and farmers.  
 

CONCLUSIONS 
This study compared sub-index weight and traditional emphasis methods for defining the 

relevant importance of traits in a selection index. The sub-index weight method generated more 
realistic results than the traditional method when within-sub-index trait correlations were relatively 
larger than those of between-sub-index, and when genetic evaluation accuracies were relatively 
variant across all EBVs. The new method provides convenient deployment options where pre-
defined genetic (co)variance matrices are replaced by alternatives calculated from sets of estimated 
breeding values for defined groups of selection candidates. 
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CATTLE 
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SUMMARY 
Japanese Black is the predominant strain of Australian Wagyu cattle. Due to limited importation 

of cattle from Japan into Australia, there are concerns of declining genetic diversity and increasing 
inbreeding. This study investigated inbreeding status and genetic diversity in Australian Japanese 
Black cattle. Average generation interval was 6.4 years. Inbreeding coefficients increased from 4.2% 
in 2000 to 7.2% in 2019. The average effective population size was 43.4. Estimated F-statistics 
suggested that subpopulations were not evident in Australia Japanese Black cattle. It is advisable for 
Australia Japanese Black breeders to continue monitoring inbreeding levels and to develop breeding 
strategies to balance genetic gain and increased rates of inbreeding.  
 
INTRODUCTION 

Australian Wagyu cattle production started in the 1990s and was initiated from semen, frozen 
embryos and live animals imported from Japanese Black cattle in Japan via the United States of 
America. Wagyu cattle have increasingly become popular due to their high intramuscular fat 
deposition. This breed has developed from a small source of genetics and there are concerns that 
declining genetic diversity and increasing inbreeding may have a negative effect on future 
productivity. Australian Wagyu comprises of Japanese Black, Red and others. Japanese Black is the 
predominant strain. This study focused on Australian Japanese Black cattle. The aims of this study 
were to assess the inbreeding status and genetic diversity of Australian Japanese Black cattle. 
 
MATERIALS AND METHODS 

Pedigree was extracted from the Australian Wagyu BREEDPLAN database. Individual animals 
were classified by Australian Wagyu Association Herdbook registration status, content grade or 
colour code. There were 151,730 animals registered as Australian Wagyu cattle and of these, 97,182 
were Japanese Black. Pedigree completeness is an important factor for estimating effective 
population size (Ne) as it directly relates to the inbreeding coefficients determined and can be 
assessed in three parameters: 1) maximum number of generations traced (Gx); 2) complete 
generation equivalent or the number of equivalent complete generations (Ge); 3) number of fully 
traced generations (Gf). These parameters were calculated using the function summary.Pedig() from 
the R package optiSel (Wellmann 2019).  

Inbreeding coefficient and effective population size. Inbreeding coefficient (Fi) for each 
animal in the pedigree was calculated using the pedInbreeding() function from the R optiSel package 
(Wellmann 2019). The standardized inbreeding rate per generation was computed as  

ΔFi = 1 − �(1 − 𝐹𝐹𝑖𝑖)
(𝑡𝑡𝑖𝑖−1)

, where ti was the number of complete generation equivalent (Ge) of 
animal i (Gonzalez-Recio et al. 2007). The ΔFi values of individuals of the reference population 
were averaged to form 𝛥𝛥𝐹𝐹. The effective population size Ne was calculated as Ne  = 1

2∗ 𝛥𝛥𝛥𝛥
. 

 
∗ A joint venture of NSW Department of Primary Industries and University of New England 
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F-statistics. Wright’s (1965) F-statistics were separately calculated for each year period. 
Following Wright’s notation, three parameters were involved in F-Statistic calculations, 1) Fit is the 
individual inbreeding coefficient relative to the entire population (equivalent to Fi); 2) Fst is the 
inbreeding coefficient of the subpopulation relative to the entire population expected under random 
mating, it was computed from a hypothetical population produced by matching sires and dams of 
the registered animals in each time period (eg year) at random. For each year period, 20 hypothetical 
populations were generated, and mean Fst from 20 samples was used for each year of the examined 
period to estimate a reliable mean Fst; 3) Fis is the inbreeding coefficient of an individual relative to 
its own subpopulation and indicates how the mating departs from random, it was obtained as  
Fis = (Fit – Fst) / (1 − Fst), as Fit was estimated as Fi and Fst was derived from the simulation. 

Generation interval. Generation interval was computed for four genetic pathways, sire to male 
progeny (Lmm), sire to female progeny (Lmf), dam to male progeny (Lfm) and dam to female progeny 
(Lff). This was based on the birth dates of animals in each year and the birth dates of their parents. 
The annual average generation interval (L) was subsequently calculated as L = 𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐿𝐿𝐿𝐿𝐿𝐿

4
. 

 
RESULTS AND DISCUSSION 

Pedigree completeness. Pedigree completeness by year of birth was determined by counting 
generations including maximum (Gx), complete equivalent (Ge ) and fully traced (Gf ) and are 
presented in Figure 1. Pedigree completeness has increased over time and reached a high level in 
2000 with a Ge of 5. Japanese Black cattle had a deep pedigree with the average maximum, 
equivalent complete or fully traced number of 15.1, 4.3 or 7.3 generations, respectively.  

 
Figure 1. Mean number of generations 
(maximum Gx, complete equivalent Ge 
and fully traced Gf) recorded by birth 

year 
 

 
Figure 2. Average inbreeding coefficients 
by birth year for Japanese Black cattle 

 

Generation interval. The average generation interval was 6.4 years. After 2000, the average 
generation interval for the Japanese Black population was 8.4 and 7.9 years for sire to male progeny 
and sire to female progeny, respectively and about double the size for dam to male progeny and dam 
to female, i.e. 4.8 and 4.6 years, respectively. Average generation intervals increased from 2.4 years 
in 1984 to 8.7 years in 2008, followed by a reduction to 7 years in 2011 and afterwards increased to 
8.3 years in 2017. From 2005, the mean generation intervals remained steady between 6.8 and 8.7 
years. This trend might reflect the development of Australian Wagyu (or Australian Japanese Black) 
during the herd building phase, where less cows were culled and more old ancestors, mostly males, 
were retained. Nomura et al. (2001) reported that generation intervals for Japanese Black in Japan 
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ranged from 8.3 in 1985 to 10 years in 1997. The generation interval for American Wagyu has been 
estimated at 5.14 years (Scraggs et al. 2014). 

Inbreeding coefficient. Mean inbreeding coefficients F by birth year fluctuated markedly before 
2000, then the inbreeding coefficient increased steadily from 4.2% to 7.2% in 2019 (Figure 2). 
Similarly, a gradual increase in inbreeding coefficient was reported in Japanese Black cattle in Japan, 
from 4.7% in 1985 to 5.4% in 1997 (Nomura et al. 2001). The average inbreeding coefficient from 
1994 to 2011 was 4.8% for American Wagyu cattle, suggesting Australian Japanese Black cattle 
shared a similar breeding path as that of US Wagyu cattle (Scraggs et al. 2014). Large variation in 
inbreeding levels was observed across herds. The inbreeding coefficient within individual herds 
ranged from 0.0 to 18% with 45 of 513 herds having average inbreeding coefficients greater than 
10% (mean F = 12.5%), suggesting an urgent need to control inbreeding in these herds. 

Changes in F-statistics. The changes in F-statistics are shown in Figure 3. There was evident 
difference between Fst and Fit prior to 1998, suggesting that matings in the early period were mainly 
operating within subgroups or subpopulations. Both Fst and Fit had increased steadily since 1998 
and the differences decreased gradually, leading to a negligible difference, indicating that matings 
across the population was dominant. Fis decreased from 1997 to a low level. Fis > 0 or with a large 
value suggests existence of evident subpopulations. This finding indicated that subpopulations had 
disappeared in current Australian Japanese Black cattle. This was most likely due to deliberate 
mating decisions by breeders that avoided mating close relatives. Similarly, Nomura et al. (2001) 
found that Fis in Japan had decreased from 2 or more to 0.5 by 1997 and concluded that subdivision 
between prefectures no-longer existed in Japan. Honda et al. (2004) analysed 25 subpopulations (i.e. 
populations of prefectures) of more than 2,000 Japanese Black cows and found that 17 of the 
subpopulations shared very high similarity because of high migrations amongst these subpopulations 
and the other 8 subpopulations with relatively low migration rates showed their unique genetic 
structures. Estimated Fit in this study was in line with the reported values in American Wagyu 
(Scraggs et al. 2014), where Fit values in US Wagyu cattle fluctuated markedly before 2000, then 
remained at approximately 5%. 

Figure 3. Change of F-statistics (%) in pedigree for Japanese Black from 1990 to 2018: the 
actual overall inbreeding coefficient (Fit), the inbreeding coefficient expected under random 
mattings (Fst) and inbreeding due to population subdivision (Fis) 

 
Effective population size. Ne increased and peaked at 59 in 2000, followed by a decrease to 41 

in 2005, afterwards Ne remained stable at approximately 43. The overall estimated Ne was 43.4 for 
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the Japanese Black population. This estimate was higher than estimates of Ne from the early Japanese 
Black cattle in Japan (mean=27.1, range 13.4 to 52) (Nomura et al. 2001) and that for American 
Wagyu (the average was 13.4 from 1994 to 2011, with a maximum of 48 in 2002). The estimates of 
Ne varied largely across years. Detailed Ne by year was not reported in American Wagyu (Scraggs 
et al. 2014). The method used in estimating Ne in Japanese Black (Nomura et al., 2001) and 
American Wagyu (Scraggs et al. 2014) were vulnerable to sampling. The comparison of Ne between 
Australian Japanese Black with the results from Japan or America remains inconclusive. A number 
of studies on effective population sizes in cattle (e.g. Meuwissen & Woolliams 1994) suggested that 
the effective population size of Australian Japanese Black is at the lower range of the published 
results for beef cattle breeds, for example, 45 to 117 in Brazilian Zebu (Faria et al. 2009), 64 to 127 
in Irish dairy and beef breeds (McParland et al. 2007), 116 in US angus (Decker et al. 2012) and 
244 to 558 in European Charolais subpopulations and 345 to 2,459 in European Limousin 
subpopulations (Bouquet et al. 2011).  
 
CONCLUSIONS 

The most recent animals in the Australian Japanese Black population had adequate pedigree 
completeness with the average maximum, equivalent complete or fully traced number of generations 
of 15.1, 4.3 or 7.3, respectively. Generation intervals from Sire to male or female progeny were 
almost twice those for Dam to male or female progeny, particularly for individuals after 2000. 
Average generation interval and complete generation equivalent were 6.4 and 5.9 for Japanese Black 
populations, respectively. Inbreeding coefficients increased rapidly from 2000 to 2019 (4.2% to 
7.2%). The current levels of inbreeding are not indicative of an immediate problem with genetic 
diversity, but the change is large, almost doubling from 2000 to 2019. It is advisable for Wagyu 
breeders to continue monitoring inbreeding levels and to develop breeding strategies to balance 
genetic gain and increased rates of inbreeding. The computed effective population sizes (Ne) in the 
last period (2016 to 2020) was 43.4 in the Japanese Black population, which is on the low end of 
similar estimates in other beef breeds. F-statistics estimates showed low or negative Fis, suggesting 
that subpopulations were no longer evident in Australian Japanese Black.  
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SUMMARY  

There is a need for a pipeline to provide standard, reproducible and timesaving post-analysis of 
CNV (copy number variants) from SNP (Single nucleotide polymorphisms) chip genotyping. We 
present a package built with a dozen functions that can convert the coordinates of SNP map files, 
compare the positions of SNPs between the given maps, summarize the CNVs, call CNVRs (Copy 
number variation regions), provide gene annotation, compare CNV, CNVR and the annotated gene 
lists, and visualize CNVs at both individual and population level. 
 
