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ABSTRACT 
Predicting the behavior of complex decentralized pervasive 
computing systems before their deployment in a dynamic 
environment, as well as being able to influence and control 
their behavior in a decentralized way, will be of fundamental 
importance in the near future. In this context, this paper 
describes the general behavior observed in a large set of 
asynchronous cellular automata (CA) when external 
perturbations (expressions of a dynamic environment) 
influence the internal activities of CA cells. In particular, we 
observed that stable macro-level spatial structures emerge 
from local interactions among cells, a behavior that does not 
emerge when cellular automata are not perturbed. Because 
perturbed cellular automata express characteristics that 
strongly resemble those of pervasive computing systems, 
similar sorts of macro-level behaviors are likely to emerge in 
that context and need to be studied, controlled, and possibly 
fruitfully exploited. On this basis, the paper also reports the 
results of a set of experiments showing how it is possible to 
control, in a decentralized way, the behavior of perturbed 
cellular automata, to make some desired patterns emerge.  
Keywords: Cellular Automata, Self-organization, Pervasive 
Computing, Multiagent Systems. 
 

1 INTRODUCTION 
Computing will soon become pervasive and autonomous. On 
the one hand, our everyday environments will be more and 
more populated by multitudes of decentralized and 
networked computing systems (e.g., multi-agent systems 
[ZamJW03], ad-hoc networks of mobile computing devices 
[Bor02], sensor networks [EstC02], clouds of “smart dust” 
[Pis01] and spray computers [Zam04]). On the other hand, 
most of these systems will be able to autonomously perform 
activities on our behalf – typically by interacting with each 
other – letting us “out of the loop” [Ten00, KepC03]. 

The potential applications of future pervasive computing 
scenarios are endless, promising to impact all our activities 
and to increase the quality of our life and work. For this 
reason, it is of dramatic importance to understand and predict 

– possibly prior to their deployment – how such systems will 
behave. It has been recently discovered that the Internet, the 
Web, and the Gnutella network – the only deployed 
examples of large-scale decentralized and autonomous 
computing systems – have structurally evolved in rather 
peculiar and unexpected ways, strongly impacting on 
reachability of information and reliability [AlbJB99, 
AlbJB00, RipIF02]. Researchers in the area of pervasive 
computing should learn from this, and should start asking 
now whether similar situations may occur in the future, and 
which tools and methodologies to exploit to control them. 
This paper is a little step in that direction. In particular, we 
present and discuss a number of experiments that we have 
performed on a large set of cellular automata (from now on 
CA) [Wol94, Bar97, Wol02], in which we have tried to 
mimic, in a minimalist way, the key characteristics likely to 
be exhibited by future pervasive computing systems: 

• Locality in interactions: unlike the Web and the 
Gnutella network, whose interaction/structural patterns 
are not locally constrained, future pervasive computing 
systems will typically interoperate on the basis of local 
patterns, as deriving from, e.g., short-range wireless 
communications and/or local directed networks. Such 
characteristic is naturally reflected in CA, which evolve 
via local interactions in a lattice.  

• Autonomy of components: unlike “traditional” 
computing systems and parallel applications, whose 
activities are typically driven by centralized flows of 
control and are typically subject to strict synchronization 
constraints, pervasive computing systems tend to be 
fully decentralized, with components executing in total 
autonomy. Such characteristics can be reflected by 
asynchronous CA, i.e., CA in which state transitions in 
cells occur asynchronously, according to local internal 
dynamics [IngB84]. 

• Perturbation of the environment: pervasive computing 
systems will be dived in and interact with dynamic 
environments, whether the physical world or some 
virtual computational world, that can continuously 
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influence the local activities of distributed components. 
Such characteristics can be emulated by perturbing the 
internal state of CA cells. 

In a first set of experiments, we show that asynchronous CA, 
when perturbed, exhibit peculiar interesting behavior. In 
particular, during their dynamic evolution, and despite the 
out-of-equilibrium situation induced by perturbations of the 
external environment, stable macro-level spatial patterns may 
emerge from local interactions among cells, a behavior that 
does not emerge when the cellular automaton is synchronous 
and not perturbed. On this basis, the paper argues that macro-
level patterns, similar to the ones exhibited by CA, will be 
observed, in terms of globally coordinated patterns of 
activity, as soon as multitudes of interacting computer-based 
systems will start populating our networks and our physical 
spaces. Such coordinated patterns of activity will be likely to 
dramatically influence the overall behavior of that systems at 
a very large scale.  

A second set of experiments explores how and to which 
extent it is possible to exert some sort of decentralized 
control over the perturbed CA, so as to influence their 
evolution and make desired patterns emerge. To be 
potentially applicable to pervasive and decentralized 
computing scenarios, such a methodology must account for 
the impossibility to fully control the behavior of every 
components of the system and must instead acknowledge that 
only a fraction of them can be reached. Two methodologies 
of these kinds have been experienced, one of which with 
rather successful results. This lets us envision the possibility 
of actively controlling the emergence of macro-spatial 
patterns either defensively, to prevent their possible 
damaging effects on the system, or constructively, as a tool to 
enforce global coordination patterns. 

The remainder of this paper is organized as follows. Section 
2 introduces cellular automata, and characterizes 
asynchronous dynamics and perturbations. Section 3 presents 
and analyzes the behavior observed in perturbed cellular 
automata, e.g., the emergence of macro-level spatial 
structures. Section 4 discusses the implications of this 
emergent behavior for future pervasive computing systems. 
Section 5 presents the two methodologies we have 
experienced to control the behaviors emerging from a 
perturbed CA, and discuss how they may be useful to control 
the global behavior of decentralized pervasive computing 
systems. Section 6 discusses related work in the area. Section 
7 concludes and outlines future work. 

2 PERTURBED CELLULAR AUTOMATA 
In this section, we will shortly introduce first the basic 
background concepts underlying cellular automata, then the 
specific class of asynchronous cellular automata, and finally 
the way to induce perturbations on cellular automata.  

2.1 Basic Characteristics 
Generally speaking, CA are regular lattices of cells, each one 
being a finite-state automaton. Starting from an initial global 

state (determined by the local states of all its cells) a CA 
dynamically evolves by having cells update their local state 
depending on a (typically simple) state transition function of 
their state and of the state of neighboring cells.   

More formally, a CA is statically defined by a quadruple 

A = (S , d , N , f ) 

S is the finite set of possible states a cell can assume. d is the 
dimension of the automaton, i.e. cells are organized into d-
dimensional discrete grid (possibly with wraparound edges). 
N is the neighborhood structure, defining which cells can 
"influence" each cell in local state transitions. N is typically 
uniform and isotropic. f is the local transition rule, i.e., a 
function f:SN→S mapping a configuration of states in a 
neighborhood N into a single state. f is typically the same for 
each cell (uniform CA).  

In this paper, we mostly focus on CA with binary cells 
(S={0,1}, two states that in our figure correspond to a cell 
being white or black, respectively), arranged in 2-
dimensional square grids with wraparound borders (d=2). In 
the following, N will simply indicate the number of 
neighbors of a cell. In any case, as we will discuss later on, 
our results apply to a larger class of CA (i.e., CA with 
different dimensions, larger state sets for cells, and in which 
cells are connected according to irregular lattices).  

We emphasize that 2-dimensional CA are particularly useful 
to study the behavior of spatially distributed systems 
(physical and biological, other than computational ones), and 
to visualize their global evolution in a very simple way, by 
associating different colors to the states of the cells and by 
representing cells in a grid-shaped landscape (see Figure 1). 

Given the quadruple A, which specifies the "static" 
characteristics of an automaton, we also have to define the 
update dynamics, in order to have the complete description of 
a CA. The usual definition of CA implies synchronous 
dynamics: cells update their state in parallel at each time step. 
However, despite being the most studied, synchronous CA 
are hardly representative of those real-world phenomena 
whose execution is characterized by the interactions of a 
population of autonomous interacting elements (as it is the 
case of distributed and pervasive computing systems). In 
these cases, asynchronous dynamics have to be introduced.   

2.2 Asynchronous Dynamics 
Accordingly to the most accepted terminology, a CA is 
asynchronous if cells can update their state independently 
from each other, according to a dynamics that can be either 
step-driven or time-driven [IngB84]. In step-driven 
dynamics, a kind of global daemon is introduced, whose job 
is to choose at each time step one (and only one) cell to 
update, accordingly to a specific sequence. In time-driven 
dynamics, instead, each cell is assumed to have an "internal 
clock" triggering the cell update. We focused on this latter 
case since in decentralized pervasive computing systems, 
autonomous processes execute and interact asynchronously 
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accordingly to a local internal clock.  

 

 (a)  (b)  

 (c)  (d)  

Figure 1: Synchronous vs. asynchronous dynamics in CA. 
(a) Synchronous CA in one state of a cyclic attractor: 
S={0-white,1-black}; N = 8; f = {a cell in state S=0 move 
to state S=1 iff it has 2 neighbors in state S=1; a cell in 
state S=1 stays in that state iff it has 1 or 2 neighbors in 
state S=1}. (b) Its asynchronous counterpart in a fixed-
point attractor. (c) Synchronous CA in one state of a 
cyclic attractor: (d) S={0,1}; N = 12; f = {a cell in state 
S=0 stays move to state S=1 iff it has 6 cells in state S=1; a 
cell in state S=1 stays in that state iff it has 3,4,5 or 6 
neighbors in state S=1}. (d) Its asynchronous counterpart 
in a fixed-point attractor. 

In the experiments presented in this paper, CA have an 
asynchronous time-driven dynamics: at each tick of the 
internal clock, a cell has a probability λa to wake up and 
update its state. The update of a cell has been implemented as 
atomic and mutually exclusive among neighbors to avoid 
concurrency problems. 

In any case, we emphasize that the choice of the dynamic is 
substantial. In fact, asynchronous CA exhibit behaviors that 
are very different from the ones of their synchronous 
counterparts, both in terms of the dynamic and of the final 
attractors. Although both synchronous and asynchronous 
dynamics have the same fixed points [SchR99], i.e., 
attractors that are fixed points under synchronous dynamics 
are fixed points also under asynchronous dynamics and vice 
versa, the basins of attraction can be very different: some of 
the final attractors reached under asynchronous dynamics are 
hardly reached under synchronous one. As an example, 
Figure 1 compares the global states of two different CA 
under synchronous and asynchronous dynamics. Beside the 
visual differences in the perceived patterns, the synchronous  
regime makes both CA reach a cyclic attractor (i.e. the CA 
cycles though a number of states), while the asynchronous 
regime make both CA reach fixed-point attractors (i.e. the 
CA settles in a final state) that their synchronous counterparts 
have never been observed to be able to reach.   

2.3 Perturbing CA Evolution 
We are interested to study the evolution of CA in an open 
world, that is, when the internal dynamics of the CA can be 
influenced by the unpredictable effects of an external 
environment.  

Such openness of the CA implies that some cells can be 
forced from the external to change their state, independently 
of their internal dynamic and transition function (See Figure 
2). In a biological and social perspective, one could consider 
that the activities of individuals in a landscape, while being 
driven by internal goals, are continuously affected by the 
dynamics of the environment (e.g., weather conditions or 
influences of the society). In a computational perspective, 
which is that of more relevance here, one must consider that 
components of pervasive computing systems (agents and 
embedded sensors) will be typically devoted to monitor and 
control our physical environments, and will be influenced in 
their execution – other than by their reciprocal interactions – 
by what they sense in such environments. And, in several 
cases, environments possess a dynamics that is not 
controllable or foreseeable. For instance, the temperature and 
lightening condition in a room that a sensor is devoted to 
control may vary dynamically for a number of reasons that 
cannot be predicted.  