INTRODUCTION 

Copy number variants are a type of structural variation of a DNA fragment which comprise the 
deletion or duplication type depending upon how many copies an individual has compared with the 
two copies in the diploid reference genome. These structure variants could change the structure or 
dosage of genes that might further affect the phenotypes. Studies on CNVs have become common 
in livestock research in recent years. The fluorescent signal intensity of SNPs chip provides the 
general source to detect CNV, and thanks to the wide application of genome-wide association studies 
and genomic selection in animal breeding, there is now a lot of SNP data suitable for analysis of 
structural variants. Software such as PennCNV (Wang et al. 2007), CNVPartition (Illumina) and 
SVS Golden Helix (Bozeman) are designed to detect CNV from SNP data, but each method has its 
own advantages and shortcomings, so it is recommended to use more than one method to infer CNVs 
(Winchester et al. 2009), therefore comparison of multiple CNV results is a normal task in 
characterizing structural variation.  

When doing CNV analysis we are curious about all the information related to any CNV region, 
not only at the individual level but also at the population level. For instance, we want to know how 
many individuals have a CNV in a common region? What kind of type of CNVs are there? Are these 
individuals from the same farm or are they progenies of the same sire? Are there any genes in the 
CNV region? What are the gene frequencies? How about the signal intensities, call rate, minor allele 
frequency and linkage disequilibrium conditions of these CNVs? Besides, the common post-analysis 
of CNV studies includes provision of summary CNVs, generation of CNVR, comparison of CNVs 
from different software, finding consensus CNVR by comparing results to the gold standard CNV 
database, gene annotation in the CNV region and CNV-based regression analysis. To accomplish 
all these tasks various tools are typically required. Therefore, we integrated these functions into a 
package to make post-CNV analysis easy and reproducible. The use of some developed R package 
like the Tidyverse family (Wickham et al. 2019) made our function development much easier. We 
believe this package will be convenient to others who are doing similar work. The source code can 
be found in the Github repository (https://github.com/JH-Zhou/HandyCNV). 
 
MATERIALS AND METHODS 

The pipeline and results of this package are shown in Figure 1. The Demo Data are the CNV 
results from the GeneSeek GGP Bovine 150k BeadChip detected by PennCNV (Wang et al. 2007) 

https://github.com/JH-Zhou/HandyCNV
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and CNVPartition (Illumina). All the input files and demo code can be found in Github 
(https://github.com/JH-Zhou/HandyCNV). Run through all functions in HandyCNV need prepare 
CNV Results, SNP maps, Reference Gene List, Pedigree, Plink files (Bim, Bed and Fam) and SNP 
Signal Intensity in total. All the input files have a fixed format, and the file requirements depends 
on which functions the users are using. Here we only introduce the input data format and some 
noticeable methods we used in some functions, therefore, we will not cover the data structures or 
interpret how to use the results in this article, more details can be found by browsing our Demo Data.  

Figure 1. Pipeline and results of HandyCNV for the post-analysis of CNV 
 

The first function is convert_map which is used to convert map files from the original to an 
objective map file provided by the user. There are differences between genome assemblies, for 
example, in which some SNP might locate on a different chromosome or on the same chromosome 
but in a different order between different assemblies. Most Bovine SNP chips have been using the 
UMD3.1 (Shamimuzzaman et al. 2019) as the default reference genome assembly, but with the 
release of new reference genome ARS-UCD1.2 with high continuity, accuracy, and completeness 
(Rosen et al. 2020),it may be of interest to convert the coordinates to the latest assembly to help 
further research. Four columns are required with no header in the input map files whose columns 
are Chromosome, SNP ID, Morgan Position (UMD) or Physical Position (ARS) and Physical 
Position (unit: bp) (Table 1, Table 2).  
 
Table 1. Original map format (UMD 3.1)                     
 

14 ARS-BFGL-BAC-10172 0 6371334 
14 ARS-BFGL-BAC-1020 0 7928189 
14 ARS-BFGL-BAC-10245 28.23 31819743 
14 ARS-BFGL-BAC-10345 0 6133529 

 
 
 

https://github.com/JH-Zhou/HandyCNV
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Table 2. Objective map format (ARS) 
 

14 ARS-BFGL-BAC-10172 5.34266 5342658 
14 ARS-BFGL-BAC-1020 6.88966 6889656 
14 ARS-BFGL-BAC-10245 30.1241 30124134 
14 ARS-BFGL-BAC-10345 5.10573 5105727 

 
The cnv_clean function is designed to convert the CNV results to a standard format, the output 

clean CNV file is used as input data in many of the other functions. It supports PennCNV and 
CNVPartition default output results, the length of CNVs are calculated as one plus the end position 
minus the start position. The CNV results from other software can be prepared as the template format 
to use in the remaining functions (Table 3). The function cnv_summary_plot will generate several 
plots to show the number, length group, type, and frequency details of CNVs on individuals and on 
chromosomes. 
Table 3 Template Format of Clean CNV 
 

Sample_ID Chr Start End CNV_Value Length 
201094560060_R02C01 11 106224443 106359588 4 135146 
201094560060_R02C01 12 58073538 58417437 1 343900 
201094560060_R02C01 19 27576066 27643677 4 67612 
201094560060_R02C02 1 88638760 88904687 3 265928 

 
The call_cnvr function will merge the CNVs which have at least one bp overlapping length to a 

CNVR. The results are the non-redundant CNVRs,but this method could cause misleading 
information while reporting the genes and comparing the overlapping length on CNVR. This is 
because it may appear all CNVs in a CNVR are the same length but in reality there are often lots of 
short disparate CNVs. To solve this problem, combine call_gene and cnv_visual function will plot 
all genes located on CNVs of every individual in a CNVR. The call_gene function needs the user to 
provide the reference genes which can be downloaded from the UCSC website 
(http://hgdownload.soe.ucsc.edu/downloads.html). 

The compare_cnv and compare_cnvr functions with the similar strategies, when the results have 
the same version coordinates they will compare directly, but when the coordinates are from different 
versions, it will convert the position for each file at first then make comparison between the 
coordinates of the latest version. The overlapped region between two interval results may be slightly 
different, when reporting and plotting the number and length of overlapping regions correspond to 
each input files, respectively. 
 
RESULTS AND DISCUSSION 

When do you need to convert the coordinates of SNP or CNV? The first scenario is when a 
new reference genome is released. Take the Bovine reference genome as example, the lasted version 
(ARS-UCD1.2) has higher coverage and accuracy of its genome assembly than the previous 
commonly used UMD3.1, so it may help to improve the accuracy of SNP-based CNVs detection by 
using the latest reference genome. The second scenario is to make comparison between results from 
different reference genomes. There are lots of studies that have reported CNVs using previous 
reference genomes, and we may want to compare their results to our assembly.    

Why do we need to visualize CNVR? CNV is of interest relative to the comparison of 
individuals but the CNVR are mostly of interest at the population level. The common method to 
generate CNVR is to merge all overlapping CNVs from every individual into a common region, 
then make gene annotation and comparison on CNVRs on the population level. 

http://hgdownload.soe.ucsc.edu/downloads.html
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The main shortcoming of SNP-based CNV detection is that it cannot report the exact start or end 
position because of the limited marker density, so when we merge these CNV intervals to a common 
CNVR the actual situation is that not all the CNVs with the same break points as the CNVR, 
therefore, not all the genes within a CNVR has the same frequency with the CNVs (Figure 1. 11). 
Sometimes we might find an interested candidate gene within a high frequency CNVR but if only a 
few individuals have CNV of that gene, the better way to avoid this mistake is to report the gene 
frequency by counting how many CNVs with this gene in a CNVR, but this not enough, because of 
some genes may have CNV in just a partial fragment rather than the entire gene, in this circumstance 
plotting all CNVs and annotated genes in a CNVR by the start and end position can make it much 
clearer to understand what is happening. We are often curious about all the information in a CNVR 
in a population, such as the relationship between SNPs in that region, so visualizing a CNVR by 
plotting all related information in one figure is a good solution.   

What are the limitations of this study? First, we have only used it in bovine studies, so some 
functions may need to be revised to be used in other species. Second, the linkage disequilibrium 
(LD) plots are based on the Gaston package which was drawing the base plot only, for some CNVRs 
with fewer number of SNPs the plot size was not well controlled while merging it to other plots, and 
this could lead some CNVR plots to be unsuitable without further modifications. Third, plots of 
CNVs on the population level are suitable for small populations but could be too busy for large 
populations. Fourth, the functions for regression analysis between CNVs or CNVRs and phenotype 
are still being developed.  
 
CONCLUSIONS 

Here we present an R package called HandyCNV in the initial version which includes several 
functions for tasks such as converting SNP maps, generating CNVR, genome annotation, comparing 
and visualizing of CNV and CNVR and reporting summary results on each step. This tool provides 
a standard, reproducible and timesaving post-analysis of copy number variants.  
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EWE LAMB JOINING FOR SELECTION 
 

L. Arney 
 

‘Inverbrackie’, 1040 Dry Plains Rd, Finniss SA 52551 
 

INTRODUCTION  
We run a Border Leicester stud in South Australia and I believe that our breeding program 

needs to focus on the requirements of the leading prime lamb producers that are breeding from 1st 
cross ewes (Border Leicester x Merino ewes). It is therefore important to listen to these prime 
lamb producers both directly and indirectly. When I write that I listen indirectly I try to listen for 
what they are not telling me as sometimes you just hear about problems and never hear about 
solutions. Listening is very important and so is not being frightened to try to find out what is 
possible and what is not. 

 
BREEDING AIMS / OBJECTIVES 

To earn their place in the industry, 1st cross ewes must: 
1. Have a lot of twins 
2. Rear the lambs they produce 
3. Produce lambs that grow fast 
4. Produce fibre that more than covers the shearing cost 
5. Have resilience 
6. Produce lambs that have a very good carcase 

This is my basic 6 pack of traits that is expected from a 1st cross ewe. However, I know there 
are prime lamb producers that are pushing boundaries and looking for more from their ewes. In 
particular they want to get a financial return earlier by joining these 1st cross ewes earlier, as ewe 
lambs. My focus in our flock’s breeding objectives revolves around breeding sheep to match 
industry expectations. 

 
PROGRESS 

We have been able to achieve above average gains in most traits within our flock that is 
recorded and benchmarked with Sheep Genetics. One of the key ways we are achieving our 
breeding objectives is by using large numbers of ram lambs in our flock. This is quite simple and 
puts a natural selection pressure on selecting rams that have clearly demonstrated their early 
growth. This is backed up with good performance data to make good selections from the ram 
lambs. The more high-quality historical data the better. The more high-quality current data the 
better. 

When it comes to mating ewe lambs it is quite different because we are bringing reproduction 
into the equation as well. However, it is still about enhancing natural selection and having very 
good data. There are several factors that influence the result from ewe lambs that I still don’t 
understand. Weight is seen as a major success factor in getting ewe lambs pregnant. I have seen 
publications that recommend that the ewe lamb needs to be a minimum of 40 kg another that 
recommends 42 kg and another that says 45 kg. Figure 1 is a plot for ewe lambs at Inverbrackie for 
liveweight and condition score at the start of joining in 2020, their pregnancy rates and litter size. 
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Figure 1. Plot of condition score against liveweight at joining and resulting litter size for ewe 
lambs mated in 2020  
 

As a performance recording seedstock producer I understand how important it is to maintain 
large numbers of animals in management groups. I also understand how important it is to look for 
the outliers as these are the animals that have the biggest potential to make change within a 
breeding program. I give all ewe lambs a chance to join regardless of weight. We have ewe lambs 
lighter than 36 kg getting pregnant and we have ewe lambs over 50 kg that don’t.  

We are joining at 7 months of age because of the seasonal weather pattern for our area which is 
means that early sexual maturity is another issue. Age at joining / sexual maturity is more 
important for a successful ewe lamb joining and this where we believe we are having a genetic 
effect. The lightest pregnant ewe lamb was born to a ewe lamb, born a triplet/raised as a twin and 
conceived at 26 kg. With a higher joining weight in 2019 there was not a significant change in 
pregnancy rate as shown in the graph below (see Table 1 and Figure 2). Note: 2018 drop lambing 
in 2019, 2020 drop lambing in 2021. 