CA Grid 

External “perturbations”  
influencing cells’ state  

 

Figure 2: The basic structure of a perturbed cellular 
automaton 

All the above types of openness can be effectively modeled 
in cellular automata by having external perturbations change 
the internal states of the CA cells accordingly to specific 
dynamics. From a more formal point of view, we characterize 
a perturbed CA as: 

• A = ( S , d , N , f ); 

• asynchronous time-driven dynamics (with 
probability λa); 

• a perturbation action  ϕ(α,D). 

where A is the quadruple defining a CA, the dynamics is the 
one already discussed in Subsection 2.1, and the perturbation 
action ϕ is a transition function which acts concurrently with 
f and can change the state of any of the CA cells to a given 
state α with some probabilistic distribution D, independently 
of the current state of the cells and of their neighbors.  
Specifically, in our experiments with S={0,1}, α=1 and D is 
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a uniform distribution of rate λe. Thus, to implement the 
effect of the perturbation in our simulations, we have super-
imposed a perturbation via a pool of processes 
(asynchronously triggered with probability λe) capable of 
forcing the cells of the CA to change their state to 1, 
independently of the internal cells’ dynamics (Figure 2). 

3 EMERGENT BEHAVIORS IN 
PERTURBED CELLULAR AUTOMATA 

The behavior exhibited by perturbed  
CA is dramatically different from both their synchronous and 
their not-perturbed asynchronous counterparts. In particular, 
our experiments have focused on understanding the impact of 
the perturbation dynamics (determined by λe) against the 
internal dynamics of asynchronous CA (determined by the 
rate of cell updates λa). 

3.1 The Effects of the Perturbation Dynamics 
When the external perturbation is high enough to effectively 
perturb the internal dynamic of the CA, but it does not 
completely prevail over it (which happens when λe is 
comparable λa), peculiar patterns emerge (see Figure 3 on the 
last page of this paper). In particular, we have observed that 
the perturbation on the cells induced by the external – while 
keeping the system out of equilibrium and making impossible 
for it to reach any equilibrium situation – tends to break 
localized stable sub-patterns facilitating the CA to self-
organize into a large (or even global) coherent regular 
pattern. The interested reader can refer to the page 
http://www.agentroup.unimore.it/DCA to repeat these 
experiments on-line. 

Figure 3 on the last page reports several examples of such 
phenomenon for different types of binary-state CA (e.g., with 
different transition rules and different structures of the 
neighborhood). There, for each type of CA, we have reported 
a sample of a typical pattern emerged under a specific value 
of the ratio λe/λa. This enables to clearly outline the influence 
of the ratio λe/λa and the generality of the observed 
behaviors. For all types of CA, the strictly local patterns that 
emerge in the absence of perturbation (or in presence of 
perturbations with a very low dynamic), tend to extend to a 
larger scale in the presence of (moderated) perturbations. In 
particular, in Figure 3, one can observe that, depending on 
the specific type of CA, these structures may sometime 
extend to the whole CA grid so as to make a unique global 
pattern emerge (e.g. Figure 3a, 3c, 3d), other times different 
large-scale structure, not extending to the whole grid, can 
coexists within it (e.g., Figure 3b, 3e).  

The observed large-scale patterns are rather stable despite the 
continuous effects of the perturbations. However, in some 
cases, the emergent patterns are part of a dynamic structure 
that evolves due to the continuous perturbing effects, while 
always preserving the overall structure. For instance, the long 
diagonal stripes in Figure 3d (i) continuously change their 
micro-level shape, while maintaining the same global 
structure and (ii) they tend to continuously and slowly 

translate horizontally in the CA lattice. Should the 
perturbation vanish after the patterns have already emerged, 
the emerged global patterns tend to suddenly freeze, but do 
not disappear. 
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Figure 4: Regularity of the emergent patterns depending 
on λe/λa ratio, a measure by the degree at which the 
pattern can be compressed. Measures performed with the 
Lempel-Ziv algorithm (used in WinZip 8.0) on the binary 
strings representing the rows of the CA. (up): Same type 
of CA of Figure 3a. (bottom): Same type of CA of Figure 
3d.  

The phenomenon that characterizes the behavior of perturbed 
CA can be intuitively described as follows. When the degree 
of perturbation is null or rather small, each cell reaches a 
local static equilibrium (or, in some of the observed cases, 
reaches soon a small, localized, cyclic attractor), which 
reflects in a global uniform equilibrium of the whole system 
characterized by a multiplicity of small localized stable 
structures.  When the ratio λe/λa ratio increases, the system is 
kept in a substantial out-of-equilibrium situation, resulting in 
continuous attempts to locally re-establish equilibrium. This 
typically ends up with cell groups having found new 
equilibrium states more robust with regard to the perturbation 
(or compatible with it). These patterns are those that are able 
to continuously correct irregularities in their structure 
induced by the perturbation. Such stable local patterns, 
spread by the state transition rule, start dominating and 
influencing the surrounding, in a sort of positive feedback, 
until a large-scale (or even global-scale) stabilized situation 
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emerge. The large-scale stabilization typically results in 
visually observable large-scale patterns or, which is the same, 
in a measurable highly ordered configurations of the cells 
(Figure 4). When the degree of perturbation is high enough 
to avoid local stable patterns to persist for enough time, no 
local structure survive for enough time to enable large-scale 
structure to emerge, and the situation becomes somewhat 
“turbulent”.   

3.2 Generality of the Observed Phenomenon 
The above behavior is by no mean exhibited only by discrete 
cellular automata with binary states and connected over a 
regular lattice.  

We have experienced with CA in which the state of cells of a 
CA can assume values over larger discrete domains (e.g. 
integer instead of binary state), and have observed that the 
same qualitative behavior is preserved whenever the state 
transition function exhibits non-linearity. As an example, 
Figure 5 shows the results obtained with a CA in which the 
local state of cells can assume integer values over the range 
0—255, and in which a non-linear transition rule is imposed. 
As the figure outlines, a moderate degree of disturbances 
promotes the emergence of large-scale “islands” of cells 
which have somewhat coordinated their behavior.  