Some years we have had only 10% pregnant. Some years we have 55% pregnant. In the years 
where we have low pregnancy rates many people would say why bother. But think about the 
selection pressure that has occurred in the years with poor results. The progeny from those ewes 
are really special. 90% of the ewes did not give me anything to work with in a lowly heritable trait. 
Because it is lowly heritable, I cannot expect every one of those lambs to help us to make direct 
genetic gain but they have provided data in our flock that will help us to make gradual 
improvement. 
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Table 1. Average weight and condition score at joining and pregnancy status of ewe lambs 
joined in 2019 and 2021 
 

Year of 
Birth / 
Litter Size 

Average 
Weight at 

Joining (kg) 

Average Condition 
Score at Joining 

Number Proportion 
(%) 

Pregnancy Rate 
(%) 

2018      
Dry 43.5 3.2 268 67.5%  

Single 45.3 3.36 88 22.2% 32.5% 
Twin 48.4 3.37 41 10.3% 

2020      
Dry 37.2 2.87 280 68.5%  

Single 38.9 2.88 83 20.3% 31.5% 
Twin 40.5 2.87 46 11.2% 

 

 
Figure 2. Inverbrackie ewe lamb pregnancy scanning results 

 
The progeny from the ewe lambs are seldom as big as the progeny from adult ewes. When I 

first starting mating ewe lambs we did nothing to make it simple to identify them and most were 
culled purely on size. Later I realised that was totally unfair as the same ewe was mated to the 
same ram a year later visually they would have produced an animal that would have been retained 
in the flock. So we began using a code in the eartag that tells us that it was bred from a ewe lamb. 
Since this system was put in place we are not only keeping a lot more of the ewe lamb progeny but 
most years we have selected ram lambs to use as sires. Think of the selection pressure that has 
occurred. We have used a ram lamb that came from a ewe that was capable of getting in lamb 
when others didn’t and that ram lamb demonstrated his ability to have superior early growth. The 
selection is still backed with top performance data. 

It is currently recommended to select for fat and muscle to assist in reproduction. When we 
look at the animals produced from ewe lambs and where they influenced the direction that our 
breeding program has taken, guess what has happened in our flock? We have found that we are 
now producing animals that have more fat, muscle and increased reproductive performance (see 
Figure 3). Not only that but we also have strong early growth. I give a lot of the credit for our 
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position in the industry to the selection has occurred from the use of young animals in our 
breeding program and in particular from the ewe lambs. 

              
 

 
Figure 3. Generation interval and genetic trends for NLW, PFAT and PEMD for 
Inverbrackie 

 
In 2010 we used our 1st ram from a ewe lamb (a 2008 drop) and subsequently used 3 of his 

sons in 2011 also from ewe lambs. I am a firm believer that it is a seedstock producer’s job to 
create difference within a mob to aid selection and not to try to make everyone in the mob look 
similar. Selection is where our genetic gain comes from.  

 
TAKE HOME MESSAGE(S)  

1. Shortening genetic interval speeds up genetic gain. 
2. Make your animals work for you so you can see what they are capable of and don’t work 

for them to make them all look the same. 
3. Don’t intervene by giving some animals different management because otherwise it will 

bias the estimate of genetic merit and ultimately reduce genetic gain. 
4. Keep good individual production records – don’t be frightened to include the individuals 

with poor production records. 
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SUMMARY 

The Performance Corriedale Group are a group of breeders committed to working together to 
maximise genetic improvement and marketing of higher performance sheep. They initiated the trial 
following a desire to utilise genomics and have the tools available to maximise genetic improvement 
in lamb eating quality. The project achieved 764 carcasses from 44 sires (12 studs) from 3 AI and 1 
natural mating in 2017-19. Lambs were slaughtered at 6-7 months with carcass and meat quality 
data, wool and type traits recorded. The data from the project will contribute to the Sheep Genetics 
database. The project also provides a model for engagement of breeds which are lower in number 
but still significant in impact. 

 
INTRODUCTION 

Through the Sheep CRC’s Information Nucleus there have been many sires tested for eating 
quality of their progeny in additional to multiple other traits. This has led to the development of 
genomic tests for the two traits having the largest effect on eating quality (shear force and 
intramuscular fat) as well as traits such as lean meat yield and other production traits recorded. While 
14 Corriedale rams have been included and there is ongoing recording through the MLA Resource 
Flock, there are insufficient records for the genomic tests to be valuable to Corriedale breeders.  

The project was initiated by the Performance Corriedale Group who only account for 11% of 
registered Corriedales, but accounted for over 40% of ram sales, and this is growing. The vision is 
to breed sheep that have higher wool value and superior eating quality to other maternal breeds with 
maximum weight of lambs weaned from ewes of moderate size and adapted to high rainfall regions. 
The purpose of this project is to address the deficit in genotyped Corriedales by genotyping 900 
progeny from 45 sires representing a range of Corriedale sire lines. By using purebred Corriedale 
ewes, the project has more Corriedale haplotypes represented than if the sires were crossed to 
another breed. 

 
MATERIALS AND METHODS 

In April of 2017-19, approximately 300 Corriedale ewes were synchronised and 20 inseminated 
to each sire provided. An additional natural mating was conducted in late 2018 to generate additional 
lambs for the project so lambs were born in four cohorts (2017, 2018, 2019A, 2019B). In total there 
were 44 sires from 12 studs used, some across years so the number of lambs per sire ranged from 1-
60. 

Lambs were slaughtered in April the following year. For the 2017 cohort, there were consecutive 
slaughter days. The 2019 born lambs were slaughtered in two groups where a small number (22) of 
the lightest 2019A born lambs were finished and slaughtered with the 2019B, so there are five 
slaughter cohorts (2017, 2018, 2019A1, 2019A2, 2019B). The number of carcasses in 2017 cohort 
was 212, 2018 was 233, 2019A1 was 175, 2019A2 was 22 and 2019B was 103. 

Ewes were scanned for number of fetuses (0-3) and lambs were mothered up for recording type 
of birth (1-3) and rearing (1-3) with four combined classes resulting (11, 21, 22, 33). The very few 
triplet born lambs not raised as triplets were treated as multiples for type of birth and grouped with 
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classes 21 and 22 for those raised as singles or twins respectively. Lamb survival rates were good 
with carcasses comprising 30% singles, just 11% born multiple raised single, 54% twins and 6% 
triplets. 

Live traits included multiple weights, height, scanned fat and eye muscle depth, greasy fleece 
weight, fibre diameter, comfort factor and staple length, scores for nose and hoof pigment, face 
cover, jaw and leg conformation, back conformation, body and breech wrinkle, breech cover, wool 
staple structure, wool colour and character. Carcass and meat traits included carcass weight, GR fat 
depth, loin eye muscle depth, width and calculated area, calculated lean meat yield, pH decline and 
ultimate, meat colour (L, a, b), cooking loss, shear force and intramuscular fat content. Not all traits 
were measured on all cohorts either because it was not possible to enter the abattoir in 2020 due to 
COVID-19 (e.g. loin dimensions and pH decline), slight differences in laboratory procedures (e.g. 
meat colour), not shorn (e.g. greasy fleece weight), or the scores lacked variation and were of limited 
value (e.g. jaw confirmation and breech wrinkle and cover). Muscle and fat depths presented herein 
have not been adjusted for weight (live or carcass). 

After receiving the genotype data and processing, there were 36 sires genotyped on Ovine-HD 
600K, 764 progeny genotyped on GGP Ovine 50K and a single additional sire genotyped on GGP 
Ovine 50K. All progeny in the dataset were imputed from 45,740 SNPs to high density (570,293 
SNPs) utilising the 36 high density genotyped sires as the reference population. Duplicated SNP 
positions and X and Y chromosome SNPs were removed prior to imputation. Imputation was 
completed using Fimpute3 (Sargolzaei et al. 2014). The imputed dataset, including the reference 
sires, was then filtered to remove SNPs with a minor allele frequency less than 0.01 and was checked 
for duplicate samples. Two separate samples were found to have the same tag, but different 
genotypes, so due to the possibility of miss labelling, these two samples were removed to give a 
total of 800  samples for GRM construction.  

Homozygous genotypes for the major allele were coded as 0, for the minor allele as 2, and 
heterozygous genotypes as 1. The GRM with 798 animals was constructed as per VanRaden’s first 
method (VanRaden 2008); 

𝑮𝑮 =
𝒁𝒁𝒁𝒁′

2∑ 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝑛𝑛
𝑖𝑖=1

 

Where Z denotes a centred matrix of allele effects with a mean of zero, pi is the frequency of the 
minor allele at locus 𝑖𝑖 and division by 𝟐𝟐∑𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖  ) scales the G matrix to be similar in magnitude 
(so that diagonal elements average 1) to the numerator relationship matrix constructed from 
genealogy (VanRaden 2008). 

The model fit to most traits included the random genomic relationship matrix and fixed effects 
of cohort (2017, 2018, 2019A1, 2019A2, 2019B), sex (ewe, wether) and type of birth and rearing 
(11, 21, 22, 33). Kill day within 2017 was added to carcass traits and birth group (2017, 2018, 
2019A, 2019B) was used for weaning weight as it was recorded before the 2019A drop were split. 

 
RESULTS AND DISCUSSION 

The phenotypic variances herein (Table 1) are similar to those reported by Mortimer et al. (2017, 
2018) so it is assumed the lower heritability estimates are primarily due to small numbers. However, 
the heterozygosity on some animals (e.g. minimum 1.7%) was lower than other livestock data sets 
we have analysed and potentially indicates a higher level of inbreeding in Corriedale than other 
livestock. If there is genuinely less genetic diversity than for other breeds, then the heritability would 
be lower. That said, the mean was close to the maximum and so this could also be a function of a 
very small number of highly inbred animals. 

The wool and scored traits were similar with many slightly more heritable than reported by 
Mortimer et al. (2017). Examples are GFW (0.76 vs 0.57) and FD (0.82 vs 0.74). Of the scored 
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traits, colour (0.47) was similar to yellowness (0.80) but wrinkle was lower (0.16 vs 0.34), likely 
reflecting the much plainer body of Corriedales than Merinos.  

Heritabilities for growth traits were consistently higher than those reported by Mortimer et al. 
(2017) but there was no maternal effect fitted herein: 0.54 vs 0.14 for weaning weight, 0.59 vs 0.31 
for post-weaning weight, 0.49 vs 0.11 for scanned fat depth and 0.47 vs 0.14 for scan eye muscle 
depth. 

Compared to Mortimer et al. (2018), carcass traits herein were also often more highly heritable. 
Examples include carcass weight (0.63 vs 0.35), GR fat (0.50 vs 0.23), lean meat yield (0.55 vs 
0.29), intramuscular fat (0.46 vs 0.58), shear force (0.15 vs 0.10), and pH (0.06 vs 0.15). 

 
Table 1. Data description, summary and heritabilities 
 

Trait Mean Min Max σP h2 h2 SE 
Weaning Weight (kg) 32.6 13.6 54.5 4.6 0.54 0.09 
Post Weaning Weight (kg) 39.6 21.0 55.0 4.9 0.59 0.10 
Height (cm) 63.4 51.9 73.0 2.4 0.49 0.16 
Scan Eye Muscle Depth (mm) 26.4 17.5 37.0 2.4 0.47 0.09 
Scan Fat depth (mm) 3.5 2.0 7.5 0.9 0.49 0.10 
Greasy Fleece Weight (kg) 1.81 0.6 3.0 0.3 0.76 0.11 
Fibre Diameter (um) 23.1 1.8 18.2 1.8 0.82 0.10 
Comfort Factor (%) 93.5 55.8 99.9 6.1 0.61 0.11 
Staple Length (cm) 4.83 0.7 2.5 8.4 0.21 0.14 
Nose Pigment Score 3.7 1 5 0.8 0.57 0.15 
Hoof Pigment Score 4.1 1 5 0.7 0.53 0.16 
Face cover Score 2.7 1 5 0.6 0.38 0.11 
Jaw Structure Score 1.0 1 4 0.1 0.00 0.06 
Leg Structure Score 2.1 1 4 0.4 0.00 0.06 
Back Structure Score 1.9 1 4 0.3 0.23 0.11 
Body Wrinkle Score 1.3 1 4 0.5 0.16 0.09 
Staple Structure Score 2.6 1 5 0.6 0.28 0.10 
Colour Score 2.3 1 5 0.6 0.47 0.10 
Character Score 2.7 1 5 0.6 0.41 0.11 
Hot Std. Carcass weight (kg) 20.6 11.3 32.9 2.7 0.63 0.09 
Shear Force (N) 39.5 17.0 99.3 12.9 0.15 0.07 
Intramuscular fat (%) 4.66 1.43 11.61 1.3 0.46 0.10 
GR Fat depth (mm) 10.9 1 25 2.6 0.50 0.14 
Eye Muscle Depth (mm) 41.1 21 63 3.1 0.39 0.12 
Eye Muscle Width (mm) 42.6 20 66 3.3 0.35 0.13 
Eye Muscle Area (cm2) 12.8 7.7 18.4 17.1 0.45 0.14 
Lean Meat Yield (%) 55.3 50.8 60.1 1.1 0.55 0.21 
pHuLL 5.79 5.13 6.66 0.2 0.06 0.06 

 
CONCLUSIONS 

This project provides a model for engagement with small breeds and we have been asked to 
specifically comment on the merits of such a model. The starting point should be a description of 
the history and model. All breed societies that aspire to breed sheep for production need a group of 
breeders committed to performance recording. Performance groups provide a forum for sharing 
ideas, challenging each other, critical mass to engage Sheep Genetics staff and other advisors, and 
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a collection of people who inform innovation opportunities. The Corriedale Performance Group has 
all of those attributes. 