We have also experienced with CA which cells are not 
connected in a regular lattice but in an amorphous network, 
i.e., in which cells are randomly placed in a 2-d space and  in 
which the neighborhood structure is determined by the 
distances of the cells from each other. Also in this case, as 
Figure 6 shows, the presence of moderated perturbations 
makes large-scale patterns emerge that are not observed for a 
non-perturbed CA. Clearly, because of the amorphous nature 
of the network (compared to the regular lattice-like structure 
of the network in “traditional” CA), the patterns that emerge 
are not geometrically regular.  

These results tend to confirm the generality of the 
phenomenon: the emergence of large-scale patterns from 
local interactions in the presence of disturbance, 
independently of the internal structures of cells and of the 
structure of the network in which they operate. An even more 
convincing argument of the generality of this phenomenon, 
however, comes from the observation that very similar 
phenomena occur in nature, in different classes of physical 
and biological systems of autonomous components, 
whenever properly “perturbed”. 

As an example, J. Wootton [Woo01] recently explained the 
origin of the large-scale correlated patterns appearing in the 
distribution of mussels’ species in Pacific coasts. Wootton 
found out that the disturbances created by the ocean waves 
can promote the emergence of long-range correlations from 
local interactions. This explains the observed emergence of 
large-scale patterns in that species of mussels. This 
phenomenon can be directly assimilated to the one we have 
observed in our experiments. 

As another example, disordered waves of solitons (i.e., of 

autonomous photons trapped by their own electric field) 
when interacting with each others (accordingly to local 
physical rules) and when perturbed by non-coherent 
wavelengths (e.g., in the presence of noise) may globally 
organize so as to form optical (observable) patterns with 
structures that, in some cases, are dramatically similar to the 
ones we observed in perturbed CA (e.g., the interested reader 
can compare the patterns of Figure 1a and 1c with those 
reported in [Kip00]). 

Eventually, to some extent, perturbed CA can be assimilated 
to those open thermodynamic systems that, in the presence of 
energy injection, can exhibit the emergence of regular spatial 
structures (e.g. Bénard convection cells [NicP89]). However, 
in these cases, the principles underlying such phenomena are 
rather different from the ones underlying perturbed CA. 

  
    λe/λa = 0,00   λe/λa = 0,02 

Figure 5. Emergence of large-scale patterns in a 
perturbed nearly-continuous CA with the following 
characteristics: S={0(white)—255(black)}; N = 8; f = 
{each cell evaluates its next state NS by comparing its 
current state CS and the average value A of neighboring 
cells:  if |CS-A|<64 then NS = A, if |CS-A|>64 and A≥128 
NS=255, if |CS-A|>64 and A<128 NS=0}. Perturbations 
set cell state to a random value. 

  
    λe/λa = 0,00    λe/λa = 0,02 

Figure 6. Emergence of large-scale patterns in an 
amorphous binary-state CA. Cells are randomly placed 
in a 2-d space, and the neighborhood of a cell is defined 
by all those cells that are within a specific distance (in the 
above test, the distance is set so that a cell is neighbor of 
100 cells on average). The transition rule is as follows: f = 
{a cell in state S=0 stays move to state S=1 iff it has more 
than 30 and less than 50 neighbors in state S=1; a cell in 
state S=1 stays in that state iff it has more than 24 and 
less than 60 neighbors in state S=1}. 
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4 IMPLICATIONS FOR PERVASIVE 
COMPUTING  

As already outlined, perturbed cellular automata have 
characteristics that will be reflected by future pervasive 
computing systems: locality in interactions, autonomy of 
components, and situatedness in a dynamic environment. 
Despite the fact that CA represents an extremely limited 
model of pervasive computing systems, and in consideration 
of the generality of the observed phenomena, there are very 
good reasons to presume that the emergence of global spatial 
patterns exhibited by CA will be observed – in terms of 
emergent globally coordinated patterns of activities – as soon 
as our environments will start being populated by multitudes 
of dispersed computers-based systems.  

These considerations suggest that the design and 
development of pervasive computing systems (or of other 
highly decentralized software systems) should take into 
account these phenomena and be ready for: 

• A prudential defensive approach, to prevent the 
emergence of dangerous counterproductive 
behaviors. 

• a constructive offensive endeavor, to foster the 
emergence of specific emergence behaviors towards 
the achievement of otherwise difficult global 
application goals. 

4.1 Defending from Emergent Behaviors 
Defensively, the reported experiments alert on the possibility 
that a software system immersed in a dynamic environment 
may exhibit behaviors very different from the ones it was 
programmed and tested for.  

To ground the discussion, let us consider a sensor network 
application scenario, in which a large number of computer-
based devices with sensing capabilities are dispersed in an 
outdoor environment (see Figure 7). In general, the very goal 
of a sensor network is to spatially coordinate the activities of 
the sensors to cooperatively achieve specific sensing 
activities in an environment. For instance, we can consider 
that each sensor has a binary state variable representing the 
sensor duty-cycle (i.e. specifying whether the sensor is fully-
active or almost-sleeping, i.e. performing only low-level 
tasks) and that neighbor sensors have to 
coordinate/synchronize their duty cycles so as to: (i) perform 
some collective sensing to detect events that no single sensor 
could detect in full by its own; (ii) save battery power by 
sleeping whenever possible, still ensuring that a given 
geographic zone is always properly monitored by a 
reasonable number of active sensor. Moreover, we can 
assume that peculiar environmental events can trigger 
suddenly a node duty-cycle to the fully-operational mode, if 
something happens that requires the sensor full attention. It is 
not difficult to recognize that, with these hypotheses, the 
sensor network strongly resembles asynchronous and 
perturbed  CA.     

 

Figure 7. The nodes in the sensor network resemble the 
cells of a CA. Nodes binary state variable represents their 
duty-cycle. 

In this scenario, if unexpected macro-level spatial patterns in 
the duty-cycles of the sensor network emerge, they may 
cause large amount of data be left out from the network 
perception. In extremely unlucky situations, a sensor network 
could miss out a great portion of the events happening in the 
environment (e.g., if the event is spatially distributed like the 
emerged macro-level spatial pattern, but in a complementary 
way). Moreover, if the duty-cycles are used to control the 
degree of activity of a node (and thus its power 
consumption), the emergence of spatial patterns could 
produce imbalances in battery usage and cause network 
nodes in specific geographical regions to prematurely run out 
of power. 