Smaller breeds, almost by definition, sell less rams and generally receive less for rams than 
those from more numeric breeds and so have less ability to invest cash in projects. The model for 
this project was to charge $1000 plus semen for each sire (aim $45,000) to be tested. This was then 
matched with funds from the Davies Livestock Research Centre and MLA Donor Company. 
Breeders leveraged an additional $4 to their $1 invested. Overall, the project was industry initiated, 
provided valuable data for Sheep Genetics, leveraged funds and captured significant in-kind 
contribution. 

It is good for researchers to work with producer groups like the Performance Corriedale 
Group. Often there is some history that initiates the connection as in this case, but it is wise for all 
early career livestock researchers to try and link with such a group. The benefits for the group are 
links to researchers and their networks and the benefit for researchers is ground-truthing research 
and an ideal format for testing new ideas and ways of communicating findings. This project was 
excellent for training Honours students and it should be an aim for all Agricultural and Animal 
Science Honours students to be involved in projects with industry to build networks and skills in 
addition to research skills. The project trained two Honours students (HG and SW).  

It was hoped that the trial would attract new breeders to Sheep Genetics and reporting of 
results is primarily through Sheep Genetics to ensure the most accurate ASBVs are reported. Sire 
genomic values for all traits have been reported to breeders. Funding bodies should not trade on 
good–will, but equally economic rationalists should not get in the way of committed people with a 
common purpose. Thus, it is exciting to see increasing numbers of projects being funded through 
resource flock coordination and this should be extended as broadly as possible, especially when 
there are groups of producers collecting performance information in a coordinated way. 
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SUMMARY 

This project sought to explore whether targeted beef carcass records from commercial 
production systems in southern Australia were suitable for use in genetic evaluation. The 
motivation to do so was to increase the number of carcass records in reference population. The 
project team liaised with Hereford and Angus bull breeders and their clients to identify potentially 
suitable records from their production systems. In total, a dataset comprised of 1406 records from 
Hereford and Angus steers and heifers from 23 management groups was established. Records were 
classified as either High-Quality (HQ) or Medium-Quality (MQ) based on ability to describe fixed 
effects. This data was compared against a research dataset of 642 Angus and Hereford x Angus 
carcasses finished to a similar carcass weight end point. Traits analysed include MSA Marble, 
ossification, rib fat depth and eye muscle area, MSA Index and hot standard carcass weight. 
Heritability estimated for HQ and the research herd dataset were moderate indicating potential to 
use high quality commercial carcass records in genomic evaluation. Heritability estimates for the 
same traits for MQ were very low indicating lack of knowledge on fixed effects severely impeded 
the utility of such records in genomic evaluation. 

 
INTRODUCTION 

The Australian beef grading system to ensure eating quality is Meat Standards Australia (MSA, 
Polkinghorne et al. 2008). There are currently close to zero carcasses from commercial production 
systems that are being used for genetic evaluation. Reverter et al. (2000) reported that in 
Australian Angus and Hereford cattle, the genetic correlation between ultrasound and carcass traits 
was variable, but averaged 0.46 for EMA and 0.54 for IMF. These correlations are important as 
they provide the upper limit to accuracy of selection for the carcass traits based on ultrasound 
measurement. As industry adopts objective measurements of eating quality, it is becoming 
increasingly important to be able to record the traits in the breeding objective directly rather than 
relying on correlated ultrasound measures. 

In the past, there has been multiple limitations to using commercial carcass data. The first 
problem has been to get pedigree information. However, the impact of genomics (Meuwissen et al. 
2001) means that genomic relationships on commercial animals can be established. In addition, if 
the property has been using bulls with high genetic merit, then their animals will likely be 
genetically related to leading animals in the breed. Thus, scope exists for commercial performance 
to be integrated into genetic evaluation programs like BREEDPLAN (Graser et al. 2005) and can 
provide valuable information which is currently difficult for studs to record. 

A problem often encountered with commercial data is maintenance of contemporary groups. 
However, increasingly cattle are grazed in large mobs (>100) and this is becoming less of an issue. 
Most genetic evaluation systems require birth date of calves so adjustments can be made for age 
which is important for early growth traits. Another common problem is that of drafting cattle for 
sale where cattle are weighed and the heaviest potentially grazed in a separate mob for 1-4 weeks, 
then transported to a feedlot or abattoir for slaughter. However, Pitchford (2016) demonstrated that 
for genetic evaluation of carcass traits, such as loin eye muscle area and intramuscular fat, when 
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they are adjusted for carcass weight, the effect of drafting on genetic evaluation of these traits is 
minimal. 

Pitchford (2018) quantified the loss of precision for commercial cattle when less information 
(fixed effects) are collected than commonly recorded in seedstock herd recording programs. 
Pitchford (2018) found for the carcass weight that the correlation between EBVs between a 
reduced and full model of fixed effects had a correlation of 0.93. For all other traits (loin eye 
muscle area, P8 rump fat depth and intramuscular fat content), correlations between EBVs for a 
reduced model with a full model were much more highly correlated (>0.96) indicating little re-
ranking due to fitting reduced fixed effects. Pitchford (2018) concluded that there are many 
commercial herds that have sufficient control of contemporary groups so their data should be 
utilised for genomic selection of carcass quality traits. 

Based on the above findings, this project sought to evaluate the scope to use MSA grading 
records from commercial groups of steers and heifers for genomic evaluation for data where fewer 
fixed effects were known on the groups of animals. 

 
METHODS 

This project was a collaboration between Herefords Australia, Hereford and Angus bull 
breeders and their commercial clients with the aim of identifying mobs of cattle that were 
managed together from birth to slaughter, processed in large mobs and MSA records could be 
accessed from the supply chain. Eight bull breeders were approached to participate in the project, 
of which five were active participants. These bull breeders approached 15 clients to identify eight 
commercial producers who were likely to meet the data recording requirements and had animals 
with expecting processing dates within the timeframe of the project. There were 1406 carcass 
records included in the analysis. These animals were from 23 management groups (a concatenation 
of on-farm management group, feedlot groups and processing date). Mean management group size 
was 61 (range 11-210, standard deviation 51). Over 2400 animals were identified for carcass 
outcomes to be included in the study but approximately 40% of records were excluded due to not 
meeting minimum data quality criteria. In addition to exclusion above, a data quality factor was 
developed (high quality, HQ vs. moderate quality, MQ). This was based on information provided 
by commercial producers on: 

• Length of calving - progeny from calving periods less than 8 weeks were considered high 
quality, whereas >8 weeks (maximum 12 weeks) were classed as moderate quality. 

• Confidence in defining lifetime management groups (some groups came from > 1 calving 
paddock but Pitchford (2018) showed this to be of likely low importance when omitted). 

In total there were 627 HQ records and 779 MQ records. 
All feedlots and processors approached to collaborate in the project were highly supportive and 
accommodating. This is important as it highlights commitment to further improvements in carcass 
quality. Contribution to the project included provision of feedlot information (feedlots), provision 
of carcass grading information, limiting carcass grader to one or few graders for a cohort, access to 
carcasses for collection of sample for DNA testing. 

The comparison data for the project was sourced from “Hereford Black Baldy BIN: Improving 
productivity of commercial cattle through utilising superior sires within and across breeds 
(P.PSH.0716)”, herein referred to as Black Baldy dataset. In total 642 steers had carcass records, 
from 11 processing dates, i.e. 11 contemporary groups with average management group size was 
58 (range 1 -112, standard deviation 43). The steers were a mix of Angus and Hereford x Angus. 
All steers were finished on pasture with a mean hot standard carcass weight 292kg (minimum 
181kg – maximum 353kg, standard deviation, 30kg). The Black Baldy data is part of a structured 
progeny test, and thus lifetime management groups are well defined. As such, it provides a point 
of comparison point for heritability compared with commercial data collected. All carcases were 
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graded using the Meat Standard Australia grading system. AUS-MEAT certified MSA graders 
measured hot standard carcass weight, marbling, ossification, fat colour and subcutaneous rib fat. 

Overall there were 2,850 animals with genotypes used to develop a genomic relationship 
matrix between datasets. These comprised 1,406 genotypes and 1,458 genotypes from Black 
Baldy, for the 642 steers with carcass records, and the remainder being their relatives (e.g. heifers 
and bulls) that are part of the Black Baldy project. All genotypes were generated on a variety of 
Illumina genotyping chips. All of the animals and SNPs were merged to generate a matrix of 
genotypes, containing 2,850 animals and 157,665 SNPs. FImpute (Sargolzaei et al. 2014) was 
used to impute all genotypes to a set of 40,683 SNPs. Using the genomic relationship matrix from 
40,683 SNPs, data was analysed with a general linear mixed model using ASreml-R 4.0 (Butler et 
al. 2017). The model used across all traits was the same and presented random terms of known and 
heterogeneous variance structures. The known variance structure was the additive relationships 
between individuals represented through a Genomic Relationship Matrix constructed as per Van 
Raden Method 1 (2008) and the heterogeneous variance structure was a diagonal variance model 
for Dataset Quality Factor (Black Baldy vs. HQ vs. MQ). Direct sum structures were also obtained 
for the residual error term. This allowed variance components and hence heritabilities to be 
estimated for the same trait between datasets of different quality. The model also included fixed 
effects of dataset Quality factor (3 levels: Black Baldy, HQ, MQ), contemporary group adjusted 
for processing date and grader as well as HSCW as a covariate, except where HSCW was itself the 
trait of interest. 
 
RESULTS AND DISCUSSION 

Phenotypic and additive genetic variance components together with estimated heritability are 
reported by dataset (HQ, MQ, Black Baldy) in Table 1. Heritability estimates for HQ were 
moderate for EMA, Rib, MSA Marble, Ossification and MSA Index. In general, MQ had similar 
phenotypic variance to HQ but lower additive variance resulting in lower heritability estimates. 
For MSA Marble, phenotypic variance was significantly lower, and there was negligible additive 
variance, leading to a heritability estimate of 0.05. In comparison to MQ and HQ datasets the 
Black Baldy results had much higher heritability for MSA marble, ossification and MSA-Index but 
similar heritabilities for rib fat, EMA and HSCW. 

The lower additive variance for the same traits between dataset with similar phenotypic 
variance provides insights on the loss of precision in evaluation when using commercial data. For 
example, irrespective of data set (data quality) rib fat depth had similar heritability estimates and 
broadly similar phenotypic variance. In contrast, MSA marble had much lower phenotypic 
variance for both HQ and MQ compared with Black Baldy; this is especially so for the MQ data 
(representing the data with more poorly described lifetime management groups). Moreover, MQ 
had the highest mean MSA marble (366.5) and a similar observed standard deviation to Black 
Baldy (56.03 vs. 49.61. Therefore, it is unlikely the low variance is a function of low mean MSA-
marbling. Importantly for the HQ dataset heritability remained moderate. 
 
CONCLUSIONS 

The results for HQ compared with MQ demonstrate the importance of using only data of the 
best possible quality within the constraints of commercial beef production systems. Based on this 
project, where poorer (e.g. MQ) quality data was accepted, the genetic variance in key traits like 
MSA-Marble was too low for the carcass record to be of substantial value. Therefore, any further 
efforts must focus solely on records with very high confidence that animals to be processed have 
fixed effects that can be described well for factors including calving period, dam age (heifer, cow). 
This does not mean they have to have all this data recorded exactly, but that they meet our 
understanding of “born and raised together”. 



Breeders paper 

470 

 
Table 1. Estimated phenotypic variance (VP), additive variance (VA) for MSA traits by 
dataset  
 
 Phenotypic variance 

(VP). 
Additive variance 

 (VA) 
Heritability  

(h2) 
HQ 

HSCW  468.50 182.29 0.39 
EMA  38.18 15.71 0.41 
Rib  8.52 2.70 0.32 
MSA Marble  4983.21 1470.23 0.30 
Ossification  218.16 45.10 0.21 
MSA Index  2.10 0.68 0.33 

MQ 
HSCW  483.85 166.25 0.34 
EMA  43.75 6.00 0.14 
Rib  7.10 2.17 0.31 
MSA Marble  2025.66 102.84 0.05 
Ossification  225.95 77.54 0.34 
MSA Index  1.98 0.50 0.25 

Black Baldy 
HSCW  901.37 422.83 0.47 
EMA  52.64 10.89 0.21 
Rib  5.93 1.93 0.32 
MSA Marble  2834.42 2089.98 0.74 
Ossification  124.75 49.41 0.40 
MSA Index  1.44 0.64 0.45 
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GENETICS FOR SELF-REPLACING MATERNALS: PARADOO PRIME 
  

T. Leeming 
 

160 Armidale Rd Coojar 3315 Vic 
 

INTRODUCTION  
2021 marks the 25th year of farming sheep in my own right and also as a partnership with my 

wife Georgie. Since arriving back on my parents’ property in 1993 I have been involved primarily 
in self replacing maternal ewes founded originally with Romney ewes over Merino ewes then 
progressing into a Coopworth sire over merino ewes in 1993. I purchased my first rams in 1993 
from Don Pegler and also some rams from John Keilor. All these rams were performance recorded 
and from that initial introduction into seeking genetics for our flock, I have never bought animals 
without Lambplan or Merino Select breeding values. We farm in a 600 mm rainfall zone and over 
the last 25 years, we have built a farming operation that now covers over 1500 ha whereby we 
wean in excess of 11000 lambs annually and market 500 plus rams. Just under 90% of this land 
has been purchased by us and 75% purchased in the last 10 years. I began financial benchmarking 
our farm business in 1997 and we still do to this day through the long-standing Livestock Farm 
Monitor Project administered by Agriculture Victoria. Our business and asset base have expanded 
significantly from modest beginnings and to achieve this not only takes hard work but it also takes 
discipline, planning and setting some clear and achievable goals. Benchmarking can be an 
important reference to this by outlining the main profit drivers to keep in check.  
We believe strongly that the maternal flock we have had all our farming career based solely on 
performance genetics has been integral to the expansion and success of our business.  

Efficiency in all aspects of what we do is something that has been a forced discipline. We 
strive to being active participants in our farming industry but also our local community. Time is at 
a premium for all of us.  The key components of our efficiency are based on the production system 
that suits us as managers but also suits our environment in which we farm. We have invested 
heavily into farm infrastructure and land development all which is underpinned with achieving our 
production goals easier and more effectively.  

 
Our farm ‘Cobbity’. The 1340 grazable/arable hectares are subdivided into 125 permanently 
fenced and water reticulated paddocks. An additional 45 paddocks are added temporarily to reduce 
mob size during 3 separate strategic lambing’s. Lamb survival is something that is paramount to 
our operation that essentially prides itself as consistently producing some of the most successful 
paddock lamb survival results in Australia. 

In 2006, we decided to start a maternal stud (called Paradoo Prime) based on Coopworth 
genetics. The first main drivers of this decision grew from curiosity and the desire to collect data 
from our sheep in our environment. Secondly, we had experienced greater seasonal volatility and 
we believed we needed to develop a sheep more suited to our shorter growing seasons. From 2008 
we deliberately drove towards what we believed was more balanced maternal sheep. 

We discovered the importance of reducing mob size in 2005 when leasing grazing country and 
have pregnancy scanned our flock for multiples since 1995. Raising triplet lambs commercially 
has been a particular focus in recent years and these commercial animals have been differentially 
managed for the past 8 years. For the past 15 years we have managed twin bearing ewes in mob 
sizes under 100 ewes and for the past 9 years our twin mob size has averaged under 50 ewes. Our 
commercial flock ewes bearing triplets lamb in average mob sizes of no more than 18 ewes. 

We now have developed a system of lambing which we feel can lead the future of lambing 
management. This system is called Paradoo Precision lambing. This program has improved the 
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management of reproduction with some outstanding results in variable seasons on multiple 
properties over the past 6 years. This system initiated by us and fine tuned with other participating 
clients has been very rewarding. We believe that the system allows sheep producers to meet the 
well documented targets and management required for consistently high reproduction and low ewe 
and lamb wastage. 

So where does genetics come in and how important is genetics to reach profitable, efficient and 
ethical animal production? 
 
BREEDING AIMS / OBJECTIVES 

A maternal sheep needs to be efficient. Efficiency in a sheep system means maximising 
productivity but minimising wastage and expense. Some compromises are needed to achieve this 
balance. For us we needed to focus on our goals and breeding an animal that had greater relevance 
to our shorter growing season. This involves selecting traits not only to improve carry over 
reproduction in failed springs but also for the ability to produce lambs with more fat and muscle 
which we believe assists us in achieving the pointy end of lamb survival and profitability. 

Stocking rate and reproduction are inter-related as additional reproduction enables you to enjoy 
the cheapest and most efficient gains in stocking rate. This in turns enables you to increase feed 
utilisation and ultimately production/profit per ha. 

As avid sponges for aspiring to improve all things in sheep farming, we focused strongly on 
growth and reproduction from 1993 to 2008. Some serious seasonal impacts on our growing 
season length from 2002 to 2007 and the development of our own stud flock in 2006 made us re 
think some of our original aims in our breeding. We wanted animals that were more suitable and 
resilient to a variable climate and a ewe that was smaller than the version we had created up until 
2008. Our ewe flock was big, lean and fertile. We were weaning more lambs than most and our 
lambs grew quickly but this also had some issues. Our standard reference weight (SRW) although 
not independently assessed at the time but as I was a keen weigher and condition scorer of stock, I 
was quite confident that we exceeded 70kg average ewe weight at condition score 3.  

Fast forward to 2015, we had drastically shifted our focus to early maturing animals with more 
fat and muscle of their older sisters. The MLA Maternals project had our SRW of our ewes at 
59kg and we enjoyed how quickly these animals developed. A low adult weight and an increase in 
fat and muscle has been a keen focus of ours since 2008. Since then, we have gained confidence in 
our management of lactation and subsequent lamb survival. Improving the genetics of our sheep 
has played an important role in building this confidence and increasing production gain. As we 
know good conception is vital in striving for high reproduction, however it does not necessarily 
allow you to reap the rewards of a high weaning percentage. Producing large litters of lambs 
without the ability for the ewe to rear them is irresponsible and goes against modern consumer and 
industry expectations.  

Low lamb survival creates wastage not just in the lambs but also in the ewes that are trying to 
rear lambs. Managing nutrition in late pregnancy for ewes carrying more than 2 lambs is not easy. 
The management of the lambing environment with lower birth weights and a greater propensity for 
mismothering requires a greater level of husbandry, supervision and overall effort.   

We have recently enjoyed the rapid increase in red meat/protein prices not only from our 
premium lamb but we have also enjoyed the linear returns from mutton prices.  Ewe wastage takes 
the form of a number of factors in a sheep enterprise starting with dry ewes at scanning and also 
from pregnant ewes that fail to rear. The other major component of ewe wastage comes from ewe 
mortality. More than ever our production system in sheep must take into consideration consumer 
expectations in animal welfare. Profitability and efficient farm management are vital and 
especially when the meat boom and or seasons become less favourable than recent years. 
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Figure 1. Mortality rates (from 2016 to 2021) for ewes bearing single, twin and triplet lambs 
at Cobbity, Coojar, Victoria 
 

Accepting low lamb survival and high ewe wastage in the above-mentioned scenarios makes 
little sense. We have deliberately focused our breeding objectives to reduce wastage and also to 
compliment our sheep management disciplines. Combined, we have been able to reduce lamb and 
ewe wastage on a consistent basis no matter what the season delivers. 90% lamb survival in twins 
is something that we consistently achieve and also keeping ewe mortality in all lambing ewes 
under 1.5% (see Figure 1). As mentioned we do farm our animals on well above industry stocking 
rates for our environment and at the same time manage one of the highest DSE/FTE ratios within 
the Livestock Farm Monitor benchmarking. Our business has achieved an average of 9.6% return 
on assets (ROA) in the past 5 years (see Figure 2). 

So where do we head in the future for our best gains? Is there much more room in single and 
twin lamb survival? Maybe not but there is much to gain we feel in lamb survival and management 
of ewe lambs and also in best managing triplet bearing ewes and the wastage in these also. This is 
our current and main challenge we set to improve in years to come. 

In 2020 and 2021 we have achieved an average weaning of over 1.5 lambs per pregnant ewe 
which includes our biggest age group being ewe lambs. Our rising 2 year old ewes for the past 2 
years have scanned over 180% and weaned in excess of 162% to ewes joined. The most exciting 
results recently has been our overall dry rate at scanning in these rising 2 year old’s. We have 
maintained a dry ewe rate of less than half of one percent (0.5%) in the last 3 years. All of these 
ewes conceived lambs as ewe lambs in the previous year. Ewe lambs that fail to get in lamb are 
sold to processors for slaughter. The big emphasis has been to replace condition on fertile ewe 
lambs post weaning and they are treated as the highest nutritional priority of stock on farm in 
spring and early summer. Our average dry rate at scanning within our commercial flock of 6500 
ewes was less than 1% (except ewe lambs) in the current season at 0.9%. 
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Figure 2. Return on assets (% - excluding capital appreciation) for our farm (Leeming) 
compared with the South West (SW) Average from the Livestock Farm Monitor Project 

 

 
Figure 3. Lamb marking % for our farm (Leeming) compared with the South West (SW) 
Average of prime lamb farms in the Livestock Farm Monitor Project 

 
Our commercial enterprise is our sounding board for our breeding direction. It is 100% 

transparent to industry and we pride ourselves on creating new targets within this flock and 
sharing our strategies in being able to achieve them. Setting disciplines in this flock to 
continuously improve stimulates us as a business. and the broader prime lamb industry. 
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Participating in projects such as the Maternals Project (2014-2015), Unlocking the keys to Ewe 
Survival Project (2019-2020) and various other research involving ewe lambs and triplets bearing 
ewes has been a rewarding experience and deliberate focus for us. 

 
Has genetics helped us in achieving our production outcomes?   
 

PROGRESS  
Our use in genetics has been quite significant over 25 years as has the sheep management 

practices along the way. Changing the animals has been really interesting to watch from the initial 
days of building fertility and growth to more recently reducing adult weights and reducing ewe 
and lamb wastage. 

Early maturity patterns and lower SRW weights helps us achieve our production goals as we 
have really focused our business as a specialist breeding enterprise. A sheep that is low 
maintenance, fertile, has fantastic rearing ability and can wean her body weight in lamb in 100 
days is what we know we can do.  

 
TAKE HOME MESSAGE(S) 

What we have done since starting our stud business in 2006 has been to focus our attention on 
individual traits to make possible our breeding aims. We have been careful to chase the extremes 
or high indexing animals for much of the past 15 years. There has been many high index animals 
in the past that have not suited our aims and quite often do not always best fit our environment. 
Growth should be rewarded or encouraged but quite often in the extremes it has too much to 
compromise. We have modified our approach and have always aimed at a balance. Our strongly 
pragmatic approach has been to keep a clear path in our breeding, underpinned by strong 
fundamentals around structural/physical selection. Genetics in maternals has a compound effect so 
keeping the balance is paramount. Moderation it maybe, but always heading in what we believe is 
the right direction for us and the recipients of our genetics. 
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GENETIC GAIN – WHERE ARE WE AFTER 4 YEARS? 