It is worth noting that these problems are of a very general 
nature, and similar considerations apply to a variety of other 
novel pervasive computing scenarios. In the case of 
information retrieval applications – and specifically of 
location-based information access – emergent coordination  
may cause a large amount of available information to be left 
out of the search, and have the remaining portion over 
accessed. Emergent coordination in the cells of a mobile 
telephony system (organized – as a CA – in regular grids) 
may lead to bandwidth saturation and cause denial of 
services malfunctioning. In mobile ad-hoc networks, 
emergent coordination in bandwidth utilization limits 
throughput and increases latency in message delivery. In 
computational self-assembly systems and in modular robots, 
whose very application goal is to coordinate the relative 
positioning of mobile computer-based particles, the 
emergence of spatial coordination patterns could simply 
prevent the achievement of the required application goal.    

4.2 Exploiting Emergent Behaviors  
The emergence of large-scale or global patterns in a system 
could also turn, in some situations, to be a useful and 
desirable characteristic.  



 7 

In the above sensor network example, macro-level spatial 
patterns in the duty cycle of the sensors could enable to 
easily discover the presence of correlated spatial events 
happening in the environment. For example, if the duty-
cycles in the network get arranged in a global pattern made 
of stripes (see figure 3a), nodes can easily detect stripe-like 
distributed events, by comparing their readings with neighbor 
ones. Specifically, the network detects a stripe-event if the 
nodes having a coordinated duty-cycle read similar events in 
the same cycle. More in general, the possibility of enforcing 
specific global spatial patterns of activities can be used to 
coordinate the sensing activities of sensor networks. While 
similar goals can be achieved via complex distributed 
coordination and synchronization algorithms, achieving them 
via the natural emergence could turn out to be much more 
efficient and simpler to be programmed.  

As another application example, directly inspired from the 
visual appearance of the CA patterns, one could think at 
“intelligent paintings”. Paintings can be made up of active, 
radio-enabled, micro-components [MamZ04, Zam04], able to 
change their colors according to local transition rules, and 
exhibiting, when painted, nice globally ordered patterns. 

More in general, the possibility of making global patterns 
emerge from a system relying on local interactions could be 
exploited so as to enforce global coordination and 
synchronization in a large-scale system with very low efforts. 
In perspective, one could think at exploiting the 
environmental dynamics to control and influence a 
decentralized distributed computing system from “outside the 
loop” [EstC02, Ten00], that is, without intervening directly 
on the system itself. In a world of continuous computations, 
where decentralized software systems are always running and 
cannot be stopped (this is already the case for Internet 
services and will be the case for networks of embedded 
sensors), changing, maintaining and updating systems by 
stopping and re-installing them is not feasible. Instead, given 
the availability of proper models and tools, one could 
envision the possibility of influence the system without 
stopping it, simply forcing specific environmental dynamics 
changing the global behavior of the system so as to make it 
exhibit the required behavior.  

How such forms of control could be possibly enforced, will 
be discussed in the next section. 

5 CONTROLLING CA BEHAVIOR 
From the previous discussion, it turns out that it would be of 
fundamental importance to have the possibility of controlling 
emergent behaviors in CA. In fact, by considering again the 
relations with decentralized pervasive computing systems, 
having the possibility of controlling emergent behaviors may 
open up the doors to both defending from the emergence of 
undesirable behaviors and exploiting useful behaviors by 
making them emerge as needed. 

However, due to the characteristics of such systems (large 
number of components, large-scale distribution and 

decentralization, autonomy of components) one cannot think 
at controlling the global behavior of the system via a direct 
control on all its components. Rather, such control must be as 
much distributed and decentralized as possible, and should 
rely only on the possibility of controlling a few components 
of the systems, without making any assumption on the 
possibility of controlling all components and their dynamic 
interactions. 

To this end, we experienced two complimentary ways of 
controlling emergent behaviors in perturbed CA, one of 
which having lead to quite successful, and rather surprising, 
results. 

5.1 Generalization-based Control  
The generalization-based methodology gets its inspiration 
from Hopfield’s work on neural networks [Hop82]. It is 
recognized that Hopfield’s networks can generalize a pattern 
from imposition of a partial pattern. Should perturbed CA 
exhibit such generalization property (that non-perturbed CA 
do not exhibit), one could exploit it to make any desired 
global pattern emerge.  

In CA, super-imposition of a partial pattern translates into 
initializing a localized sub-set of CA cells according to the 
desired patterns (see Figure 8 for an example applied to the 
CA of Figure 3a), and then let the CA evolve by making the 
global pattern spontaneously emerge from the local 
imposition.  

In the case of a decentralized pervasive computing system, 
such methodology would imply the possibility of controlling 
the activities of a local cluster of components, and then let 
this locally imposed control diffuse to the whole system. This 
property would be very important in those cases in which 
only a spatially limited portion of the system is accessible for 
control and modification. For example, considering the 
presented sensor network scenario, such an approach would 
imply controlling some sensors close to an eventual base 
station and have the control diffuse to the whole geographic 
region.  

From our experiments, we found out that, for a few rules and 
for small grid dimensions, such methodology worked quite 
well (provided that the degree of perturbation dynamics was 
in the appropriate moderate range). For instance, to make a 
given pattern emerge out a 20x20 CA grid under the rule of 
Figures 1b and 3a, we had to initialize a local portion of 
about 20% of the global grid size. In the case of a pervasive 
computing system, this would mean that controlling the 
initial state of a cluster of a few dozens of component may be 
enough to influence the whole behavior of a system with 
hundreds of distributed components. Unfortunately, the 
generalization-based methodology appears to be neither 
general nor scalable. Generality is lacking because the 
methodology does not work with all types of CA, but only 
for those types of CA that exhibit, in the presence of 
perturbations, globally-extended patterns (e.g., the CA in 
Figure 3a, 3c, 3d). With regard to scalability, one can see 
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from figure 9 that, even if with specific rules the 
methodology can work quite well with small grids, the 
increase of the grid size requires a more than proportional 
increase in the size of the superimposed pattern. For instance, 
for a 60x60 grid, even by superimposing a pattern extending 
for the 60% of the grid, one still does not have reasonable 
guarantees to have such pattern extend to the whole grid. 