 
S.J. Martin1,2,3,4,5 and T. Granleese2,3,4,5 

 
1Sally Martin Consulting Pty Ltd, Young, NSW, 2594 Australia 
2Meat and Livestock Australia, Armidale, NSW, 2351, Australia 

3University of New England, Armidale, NSW, 2351, Australia 
4NSW Department of Primary Industries, Grafton, NSW, 2460, Australia 

5MerinoLink Limited, Young, NSW, 2594, Australia 
 
SUMMARY 

The MerinoLink/UNE DNA Stimulation Project is a major genetics adoption program in Merino 
sheep breeding enterprises running from January 2018 to June 2022. The collaborative approach is 
between MLA Donor Company, University of New England, MerinoLink Limited and the project 
participants. The project focusses on working with the project participants to strategically use the 
genetic and genomic tools currently available. A major component of the adoption strategy has seen 
the total financial contribution from all participants equating to upward of $1.7 million.  

Thirty seedstock Merino breeders are currently on-track to hit the project target of doubling the 
rate of genetic gain by 2022. This has been facilitated through an annual cycle of intensive 
mentoring, workshops, networking and use of breeding decision tools within the group. 

Commercially available Flock Profile and RamSelect’s Ram Team Manager are tools 
commercial breeders are using to benchmark the genetic merit of their Merino flocks. This 
information has been used to aid participants in better ram selection and buying decisions to increase 
genetic merit of their flocks. In the final phase of the project commercial breeders will conduct a 
second Flock Profile to measure their genetic gain and cross reference this information to the Ram 
Team Manager predictions (where applicable). 

 
INTRODUCTION 

Historically, average genetic gain in Merinos is currently low with very large variations across 
the industry (Granleese et al. 2018). Underlying influences are caused by a multitude of factors 
including inaccurate breeding values (Stephen et al. 2018) and/or a lack of understanding of 
selection theory. 

The DNA Stimulation Project has been building understanding and implementation of genetic 
selection tools with the project participants. The project focusses on capacity building and working 
collaboratively at all levels across the industry to communicate how to use software tools more 
effectively for assisting in the design of breeding programs to increase the rate of genetic gain for 
participants. 

The Project has 30 ram breeders and 18 commercial breeders participating who breed their own 
rams, 52 commercial breeders who purchase rams and 7 service providers. The project participants 
are located across New South Wales, Western Australia and Victoria.  

During the DNA Stimulation Project, project participants have been faced with significant 
challenges including drought in many parts of Australia and unprecedented restrictions due to 
COVID-19. The project team has been able to adapt to the situation and continued to deliver the 
project requirements. 

The aim of this project is to double the annual rate of genetic gain by 2022 (starting 2018) by 
maximising the adoption of a set of tools by breeders involved in the project. This paper outlines 
methods the project has used and provides a progress report of how participants are working towards 
this goal in year 4 of a 5-year project.  
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MATERIALS AND METHODS 
Project participants signed an agreement to be part of the DNA Project outlining project 

expectations between project leaders and participants. The project is co-funded with 58 percent 
contributed from the project participants and 42 percent from the MLA Donor Company. UNE were 
financial guarantors and provide genetic technical support in conjunction with MerinoLink 
facilitated genetic service providers. Sheep Genetics have also been fully engaged and supportive of 
the project. 

Key tools used with project participants include DNA parentage, low density genomic tests, 
Australian Sheep Breeding Values (ASBVs), MateSel (Kinghorn 2011), Sheep Genetics Ramping 
Up Genetic Gain report (RUGG), Flock Profile (Swan et al. 2018), Ram Team Manager 
(RamSelect.com.au), Rampower within flock indexes and percentile band tables. 

The extension and adoption process include a combination of face-to-face workshops, intensive 
one-on-one meetings, webinars, phone calls, personal emails, e-newsletters and group email 
updates. Input into these processes include key personnel within the DNA Project Team, University 
of New England, Sheep Genetics, Meat and Livestock Australia and participants in the project, 
including breeders and genetics service providers.  

To measure progress the DNA Stimulation Project uses tools, such as rates of genetic gain, as 
generated by Sheep Genetics, and workshop feedback, to track the effectiveness of the project. In 
this project we use the Merino Production Plus (MP+) index as the genetic progress benchmark. 
“Doubling the rate of genetic gain” will be measured by comparing the five-year genetic gain 
average compared to the project five year genetic gain average. 

 
RESULTS AND DISCUSSION 

The key outcomes of the project to date includes the strategic use of DNA testing technologies 
to increase the number of ram breeder participants submitting data to Sheep Genetics with full 
pedigree.  There has been an increase in the number of project participants submitting full pedigree 
from 25% to 53% between January 2018 and January 2021, shown in Table 1. 

  
Table 1. Average proportion pedigree submission to Sheep Genetics for ram breeder project 
participants on a five year rolling average 
 

Year Drop Full 
Pedigree 

Sire Only 
Pedigree 

Dam Only 
Pedigree 

Syndicate 
Pedigree 

No 
Pedigree 

2017* 0.25 0.41 NA 0.25 0.09 
2018 0.34 0.38 0.01 0.21 0.07 
2019 0.43 0.34 0.01 0.13 0.09 
2020 0.53 0.29 0.01 0.08 0.09 

                  *Pre-project for starting reference point 
 
During the first half of the project, 2018 to 2019, co-funding was provided for DNA testing. The 

project participants used this co-funding to conduct 48,691 DNA parentage tests, 62 Flock Profiles 
and 13,236 low density genomic tests (January 2018 to June 2019). The majority of the ram breeders 
involved in the project have now tested their entire ram breeding nucleus (dams, replacements and 
sires) with either DNA parentage or low-density genomic information.  

After June 2019 all DNA parentage and low density genomic tests has been fully funded by the 
project participants, with over 40,000 tests being conducted annually by the ram breeders (now 60% 
low density genomic tests).  

There is a large range of genetic merit between the ram breeder participants in the DNA Project, 
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with the lowest average MP+ index 110 and the highest 167 MP+ index points at the commencement 
of the project in 2017. The current MP+ index range between the ram breeders is 134 to 175 index 
points. This diversity in the group is being used to share and swap experience to allow informal 
mentoring within the group. Overall, the collective ram breeder participant index trend from the 
2017 to 2018 lamb drop have increased by 2.4 index points. Each January the project participant 
progress is benchmarked to the rest of the industry to assess progress, in 2019 the average index was 
5.0 points higher than the Merino industry average (Figure 1) and 2020 and 2021 it was 11 points 
higher.  

Figure 1. Average 5 year rolling index for project participants (blue) and all 
MERINOSELECT members (grey)  

 
Ten percent of the ram breeder participants first used Matesel (Kinghorn 2011) for mating 

allocations for the 2019 joining, in 2021 this has increased to 48 percent. The biggest limitation for 
many of the project participants to utilise Matesel in the past has been the lack of full pedigree data 
which is being addressed with the increased uptake of DNA parentage and low-density genomic 
testing to gather pedigree information. 

The ram breeder participants have embraced additional data collection as breeders advance to 
include traits that are not included in industry indexes in their breeding program, for example fly 
strike indicator traits. The combined DNA Project participants contribute 38 and 44 percent of the 
early breech wrinkle data on the 2019 and 2020 drops respectively. 

DNA parentage testing has enabled ram breeder DNA Project participants to readily collect data 
on key reproduction traits, including litter size (LS), conception (CON) and ewe rear ability (ERA). 
Between the year of joining (YOJ) 2016 and 2020 there has been a 17 percent increase in data 
submitted to MERINOSELECT for ERA by the project participants. For the 2020 YOJ the DNA 
Project ram breeder participants are contributing 43, 39 and 29 percent of the MERINOSELECT 
database for CON, LS and ERA, respectively. 

Key times identified in the project to provide information, data and advice to assist project 
participants in decision making are when breeders are setting and reviewing their breeding 
objectives and developing their next mating programs. The majority of the one on one ram breeder 
meetings are planned to coincide with strategic times in their calendar of operations.  

There is a direct correlation between attending educational activities and rates of genetic gain 
(Brown 2019). Figure 2 demonstrates that the more engaged ram breeder project participants are 
with the project the higher the rates of genetic gain. This trend validates the intense relationship the 
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breeders have with the project team and MLA and UNE funding.   

Figure 2. Average annual genetic gain grouped by breeder engagement. Group 1 - attends all 
workshops and requests one-on-one meetings; Group 2 - attends a combination of most workshops and/or 
requests one-on-one meetings; Group 3 - attends some workshops and rarely one-on-one meetings; Group 4 - 
no engagement 
 
CONCLUSIONS 

Progress continues to be made with the project participants and as the project draws to a 
conclusion in 15 months’ time the full impact of the project will be able to be described.  This project 
is on track. It has and continues to deliver positive breeder satisfaction in training, extension, and 
adoption.  
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Adelaide, Roseworthy, SA, 5371 Australia 
 

INTRODUCTION 
Popplewell Composites was founded in 2007 as a tropically adapted beef seed-stock company 

with the goal of breeding genetics that improved their bull customers’ profitability. The breeding 
program was started by assembling proven performance genetics from foundation lines of adapted 
Bos taurus both British and European, and Bos indicus breeds with a focus on naturally polled 
genetics. Over a decade of performance recording and objective selection, genotyping every animal 
and GBLUP analysis since 2016, has now been applied to make the herd a world leading genetic 
resource for Tropical Composites. In 2022, over 280 breeding bulls will be distributed into 
Multiplier tiers and long term commercial customers. 
 
BREEDING PROGRAM OVERVIEW AND UPDATE: 

The program is focussed on advanced Genomic Evaluation and an intensively recorded nucleus 
tier run in the Sunshine Coast Hinterland, Queensland Australia. The environment there is similar 
to tropical Brazil with high rainfall, C3 and C4 grasses, and parasite challenges from Buffalo Fly 
and Cattle Tick. Yearling bulls bred from the Nucleus are used to supply multi-property customers 
with multiplier tier sires as well as a customer base of progressive family business commercial 
breeders, all in Northern Australia. 

In partnership with Hicks Beef in New South Wales, sexed semen technology is also used to 
create F1 Adapted Bos taurus x British-European bulls in large quantities. Using Popplewell sires 
and Hicks dams, both selected using Genomics, F1 ‘Pathfinder®’ Line bulls are being supplied on 
mass to customers to use over Bos indicus females for wholesale change to Northern Australian beef 
production. 

With our Bull product offering combining breed change, planned heterosis and the benefits of 
our additive genetic progress, customers are experiencing up to 30% increases in calving rate, rapid 
increase in proportion of polled (no horn) calf phenotypes and increased marketability of their cattle 
into meat quality focused supply chains. 

In collaboration with The University of Adelaide’s Davies Livestock Research Centre and 3D 
Genetics (Wagyu), we have developed customised and automated genomic evaluation processes 
badged GenoRater™. These processes include GBLUP, SNP BLUP, Genomic Parentage and 
interpretation of Genes of Interest (GOI) from raw Genotype files. Information is stored and 
evaluated on a ‘super computer’ server, allowing fast seamless analysis, as well as secure storage of 
large volumes of data including Whole Genome Sequences. 

Since 2007 significant additive genetic gain has been made by the Popplewell Composites 
program in fertility, carcass and adaptation traits. Introgression of favourable Poll and Slick Coat 
genes has also been progressing well. Trends will be reported at our AAABG online presentation in 
November 2021, which will be available via AAABG as well as stored after on our web site 
Popplewell.com.au 
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2 Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of 
Adelaide, Roseworthy SA 5371 

 
SUMMARY 

The Elmore Field Days Inc ran a comparison to determine the merit of six ewe genotypes in 
common commercial use for prime lamb and wool production from 2014 to 2019. Each of the six 
genotypes were represented by 42 ewes randomly selected from three properties. They were three 
crossbred types and three Merino types; Border Leicester x Merino cross, Multimeat x Merino 
cross carrying the Booroola high fecundity gene, Composites with genes from many meat breeds, 
local Merinos from northern Victoria and two specialist dual-purpose Merinos, Centre Plus and 
Leahcim Merinos. The ewes were joined annually to terminal sires for prime lamb production and 
run together as one mob except at lambing; there were five opportunities to lamb, the first as ewe 
lambs. The specialist dual purpose Merino team had the highest gross lamb and wool returns per 
ewe due to good reproduction, lamb growth and wool value. This is a similar result to a previous 
field study and subsequent financial analyses that highlighted gross margin increases of 20 to 30 
percent from high performance dual purpose Merinos.  