As a further disadvantage, the above methodology cannot be 
exploited in any way to avoid a specific global configuration 
to emerge.  

 

Figure 8. Generalization-based methodology: a local 
pattern imposed on a portion of a CA grid (same type of 
CA as in Figures 1a and 3a). 
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Figure 9. Percentage of Successes of the Generalization-
based Methodology, depending on the percentage of 
superimposed cells, and for different dimensions of the 
grid (same type of CA as in Figures 1a and 3a). 

5.2 Rule-based Control 
The rule-based methodology starts from totally different 
considerations and attempts at controlling the global behavior 
of CA by changing – in a limited percentage of the system 
cells – the local rules f determining their state transitions. 
With respect to a decentralized pervasive computing system, 
such control methodology would imply having control over a 
limited percentage of its distributed components, and would 
translate in injecting in these components (e.g., via mobile 
code technologies [Bor02] and wireless communications) 
some new working parameters and procedures. 

In general, to make a desired pattern emerge in the CA, the 

rule has to change so as to make (some of the) cells recognize 
whether the cells in the neighborhood are in the right 
configuration (i.e., their states overall defines a local 
configuration that is compatible with the global one that is 
expected to emerge). Among a variety of possible rule 
modifications we have tested, we have found any good rule 
modification should not be too strict, i.e., it should not force 
a cell to continuously change its state in the attempt at locally 
forming a suitable configuration. For instance, consider the 
following modified rule: a cell should stay in its current state 
if and only if this state, together with the state of neighboring 
cells, overall defines a local configuration suitable to the 
emergence of the global one; otherwise it should change its 
state. For such strict rules, the whole automata end up in a 
chaotic state (cf. constraint-based CA in [Wol02]). Instead, 
we have found out that such rule modifications have to be 
very weak and, counter-intuitively, should enable limiting the 
“normal” state transitions of cells (as implied by the 
unmodified rule) whenever the state of neighbor cells defines 
a local configuration that is not in sharp contrast with the 
desired global one. For instance, given the generic rule for a 
binary-state CA: 

f =  {a cell in state S= 0 must move to state S=1 iff it has 
between D1 and D2 neighbors in state S=1; a cell in 
state S=1 remains in that state iff it has between  L1 
and L2 neighbors in state S=1} 

A simple modified rule mf enabling a specific pattern to 
emerge can be in the form: 

mf =  {rule f OR a cell must move to and stay in state S=1 if 
the neighbor cells currently in state S=1 defines a 
compatible configuration w.r.t. the desired pattern} 

which can be roughly rephrased as follow: follow the normal 
transition rule unless the neighborhood situation is already 
satisfying with regard to the desired pattern. 

Applying the mf rule (or, in general, a properly modified 
rule) to a non-perturbed CA, or to a CA perturbed with an 
inappropriate dynamic, gives not results at all, not even if a 
very large percentage of cells are modified. Either a local 
stable configuration is rapidly found by cells (in the case of 
null or low perturbation dynamics) or the situation becomes, 
as expected turbulent (in the case of high perturbation 
dynamics). However, in the presence of moderated 
perturbation dynamics (in the same range that let the 
“normal” not-modified CA exhibit global or large-scale 
patterns), the mf rule enables any desired pattern to emerge 
from any initial configuration of any CA, and to extend to a 
global scale, independently of the chosen f rule and 
independently of the dimension of the CA grid. For instance, 
we have been able to make the peculiar pattern of Figure 10 
emerge from the CA represented in Figure 3d by applying the 
modified rule, a pattern that emerged only very rarely (about 
0,01% of the cases) in previous experiments. 

Of course, for a control methodology to be applicable to 
large distributed and decentralized systems, it must assume 
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the capability of influencing the behavior of only a limited 
number of the components of a system. For this reason, we 
have tested the rule-based methodology also by modifying 
the rule only in a limited percentage of the CA cells. As 
Figure 11 shows with regard to a specific rule, such 
experiences have been very satisfying: rule-based control 
enables a desired pattern to emerge (and extend over the 
whole grid) even when only a very low percentage of the 
cells apply the modified rules. In particular, as soon as more 
than 25% of the cells are controlled, the desired patterns 
emerge in nearly 100% of the cases. These results are almost 
independent of the dimension of the grid, making the 
methodology scalable. Very similar quantitative results apply 
for different rules. 

From the point of view of avoiding a global pattern to 
emerge, the method is even more effective. In that case, 
unlike the previous one, one must apply to a portion of the 
cells a rule explicitly contrasting the emergence of the 
undesired pattern, i.e., a rule forcing a cell to change its state 
whenever the local configuration would be compatible with 
the global pattern to be avoided: 

mf =  {rule f AND a cell must change its state as soon as it 
recognizes in the neighborhood a local 
configuration which is compatible to the global one 
to be avoided} 

By applying such a rule even to a very low percentage of 
cells (about 5%) one can avoid emergent patterns to extend 
to a global scale, although some of them will always be 
enabled to extend to a rather large-scale. By increasing the 
percentage of modified cells, emergent patterns are more and 
more constrained in their possibility to extend to a large 
scale, until (when the percentage of modified cells grows up 
to 20%) the effect of perturbations in making large scale 
patterns emerge is almost annihilated. 

 

Figure 10. Rule-based methodology: a rare pattern whose 
emergence can be controlled (same type of CA as in 
Figures 1c and 3d). 
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Figure 11. Percentage of Successes of the Rule-based 
Methodology, depending on the percentage of controlled 
cells, and for different dimensions of the grid. ( same type 
of CA as in Figures 1c and 3d) 

6 RELATED WORK 
In this section we briefly discuss related work in the areas of 
cellular automata, multiagent systems, and pervasive 
computing systems.  