 
INTRODUCTION 

The Elmore Field Days Inc ran a trial from 2014 to 2019 to compare the merit of six alternative 
sheep genotypes in common use in the northern Victorian environment at Elmore. This paper 
describes the results of the four adult years (2016-19) of ewe and lamb body weights, condition 
scores, reproduction data and key wool measurements. A previous study (Ransom et al 2015) and 
subsequent economic analyses (Ransom et al 2018) indicated large differences in profitability 
between genotypes in common use. 

 
MATERIALS AND METHODS 

Ewes were run on the Elmore Field Days site 3 km east of Elmore in northern Victoria from 
January 2015 to October 2019. The rainfall at the locality is winter dominant with a long term 
average of 466mm per year. Sheep grazed on annual pastures growing between late autumn and 
spring and dry pasture residues and crop stubbles over the summer.   

The six ewe genotypes included in the trial were each represented by 42 ewes. Each genotype 
group was randomly selected as ewe lambs in November 2014 from three properties, with 14 
lambs per property after an allowance for culling. The ewe lambs were fed a high-quality diet to 
reach a joining weight in late February 2015, when they were first joined to White Suffolk rams 
with a further four annual joinings to either White Suffolk or Poll Dorset rams. 

The ewe genotypes were (i) Border Leicester x Merino cross ewes (BLxMo), the most 
common prime lamb dam in northern Victoria. (ii) MultiMeat x Merino cross ewes (MMxMo), the 
MultiMeat has been bred for homozygosity of the Booroola high fecundity gene and the first cross 
ewes bred from these rams thus carry one copy of the gene. (iii) Composites – represented by 
Cashmore-Oaklea Performance Maternals, a genotype based heavily on the Border Leicester and 
Romney breeds with smaller contributions from at least 10 other breeds. They are generally 
regarded as suited to more wet and cold conditions than Elmore.  (iv) Merino LV - Loddon Valley 
Merinos, the second most common prime lamb dam in northern Victoria; mainly based on Peppin 
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bloodlines. (v) Leahcim M – Leahcim Merino, a dual purpose type from South Australia. (vi) CP 
Merino - Centre Plus Merino, a dual purpose type from Central West NSW. Three of the 
genotypes were represented in the previous study, but originated from different farms. 

This report covers the four adult years of body weights, condition scores, reproduction data, 
lamb growth and key wool measurements. Lambing time varied from year to year, from April 
(autumn) to July (late winter) as ram introduction to the adult ewes varied from 10 November to 
26 January to reflect the variation in district practices and the possibility some genotypes could be 
disadvantaged by an early joining. Ewes were pregnancy scanned approximately 90 days after the 
rams were introduced and assigned as ‘dry’ or carrying a single, twins, triplets or quads, but not 
separated into litter classes post scanning. They were divided into their breed groups immediately 
prior to lambing and run together again from lamb marking. Ewes were inspected twice daily 
during lambing and assistance was only given when needed. Individual lambs were not identified 
with their dam at lambing. Instead ewe udders were inspected at lamb marking and weaning and 
each ewe was classed as ‘wet’ or ‘dry’ or ‘lambed and lost’ when linked to scan information. 

Shearing was in early October each year and wool mid-side samples were taken about 3 weeks 
before shearing.  Lambs were weaned at 12 to 14 weeks and sold when a commercial draft reached 
a minimum live weight of 46 kg. Dressing percentages were calculated from 4 slaughter batches 
totalling 520 lambs over three years. Wool, lamb carcase and skin returns per ewe were calculated 
each year using average Australian prices over the previous 12 months.   

Statistical analyses. A linear mixed model was fitted to ewe traits that included fixed effects 
of year (2016-2019 which is confounded with ewe age 2-5 years), breed and the interaction 
between year and breed. Random effects included property of origin and ewe. The ewe effect 
accounts for repeated measures on the same ewes across years. The interaction between year and 
breed was significant, but not large in effect for any trait. Lambs born and marking rates were 
analysed using a non-parametric χ2 test as there were only group data. Lamb traits were analysed 
with a linear model with fixed effects of year, sex, breed and the interaction between year and 
breed. Dressing percentage was analysed for the limited lambs with values. Analyses of variance 
were used for the wool bale tests. 
 
RESULTS AND DISCUSSION 

Ewe weight and wool. The three crossbred types had higher body weights and condition 
scores than the Merino types. There were also significant differences in weight and condition score 
within the Merino types. The two specialist dual purpose types breeds (Leahcim and CentrePlus) 
were heavier than the local Merinos. The wool bale measurements from core and grab samples and 
estimated returns from wool and lamb are presented in Table 4.   

Reproduction. There were substantial differences in the number of lambs marked per ewe 
joined and some components of reproduction. Multimeat x Merino raised significantly more lambs 
and Leahcim ewes raised significantly less lambs than all other ewe types (Table 2). The results 
are also a reflection of the time of joining as crossbreds are more seasonal breeders than Merinos. 
Lambing in spring may have been more beneficial to the crossbreds. 

The differences were mainly due to fecundity (litter size) as indicated by the fetuses scanned 
per ewe joined. The Leahcim genotype also had more dry ewes. The calculated fetal loss from 
scanning to birth indicated higher losses in the MultiMeat and Composites breeds. Specialist 
advice over the four years indicated these higher losses were likely due to (i) higher fetal losses in 
the more fecund breeds (Scott 2007) and (ii) scanning errors that over-estimate fetal counts when 
more than two fetuses are present, especially in fat ewes. Lambs removed by predators before 
morning lamb pickup could also have been an issue (Smith et al 1988). Campylobacter infection 
was thought not to be an issue as all ewes had the full vaccination program and subsequent blood 
antibody tests indicated infection was unlikely. Previous reproduction comparisons in Australia 
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and South Africa (eg Mortimer et al 1985, Ransom et al 2015, Cloete et al 2003) also highlighted 
differences in sheep reproduction.  

 
Table 1. Ewe weights, condition scores and wool characters from 2016 to 2019 
 

Ewe Breed 
Ewe weight, 
fleece free at 
joining (kg) 

Condition 
score at 
joining 

(score 1-5) 

Greasy fleece 
 weight 

(kg) 

Clean fleece 
weight 

(kg) 

Fibre diameter 
mid-side 
(μm) 

BL x Mo 74.0d 3.82d 5.41c 3.95c 28.5d 
MM x Mo 69.6c 3.68c 4.61b 3.11b 26.2c 
Composites 80.2e 3.89d 3.93a 2.68a 34.4e 
Merino LV 58.6a 3.14a 6.11d 4.12c 19.2ab 
Leahcim M 62.9b 3.24a 5.71cd 3.91c 19.7b 
CP Merino 64.7b 3.49b 5.74cd 3.85c 17.8a 
LSD 3.3 0.12 0.41 0.28 1.7 

abc Ewe breed means within columns with different superscripts differ significantly (P<0.05). 
 

Table 2. Ewe reproduction characters for the four adult lambings from 2016 to 2019 
 

Ewe Breed Fetuses  
scanned per 
ewe joined 

Scanned 
 as dry 
per ewe 
joined 

Lambed & 
lost  per  

ewe joined 

Lambs 
born per 

ewe joined 

Lambs 
marked       
per ewe 
joined 

Fetal loss, 
scanning 

to pre-birth 

Lamb 
deaths, 
birth to 
marking 

BL x Mo 1.55b 0.03a 0.07a 1.51d 1.31d 0.04a 0.13ab 
MM x Mo 2.62c 0.03a 0.08a 1.95e 1.46e 0.26d 0.24c 
Composites 1.67b 0.04a 0.07a 1.36c 1.24cd 0.18c 0.09a 
Merino LV 1.31ab 0.04a 0.06a 1.18b 1.09b 0.10b 0.08a 
Leahcim M 1.10a 0.10b 0.06a 0.98a 0.89a 0.11b 0.10a 
CP Merino 1.51b 0.04a 0.06a 1.38c 1.17bc 0.09ab 0.16b 
LSD 0.23 0.04 0.04 0.12 0.09 0.06 0.05 
abc Ewe breed means within columns with different superscripts differ significantly (P<0.05). 

 
Lamb performance. Lambs from Composite ewes were the heaviest at first sale time, the BL 

x Mo, Leahcim and Centre Plus were intermediate and the Multimeat cross and local Merino were 
lowest (Table 3). The lower final weight of the Multimeats is likely due to more multiple births as 
indicated by their lower weight at marking, their early growth from marking to weaning being 
lower but after weaning their growth being similar to the other breeds except the Composites. 

Industry application. Reproduction, lamb growth and wool are all highly relevant to 
improving profitability, but no single genotype excelled in all components. Table 4 details the total 
returns per ewe. The crossbreds had the greatest lamb returns while the Merinos had the greatest 
wool returns. When wool and meat were combined the Centre Plus had the highest gross returns 
closely followed by the MM x Mo and BL x Mo genotypes. Also the MM x Mo lambs may have 
more growth potential as their earlier growth was reduced by the higher number of multiple births.  

The returns per hectare from higher body weight ewes and higher lambing percentages are 
reduced when accounting for their higher feed intake, due to higher number of lambs reared and 
heavier ewes. An economic analyses using the bio-economic model GrassGro of the previous 
study (Ransom et al. 2015) found specialist dual purpose merinos with very good lambing 
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percentages, wool value and body growth had higher gross margins per hectare, by an average of 
30% above four other breeds and 18% above the local Merinos when stocked at the same DSE per 
hectare (Ransom et al. 2018). These results complement the previous study and add to the 
knowledge base of current sheep genotype differences to enable further GrassGro analyses to help 
sheep farmers make better decisions. 
 
Table 3. Lamb live weights, growth rates and dressing percentage 
 

Ewe Breed Weight at 
Marking 

(kg) 

Weight in 
spring, before 

any sales 
(kg) 

Weight gain, 
marking-
weaning 
(g/day) 

Percent in  
1st slaughter  

batch 

Weight gain, 
weaning- 
first sale 
(g/day) 

Dressing 
percent 

BL x Mo 16.5c 47.0b 294b 54.5d 258b 46.3b 
MM x Mo 14.9a 44.2a 278a 35.3b 252b 46.7c 
Composites 16.5c 48.5d 310c 66.6e 268c 46.4b 
Merino LV 15.3b 43.8a 280a 29.8a 239a 45.9a 
Leahcim M 17.8e 47.3b 281a 47.9c 252b 45.7a 
CP Merino 16.8d 46.9b 294b 53.3d 250b 45.7a 
LSD 0.3 0.9 9 3.3 9 0.3 
abc Ewe breed means within columns with different superscripts differ significantly (P<0.05). 

 
Table 4. Wool bale tests and the financial returns from wool and lambs from 2016 to 2019 
 

Ewe Breed Fibre 
diameter, 
bale core 
tests (μm) 

Fibre 
diameter 
coeff of 

variation 
(%) 

Clean 
fleece 
wool 
yield, 
(%) 

Staple 
length 
(mm) 

Staple 
strength 

(n/kt) 

Wool  
returns 
 per ewe 
 ($/ewe) 

Lamb 
returns per 

ewe 
($/ewe) 

Total wool 
and lamb 
returns 
($/ewe) 

BL x Mo 28.7e 21.3c 75.5d 112b 32.0b $32.59 $196.29 $228.88 
MM x Mo 26.4d 21.7c 68.9a 104a 30.8ab $34.76 $203.97 $238.72 
Composites 33.5f 22.9d 67.9a 109ab 26.0a $10.46 $190.96 $201.42 
Merino LV 19.6b 18.7b 71.9c 104a 27.5a $72.99 $149.27 $222.26 
Leahcim M 20.2c 18.4ab 70.4b 108ab 29.8ab $68.30 $130.24 $198.53 
CP Merino 18.1a 18.1a 68.1a 111b 32.8b $74.02 $175.02 $249.05 
LSD 0.5 0.5 1.1 6.9 5.2    
abc Ewe breed means within columns with different superscripts differ significantly (P<0.05). 
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IMPROVE YOUR SOCIAL LICENSE – BREED SHEEP FOR DISEASE RESISTANCE 
 

S.F. Walkom1 and K.L. Bunter1 
 

1 Animal Genetics Breeding Unit∗, University of New England, Armidale, NSW, 2350 Australia 
 

SUMMARY 
Consumer interests in the health and welfare of animals has increased as production systems 

become more transparent. This brings about a need for cultural change around how the industry 
approaches the long-term management of disease traits. Genetic tools have been used by leading 
sheep breeders for decades to bring about genetic gain in production traits. The same approach can 
also be applied to breeding for good health and welfare. This paper provides a summary of the steps 
required to develop long-term solutions to diseases outbreaks allowing sheep producers to breed for 
disease resistance and improve the social license for the agricultural industry. 

 
INTRODUCTION 

The welfare of food-producing animals has become a contentious issue across the world. There 
is evidence of a disparity between what consumers think livestock production “should be” and what 
actually happens on farm (Buddle et al. 2021). Sheep producers have recognised that good farming 
practices are essential for not only animal health and welfare, but also benefit the profitability of 
their production systems. For example, mulesing to reduce flystrike incidence, and hoof bathing and 
trimming to address footrot. However, there are opportunities to further optimise animal welfare in 
these labour-intensive strategies. Therefore, alternative or complimentary strategies must be 
considered as long-term solutions, which also maintain a social license to produce wool and lamb. 

In addition to veterinary strategies, genetic selection provides a long-term solution to health and 
welfare issues. There has been an increase in the research and application of genetic solutions. This 
has been due to a number of factors: a growing appreciation of the role that host genetics can play 
in disease control, an increase in the tools available to dissect host genetic variation in disease 
resistance, and growing pressures on breeders to select animals that are healthier and more resistant 
both to infectious and metabolic diseases (Bishop and Morris 2007). Consequently, as Australian 
sheep producers continue to farm within the social license provided by consumers there is a growing 
interest and desire to breed for disease resistant animals, in an attempt to both reduce the health and 
welfare impact on the flock and also remove the repeated costs associated with short term solutions. 

Meat and Livestock Australia report that the top 10 biggest disease costs to the Australian sheep 
industry are internal parasites (National Cost; $369 million/year), flystrike ($280 m), lice ($123 m), 
perinatal mortality ($118 m), post-weaning mortality ($75 m), perinatal ryegrass toxicity ($63 m), 
bacterial enteritis ($29 m), arthritis ($26 m), footrot ($18 m), OJD ($4 m) and phalaris toxicity ($1.6 
m) (Sackett et al. 2006). The majority of these diseases have been well studied and also shown to 
have some evidence of underlying genetic variation that could be exploited to improve the long-
term health and welfare of the flock (Bishop and Morris 2007). However, the relative merits of 
implementing traits into breeding programs depends not only on the presence of genetic variation, 
but also the ability to accurately record meaningful data in a time frame that enables selection 
decisions to be made. 

Any traits of interest can be bred for if there is genetic variation in the phenotypes recorded. 
However, disease resistance traits are difficult to capture because: 1) preventative treatments are 
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often delivered early and before the disease expresses itself; 2) environmental conditions often 
influence disease expression; 3) allowing the disease to progress to allow genetic variation to be 
expressed is a welfare issue; 4) identifying the desired phenotype can be difficult; 5) disease 
phenotypes can impact production phenotypes; 6) getting disease phenotypes on genetic selection 
candidates can be difficult, and 7) legislative constraints may exist, such that breeding stock are not 
able to experience health issues and therefore record phenotypes (eg restricted sale of rams due to 
footrot). However, overcoming these issues, whilst difficult, is not impossible. For some diseases, 
breeding values have become available in recent years. Some examples include most recently 
development of the footrot susceptibility Australian Sheep Breeding Value (ASBV) (Walkom et al. 
2019) and the continued utilisation within breeding programs of the worm egg count ASBV (Brown 
and Fogarty 2017). This paper highlights learnings from previous research in developing genetic 
solutions to improve disease resistance. Industry could take these learnings to meet their social 
license to breed for fitter and healthier animals. 

 
BREEDING FOR DISEASE RESISTENCE 

Step 1. Understand the disease. Both disease incidence and disease management are important 
for industry and consumers, affecting performance, profitability and welfare standards, the latter of 
which also affects social license to produce by the general public. The short and long-term costs 
associated with production losses and disease management are more easily estimable (Sackett et al. 
2006). However, the cost of long-term change required to meet consumer perception of animal 
production systems and welfare standards can be difficult to model (Buddle et al. 2021). 

Step 2. Find your champions. To bring about change there needs to be people that are willing 
to invest in and back opportunities to develop genetic tools to help breed for disease resistance. 
Champions need to encourage others to participate in the idea and develop public and private 
investment of money and time. Champions are needed throughout both the research community and 
industry because both time and finances are finite, and it is the continued desire to bring about 
change by the champions that will make sure progress is made. The success and rate of development 
of the footrot breeding value can be attributed to the “leg work” and “support” from New Zealand 
sheep breeders along with associated industry bodies, service providers and researchers, as 
highlighted in Walkom et al. (2019). 

Step 3. Research the biology. Significant research into disease aetiology, to inform researchers 
of the most appropriate phenotypes and challenge protocols for characterising variation amongst 
individuals is required. Often the initial research into the biology of the disease occurs without good 
genetic design and focusses primarily on finding management solutions. The biology of footrot was 
first studied in 1941, with the current understanding of the biology developed in the late 1960’s and 
the first studies of genetic variation in Australian sheep occurring 1990’s (Raadsma and Egerton 
2013). 

Step 4. Identify genetic variation. Selection for disease resistance is only achievable if the trait 
exhibits genetic variation. Investigations are required to examine alternative phenotypes and the 
most appropriate statistical models for analysis to estimate heritabilities. This often requires 
controlled challenge protocols and standardised recording. For most traits, this requires a central 
progeny test (CPT) / reference population, serial records to capture disease progression where 
possible, and accredited scorers. Initially industry engagement and “buy in” to the footrot research 
occurred after a proof of genetic variation study (Ferguson et al. 2016) but it was the development 
of a CPT and the data that came from it that underpinned the ability to develop the genetic analysis 
for the Footrot Breeding Value (Walkom et al. 2018). 

Step 5. Understand genetic associations. Obtain correlations with other traits, to establish 
impacts of including new disease phenotypes into existing breeding programs, and to identify 
indirect selection criteria. This becomes problematic if animals recorded in Step 3 have no other 
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industry relevant data or are not sufficiently representative of the industry. Therefore, these data 
need to be connected with the wider performance data from industry flocks. Correlated traits can 
provide the opportunity to avoid the need to select on the disease phenotype. In the case of flystrike 
the genetic associations between breech, wrinkle and dag traits (Brown et al. 2010) provide the 
opportunity to move away from the current short term management solutions with questionable 
welfare practices. The advantage here is that the prevalence of the disease can be reduced through 
breeding, without the need to capture the flystrike phenotype on the individual. 

Step 6. Build awareness within industry. Arguably this needs to occur throughout the process. 
Clear, honest and repetitive communications of the results is required to change mindsets from short 
term management decisions to long-term genetic change. Extension of research through clear 
communication strategies, especially around proof of concept, are required to prompt breeders to 
bring about changes to their breeding decisions and achieve genetic gain (Collison et al. 2018). 
This is even more important for disease traits where management practices to suppress the 
expression of the disease phenotype will most likely need to change. 

Step 7. Genomic investment. Genomics presents a potential tool to extend accuracy outside 
central test populations, but it is still a case of ‘suck it and see’ to obtain estimates of the 
improvement in accuracy. Additional investment in genotype data will be required at the research 
stage with no guaranteed return to investment yet. The polygenic nature of many disease traits (eg. 
footrot, Raadsma et al. 2018) often means that “silver bullet” genomic solutions are rarely 
available. However, genomics remains valuable through linking the reference population with 
animals of interest and increased accuracy. 

Step 8. Expanding disease recording into industry flocks. The genetic information base can 
be expanded considerably with the expansion of recording, with defined protocols, to broader 
industry (non-research flocks). This includes breeders being willing to admit to disease presence and 
to follow the necessary recording protocols, and therefore training in correct procedures and data 
delivery. Investment of genotyping in industry flocks is also required to keep the reference 
population up to date. This genotyping cannot be solely confined to the best animals, so breeders 
will wear additional recording and genotyping costs for the sake of their industry clients. The 
transition from a research study to an industry recorded phenotype database in the footrot study 
was possible due to clearly defined protocols around identifying a sufficient disease challenge and 
scoring standards, combined with an analysis robust enough to account for the greater variability 
in genetic makeup and disease expression across challenges (Walkom et al. 2018). 

Step 9. Automation of phenotype submission pathways. Development of automated inclusion 
of data and analyses into the national genetic evaluation systems, such as provided by Sheep 
Genetics. This requires data pipelines and software development, as well as approval by independent 
committees (technical and industry advisory). There needs to be sufficient push from industry for 
public funding. Incorporation into the national genetic evaluation system enabled footrot breeding 
values to reach a much larger number of breeders and increase the number of people interacting 
with the genetic tool (Walkom et al. 2019). 

Step 10. Building up accuracy of ASBVs within flock. Sufficient data is required for individual 
animals to have accuracies of breeding values that enable their publication. The accuracy of an 
individual’s breeding value is directly related to the individual’s genetic relationship with the 
informative phenotype. Thus, as more phenotypes are recorded on individuals closely related to the 
selection candidates the greater the accuracy of breeding values and the greater the ability to 
identify the superior candidates (Walkom et al. 2018).  

Step 11. Incorporate EBVs in breeding objective. Breeders need to use the resulting breeding 
values for selection decisions, or no informed genetic trend will occur. Now that the footrot breeding 
value is available, breeders are using it in their breeding objective and as a marketing tool to 
distinguish themselves from other breeders. 
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Step 12. Continued monitoring and development. Constant monitoring of progress is required 
as selection progresses, as low disease incidence will eventually cause redundancy and ineffective 
data collection. This is of course great on one hand, because it means that disease incidence is low 
and welfare and productivity are improved. The footrot phenotype has a base line standard around 
the minimum disease expression required to score the disease challenge (Walkom et al. 2018). 
However, as the individuals become less susceptible the ability to meet these standards becomes 
harder, meaning flocks with low susceptibility will become reliant on external progeny tests or 
genomic based breeding values, where accuracy will be influenced by the size of the reference 
population. 

 
CHANGING PERSPECTIVES 

Ultimately, the question is “can we afford not to do something?” The success of the production 
system is driven by the ability to meet the demands of the consumer. Genetics has provided us with 
the opportunity to make real-life improvements through genetic gain in both the quantity and quality 
of meat and wool (Collison et al. 2018), and has also been shown to be a solution to many diseases 
that impact global sheep production systems (Bishop and Morris 2007). Unfortunately, discussing 
the presence of diseases is difficult. Thus, the ability to change management practices and implement 
genetic solutions has been slow at the industry level. However, where attitudes are more progressive 
and social stigmas are broken down, producers can achieve long-term change in the impact of 
diseases as evidenced by the development of the footrot breeding value (Walkom et al. 2019). The 
ability to lead social change and influence the industry also has the potential to improve market 
access and address discerning consumer demands around health and welfare standards.  
 
CONCLUSIONS 

Sheep breeders have been able to utilise quantitative genetic tools to improve the productivity of 
their wool and lamb meat enterprises. These tools are also available to help bring about long-term 
change in the expression and impact of disease. The biggest limitation to the industry is not the 
availability of these tools but the need for cultural change in the management of diseases that are 
currently limiting productivity and potentially threatening the social licence to breed sheep in 
Australia and beyond. 
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