6.1 Cellular Automata 
CA has been extensively studied in the scientific literature, 
with a specific interest on the very properties of CA, or on 
their application as computational systems [Wol94, Wol02], 
or in the exploitation of CA for simulation purposes [Bar97]. 
Strictly related, studies in the so called cellular programming 
area aim at exploiting the emergent behaviors of non-uniform 
CA in which each cell can have its own local transition 
function for applications to image recognition, combinatorial 
optimization problems and evolvable hardware [Sip99]. In 
the area of simulation [AdaPL04, Bar97, Ban98, BCT02], 
CA have been and are still widely exploited for the 
simulation of biophysical processes and socio-economical 
phenomena.  

In most of the above studies, CA are considered as 
synchronous and closed systems, for the sake of achieving 
determinism and predictability in CA’s behavior (and, thus, 
in the performed experiments). Some works recognize the 
peculiar and interesting computational behaviors exhibited by 
asynchronous model [IngB84, LumN94, SchR99, 
WeiYW03]. Nevertheless, they still miss in identifying the 
strong influences that the openness of the system and the 
perturbation of the environment can have on the behavior of 
the CA. Possibly, our investigations on perturbed CA may 
lead to further useful application of cellular-based 
computational approaches. 

Strictly related to works on CA are researches on boolean 
networks [Kau93]. From a broad perspective, boolean 
networks can be considered as sorts of non-uniform CA with 
a topology of interconnection that can be described as a 
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directed graph, typically not regular. These types of networks 
have found several interesting applications in modeling 
biological systems (e.g., genetic networks). Still, as in the 
case of CA, the analysis of the influence of a perturbing 
environment on network dynamics is missing (the effects of 
an external perturbation are only considered referring to the 
robustness of attractors). 

Studies on stochastic cellular automata [Bar97] (i.e., CA in 
which transition rules are probabilistic) have shown that non-
determinism in cell update may lead to global scale spatial 
patterns emerge. Non-determinism can be considered as a 
sort of openness, therefore stochastic automata strongly 
resemble perturbed CA in their global dynamics. 
Nevertheless, this model still lacks of explicit identification 
of non-determinism as a sort of openness to the 
environmental dynamics and of its relations to agent-based 
computing. To the best of our knowledge, the only work that 
identifies the potential relations between stochastic automata 
and distributed computing systems is described in [BarD01]. 
As discussed in Section 4, the authors identifies that global 
scale behavior emerging in stochastic CA can potentially be 
used as a tool for globally coordinating the behavior of 
multiagent systems. Still, the authors experience with mono-
dimensional CA, thus missing the spatial expressiveness that 
instead emerges in our two-dimensional experiments. 
Moreover, the lack of modeling environmental dynamics let 
the authors miss the potential dangers of such emergent 
behaviors. 

6.2 Multi-agent systems 
In the computer science community, the specific area in 
which the problems of emergent behaviors have been 
received more attention is the area of multiagent systems. 
This is mainly due to the fact that multiagent systems are 
made up of autonomous and situated entities, and thus are 
prone to exhibit unexpected emergent behaviors.  

Since the origins of distributed artificial intelligence and of 
multiagent systems researches, a large amount of studies 
have shown that systems in which autonomous components 
interact with each other in a network, and change their status 
accordingly to the outcomes of these interactions, can make 
peculiar global behaviors emerge [GasB92, HubH93]. Recent 
examples of these studies may be found in the area of 
computational markets [KepHG00, Tes02] and of 
computational ecosystems [Huh01]. However, most of these 
studies focused on the internal dynamics of the system, 
without taking into account the perturbation of the 
environment. 

Studies in the area of artificial social laws [MosT95] show 
that global rules constraining the behavior of all the agents in 
a group can notably influence the dynamic behavior of the 
group. Analogously, studies adopting an organizational 
metaphor for the design of multiagent systems [JenB03, 
CabLZ03, ZamJW03], show that the definition of global 
environmental rules to which all agents must obey is very 
useful toward the effective control of the global multiagent 

system behavior. For all the above approaches, the basic 
intuition is that agents, for the very fact of living in an 
environment (i.e., a society or an organization) are not fully 
autonomous but, instead, their actions can be constrained and 
influenced by the environment, the same as the state of the 
cells in CA can be changed by the perturbation function. 
However, the above studies exploit such kind of 
environmental abstractions constructively during the design 
process, and assume having full control over the environment 
behavior. Thus, they miss in identifying that agents may live 
in dynamic environment, where the rules governing their 
execution and their interactions can change during the 
evolution of the multiagent systems and can influence their 
behavior in unpredictable (or simply uncontrollable) way.  

The importance of the environmental abstraction and of its 
dynamic in the global behavior of the system is properly 
attributed in the study and implementation of field-based 
[BanMV04] and ant-based multiagent systems [Par97, 
BonDT99, ParB01]. In these systems, very simple agents can 
indirectly interact with each other in a local way, by 
spreading synthetic fields or pheromones in the environment 
and by locally sensing their concentration. Such models can 
achieve difficult goals, such as: finding shortest paths, 
clustering data, etc., by exploiting self-organization and 
emergent phenomena. The similarities between these 
multiagent systems and perturbed CA are strong: they both 
exploit asynchronous components affected in their execution 
by the environmental dynamics, and both evolve to create 
global coordinated activity patterns. However, till now, such 
researches have focused on the possibility of “designing” the 
environment and of controlling its dynamics to constructively 
exploit it. Few researchers explicitly focused on the 
perturbing effects that uncontrollable environmental 
dynamics can have on the global behavior of a system 
[ParBS01], and on the possible way to control it. 

6.3 Decentralized Pervasive Computing 
Inspired by recent advances in communication and 
microelectronics technologies, a vast amount of recent 
researches propose the exploitation of clouds of small-scale 
computer-based systems, to be embedded in our everyday 
objects and to be dispersed in our everyday environments, so 
as to enrich them with smart sensing and actuating 
capabilities. The very goal of the applications proposed in 
this area is somehow related to make the distributed 
components (nodes, sensors, etc.) coordinate with each 
others in spatial patterns of activities that are suitable for the 
achievement of global application-specific tasks.  

In mobile ad-hoc and sensor networks, one of the mainstream 
research focus concerns the design of distributed sensing and 
activity patterns on the basis of the nodes physical locations. 
For example, some algorithms to let nodes self-organize a 
shared coordinate system have already been proposed 
[BacN03]. By using these algorithms the single components 
become aware of their and of neighbors’ location within the 
network and can use this information to send messages to 
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physically-bounded regions in the network. Other important 
algorithms enable nodes to differentiate their activities on the 
basis of their location. For instance, such algorithms could 
allow nodes distant from any relevant source of events to 
differentiate their activities to sleep saving battery power. In 
any case, in all these works, the main focus is to devise 
algorithms to obtain specific functionalities by design (i.e. the 
algorithm explicitly and directly addresses the desired 
functionalities). The possibility that the same functionalities 
can be obtained, in a simpler and more efficient way by 
adopting an emergent approach, similar to the one we 
propose for DCA (i.e. relying on a bottom-up, trial-and-error 
design), is mostly neglected. 

Other interesting areas of research, addressing the problem of 
globally coordinating the activities of a large number of 
distributed components, are modular robots and self-
assembly of computational particles [StoN04]. In these 
researches, the idea is to have a collection of simple 
autonomous robots (or computational mobile particles) 
running a distributed algorithm to assume a global shape or a 
global coherent motion pattern. One of the most successful 
approaches in this scenario adopts data structures resembling 
fields and morphogen gradients. The particles constituting 
the modular robot have the basic capabilities of propagating 
sorts of abstract computational fields in the network, and to 
sense and react to such fields. In particular, particles can 
transfer an activity state towards directions described by 
fields’ gradients, so as to make coordinated global patterns of 
activities emerge in the system [StoN04]. Although some of  
the proposed results are indeed impressive, they are achieved 
via complex distributed algorithms, and the possibility that 
emergent behaviors could be exploited to achieve similar 
results in a simpler way is disregarded.  

To the best of our knowledge, none of the above research 
areas seriously take into consideration the possibility that 
not-designed, counterproductive and dangerous behaviors, 
can emerge in the system. On the contrary, the analysis and 
the experiments reported in this paper alert that this 
possibility is indeed concrete. 

In summary, by considering the strict similarities between the 
above scenarios and the one of perturbed cellular automata, 
we expect that analysis of emergent behaviors and tools to 
control them, possibly along the lines we have sketched in 
this paper, will soon be required in the domain of 
decentralized pervasive computing. 

7 CONCLUSIONS AND FUTURE WORK 
This paper has reported the outcomes of a set of experiments 
that we have performed on a large set of asynchronous CA 
by super-imposing an external perturbation that dynamically 
influences the state transitions of cells. The experiments have 
shown that the perturbation makes large-scale spatial 
structures emerge, which have not observed under 
synchronous and unperturbed regime. Starting from that 
observation, the paper has argued that, since future 
decentralized and pervasive computing systems will exhibit 

all of the characteristics of perturbed CA (local interactions, 
autonomy of components, and influence by a dynamic 
environment), they will be likely to exhibit very similar 
behaviors. This calls for appropriate models, methodologies 
and tools, explicitly taking into this emergent phenomenon 
and possibly exploiting it offensively, as a way to effectively 
achieve global-scale coordination in a system, or defensively, 
to prevent and control the emergence of undesired large-scale 
coordination patterns of activity. In this context, a further set 
of experiments have shown that it is possible to control the 
emergence of a pattern in a perturbed CA by means of a fully 
decentralized mechanism. We argue that a similar sort of 
control can be applied to control the behavior of pervasive 
and decentralized computing systems. 

Our results, although applied to a very minimal model of 
pervasive computing system, motivate further work and 
experiments. In particular: 

• more experiments are needed to evaluate the behavior 
of CA under a variety of different perturbation regimes, 
other than the simple ones we have discussed in this 
paper; 

• more extensive experiments are needed to evaluate the 
behavior of more complex CA, i.e., CA with more 
complex transition rules and in which cells may have 
differentiated behaviors and may be connected 
according to a variety of irregular patterns (e.g., 
amorphous CA and small-world CA); 

• strictly related, we have to evaluate the applicability of 
the proposed control methodologies (discussed in this 
paper with regard to simple and regular CA) in the 
context of more complex and amorphous CA. 

The main objective is to make our experiments more and 
more approximate the actual characteristics of real-world 
pervasive computing scenarios and, eventually, to end up 
with a powerful simulation environment and with effective 
general-purpose tools to control the global behavior of large 
scale decentralized pervasive computing systems.  
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(a) S={0-white,1-black}; N = 8; f = {a cell in state S=0 move to state S=1 iff it has 2 neighbors in state S=1; a cell in 
state S=1 stays in that state iff it has 1 or 2 neighbors in state S=1} 

      
(b) S={0,1}; N = 8; f = {a cell in state S=0 move to state S=1 iff it has 3, 4, or 5 neighbors in state S=1; a cell in state 
S=1 stays in that state iff it has 2, 3, 4 or 5 neighbors in state S=1} 

      
(c) S={0,1}; N = 8; f = {a cell in state S=0 move to state S=1 iff it has 4, 5, or 6 neighbors in state S=1; a cell in state 
S=1 stays in that state iff it has 3, 4, 5 or 6 neighbors in state S=1}  

     
 

(d) S={0,1}; N = 12; f = {a cell in state S=0 move to state S=1 iff it has 6 neighbors in state S=1; a cell in state S=1 
stays in that state iff it has 3, 4, 5 or 6 neighbors in state S=1} 

      
(e) S={0,1}; N = 20; f = {a cell in state S=0 move to state S=1 iff it has 6 neighbors in state S=1; a cell in state S=1 
stays in that state iff it has 3, 4, 5 or 6 neighbors in state S=1}  

      

λe/λa    0,00   0,01 0.02 0,05 0,1 0,2 
 
 
 
 
Figure 3: The behavior of different CA depending on the λe/λa ratio.  


